WO2012069489A1 - Dispositif d'absorption d'énergie bi-matière à sensibilité thermique réduite, face avant et véhicule automobile incorporant un tel dispositif - Google Patents

Dispositif d'absorption d'énergie bi-matière à sensibilité thermique réduite, face avant et véhicule automobile incorporant un tel dispositif Download PDF

Info

Publication number
WO2012069489A1
WO2012069489A1 PCT/EP2011/070707 EP2011070707W WO2012069489A1 WO 2012069489 A1 WO2012069489 A1 WO 2012069489A1 EP 2011070707 W EP2011070707 W EP 2011070707W WO 2012069489 A1 WO2012069489 A1 WO 2012069489A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy absorbing
energy
absorbing member
resistance force
temperature
Prior art date
Application number
PCT/EP2011/070707
Other languages
English (en)
Inventor
Marie-Pierre Buron
Abla Steinmetz
Laurent Droz Bartholet
Vincent Gonin
Original Assignee
Faurecia Bloc Avant
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faurecia Bloc Avant filed Critical Faurecia Bloc Avant
Priority to US13/988,916 priority Critical patent/US9346425B2/en
Priority to CN201180056006.5A priority patent/CN103249962B/zh
Priority to DE112011103861T priority patent/DE112011103861T5/de
Publication of WO2012069489A1 publication Critical patent/WO2012069489A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/121Vibration-dampers; Shock-absorbers using plastic deformation of members the members having a cellular, e.g. honeycomb, structure

Definitions

  • Bi-material energy absorption device with reduced thermal sensitivity, front face and motor vehicle incorporating such a device Bi-material energy absorption device with reduced thermal sensitivity, front face and motor vehicle incorporating such a device
  • the present invention generally relates to energy absorbing devices for a motor vehicle.
  • medium intensity energy absorbers are known for Danner shocks. These energy absorbers are typically interposed between the front face of the vehicle and the main longitudinal members of the vehicle, or between the front face and the lower longitudinal members of the vehicle. Lower spars are also known as "cradle extensions”.
  • shock absorbers are typically formed of tared metal boxes to plastically deform in the event of an impact of intensity greater than a predetermined energy, absorbing a portion of the impact energy.
  • Such absorbers are described for example in FR 07 56 932.
  • the invention aims to provide a shock absorber that is lightweight, efficient and low cost.
  • the invention relates, in a first aspect, to an energy absorption device comprising:
  • a first energy absorbing member made of a first plastic material, designed to plastically deform under the effect of a given energy shock by absorbing a first part of the energy of said shock;
  • a second energy absorbing member made of a second plastic material different from the first plastic material, designed to plastically deform under the effect of said given energy shock by absorbing a second part of the energy of said shock;
  • the first second energy absorption members being shaped so that the energy absorption device has a total intrusion resistance force of between 75 and 200 kN, at any temperature between -30 ° C. and 80 ° C.
  • the energy absorbing device may also have one or more of the features below, considered individually or in any technically feasible combination:
  • the first energy absorption member exhibits, at a temperature of 0 ° C., an intrusion resistance force having a first given value, the first plastic material being chosen such that the first energy absorbing member has an increasing intrusive resistance force from the first value when the temperature decreases from 0 ° C;
  • the first energy absorption member exhibits, at a temperature of 0 ° C., an intrusion resistance force having a first given value, the first plastic material being chosen such that the first energy absorbing member has an intrusive resistance force decreasing from the first value when the temperature increases from 0 ° C;
  • the second energy-absorbing member has, at a temperature of 0 ° C., an intrusion-resistance force having a second given value, the second plastic material being chosen such that the second energy-absorbing member exhibits an intrusive resistance force decreasing from the second value when the temperature decreases from 0 ° C;
  • the second plastic material is chosen such that the second energy absorption member has an intrusion resistance force of less than 20 kN at any temperature below -15 ° C;
  • the second energy-absorbing member has, at a temperature of 0 ° C., an intrusion-resistance force having a second given value, the second plastic material being chosen such that the second energy-absorbing member exhibits an intrusion resistance force between said second value plus 20% and said second value minus 20%, at any temperature between 0 ° C and 80 ° C;
  • the first plastic material is a high ductility polymer chosen from polyolefins, elastomers and their alloys, polyamides or polyphenylene oxides;
  • the second plastic material is a polymer chosen from styrenic polymers, polycarbonates, polyamides, saturated polyesters, polyolefins, elastomers and their alloys;
  • the first energy absorbing member comprises a plurality of walls together defining a housing in which the second energy absorbing member is engaged; and the first and second energy absorption members are two zones of the energy absorption device that come into injection with each other, for example obtained by bi-injection or co-injection.
  • the invention relates to the front face of a motor vehicle, comprising a structural frame, a shield shaped to conform to the shape of a shield skin and arranged against the structural frame, and an energy absorbing device.
  • said shield comprising an upper rail, a lower rail, and vertical connecting beams connecting the upper and lower rails to each other, the first energy absorbing member and / or the second energy absorbing member being formed by an area of the shield.
  • the invention relates to a motor vehicle comprising:
  • a chassis having main spars and lower spars
  • At least one energy absorbing device having the above characteristics, the second energy absorbing member being disposed in the longitudinal extension of one of the main longitudinal members and / or one of the lower longitudinal members.
  • FIG. 1 is an exploded perspective view of a front end of a motor vehicle according to the invention, for a variant embodiment in which the second energy absorption member is in the form of a honeycomb made of plastic;
  • FIG. 2 is a graph indicating, as a function of temperature, the resistance force to the intrusion of the energy absorption device of the invention (curve T), of the first energy absorption member (curve 1 ) and the second energy absorbing member (curve 2);
  • FIG. 3 is a graphical representation of the resistance force to the intrusion of an energy absorbing member constituted of the first plastic material as a function of the temperature, the absorption member being calibrated to present a force resistance of 100 kN at 0 ° C;
  • FIG. 4 is a graphical representation similar to that of FIG. 3, for an energy absorbing member constituted by the second plastic material, the energy absorbing member being calibrated to present a resistance force of 100; kN at 0 ° C;
  • FIG. 5 is a graphic representation similar to that of FIGS. 3 and 4, for the device of the invention;
  • FIG. 6 is a graphical representation of the "force / sink" curve of a Danner impact energy absorbing member
  • FIG. 7 is a schematic perspective view of a shield incorporating an energy absorption device according to a second embodiment of the invention.
  • FIG. 8 is a schematic front view of a shield incorporating an energy absorbing device according to a third embodiment of the invention.
  • the energy absorbing device of the invention is intended to be integrated in a front panel module 1 such as that shown in FIG.
  • the front face module 1 essentially comprises a structural frame 2, a shield 4, and two energy absorption devices 5.
  • the front face module 1 is intended to be fixed on the main beams P of the vehicle, also called “Stretchers”, and on lower spars I, also known as “chassis cradle extensions".
  • the structure of the shield 4 has not been fully shown in FIG.
  • the structural frame 2 contributes to the rigidity of the vehicle body. It typically comprises an upper crossmember 6, a lower crossmember 8, and upright upright and left uprights 12 each incorporating one of the energy absorbing devices 5.
  • the vertical right upright, respectively the left vertical upright 12, of the structural frame 2 comprises a metal support plate 16,18 connecting on the same side of the vehicle, the end of a main spar P at the end of the spar lower I on the same side.
  • each energy absorbing device 5 is fixed on a large face of the plate 16,18 turned forwards.
  • the energy-absorbing devices will be described later.
  • the lower cross member 8 of the structural frame connects the two energy absorbing devices vertical uprights 10,12 to each other.
  • the lower rail 8 has a section of generally rectangular shape.
  • the central portion of the lower cross member 8 is thinned in the vertical direction, so that its upper face has a housing for receiving a cooling assembly, indicated generally by the reference 20.
  • the cooling assembly 20 comprises by example a motorcycle fan and a radiator.
  • the bottom rail 8 is advantageously made of plastic.
  • this crossmember may be metallic and bonded directly to the lower end of each of the lower longitudinal members I, in order to increase its participation in the cohesion and the rigidity of the fund, in situation of rolling or crash.
  • the upper cross member 6 of the structural frame 2 connects the two energy absorbing devices 5 to each other.
  • the upper cross member 6 is of generally arch form.
  • the upper cross member 6, as trellis beam, comprises an upper chord 22 and a lower chord 24, interconnected by reinforcing ribs 26.
  • the reinforcing ribs are arranged to form triangular lower boxes.
  • the section of the upper cross member 6 in the median vertical plane has a diamond shape with a top side disposed substantially horizontally and corresponding to the upper chord 22, a lower side corresponding to the lower chord 24, and inclined front and rear sides up and to the rear of the vehicle.
  • the upper cross member 6 thus leaves the rear vertical plane defined by the lower cross member 8 and the uprights 10 and 12.
  • the geometry disclosed above is an example and is a non-limiting embodiment.
  • the upper chord 22 of the upper cross member 6 is adapted to cooperate with a bodywork element of the vehicle and in particular with a cover thereof.
  • a medial portion of the upper cross member 6 has a housing 28 for receiving cover closing means intended to cooperate with means of conjugate closures provided on the hood.
  • Means for holding the cooling assembly 20 are provided on the lower chord 24 of the upper cross member 6.
  • the shield 4 is disposed against the structural frame 2, towards the front thereof.
  • the shield 4 is for example a one-piece piece made of plastic.
  • the shield 4 comprises an upper cross member 34 and a lower cross member 36 extending substantially horizontally and transversely, and two substantially vertical connecting beams 38 connecting the ends of the upper and lower cross members to one another.
  • the general shape of the shield 4 is shaped to conform to the shape of a shield skin (not shown) and intended to be fixed on the front face 39 of the shield 4.
  • the shield 4 is intended to extend over the entire width of the front face of the motor vehicle, from one wing to the other of said vehicle.
  • the upper cross member 34 is disposed substantially in line with the upper parts of the absorption devices 5. It extends between the two absorption devices 5. According to one embodiment, the upper cross member 34 further comprises end portions 40 extending transversely beyond the connecting beams on both sides of the shield. These parts are intended to support projectors, and shield skin elements or accessories.
  • the lower cross member 36 is disposed substantially in line with the lower parts of the energy absorbing devices 5, and extends between these devices 5.
  • the rear face 42 of the shield 4 comprises two zones 44 for receiving the uprights 10 and 12. These zones 44 constitute two large vertical rails and are delimited at least partially by the vertical connecting beams 38.
  • a central opening 46 is provided between the crosspieces 34 and 36 and the connecting beams 38 so as to let air to the chassis of the motor vehicle.
  • each of the two energy absorption devices 5 comprises:
  • a first energy absorbing member 50 made of a first plastic material, designed to plastically deform under the effect of a given energy shock by absorbing a first part of the energy of said shock;
  • a second energy absorbing member 52 made of a second plastic material different from the first plastic material, designed to plastically deform under the effect of said energy shock given in a second part of the energy of said shock; .
  • the first second energy absorbing members 50 and 52 are shaped so that the energy absorbing device has a total intrusion resistance force of between 75 and 200 kN, at any temperature between -30 ° C. C and 80 ° C.
  • introduction resistance force means the minimum force to be applied to the energy absorbing member so as to obtain a substantially complete plastic deformation of the energy absorption member.
  • an energy absorption member has a "force / sink” curve comprising firstly a ramp 54 followed by a plate 56.
  • the force applied to the energy absorbing member is in the ordinate and the depression of this member is on the abscissa.
  • Figure 6 shows that the sinking of the absorption member starts from a first level of effort, at about 14 kN. Depression increases slowly as the applied force moves from the first level of effort to a second level of effort. From the second level of effort, here about 10 kN, the force remains substantially constant and the depression increases to its maximum value.
  • the first part of the curve, between 14 and 1 10 kN corresponds to the ramp 54
  • the second part, from 1 10 kN corresponds to the plate 56.
  • the resistance force to the intrusion corresponds to the force at the plateau 56. In the example of FIG. 6, the intrusion resistance force is approximately 1 10 kN.
  • Each energy absorbing device of the invention is designed to absorb repairability shocks, at around 15 km / h, these shocks being known as Danner shocks.
  • the energy absorbing device must have a total force of resistance to intrusion that is the highest possible, to allow efficient dissipation of energy in a small footprint.
  • the total force of resistance to the intrusion of the device must be lower than the total strength of resistance of the various tracks of the motor vehicle, namely the main spar and prolongs it for a shock Danner, so as not to damage the main beam or extends in case of shock.
  • the limiting force of the absorption device (intrusion resistance force) must be less than or equal to the maximum buckling forces of each of the accumulated tracks in order to preserve the structure behind the device.
  • the distribution of the forces transmitted by the absorption device to each channel must be such that the transmitted force does not exceed the limit force of each of the channels independently (stretcher, extends).
  • a stretcher is usually calibrated between 100 and 125 kN.
  • An extension is usually calibrated between 30 kN and 50 kN.
  • the limit force of the absorption device will be 150 kN, and the transmission of the force will have to be 2 / 3 by the stretcher and 1/3 by the extension.
  • the resistance force to the intrusion of the energy absorbing device must remain within a certain range, for example 75 to 200 kN, which is close to but less than the resistance force for which the different ways of the vehicle are tared.
  • the total intrusion resistance force of the absorption device must remain within the range indicated above at any temperature between -30 ° C and 80 ° C. This temperature range is dictated by the specifications of the car manufacturers.
  • the absorption device of the invention comprises two energy absorption members made of two different plastic materials, the characteristics of which vary in a complementary manner. temperature function.
  • the behavior of the first plastic material is illustrated in FIG.
  • the first energy absorption member has, in the example illustrated in FIG. 3, an intrusion resistance force at a temperature of ⁇ ' ⁇ of approximately 100 kN.
  • the first plastic material is selected such that the intrusion resistance force is increasing from 100 kN when the temperature decreases from 0 ° C. Conversely, the resistance force to intrusion decreases from 100 kN when the temperature increases from ⁇ ' ⁇ .
  • the resistance force to the intrusion of the first absorption member decreases continuously as the temperature increases.
  • the first plastic material is typically a high ductility polymer, selected from polyolefins, elastomers and their alloys, polyamides or polyphenylene oxides.
  • the behavior of the second material is illustrated in FIG. 4.
  • the second energy absorption member has, at a temperature of 0 ° C., an intrusion resistance force of about 100 kN in the example of FIG. Figure 4.
  • the second plastic material is selected such that the intrusive resistance force of the second energy absorbing member decreases from 100 kN when the temperature decreases from ⁇ ' ⁇ .
  • the intrusion resistance force decreases rapidly as the temperature decreases from ⁇ ' ⁇ .
  • the force of resistance to intrusion is less than 20 kN at any temperature below - ⁇ ⁇ 5 ° C.
  • the intrusion resistance force is less than 10 kN at any temperature below -15 ° C, and even at any temperature below - ⁇ ⁇ ' ⁇ . Below - ⁇ 5 ° C, the resistance force is substantially constant at less than 10 kN.
  • the intrusion resistance force is substantially constant for all temperatures between 0 ⁇ and 80 ° C. More specifically, the intrusion resistance force is between the value at 0 ° C + 20% and the value at 0 ° C -20%, at any temperature between 0 ° C and 80 ° C. Preferably, the resistance force is between the value at 0 ° C + 10% and the value at ⁇ ' ⁇ -10%, and even more preferably between the value at 0 ° C + 5% and the value at 0 ° C -5%.
  • the second plastic material is preferably a material which has a glass transition temperature between -20 ° C and + 10 ° C, preferably between -10 ° C and 0 ° C.
  • the second plastic material is typically a polymer chosen from styrenic polymers, polycarbonates, polyamides, saturated polyesters, polyolefins, elastomers and their alloys, and which may or may not be reinforced by fillers (glass, carbon, talc).
  • the energy absorbing device comprises an energy-absorbing member of the type having the behavior of FIG. 3, and an energy-absorbing member of the type having the behavior of FIG. 4, the device can show for example the behavior of Figure 5.
  • Figure 5 there is shown the resistance force to the intrusion of such a device for absorbing energy, depending on the temperature.
  • the intrusion resistance force is constantly in a band, for example between 75 and 200 kN.
  • the intrusion resistance force gradually decreases from -30 ° C to the temperature T1 from which the resistance force of the second member begins to grow. From this temperature to 0 ° C, the intrusion resistance force of the device increases under the effect of the sharp increase in that of the second absorption member.
  • the resistance force of the device decreases slowly, because the first member has a decreasing resistance force, but the second member has a substantially constant resistance force.
  • the decrease of the resistance force of the complete device is slower than the decrease of the resistance force of the first member.
  • FIG. 2 shows, as a function of temperature, the resistance force of the absorption device 5 of FIG. 1 (curve T), as well as the respective resistance forces of the two absorption members of this device (first organ: curve 1, second organ: curve 2).
  • the curves 1, 2 and T have profiles similar to those of FIGS. 3, 4 and 5 respectively.
  • the first absorption member and the second absorption member are juxtaposed. More specifically, the first absorption member 50 is an injected piece having a plurality of walls together defining at least one housing 60 in which the second energy absorbing member 52 is engaged.
  • the second energy absorbing member 52 comprises at least one insert engaged inside the first energy absorption member.
  • the first energy absorbing member may comprise several housings 60, the second energy absorption member comprising several inserts, each inserted in a corresponding housing.
  • the insert is held in position in the housing by clipping, screwing, riveting, friction or laser welding, grooving etc.
  • the first second energy absorption members cooperate in such a way that the behavior of the device energy absorption during the crushing phase is stable: no lateral dumping, nor buckling or bunching along the axis of crushing.
  • the second energy absorbing member 52 may be a honeycomb piece, each of the cells of the honeycomb having a central axis substantially parallel to the longitudinal axis of the vehicle.
  • the second energy absorbing member may have any other form.
  • the second energy absorption members of the devices 5 are arranged at least in the longitudinal extension of the main longitudinal members P, and preferably also in the longitudinal extension of the lower longitudinal members I.
  • the front-end module comprises four members 52, each in the extension of one of the longitudinal members.
  • the first and second energy absorption have come from injections into the shield 4.
  • the two energy absorption members can be bi-injected or co-injected.
  • the term "bi-injection” means an injection made in a mold having two injection ports, each dedicated to one of the two materials. There is thus practically no mixing between the two materials.
  • "Co-injection” is understood to mean an injection into a mold comprising a single injection orifice, the two materials being successively injected into the mold.
  • the frame 4 comprises on its face 42 facing rearwardly a plurality of stiffening ribs 62, 64.
  • the ribs 62 are horizontal and the ribs 64 are vertical.
  • the ribs 62, 64 together form cells closed towards the front of the vehicle and open towards the rear of the vehicle. Alternatively, some cells may be closed towards the rear and open towards the front.
  • Some areas 66, 68 are made in the second material, these areas together forming the second energy absorbing member.
  • the zones 66 are located longitudinally in the extension of the main spars P.
  • the zones 68 are located longitudinally in the extension of the lower spars I.
  • the remainder of the shield is made of the first material, and constitutes the first energy absorbing member.
  • the bottom walls of certain cells may include an opening 70.
  • the fact of realizing the energy device with a first energy absorbing member in a first plastic material, a second energy absorbing member in a second plastic material, the first second absorption members of energy energy being shaped so that the energy absorbing device has a total force of Intrusion resistance between 75 and 200 kN, at any temperature between -30 ° C and 80 ° C, provides an energy absorbing device that is very efficient at any temperature and is also light and easy to manufacture.
  • first and second plastic materials whose characteristics evolve in a complementary manner according to the temperature makes it possible to maintain the total resistance force to the intrusion of the absorption device in a narrow band, whatever the temperature.
  • the energy absorbing members may conveniently have come from injections with each other. This method of manufacture is fast and inexpensive.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)
  • Laminated Bodies (AREA)

Abstract

Le dispositif d'absorption d'énergie (5) pour véhicule automobile comprend : un premier organe d'absorption d'énergie (50), en un premier matériau plastique, prévu pour se déformer de manière plastique sous l'effet d'un choc d'énergie donnée en absorbant une première partie de l'énergie dudit choc; un second organe d'absorption d'énergie (52), en un second matériau plastique différent du premier matériau plastique, prévu pour se déformer de manière plastique sous l'effet dudit choc d'énergie donnée en absorbant une seconde partie de l'énergie dudit choc; les premier et second organes d'absorption d'énergie (50,52) étant conformés pour que le dispositif d'absorption d'énergie (5) présente une force totale de résistance à l'intrusion comprise entre 75 et 200 kN, à toute température comprise entre -30 °C et 80 °C.

Description

Dispositif d'absorption d'énergie bi-matière à sensibilité thermique réduite, face avant et véhicule automobile incorporant un tel dispositif
La présente invention concerne en général les dispositifs d'absorption d'énergie pour véhicule automobile.
On connaît par exemple des absorbeurs d'énergie de moyenne intensité pour les chocs de type Danner. Ces absorbeurs d'énergie sont typiquement interposés entre la face avant du véhicule et les longerons principaux du véhicule, ou entre la face avant et les longerons inférieurs du véhicule. Les longerons inférieurs sont aussi connus sous le nom de « prolonges de berceau >>.
De tels absorbeurs de chocs sont typiquement formés de boîtes métalliques tarées pour se déformer de manière plastique en cas de choc d'intensité supérieure à une énergie prédéterminée, en absorbant une partie de l'énergie du choc. De tels absorbeurs sont décrits par exemple dans FR 07 56 932.
Ils présentent une masse élevée et sont de structure complexe, puisqu'ils comportent généralement plusieurs pièces assemblées les unes aux autres : une semelle d'appui, un bloc de mousse d'aluminium ou une boîte métallique, une enveloppe déformable à l'intérieur de laquelle est inséré le bloc de mousse métallique ou la boîte métallique etc. De ce fait, ces absorbeurs sont coûteux, du fait que leur assemblage demande beaucoup de temps et met en jeu un grand nombre de pièces.
De tels absorbeurs fonctionnant de manière satisfaisante, mais leur efficacité peut encore être améliorée.
Dans ce contexte, l'invention vise à proposer un absorbeur de chocs qui soit léger, efficace et d'un coût réduit.
A cette fin, l'invention porte, selon un premier aspect, sur un dispositif d'absorption d'énergie comprenant :
- un premier organe d'absorption d'énergie, en un premier matériau plastique, prévu pour se déformer de manière plastique sous l'effet d'un choc d'énergie donnée en absorbant une première partie de l'énergie dudit choc ;
- un second organe d'absorption d'énergie en un second matériau plastique différent du premier matériau plastique, prévu pour se déformer de manière plastique sous l'effet dudit choc d'énergie donnée en absorbant une seconde partie de l'énergie dudit choc ;
- les premiers seconds organes d'absorption d'énergie étant conformés pour que le dispositif d'absorption d'énergie présente une force totale de résistance à l'intrusion comprise entre 75 et 200 kN, à toute température comprise entre -30 °C et 80 °C. Le dispositif d'absorption d'énergie peut également présenter une ou plusieurs des caractéristiques ci-dessous, considérées individuellement ou selon toutes les combinaisons techniquement possibles :
- le premier organe d'absorption d'énergie présente à une température de 0°C une force de résistance à l'intrusion ayant une première valeur donnée, le premier matériau plastique étant choisi tel que le premier organe d'absorption d'énergie présente une force de résistance à l'intrusion croissante à partir de la première valeur quand la température décroît à partir de 0°C ;
- le premier organe d'absorption d'énergie présente à une température de 0°C une force de résistance à l'intrusion ayant une première valeur donnée, le premier matériau plastique étant choisi tel que le premier organe d'absorption d'énergie présente une force de résistance à l'intrusion décroissante à partir de la première valeur quand la température augmente à partir de 0 °C ;
- le second organe d'absorption d'énergie présente à une température de 0 °C une force de résistance à l'intrusion ayant une seconde valeur donnée, le second matériau plastique étant choisi tel que le second organe d'absorption d'énergie présente une force de résistance à l'intrusion décroissante à partir de la seconde valeur quand la température décroît à partir de 0°C ;
- le second matériau plastique est choisi tel que le second organe d'absorption d'énergie présente une force de résistance à l'intrusion inférieure à 20 kN à toute température inférieure à -~\ 5°C ;
- le second organe d'absorption d'énergie présente à une température de 0°C une force de résistance à l'intrusion ayant une seconde valeur donnée, le second matériau plastique étant choisi tel que le second organe d'absorption d'énergie présente une force de résistance à l'intrusion comprise entre la dite seconde valeur plus 20% et la dite seconde valeur moins 20%, à toute température comprise entre 0 °C et 80 °C ;
- le premier matériau plastique est un polymère à haute ductilité choisi parmi les polyoléfines, les élastomères et leurs alliages, les polyamides ou les polyphénylène oxydes ;
- le second matériau plastique est un polymère choisi parmi les polymères styréniques, les polycarbonates, les polyamides, les polyesters saturés, les polyoléfines, les élastomères et leurs alliages ;
- le premier organe d'absorption d'énergie comporte plusieurs parois définissant ensemble un logement dans lequel le second organe d'absorption d'énergie est engagé ; et - les premier et second organes d'absorption d'énergie sont deux zones du dispositif d'absorption d'énergie venues d'injection l'une avec l'autre, par exemple obtenues par bi-injection ou co-injection.
Selon un second aspect, l'invention porte sur face avant de véhicule automobile, comprenant un cadre structurel, un bouclier conformé pour épouser la forme d'une peau de bouclier et disposé contre le cadre structurel, et un dispositif d'absorption d'énergie présentant les caractéristiques ci-dessus, ledit bouclier comprenant une traverse supérieure, une traverse inférieure, et des poutres de liaison verticales raccordant les traverses supérieure et inférieure l'une à l'autre, le premier organe d'absorption d'énergie et/ou le second organe d'absorption d'énergie étant formé par une zone du bouclier.
Selon un troisième aspect, l'invention porte sur un véhicule automobile comprenant :
- un châssis ayant des longerons principaux et des longerons inférieurs ;
- au moins un dispositif d'absorption d'énergie présentant les caractéristiques ci- dessus, le second organe d'absorption d'énergie étant disposé dans le prolongement longitudinal d'un des longerons principaux et/ou d'un des longerons inférieurs.
D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui en est donnée ci-dessous, à titre indicatif et nullement limitatif, en référence aux figures annexées, parmi lesquelles :
- la figure 1 est une vue en perspective, éclatée, d'une face avant de véhicule automobile conforme à l'invention, pour une variante de réalisation dans laquelle le second organe d'absorption d'énergie se présente sous la forme d'un nid d'abeille en matière plastique ;
- la figure 2 est un graphique indiquant en fonction de la température la force de résistance à l'intrusion du dispositif d'absorption d'énergie de l'invention (courbe T), du premier organe d'absorption d'énergie (courbe 1 ) et du second organe d'absorption d'énergie (courbe 2) ;
- la figure 3 est une représentation graphique de la force de résistance à l'intrusion d'un organe d'absorption d'énergie constitué du premier matériau plastique en fonction de la température, l'organe d'absorption étant taré pour présenter une force de résistance de 100 kN à 0°C ;
- la figure 4 est une représentation graphique similaire à celle de la figure 3, pour un organe d'absorption d'énergie constitué du second matériau plastique, l'organe d'absorption d'énergie étant taré pour présenter une force de résistance de 100 kN à 0°C ; - la figure 5 est une représentation graphique similaire à celle des figures 3 et 4, pour le dispositif de l'invention ;
- la figure 6 est une représentation graphique de la courbe « effort/enfoncement >> d'un organe d'absorption d'énergie adapté au choc Danner ;
- la figure 7 est une vue en perspective, schématique, d'un bouclier intégrant un dispositif d'absorption d'énergie conforme à un second mode de réalisation de l'invention ;
- la figure 8 est une vue de face schématique, d'un bouclier intégrant un dispositif d'absorption d'énergie conforme à un troisième mode de réalisation de l'invention.
Le dispositif d'absorption de l'énergie de l'invention est destiné à être intégré dans un module de face avant 1 tel que celui représenté à la figure 1 .
Le module de face avant 1 comprend essentiellement un cadre structurel 2, un bouclier 4, et deux dispositifs d'absorption de l'énergie 5. Le module de face avant 1 est destiné à être fixé sur des longerons principaux P du véhicule, appelés aussi « brancards >>, et sur des longerons inférieurs I, connus également sous le nom de « prolonges de berceau du châssis >>. Pour des raisons de simplicité, la structure du bouclier 4 n'a pas été entièrement représentée sur la figure 1 .
Le cadre structurel 2 participe à la rigidité de la caisse du véhicule. Il comprend typiquement une traverse supérieure 6, une traverse inférieure 8, et des montants verticaux droit 10 et gauche 12 intégrant chacun un des dispositifs d'absorption d'énergie 5.
Le montant vertical droit, respectivement le montant vertical gauche 12, du cadre structurel 2 comporte une platine métallique d'appui 16,18 reliant d'un même côté du véhicule, l'extrémité d'un longeron principal P à l'extrémité du longeron inférieur I situé du même côté.
Dans ce mode de réalisation, chaque dispositif d'absorption d'énergie 5 est fixé sur une grande face de la platine 16,18 tournée vers l'avant. Les dispositifs absorbeurs d'énergie seront décrits plus loin.
La traverse inférieure 8 du cadre structurel relie les deux dispositifs absorbeurs d'énergie des montants verticaux 10,12 l'un à l'autre.
La traverse inférieure 8 a une section de forme générale rectangulaire. La portion centrale de la traverse inférieure 8 est amincie selon la direction verticale, de sorte que sa face supérieure présente un logement de réception d'un ensemble de refroidissement, indiqué de manière générale par la référence 20. L'ensemble de refroidissement 20 comporte par exemple un groupe moto-ventilateur et un radiateur. La traverse inférieure 8 est avantageusement réalisée en matière plastique. En variante, cette traverse peut être métallique et liée directement à l'extrémité inférieure de chacun des longerons inférieurs I, de manière à accroître sa participation à la cohésion et à la rigidité de la caisse, en situation de roulage ou de crash.
La traverse supérieure 6 du cadre structurel 2 relie les deux dispositifs absorbeurs d'énergie 5 l'un à l'autre. La traverse supérieure 6 est de forme générale en arche. La traverse supérieure 6, en tant que poutre à treillis, comporte une membrure supérieure 22 et une membrure inférieure 24, reliées entre elles par des nervures de renfort 26. Les nervures de renfort sont disposées de manière à former des caissons inférieurs triangulaires. La section de la traverse supérieure 6 dans le plan vertical médian, présente une forme en losange avec un côté supérieur disposé essentiellement horizontalement et correspondant à la membrure supérieure 22, un côté inférieur correspondant à la membrure inférieure 24, et des côtés avant et arrière inclinés vers le haut et vers l'arrière du véhicule. La traverse supérieure 6 sort ainsi vers l'arrière du plan vertical défini par la traverse inférieure 8 et les montants verticaux 10 et 12. La géométrie dévoilée ci-dessus l'est à titre d'exemple et constitue un exemple non limitatif de réalisation.
La membrure supérieure 22 de la traverse supérieure 6 est adaptée pour coopérer avec un élément de carrosserie du véhicule et en particulier avec un capot de celui-ci. Une face inférieure du capot, orientée vers l'intérieur du véhicule, vient couvrir la membrure supérieure 22, qui est conformée à cet effet. Une portion médiane de la traverse supérieure 6 présente un logement 28 de réception de moyens de fermeture du capot destinés à coopérer avec des moyens de fermetures conjugués prévus sur le capot.
Des moyens de maintien de l'ensemble de refroidissement 20 sont prévus sur la membrure inférieure 24 de la traverse supérieure 6.
Le bouclier 4 est disposé contre le cadre structurel 2, vers l'avant de celui-ci. Le bouclier 4 est par exemple une pièce monobloc réalisée en matière plastique. Le bouclier 4 comprend une traverse supérieure 34 et une traverse inférieure 36 s'étendant sensiblement horizontalement et transversalement, ainsi que deux poutres de liaison sensiblement verticales 38 reliant les extrémités des traverses supérieure et inférieure l'une à l'autre.
La forme générale du bouclier 4 est conformée pour épouser la forme d'une peau de bouclier (non représentée) et destinée à être fixée sur la face avant 39 du bouclier 4.
Le bouclier 4 est destiné à s'étendre sur toute la largeur de la face avant du véhicule automobile, d'une aile à l'autre dudit véhicule.
La traverse supérieure 34 est disposée sensiblement au droit des parties supérieures des dispositifs d'absorption 5. Elle s'étend entre les deux dispositifs d'absorption 5. Selon un mode de réalisation, la traverse supérieure 34 comprend en outre des parties extrêmes 40 s'étendant transversalement au-delà des poutres de liaison de part et d'autre du bouclier. Ces parties ont vocation à supporter des projecteurs, et des éléments de peau de bouclier ou accessoires annexes.
La traverse inférieure 36 est disposée sensiblement au droit des parties inférieures des dispositifs d'absorption d'énergie 5, et s'étend entre ces dispositifs 5. La face arrière 42 du bouclier 4 comporte deux zones 44 de réception des montants 10 et 12. Ces zones 44 constituent deux larges rails verticaux et sont délimitées au moins partiellement par les poutres de liaison verticales 38.
Une ouverture centrale 46 est prévue entre les traverses 34 et 36 et les poutres de liaison 38 de sorte à laisser passer l'air vers le châssis du véhicule automobile.
Comme visible sur la figure 1 , chacun des deux dispositifs d'absorption d'énergie 5 comprend :
- un premier organe d'absorption d'énergie 50, en un premier matériau plastique, prévu pour se déformer de manière plastique sous l'effet d'un choc d'énergie donnée en absorbant une première partie de l'énergie dudit choc ;
- un second organe d'absorption d'énergie 52, en un second matériau plastique différent du premier matériau plastique, prévu pour se déformer de manière plastique sous l'effet dudit choc d'énergie donnée en une seconde partie de l'énergie dudit choc.
Les premiers seconds organes d'absorption d'énergie 50 et 52 sont conformés pour que le dispositif d'absorption d'énergie présente une force totale de résistance à l'intrusion comprise entre 75 et 200 kN, à toute température comprise entre -30 °C et 80 °C.
On entend ici par « force de résistance à l'intrusion >> la force minimum à appliquer à l'organe d'absorption d'énergie de manière à obtenir une déformation plastique sensiblement complète de l'organe d'absorption d'énergie.
Plus précisément, comme illustré sur la figure 6, un organe d'absorption d'énergie présente une courbe « effort/enfoncement >> comportant d'abord une rampe 54 suivie d'un plateau 56.
Dans cette courbe, l'effort appliqué à l'organe d'absorption d'énergie est en ordonnée et l'enfoncement de cet organe est en abscisse. La figure 6 montre que l'enfoncement de l'organe d'absorption commence à partir d'un premier niveau d'effort, à environ 14 kN. L'enfoncement croît lentement quand l'effort appliqué passe du premier niveau d'effort à un second niveau d'effort. A partir du second niveau d'effort, ici 1 10 kN environ, l'effort reste sensiblement constant et l'enfoncement augmente jusqu'à sa valeur maximum. La première partie de la courbe, entre 14 et 1 10 kN, correspond à la rampe 54, la seconde partie, à partir de 1 10 kN, correspond au plateau 56. La force de résistance à l'intrusion correspond à l'effort au niveau du plateau 56. Dans l'exemple de la figure 6, la force de résistance à l'intrusion vaut environ 1 10 kN.
Chaque dispositif d'absorption d'énergie de l'invention est prévu pour absorber des chocs de réparabilité, aux alentours de 15 km/h, ces chocs étant connus sous le nom de chocs Danner.
Le dispositif d'absorption d'énergie doit présenter une force totale de résistance à l'intrusion qui est la plus élevée possible, pour permettre une dissipation efficace de l'énergie dans un encombrement réduit.
Par ailleurs, la force totale de résistance à l'intrusion du dispositif doit être inférieure à la force totale de résistance des différentes voies du véhicule automobile, à savoir le longeron principal et la prolonge pour un choc Danner, de manière à ne pas endommager le longeron principal ou la prolonge en cas de choc. Plus précisément, l'effort limite du dispositif d'absorption (force de résistance à l'intrusion) doit être inférieur ou égal aux efforts limites de flambement de chacune des voies cumulés afin de préserver la structure en arrière du dispositif. De plus, la répartition des efforts transmis par le dispositif d'absorption à chaque voie doit être telle que l'effort transmis ne dépasse pas l'effort limite de chacune des voies indépendamment (brancard, prolonge). Par exemple, un brancard est généralement taré entre 100 et entre 125 kN. Une prolonge est généralement tarée entre 30 kN et 50 kN. Ainsi, si le véhicule dispose d'un brancard taré à 100 kN et d'une prolonge à 50 kN, l'effort limite du dispositif d'absorption sera de 150 kN, et la transmission de l'effort devra se faire au 2/3 par le brancard et 1/3 par la prolonge.
Ainsi, la force de résistance à l'intrusion du dispositif d'absorption d'énergie doit rester dans une fourchette déterminée, par exemple 75 à 200 kN, qui soit proche mais inférieure de la force de résistance pour lesquelles les différentes voies du véhicule sont tarées.
Plus précisément, la force totale de résistance à l'intrusion du dispositif d'absorption doit rester dans la fourchette indiquée ci-dessus à toute température comprise entre -30 °C et 80 °C. Cette plage de température est dictée par le cahier des charges des constructeurs automobiles.
De manière à rester dans la fourchette de force totale de résistance à l'intrusion, le dispositif d'absorption de l'invention comporte deux organes d'absorption d'énergie réalisés en deux matériaux plastiques différents, dont les caractéristiques varient de manière complémentaire en fonction de la température. Le comportement du premier matériau plastique est illustré sur la figure 3. Le premier organe d'absorption d'énergie présente, dans l'exemple illustré sur la figure 3, une force de résistance à l'intrusion à une température de Ο 'Ό d'environ 100 kN. Le premier matériau plastique est choisi de telle sorte que la force de résistance à l'intrusion soit croissante à partir de 100 kN quand la température décroît à partir de 0°C. A l'inverse, la force de résistance à l'intrusion décroît à partir de 100 kN quand la température augmente à partir de Ο 'Ό. Ainsi, la force de résistance à l'intrusion du premier organe d'absorption décroît de manière continue quand la température augmente.
Le premier matériau plastique est typiquement un polymère à haute ductilité, choisi parmi les polyoléfines, les élastomères et leurs alliages, les polyamides ou polyphénylène oxydes.
Le comportement du second matériau est illustré sur la figure 4. Le second organe d'absorption d'énergie présente à une température de 0°C une force de résistance à l'intrusion qui est d'environ 100 kN dans l'exemple de la figure 4. Le second matériau plastique est choisi de telle sorte que la force de résistance à l'intrusion du second organe d'absorption d'énergie décroît à partir de 100 kN quand la température décroît à partir de Ο'Ό. Plus précisément, la force de résistance à l'intrusion décroît rapidement quand la température décroît à partir de Ο 'Ό. En effet, la force de résistance à l'intrusion est inférieure à 20 kN à toute température inférieure à -~\ 5°C. Par exemple, la force de résistance à l'intrusion est inférieure à 10 kN à toute température inférieure à -15°C, et même à toute température inférieure à -Ι Ο'Ό. En dessous de -~\ 5°C, la force de résistance est sensiblement constante, à une valeur inférieure à 10 kN.
La force de résistance à l'intrusion est sensiblement constante pour toutes les températures comprises entre 0 ΐ et 80 °C. Plus précisément, la force de résistance à l'intrusion est comprise entre la valeur à 0°C +20% et la valeur à 0°C -20%, à toute température comprise entre 0°C et 80 °C. De préférence, la force de résistance est comprise entre la valeur à 0°C +10% et la valeur à Ο'Ό -10%, et encore plus de préférence entre la valeur à 0°C +5% et la valeur à 0 °C -5%.
Le second matériau plastique est de préférence un matériau qui présente une température de transition vitreuse comprise entre -20 °C et +10 °C, de préférence comprise entre -10°C et 0 °C.
Le second matériau plastique est typiquement un polymère choisi parmi les polymères styréniques, les polycarbonates, les polyamides, les polyesters saturés, les polyoléfines, les élastomères et leurs alliages, et pouvant être renforcés ou non par des charges (verre, carbone, talc). Quand le dispositif d'absorption d'énergie comporte un organe d'absorption d'énergie du type ayant le comportement de la figure 3, et un organe d'absorption d'énergie du type ayant le comportement de la figure 4, le dispositif peut présenter par exemple le comportement de la figure 5. Sur la figure 5, on a représenté la force de résistance à l'intrusion d'un tel dispositif d'absorption d'énergie, en fonction de la température. La force de résistance à l'intrusion est constamment dans une bande, par exemple entre 75 et 200 kN.
La force de résistance à l'intrusion décroît progressivement à partir de -30 °C jusqu'à la température T1 à partir de laquelle la force de résistance du second organe commence à croître. A partir de cette température jusqu'à 0 °C, la force de résistance à l'intrusion du dispositif augmente sous l'effet de la forte augmentation de celle du second organe d'absorption.
A partir de 0°C et jusqu'à 80 °C, la force de résistance du dispositif décroît lentement, du fait que le premier organe présente une force de résistance décroissante, mais que le second organe présente une force de résistance sensiblement constante. La décroissance de la force de résistance du dispositif complet est plus lente que la décroissance de la force de résistance du premier organe.
Sur la figure 2, on a représenté en fonction de la température la force de résistance du dispositif d'absorption 5 de la figure 1 (courbe T), ainsi que les forces de résistance respectives des deux organes d'absorption de ce dispositif (premier organe : courbe 1 , second organe : courbe 2).
Les courbes 1 , 2 et T présentent des profils similaires à celles des figures 3, 4 et 5 respectivement.
Dans le mode de réalisation de la figure 1 , le premier organe d'absorption et le second organe d'absorption sont juxtaposés. Plus précisément, le premier organe d'absorption 50 est une pièce injectée comportant plusieurs parois définissant ensemble au moins un logement 60 dans lequel le second organe d'absorption d'énergie 52 est engagé. Ainsi, le second organe d'absorption d'énergie 52 comprend au moins un insert engagé à l'intérieur du premier organe d'absorption d'énergie. Par exemple, le premier organe d'absorption d'énergie peut comporter plusieurs logements 60, le second organe d'absorption d'énergie comportant plusieurs inserts, chacun inséré dans un logement correspondant.
L'insert est maintenu en position dans le logement par clippage, vissage, bouterollage, soudage par friction ou par laser, rainurage etc. Les premiers seconds organes d'absorption d'énergie coopèrent de telle sorte que le comportement du dispositif d'absorption d'énergie durant la phase d'écrasement soit stable : pas de déversement latéral, ni de flambement ou de bottelage selon l'axe d'écrasement.
Le second organe d'absorption d'énergie 52 peut être une pièce en nid d'abeille, chacune des cellules du nid d'abeille ayant un axe central sensiblement parallèle à l'axe longitudinal du véhicule. Le second organe d'absorption d'énergie peut présenter toute sorte d'autres formes.
Les second organes d'absorption d'énergie des dispositifs 5 sont disposés au moins dans le prolongement longitudinal des longerons principaux P, et également de préférence dans le prolongement longitudinal des longerons inférieurs I. Ainsi, dans une telle configuration, le module de face avant comporte quatre organes 52, chacun dans le prolongement de l'un des longerons.
Dans le mode de réalisation de la figure 7, les premier et second d'absorption d'énergie sont venus d'injections dans le bouclier 4. Les deux organes d'absorption d'énergie peuvent être bi-injectés ou co-injectés. On entend par « bi-injection >> une injection réalisée dans un moule comportant deux orifices d'injection, chacun dédié à l'un des deux matériaux. Il n'y a ainsi pratiquement pas de mélange entre les deux matériaux. On entend par « co-injection >> une injection dans un moule comportant un orifice d'injection unique, les deux matériaux étant injectés successivement dans le moule.
Dans le mode de réalisation de la figure 7, le cadre 4 comporte sur sa face 42 tournée vers l'arrière une pluralité de nervures de rigidification 62, 64. Par exemple, les nervures 62 sont horizontales et les nervures 64 sont verticales. Les nervures 62, 64 forment ensemble des alvéoles fermées vers l'avant du véhicule et ouvertes vers l'arrière du véhicule. En variante, certaines alvéoles peuvent être fermées vers l'arrière et ouvertes vers l'avant. Certaines zones 66, 68 sont réalisées dans le second matériau, ces zones constituant ensemble le second organe d'absorption d'énergie. Par exemple, les zones 66 sont situées longitudinalement dans le prolongement des longerons principaux P. Les zones 68 sont situées longitudinalement dans le prolongement des longerons inférieurs I.
Le reste du bouclier est réalisé dans le premier matériau, et constitue le premier organe d'absorption d'énergie.
Comme visible sur la figure 8, les parois de fond de certaines cellules peuvent comporter une ouverture 70.
Ainsi, le fait de réaliser le dispositif d'énergie avec un premier organe d'absorption d'énergie dans un premier matériau plastique, un second organe d'absorption d'énergie dans un second matériau plastique, les premiers seconds organes d'absorption d'énergie étant conformés pour que le dispositif d'absorption d'énergie présente une force totale de résistance à l'intrusion comprise entre 75 et 200 kN, à toute température comprise entre - 30 °C et 80 °C, permet d'obtenir un dispositif d'absorption d'énergie qui soit très efficace à toute température et qui soit également léger et facile de fabrication.
Le choix de premier et second matériaux plastiques dont les caractéristiques évoluent de manière complémentaire en fonction de la température permet de maintenir la force totale de résistance à l'intrusion du dispositif d'absorption dans une bande étroite, quelle que soit la température.
Les organes d'absorption d'énergie peuvent commodément être venus d'injections l'une avec l'autre. Cette méthode de fabrication est rapide et peu coûteuse.

Claims

REVENDICATIONS
1 . - Dispositif d'absorption d'énergie pour véhicule automobile, le dispositif (5) comprenant :
- un premier organe d'absorption d'énergie (50), en un premier matériau plastique, prévu pour se déformer de manière plastique sous l'effet d'un choc d'énergie donnée en absorbant une première partie de l'énergie dudit choc ;
- un second organe d'absorption d'énergie (52), en un second matériau plastique différent du premier matériau plastique, prévu pour se déformer de manière plastique sous l'effet dudit choc d'énergie donnée en absorbant une seconde partie de l'énergie dudit choc ;
- les premier et second organes d'absorption d'énergie (50,52) étant conformés pour que le dispositif d'absorption d'énergie (5) présente une force totale de résistance à l'intrusion comprise entre 75 et 200 kN, à toute température comprise entre -30 °C et 80 °C.
2. Dispositif selon la revendication 1 , caractérisé en ce que le premier organe d'absorption d'énergie (50) présente à une température de 0°C une force de résistance à l'intrusion ayant une première valeur donnée, le premier matériau plastique étant choisi tel que le premier organe d'absorption d'énergie (50) présente une force de résistance à l'intrusion croissante à partir de la première valeur quand la température décroît à partir de 0 <O.
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le premier organe d'absorption d'énergie (50) présente à une température de 0°C une force de résistance à l'intrusion ayant une première valeur donnée, le premier matériau plastique étant choisi tel que le premier organe d'absorption d'énergie (50) présente une force de résistance à l'intrusion décroissante à partir de la première valeur quand la température augmente à partir de 0°C.
4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le second organe d'absorption d'énergie (52) présente à une température de Ο'Ό une force de résistance à l'intrusion ayant une seconde valeur donnée, le second matériau plastique étant choisi tel que le second organe d'absorption d'énergie (52) présente une force de résistance à l'intrusion décroissante à partir de la seconde valeur quand la température décroît à partir de Ο 'Ό.
5. Dispositif selon la revendication 4, caractérisé en ce que le second matériau plastique est choisi tel que le second organe d'absorption d'énergie (52) présente une force de résistance à l'intrusion inférieure à 20 kN à toute température inférieure à -~\ 5°C.
6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le second organe d'absorption d'énergie (52) présente à une température de Ο'Ό une force de résistance à l'intrusion ayant une seconde valeur donnée, le second matériau plastique étant choisi tel que le second organe d'absorption d'énergie (52) présente une force de résistance à l'intrusion comprise entre la dite seconde valeur plus 20% et la dite seconde valeur moins 20%, à toute température comprise entre 0°C et 80 °C.
7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier matériau plastique est un polymère à haute ductilité choisi parmi les polyoléfines, les élastomères et leurs alliages, les polyamides ou les polyphénylène oxydes.
8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le second matériau plastique est un polymère choisi parmi les polymères styréniques, les polycarbonates, les polyamides, les polyesters saturés, les polyoléfines, les élastomères et leurs alliages.
9. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier organe d'absorption d'énergie (50) comporte plusieurs parois définissant ensemble un logement (60) dans lequel le second organe d'absorption d'énergie (52) est engagé.
10. Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que les premier et second organes d'absorption d'énergie (50,52) sont deux zones du dispositif d'absorption d'énergie (5) venues d'injection l'une avec l'autre, par exemple obtenues par bi-injection ou co-injection.
1 1 . Face avant de véhicule automobile, comprenant un cadre structurel (2), un bouclier (4) conformé pour épouser la forme d'une peau de bouclier et disposé contre le cadre structurel (2), et un dispositif d'absorption d'énergie (5) selon l'une quelconque des revendications précédentes, ledit bouclier (4) comprenant une traverse supérieure (34), une traverse inférieure (36) et des poutres de liaison verticales (38) raccordant les traverses supérieure et inférieure (34, 36) l'une à l'autre, le premier organe d'absorption d'énergie (50) et/ou le second organe d'absorption d'énergie (52) étant formé par une zone du bouclier (4).
12. Véhicule automobile comprenant
- un châssis ayant des longerons principaux (P) et des longerons inférieurs (I) ;
- au moins un dispositif d'absorption d'énergie (5) selon l'une quelconque des revendications précédentes, le second organe d'absorption d'énergie (52) étant disposé dans le prolongement longitudinal d'un des longerons principaux (P) et/ou d'un des longerons inférieurs (I).
PCT/EP2011/070707 2010-11-22 2011-11-22 Dispositif d'absorption d'énergie bi-matière à sensibilité thermique réduite, face avant et véhicule automobile incorporant un tel dispositif WO2012069489A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/988,916 US9346425B2 (en) 2010-11-22 2011-11-22 Dual-material energy-absorption device with low thermal sensitivity, front end and motor vehicle incorporating such a device
CN201180056006.5A CN103249962B (zh) 2010-11-22 2011-11-22 低热敏双材料能量吸收装置、前脸及装有这种装置的汽车
DE112011103861T DE112011103861T5 (de) 2010-11-22 2011-11-22 Doppelmaterial-Energieabsorptions-Vorrichtung mit niedriger Wärmeempfindlichkeit, Fahrzeugvorbau und Kraftfahrzeug, das eine solche Vorrichtung einbezieht.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1059600 2010-11-22
FR1059600A FR2967741B1 (fr) 2010-11-22 2010-11-22 Dispositif d'absorption d'energie bi-matiere a sensibilite thermique reduite, face avant et vehicule automobile incorporant un tel dispositif

Publications (1)

Publication Number Publication Date
WO2012069489A1 true WO2012069489A1 (fr) 2012-05-31

Family

ID=45001771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/070707 WO2012069489A1 (fr) 2010-11-22 2011-11-22 Dispositif d'absorption d'énergie bi-matière à sensibilité thermique réduite, face avant et véhicule automobile incorporant un tel dispositif

Country Status (5)

Country Link
US (1) US9346425B2 (fr)
CN (1) CN103249962B (fr)
DE (1) DE112011103861T5 (fr)
FR (1) FR2967741B1 (fr)
WO (1) WO2012069489A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2949518B1 (fr) * 2014-05-27 2017-06-14 Fiat Group Automobiles S.p.A. Structure avant de véhicule à moteur avec une unité frontale améliorée
DE102015008727A1 (de) * 2015-07-07 2017-01-12 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Kraftfahrzeug und Bodenmodul dafür
FR3069516B1 (fr) * 2017-07-28 2019-08-02 Psa Automobiles Sa Systeme de retenue d’appuis de pare-chocs avant
KR102663542B1 (ko) * 2019-05-07 2024-05-03 현대자동차주식회사 차량의 프런트엔드모듈 프레임
KR20210012339A (ko) * 2019-07-24 2021-02-03 현대자동차주식회사 전방 차체 구조

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR756932A (fr) 1932-06-23 1933-12-18 Electro Verre L Isolateur suspendu perfectionné
EP0812674A1 (fr) * 1996-06-13 1997-12-17 Compagnie Plastic Omnium Procédé pour réaliser une pièce en matière thermoplastique renforcée, poutre de pare-chocs et pare-chocs comprenant une telle poutre
EP1035351A1 (fr) * 1999-03-05 2000-09-13 Compagnie Plastic Omnium Absorbeur de chocs cloisonné réalisé en deux blocs emboítes et poutre de pare-chocs comportant un tel absorbeur de chocs
EP1293389A1 (fr) * 2001-09-14 2003-03-19 Compagnie Plastic Omnium Système d'absorption d'énergie pour véhicule automobile
GB2437499A (en) * 2006-04-26 2007-10-31 Touchfirst Ltd Vehicle nudge bar
FR2911831A1 (fr) * 2007-01-31 2008-08-01 Faurecia Bloc Avant Poutre de pare-chocs pour vehicule automobile.
FR2919566A1 (fr) * 2007-08-03 2009-02-06 Faurecia Bloc Avant Face avant de vehicule automobile avec traverse au niveau des longerons principaux
WO2009037787A1 (fr) * 2007-09-21 2009-03-26 Nikkeikin Aluminium Core Technology Company Ltd. Structure de pare-chocs

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1319048B1 (it) * 2000-10-18 2003-09-23 Adlev Srl Sistema per l'assorbimento dell'energia d'urto per veicoli
FR2923446B1 (fr) * 2007-11-08 2010-03-12 Renault Sas Vehicule automobile comportant une traverse, une face avant technique et un convergent, fixes les uns sur les autres.
CN101992737A (zh) * 2009-08-21 2011-03-30 贾伯芳 用于汽车安全保护的吸能装置
GB2473499A (en) * 2009-09-15 2011-03-16 Ajiaz Akhter Modular container system
US9302638B2 (en) * 2010-10-29 2016-04-05 Sabic Global Technologies B.V. Unitary energy absorbing assembly and method of making the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR756932A (fr) 1932-06-23 1933-12-18 Electro Verre L Isolateur suspendu perfectionné
EP0812674A1 (fr) * 1996-06-13 1997-12-17 Compagnie Plastic Omnium Procédé pour réaliser une pièce en matière thermoplastique renforcée, poutre de pare-chocs et pare-chocs comprenant une telle poutre
EP1035351A1 (fr) * 1999-03-05 2000-09-13 Compagnie Plastic Omnium Absorbeur de chocs cloisonné réalisé en deux blocs emboítes et poutre de pare-chocs comportant un tel absorbeur de chocs
EP1293389A1 (fr) * 2001-09-14 2003-03-19 Compagnie Plastic Omnium Système d'absorption d'énergie pour véhicule automobile
GB2437499A (en) * 2006-04-26 2007-10-31 Touchfirst Ltd Vehicle nudge bar
FR2911831A1 (fr) * 2007-01-31 2008-08-01 Faurecia Bloc Avant Poutre de pare-chocs pour vehicule automobile.
FR2919566A1 (fr) * 2007-08-03 2009-02-06 Faurecia Bloc Avant Face avant de vehicule automobile avec traverse au niveau des longerons principaux
WO2009037787A1 (fr) * 2007-09-21 2009-03-26 Nikkeikin Aluminium Core Technology Company Ltd. Structure de pare-chocs

Also Published As

Publication number Publication date
CN103249962B (zh) 2015-11-25
FR2967741B1 (fr) 2012-12-28
FR2967741A1 (fr) 2012-05-25
DE112011103861T5 (de) 2013-08-22
CN103249962A (zh) 2013-08-14
US20140042775A1 (en) 2014-02-13
US9346425B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
EP2233367B1 (fr) Module de face avant de véhicule automobile comprenant un cadre structurel et un bouclier
EP2189336B1 (fr) Module de face avant de véhicule automobile comprenant un bouclier
EP2322386B1 (fr) Ensemble avant de véhicule automobile comprenant un bouclier pare-chocs avant portant des moyens de fixation d&#39;au moins un équipement auxiliaire du véhicule automobile
EP2125440B1 (fr) Module d&#39;absorption de chocs pour vehicule automobile
EP2233368A1 (fr) Ensemble avant de véhicule automobile comprenant un bouclier pare-chocs avant
FR2791628A1 (fr) Combinaison d&#39;une peau de pare-chocs et d&#39;un carenage sous moteur pour vehicule
WO2012069489A1 (fr) Dispositif d&#39;absorption d&#39;énergie bi-matière à sensibilité thermique réduite, face avant et véhicule automobile incorporant un tel dispositif
EP2241480B1 (fr) Face avant de véhicule automobile avec platines de support de grandes tailles pour absorbeurs de chocs, et véhicule associé
EP2135776B1 (fr) Pare-chocs arrière pour véhicule automobile utilitaire
WO2006072695A2 (fr) Face avant pour vehicule automobile.
EP1878621B1 (fr) Pare-chocs de vehicule automobile, notamment pour vehicule de type break
FR2842152A1 (fr) Armature de pare-chocs avec elements absorbeur de chocs perfectionne
EP2125441B1 (fr) Module d&#39;absorption de chocs pour vehicule automobile
EP3592631A1 (fr) Agencement de maintien d&#39;un bac de coffre a l&#39;avant d&#39;une structure de caise d&#39;un vehicule automobile
EP1972527B1 (fr) Carénage de protection moteur renforcé pour véhicule
WO2008061824A1 (fr) Ensemble d&#39;absorption de chocs pour vehicule automobile et face avant correspondante
EP0937611A1 (fr) Poutre de pare-chocs de véhicule automobile
FR3092309A1 (fr) Vehicule electrique avec structure avant renforcee pour devier en cas de choc frontal a faible recouvrement
FR2932766A1 (fr) Element de support de peau de bouclier ameliore pour vehicule automobile
EP2325070B1 (fr) Ensemble avant de véhicule automobile comprenant un bouclier pare-chocs avant pourvu d&#39;une poutre permettant la fixation d&#39;au moins un équipement auxiliaire du véhicule automobile
EP1669262A1 (fr) Capot de véhicule automobile muni d&#39;absorbeurs
FR2882327A1 (fr) Structure avant de vehicule automobile
FR3081423A1 (fr) Vehicule avec dispositif d’absorption a surface d’impact augmentant durant un choc.
FR2966103A1 (fr) Partie avant de la caisse d&#39;un vehicule automobile comportant deux bretelles reliant la traverse superieure a la traverse inferieure et vehicule ainsi equipe
FR2934823A1 (fr) Face avant avec au moins quatre traverses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11785434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120111038615

Country of ref document: DE

Ref document number: 112011103861

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13988916

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11785434

Country of ref document: EP

Kind code of ref document: A1