WO2012068868A1 - Procédé pour améliorer la propriété magnétique d'un acier au silicium orienté par rainurage laser - Google Patents

Procédé pour améliorer la propriété magnétique d'un acier au silicium orienté par rainurage laser Download PDF

Info

Publication number
WO2012068868A1
WO2012068868A1 PCT/CN2011/075676 CN2011075676W WO2012068868A1 WO 2012068868 A1 WO2012068868 A1 WO 2012068868A1 CN 2011075676 W CN2011075676 W CN 2011075676W WO 2012068868 A1 WO2012068868 A1 WO 2012068868A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon steel
oriented silicon
linear
laser
laser beam
Prior art date
Application number
PCT/CN2011/075676
Other languages
English (en)
Chinese (zh)
Inventor
朱业超
王向欣
毛炯辉
王若平
胡守天
张福斌
林勇
杨皓
Original Assignee
武汉钢铁(集团)公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉钢铁(集团)公司 filed Critical 武汉钢铁(集团)公司
Publication of WO2012068868A1 publication Critical patent/WO2012068868A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to an oriented silicon steel manufacturing technique, and in particular to a method for improving the magnetic properties of oriented silicon steel by laser scoring.
  • Oriented silicon steel sheets are mainly used as core materials for transformers. Reducing the iron loss of the oriented silicon steel sheet can reduce the energy loss during the operation of the transformer, which is very important for energy saving and emission reduction.
  • the iron loss of the oriented silicon steel sheet is composed of hysteresis loss and eddy current loss, and the eddy current loss is further divided into classical eddy current loss and abnormal eddy current loss.
  • the abnormal eddy current loss is the eddy current loss based on the movement of the magnetic domain wall, which is proportional to the moving rate of the magnetic domain wall. At the same frequency, the moving rate of the magnetic domain wall is proportional to the moving distance, so the magnetic domain width is larger. The eddy current loss is also greater. In the power frequency state, the abnormal eddy current loss accounts for about half of the iron loss. With the continuous advancement of the oriented silicon steel sheet, its proportion is still increasing.
  • Japanese Laid-Open Patent Publication No. SHO-58-26405 proposes a method of reducing the main domain width by laser irradiation and reducing the iron loss, which generates a stress in the irradiation region by the thermal shock of the laser irradiation to refine the magnetic domain.
  • the drawback of this method is that the stress generated by the laser irradiation disappears after the stress relief annealing, thereby losing the effect of magnetic domain refinement, and therefore this method is not suitable for use as an oriented silicon steel sheet for winding a core.
  • the scheme includes the following types: a method of forming a linear groove by a toothed roll indentation (refer to Japanese Laid-Open Patent Publication No. SHO 63-44804); a method of forming a line pit on a surface by chemical etching (see U.S. Patent No. 4,750,949); A method of forming a groove composed of a series of pits on a surface by a Q-switched carbon dioxide laser (see Japanese Patent Laid-Open No. Hei 7-220913); and a method of forming a molten resolidified layer on the surface of an oriented silicon steel sheet by laser irradiation.
  • the higher hardness of the oriented silicon steel sheet will cause the toothed roller to wear after a short period of use, requiring frequent maintenance.
  • the above chemical etching method it is necessary to apply a mask before etching, and then remove the mask after etching, the process is more complicated than the mechanical indentation method, and the magnetic induction of the oriented silicon steel sheet is seriously degraded.
  • the Q-switched carbon dioxide laser irradiation position If the heat input is too high, the entire oriented silicon steel sheet will be deformed in a well-like manner, resulting in a decrease in the lamination coefficient, and the formation of the molten re-solidified layer on the surface will cause a large damage to the shape of the oriented silicon steel sheet, and the iron loss is reduced.
  • the magnitude is not ideal.
  • the European invention patent EP0992591 proposes a method of forming grooves on both sides of an oriented silicon steel sheet by laser irradiation, but this method needs to control the positional deviation of the corresponding grooves on both sides to one. In a small range, this is difficult to achieve in actual production.
  • the treatment of oriented silicon steel by this method can avoid the damage of the plate shape and prevent the deterioration of the magnetic induction, and at the same time greatly reduce the iron loss after the stress relief and annealing.
  • the method for improving the magnetic properties of oriented silicon steel by laser scoring is designed by using a laser beam to scribe a plurality of parallel arranged linear or dotted lines on the surface of the oriented silicon steel sheet after high temperature annealing.
  • the invention forms a series of parallel arranged linear or dotted line grooves on one side of the oriented silicon steel sheet by laser beam illumination scribing, and through the spacing, arrangement angle, especially the alignment of the linear or dotted lines
  • the reasonable control of the groove depth and the groove width achieves the purpose of not destroying the oriented silicon steel sheet type and significantly reducing the iron loss.
  • the iron loss reduction effect does not disappear after 800 °C stress relief annealing, and the lamination coefficient It will not decrease, and the magnetic sensation is basically not deteriorated.
  • the process of illuminating the nick by the laser beam is simple and easy to control in production. This effectively overcomes the problems of frequent maintenance and complicated processes in the existing mechanical and chemical methods, and also effectively solves the damage plate existing in the existing laser irradiation method. Type, iron loss reduction effect is not obvious or production is difficult to control.
  • the pitch of the linear or dotted line grooves is d ⁇ 3 mm, the increase in hysteresis loss caused by crystal defects caused by internal stress will be greater than the decrease in eddy current loss due to magnetic domain refinement, which not only reduces iron loss. The effect is not obvious, and it also causes a decrease in magnetic induction. If the pitch of the linear or dotted grooves is d > 5 mm, the resulting tensile stress will not be sufficient to form a sufficient number of 180° domains, and the effect of reducing the iron loss is not good.
  • the 180° domain is not parallel to the rolling direction, but has a certain inclination angle with the rolling direction. Since the magnetic domain refinement is produced by the tension between the linear or dotted line grooves, the direction of the tension is correspondingly inclined at a certain angle with the rolling direction. According to the crystallographic direction of the oriented silicon steel sheet, the linear or dotted line groove is formed at a certain angle with the rolling direction of the oriented silicon steel sheet (more favorable for obtaining a good scoring effect. However, if the angle ⁇ is ⁇ 78°) Not only is it not conducive to increasing the tension, but also a lot of non-180° domains are generated, which causes the magnetic properties of the oriented silicon steel sheets to deteriorate.
  • the groove depth h and the groove width b of the linear or dotted line grooves must also be controlled within a certain range. If the groove depth is 1 ⁇ ⁇ 15 ⁇ or the groove width is ⁇ 50 ⁇ , sufficient tensile stress will not be generated, so that the iron loss reduction effect of the oriented silicon steel sheet after stress relief annealing is not satisfactory. If the groove depth is 1 ⁇ > 30 ⁇ , the orientation of the silicon steel sheet is broken and the lamination factor is lowered. If the groove width is b>65 m, excessive crystal defects will occur, resulting in a decrease in magnetic inductance, an increase in hysteresis loss, and a poor iron loss reduction effect.
  • the fiber laser can produce a continuous laser beam with excellent quality. After focusing by a suitable focal length lens, the spot diameter D can be controlled in a narrow range of 7 ⁇ 13 ⁇ , only one-tenth of the multimode Nd:YAG laser, and its illumination point.
  • the peak power density N can reach 10 8 to 10 9 W/cm 2 , so that the precise control of the groove depth and the groove width can be achieved by adjusting the laser power and the scanning line speed, which is the most ideal laser for realizing the invention.
  • the fiber laser has good operational reliability and high photoelectric conversion efficiency, which can greatly reduce the processing and maintenance cost of the oriented silicon steel sheet.
  • the oriented silicon steel sheet treated by the technical solution of the present invention can be used for both a wound core transformer and a laminated core transformer.
  • the quality and grade after laser nicking treatment Significantly improved, compared with the untreated high magnetic induction oriented silicon steel sheet, the market price difference is 356 yuan / ton, 10,000 tons can increase the efficiency of enterprises 3.56 million yuan.
  • Fig. 1 is a schematic view showing the structure of forming a linear or dotted line groove on the surface of an oriented silicon steel sheet by laser scoring.
  • 2 is a schematic cross-sectional view of the A_A of FIG. 1.
  • Figure 3 is a schematic illustration of the electron microscopic topography of a linear or dotted line groove on the surface of an oriented silicon steel sheet within the scope of the score parameters of the present invention.
  • Fig. 4 is a schematic view showing the electron microscopic morphology of a linear or dotted line groove on the surface of an oriented silicon steel sheet outside the range of the score parameters of the present invention.
  • Fig. 5 is a graph showing the relationship between the percentage of iron loss improvement of the oriented silicon steel sheet and the percentage of deterioration of the magnetic inductance as a function of the linear or dotted line groove spacing under the condition that the laser scoring parameter is determined.
  • Fig. 6 is a graph showing the relationship between the percentage of iron loss improvement of the oriented silicon steel sheet and the groove depth and the groove width in the case where the linear or dotted line groove pitch and the arrangement angle are determined.
  • the surface of the high magnetic induction oriented silicon steel sheet 1 is scribed with a linear or dotted line groove 2, and each linear or dotted line groove 2 and the oriented silicon steel sheet 1 are rolled (Fig.
  • the linear or dotted line groove 2 may be scribed on the surface of the high magnetic induction oriented silicon steel sheet 1 after high temperature annealing using the adjusted laser beam.
  • Figure 3 shows the line or point on the surface of a high magnetic induction oriented silicon steel sheet within the range of the score parameters of the present invention.
  • Fig. 4 is a schematic view showing the electron microscopic morphology of a linear or dotted groove 2 on the surface of a high magnetic induction oriented silicon steel sheet outside the range of the score parameters of the present invention.
  • the spot diameter of the laser beam ⁇ 10 ⁇
  • the peak power density of the irradiation spot N 5 x 10 8 W/cm 2
  • the angle between the linear or dotted line groove 2 and the rolling direction of the oriented silicon steel sheet 1 ct 80°
  • the percentage of iron loss improvement ⁇ of the oriented silicon steel sheet and the percentage of magnetic deterioration ⁇ with linear or dotted grooves Schematic diagram of the change in spacing. It can be seen from FIG.
  • the percentage of improvement in iron loss ⁇ can reach 7 ⁇ 9%, the magnetic deterioration percentage ⁇ is only 0.4 ⁇ 0.7%. If the range of the above-mentioned pitch d is scored, the iron loss improvement percentage ⁇ is only 3 to 5%, and the magnetic deterioration percentage ⁇ is 1 to 2%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

L'invention concerne un procédé pour améliorer la propriété magnétique d'un acier au silicium orienté par rainurage laser. Ce procédé utilise un faisceau laser pour tracer plusieurs rainures linéaires ou linéaires en pointillés (2) parallèles les unes aux autres sur la surface d'une plaque d'acier au silicium orienté (1) après recuit à haute température. L'angle α entre chaque rainure linéaire ou linéaire en pointillés (2) et un sens de laminage de la plaque d'acier au silicium orienté (1) est compris entre 78 et 88°. L'intervalle d'espacement d entre deux rainures linéaires ou linéaires en pointillés (2) adjacentes dans le sens de laminage de la plaque d'acier au silicium orienté (1) est compris entre 3 et 5 mm, et la profondeur h et la largeur b des rainures (2) sont comprises entre 15 et 30 μm et entre 50 et 65 μm, respectivement. Le diamètre de spot D du faisceau laser est compris entre 7 et 13 μm, la densité de puissance de crête N du rayonnement de point du faisceau laser est compris entre 108 et 109 W/cm2. Le procédé selon l'invention est simple, facile à mettre en oeuvre et permet d'améliorer la propriété de la plaque d'acier au silicium orienté (1) avec une haute intensité d'induction.
PCT/CN2011/075676 2010-11-26 2011-06-13 Procédé pour améliorer la propriété magnétique d'un acier au silicium orienté par rainurage laser WO2012068868A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105629492A CN101979676B (zh) 2010-11-26 2010-11-26 通过激光刻痕改善取向硅钢磁性能的方法
CN201010562949.2 2010-11-26

Publications (1)

Publication Number Publication Date
WO2012068868A1 true WO2012068868A1 (fr) 2012-05-31

Family

ID=43600215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075676 WO2012068868A1 (fr) 2010-11-26 2011-06-13 Procédé pour améliorer la propriété magnétique d'un acier au silicium orienté par rainurage laser

Country Status (2)

Country Link
CN (1) CN101979676B (fr)
WO (1) WO2012068868A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239325A4 (fr) * 2014-12-24 2017-12-27 Posco Tôle d'acier électrique à grains orientés et procédé permettant la production de cette dernière
EP3751013A4 (fr) * 2018-02-09 2021-07-14 Nippon Steel Corporation Tôle d'acier électromagnétique orienté et son procédé de production

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979676B (zh) * 2010-11-26 2012-02-08 武汉钢铁(集团)公司 通过激光刻痕改善取向硅钢磁性能的方法
CN102941413B (zh) * 2012-11-23 2015-07-01 武汉钢铁(集团)公司 一种取向硅钢多次激光刻槽降低铁损的方法
CN103305682B (zh) * 2013-06-20 2014-11-05 东北大学 一种提高取向硅钢磁导率的装置及方法
CN104673991A (zh) * 2014-12-03 2015-06-03 华北电力大学 一种通过激光刻痕改善电工钢磁性能的方法
KR102008600B1 (ko) * 2015-04-20 2019-08-07 닛폰세이테츠 가부시키가이샤 방향성 전자 강판
JP6455593B2 (ja) * 2015-04-20 2019-01-23 新日鐵住金株式会社 方向性電磁鋼板
CN105244135B (zh) * 2015-09-24 2018-03-30 国网智能电网研究院 一种电工钢板材及其制备方法
CN105185503B (zh) * 2015-09-24 2018-01-19 国网智能电网研究院 一种电工钢板材及其制备方法
KR101884429B1 (ko) 2016-12-22 2018-08-01 주식회사 포스코 방향성 전기강판 및 그 자구미세화 방법
CN108660295A (zh) 2017-03-27 2018-10-16 宝山钢铁股份有限公司 一种低铁损取向硅钢及其制造方法
CN107502723A (zh) * 2017-09-15 2017-12-22 武汉钢铁有限公司 通过激光双面刻痕降低取向硅钢铁损的方法
KR102044320B1 (ko) * 2017-12-26 2019-11-13 주식회사 포스코 방향성 전기강판 및 그 자구미세화 방법
CN110323044B (zh) * 2018-03-30 2021-02-19 宝山钢铁股份有限公司 一种耐热磁畴细化型取向硅钢及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176840A (ja) * 1994-12-20 1996-07-09 Kawasaki Steel Corp 歪取り焼鈍によって特性が劣化しない低鉄損方向性けい素鋼板及びその製造方法
JP2003129135A (ja) * 2001-10-22 2003-05-08 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JP2005059014A (ja) * 2003-08-14 2005-03-10 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板およびその製造方法
CN1761764A (zh) * 2003-03-19 2006-04-19 新日本制铁株式会社 磁特性良好的方向性电磁钢板及其制造方法
WO2009104521A1 (fr) * 2008-02-19 2009-08-27 新日本製鐵株式会社 Tôle d'acier électromagnétique unidirectionnelle à faible perte dans le noyau et son procédé de fabrication
CN101979676A (zh) * 2010-11-26 2011-02-23 武汉钢铁(集团)公司 通过激光刻痕改善取向硅钢磁性能的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1029628C (zh) * 1993-03-04 1995-08-30 清华大学 降低硅钢片铁损的激光处理方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176840A (ja) * 1994-12-20 1996-07-09 Kawasaki Steel Corp 歪取り焼鈍によって特性が劣化しない低鉄損方向性けい素鋼板及びその製造方法
JP2003129135A (ja) * 2001-10-22 2003-05-08 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
CN1761764A (zh) * 2003-03-19 2006-04-19 新日本制铁株式会社 磁特性良好的方向性电磁钢板及其制造方法
JP2005059014A (ja) * 2003-08-14 2005-03-10 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板およびその製造方法
WO2009104521A1 (fr) * 2008-02-19 2009-08-27 新日本製鐵株式会社 Tôle d'acier électromagnétique unidirectionnelle à faible perte dans le noyau et son procédé de fabrication
CN101979676A (zh) * 2010-11-26 2011-02-23 武汉钢铁(集团)公司 通过激光刻痕改善取向硅钢磁性能的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239325A4 (fr) * 2014-12-24 2017-12-27 Posco Tôle d'acier électrique à grains orientés et procédé permettant la production de cette dernière
JP2018508645A (ja) * 2014-12-24 2018-03-29 ポスコPosco 方向性電磁鋼板およびその製造方法
US10815545B2 (en) 2014-12-24 2020-10-27 Posco Grain-oriented electrical steel plate and manufacturing method thereof
EP3751013A4 (fr) * 2018-02-09 2021-07-14 Nippon Steel Corporation Tôle d'acier électromagnétique orienté et son procédé de production
US11697856B2 (en) 2018-02-09 2023-07-11 Nippon Steel Corporation Grain-oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
CN101979676B (zh) 2012-02-08
CN101979676A (zh) 2011-02-23

Similar Documents

Publication Publication Date Title
WO2012068868A1 (fr) Procédé pour améliorer la propriété magnétique d'un acier au silicium orienté par rainurage laser
CN108660303B (zh) 一种耐消除应力退火的激光刻痕取向硅钢及其制造方法
RU2746618C1 (ru) Способ получения стойкой при отжиге для снятия напряжений, текстурированной кремнистой стали с низкими потерями в железе
JP6200908B2 (ja) 方向性電磁鋼板の製造方法
US9139886B2 (en) Grain-oriented electrical steel sheet and method for producing same
CN102941413B (zh) 一种取向硅钢多次激光刻槽降低铁损的方法
US11638971B2 (en) Grain-oriented silicon steel with low core loss and manufacturing method therefore
JP6010907B2 (ja) 方向性電磁鋼板およびその製造方法
RU2757364C1 (ru) Текстурированная кремнистая сталь, имеющая жаростойкий магнитный домен, и способ ее изготовления
CN107502723A (zh) 通过激光双面刻痕降低取向硅钢铁损的方法
WO2012068829A1 (fr) Procédé de traçage laser rapide
JP2018037572A (ja) 巻鉄芯、及び巻鉄芯の製造方法
JP6838321B2 (ja) 方向性電磁鋼板の製造方法、及び方向性電磁鋼板
CN113584279B (zh) 一种耐消除应力退火刻痕取向硅钢及其制造方法
WO2024012439A1 (fr) Procédé de traçage au laser pour tôle d'acier au silicium orienté à faible perte de fer, et tôle d'acier au silicium orienté

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843650

Country of ref document: EP

Kind code of ref document: A1