WO2012068258A2 - Digital fast cordic for envelope tracking generation - Google Patents

Digital fast cordic for envelope tracking generation Download PDF

Info

Publication number
WO2012068258A2
WO2012068258A2 PCT/US2011/061007 US2011061007W WO2012068258A2 WO 2012068258 A2 WO2012068258 A2 WO 2012068258A2 US 2011061007 W US2011061007 W US 2011061007W WO 2012068258 A2 WO2012068258 A2 WO 2012068258A2
Authority
WO
WIPO (PCT)
Prior art keywords
component
circuit
results
cordic
adder circuit
Prior art date
Application number
PCT/US2011/061007
Other languages
French (fr)
Other versions
WO2012068258A3 (en
Inventor
Nadim Khlat
David Myara
Jérémie RAFIN
Original Assignee
Rf Micro Devices, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rf Micro Devices, Inc. filed Critical Rf Micro Devices, Inc.
Publication of WO2012068258A2 publication Critical patent/WO2012068258A2/en
Publication of WO2012068258A3 publication Critical patent/WO2012068258A3/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/556Logarithmic or exponential functions
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/02Conversion to or from weighted codes, i.e. the weight given to a digit depending on the position of the digit within the block or code word
    • H03M7/04Conversion to or from weighted codes, i.e. the weight given to a digit depending on the position of the digit within the block or code word the radix thereof being two
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • G06F1/03Digital function generators working, at least partly, by table look-up
    • G06F1/0307Logarithmic or exponential functions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Computing Systems (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Amplifiers (AREA)
  • Complex Calculations (AREA)
  • Image Processing (AREA)

Abstract

Disclosed is a coordinate rotation digital computer (CORDIC) having a maximum value circuit that selects a larger of the first component or the second component. A minimum value circuit selects a minimum operand that is a smaller one of the first component or the second component. Also included are N rotator stages, each corresponding to a unique one of N predetermined vectors, each of the N rotator stages having a first multiply circuit to multiply the maximum operand by a cosine coefficient of a predetermined vector to output a first rotation component, a second multiply circuit for multiplying the minimum operand by a sine coefficient of the predetermined vector to output a second rotation component, and an adder circuit for adding the first rotation component to the second rotation component to output one of N results, and a maximum value circuit for outputting a maximum one of the N results.

Description

DIGITAL FAST CORDIC FOR ENVELOPE TRACKING GENERATION
Related Applications
[0001] This application claims the benefit of provisional patent application serial number 61/414,085, filed November 16, 2010, the disclosure of which is hereby incorporated herein by reference in its entirety. This application is also related to a concurrently filed utility application entitled DIGITAL FAST DB TO GAIN MULTIPLIER FOR ENVELOPE TRACKING SYSTEMS, the disclosure of which is incorporated herein by reference in its entirety.
Field of the Disclosure
[0002] The present disclosure relates to a method and system that calculates the norms of a stream of vectors at a relatively high rate. Background
[0003] An envelope tracking system generates an envelope signal that is used as a reference input for a fast switched-mode power supply (Fast SMPS). In turn, the Fast SMPS uses the envelope signal to modulate a supply of a power amplifier for an increased efficiency. At present, an envelope signal generated by traditional methods is not fast or accurate enough for use with the long term evolution (LTE) standard wherein an envelope modulation bandwidth can be as high as 1 .5 times a modulation bandwidth. In fact, a 20MHz LTE bandwidth requires about 30MHz envelope bandwidth, which further requires a digital sampling clock of 104MHz for improved oversampling. As a result, there is a need for a method and system that generates fast digital envelope signals using in-phase (I) and quadrature (Q) signals that drive an RF modulator.
Summary
[0004] The present disclosure provides a coordinate rotation digital computer (CORDIC) for computing the norm of a vector having a first component and a second component. The CORDIC includes a first maximum value circuit for outputting a maximum operand that is a larger one of either an absolute value of the first component or an absolute value of the second component. A minimum value circuit outputs a minimum operand that is a smaller one of either an absolute value of the first component or an absolute value of the second component. The CORDIC has N rotator stages, each corresponding to a unique one of N predetermined vectors. Each of the N rotator stages has a first multiply circuit for multiplying the maximum operand by a cosine coefficient of a corresponding predetermined vector to output a first rotation component and a second multiply circuit for multiplying the minimum operand by a sine coefficient of the corresponding predetermined vector to output a second rotation component. Moreover, each of the N rotator stages include an adder circuit for adding the first rotation component to the second rotation component to output one of N results. The CORDIC also has a second maximum value circuit for outputting a maximum one of the N results.
[0005] Those skilled in the art will appreciate the scope of the disclosure and realize additional aspects thereof after reading the following detailed description in association with the accompanying drawings.
Brief Description of the Drawing Figures
[0006] The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
[0007] Figure 1 is a vector graph that is useful in illustrating the concepts of the present disclosure.
[0008] Figure 2 is a block diagram of a first embodiment of a coordinate rotation digital computer (CORDIC) according to the present disclosure.
[0009] Figure 3 is a block diagram of a second embodiment of the CORDIC according to the present disclosure.
[0010] Figure 4 is a voltage versus time graph of an envelope tracking signal that can be generated using output from the present CORDIC. [0011] Figure 5 is a block diagram of a digital envelope tracking system that incorporates the present CORDIC.
Detailed Description
[0012] The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following
description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
[0013] Figure 1 is a vector graph that is useful in illustrating the concepts of the present disclosure. The vector graph includes a vector IQ having a first component / and a second component Q. A goal of the method and system of the present disclosure is to find the norm of a vector such as the vector /f using calculations fast enough to use the norm for radio frequency (RF) modulation. Preferably, the calculations provided by the present disclosure processes vectors at a rate on the order of millions of vectors per second. In order to achieve this relatively high rate of vector processing, tradition floating point calculations used by functions based upon the Pythagorean theorem are too inefficient. Instead, the present disclosure provides a system and method that uses a novel coordinate rotation digital computer (CORDIC) for computing the norm of a vector.
[0014] In particular, the system and method of the present disclosure provides an array of unit vectors U(i) that are used to effectively rotate the vector IQ significantly onto a quadrant axis. In Figure 1 , quadrant axes are labeled X and Y. Each of the unit vectors U(i) has a first component a(f) and a second component^/) . An exemplary list of numerical values for the unit vectors U(i) , the first components a(i) , and the second components b( )are listed in TABLE 1 below. iterator i 1 (0 a(i) b{i)
0 £ (0) = lZ4.5° 0.9969 0.0785
1 /7(1) = 1Z13.5° 0.9724 0.2334
2 /7(2) = 1Z22.5° 0.9239 0.3827
3 C7(3) = 1 31.5° 0.8526 0.5225
4 f7(4) = lZ40.5° 0.7604 0.6494
TABLE 1
[0015] As will be explained in greater detail further in the disclosure, the vector IQ is multiplied by each of the unit vectors U(i) in order to calculate the norm for the vector IQ . In an exemplary case shown in Figure 1 , the vector/g has a first component / and a second component Q . Approximations of the norm are given by the following equation (1 ) with the assumption that the first component/ is larger than the second component Q
Figure imgf000006_0001
[0016] The absolute values of the first component / and a second component gare taken to ensure that the vector/OJs or becomes a first quadrant vector. Converting a vector to a first quadrant vector does not change the norm of the vector. Moreover, whenever the vector/g has a second component gthat is larger than the first component / , the first component / and the second component^ are swapped in equation 1 . In this way, the vector IQ is restricted to locations between angles ranging from 0° to 45° (i.e., 0 to ττ/4 radians).
[0017] A multiplication by one of the unit vectors U(i) yields a largest value. This largest value is the most accurate calculation of the norm for the vector IQ for the unit vectors U(i) . The one of the unit vectors U(i) that yields the most accurate norm calculation will have the smallest angle difference with the vector IQ . An angle Θ represents the smallest angle between one of the unit vectors U(i) and the vectorTg .
[0018] In the exemplary case shown in Figure 1 , the vectorTg has a first component / having a value of 3599 and a second component Q having a value of 1822. Using equation (1 ), approximations of the norm of vector IQ for the exemplary case are shown in Table 2 below.
Figure imgf000007_0001
TABLE 2
[0019] In this exemplary case, the unit vector (7(2) has the smallest angle with the vectorTg . As can be seen in Table 2, the largest calculated norm is 4022, which was calculated using the unit vector(/(2) . Referring to Figure 1 the norm calculation of 4022 is reasonable because the unit vector (7(2) is slightly closer to the vectorTg than the unit vector (7(3) . Using the Pythagorean Theorem, the actual norm for the vector IQ is close to 4034. Accuracy can be improved by increasing the number of unit vectors (/(/) in the array.
[0020] Figure 2 is a block diagram of a first embodiment of a coordinate rotation digital computer (CORDIC) 10 that is in accordance with the present disclosure. The CORDIC 10 is made up of circuitry that digitally calculates the norms of a stream of vectors such as the vector IQ (Figure 1 ). In particular, the CORDIC 10 includes an in-phase (I) input 12 and a quadrature (Q) input 14 that both except signed values that are both n bits wide. The I input 12 accepts the first component / of the vector IQ , while the Q input 14 accepts the second component Q of the vector IQ .
[0021] A first absolute value (ABS) circuit 16 outputs the absolute value of the first component / . A second ABS circuit 18 outputs the absolute value of the second component Q . In the particular case of the first embodiment CORDIC 10, the outputted values are d bits wide, wherein d=n-1 .
[0022] A first maximum value (MAX) circuit 20 receives both the first component / and the second componentgand in turn outputs the larger value of the first component / and the second component Q . In contrast, a first minimum value (MIN) circuit 22 receives both the first component / and the second componentgand in turn outputs the smaller value of the first component / and the second component Q .
[0023] A first rotator stage 24, a second rotator stage 26 and an Nth rotator stage 28 simultaneously receive the larger value output from the first MAX circuit 20 and the smaller value output from the MIN circuit 22. One approximation of a norm for the vector/g is calculated and output from the first rotator stage 24 based upon the larger value output from the first MAX circuit 20 and the smaller value output from the MIN circuit 22. Simultaneously, another approximation of the norm for the vector/g is calculated and output from the second rotator stage 26 based upon the same larger value output from the first MAX circuit 20 and the same smaller value output from the MIN circuit 22. A last approximation of the norm for the vector/g is simultaneously calculated and the output from the Nth rotator stage 28 is based upon the same larger value output from the first MAX circuit 20 and the same smaller value output from the MIN circuit 22. In this way,
N approximations of the norm for the vector IQ are calculated by the CORDIC 10. A second MAX circuit 30 having an output 32 simultaneously receives the N approximations of the norm for the vector/g and outputs the largest one of the N approximations of the norm for the vector/g . This largest one of the N approximations of the norm for the vector/g is the closest approximation for the norm for the vector/g . A larger number of N rotator stages will yield a more accurate approximation for the norm for the vector/g at the cost of additional circuitry and additional power needed to operate the additional circuitry.
[0024] The first rotator stage 24, the second rotator stage 26, and the Nth rotator stage 28 each have a multiply circuit 34 for multiplying the larger value, which is a maximum operand, by corresponding cosine coefficients (z') , wherein i is a natural number that ranges from 0 to N-1 . For example, the cosine coefficient a(0) is stored in a memory location 36 for use by the first rotator stage 24. The cosine coefficient c is stored in a memory location 38 for use by the second rotator stage 26, and a cosine coefficient a(N-l) is stored in a memory location 40 for use by the Nth rotator stage 28. The memory location 36, the memory location 38, and the memory location 40 are each c bits wide. An equation for calculating the cosine coefficients is given by the following equation (2).
^ π . π
a( = 2c. COS Ϊ Λ \*CorrectionF actor (2)
4N 8N
The CorrectionFactor\s a dimensionless correction factor that is usable for reducing the mean error over a plurality of calculations and is given by the following equation (3). CorrectionFactor =——— (3)
π SN
[0025] Similarly, the first rotator stage 24, the second rotator stage 26, and the Nth rotator stage 28 each have a multiply circuit 42 for multiplying the smaller value, which is a minimum operand, by corresponding cosine coefficients b(i), wherein i is a natural number that ranges from 0 to N-1 . A sine coefficient b(0) is stored in a memory location 44 for use by the first rotator stage 24. A sine coefficient b(1 ) is stored in a memory location 46 for use by the second rotator stage 26, and a sine coefficient b(N-1 ) is stored in a memory location 48 for use by the Nth rotator stage 28. The memory location 44, the memory location 46, and the memory location 48 are each c bits wide. An equation for calculating the sine coefficients is given by the following equation (4).
^ π . π ^
b(i) = 2c*SIN *CorrectionF actor (4)
4N Z SNy
The CorrectionF actor is usable for reducing the mean error over a plurality of calculations and is given by the equation (3) above.
[0026] The first rotator stage 24, the second rotator stage 26, and the Nth rotator stage 28 each have an adder circuit 50 that receive m bit wide outputs from corresponding multiply circuits 34 and 42. Each adder circuit 50 outputs an o bit wide norm approximation to the second MAX circuit 30. Moreover, each adder circuit includes a results register 52 that is m bits wide plus an overflow bit 54 that controls a results multiplexer 56 that outputs either the addition results or a predetermined maximum value (MAXVAL) held in a memory location 58. In this particular embodiment the output of the multiplexer 56 will be addition results if the overflow bit is set to 0. In contrast, the output of the adder circuit will be the constant MAXVAL if the overflow bit is set to 1 . A round and right shift (RS) circuit 60 rounds the addition results and then right shifts the results until only an o bit wide result remains.
[0027] Table 3 below lists word size configurations for an exemplary CORDIC having five rotator stages and another exemplary CORDIC having six rotator stages. Table 3 also lists the maximum error for a least significant byte (LSB) and the mean error LSB. The probability for an error greater than or equal to 0.5LSB is 1 1 .3% for a CORDIC with five rotator stages and 7.4% for a CORDIC having 7.4%.
Figure imgf000010_0001
TABLE 3 [0028] Table 4 lists digital values for the coefficients of the first components a(i) , and the second components b(f) of the unit vectors U(i) used by the first rotator stage 24, the second rotator stage 26, and the Nth rotator stage 28.
Figure imgf000011_0001
TABLE 4
Referring back to Table 3, the five rotator stage example is configured for coefficients that are 9 bits in size. As a result, the maximum value for the coefficients of the five rotator stage example is 512. The six rotator stage example is configured for coefficients that are 10 bits in size. Therefore, the maximum value for the coefficients of the six rotator stage example is 1 ,024. Dividing the coefficients of the first components a(i) , and the second components b(i) by the maximum values 512 and 1024 for the five rotator stage example and the six rotator stage example yields decimal values listed in Table 5 below.
Notice that the coefficients of the first components a(f) , and the second components b(i) of the five rotator stage example in Table 5 are close to the first components a(i) , and the second components b(i) of Table 1 multiplied by a CorrectionFactorof 1 .001 that is calculated using equation (3).
Figure imgf000011_0002
TABLE 5 [0029] Figure 3 is a block diagram of a second embodiment of the CORDIC 10 that includes mode circuitry for providing outputs of norms that are divided by the square root of two. The mode circuitry is usable to process vectors associated with a square constellation such as a square quadrature amplitude modulation (QAM) constellation. In particular, the mode circuitry includes an input adder circuit 62 adds the first component / of the vector/g (Figure 1 ) to the second component Q of the vector/g . A first divider circuit 64 divides the result of the input adder circuit 62 by two. A first multiplexer 66 receives output from the I input 12 and the first divider circuit 64. A mode bit memory 68 provides a mode bit to the first multiplexer 66, which in turn uses the mode bit to select between outputting the first component / of the vector Ig or outputting the divided sum of the first component / of the vector/g and the second component Q of the vector IQ .
[0030] The mode circuitry further includes an input subtractor circuit 70 that subtracts the second component Q of the vector/gfrom the first component / of the vector/g . A second divider circuit 72 divides the result of the input subtractor circuit 70 by two. A second multiplexer 74 receives output from the Q input 14 and the second divider circuit 72. A mode bit of 0 will result in a regular norm, whereas a mode bit of 1 will result in a norm divided by the square root of two.
[0031] An additional round and RS circuit 76 can be implemented if the width d of the output of the first MAX circuit 20 is less than the width n-1 of the I input 12. Likewise, another additional round and RS circuit 78 can be implemented if the width d of the output of the first MIN circuit 22 is less than the width n-1 of the Q input 14. In operation, the round and RS circuit 76 and the round and RS circuit 78 round their respective n bit wide contents before right shifting their n bit wide contents to drop lower bits until only d bits remain.
[0032] Figure 4 is a voltage versus time graph of an envelope tracking signal (ETS) that can be generated using output from the CORDIC 10 (Figures 2 and 3). The ETS is shown in dashed lines and matches the modulation envelope of a modulated radio frequency carrier (RFC). The output from the CORDIC 10 does not produce the ETS directly. Instead, the CORDIC 10 is incorporated into other circuitry that forms the ETS.
[0033] Figure 5 is a block diagram of a digital envelope tracking system 80 that incorporates the CORDIC 10. The digital envelope tracking system 80 includes a transmitter section 82 that drives a power amplifier module (PAM) 84 having power amplifier stages 86 with a bias control 88. A front end module (FEM) 90 receives the output from the PAM 84 and passes the output through selectable filters 92 to a transmit antenna 94 via RF switches 96. A fast switch mode power supply (SMPS) converter 98 supplies power to the PAM 84. The fast SMPS converter 98 is controlled through a mobile industry processor interface (MIPI) RF front-end (RFFE) standard interface 100. A general purpose analog-to-digital converter (ADC) 102 is usable to monitor supply voltages provided to the PAM 84 by the fast SMPS converter 98.
[0034] The TX section 82 includes an ETS generator 104 that drives the fast SMPS converter 98 to produce the ETS (Figure 4). The ETS generator 104 receives a digital gain control (GainControl_dB) signal along with a stream of norm outputs from the CORDIC 10.
[0035] The TX section 82 also includes a digital modulator 106 that separates a transmit signal TX into a digital in-phase (I) signal and a digital quadrature (Q) signal. A timing block 108 provides timing advances and delays for the digital I signal and the digital Q signal in response to base station requests. The timing block 108 also provides interpolation for achieving higher clock frequencies.
[0036] A digital gain control 1 10 provides gain to the digital I signal and the digital Q signal in cooperation with the GainControl_dB signal. The cooperation ensures that the amplitude of the ETS (Figure 4) and the amplitude of the RFC (Figure 4) substantially match. A fixed delay 1 1 1 on the order of nanoseconds ensures that the stream of norm values is synchronized with the propagation of the digital I signal and the digital Q signal that are output from the digital gain control 1 10. A first digital-to-analog converter (DAC) 1 12 converts the digital I signal into an analog I signal that is filtered by a first filter 1 14. Similarly, a second DAC 1 16 converts the digital Q signal into an analog Q signal that is filtered by a second filter 118.
[0037] A first mixer 120 mixes the analog I signal with an RF signal generated by an RF oscillator 122. A second mixer 124 mixes the analog Q signal with the RF signal. Mixed outputs from the first mixer 120 and the second mixer 124 combine to produce the modulated RFC shown in Figure 4. A variable attenuator 126 is usable in cooperation with the GainControl_dB signal to adjust the gain of the RFC.
[0038] The ETS generator 104 includes a multiplier circuit 128 that multiplies GainControl_dB with the stream of norm values output from the CORDIC 10. A look-up-table (LUT) 130 provides pre-distortion to the stream of norms to match distortion produced by the power amplifier stages 86. A programmable delay 132 is usable to finely tune synchronization between the stream of norm values and the RFC (Figure 4). A group delay compensator 134 is included to
compensate for a dynamic bandwidth response of the fast SMPS converter 98. Lastly, the ETS generator has a third DAC 136 for converting the stream of norm values into a differential output that drives the fast SMPS converter 98.
[0039] Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims

Claims
What is claimed is:
1 . A coordinate rotation digital computer (CORDIC) for computing a norm of a vector having a first component and a second component, comprising:
• a first maximum value circuit for outputting a maximum operand that is a larger one of either an absolute value of the first component or an absolute value of the second component;
• a minimum value circuit for outputting a minimum operand that is a smaller one of either an absolute value of the first component or an absolute value of the second component;
• N rotator stages, each corresponding to a unique one of N predetermined vectors, each having a first multiply circuit for multiplying the maximum operand by a cosine coefficient of a corresponding predetermined vector to output a first rotation component, a second multiply circuit for
multiplying the minimum operand by a sine coefficient of the
corresponding predetermined vector to output a second rotation
component and an adder circuit for adding the first rotation component to the second rotation component to output one of N results; and
· a second maximum value circuit for outputting a maximum one of the N results.
2. The CORDIC of claim 1 wherein the N predetermined vectors are unit vectors.
3. The CORDIC of claim 1 wherein each adder circuit of the N rotator stages comprises:
• a results register having an overflow bit that is set when a result of an addition performed by the adder circuit is larger than the results register; and • a results multiplexer that outputs the result of an addition performed by the adder circuit if the overflow bit is not set or outputs a predetermined maximum value if the overflow bit is set. 4. The CORDIC of claim 1 wherein each adder circuit of the N rotator stages include a round and right shift (RS) circuit adapted to round addition results and then right shift the addition results until a predetermined bit wide result remains for output. 5. The CORDIC of claim 1 wherein each cosine coefficient α(ί) is given by the following equation,
f π . π ^
a(f) = 2c'COS -CorrectionF actor where,
N l SN
i is a natural number that ranges from 0 to N-1 ,
c is a number of bits containing a value of a(i) , and
CorrectionF actor is a dimensionless decimal value for reducing a mean error over a plurality of calculations.
6. The CORDIC of claim 5 wherein each sine coefficient b( ) is given by the following equation,
( 7T . π ^
b{i) = 2c'SIN / + - »CorrectionF actor where,
N SN J
i is a natural number that ranges from 0 to N-1 ,
c is a number of bits containing a value of b(i) , and
CorrectionF Mctor\s a dimensionless correction factor for reducing a mean error over a plurality of calculations.
7. The CORDIC of claim 6 wherein the dimensionless correction factor is given by the following equation,
f π . π ^
b(i) = 2c'SIN -CorrectionF actor .
4N Z SN j The CORDIC of claim 1 further including mode circuitry adapted to output divided by the square root of two.
9. The CORDIC of claim 8 wherein the mode circuitry comprises:
an input adder circuit to add the first component to the second component; a first divider circuit to divides results of the input adder circuit by two; and a first multiplexer for selecting either the first component or the results of the input adder circuit divided by two. 10. The CORDIC of claim 9 wherein the mode circuitry further comprises:
• an input subtractor circuit to subtract the second component from the first component;
• a second divider circuit to divides results of the input adder circuit by two; and
· a second multiplexer for selecting either the second component or the results of the input subtractor circuit divided by two.
1 1 . An envelope tracking system comprising:
• a power amplifier module (PAM);
· a fast switch mode power supply (SMPS) converter adapted to supply modulated power to the PAM in response to an envelope tracking signal (ETS);
• an envelope tracking signal (ETS) generator adapted to drive the SMPS converter in response to a stream of vector norms; and
· a CORDIC for computing a stream of vector norms, each having a first component and a second component, comprising:
• a first maximum value circuit for outputting a maximum operand that is a larger one of either an absolute value of the first component or an absolute value of the second component; • a minimum value circuit for outputting a minimum operand that is a smaller one of either an absolute value of the first component or an absolute value of the second component;
• N rotator stages, each corresponding to a unique one of N predetermined vectors, each having a first multiply circuit for multiplying the maximum operand by a cosine coefficient of a corresponding predetermined vector to output a first rotation component, a second multiply circuit for multiplying the minimum operand by a sine coefficient of the corresponding predetermined vector to output a second rotation component and an adder circuit for adding the first rotation component to the second rotation component to output one of N results; and
• a second maximum value circuit for outputting a maximum one of the N results.
12. The envelope tracking system of claim 1 1wherein the N predete vectors are unit vectors.
13. The envelope tracking system of claim 1 1 wherein each adder circuit of the N rotator stages comprises:
• a results register having an overflow bit that is set when a result of an addition performed by the adder circuit is larger than the results register; and
• a results multiplexer that outputs the result of an addition performed by the adder circuit if the overflow bit is not set or outputs a predetermined maximum value if the overflow bit is set.
14. The envelope tracking system of claim 1 1 wherein each adder circuit of the N rotator stages include a round and right shift (RS) circuit adapted to round addition results and then right shift the addition results until a predetermined bit wide result remains for output.
15. The envelope tracking system of claim 11 wherein each cosine coefficient a(i) is given by the following equation,
f π . π \
a{i) = 2c*COS 'CorrectionFactor where,
4NZ SN j
i is a natural number that ranges from 0 to N-1 ,
c is a number of bits containing a value of α(ΐ) , and
CorrectionFactor is a dimensionless decimal value for reducing a mean error over a plurality of calculations. 16. The envelope tracking system of claim 15 wherein each sine coefficient is given by the following equation,
Figure imgf000019_0001
i is a natural number that ranges from 0 to N-1 ,
c is a number of bits containing a value of b(i) , and
CorrectionFactor Is a dimensionless correction factor for reducing a mean error over a plurality of calculations.
17. The envelope tracking system of claim 16 wherein the dimensionless correction factor is given by the following equation,
7 . π ^
b(i) = 2c*SIN tor .
4NZ 'CorrectionFac
SN j
18. The envelope tracking system of claim 11 further including mode circuitry adapted to output norms divided by the square root of two.
19. The envelope tracking system of claim 18 wherein the mode circuitry comprises:
• an input adder circuit to add the first component to the second component;
• a first divider circuit to divides results of the input adder circuit by two; and • a first multiplexer for selecting either the first component or the results of the input adder circuit divided by two.
20. The envelope tracking system of claim 19 wherein the mode circuitry further comprises:
• an input subtractor circuit to subtract the second component from the first component; and
• a second divider circuit to divides results of the input adder circuit by two; and a second multiplexer for selecting either the second component or the results of the input subtractor circuit divided by two.
PCT/US2011/061007 2010-11-16 2011-11-16 Digital fast cordic for envelope tracking generation WO2012068258A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41408510P 2010-11-16 2010-11-16
US61/414,085 2010-11-16

Publications (2)

Publication Number Publication Date
WO2012068258A2 true WO2012068258A2 (en) 2012-05-24
WO2012068258A3 WO2012068258A3 (en) 2012-09-27

Family

ID=45099198

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2011/061009 WO2012068260A1 (en) 2010-11-16 2011-11-16 Digital gain multiplier for envelop tracking systems and corresponding method
PCT/US2011/061007 WO2012068258A2 (en) 2010-11-16 2011-11-16 Digital fast cordic for envelope tracking generation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2011/061009 WO2012068260A1 (en) 2010-11-16 2011-11-16 Digital gain multiplier for envelop tracking systems and corresponding method

Country Status (2)

Country Link
US (2) US9075673B2 (en)
WO (2) WO2012068260A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109947393A (en) * 2017-12-20 2019-06-28 航天信息股份有限公司 Operation method and device based on complementation device

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2561611B1 (en) 2010-04-19 2015-01-14 RF Micro Devices, Inc. Pseudo-envelope following power management system
US9099961B2 (en) 2010-04-19 2015-08-04 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
US9431974B2 (en) 2010-04-19 2016-08-30 Qorvo Us, Inc. Pseudo-envelope following feedback delay compensation
US9954436B2 (en) 2010-09-29 2018-04-24 Qorvo Us, Inc. Single μC-buckboost converter with multiple regulated supply outputs
US9379667B2 (en) 2011-05-05 2016-06-28 Rf Micro Devices, Inc. Multiple power supply input parallel amplifier based envelope tracking
US9246460B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power management architecture for modulated and constant supply operation
US9247496B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power loop control based envelope tracking
US9263996B2 (en) 2011-07-20 2016-02-16 Rf Micro Devices, Inc. Quasi iso-gain supply voltage function for envelope tracking systems
US9484797B2 (en) 2011-10-26 2016-11-01 Qorvo Us, Inc. RF switching converter with ripple correction
US9294041B2 (en) 2011-10-26 2016-03-22 Rf Micro Devices, Inc. Average frequency control of switcher for envelope tracking
US9250643B2 (en) 2011-11-30 2016-02-02 Rf Micro Devices, Inc. Using a switching signal delay to reduce noise from a switching power supply
US9515621B2 (en) 2011-11-30 2016-12-06 Qorvo Us, Inc. Multimode RF amplifier system
US9041365B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. Multiple mode RF power converter
US9280163B2 (en) 2011-12-01 2016-03-08 Rf Micro Devices, Inc. Average power tracking controller
US9256234B2 (en) 2011-12-01 2016-02-09 Rf Micro Devices, Inc. Voltage offset loop for a switching controller
US9494962B2 (en) 2011-12-02 2016-11-15 Rf Micro Devices, Inc. Phase reconfigurable switching power supply
US9813036B2 (en) 2011-12-16 2017-11-07 Qorvo Us, Inc. Dynamic loadline power amplifier with baseband linearization
US9298198B2 (en) 2011-12-28 2016-03-29 Rf Micro Devices, Inc. Noise reduction for envelope tracking
US9225231B2 (en) 2012-09-14 2015-12-29 Rf Micro Devices, Inc. Open loop ripple cancellation circuit in a DC-DC converter
US9207692B2 (en) 2012-10-18 2015-12-08 Rf Micro Devices, Inc. Transitioning from envelope tracking to average power tracking
US9627975B2 (en) 2012-11-16 2017-04-18 Qorvo Us, Inc. Modulated power supply system and method with automatic transition between buck and boost modes
US20140204046A1 (en) * 2013-01-22 2014-07-24 Pixart Imaging Inc. Capacitive touch sensing device and detection method thereof
US9300252B2 (en) 2013-01-24 2016-03-29 Rf Micro Devices, Inc. Communications based adjustments of a parallel amplifier power supply
US9479118B2 (en) 2013-04-16 2016-10-25 Rf Micro Devices, Inc. Dual instantaneous envelope tracking
US9374005B2 (en) 2013-08-13 2016-06-21 Rf Micro Devices, Inc. Expanded range DC-DC converter
US9614476B2 (en) 2014-07-01 2017-04-04 Qorvo Us, Inc. Group delay calibration of RF envelope tracking
US9793879B2 (en) * 2014-09-17 2017-10-17 Avnera Corporation Rate convertor
US9853608B2 (en) 2015-06-19 2017-12-26 Qorvo Us, Inc. Temperature compensation technique for envelope tracking system
US9843294B2 (en) 2015-07-01 2017-12-12 Qorvo Us, Inc. Dual-mode envelope tracking power converter circuitry
US9912297B2 (en) 2015-07-01 2018-03-06 Qorvo Us, Inc. Envelope tracking power converter circuitry
US9973147B2 (en) 2016-05-10 2018-05-15 Qorvo Us, Inc. Envelope tracking power management circuit
EP3260977B1 (en) * 2016-06-21 2019-02-20 Stichting IMEC Nederland A circuit and a method for processing data
US10476437B2 (en) 2018-03-15 2019-11-12 Qorvo Us, Inc. Multimode voltage tracker circuit

Family Cites Families (288)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980964A (en) 1974-05-20 1976-09-14 Grodinsky Robert M Noise reduction circuit
US3969682A (en) 1974-10-21 1976-07-13 Oberheim Electronics Inc. Circuit for dynamic control of phase shift
US4587552A (en) * 1983-09-02 1986-05-06 Rca Corporation Apparatus for generating the magnitude of the vector sum of two orthogonal signals as for use in a digital TV receiver
US4692889A (en) * 1984-09-28 1987-09-08 Rca Corporation Circuitry for calculating magnitude of vector sum from its orthogonal components in digital television receiver
US4831258A (en) 1988-03-04 1989-05-16 Exergen Corporation Dual sensor radiation detector
US4996500A (en) 1989-10-24 1991-02-26 Hewlett-Packard Company Automatic control system
US5311309A (en) 1990-06-01 1994-05-10 Thomson Consumer Electronics, Inc. Luminance processing system for compressing and expanding video data
US5486871A (en) 1990-06-01 1996-01-23 Thomson Consumer Electronics, Inc. Automatic letterbox detection
US5351087A (en) 1990-06-01 1994-09-27 Thomson Consumer Electronics, Inc. Two stage interpolation system
US5420643A (en) 1990-06-01 1995-05-30 Thomson Consumer Electronics, Inc. Chrominance processing system for compressing and expanding video data
US5099203A (en) 1990-06-05 1992-03-24 Continental Electronics Corporation Power amplifier having multiple switched stages and method of operating same
DE4038111A1 (en) 1990-11-29 1992-06-04 Thomson Brandt Gmbh UNIVERSAL FILTER
US5146504A (en) * 1990-12-07 1992-09-08 Motorola, Inc. Speech selective automatic gain control
US5187396A (en) 1991-05-22 1993-02-16 Benchmarq Microelectronics, Inc. Differential comparator powered from signal input terminals for use in power switching applications
JPH0828965B2 (en) 1992-09-02 1996-03-21 日本電気株式会社 Voltage conversion circuit
US5414614A (en) 1994-06-06 1995-05-09 Motorola, Inc. Dynamically configurable switched capacitor power supply and method
US5822318A (en) 1994-07-29 1998-10-13 Qualcomm Incorporated Method and apparatus for controlling power in a variable rate communication system
US5646621A (en) 1994-11-02 1997-07-08 Advanced Micro Devices, Inc. Delta-sigma ADC with multi-stage decimation filter and gain compensation filter
US5581454A (en) 1994-11-22 1996-12-03 Collins; Hansel High power switched capacitor voltage conversion and regulation apparatus
US5541547A (en) 1995-05-03 1996-07-30 Sun Microsystems, Inc. Test generator system for controllably inducing power pin latch-up and signal pin latch-up in a CMOS device
JP3110288B2 (en) 1995-07-21 2000-11-20 日本電気株式会社 Exponential logarithmic conversion circuit
US5715526A (en) 1995-09-08 1998-02-03 Qualcomm Incorporated Apparatus and method for controlling transmission power in a cellular communications system
US5767744A (en) 1995-11-22 1998-06-16 Qsc Audio Products, Inc. Lightweight fixed frequency discontinuous resonant power supply for audio amplifiers
US5732333A (en) 1996-02-14 1998-03-24 Glenayre Electronics, Inc. Linear transmitter using predistortion
US6256482B1 (en) 1997-04-07 2001-07-03 Frederick H. Raab Power- conserving drive-modulation method for envelope-elimination-and-restoration (EER) transmitters
US5905407A (en) 1997-07-30 1999-05-18 Motorola, Inc. High efficiency power amplifier using combined linear and switching techniques with novel feedback system
US5936464A (en) 1997-11-03 1999-08-10 Motorola, Inc. Method and apparatus for reducing distortion in a high efficiency power amplifier
US6141541A (en) 1997-12-31 2000-10-31 Motorola, Inc. Method, device, phone and base station for providing envelope-following for variable envelope radio frequency signals
FR2773423B1 (en) 1998-01-06 2001-10-19 Alsthom Cge Alkatel METHOD AND SYSTEM FOR DIGITAL LINEARIZATION OF AN AMPLIFIER
US5898342A (en) 1998-01-20 1999-04-27 Advanced Micro Devices Power amplifier arrangement and method for data signal interface
US6055168A (en) 1998-03-04 2000-04-25 National Semiconductor Corporation Capacitor DC-DC converter with PFM and gain hopping
FR2776144B1 (en) 1998-03-13 2000-07-13 Sgs Thomson Microelectronics CIRCUIT FOR SWITCHING ANALOG SIGNALS OF AMPLITUDES HIGHER THAN THE SUPPLY VOLTAGE
US6070181A (en) 1998-03-27 2000-05-30 Chun-Shan Institute Of Science And Technology Method and circuit for envelope detection using a peel cone approximation
US6198645B1 (en) 1998-07-02 2001-03-06 National Semiconductor Corporation Buck and boost switched capacitor gain stage with optional shared rest state
US6043610A (en) 1998-07-16 2000-03-28 Durel Corporation Battery operated power supply including a low level boost and a high level boost
US6690652B1 (en) 1998-10-26 2004-02-10 International Business Machines Corporation Adaptive power control in wideband CDMA cellular systems (WCDMA) and methods of operation
DE69941583D1 (en) 1998-10-27 2009-12-03 Murata Manufacturing Co Composite high frequency component and mobile communication device equipped therewith
JP3144398B2 (en) 1998-10-27 2001-03-12 日本電気株式会社 Variable delay circuit
SG90712A1 (en) 1998-12-05 2002-08-20 Inst Of Microelectronics Power amplifier
US6043707A (en) 1999-01-07 2000-03-28 Motorola, Inc. Method and apparatus for operating a radio-frequency power amplifier as a variable-class linear amplifier
US6377784B2 (en) 1999-02-09 2002-04-23 Tropian, Inc. High-efficiency modulation RF amplifier
US6864668B1 (en) 1999-02-09 2005-03-08 Tropian, Inc. High-efficiency amplifier output level and burst control
US6118343A (en) 1999-05-10 2000-09-12 Tyco Electronics Logistics Ag Power Amplifier incorporating single drain switch and single negative voltage generator
US6701141B2 (en) 1999-05-18 2004-03-02 Lockheed Martin Corporation Mixed signal true time delay digital beamformer
US6166598A (en) 1999-07-22 2000-12-26 Motorola, Inc. Power amplifying circuit with supply adjust to control adjacent and alternate channel power
US6621808B1 (en) 1999-08-13 2003-09-16 International Business Machines Corporation Adaptive power control based on a rake receiver configuration in wideband CDMA cellular systems (WCDMA) and methods of operation
FR2798014B1 (en) 1999-08-31 2002-03-29 St Microelectronics Sa SUPPLY CIRCUIT WITH VOLTAGE SELECTOR
US6147478A (en) 1999-09-17 2000-11-14 Texas Instruments Incorporated Hysteretic regulator and control method having switching frequency independent from output filter
US6681101B1 (en) 2000-01-11 2004-01-20 Skyworks Solutions, Inc. RF transmitter with extended efficient power control range
US6452366B1 (en) 2000-02-11 2002-09-17 Champion Microelectronic Corp. Low power mode and feedback arrangement for a switching power converter
US6300826B1 (en) 2000-05-05 2001-10-09 Ericsson Telefon Ab L M Apparatus and method for efficiently amplifying wideband envelope signals
TW480415B (en) 2000-05-17 2002-03-21 Chung Shan Inst Of Science Demodulation apparatus of square root and method of the same
US6654594B1 (en) * 2000-05-30 2003-11-25 Motorola, Inc. Digitized automatic gain control system and methods for a controlled gain receiver
JP2002076951A (en) 2000-08-25 2002-03-15 Sharp Corp Power supply circuit for transmitter
US6348780B1 (en) 2000-09-22 2002-02-19 Texas Instruments Incorporated Frequency control of hysteretic power converter by adjusting hystersis levels
CN1157880C (en) 2000-09-25 2004-07-14 华为技术有限公司 Multiple time interval power control method
US6559689B1 (en) 2000-10-02 2003-05-06 Allegro Microsystems, Inc. Circuit providing a control voltage to a switch and including a capacitor
US6975686B1 (en) 2000-10-31 2005-12-13 Telefonaktiebolaget L.M. Ericsson IQ modulation systems and methods that use separate phase and amplitude signal paths
US6583610B2 (en) 2001-03-12 2003-06-24 Semtech Corporation Virtual ripple generation in switch-mode power supplies
US7010276B2 (en) 2001-04-11 2006-03-07 Tropian, Inc. Communications signal amplifiers having independent power control and amplitude modulation
US6819938B2 (en) 2001-06-26 2004-11-16 Qualcomm Incorporated System and method for power control calibration and a wireless communication device
US6706816B2 (en) 2001-07-11 2004-03-16 Best Manufacturing Company Accelerator free latex formulations, methods of making same and articles made from same
US6707865B2 (en) * 2001-07-16 2004-03-16 Qualcomm Incorporated Digital voltage gain amplifier for zero IF architecture
US6731694B2 (en) 2001-08-07 2004-05-04 Motorola, Inc. Isolator eliminator for a linear transmitter
US6781452B2 (en) 2001-08-29 2004-08-24 Tropian, Inc. Power supply processing for power amplifiers
US7164893B2 (en) 2001-08-31 2007-01-16 Motorola, Inc. Method and apparatus for optimizing supply modulation in a transmitter
JP2003124821A (en) 2001-09-28 2003-04-25 Motorola Inc Transmitting power control circuit
US7031457B2 (en) 2001-11-30 2006-04-18 Texas Instruments Incorporated Programmable peak detector for use with zero-overhead Class G line drivers
JP3932259B2 (en) 2001-12-12 2007-06-20 株式会社ルネサステクノロジ High frequency power amplifier circuit and electronic component for wireless communication
US6661210B2 (en) 2002-01-23 2003-12-09 Telfonaktiebolaget L.M. Ericsson Apparatus and method for DC-to-DC power conversion
US6788151B2 (en) 2002-02-06 2004-09-07 Lucent Technologies Inc. Variable output power supply
KR100832117B1 (en) 2002-02-17 2008-05-27 삼성전자주식회사 Apparatus for transmitting/receiving uplink power offset in communication system using high speed downlink packet access scheme
US7254157B1 (en) 2002-03-27 2007-08-07 Xilinx, Inc. Method and apparatus for generating a phase locked spread spectrum clock signal
US6643148B1 (en) 2002-04-18 2003-11-04 Alcatel Canada Inc. Audio band conducted emissions suppression on power feeders
US7158586B2 (en) 2002-05-03 2007-01-02 Atheros Communications, Inc. Systems and methods to provide wideband magnitude and phase imbalance calibration and compensation in quadrature receivers
US7171435B2 (en) 2002-05-17 2007-01-30 Texas Instruments Incorporated Circuits, systems, and methods implementing approximations for logarithm, inverse logarithm, and reciprocal
US6703080B2 (en) 2002-05-20 2004-03-09 Eni Technology, Inc. Method and apparatus for VHF plasma processing with load mismatch reliability and stability
US7233624B2 (en) 2002-06-11 2007-06-19 Interdigital Technology Corporation Method and system for all digital gain control
US6624712B1 (en) * 2002-06-11 2003-09-23 Motorola, Inc. Method and apparatus for power modulating to prevent instances of clipping
US6725021B1 (en) 2002-06-20 2004-04-20 Motorola, Inc. Method for tuning an envelope tracking amplification system
JP2004064937A (en) 2002-07-31 2004-02-26 Nec Corp Charge pump-type boosting circuit
US6728163B2 (en) 2002-08-23 2004-04-27 Micron Technology, Inc. Controlling a delay lock loop circuit
US6744151B2 (en) 2002-09-13 2004-06-01 Analog Devices, Inc. Multi-channel power supply selector
AU2003272918A1 (en) 2002-10-03 2004-04-23 Matsushita Electric Industrial Co., Ltd. Transmitting method and transmitter apparatus
US7116946B2 (en) 2002-10-28 2006-10-03 Matsushita Electric Industrial Co., Ltd. Transmitter
US6958596B1 (en) 2002-12-20 2005-10-25 Intersil Americas Inc. Compensation sample and hold for voltage regulator amplifier
US6801082B2 (en) 2002-12-31 2004-10-05 Motorola, Inc. Power amplifier circuit and method using bandlimited signal component estimates
GB2398648B (en) 2003-02-19 2005-11-09 Nujira Ltd Power supply stage for an amplifier
EP1450479B1 (en) 2003-02-20 2012-03-28 Sony Ericsson Mobile Communications AB Efficient modulation of RF signals
US7193470B2 (en) 2003-03-04 2007-03-20 Samsung Electronics Co., Ltd. Method and apparatus for controlling a power amplifier in a mobile communication system
EP1604456B1 (en) 2003-03-12 2011-06-15 MediaTek Inc. Closed loop power control of non-constant envelope waveforms using sample/hold
US7907010B2 (en) 2003-04-07 2011-03-15 Nxp B.V. Digital amplifier
JP3972856B2 (en) 2003-04-16 2007-09-05 富士電機ホールディングス株式会社 Power system
US7072626B2 (en) 2003-04-30 2006-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Polar modulation transmitter
US7805115B1 (en) 2003-06-02 2010-09-28 Analog Devices, Inc. Variable filter systems and methods for enhanced data rate communication systems
US7321912B2 (en) 2003-06-24 2008-01-22 Texas Instruments Incorporated Device with dB-to-linear gain conversion
US7043213B2 (en) 2003-06-24 2006-05-09 Northrop Grumman Corporation Multi-mode amplifier system
FR2857532B1 (en) 2003-07-08 2005-08-19 Thales Sa METHOD OF ESTIMATING CARRIER RESIDUE, ESTIMATOR AND MODULATION SYSTEM WITH CARRIER LOADING USING THE SAME
CN100413210C (en) 2003-07-08 2008-08-20 松下电器产业株式会社 Modulation circuit device, modulation method and radio communication device
KR100602065B1 (en) 2003-07-31 2006-07-14 엘지전자 주식회사 Power supply and driving method thereof and driving apparatus and method using the electro-luminescence display device
US7043518B2 (en) 2003-07-31 2006-05-09 Cradle Technologies, Inc. Method and system for performing parallel integer multiply accumulate operations on packed data
US20050032499A1 (en) 2003-08-08 2005-02-10 Cho Jin Wook Radio frequency power detecting circuit and method therefor
KR100524985B1 (en) 2003-08-26 2005-10-31 삼성전자주식회사 Effective boosting circuit, boosting power unit having it and providing for automatically load-dependent boosting, and power boosting control method thereof
EP1671197B1 (en) 2003-09-16 2013-08-28 Nokia Corporation Hybrid switched mode/linear power amplifier power supply for use in polar transmitter
US6903608B2 (en) 2003-10-30 2005-06-07 Sige Semiconductor Inc. Power level controlling of first amplification stage for an integrated RF power amplifier
US7627622B2 (en) 2003-11-14 2009-12-01 International Business Machines Corporation System and method of curve fitting
US7026868B2 (en) 2003-11-20 2006-04-11 Northrop Grumman Corporation Variable supply amplifier system
US6995995B2 (en) 2003-12-03 2006-02-07 Fairchild Semiconductor Corporation Digital loop for regulating DC/DC converter with segmented switching
JP2005175561A (en) 2003-12-08 2005-06-30 Renesas Technology Corp Power supply circuit for high frequency power amplifier circuit, semiconductor integrated circuit for power supply, and electronic component for power supply
US7330501B2 (en) 2004-01-15 2008-02-12 Broadcom Corporation Orthogonal normalization for a radio frequency integrated circuit
US7915954B2 (en) 2004-01-16 2011-03-29 Qualcomm, Incorporated Amplifier predistortion and autocalibration method and apparatus
US6958594B2 (en) 2004-01-21 2005-10-25 Analog Devices, Inc. Switched noise filter circuit for a DC-DC converter
EP1713176A4 (en) 2004-02-06 2008-12-24 Mitsubishi Electric Corp Power amplifier unit, communication terminal and control method of power amplifier unit
JP2007523585A (en) 2004-02-17 2007-08-16 アギア システムズ インコーポレーテッド Versatile intelligent power controller
ATE325465T1 (en) 2004-02-20 2006-06-15 Research In Motion Ltd METHOD AND DEVICE FOR INCREASED EFFICIENCY OF A POWER AMPLIFIER IN RADIO TRANSMISSION SYSTEMS WITH HIGH POWER FORM FACTORS
US7408979B2 (en) 2004-06-28 2008-08-05 Broadcom Corporation Integrated radio circuit having multiple function I/O modules
US7358806B2 (en) 2004-07-08 2008-04-15 Amalfi Semiconductor, Inc. Method and apparatus for an improved power amplifier
US7253589B1 (en) 2004-07-09 2007-08-07 National Semiconductor Corporation Dual-source CMOS battery charger
US7529523B1 (en) 2004-08-23 2009-05-05 Rf Micro Devices, Inc. N-th order curve fit for power calibration in a mobile terminal
GB0418944D0 (en) 2004-08-25 2004-09-29 Siemens Ag Method for envelope clipping
JP4574471B2 (en) 2004-09-17 2010-11-04 株式会社日立国際電気 Distortion compensated quadrature modulator and radio transmitter
US7378828B2 (en) 2004-11-09 2008-05-27 The Boeing Company DC-DC converter having magnetic feedback
US7394233B1 (en) 2004-12-02 2008-07-01 Nortel Networks Limited High efficiency modulated power supply
US7539466B2 (en) 2004-12-14 2009-05-26 Motorola, Inc. Amplifier with varying supply voltage and input attenuation based upon supply voltage
WO2006085139A2 (en) 2004-12-22 2006-08-17 Nokia Corporation Interoperability improvement between receivers and transmitters in a mobile station
US20080187073A1 (en) 2004-12-27 2008-08-07 Koninklijke Philips Electronics N.V. Transmitter Apparatus
JP4874106B2 (en) 2005-01-06 2012-02-15 パナソニック株式会社 Polar modulation device and wireless communication device using the same
TWI281305B (en) 2005-02-03 2007-05-11 Richtek Techohnology Corp Dual input voltage converter and its control method
US7400865B2 (en) 2005-02-09 2008-07-15 Nokia Corporation Variable bandwidth envelope modulator for use with envelope elimination and restoration transmitter architecture and method
US20060181340A1 (en) 2005-02-17 2006-08-17 Zywyn Corporation Regulating charge pump
US20060199553A1 (en) 2005-03-07 2006-09-07 Andrew Corporation Integrated transceiver with envelope tracking
US7474149B2 (en) 2005-03-25 2009-01-06 Pulsewave Rf, Inc. Radio frequency power amplifier and method using a controlled supply
KR100588334B1 (en) 2005-03-29 2006-06-09 삼성전자주식회사 Dc-dc converter using pseudo schmitt trigger circuit and method of pulse width modulation
US20100045247A1 (en) 2005-04-20 2010-02-25 Nxp B.V. Parallel arranged linear amplifier and dc-dc converter
US7773691B2 (en) 2005-04-25 2010-08-10 Rf Micro Devices, Inc. Power control system for a continuous time mobile transmitter
TWI293828B (en) 2005-04-28 2008-02-21 Novatek Microelectronics Corp Charge pump
US7348847B2 (en) 2005-04-28 2008-03-25 Sige Semiconductor Inc. Integrated implementation of a collector boost scheme and method therefor
US7279875B2 (en) 2005-06-16 2007-10-09 Ge Gan High switching frequency DC-DC converter with fast response time
DE102005030123B4 (en) 2005-06-28 2017-08-31 Austriamicrosystems Ag Power supply arrangement and its use
US7283406B2 (en) 2005-07-11 2007-10-16 Taiwan Semiconductor Manufacturing Co., Ltd. High voltage wordline driver with a three stage level shifter
US20070014382A1 (en) 2005-07-15 2007-01-18 Nokia Corporation Reconfigurable transmitter
CN101233681B (en) 2005-07-27 2011-08-10 Nxp股份有限公司 RF transmitter with compensation of differential path delay
US7602155B2 (en) 2005-07-27 2009-10-13 Artesyn Technologies, Inc. Power supply providing ultrafast modulation of output voltage
US7233130B1 (en) 2005-08-05 2007-06-19 Rf Micro Devices, Inc. Active ripple reduction switched mode power supplies
US20070063681A1 (en) 2005-09-16 2007-03-22 Amazion Electronics, Inc. Direct mode pulse width modulation for DC to DC converters
US7615979B2 (en) 2005-11-28 2009-11-10 David J. Caldwell Flexible power converter and simplified process controller
JP5003134B2 (en) 2006-01-10 2012-08-15 日本電気株式会社 Amplifier
US7512395B2 (en) 2006-01-31 2009-03-31 International Business Machines Corporation Receiver and integrated AM-FM/IQ demodulators for gigabit-rate data detection
JP2007209103A (en) 2006-02-01 2007-08-16 Ricoh Co Ltd Current mode control dc-dc converter
US7917106B2 (en) 2006-02-03 2011-03-29 Quantance, Inc. RF power amplifier controller circuit including calibrated phase control loop
US7522676B2 (en) 2006-02-06 2009-04-21 Nokia Corporation Method and system for transmitter envelope delay calibration
TWI309102B (en) 2006-03-02 2009-04-21 Himax Tech Inc A voltage switch apparatus
JP4822144B2 (en) 2006-03-17 2011-11-24 エスティー‐エリクソン、ソシエテ、アノニム Supply circuit with ripple compensation
US7826810B2 (en) 2006-05-08 2010-11-02 Harris Corporation Multiband radio with transmitter output power optimization
JP2008035487A (en) 2006-06-19 2008-02-14 Renesas Technology Corp Rf power amplifier
GB2446843B (en) 2006-06-30 2011-09-07 Wolfson Microelectronics Plc Amplifier circuit and methods of operation thereof
FI20065457A0 (en) 2006-06-30 2006-06-30 Nokia Corp Power amplifier switching power supply control
US8068622B2 (en) 2006-12-13 2011-11-29 Cirrus Logic, Inc. Method and apparatus for controlling a selectable voltage audio power output stage
US8311243B2 (en) 2006-08-21 2012-11-13 Cirrus Logic, Inc. Energy-efficient consumer device audio power output stage
US7729670B2 (en) 2006-09-29 2010-06-01 Broadcom Corporation Method and system for minimizing power consumption in a communication system
US7646108B2 (en) 2006-09-29 2010-01-12 Intel Corporation Multiple output voltage regulator
US7454238B2 (en) 2006-10-30 2008-11-18 Quantance, Inc. Power combining power supply system
US7856048B1 (en) 2006-11-20 2010-12-21 Marvell International, Ltd. On-chip IQ imbalance and LO leakage calibration for transceivers
KR100794310B1 (en) 2006-11-21 2008-01-11 삼성전자주식회사 Switched capacitor circuit and amplifing method thereof
US7777470B2 (en) 2006-12-06 2010-08-17 Texas Instruments Incorporated System and method for controlling a hysteretic mode converter
CN101558556A (en) 2006-12-12 2009-10-14 皇家飞利浦电子股份有限公司 A high efficiency modulating RF amplifier
US7986931B2 (en) 2006-12-12 2011-07-26 Industrial Technology Research Institute RFID reader and circuit and method for echo cancellation thereof
GB2444984B (en) 2006-12-22 2011-07-13 Wolfson Microelectronics Plc Charge pump circuit and methods of operation thereof
US7777459B2 (en) 2006-12-30 2010-08-17 Advanced Analogic Technologies, Inc. High-efficiency DC/DC voltage converter including capacitive switching pre-converter and down inductive switching post-regulator
US7675365B2 (en) 2007-01-10 2010-03-09 Samsung Electro-Mechanics Systems and methods for power amplifiers with voltage boosting multi-primary transformers
WO2008090721A1 (en) 2007-01-24 2008-07-31 Nec Corporation Power amplifier
US7679433B1 (en) 2007-02-02 2010-03-16 National Semiconductor Corporation Circuit and method for RF power amplifier power regulation and modulation envelope tracking
EP1962413A1 (en) 2007-02-22 2008-08-27 Stmicroelectronics SA Ripple compensator and switching converter comprising such a ripple compensator
US7859336B2 (en) 2007-03-13 2010-12-28 Astec International Limited Power supply providing ultrafast modulation of output voltage
KR101309293B1 (en) 2007-03-28 2013-09-16 페어차일드코리아반도체 주식회사 Switching mode power supply and the driving method thereof
US7791324B2 (en) 2007-03-30 2010-09-07 Intersil Americas Inc. Switching regulator without a dedicated input current sense element
US7696735B2 (en) 2007-03-30 2010-04-13 Intel Corporation Switched capacitor converters
US8274332B2 (en) 2007-04-23 2012-09-25 Dali Systems Co. Ltd. N-way Doherty distributed power amplifier with power tracking
US7554473B2 (en) 2007-05-02 2009-06-30 Cirrus Logic, Inc. Control system using a nonlinear delta-sigma modulator with nonlinear process modeling
US7466195B2 (en) 2007-05-18 2008-12-16 Quantance, Inc. Error driven RF power amplifier control with increased efficiency
US20090004981A1 (en) 2007-06-27 2009-01-01 Texas Instruments Incorporated High efficiency digital transmitter incorporating switching power supply and linear power amplifier
GB0715254D0 (en) 2007-08-03 2007-09-12 Wolfson Ltd Amplifier circuit
US7609114B2 (en) 2007-09-04 2009-10-27 Upi Semiconductor Corporation Voltage generating apparatus and methods
EP3678294B1 (en) 2007-09-14 2022-02-02 Telefonaktiebolaget LM Ericsson (publ) Method for notch filtering a digital signal, and corresponding electronic device
US7783269B2 (en) 2007-09-20 2010-08-24 Quantance, Inc. Power amplifier controller with polar transmitter
KR20090036670A (en) 2007-10-10 2009-04-15 삼성전자주식회사 Apparatus and method for envelope tracking power amplifier in wireless communication system
JP5189343B2 (en) 2007-10-23 2013-04-24 ローム株式会社 Selector circuit and electronic device using the same
WO2009060652A1 (en) 2007-11-05 2009-05-14 Nec Corporation Power amplifier and radio wave transmitter having the same
JP4905344B2 (en) * 2007-12-20 2012-03-28 富士通株式会社 Power amplifier
KR101618119B1 (en) 2007-12-24 2016-05-09 삼성전자주식회사 Apparatus for power amplifying based on envelope elimination and restoration
US7923974B2 (en) 2008-01-04 2011-04-12 Chil Semiconductor Corporation Modification of switch activation order in a power supply
US7782036B1 (en) 2008-01-07 2010-08-24 National Semiconductor Corporation Adaptive on-time control for switching regulators
TWI349410B (en) 2008-01-08 2011-09-21 Novatek Microelectronics Corp Change pump circuit
US7949316B2 (en) * 2008-01-29 2011-05-24 Panasonic Corporation High-efficiency envelope tracking systems and methods for radio frequency power amplifiers
US8718582B2 (en) 2008-02-08 2014-05-06 Qualcomm Incorporated Multi-mode power amplifiers
JP5119961B2 (en) 2008-02-08 2013-01-16 住友電気工業株式会社 Envelope tracking power supply circuit and high-frequency amplifier including the same
US7898268B2 (en) 2008-02-15 2011-03-01 Infineon Technologies Ag Circuit and method for capacitor effective series resistance measurement
WO2009104420A1 (en) 2008-02-21 2009-08-27 株式会社アドバンテスト Digital modulation signal test device, digital modulator, digital demodulator, and semiconductor device using the devices
KR101434604B1 (en) 2008-03-03 2014-08-26 삼성전자주식회사 Apparatus and method for bias modulator using zero current switching
US7928705B2 (en) 2008-03-12 2011-04-19 Sony Ericsson Mobile Communications Ab Switched mode voltage converter with low-current mode and methods of performing voltage conversion with low-current mode
GB2459894A (en) 2008-05-09 2009-11-11 Nujira Ltd Switched supply stage with feedback
US7759912B2 (en) 2008-05-13 2010-07-20 Micrel, Inc. Adaptive compensation scheme for LC circuits in feedback loops
US7915961B1 (en) 2008-05-13 2011-03-29 National Semiconductor Corporation Power amplifier multiple stage control for polar modulation circuit
US7808323B2 (en) 2008-05-23 2010-10-05 Panasonic Corporation High-efficiency envelope tracking systems and methods for radio frequency power amplifiers
US8369973B2 (en) 2008-06-19 2013-02-05 Texas Instruments Incorporated Efficient asynchronous sample rate conversion
ATE543139T1 (en) 2008-07-16 2012-02-15 St Microelectronics Rousset INTERFACE BETWEEN A DUAL LINE BUS AND A SINGLE LINE BUS
JP4613986B2 (en) 2008-07-28 2011-01-19 日本テキサス・インスツルメンツ株式会社 Switching power supply
US7990119B2 (en) 2008-07-29 2011-08-02 Telefonaktiebolaget L M Ericsson (Publ) Multimode voltage regulator circuit
US20100027301A1 (en) 2008-07-31 2010-02-04 Motorola, Inc. Band-pass current mode control scheme for switching power converters with higher-order output filters
US8000117B2 (en) 2008-08-13 2011-08-16 Intersil Americas Inc. Buck boost function based on a capacitor bootstrap input buck converter
FI20085808A0 (en) 2008-08-29 2008-08-29 Nokia Corp Correcting distortions at power amplifier output
WO2010046957A1 (en) 2008-10-24 2010-04-29 株式会社アドバンテスト Orthogonal amplitude demodulator, demodulation method, semiconductor device using them, and test device
GB2465552B (en) 2008-11-18 2015-12-09 Nujira Ltd Power supply arrangement for multi-stage amplifier
EP2189870A1 (en) 2008-11-25 2010-05-26 St Microelectronics S.A. A switch-mode voltage regulator
TW201043049A (en) 2008-12-15 2010-12-01 Mediatek Inc DC-coupled audio out unit
JP2011229194A (en) 2008-12-24 2011-11-10 Oita Univ Switching power supply, and electronic circuit
JP5472119B2 (en) 2008-12-25 2014-04-16 日本電気株式会社 Power amplifier
US8030995B2 (en) 2008-12-25 2011-10-04 Hitachi Kokusai Electric Inc. Power circuit used for an amplifier
EP2214304B1 (en) 2009-01-30 2011-10-12 Alcatel Lucent Switch mode assisted linear amplifier for baseband signal amplification
EP2395655A4 (en) 2009-02-05 2014-07-23 Nec Corp Power amplifier and power amplification method
US8138734B2 (en) 2009-04-06 2012-03-20 Monolithic Power Systems, Inc. Accurate current limit for peak current mode DC-DC converter
US8026765B2 (en) 2009-04-12 2011-09-27 Roberto Michele Giovannotto Audio frequency amplifier
US8093951B1 (en) 2009-04-14 2012-01-10 Cirrus Logic, Inc. Pulse-width modulated (PWM) audio power amplifier having output signal magnitude controlled pulse voltage and switching frequency
US8749213B2 (en) 2009-06-09 2014-06-10 Silergy Technology Mixed mode control for switching regulator with fast transient responses
US8081199B2 (en) 2009-06-26 2011-12-20 Panasonic Corporation Light emitting element drive apparatus, planar illumination apparatus, and liquid crystal display apparatus
JP5365369B2 (en) 2009-06-26 2013-12-11 富士通株式会社 Transmission apparatus, distortion compensation apparatus, and distortion compensation method
GB0912745D0 (en) 2009-07-22 2009-08-26 Wolfson Microelectronics Plc Improvements relating to DC-DC converters
KR101094050B1 (en) 2009-07-23 2011-12-19 성균관대학교산학협력단 Dynamic bias supply device having multiple switches
KR20110026065A (en) * 2009-09-07 2011-03-15 삼성전자주식회사 Apparatus and method for envelope tracking power amplifier in wireless communication
JP5343786B2 (en) 2009-09-18 2013-11-13 ヤマハ株式会社 Amplification equipment
US8242813B1 (en) 2009-10-05 2012-08-14 Adaptive Digital Power, Inc. Adaptive non-positive inductor current detector (ANPICD)
TWI418139B (en) 2009-10-09 2013-12-01 Richtek Technology Corp Highly efficient class-g amplifier and control method thereof
US8823343B2 (en) 2009-12-22 2014-09-02 Yamaha Corporation Power amplifying circuit, DC-DC converter, peak holding circuit, and output voltage control circuit including the peak holding circuit
CN102142768B (en) 2010-01-30 2013-10-09 华为技术有限公司 Rapid tracking power supply device, control method and communication equipment
US8548398B2 (en) 2010-02-01 2013-10-01 Rf Micro Devices, Inc. Envelope power supply calibration of a multi-mode radio frequency power amplifier
CN102148563B (en) 2010-02-10 2014-01-01 华为技术有限公司 Tracking power supply, power control method and communication equipment
GB2479182B (en) 2010-03-31 2015-04-01 Sony Europe Ltd Power amplifier
US8183929B2 (en) 2010-04-09 2012-05-22 Viasat, Inc. Multi-chip doherty amplifier with integrated power detection
US9099961B2 (en) 2010-04-19 2015-08-04 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
EP2561611B1 (en) 2010-04-19 2015-01-14 RF Micro Devices, Inc. Pseudo-envelope following power management system
US8981848B2 (en) 2010-04-19 2015-03-17 Rf Micro Devices, Inc. Programmable delay circuitry
US8706063B2 (en) 2010-04-20 2014-04-22 Rf Micro Devices, Inc. PA envelope power supply undershoot compensation
US8542061B2 (en) 2010-04-20 2013-09-24 Rf Micro Devices, Inc. Charge pump based power amplifier envelope power supply and bias power supply
US8174313B2 (en) 2010-05-17 2012-05-08 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Apparatus and method for controlling power amplifier
CN101867284B (en) 2010-05-31 2012-11-21 华为技术有限公司 Control method of fast tracking power supply, fast tracking power supply and system
US8860390B2 (en) 2010-06-04 2014-10-14 Apple Inc. Switching power supply opposite polarity inductor arrangement
US8183917B2 (en) 2010-06-04 2012-05-22 Quantance, Inc. RF power amplifier circuit with mismatch tolerance
JP2011259083A (en) 2010-06-07 2011-12-22 Renesas Electronics Corp Rf power amplifier and operation method thereof
US8461897B2 (en) 2010-06-07 2013-06-11 Skyworks Solutions, Inc. Apparatus and method for well buffering
US8164391B2 (en) 2010-07-28 2012-04-24 Active-Semi, Inc. Synchronization of multiple high frequency switching power converters in an integrated circuit
KR101101691B1 (en) 2010-07-28 2011-12-30 한국과학기술원 Power amplifier
WO2012027039A1 (en) 2010-08-25 2012-03-01 Rf Micro Devices, Inc. Multi-mode/multi-band power management system
US8204456B2 (en) 2010-09-15 2012-06-19 Fujitsu Semiconductor Limited Systems and methods for spurious emission cancellation
GB2484475A (en) 2010-10-11 2012-04-18 Toshiba Res Europ Ltd A power supply modulator for an RF amplifier, using a current-output class G amplifier
WO2012066659A1 (en) 2010-11-17 2012-05-24 株式会社日立製作所 High-frequency amplifier, and high-frequency module and wireless machine using same
JP5742186B2 (en) 2010-11-22 2015-07-01 富士通株式会社 Amplifier
US8674620B2 (en) 2010-11-30 2014-03-18 Infineon Technologies Ag Multi channel LED driver
TWI419448B (en) 2010-12-02 2013-12-11 Richtek Technology Corp Power supply circuit with adaptive input selection and method for power supply
US8610503B2 (en) 2010-12-17 2013-12-17 Skyworks Solutions, Inc. Apparatus and methods for oscillation suppression
JP5614273B2 (en) 2010-12-21 2014-10-29 富士通株式会社 Amplifier
US8773102B2 (en) 2011-01-03 2014-07-08 Eta Semiconductor Inc. Hysteretic CL power converter
US8588713B2 (en) 2011-01-10 2013-11-19 Rf Micro Devices, Inc. Power management system for multi-carriers transmitter
US8803605B2 (en) 2011-02-01 2014-08-12 Mediatek Singapore Pte. Ltd. Integrated circuit, wireless communication unit and method for providing a power supply
WO2012106437A1 (en) 2011-02-02 2012-08-09 Rf Micro Devices, Inc. Fast envelope system calibration
US8624760B2 (en) 2011-02-07 2014-01-07 Rf Micro Devices, Inc. Apparatuses and methods for rate conversion and fractional delay calculation using a coefficient look up table
CN103493368B (en) 2011-02-07 2017-09-12 天工方案公司 The apparatus and method calibrated for envelope-tracking
EP2673880B1 (en) 2011-02-07 2017-09-06 Qorvo US, Inc. Group delay calibration method for power amplifier envelope tracking
GB2488119B (en) 2011-02-15 2015-06-24 Nujira Ltd Power control
US8576523B2 (en) 2011-03-14 2013-11-05 Qualcomm Incorporated Charge pump electrostatic discharge protection
US8725218B2 (en) 2011-03-25 2014-05-13 R2 Semiconductor, Inc. Multimode operation DC-DC converter
US8718188B2 (en) 2011-04-25 2014-05-06 Skyworks Solutions, Inc. Apparatus and methods for envelope tracking
EP4220950A3 (en) 2011-05-05 2023-12-06 Qorvo US, Inc. Power management architecture for modulated and constant supply operation
US8362837B2 (en) 2011-05-23 2013-01-29 Vyycore Ltd. System and a method for amplifying a signal by multiple non-linear power amplifiers
US8638165B2 (en) 2011-06-06 2014-01-28 Qualcomm Incorporated Switched-capacitor DC blocking amplifier
IL213624A (en) 2011-06-16 2016-02-29 David Leonardo Fleischer Method and system for boosting the power supply of a power amplifier
US8626091B2 (en) 2011-07-15 2014-01-07 Rf Micro Devices, Inc. Envelope tracking with variable compression
US8624576B2 (en) 2011-08-17 2014-01-07 Rf Micro Devices, Inc. Charge-pump system for providing independent voltages
KR101793733B1 (en) 2011-10-14 2017-11-06 삼성전자주식회사 Apparatus and method for calibration of supply modualtion in transmitter
US9298198B2 (en) 2011-12-28 2016-03-29 Rf Micro Devices, Inc. Noise reduction for envelope tracking
GB2498391B (en) 2012-01-16 2018-11-21 Snaptrack Inc Pre-distortion in RF path in combination with shaping table in envelope path for envelope tracking amplifier
GB2498392B (en) 2012-01-16 2016-01-13 Nujira Ltd Crest factor reduction applied to shaping table to increase power amplifier efficency of envelope tracking amplifier
CN104185953B (en) 2012-02-09 2016-08-17 天工方案公司 Apparatus and method for envelope-tracking
US8952753B2 (en) 2012-02-17 2015-02-10 Quantance, Inc. Dynamic power supply employing a linear driver and a switching regulator
US8981839B2 (en) 2012-06-11 2015-03-17 Rf Micro Devices, Inc. Power source multiplexer
US8648657B1 (en) 2012-08-13 2014-02-11 Broadcom Corporation Mobile device including a power amplifier with selectable voltage supply
US8824978B2 (en) 2012-10-30 2014-09-02 Eta Devices, Inc. RF amplifier architecture and related techniques
US8829993B2 (en) 2012-10-30 2014-09-09 Eta Devices, Inc. Linearization circuits and methods for multilevel power amplifier systems
US8909175B1 (en) 2013-06-27 2014-12-09 Crestcom, Inc. Transmitter and method for RF power amplifier having a bandwidth controlled, detroughed envelope tracking signal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109947393A (en) * 2017-12-20 2019-06-28 航天信息股份有限公司 Operation method and device based on complementation device
CN109947393B (en) * 2017-12-20 2021-11-02 航天信息股份有限公司 Operation method and device based on remainder device

Also Published As

Publication number Publication date
US20120121039A1 (en) 2012-05-17
WO2012068258A3 (en) 2012-09-27
US8782107B2 (en) 2014-07-15
WO2012068260A1 (en) 2012-05-24
US20120119813A1 (en) 2012-05-17
US9075673B2 (en) 2015-07-07

Similar Documents

Publication Publication Date Title
WO2012068258A2 (en) Digital fast cordic for envelope tracking generation
JP2926615B2 (en) SSB signal generator
US7091778B2 (en) Adaptive wideband digital amplifier for linearly modulated signal amplification and transmission
US5425055A (en) Digital radio modulator
KR20010007583A (en) Broadcast receiver
EP3790188B1 (en) Polar phase or frequency modulation circuit and method
US20230079153A1 (en) Amplitude-to-phase error correction in a transceiver circuit
US6445736B1 (en) GSM baseband receiver arrangement using digital signal processing
WO2015094454A1 (en) Circuits and methods for transmitting signals
US20190214972A1 (en) Methods and apparatus for efficient linear combiner
US6668029B1 (en) Methods and apparatus for implementing digital resampling circuits
US8045937B2 (en) Digital phase feedback for determining phase distortion
EP1447912B1 (en) Method and apparatus for adaptively compensating for an inaccuracy in an analog-to-digital converter
Sun et al. An improved DRFM system based on digital channelized receiver
KR20220032365A (en) A phase locked loop and electronic apparatus
EP1213889B1 (en) Waveform generator for use in quadrature modulation (I/Q)
JP2004165988A (en) Digital quadrature demodulator
KR100260818B1 (en) Apparatus for generating digital one-chip AM/FM stereo signal
WO2012147138A1 (en) Receiver
US20020193083A1 (en) Frequency conversion circuit and transmitter
JP2005102279A (en) Data receiver
JP2018050099A (en) Carrier synchronization circuit and carrier synchronization method
KR20050083741A (en) Apparatus and method for adaptively re-aligning a modulated output signal
CN111030611A (en) Polar coordinate modulation circuit and modulation method thereof
KR100913202B1 (en) Phase change detection apparatus and method for demodulating fm signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791702

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11791702

Country of ref document: EP

Kind code of ref document: A2