WO2012067469A2 - Method for manufacturing a substrate for preventing the formation of a biofilm using colloidal nonoparticles, substrate manufactured thereby, and sensor for testing water quality comprising the substrate - Google Patents

Method for manufacturing a substrate for preventing the formation of a biofilm using colloidal nonoparticles, substrate manufactured thereby, and sensor for testing water quality comprising the substrate Download PDF

Info

Publication number
WO2012067469A2
WO2012067469A2 PCT/KR2011/008854 KR2011008854W WO2012067469A2 WO 2012067469 A2 WO2012067469 A2 WO 2012067469A2 KR 2011008854 W KR2011008854 W KR 2011008854W WO 2012067469 A2 WO2012067469 A2 WO 2012067469A2
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
preventing
colloidal nanoparticles
biofilm formation
biofilm
Prior art date
Application number
PCT/KR2011/008854
Other languages
French (fr)
Korean (ko)
Other versions
WO2012067469A3 (en
Inventor
이성호
이도훈
이상호
이낙규
김상용
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to CN201180061237.5A priority Critical patent/CN103261886B/en
Publication of WO2012067469A2 publication Critical patent/WO2012067469A2/en
Publication of WO2012067469A3 publication Critical patent/WO2012067469A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Definitions

  • the present invention relates to a method for manufacturing a biofilm forming prevention substrate using colloidal nanoparticles, a substrate prepared therefrom, and a water quality inspection sensor including the substrate. More specifically, the colloidal nanoparticles are arranged on a substrate. Thereafter, a hole and a porous structure are formed on the substrate to manufacture a substrate for preventing biofilm formation, the substrate manufactured using the method, a plurality of holes formed on the substrate, and the front and upper surfaces of the substrate and formed on the hole.
  • the present invention relates to a biofilm forming prevention substrate including a porous structure, and a water quality inspection sensor including the substrate.
  • Biofilms are generally referred to as biofilms as structures formed by microorganisms that adhere to and proliferate on the surface of materials in an aqueous system.
  • Such biofilm formation causes a risk by microorganisms and thus causes problems in various industries.
  • biofilm on the surface of the heat exchanger also reduces the heat transfer efficiency.
  • biofilm is formed on the surface of a structure such as a metal surface, it may cause corrosion of the metal and cause decay of the facility. In particular, damages caused by corrosion of materials such as various metals and concrete are not only inconvenient but also costly for reconstruction, which is causing economic difficulties.
  • a method for inhibiting or preventing the growth of the biofilm on the corrosion-sensitive material for example, metal
  • various methods such as pH control, redox potential control, inorganic coating, cathodic protection, and biocide application are performed, but protective coatings such as paints and epoxies are used. They are excessively expensive to apply and maintain, making them impossible to use as effective anti-biofilm formulations.
  • biofilms include: 1) inhibiting the formation of biofilms by coating surfaces with microorganisms or specific chemicals, or 2) decomposing biofilms formed using specific organisms or compounds, 3) There exists a method of inhibiting or disturbing the growth of the microorganisms forming the biofilm, but the research on the technology of preventing the formation of the biofilm by applying a specific form on the surface itself is insufficient.
  • the present inventors do not rely on coating a specific chemical or microorganism or treating the various substances to modify the surface, and thus prevent the production of the biofilm by modifying only the shape of the surface. It is possible to manufacture a substrate comprising a method and a structure manufactured by the method and has been filed with the patent application No. 10-2009-0135754.
  • the inventors of the present invention by coating the specific chemicals or microorganisms using the colloidal nanoparticles, or by modifying the surface by treating the various materials, but only by modifying the shape of the surface of the biofilm itself
  • the present invention has been completed by confirming that a substrate capable of preventing the above-mentioned process can be manufactured, and confirming that the substrate can be coupled to a water quality test sensor to increase the sensitivity and reproducibility of the water quality test sensor.
  • An object of the present invention is to provide a method for producing a substrate for preventing biofilm formation by forming colloidal nanoparticles on a substrate and then forming a hole and a porous structure on the substrate.
  • Another object of the present invention is a substrate produced by the manufacturing method; A plurality of holes formed in an upper portion of the substrate; And a porous structure formed on the upper front surface and the hole of the substrate.
  • Still another object of the present invention is to provide a method of preventing biofilm formation by using the biofilm formation preventing substrate as a surface.
  • Still another object of the present invention is to provide a water quality inspection sensor including the biofilm formation preventing substrate.
  • the present invention provides a method for producing a biofilm forming prevention substrate comprising the following steps.
  • the present invention may further comprise the step of adjusting the interval of the colloidal nanoparticles arranged between the steps 1) and 2) (step 1a).
  • the process of manufacturing a substrate including the structure of the present invention includes: 1) arranging colloidal nanoparticles on a substrate and 2) etching the substrate on which the colloidal nanoparticles are arranged to form holes and porous structures. It may be divided into the step, and optionally may further comprise the step of adjusting the interval of the colloidal nanoparticles arranged between the steps 1) and 2) (step 1a).
  • Step 1 is a step of arranging the colloidal nanoparticles on top of the substrate can be used without limitation methods commonly used in the art, and preferably a method for coating a dispersion containing the colloidal nanoparticles on the substrate It can be performed as.
  • the colloidal nanoparticles used have a size of 100 nm to 100 ⁇ m in consideration of repulsion and aggregation between the colloidal nanoparticles.
  • the colloidal nanoparticles include polystyrene; Silica (SiO 2 ); Nitrides such as Si 3 N 4 ; Oxides or combinations thereof can be used.
  • PS nanobead particles were used as colloidal nanoparticles.
  • the substrate In order to perform the colloidal nanolithography process using PS nanobead particles, the substrate must be changed to a hydrophilic state.
  • silica (SiO 2 ), nitride (Si 3 N 4 ) particles and the like can be adjusted to maintain the appropriate surface state.
  • Step 2 may be used to form a hole and a porous structure on the substrate of the step without limitation, a method commonly used in the art, preferably the hole and the porous structure may be performed by an etching method. .
  • Etching method can also be etched according to the conventional methods used in the art according to the material and material properties of the substrate, the hole and the porous structure of the present invention, if necessary to form a microstructure in units of ⁇ m
  • the chemical etching method is a method of etching using various etching solutions, it is possible to prepare an etching solution of a suitable composition according to the purpose and the needs of those skilled in the art.
  • Electrochemical etching is a method performed in the embodiments of the present specification
  • the discharge machining (EDM (Electro-Discharge Machining)) is a method performed by using a physical, mechanical or electrical action generated when a discharge between the two electrodes. Such electric discharge machining can be performed irrespective of the strength of the material, and is a method of easily processing complex shapes such as planes and solids.
  • the discharge machining can be processed to 0.1 ⁇ m to 0.2 ⁇ m, and in that there is no surface deterioration by heat, it is possible to achieve an object that cannot be achieved by other processing methods.
  • electro-chemical machining produces a metal oxide film, which is an anode product, which hinders the progress of electrochemical dissolution of a metal material.
  • electrolytic processing if a tool made in the shape to be processed is used as a cathode, the material is used as an anode, and both of them are immersed in the electrolyte and the current is passed through, the material is processed like the surface shape of the cathode.
  • the substrate of the present invention can perform the above-described method to form the desired holes and porous structures.
  • the present invention by performing the ECF (electro chemical fabrication) method to apply the structure of the hole and the porous structure to the substrate by etching the remaining portion except the colloidal nano-particles arranged on the substrate to the top of the substrate It was confirmed that the hole can be formed. In addition, it was confirmed that the substrate having the hole structure formed by the above method was etched again using FeCl 3 solution to obtain the structure of the hole and the porous structure of interest in the present invention. In addition, as a result of applying the biofilm-forming microorganisms to the substrate prepared by the method, it was confirmed that the biofilm can be effectively suppressed.
  • ECF electro chemical fabrication
  • the biofilm formation inhibitory effect was compared between ECF alone treatment and the combination treatment of ECF and FeCl 3 , and as a result, it was confirmed that the combination treatment of ECF and FeCl 3 was more effective in inhibiting biofilm formation.
  • the effect of inhibiting biofilm formation was compared by varying the treatment time of FeCl 3 performed after ECF from 1 minute to 5 minutes. As a result, treating FeCl 3 after ECF for 1 minute was most effective in inhibiting biofilm formation. Confirmed.
  • the contact angle of the porous structure may be changed according to the needs of those skilled in the art or according to the type of biofilm to be prevented, and various methods of changing the contact angle, including a method of treating with an etchant, may be performed.
  • the type and concentration of the etchant used may be determined by those skilled in the art according to the purpose, and the time and number of times of exposure to the etchant may also be determined by conventional methods.
  • the inventors have found that when the time and number of times exposed to the etchant increases, the contact angle of the porous structure can be increased.
  • the present inventors have made a lot of experiments, and as a result of diligent efforts, it was confirmed that as the contact angle increases, microbial adhesion is reduced, as a result that the biofilm can be further suppressed.
  • the present invention provides a method for manufacturing a biofilm forming prevention substrate comprising the following steps.
  • the present invention may further comprise the step of adjusting the interval of the colloidal nanoparticles arranged between the steps 1) and 2) (step 1a).
  • the process of manufacturing a substrate including the structure of the present invention comprises: 1) arranging colloidal nanoparticles on top of the substrate, 2) coating a protective material on the substrate of the step, 3) the substrate of the step Removing colloidal nanoparticles from and 4) forming holes and porous structures in the colloidal nanoparticles removed from the upper part of the substrate, optionally in steps 1) and 2 It may further comprise the step (step 1a) of adjusting the spacing of the colloidal nanoparticles arranged between the steps.
  • Steps 1 and 1a are as described in the method of manufacturing the biofilm formation preventing substrate.
  • Step 2 is a step of coating the substrate with a protective material to protect the substrate so that the hole and the porous structure is not formed in the step of forming a hole and the porous structure to be performed as a step of coating a protective material on the substrate.
  • an oxide film or a nitride film may be used as the protective material, but is not limited thereto.
  • Step 3 is a step of removing the colloidal nanoparticles from the substrate to remove the colloidal nanoparticles from the substrate to secure a region for forming holes and porous structures.
  • a method that can be used to remove colloidal nanoparticles includes a removal method using a chemical solution, but is not limited thereto.
  • Step 4 is a step of forming a hole and a porous structure in the colloidal nano-particles removed portion of the upper substrate, the specific method is the same as described in step 2 of the manufacturing method of the biofilm formation prevention substrate.
  • the present inventors arrange the colloidal nanoparticles on the substrate as described above, then coat the protective material, remove the colloidal nanoparticles, and then form a hole and a porous structure in the portion where the colloidal nanoparticles are removed.
  • the biofilm-forming microorganisms it was confirmed that the biofilm can be effectively suppressed.
  • the present invention is a substrate; A plurality of holes formed in an upper portion of the substrate; And it provides a substrate for preventing biofilm formation comprising a porous structure formed in the upper front and the hole of the substrate.
  • the substrate including the hole and the porous structure of the present invention can form a microstructure having a superhydrophobic surface due to the above structural features, and can have a composite structure of nano-micro multi-scale, As a result, biofilm formation by the growth and proliferation of microorganisms can be prevented or suppressed.
  • the "substrate” of the present invention is not limited as long as it is a material capable of forming the hole and the porous structure of the present invention, as long as it has a material or material that can prevent the formation of biofilm by treating the surface with the above structure. It is not limited.
  • examples of the material include metal, polymer, glass, and the like, but the types of materials to which the surface structure of the present invention is applicable are not limited by the above examples.
  • the substrate may be a flexible substrate that can be easily implemented in various forms.
  • the substrate may be stainless steel, in a preferred embodiment of the present invention to form the structure of the present invention by using a stainless steel used in a variety of everyday life, such as water pipes, while the substrate comprising the structure is bio It was confirmed that film formation can be suppressed.
  • the substrate may be implemented in a cylindrical shape by winding the substrate.
  • the cylindrical substrate is a stainless steel having a nano and micro porous structure, and has a nano and micro porous structure formed by using ECF, FeCl 3 etching method inside the cylinder.
  • the thickness of the cylindrical substrate may be from several ⁇ m to several hundred mm.
  • hole of the present invention means a hole-shaped structure formed on the surface of the substrate, the diameter, spacing and depth of the hole can be appropriately adjusted by those skilled in the art as needed. This range is preferably set in the direction of suppressing the growth of microorganisms constituting the biofilm.
  • the size of the hole applied on the substrate may or may not be uniform, it is preferable to form holes of various sizes and structures as long as it can suppress the formation of the biofilm.
  • the spacing of holes formed on the substrate may be uniform or not uniform, and may be adjusted using an oxygen plasma or the like.
  • the spacing of the holes is preferably 10 nm to 10 ⁇ m, and the depth of the holes is preferably 10 nm to 50 ⁇ m.
  • the lower diameter is preferably set to be smaller than the size of the target microorganism to prevent the formation of the biofilm.
  • the size of the microorganisms known to form a biofilm is 0.1 ⁇ m to 10 ⁇ m, and the size of the microorganisms is known to be 1 ⁇ m to 3 ⁇ m in many microorganisms. desirable.
  • porous structure of the present invention is meant a form present on the surface of the substrate, the porous structure may be formed on all or part of the surface as required by those skilled in the art.
  • the porous structure is not limited in the form and number to the extent that the various microorganisms known to form a biofilm can be prevented or inhibited from adhering to and proliferating on the surface, and the porous structure has a regular distribution or irregularity such as holes. It may be configured in any form such as distribution.
  • Such a structure can be formed into a structure in which substances such as water droplets required for growth conditions of microorganisms and other microorganisms cannot be stagnated.
  • the diameter of the porous structure may be 100 nm to 100 ⁇ m, the spacing between the porous structures is 10 nm to 10 ⁇ m, depth may be formed in the range of 1 ⁇ m to 1000 ⁇ m.
  • the porous structure formed on the entire surface including the substrate, the holes formed on the surface of the substrate, and the holes prevents water droplets necessary for the survival of the microorganisms from adhering to the substrate, that is, forms microstructures having a superhydrophobic surface.
  • the microorganism itself can be attached to the surface of the substrate, grow, and block the process of proliferation.
  • the present invention also relates to a method for preventing biofilm formation by using the biofilm formation preventing substrate as a surface.
  • the substrate including the hole and the porous structure of the present invention When the substrate including the hole and the porous structure of the present invention is used, contamination and corrosion by various microorganisms or organisms known to form a biofilm can be suppressed or prevented.
  • the microorganisms forming the biofilm that can be suppressed in the present invention include all the biofilm forming microorganisms known in the art, for example, Pseudomonas aeruginosa , Staphylococcus epidermidis , Delisea pulchra , Methicillin resistant staphylococcus aureus (MRSA), Leigonella pneumophila , Serratia , Vibrio fischeri , Vibrio harveyi , Kleb Microorganisms such as Klebsiella oxytica and Enterobacter cloacae , enterobacteria including E.
  • Pseudomonas aeruginosa Staphylococcus epidermidis , Delisea pulchra , Methicillin resistant staphylococcus aureus (MRSA), Leigonella pneumophila , Serratia , Vibrio fischeri , Vibrio harveyi , Kle
  • coli fungi such as Candida albicans , and as marine organisms, Barnacles Emphitreat, Balanus Emphitreat Community, Balanus Elegantidegatus, Megavalanus Antylene , Ctamalus malensis, ctamalus withersi, and la pas anatifera, algae (diatoms: Dunaliella, Nizshua, Skeletonema, Caesoseros genus, and Dunaliella teriorecta , Skeleto-themed Costatium species), speckled antlers, tubular monopods, red algae, molluscs, shellfish, red and brown moss, ascidian, cocci, mussels, hydroworms, vertebrates, oysters, wolves (ulba), enteromorpha, ectocorpus, ostrea, mytilus, slime; Although it includes organisms such as sea lettuce, green laver and marine spirogyra, the kind of biofilm that can be suppressed in the present invention
  • the method of suppressing the present invention is to prevent the survival and reproduction of living organisms by physical structure, rather than the method of using the microorganism-specifically reacting chemicals or another microorganism to form a biofilm, and thus, the kind of such microorganisms Without limitation, growth and proliferation can be effectively suppressed.
  • the present invention provides a water quality inspection sensor including the biofilm formation prevention substrate.
  • the method for bonding the biofilm formation preventing substrate into the water quality inspection sensor may be used without limitation the methods commonly used in the art.
  • the substrate can be wound and implemented in a cylindrical shape, and also nano and microporous structures are formed on the inner wall of the cylindrical stainless steel by using ECF and FeCl 3 methods.
  • ECF and FeCl 3 methods By implementing the cylindrical substrate having the nano- and micro-porous structure can be easily coupled in the water quality inspection sensor.
  • the cylindrical substrate is made of stainless steel having nano and micro porous structures, and nano and micro porous structures may be manufactured using ECF and FeCl 3 etching methods in a cylinder.
  • the thickness of the cylindrical substrate may be from several ⁇ m to several hundred mm.
  • the biofilm formation preventing substrate of the present invention When the biofilm formation preventing substrate of the present invention is bonded to a water quality test sensor, the biofilm is formed on the surface of the water quality test sensor to prevent or suppress contamination and corrosion by microorganisms or marine organisms. This can increase the sensitivity and reproducibility of the sensor for inspecting water contamination.
  • FIG. 1 is a diagram schematically illustrating a process of coating PS nanobeads on a surface of a flexible stainless substrate.
  • FIG. 2 is a view showing the appearance of PS nanobead coated on a flexible stainless substrate.
  • FIG. 3 is a process diagram briefly illustrating a process of etching a flexible stainless substrate without removing the PS nanobeads.
  • FIG. 4 is a process diagram briefly illustrating a process of removing PS nanobeads and etching a flexible stainless substrate.
  • FIG. 5 is a view schematically showing the structure of a water quality inspection sensor manufactured using the flexible film for preventing biofilm formation of the present invention.
  • (a) is a brief view showing the overall appearance of the structure in which the flexible substrate is packaged integrally to the water quality inspection sensor,
  • (b) is to enlarge the surface structure of the substrate used as the sensor protection net.
  • FIG. 6 is an SEM image showing the surface shape of the flexible substrate for preventing biofilm formation of the present invention.
  • (a) shows that only ECF etching is performed without removing the PS nanobeads
  • (b) shows that if both ECF and FeCl 3 etching are performed without removing the PS nanobeads
  • (c) shows PS nanobeads.
  • (d) shows the case of removing the PS nanobead and performing both the ECF and FeCl 3 etching.
  • FIG. 7 shows the results of performing microbial culture and biofilm formation experiments with respect to the flexible film for preventing biofilm formation of Examples 4 to 6 with a correlation.
  • (a) is Example 4
  • (b) is Example 5
  • (c) is a flexible substrate for preventing biofilm formation of Example 6.
  • 11 is a view showing the degree of microbial adhesion according to the change in contact angle.
  • a stainless steel (SUS304) product was polished to a thickness of several tens of micrometers through a chemical mechanical polishing (CMP) process to produce a flexible substrate.
  • CMP chemical mechanical polishing
  • the dispersion solution in which the nanobead particles were dispersed was coated on the above-described flexible substrate to arrange the nanobead particles in a single layer. After washing with acetone, the flexible stainless surface was dried using D.I and nitrogen. The process of coating the PS nanobeads on the surface of the flexible stainless substrate is shown in FIG. 1, and the appearance of the PS nanobeads coated on the flexible stainless substrate is shown in FIG. 2.
  • the spacing of the PS nanobead particles was adjusted to 10 nm to 5 ⁇ m using an oxygen plasma.
  • the substrate on which the PS nanobead particles were arranged was etched by ECF (Electro Chemical Fabrication) to prepare a flexible substrate for preventing biofilm formation of the present invention.
  • ECF Electro Chemical Fabrication
  • a stainless steel (SUS304) product was polished to a thickness of several tens of micrometers through a chemical mechanical polishing (CMP) process to produce a flexible substrate.
  • CMP chemical mechanical polishing
  • the dispersion solution in which the nanobead particles were dispersed was coated on the above-described flexible substrate to arrange the nanobead particles in a single layer. After washing with acetone, the flexible stainless surface was dried using D.I and nitrogen. The process of coating the PS nanobeads on the surface of the flexible stainless substrate is shown in FIG. 1, and the appearance of the PS nanobeads coated on the flexible stainless substrate is shown in FIG. 2.
  • the spacing of the PS nanobead particles was adjusted to 10 nm to 5 ⁇ m using an oxygen plasma.
  • the substrate on which the PS nanobead particles are arranged is etched by ECF (Electro Chemical Fabrication), and then etched for 1 minute using FeCl 3 solution to prepare a flexible film for preventing biofilm formation of the present invention. It was.
  • the overall manufacturing process of the flexible substrate for preventing biofilm formation is shown in FIG. 3.
  • a stainless steel (SUS304) product was polished to a thickness of several tens of micrometers through a chemical mechanical polishing (CMP) process to produce a flexible substrate.
  • CMP chemical mechanical polishing
  • the dispersion solution in which the nanobead particles were dispersed was coated on the above-described flexible substrate to arrange the nanobead particles in a single layer. After washing with acetone, the flexible stainless surface was dried using D.I and nitrogen. The process of coating the PS nanobeads on the surface of the flexible stainless substrate is shown in FIG. 1, and the appearance of the PS nanobeads coated on the flexible stainless substrate is shown in FIG. 2.
  • the spacing of the PS nanobead particles was adjusted to 10 nm to 5 ⁇ m using an oxygen plasma.
  • the substrate on which the PS nanobead particles were arranged was then treated with oxygen plasma to coat the substrate with a protective material, and then the PS nanobead particles were removed from the substrate.
  • the substrate from which the PS nanobead particles were removed was etched by ECF (Electro Chemical Fabrication) to prepare a flexible substrate for preventing biofilm formation.
  • ECF Electro Chemical Fabrication
  • a stainless steel (SUS304) product was polished to a thickness of several tens of micrometers through a chemical mechanical polishing (CMP) process to produce a flexible substrate.
  • CMP chemical mechanical polishing
  • the dispersion solution in which the nanobead particles were dispersed was coated on the above-described flexible substrate to arrange the nanobead particles in a single layer. After washing with acetone, the flexible stainless surface was dried using D.I and nitrogen. The process of coating the PS nanobeads on the surface of the flexible stainless substrate is shown in FIG. 1, and the appearance of the PS nanobeads coated on the flexible stainless substrate is shown in FIG. 2.
  • the spacing of the PS nanobead particles was adjusted to 10 nm to 5 ⁇ m using an oxygen plasma.
  • the substrate on which the PS nanobead particles were arranged was then treated with oxygen plasma to coat the substrate with a protective material, and then the PS nanobead particles were removed from the substrate.
  • substrate for preventing biofilm formation of this invention of 6 was produced.
  • the overall manufacturing process of the flexible substrate for preventing biofilm formation is shown in FIG. 4.
  • a water quality inspection sensor was manufactured as shown in FIG. 5 using the biofilm formation preventing flexible substrate manufactured in any one of Examples 1 to 6.
  • FIG 5 (a) is a simplified view of the overall structure of the structure in which the flexible substrate is packaged to be integrated into the water quality inspection sensor, (b) is an enlarged view of the surface structure of the substrate used as the sensor protection net.
  • the surface of the flexible film for preventing biofilm formation prepared in Examples 1 to 4 was observed by scanning electron microscope (SEM).
  • the surfaces (b and d) of Examples 2 and 4 which performed the combination treatment of ECF and FeCl 3 , were more effective than the surfaces (a and c) of Examples 1 and 3, which performed only the ECF treatment. It can be seen that relatively rough and nano-sized pores are formed.
  • the Ra value was measured as (a) at 0.28 ⁇ m, (b) at 2.99 ⁇ m, (c) at 0.05 ⁇ m, and (d) at 2.23 ⁇ m, respectively.
  • Pseudomonas aeruginosa (KCTC 1750) was used as the microorganism. After culturing a solid medium (nutrient agar) and single colony (single colony) separation was carried out liquid culture (M9 medium) for 12 hours at 37 °C. In order to form a biofilm on the chip surface, the chip was placed in a Petri dish, and then 30 ml of microbial culture solution (OD ⁇ 0.1) was poured and incubated at 37 ° C. for 3-4 days.
  • M9 medium liquid culture
  • a non-patterned flexible substrate was prepared by not using nanobeads as a control, and the non-patterned flexible substrate was not etched, and those prepared by etching with FeCl 3 for 1 minute, 3 minutes, and 5 minutes, respectively, were prepared. Microbial culture experiment was performed under the conditions.
  • each substrate was observed with an optical microscope to investigate the degree of biofilm formation.
  • FIG. 8 50 magnification
  • FIG. 9 150 magnification
  • FIG. 10 600 magnification
  • Example 4 As a result, in Example 4, it was 74.2 ° (No. 5), Example 5 was 49.8 ° (No. 6), and Example 6 was 22.6 ° (No. 7).
  • the etching time of the FeCl 3 is shorter and accordingly the contact angle is higher, the adhesion degree of the microorganisms in the flexible substrate for preventing biofilm formation of Example 4 was found to be lower.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Nanotechnology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

The present invention relates to a method for manufacturing a substrate for preventing the formation of a biofilm using colloidal nonoparticles, to a substrate manufactured thereby, and to a sensor for testing water quality comprising the substrate. More particularly, the present invention relates to a method for manufacturing a substrate for preventing the formation of a biofilm by arranging colloidal nanoparticles on a substrate and forming holes and a porous structure on the substrate. The present invention also relates to a substrate for preventing the formation of a biofilm consisting of a substrate, a plurality of holes formed on the upper surface of the substrate, and a porous structure formed over the entirety of the upper surface of the substrate and in the holes. The present invention also relates to a sensor for testing water quality comprising the substrate.

Description

콜로이달 나노 입자를 이용한 바이오 필름 형성 방지용 기판의 제조방법, 이로부터 제조된 기판 및 상기 기판을 포함하는 수질 검사 센서Method for manufacturing a substrate for preventing biofilm formation using colloidal nanoparticles, a substrate prepared therefrom and a water quality inspection sensor including the substrate
본 발명은 콜로이달 나노 입자를 이용한 바이오 필름 형성 방지용 기판의 제조방법, 이로부터 제조된 기판 및 상기 기판을 포함하는 수질 검사 센서에 관한 것으로서, 보다 상세하게는 콜로이달 나노 입자를 기판 상에 배열한 후 상기 기판 상부에 홀 및 다공성 구조물을 형성시켜 바이오 필름 형성 방지용 기판을 제조하는 방법, 상기 방법을 이용하여 제조된, 기판, 기판 상부에 형성된 다수의 홀 및 상기 기판 상부 전면 및 상기 홀에 형성되는 다공성 구조물을 포함하는 바이오 필름 형성 방지용 기판, 및 상기 기판을 포함하는 수질 검사 센서에 관한 것이다.The present invention relates to a method for manufacturing a biofilm forming prevention substrate using colloidal nanoparticles, a substrate prepared therefrom, and a water quality inspection sensor including the substrate. More specifically, the colloidal nanoparticles are arranged on a substrate. Thereafter, a hole and a porous structure are formed on the substrate to manufacture a substrate for preventing biofilm formation, the substrate manufactured using the method, a plurality of holes formed on the substrate, and the front and upper surfaces of the substrate and formed on the hole. The present invention relates to a biofilm forming prevention substrate including a porous structure, and a water quality inspection sensor including the substrate.
바이오필름(biofilm)은 일반적으로 수용성계(aqueous system)에서 물질의 표면에 부착 및 증식하는 미생물에 의해 형성된 구조물로서 생물막으로 지칭되기도 한다. 이러한 바이오필름 형성은 미생물에 의한 위험을 유발하므로 다양한 산업 분야에서 문제점을 유발한다. 예를 들면, 공장 파이프에 형성된 바이오필름이 벗겨져 해당 공장의 생산물에 혼합되는 경우, 생산물의 오염을 발생시킬 뿐만 아니라, 상기 생산물이 식품인 경우에는 인체에 치명적인 위험인자로 작용할 수 있다. 또한 열교환기 표면에 생긴 바이오필름은 열전달 효율을 떨어뜨린다. 나아가 금속 표면과 같은 구조물 표면에 바이오필름이 형성되는 경우, 금속의 부식을 초래하고 시설의 부패를 유발할 수 있다. 특히 다양한 금속 및 콘크리트와 같은 물질 부식으로 인한 손상은 불편뿐만 아니라 재건을 위해 커다란 비용이 소모되어 경제적으로 큰 난점으로 작용하고 있다. Biofilms are generally referred to as biofilms as structures formed by microorganisms that adhere to and proliferate on the surface of materials in an aqueous system. Such biofilm formation causes a risk by microorganisms and thus causes problems in various industries. For example, when the biofilm formed on the factory pipe is peeled off and mixed with the product of the factory, not only contamination of the product may occur, but also when the product is food, it may act as a fatal risk factor for the human body. Biofilm on the surface of the heat exchanger also reduces the heat transfer efficiency. Furthermore, if biofilm is formed on the surface of a structure such as a metal surface, it may cause corrosion of the metal and cause decay of the facility. In particular, damages caused by corrosion of materials such as various metals and concrete are not only inconvenient but also costly for reconstruction, which is causing economic difficulties.
이와 같은 문제 해결을 위한 기술을 개발하는 것은 환경, 수처리, 보건 및 의료 분야 등 다양한 분야에 있어서 기술적 과제로 인식되어 있으며, 지난 수십 년간 다양한 연구가 진행되었으나, 수분이 존재하는 표면에서 미생물에 의하여 자연적으로 형성되는 생물막은 한번 형성되면 기존의 물리적 방법 및 고분자 약품의 투입과 같은 화학적 방법으로는 완전하게 제거되지 않아 바이오필름에 의한 오염 방지 및 제어에 대해 현재까지 만족할 만한 수준의 해결 방법이 개발되지 못하고 있는 실정이다.The development of technology for solving such problems is recognized as a technical problem in various fields such as environment, water treatment, health and medical field, and various researches have been conducted for several decades. Once formed, the biofilm is not completely removed by conventional physical methods and chemical methods such as the injection of polymer drugs. Thus, a satisfactory solution for contamination prevention and control by biofilm has not been developed until now. There is a situation.
이러한 바이오필름에 의한 구조물 표면의 부식 및 오염을 감소시키기 위한 방법으로 부식 민감성 물질(예, 금속) 상에 바이오필름의 성장을 억제 또는 방지하는 방법이 고안되어 왔다. 예를 들면, 상기 바이오필름을 구성하는 미생물 증식을 방지하기 위해 pH 조절, 산화환원 전위 조절, 무기물 코팅, 음극 보호 및 살생물제 도포와 같은 다양한 방법을 수행하고 있으나, 도료 및 에폭시와 같은 보호 코팅제들은 적용과 유지에 과다한 비용이 소모되어 효과적인 항-바이오필름 제제로서 사용이 불가한 실정이다. As a method for reducing the corrosion and contamination of the surface of the structure by the biofilm has been devised a method for inhibiting or preventing the growth of the biofilm on the corrosion-sensitive material (for example, metal). For example, in order to prevent the growth of microorganisms constituting the biofilm, various methods such as pH control, redox potential control, inorganic coating, cathodic protection, and biocide application are performed, but protective coatings such as paints and epoxies are used. They are excessively expensive to apply and maintain, making them impossible to use as effective anti-biofilm formulations.
그 밖에 바이오필름의 방지와 관련한 기술들은 1) 미생물 또는 특정 화학물질을 이용하여 표면을 코팅 처리함으로써 바이오필름의 형성을 억제하거나, 2) 특정 생물 또는 화합물을 이용하여 형성된 바이오필름을 분해하는 방법, 3) 바이오필름을 형성하는 미생물의 성장을 저해하거나 교란시키는 방법 등이 존재하나, 표면 자체에 특정한 형태를 적용하여 바이오필름 형성 자체를 막는 기술에 대한 연구는 미비한 실정이다.Other techniques related to the prevention of biofilms include: 1) inhibiting the formation of biofilms by coating surfaces with microorganisms or specific chemicals, or 2) decomposing biofilms formed using specific organisms or compounds, 3) There exists a method of inhibiting or disturbing the growth of the microorganisms forming the biofilm, but the research on the technology of preventing the formation of the biofilm by applying a specific form on the surface itself is insufficient.
상기와 같은 점을 고려하여 본 발명자는 특정 화학물질 또는 미생물을 코팅하거나, 상기 다양한 물질을 처리하여 표면을 개질하는 방법에 의하지 않고, 단지 표면의 형태만을 변형시키는 방법으로 바이오필름의 생성 자체를 방지할 수 있는 방법 및 해당 방법에 의해 제조된 구조물을 포함하는 기판을 제작하고 이에 대하여 특허출원 제10-2009-0135754호로 특허출원한 바 있다.In view of the above, the present inventors do not rely on coating a specific chemical or microorganism or treating the various substances to modify the surface, and thus prevent the production of the biofilm by modifying only the shape of the surface. It is possible to manufacture a substrate comprising a method and a structure manufactured by the method and has been filed with the patent application No. 10-2009-0135754.
이에 본 발명자들은, 콜로이달 나노입자를 이용하여 특정 화학물질 또는 미생물을 코팅하거나, 상기 다양한 물질을 처리하여 표면을 개질하는 방법에 의하지 않고, 단지 표면의 형태만을 변형시키는 방법으로 바이오필름의 생성 자체를 방지할 수 있는 기판을 제작할 수 있음을 확인하고 상기 기판을 수질 검사 센서에 결합시켜 수질 검사 센서의 감도 및 재현성을 높일 수 있음을 확인함으로써 본 발명을 완성하였다.Accordingly, the inventors of the present invention, by coating the specific chemicals or microorganisms using the colloidal nanoparticles, or by modifying the surface by treating the various materials, but only by modifying the shape of the surface of the biofilm itself The present invention has been completed by confirming that a substrate capable of preventing the above-mentioned process can be manufactured, and confirming that the substrate can be coupled to a water quality test sensor to increase the sensitivity and reproducibility of the water quality test sensor.
본 발명의 목적은 콜로이달 나노 입자를 기판 상에 배열한 후 상기 기판 상부에 홀 및 다공성 구조물을 형성시켜 바이오 필름 형성 방지용 기판을 제조하는 방법을 제공하는 것이다.An object of the present invention is to provide a method for producing a substrate for preventing biofilm formation by forming colloidal nanoparticles on a substrate and then forming a hole and a porous structure on the substrate.
본 발명의 다른 목적은 상기 제조 방법으로 제조된 기판; 상기 기판의 상부에 형성되는 다수의 홀; 및 상기 기판의 상부 전면 및 상기 홀에 형성되는 다공성 구조물을 포함하는 바이오필름 형성 방지용 기판을 제공하는 것이다.Another object of the present invention is a substrate produced by the manufacturing method; A plurality of holes formed in an upper portion of the substrate; And a porous structure formed on the upper front surface and the hole of the substrate.
본 발명의 또 다른 목적은 상기 바이오 필름 형성 방지용 기판을 표면으로 이용하여 바이오필름 형성을 방지하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method of preventing biofilm formation by using the biofilm formation preventing substrate as a surface.
본 발명의 또 다른 목적은 상기 바이오 필름 형성 방지용 기판을 포함하는 수질 검사 센서를 제공하는 것이다.Still another object of the present invention is to provide a water quality inspection sensor including the biofilm formation preventing substrate.
상기 과제를 해결하기 위해, 본 발명은 하기 단계를 포함하는 바이오필름 형성 방지용 기판의 제조방법을 제공한다.In order to solve the above problems, the present invention provides a method for producing a biofilm forming prevention substrate comprising the following steps.
1) 기판의 상부에 콜로이달 나노 입자를 배열하는 단계; 및1) arranging colloidal nanoparticles on top of the substrate; And
2) 상기 단계의 기판 상부에 홀과 다공성 구조물을 형성시키는 단계.2) forming a hole and a porous structure on the substrate.
또한, 본 발명은 상기 제조방법에서, 상기 1) 단계와 2) 단계 사이에 배열된 콜로이달 나노 입자의 간격을 조절하는 단계(단계 1a)를 추가로 포함할 수 있다. In addition, the present invention may further comprise the step of adjusting the interval of the colloidal nanoparticles arranged between the steps 1) and 2) (step 1a).
본 발명의 구조물을 포함하는 기판을 제조하는 과정은, 크게 1) 콜로이달 나노 입자를 기판 상에 배열하는 단계 및 2) 상기 콜로이달 나노 입자가 배열된 기판을 식각 처리하여 홀 및 다공성 구조물을 형성시키는 단계로 구분될 수 있으며, 선택적으로 상기 1) 단계와 2) 단계 사이에 배열된 콜로이달 나노 입자의 간격을 조절하는 단계(단계 1a)를 추가로 포함할 수 있다.The process of manufacturing a substrate including the structure of the present invention includes: 1) arranging colloidal nanoparticles on a substrate and 2) etching the substrate on which the colloidal nanoparticles are arranged to form holes and porous structures. It may be divided into the step, and optionally may further comprise the step of adjusting the interval of the colloidal nanoparticles arranged between the steps 1) and 2) (step 1a).
상기 단계 1은, 기판의 상부에 콜로이달 나노 입자를 배열하는 단계로서 당업계에서 통상적으로 사용되는 방법을 제한 없이 사용할 수 있고, 바람직하게 콜로이달 나노 입자를 포함하는 분산액을 기판 상에 코팅하는 방법으로 수행될 수 있다. Step 1 is a step of arranging the colloidal nanoparticles on top of the substrate can be used without limitation methods commonly used in the art, and preferably a method for coating a dispersion containing the colloidal nanoparticles on the substrate It can be performed as.
본 발명에서, 사용되는 콜로이달 나노 입자는 콜로이달 나노 입자 간의 반발력 및 뭉침 등을 고려하여 100 nm 내지 100 ㎛의 크기를 가지는 것이 바람직하다.In the present invention, it is preferable that the colloidal nanoparticles used have a size of 100 nm to 100 μm in consideration of repulsion and aggregation between the colloidal nanoparticles.
본 발명에서, 콜로이달 나노 입자로는 폴리스티렌; 실리카(SiO2); Si3N4 등의 질화물; 산화물 또는 이의 조합을 사용할 수 있다.In the present invention, the colloidal nanoparticles include polystyrene; Silica (SiO 2 ); Nitrides such as Si 3 N 4 ; Oxides or combinations thereof can be used.
본 발명의 일 실시예에서는 PS 나노비드입자를 콜로이달 나노입자로 사용하였다. PS 나노비드입자를 이용하여 콜로이달나노리소 공정을 하기 위해서는 기판을 친수성 상태로 바꾸어야 한다. 또한 실리카(SiO2), 질화물(Si3N4) 입자 등을 이용할 경우 적절한 표면 상태를 유지하여 간격을 조절할 수 있다.In one embodiment of the present invention, PS nanobead particles were used as colloidal nanoparticles. In order to perform the colloidal nanolithography process using PS nanobead particles, the substrate must be changed to a hydrophilic state. In addition, when using silica (SiO 2 ), nitride (Si 3 N 4 ) particles and the like can be adjusted to maintain the appropriate surface state.
상기 단계 2는, 상기 단계의 기판 상부에 홀과 다공성 구조물을 형성시키는 단계로서 당업계에서 통상적으로 사용되는 방법을 제한 없이 사용할 수 있고, 바람직하게 상기 홀 및 다공성 구조물은 식각 방법으로 수행될 수 있다. 식각 방법 또한 기판의 재료 및 재질적 특성에 따라 당업계에서 사용되는 통상의 방법에 따라 식각이 이루어질 수 있는데, 본 발명의 홀 및 다공성 구조물은, 경우에 따라 ㎛ 단위의 미세 구조를 형성시켜야 하는 바, 일반적인 식각 방법에 의해 형성시키는데 난점이 존재할 수 있다. 따라서 본 발명자들은 본 발명의 다공성 구조물을 형성시키기 위해 당업계에 알려진 다양한 방법들 중, 화학식각법, 전기화학식각법, 방전가공법 또는 전해가공법을 사용하여 목적하는 다공성 구조물을 형성시키기에 이르렀다. Step 2 may be used to form a hole and a porous structure on the substrate of the step without limitation, a method commonly used in the art, preferably the hole and the porous structure may be performed by an etching method. . Etching method can also be etched according to the conventional methods used in the art according to the material and material properties of the substrate, the hole and the porous structure of the present invention, if necessary to form a microstructure in units of μm However, there may be a difficulty in forming by a general etching method. Accordingly, the present inventors have come to form the desired porous structure using chemical etching, electrochemical etching, discharge processing, or electrolytic processing among various methods known in the art to form the porous structure of the present invention.
상기 방법들 중, 화학식각법은 다양한 식각액을 이용하여 식각하는 방법으로서, 목적 및 당업자의 필요에 따라 적절한 조성의 식각액을 제조할 수 있다. 전기화학식각법은 본 명세서의 실시예에서 수행한 방법이며, 방전가공법(EDM(Electro-Discharge Machining))은 두 전극 사이에 방전을 일으킬 때 생기는 물리적, 기계적 또는 전기적 작용을 이용하여 수행하는 방법이다. 이러한 방전가공은 재료의 강도에 무관하게 실시할 수 있으며, 평면 및 입체와 같은 복잡한 형상의 가공이 용이한 방법이다. 또한 방전가공법은 표면가공일 경우 0.1 ㎛ 내지 0.2 ㎛까지 가공이 가능하고, 열에 의한 표면 변질이 없다는 점에서 다른 가공법으로 달성될 수 없는 목적을 달성할 수 있다. 마지막으로 전해가공법(ECM(Electro-Chemical Machining))은 금속재료를 전기화학적 용해시킬 때, 그 진행을 방해하는 양극 생성물인 금속산화물막이 생기는데, 이를 제거하면서 가공하는 방법이다. 전해가공법은 가공해야 할 형태로 만든 공구를 음극으로 하고, 소재를 양극으로 하여 이 양쪽을 전해액에 담그고 전류를 통하게 하면 소재는 음극의 표면 형상과 같이 가공되는데, 이러한 방법은 보통의 공구로는 가공이 곤란한 초경합금, 내열강 등의 가공에 이용될 수 있다. 또한 공구가 회전되지 않으므로, 원형이 아닌 특수한 형상의 천공에도 이용할 수 있다. 전해가공법을 이용하는 경우, 음극은 경면으로 가공하여야 하며, 공구인 음극과 공작물인 양극간에 충분한 전류 밀도를 유지해야 한다. 본 발명의 기판은 상기와 같은 방법을 수행하여 목적하는 홀 및 다공성 구조물을 형성할 수 있다.Among the above methods, the chemical etching method is a method of etching using various etching solutions, it is possible to prepare an etching solution of a suitable composition according to the purpose and the needs of those skilled in the art. Electrochemical etching is a method performed in the embodiments of the present specification, the discharge machining (EDM (Electro-Discharge Machining)) is a method performed by using a physical, mechanical or electrical action generated when a discharge between the two electrodes. Such electric discharge machining can be performed irrespective of the strength of the material, and is a method of easily processing complex shapes such as planes and solids. In addition, in the case of the surface machining, the discharge machining can be processed to 0.1 μm to 0.2 μm, and in that there is no surface deterioration by heat, it is possible to achieve an object that cannot be achieved by other processing methods. Finally, electro-chemical machining (ECM) produces a metal oxide film, which is an anode product, which hinders the progress of electrochemical dissolution of a metal material. In electrolytic processing, if a tool made in the shape to be processed is used as a cathode, the material is used as an anode, and both of them are immersed in the electrolyte and the current is passed through, the material is processed like the surface shape of the cathode. It can be used for processing such hard cemented carbide, heat resistant steel, and the like. In addition, since the tool does not rotate, it can be used for drilling of special shape, not circular. If electrolytic machining is used, the cathode shall be machined to mirror and sufficient current density shall be maintained between the tool anode and the workpiece anode. The substrate of the present invention can perform the above-described method to form the desired holes and porous structures.
본 발명의 구체적인 실시예에서는 기판에 홀 및 다공성 구조물의 구조를 적용하기 위하여 ECF(electro chemical fabrication) 방법을 수행하여 기판의 상부에 배열된 콜로이달 나노 입자 위치를 제외한 나머지 부분을 식각함으로써 기판 상부에 홀을 형성시킬 수 있음을 확인하였다. 또한, 상기 방법으로 제작된 홀 구조를 형성한 기판을 다시 FeCl3 용액을 이용하여 식각하여 본 발명에서 목적하는 홀 및 다공성 구조물의 구조를 얻을 수 있음을 확인하였다. 또한 해당 방법에 의해 제조된 기판에 바이오필름 형성 미생물을 적용하여 본 결과, 효과적으로 바이오필름을 억제할 수 있음을 확인하였다. In a specific embodiment of the present invention by performing the ECF (electro chemical fabrication) method to apply the structure of the hole and the porous structure to the substrate by etching the remaining portion except the colloidal nano-particles arranged on the substrate to the top of the substrate It was confirmed that the hole can be formed. In addition, it was confirmed that the substrate having the hole structure formed by the above method was etched again using FeCl 3 solution to obtain the structure of the hole and the porous structure of interest in the present invention. In addition, as a result of applying the biofilm-forming microorganisms to the substrate prepared by the method, it was confirmed that the biofilm can be effectively suppressed.
본 발명의 실험예에서는 ECF 단독 처리와 ECF 및 FeCl3의 조합 처리간의 바이오필름 형성 억제 효과를 비교하였으며, 그 결과, ECF와 FeCl3의 조합 처리가 바이오필름 형성 억제면에서 더욱 효과적임을 확인하였다. 또한, ECF 후 수행하는 FeCl3의 처리 시간을 1분 내지 5분으로 달리하여 바이오필름 형성 억제 효과를 비교하였으며, 그 결과 ECF 후 FeCl3를 1분 처리하는 것이 바이오필름 형성 억제면에서 가장 효과적임을 확인하였다.In the experimental example of the present invention, the biofilm formation inhibitory effect was compared between ECF alone treatment and the combination treatment of ECF and FeCl 3 , and as a result, it was confirmed that the combination treatment of ECF and FeCl 3 was more effective in inhibiting biofilm formation. In addition, the effect of inhibiting biofilm formation was compared by varying the treatment time of FeCl 3 performed after ECF from 1 minute to 5 minutes. As a result, treating FeCl 3 after ECF for 1 minute was most effective in inhibiting biofilm formation. Confirmed.
또한 당업자의 필요에 따라, 또는 방지하고자하는 바이오필름의 종류에 따라 다공성 구조물의 접촉각을 변화시킬 수 있으며, 이때 식각액으로 처리하는 방법을 포함한 접촉각을 변화시키는 다양한 방법이 수행될 수 있다. 사용되는 식각액의 종류 및 농도는 목적에 따라 당업자에 의해 결정될 수 있으며, 식각액에 노출되는 시간 및 횟수 또한 통상적인 방법에 의해 결정될 수 있음은 자명하다. 본 발명자들은 실험을 통하여 식각액에 노출되는 시간 및 횟수가 증가하는 경우, 다공성 구조물의 접촉각을 증가시킬 수 있음을 확인하였다. 또한 본 발명자들은 다수의 실험을 거쳐 예의 노력한 결과, 접촉각이 증가함에 따라, 미생물 부착이 감소됨을 확인하였고, 그 결과로서 바이오필름이 더욱 억제될 수 있음을 확인하였다.In addition, the contact angle of the porous structure may be changed according to the needs of those skilled in the art or according to the type of biofilm to be prevented, and various methods of changing the contact angle, including a method of treating with an etchant, may be performed. The type and concentration of the etchant used may be determined by those skilled in the art according to the purpose, and the time and number of times of exposure to the etchant may also be determined by conventional methods. The inventors have found that when the time and number of times exposed to the etchant increases, the contact angle of the porous structure can be increased. In addition, the present inventors have made a lot of experiments, and as a result of diligent efforts, it was confirmed that as the contact angle increases, microbial adhesion is reduced, as a result that the biofilm can be further suppressed.
또한, 본 발명은 하기 단계를 포함하는 바이오필름 형성 방지용 기판의 제조방법을 제공한다.In addition, the present invention provides a method for manufacturing a biofilm forming prevention substrate comprising the following steps.
1) 기판의 상부에 콜로이달 나노 입자를 배열하는 단계; 1) arranging colloidal nanoparticles on top of the substrate;
2) 상기 단계의 기판에 보호 물질을 코팅하는 단계; 2) coating a protective material on the substrate of the step;
3) 상기 단계의 기판으로부터 콜로이달 나노 입자를 제거하는 단계; 및3) removing the colloidal nanoparticles from the substrate of the step; And
4) 상기 단계의 기판 상부 중 콜로이달 나노 입자가 제거된 부분에 홀과 다공성 구조물을 형성시키는 단계.4) forming a hole and a porous structure in a portion where the colloidal nanoparticles are removed from the top of the substrate.
또한, 본 발명은 상기 제조방법에서, 상기 1) 단계와 2) 단계 사이에 배열된 콜로이달 나노 입자의 간격을 조절하는 단계(단계 1a)를 추가로 포함할 수 있다. In addition, the present invention may further comprise the step of adjusting the interval of the colloidal nanoparticles arranged between the steps 1) and 2) (step 1a).
본 발명의 구조물을 포함하는 기판을 제조하는 과정은, 크게 1) 기판의 상부에 콜로이달 나노 입자를 배열하는 단계, 2) 상기 단계의 기판에 보호 물질을 코팅하는 단계, 3) 상기 단계의 기판으로부터 콜로이달 나노 입자를 제거하는 단계, 및 4) 상기 단계의 기판 상부 중 콜로이달 나노 입자가 제거된 부분에 홀과 다공성 구조물을 형성시키는 단계로 구분될 수 있으며, 선택적으로 상기 1) 단계와 2) 단계 사이에 배열된 콜로이달 나노 입자의 간격을 조절하는 단계(단계 1a)를 추가로 포함할 수 있다.The process of manufacturing a substrate including the structure of the present invention comprises: 1) arranging colloidal nanoparticles on top of the substrate, 2) coating a protective material on the substrate of the step, 3) the substrate of the step Removing colloidal nanoparticles from and 4) forming holes and porous structures in the colloidal nanoparticles removed from the upper part of the substrate, optionally in steps 1) and 2 It may further comprise the step (step 1a) of adjusting the spacing of the colloidal nanoparticles arranged between the steps.
상기 단계 1 및 1a는 상기 바이오필름 형성 방지용 기판의 제조방법에서 설명한 바와 같다. Steps 1 and 1a are as described in the method of manufacturing the biofilm formation preventing substrate.
상기 단계 2는, 기판에 보호 물질을 코팅하는 단계로서 이후 수행되는 홀과 다공성 구조물을 형성시키는 단계에서 홀과 다공성 구조물이 형성되지 않도록 기판을 보호하기 위해 기판을 보호 물질로 코팅하는 단계이다. Step 2 is a step of coating the substrate with a protective material to protect the substrate so that the hole and the porous structure is not formed in the step of forming a hole and the porous structure to be performed as a step of coating a protective material on the substrate.
본 발명에서, 보호 물질로는 산화막 또는 질화막 등을 사용할 수 있으며, 이에 제한되지는 않는다.In the present invention, an oxide film or a nitride film may be used as the protective material, but is not limited thereto.
상기 단계 3은, 기판으로부터 콜로이달 나노 입자를 제거하는 단계로서 홀과 다공성 구조물을 형성시키기 위한 영역을 확보하기 위해 기판으로부터 콜로이달 나노 입자를 제거하는 단계이다. Step 3 is a step of removing the colloidal nanoparticles from the substrate to remove the colloidal nanoparticles from the substrate to secure a region for forming holes and porous structures.
본 발명에서, 콜로이달 나노 입자를 제거하기 위해 사용할 수 있는 방법으로는 화학용액을 이용한 제거 방법 등이 있으며, 이에 제한되지는 않는다.In the present invention, a method that can be used to remove colloidal nanoparticles includes a removal method using a chemical solution, but is not limited thereto.
상기 단계 4는, 기판 상부 중 콜로이달 나노 입자가 제거된 부분에 홀과 다공성 구조물을 형성시키는 단계로서, 구체적인 수행 방법은 상기 바이오필름 형성 방지용 기판의 제조방법의 단계 2에서 설명한 바와 같다. Step 4 is a step of forming a hole and a porous structure in the colloidal nano-particles removed portion of the upper substrate, the specific method is the same as described in step 2 of the manufacturing method of the biofilm formation prevention substrate.
본 발명자들은 상기와 같이 기판에 콜로이달 나노 입자를 배열시킨 뒤 보호 물질을 코팅하고 상기 콜로이달 나노 입자를 제거한 다음 상기 콜로이달 나노 입자가 제거된 부분에 홀 및 다공성 구조물을 형성시킨 후 상기 방법에 의해 제조된 기판에 바이오필름 형성 미생물을 적용하여 본 결과, 효과적으로 바이오필름을 억제할 수 있음을 확인하였다.The present inventors arrange the colloidal nanoparticles on the substrate as described above, then coat the protective material, remove the colloidal nanoparticles, and then form a hole and a porous structure in the portion where the colloidal nanoparticles are removed. As a result of applying the biofilm-forming microorganisms to the substrate prepared by the present invention, it was confirmed that the biofilm can be effectively suppressed.
또한, 본 발명은 기판; 상기 기판의 상부에 형성되는 다수의 홀; 및 상기 기판의 상부 전면 및 상기 홀에 형성되는 다공성 구조물을 포함하는 바이오필름 형성 방지용 기판을 제공한다. 바람직하게 본 발명의 홀 및 다공성 구조물을 포함하는 기판은 상기의 구조적 특징으로 인하여 해당 기판이 초소수성 표면을 가지는 미세 구조를 형성시킬 수 있고, 나노-마이크로 멀티 스케일의 복합 구조를 가질 수 있게 하여, 결과적으로는 미생물의 성장 및 증식에 의한 바이오필름 형성을 방지 또는 억제할 수 있다.In addition, the present invention is a substrate; A plurality of holes formed in an upper portion of the substrate; And it provides a substrate for preventing biofilm formation comprising a porous structure formed in the upper front and the hole of the substrate. Preferably, the substrate including the hole and the porous structure of the present invention can form a microstructure having a superhydrophobic surface due to the above structural features, and can have a composite structure of nano-micro multi-scale, As a result, biofilm formation by the growth and proliferation of microorganisms can be prevented or suppressed.
본 발명의 "기판"은 본 발명의 홀 및 다공성 구조물을 형성시킬 수 있는 재료이면 한정되지 않으며, 표면을 상기의 구조로 처리함으로써 바이오필름의 형성을 방지할 수 있는 재료 또는 재질을 가진 구조이기만 하면 제한되지 않는다. 바람직하게 상기 재료의 예로 금속, 폴리머, 유리 등이 있으나 상기 예들에 의해 본 발명의 표면 구조물을 적용할 수 있는 재료의 종류가 한정되는 것은 아니다. The "substrate" of the present invention is not limited as long as it is a material capable of forming the hole and the porous structure of the present invention, as long as it has a material or material that can prevent the formation of biofilm by treating the surface with the above structure. It is not limited. Preferably, examples of the material include metal, polymer, glass, and the like, but the types of materials to which the surface structure of the present invention is applicable are not limited by the above examples.
바람직하게 상기 기판은 다양한 형태로 쉽게 구현가능한 플렉서블 기판일 수 있다. 구체적으로, 상기 기판은 스테인레스 스틸일 수 있으며, 본 발명의 바람직한 실시예에서는 수도관 등 일상 생활에서 다양하게 사용되는 스테인레스 스틸을 이용하여 본 발명의 구조물을 형성시키는 한편, 해당 구조물을 포함하는 기판이 바이오필름 형성을 억제할 수 있음을 확인하였다.Preferably, the substrate may be a flexible substrate that can be easily implemented in various forms. Specifically, the substrate may be stainless steel, in a preferred embodiment of the present invention to form the structure of the present invention by using a stainless steel used in a variety of everyday life, such as water pipes, while the substrate comprising the structure is bio It was confirmed that film formation can be suppressed.
바람직하게 상기 기판은 기판을 감아 원통형 형태로 구현시킬 수 있다. 원통형 기판의 경우 수질 검사 센서 등에 적용하기에 용이하다는 장점이 있다. 또한, 상기 원통형 구조의 기판은 나노 및 마이크로 다공질 구조를 가지고 있는 스테인레스 스틸로서, 원통 내부에 ECF, FeCl3 식각 방법을 활용하여 형성시킨 나노 및 마이크로 다공질 구조를 가지고 있다. 원통형 기판의 두께는 수 ㎛ 내지 수백 ㎜가 될 수 있다.Preferably, the substrate may be implemented in a cylindrical shape by winding the substrate. In the case of a cylindrical substrate, there is an advantage that it is easy to apply to a water quality inspection sensor. In addition, the cylindrical substrate is a stainless steel having a nano and micro porous structure, and has a nano and micro porous structure formed by using ECF, FeCl 3 etching method inside the cylinder. The thickness of the cylindrical substrate may be from several μm to several hundred mm.
바람직하게 본 발명의 "홀"은 기판의 표면에 형성된 구멍 형태의 구조물을 의미하며, 홀의 직경, 간격 및 깊이는 필요에 따라 당업자가 적절하게 조절할 수 있다. 이러한 범위는 바이오필름을 구성하는 미생물의 성장을 억제하는 방향으로 설정되는 것이 바람직하다. 아울러 기판 상에 적용되는 홀의 크기는 균일하거나 또는 균일하지 않을 수 있으며, 바이오필름의 형성을 억제할 수 있는 한 다양한 크기 및 구조의 홀을 형성시키는 것이 바람직하다. 또한 기판 상에 형성되는 홀의 간격은 균일하거나 균일하지 않을 수 있으며, 산소 플라즈마 등을 이용하여 조절이 가능하다. 상기 홀의 간격은 10 nm 내지 10 ㎛임이 바람직하고, 홀의 깊이는 10 nm 내지 50 ㎛임이 바람직하다. 홀의 직경의 경우, 해당 홀 내부에 침투하여 미생물이 생장하지 않도록 설정하는 것이 중요하며, 따라서 하부 직경은 바이오필름의 형성을 방지하고자 하는 대상 미생물의 크기 이하로 설정되는 것이 바람직하다. 일반적으로 바이오필름을 형성한다고 알려진 미생물의 크기는 0.1 ㎛ 내지 10 ㎛ 이며, 다수의 미생물에 있어서 그 크기가 1 ㎛ 내지 3 ㎛라고 알려져 있으므로, 하부의 직경 또한 상기 범위 내에서 당업자가 적절히 조절하는 것이 바람직하다.Preferably "hole" of the present invention means a hole-shaped structure formed on the surface of the substrate, the diameter, spacing and depth of the hole can be appropriately adjusted by those skilled in the art as needed. This range is preferably set in the direction of suppressing the growth of microorganisms constituting the biofilm. In addition, the size of the hole applied on the substrate may or may not be uniform, it is preferable to form holes of various sizes and structures as long as it can suppress the formation of the biofilm. In addition, the spacing of holes formed on the substrate may be uniform or not uniform, and may be adjusted using an oxygen plasma or the like. The spacing of the holes is preferably 10 nm to 10 μm, and the depth of the holes is preferably 10 nm to 50 μm. In the case of the diameter of the hole, it is important to set the microorganisms so as not to penetrate the inside of the hole, and therefore, the lower diameter is preferably set to be smaller than the size of the target microorganism to prevent the formation of the biofilm. In general, the size of the microorganisms known to form a biofilm is 0.1 μm to 10 μm, and the size of the microorganisms is known to be 1 μm to 3 μm in many microorganisms. desirable.
본 발명의 "다공성 구조물"은 기판 표면에 존재하는 형태를 의미하며, 상기 다공성 구조물은 당업자의 필요에 따라 표면의 전체 또는 일부에 형성시킬 수 있다. 바람직하게 상기 다공성 구조물은 바이오필름을 형성시킨다고 알려진 다양한 미생물들이 표면에 유착되어 증식하는 것을 방지 또는 억제시킬 수 있는 정도의 형태 및 수이면 제한되지 않으며, 다공성 구조는 홀과 같이 규칙적인 분포 또는 불규칙 적인 분포 등 어떠한 형태로도 구성될 수 있다. 이러한 구조는 미생물 및 기타 미생물의 생장 조건에 필요한 물방울과 같은 물질이 정체될 수 없는 구조로 형성시킬 수 있다. 바람직하게 상기 다공성 구조물의 직경은 100 nm 내지 100 ㎛일 수 있고, 다공성 구조물 사이의 간격은 10 nm 내지 10 ㎛이며, 깊이는 1 ㎛ 내지 1000 ㎛ 범위에서 형성될 수 있다.By "porous structure" of the present invention is meant a form present on the surface of the substrate, the porous structure may be formed on all or part of the surface as required by those skilled in the art. Preferably, the porous structure is not limited in the form and number to the extent that the various microorganisms known to form a biofilm can be prevented or inhibited from adhering to and proliferating on the surface, and the porous structure has a regular distribution or irregularity such as holes. It may be configured in any form such as distribution. Such a structure can be formed into a structure in which substances such as water droplets required for growth conditions of microorganisms and other microorganisms cannot be stagnated. Preferably the diameter of the porous structure may be 100 nm to 100 ㎛, the spacing between the porous structures is 10 nm to 10 ㎛, depth may be formed in the range of 1 ㎛ to 1000 ㎛.
이와 같이 기판, 기판의 표면 상에 형성된 홀 및 홀을 포함한 표면 전체에 형성되어 있는 다공성 구조물은 미생물의 생존에 필요한 물방울이 해당 기판에 부착되는 것을 방지, 즉 초소수성 표면을 가지는 미세 조직을 형성시키도록 유도함으로써, 궁극적으로는 미생물 자체가 기판의 표면에 부착되고 성장하며, 증식하는 과정을 원천적으로 차단할 수 있다.As such, the porous structure formed on the entire surface including the substrate, the holes formed on the surface of the substrate, and the holes prevents water droplets necessary for the survival of the microorganisms from adhering to the substrate, that is, forms microstructures having a superhydrophobic surface. By ultimately, the microorganism itself can be attached to the surface of the substrate, grow, and block the process of proliferation.
또한, 본 발명은 상기 바이오 필름 형성 방지용 기판을 표면으로 이용하여 바이오필름 형성을 방지하는 방법에 관한 것이다.The present invention also relates to a method for preventing biofilm formation by using the biofilm formation preventing substrate as a surface.
본 발명의 홀 및 다공성 구조물을 포함하는 기판을 사용하는 경우 바이오필름을 형성한다고 알려진 다양한 미생물, 또는 생물체에 의한 오염 및 부식을 억제하거나 방지할 수 있다.When the substrate including the hole and the porous structure of the present invention is used, contamination and corrosion by various microorganisms or organisms known to form a biofilm can be suppressed or prevented.
본 발명에서 억제 가능한 바이오필름을 형성하는 미생물의 종류는 당업계에서 알려진 바이오필름 형성 미생물을 모두 포함하며, 그 예로 슈도모나스 아에루기노사(Pseudomonas aeruginosa), 스타필로코쿠스 에피더미디스(Staphylococcus epidermidis), 델리시아 풀크라(Delisea pulchra), MRSA(Methicillin resistant staphylococcus aureus), 라이고넬라 슈모필라(Leigonella pneumophila), 세라시아(Serratia), 비브리오 피셔리(Vibrio fischeri), 비브리오 하베이(Vibrio harveyi), 클렙실라 옥시티카(Klebsiella oxytica) 및 엔테로박터 클로캐(Enterobacter cloacae)와 같은 미생물, 대장균을 비롯한 장내 세균, 칸디다 알비칸(Candida albicans) 같은 곰팡이(fungi)류를 포함하며, 해양유기체로서, 만각류(줄따개비 엠피트리트, 발라누스 엠피트리트 커뮤니스, 발라누스 우아리데가투스, 메가발라누스 안틸렌시스, 크타말루스 말라엔시스, 크타말루스 위더시, 및 라파스 아나티페라 등), 조류(규조류: 두날리엘라, 니츠쉬아, 스켈레토네마, 카에소세로스 속, 및 두날리엘라 테르티오렉타, 스켈레토테마 코스타튬 종), 얼룩무늬 마합류, 튜브형 단각류, 홍조류, 연체류, 패류, 적색 및 갈색 이끼벌레류, 우렁쉥이속(ascidian), 서관충, 홍합, 히드로충, 태형 동물, 굴, 울바(ulba), 파래(enteromorpha), 엑토코르푸스(ectocorpus), 벗굴(ostrea), 미틸루스(mytilus), 점질(slime); 갈파래(sea lettuce), 잎파래(green laver) 및 해양 해캄(marine spirogyra)등의 생물을 포함하나, 상기 예에 의해 본 발명에서 억제 가능한 바이오필름의 종류가 제한되는 것은 아니다. 즉, 본 발명의 억제 방법은 바이오필름을 형성하는 미생물 특이적으로 반응하는 화학물질 또는 또 다른 미생물을 이용하는 방법이 아닌, 물리적 구조에 의해 생물의 생존 및 번식을 방지하는 것에 있으므로, 이러한 미생물의 종류에 제한됨 없이 생장 및 증식을 효과적으로 억제할 수 있다.The microorganisms forming the biofilm that can be suppressed in the present invention include all the biofilm forming microorganisms known in the art, for example, Pseudomonas aeruginosa , Staphylococcus epidermidis , Delisea pulchra , Methicillin resistant staphylococcus aureus (MRSA), Leigonella pneumophila , Serratia , Vibrio fischeri , Vibrio harveyi , Kleb Microorganisms such as Klebsiella oxytica and Enterobacter cloacae , enterobacteria including E. coli, fungi such as Candida albicans , and as marine organisms, Barnacles Emphitreat, Balanus Emphitreat Community, Balanus Elegantidegatus, Megavalanus Antylene , Ctamalus malensis, ctamalus withersi, and la pas anatifera, algae (diatoms: Dunaliella, Nizshua, Skeletonema, Caesoseros genus, and Dunaliella teriorecta , Skeleto-themed Costatium species), speckled antlers, tubular monopods, red algae, molluscs, shellfish, red and brown moss, ascidian, cocci, mussels, hydroworms, vertebrates, oysters, wolves (ulba), enteromorpha, ectocorpus, ostrea, mytilus, slime; Although it includes organisms such as sea lettuce, green laver and marine spirogyra, the kind of biofilm that can be suppressed in the present invention is not limited by the above examples. That is, the method of suppressing the present invention is to prevent the survival and reproduction of living organisms by physical structure, rather than the method of using the microorganism-specifically reacting chemicals or another microorganism to form a biofilm, and thus, the kind of such microorganisms Without limitation, growth and proliferation can be effectively suppressed.
또한, 본 발명은 상기 바이오 필름 형성 방지용 기판을 포함하는 수질 검사 센서를 제공한다.In addition, the present invention provides a water quality inspection sensor including the biofilm formation prevention substrate.
본 발명에서 바이오 필름 형성 방지용 기판을 수질 검사 센서 내에 결합시키는 방법은 당업계에서 통상적으로 사용되는 방법을 제한 없이 사용할 수 있다.In the present invention, the method for bonding the biofilm formation preventing substrate into the water quality inspection sensor may be used without limitation the methods commonly used in the art.
바람직하게 상기 기판으로서 다양한 형태로 쉽게 구현가능한 플렉서블 기판을 사용함으로써, 상기 기판을 감아 원통형 형태로 구현할 수 있고, 또한 원통형 스테인레스 스틸의 내벽에 ECF, FeCl3 방법을 활용하여 나노 및 마이크로 다공 구조를 형성시켜 상기 나노 및 마이크로 다공 구조를 가지는 원통형 형태의 기판을 구현할 수 있어, 수질 검사 센서 내에 용이하게 결합시킬 수 있다.Preferably, by using a flexible substrate that can be easily implemented in various forms as the substrate, the substrate can be wound and implemented in a cylindrical shape, and also nano and microporous structures are formed on the inner wall of the cylindrical stainless steel by using ECF and FeCl 3 methods. By implementing the cylindrical substrate having the nano- and micro-porous structure can be easily coupled in the water quality inspection sensor.
상기 원통형 기판은 나노 및 마이크로 다공질 구조를 가지고 있는 스테인레스 스틸로서, 원통 내부에서 ECF, FeCl3 식각 방법을 활용하여 나노 및 마이크로 다공질 구조를 제작할 수 있다. 원통형 기판의 두께는 수 ㎛ 내지 수백 ㎜가 될 수 있다.The cylindrical substrate is made of stainless steel having nano and micro porous structures, and nano and micro porous structures may be manufactured using ECF and FeCl 3 etching methods in a cylinder. The thickness of the cylindrical substrate may be from several μm to several hundred mm.
본 발명의 바이오필름 형성 방지용 기판을, 수질 검사 센서에 결합시키는 경우, 해당 수질 검사 센서의 표면에 바이오 필름이 형성되는 것을 원천적으로 차단 및 억제함으로써 미생물 또는 해양 생물체에 의한 오염 및 부식을 방지 또는 억제할 수 있고, 이로써 수질 오염을 검사하는 센서의 감도 및 재현성을 높일 수 있다.When the biofilm formation preventing substrate of the present invention is bonded to a water quality test sensor, the biofilm is formed on the surface of the water quality test sensor to prevent or suppress contamination and corrosion by microorganisms or marine organisms. This can increase the sensitivity and reproducibility of the sensor for inspecting water contamination.
도 1은 플렉서블 스테인레스 기판의 표면 위에 PS 나노 비드를 코팅하는 공정을 간략히 나타낸 도이다.FIG. 1 is a diagram schematically illustrating a process of coating PS nanobeads on a surface of a flexible stainless substrate.
도 2는 플렉서블 스테인레스 기판 위에 코팅된 PS 나노 비드의 모습을 보여주는 도이다.2 is a view showing the appearance of PS nanobead coated on a flexible stainless substrate.
도 3은 PS 나노 비드를 제거하지 않고 플렉서블 스테인레스 기판을 식각하는 공정을 간략히 나타낸 공정도이다.3 is a process diagram briefly illustrating a process of etching a flexible stainless substrate without removing the PS nanobeads.
도 4는 PS 나노 비드를 제거하고 플렉서블 스테인레스 기판을 식각하는 공정을 간략히 나타낸 공정도이다.4 is a process diagram briefly illustrating a process of removing PS nanobeads and etching a flexible stainless substrate.
도 5는 본 발명의 바이오필름 형성 방지용 플렉서블 기판을 사용하여 제작한 수질 검사 센서의 구조를 간략히 나타낸 도이다. 이때 (a)는 플렉서블 기판이 수질 검사 센서에 일체화되게 패키지된 구조의 전체적인 모습을 간략히 보여주는 것이고, (b)는 상기 센서 보호망으로서 사용된 기판의 표면 구조를 확대하여 보여주는 것이다.5 is a view schematically showing the structure of a water quality inspection sensor manufactured using the flexible film for preventing biofilm formation of the present invention. At this time, (a) is a brief view showing the overall appearance of the structure in which the flexible substrate is packaged integrally to the water quality inspection sensor, (b) is to enlarge the surface structure of the substrate used as the sensor protection net.
도 6은 본 발명 바이오필름 형성 방지용 플렉서블 기판의 표면 형태를 보여주는 SEM 이미지이다. 이때 (a)는 PS 나노 비드를 제거하지 않고 ECF 식각처리만 수행한 경우, (b)는 PS 나노 비드를 제거하지 않고 ECF와 FeCl3 식각처리를 모두 수행한 경우, (c)는 PS 나노 비드를 제거하고 ECF 식각처리만 수행한 경우, (d)는 PS 나노 비드를 제거하고 ECF와 FeCl3 식각처리를 모두 수행한 경우의 모습이다.6 is an SEM image showing the surface shape of the flexible substrate for preventing biofilm formation of the present invention. In this case, (a) shows that only ECF etching is performed without removing the PS nanobeads, and (b) shows that if both ECF and FeCl 3 etching are performed without removing the PS nanobeads, (c) shows PS nanobeads. In the case of removing ECF and only etching the ECF, (d) shows the case of removing the PS nanobead and performing both the ECF and FeCl 3 etching.
도 7은 실시예 4 내지 6의 바이오필름 형성 방지용 플렉서블 기판에 대하여 미생물 배양 및 생물막 형성 실험을 수행한 결과를 유관으로 관찰한 모습을 보여준다. 이때 (a)는 실시예 4, (b)는 실시예 5, (c)는 실시예 6의 바이오필름 형성 방지용 플렉서블 기판 모습이다.FIG. 7 shows the results of performing microbial culture and biofilm formation experiments with respect to the flexible film for preventing biofilm formation of Examples 4 to 6 with a correlation. At this time, (a) is Example 4, (b) is Example 5, (c) is a flexible substrate for preventing biofilm formation of Example 6.
도 8 내지 도 10은 실시예 4 내지 6의 바이오필름 형성 방지용 플렉서블 기판, 대조구로서 나노 비드를 사용하지 않아 패턴화 되지 않은 플렉서블 기판을 식각 처리하지 않은 것과, FeCl3로 각각 1분, 3분 및 5분 동안 식각 처리한 것에 대하여 미생물 배양 및 생물막 형성 실험을 수행한 결과를 각각 50배율(도 8), 150배율(도 9) 및 600배율(도 10)의 광학 현미경으로 관찰한 모습을 보여준다. 이때 (1)은 비패턴화 기판을 식각 처리하지 않은 것, (2)는 비패턴화 기판을 FeCl3로 1분 동안 식각 처리한 것, (3)은 비패턴화 기판을 FeCl3로 3분 동안 식각 처리한 것, (4)는 비패턴화 기판을 FeCl3로 5분 동안 식각 처리한 것, (5)는 실시예 4, (6)은 실시예 5, (7)은 실시예 6의 바이오필름 형성 방지용 플렉서블 기판 모습이다.8 to 10 show the flexible substrates for preventing biofilm formation of Examples 4 to 6, the non-patterned flexible substrates not etched using nanobeads as a control, 1 minute, 3 minutes respectively with FeCl 3 and The results of the microbial culture and biofilm formation experiments on the etching treatment for 5 minutes are shown by the optical microscope of 50x (FIG. 8), 150x (FIG. 9) and 600x (FIG. 10), respectively. In this case, (1) shows that the unpatterned substrate is not etched, (2) shows that the unpatterned substrate is etched with FeCl 3 for 1 minute, and (3) unpatterned substrate with FeCl 3 for 3 minutes. During the etching process, (4) etching the unpatterned substrate with FeCl 3 for 5 minutes, (5) Example 4, (6) Example 5, and (7) This is a flexible substrate to prevent biofilm formation.
도 11은 접촉각 변화에 따른 미생물 부착 정도를 나타낸 도이다.11 is a view showing the degree of microbial adhesion according to the change in contact angle.
이하 본 발명을 하기 실시예를 참조하여 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것으로서, 본 발명의 범위가 하기 실시예에 한정되지는 않는다.Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are provided to aid the understanding of the present invention, and the scope of the present invention is not limited to the following examples.
실시예 1. 바이오필름 형성 방지용 플렉서블 기판 제작Example 1. Fabrication of flexible substrate for biofilm formation prevention
먼저, 스테인레스 스틸(SUS304) 제품을 화학기계연마(CMP) 공정을 통하여 수십 마이크로미터 두께로 연마하여 플렉서블한 기판을 제작하였다. First, a stainless steel (SUS304) product was polished to a thickness of several tens of micrometers through a chemical mechanical polishing (CMP) process to produce a flexible substrate.
이후 100 nm 내지 100 ㎛의 크기를 가지는 PS(Polystyrene) 나노비드 입자(콜로이달 나노입자)를 분산시킨 200nm의 에탄올 수용액을 준비하였다.Then, a 200 nm ethanol aqueous solution was prepared in which PS (Polystyrene) nanobead particles (colloidal nanoparticles) having a size of 100 nm to 100 μm were dispersed.
상기 나노비드 입자가 분산된 분산액을 상기에서 제작한 플렉서블 기판 위에 코팅하여 나노비드 입자를 단층으로 배열시켰다. 이후 아세톤으로 세척하고, D.I와 질소를 이용하여 플렉서블 스테인레스 표면을 건조시켰다. 플렉서블 스테인레스 기판의 표면 위에 PS 나노 비드를 코팅하는 공정을 도 1에 나타내었으며, 플렉서블 스테인레스 기판 위에 코팅된 PS 나노 비드의 모습을 도 2에 나타내었다.The dispersion solution in which the nanobead particles were dispersed was coated on the above-described flexible substrate to arrange the nanobead particles in a single layer. After washing with acetone, the flexible stainless surface was dried using D.I and nitrogen. The process of coating the PS nanobeads on the surface of the flexible stainless substrate is shown in FIG. 1, and the appearance of the PS nanobeads coated on the flexible stainless substrate is shown in FIG. 2.
그 다음 산소 플라즈마를 이용하여 PS 나노 비드입자의 간격을 10 nm 내지 5 ㎛로 조절하였다.Then, the spacing of the PS nanobead particles was adjusted to 10 nm to 5 μm using an oxygen plasma.
그 다음 상기 PS 나노비드 입자가 배열된 기판을 ECF(Electro Chemical Fabrication) 방법으로 식각처리함으로써 본 발명의 바이오필름 형성 방지용 플렉서블 기판을 제작하였다. 바이오필름 형성 방지용 플렉서블 기판의 전체적인 제작 공정을 도 3에 나타내었다.Then, the substrate on which the PS nanobead particles were arranged was etched by ECF (Electro Chemical Fabrication) to prepare a flexible substrate for preventing biofilm formation of the present invention. The overall manufacturing process of the flexible substrate for preventing biofilm formation is shown in FIG. 3.
실시예 2. 바이오필름 형성 방지용 플렉서블 기판 제작Example 2. Fabrication of flexible substrate for biofilm formation prevention
먼저, 스테인레스 스틸(SUS304) 제품을 화학기계연마(CMP) 공정을 통하여 수십 마이크로미터 두께로 연마하여 플렉서블한 기판을 제작하였다. First, a stainless steel (SUS304) product was polished to a thickness of several tens of micrometers through a chemical mechanical polishing (CMP) process to produce a flexible substrate.
이후 100 nm 내지 100 ㎛의 크기를 가지는 PS(Polystyrene) 나노비드 입자(콜로이달 나노입자)를 분산시킨 200nm의 에탄올 수용액을 준비하였다.Then, a 200 nm ethanol aqueous solution was prepared in which PS (Polystyrene) nanobead particles (colloidal nanoparticles) having a size of 100 nm to 100 μm were dispersed.
상기 나노비드 입자가 분산된 분산액을 상기에서 제작한 플렉서블 기판 위에 코팅하여 나노비드 입자를 단층으로 배열시켰다. 이후 아세톤으로 세척하고, D.I와 질소를 이용하여 플렉서블 스테인레스 표면을 건조시켰다. 플렉서블 스테인레스 기판의 표면 위에 PS 나노 비드를 코팅하는 공정을 도 1에 나타내었으며, 플렉서블 스테인레스 기판 위에 코팅된 PS 나노 비드의 모습을 도 2에 나타내었다.The dispersion solution in which the nanobead particles were dispersed was coated on the above-described flexible substrate to arrange the nanobead particles in a single layer. After washing with acetone, the flexible stainless surface was dried using D.I and nitrogen. The process of coating the PS nanobeads on the surface of the flexible stainless substrate is shown in FIG. 1, and the appearance of the PS nanobeads coated on the flexible stainless substrate is shown in FIG. 2.
그 다음 산소 플라즈마를 이용하여 PS 나노 비드입자의 간격을 10 nm 내지 5 ㎛로 조절하였다.Then, the spacing of the PS nanobead particles was adjusted to 10 nm to 5 μm using an oxygen plasma.
그 다음 상기 PS 나노비드 입자가 배열된 기판을 ECF(Electro Chemical Fabrication) 방법으로 식각처리한 후, FeCl3 용액을 이용하여 추가로 1분 동안 식각 처리함으로써 본 발명의 바이오필름 형성 방지용 플렉서블 기판을 제작하였다. 바이오필름 형성 방지용 플렉서블 기판의 전체적인 제작 공정을 도 3에 나타내었다.Then, the substrate on which the PS nanobead particles are arranged is etched by ECF (Electro Chemical Fabrication), and then etched for 1 minute using FeCl 3 solution to prepare a flexible film for preventing biofilm formation of the present invention. It was. The overall manufacturing process of the flexible substrate for preventing biofilm formation is shown in FIG. 3.
실시예 3. 바이오필름 형성 방지용 플렉서블 기판 제작Example 3 Fabrication of Flexible Substrate for Biofilm Formation Prevention
먼저, 스테인레스 스틸(SUS304) 제품을 화학기계연마(CMP) 공정을 통하여 수십 마이크로미터 두께로 연마하여 플렉서블한 기판을 제작하였다. First, a stainless steel (SUS304) product was polished to a thickness of several tens of micrometers through a chemical mechanical polishing (CMP) process to produce a flexible substrate.
이후 100 nm 내지 100 ㎛의 크기를 가지는 PS(Polystyrene) 나노비드 입자(콜로이달 나노입자)를 분산시킨 200nm의 에탄올 수용액을 준비하였다.Then, a 200 nm ethanol aqueous solution was prepared in which PS (Polystyrene) nanobead particles (colloidal nanoparticles) having a size of 100 nm to 100 μm were dispersed.
상기 나노비드 입자가 분산된 분산액을 상기에서 제작한 플렉서블 기판 위에 코팅하여 나노비드 입자를 단층으로 배열시켰다. 이후 아세톤으로 세척하고, D.I와 질소를 이용하여 플렉서블 스테인레스 표면을 건조시켰다. 플렉서블 스테인레스 기판의 표면 위에 PS 나노 비드를 코팅하는 공정을 도 1에 나타내었으며, 플렉서블 스테인레스 기판 위에 코팅된 PS 나노 비드의 모습을 도 2에 나타내었다.The dispersion solution in which the nanobead particles were dispersed was coated on the above-described flexible substrate to arrange the nanobead particles in a single layer. After washing with acetone, the flexible stainless surface was dried using D.I and nitrogen. The process of coating the PS nanobeads on the surface of the flexible stainless substrate is shown in FIG. 1, and the appearance of the PS nanobeads coated on the flexible stainless substrate is shown in FIG. 2.
그 다음 산소 플라즈마를 이용하여 PS 나노 비드입자의 간격을 10 nm 내지 5 ㎛로 조절하였다.Then, the spacing of the PS nanobead particles was adjusted to 10 nm to 5 μm using an oxygen plasma.
그 다음 상기 PS 나노비드 입자가 배열된 기판을 산소 플라즈마로 처리하여 상기 기판에 보호 물질을 코팅한 다음, 상기 기판으로부터 PS 나노비드 입자를 제거하였다.The substrate on which the PS nanobead particles were arranged was then treated with oxygen plasma to coat the substrate with a protective material, and then the PS nanobead particles were removed from the substrate.
그 다음 상기 PS 나노비드 입자가 제거된 기판을 ECF(Electro Chemical Fabrication) 방법으로 식각처리함으로써 본 발명의 바이오필름 형성 방지용 플렉서블 기판을 제작하였다. 바이오필름 형성 방지용 플렉서블 기판의 전체적인 제작 공정을 도 4에 나타내었다.Thereafter, the substrate from which the PS nanobead particles were removed was etched by ECF (Electro Chemical Fabrication) to prepare a flexible substrate for preventing biofilm formation. The overall manufacturing process of the flexible substrate for preventing biofilm formation is shown in FIG. 4.
실시예 4 내지 6. 바이오필름 형성 방지용 플렉서블 기판 제작Examples 4 to 6. Flexible substrate for preventing biofilm formation
먼저, 스테인레스 스틸(SUS304) 제품을 화학기계연마(CMP) 공정을 통하여 수십 마이크로미터 두께로 연마하여 플렉서블한 기판을 제작하였다. First, a stainless steel (SUS304) product was polished to a thickness of several tens of micrometers through a chemical mechanical polishing (CMP) process to produce a flexible substrate.
이후 100 nm 내지 100 ㎛의 크기를 가지는 PS(Polystyrene) 나노비드 입자(콜로이달 나노입자)를 분산시킨 200nm의 에탄올 수용액을 준비하였다.Then, a 200 nm ethanol aqueous solution was prepared in which PS (Polystyrene) nanobead particles (colloidal nanoparticles) having a size of 100 nm to 100 μm were dispersed.
상기 나노비드 입자가 분산된 분산액을 상기에서 제작한 플렉서블 기판 위에 코팅하여 나노비드 입자를 단층으로 배열시켰다. 이후 아세톤으로 세척하고, D.I와 질소를 이용하여 플렉서블 스테인레스 표면을 건조시켰다. 플렉서블 스테인레스 기판의 표면 위에 PS 나노 비드를 코팅하는 공정을 도 1에 나타내었으며, 플렉서블 스테인레스 기판 위에 코팅된 PS 나노 비드의 모습을 도 2에 나타내었다.The dispersion solution in which the nanobead particles were dispersed was coated on the above-described flexible substrate to arrange the nanobead particles in a single layer. After washing with acetone, the flexible stainless surface was dried using D.I and nitrogen. The process of coating the PS nanobeads on the surface of the flexible stainless substrate is shown in FIG. 1, and the appearance of the PS nanobeads coated on the flexible stainless substrate is shown in FIG. 2.
그 다음 산소 플라즈마를 이용하여 PS 나노 비드입자의 간격을 10 nm 내지 5 ㎛로 조절하였다.Then, the spacing of the PS nanobead particles was adjusted to 10 nm to 5 μm using an oxygen plasma.
그 다음 상기 PS 나노비드 입자가 배열된 기판을 산소 플라즈마로 처리하여 상기 기판에 보호 물질을 코팅한 다음, 상기 기판으로부터 PS 나노비드 입자를 제거하였다.The substrate on which the PS nanobead particles were arranged was then treated with oxygen plasma to coat the substrate with a protective material, and then the PS nanobead particles were removed from the substrate.
그 다음 상기 PS 나노비드 입자가 제거된 기판을 ECF(Electro Chemical Fabrication) 방법으로 식각처리한 후, FeCl3 용액을 이용하여 추가로 각각 1분, 3분 및 5분 동안 식각 처리함으로써 실시예 4 내지 6의 본 발명 바이오필름 형성 방지용 플렉서블 기판을 제작하였다. 바이오필름 형성 방지용 플렉서블 기판의 전체적인 제작 공정을 도 4에 나타내었다.Then, the substrate from which the PS nanobead particles were removed was etched by ECF (Electro Chemical Fabrication), followed by etching for 1, 3, and 5 minutes using FeCl 3 solution, respectively. The flexible board | substrate for preventing biofilm formation of this invention of 6 was produced. The overall manufacturing process of the flexible substrate for preventing biofilm formation is shown in FIG. 4.
실시예 7. 바이오필름 형성 방지용 플렉서블 기판을 포함하는 수질 검사 센서 제작Example 7 Fabrication of Water Quality Inspection Sensors Including Flexible Substrate for Preventing Biofilm Formation
수질 검사 센서의 보호망으로서 상기 실시예 1 내지 실시예 6 중 어느 하나의 실시예에서 제작한 바이오필름 형성 방지용 플렉서블 기판을 사용하여 도 5와 같이 수질 검사 센서를 제작하였다.As a protection net of the water quality inspection sensor, a water quality inspection sensor was manufactured as shown in FIG. 5 using the biofilm formation preventing flexible substrate manufactured in any one of Examples 1 to 6.
도 5에서 (a)는 플렉서블 기판이 수질 검사 센서에 일체화되게 패키지된 구조의 전체적인 모습을 간략히 보여주는 것이며, (b)는 상기 센서 보호망으로서 사용된 기판의 표면 구조를 확대하여 보여주는 것이다.In Figure 5 (a) is a simplified view of the overall structure of the structure in which the flexible substrate is packaged to be integrated into the water quality inspection sensor, (b) is an enlarged view of the surface structure of the substrate used as the sensor protection net.
실험예 1. 바이오필름 형성 방지용 플렉서블 기판의 표면 형태 조사Experimental Example 1. Investigation of the surface shape of the flexible substrate for preventing biofilm formation
상기 실시예 1 내지 4에서 제조한 바이오필름 형성 방지용 플렉서블 기판의 표면을 주사전자현미경 (SEM)으로 관찰하였다.The surface of the flexible film for preventing biofilm formation prepared in Examples 1 to 4 was observed by scanning electron microscope (SEM).
그 결과를 도 6에 나타내었다.The results are shown in FIG.
도 6에서 (a)는 실시예 1의 SEM 이미지, (b)는 실시예 2, (c)는 실시예 3, (d)는 실시예 4의 SEM 이미지를 나타낸다.In Figure 6 (a) is the SEM image of Example 1, (b) is Example 2, (c) is Example 3, (d) is the SEM image of Example 4.
도 6을 통해 알 수 있듯이, ECF 및 FeCl3의 조합 처리를 수행한 실시예 2 및 4의 표면 (b 및 d)이, ECF 처리만 수행한 실시예 1 및 3의 표면(a 및 c)보다 상대적으로 거칠고 나노 사이즈의 기공이 형성되어 있음을 볼 수 있다. 이때, 표면 거칠기 측정 결과 Ra값은 (a)는 0.28 ㎛, (b)는 2.99 ㎛, (c)는 0.05 ㎛, (d)는 2.23 ㎛로 각각 측정 되었다.As can be seen from FIG. 6, the surfaces (b and d) of Examples 2 and 4, which performed the combination treatment of ECF and FeCl 3 , were more effective than the surfaces (a and c) of Examples 1 and 3, which performed only the ECF treatment. It can be seen that relatively rough and nano-sized pores are formed. At this time, as a result of surface roughness measurement, the Ra value was measured as (a) at 0.28 μm, (b) at 2.99 μm, (c) at 0.05 μm, and (d) at 2.23 μm, respectively.
실험예 2. 미생물 배양 및 생물막 형성Experimental Example 2. Microbial Culture and Biofilm Formation
상기 실시예 4 내지 6의 바이오필름 형성 방지용 플렉서블 기판에 대하여 하기와 같이 미생물 배양 및 생물막 형성 실험을 실시하였다.The microbial culture and biofilm formation experiments were performed on the flexible substrates for preventing biofilm formation of Examples 4 to 6 as follows.
미생물로는 슈도모나스 아에루지노사(Pseudomonas aeruginosa) (KCTC 1750)를 사용하였다. 고체배지(nutrient agar) 배양 및 단일 콜로니(single colony) 분리 후 37℃에서 12시간 동안 액상 배양(M9 medium)을 하였다. 칩 표면에서의 생물막 형성을 위해 Petri dish에 칩을 올려놓은 후 미생물 배양액(OD~0.1)을 30㎖씩 붓고 37℃에서 3~4일간 배양하였다. Pseudomonas aeruginosa (KCTC 1750) was used as the microorganism. After culturing a solid medium (nutrient agar) and single colony (single colony) separation was carried out liquid culture (M9 medium) for 12 hours at 37 ℃. In order to form a biofilm on the chip surface, the chip was placed in a Petri dish, and then 30 ml of microbial culture solution (OD ~ 0.1) was poured and incubated at 37 ° C. for 3-4 days.
대조구로서 나노 비드를 사용하지 않아 패턴화 되지 않은 플렉서블 기판을 준비하고 상기 비패턴화 플렉서블 기판을 식각 처리하지 않은 것과, FeCl3로 각각 1분, 3분 및 5분 동안 식각 처리한 것들을 제조하여 동일 조건으로 미생물 배양 실험을 수행하였다.A non-patterned flexible substrate was prepared by not using nanobeads as a control, and the non-patterned flexible substrate was not etched, and those prepared by etching with FeCl 3 for 1 minute, 3 minutes, and 5 minutes, respectively, were prepared. Microbial culture experiment was performed under the conditions.
상기 각 기판의 표면을 유관으로 관찰한 결과를 도 7에 나타내었다. The result of observing the surface of each said board | substrate with an oil pipe is shown in FIG.
도 7을 통해 알 수 있듯이, ECF 후 FeCl3 1분 처리하는 실시예 4의 바이오필름 형성 방지용 플렉서블 기판이 바이오필름 형성 억제면에서 가장 효과적임을 알 수 있었다.As can be seen from Figure 7, it was found that the flexible substrate for preventing biofilm formation of Example 4 treated with FeCl 3 for 1 minute after ECF was most effective in terms of inhibiting biofilm formation.
또한, 상기 각 기판의 표면을 광학 현미경으로 관찰하여 생물막 형성 정도를 조사하였다.In addition, the surface of each substrate was observed with an optical microscope to investigate the degree of biofilm formation.
그 결과를 도 8(50 배율), 도 9(150 배율) 및 도 10(600 배율)에 나타내었다.The result is shown in FIG. 8 (50 magnification), FIG. 9 (150 magnification), and FIG. 10 (600 magnification).
도 8 내지 도 10을 통해 ECF 후 FeCl3 1분 처리하는 실시예 4의 바이오필름 형성 방지용 플렉서블 기판이 바이오필름 형성 억제면에서 가장 효과적임을 알 수 있다.8 to 10 it can be seen that the flexible substrate for preventing biofilm formation of Example 4 treated with FeCl 3 for 1 minute after ECF is most effective in terms of inhibiting biofilm formation.
실험예 3. 접촉각 변화에 따른 미생물 부착 정도 조사Experimental Example 3. Investigation of the degree of microbial adhesion according to the change of contact angle
먼저, FeCl3의 식각처리 시간이 다른 상기 실시예 4 내지 6의 바이오필름 형성 방지용 플렉서블 기판의 접촉각을 조사하였다.First, the contact angles of the flexible substrates for preventing biofilm formation of Examples 4 to 6 with different etching treatment times of FeCl 3 were investigated.
그 결과 실시예 4의 경우 74.2°(5번)였으며, 실시예 5는 49.8°(6번), 실시예 6은 22.6°(7번)였다.As a result, in Example 4, it was 74.2 ° (No. 5), Example 5 was 49.8 ° (No. 6), and Example 6 was 22.6 ° (No. 7).
상기 결과를 통해 알 수 있듯이, FeCl3의 식각처리 시간이 길수록 접촉각이 감소하였다.As can be seen from the above results, the contact angle decreased as the etching time of FeCl 3 was longer.
접촉각 변화에 따른 미생물 부착 정도를 보다 확실하게 비교하기 위하여, 상기 실험예 2에서 조사한 생물막 형성 정도를 보여주는 사진을 식각처리 시간과 접촉각과의 관계를 보여주는 그래프 상에 도시하여 도 11에 나타내었다.In order to more reliably compare the degree of microbial adhesion according to the change in contact angle, a photograph showing the degree of biofilm formation investigated in Experimental Example 2 is shown on a graph showing the relationship between the etching time and the contact angle, and is shown in FIG. 11.
도 11을 통해 알 수 있듯이, FeCl3의 식각처리 시간이 더 짧고 이에 따라 접촉각이 더 높은 실시예 4의 바이오필름 형성 방지용 플렉서블 기판에서 미생물의 부착 정도가 더 낮음을 알 수 있었다.As can be seen from Figure 11, the etching time of the FeCl 3 is shorter and accordingly the contact angle is higher, the adhesion degree of the microorganisms in the flexible substrate for preventing biofilm formation of Example 4 was found to be lower.

Claims (16)

  1. 하기 단계를 포함하는 바이오필름 형성 방지용 기판의 제조방법:Method for manufacturing a biofilm formation preventing substrate comprising the following steps:
    1) 기판의 상부에 콜로이달 나노 입자를 배열하는 단계; 및1) arranging colloidal nanoparticles on top of the substrate; And
    2) 상기 단계의 기판 상부에 홀과 다공성 구조물을 형성시키는 단계.2) forming a hole and a porous structure on the substrate.
  2. 하기 단계를 포함하는 바이오필름 형성 방지용 기판의 제조방법:Method for manufacturing a biofilm formation preventing substrate comprising the following steps:
    1) 기판의 상부에 콜로이달 나노 입자를 배열하는 단계; 1) arranging colloidal nanoparticles on top of the substrate;
    2) 상기 단계의 기판에 보호 물질을 코팅하는 단계; 2) coating a protective material on the substrate of the step;
    3) 상기 단계의 기판으로부터 콜로이달 나노 입자를 제거하는 단계; 및3) removing the colloidal nanoparticles from the substrate of the step; And
    4) 상기 단계의 기판 상부 중 콜로이달 나노 입자가 제거된 부분에 홀과 다공성 구조물을 형성시키는 단계.4) forming a hole and a porous structure in a portion where the colloidal nanoparticles are removed from the top of the substrate.
  3. 제1항 또는 제2항에 있어서, 상기 1) 단계와 2) 단계 사이에 배열된 콜로이달 나노 입자의 간격을 조절하는 단계(단계 1a)를 추가로 포함하는 바이오필름 형성 방지용 기판의 제조방법.The method of claim 1 or 2, further comprising the step (step 1a) of adjusting the interval of the colloidal nanoparticles arranged between the steps 1) and 2).
  4. 제3항에 있어서, 상기 간격 조절은 산소 플라즈마를 이용하여 수행하는 바이오필름 형성 방지용 기판의 제조방법.The method of claim 3, wherein the gap control is performed using an oxygen plasma.
  5. 제1항 또는 제2항에 있어서, 상기 기판의 상부에 콜로이달 나노 입자를 배열하는 단계는 콜로이달 나노 입자를 포함하는 분산액을 기판 상에 코팅하는 방법으로 수행되는 바이오필름 형성 방지용 기판의 제조방법.The method of claim 1, wherein the arranging the colloidal nanoparticles on the substrate is performed by coating a dispersion containing the colloidal nanoparticles on the substrate. .
  6. 제1항 또는 제2항에 있어서, 상기 콜로이달 나노 입자는 100 nm 내지 100 ㎛의 크기를 가지는 바이오필름 형성 방지용 기판의 제조방법.The method of claim 1, wherein the colloidal nanoparticles have a size of 100 nm to 100 μm.
  7. 제1항 또는 제2항에 있어서, 상기 콜로이달 나노 입자로는 폴리스티렌, 실리카, 질화물, 산화물 또는 이의 조합인 바이오필름 형성 방지용 기판의 제조방법.The method of claim 1, wherein the colloidal nanoparticles are polystyrene, silica, nitride, oxide, or a combination thereof.
  8. 제2항에 있어서, 상기 보호 물질로는 산화막, 질화막 또는 이의 조합을 사용하는 바이오필름 형성 방지용 기판의 제조방법.The method of claim 2, wherein the protective material is an oxide film, a nitride film, or a combination thereof.
  9. 제1항 또는 제2항에 있어서, 상기 홀과 다공성 구조물을 형성시키는 단계는 ECF(electro chemical fabrication) 방법으로 기판을 식각함으로써 수행하는 바이오필름 형성 방지용 기판의 제조방법.The method of claim 1, wherein the forming of the hole and the porous structure is performed by etching the substrate by an electrochemical fabrication (ECF) method.
  10. 제9항에 있어서, 상기 식각된 기판을 FeCl3 용액을 이용하여 추가로 식각하는 바이오필름 형성 방지용 기판의 제조방법.The method of claim 9, wherein the etched substrate is further etched using FeCl 3 solution.
  11. 기판; 상기 기판의 상부에 형성되는 다수의 홀; 및 상기 기판의 상부 전면 및 상기 홀에 형성되는 다공성 구조물을 포함하는, 제1항 또는 제2항의 제조방법으로 제조된 바이오필름 형성 방지용 기판.Board; A plurality of holes formed in an upper portion of the substrate; And a porous structure formed on the upper front surface and the hole of the substrate.
  12. 제11항에 있어서, 상기 홀의 간격은 10 nm 내지 10 ㎛인 바이오필름 형성 방지용 기판.The substrate for preventing biofilm formation of claim 11, wherein the hole spacing is 10 nm to 10 μm.
  13. 제11항에 있어서, 상기 홀의 깊이는 10 nm 내지 50 ㎛인 바이오필름 형성 방지용 기판.The substrate of claim 11, wherein the hole has a depth of 10 nm to 50 μm.
  14. 제11항의 바이오 필름 형성 방지용 기판을 이용하여 미생물에 의한 바이오필름 형성을 방지하는 방법.A method of preventing biofilm formation by microorganisms using the biofilm forming prevention substrate of claim 11.
  15. 제14항에 있어서, 상기 미생물은 슈도모나스 아에루기노사(Pseudomonas aeruginosa), 스타필로코쿠스 에피더미디스(Staphylococcus epidermidis), 델리시아 풀크라(Delisea pulchra), MRSA(Methicillin resistant staphylococcus aureus), 라이고넬라 슈모필라(Leigonella pneumophila), 세라시아(Serratia), 비브리오 피셔리(Vibrio fischeri), 비브리오 하베이(Vibrio harveyi), 클렙실라 옥시티카(Klebsiella oxytica) 및 엔테로박터 클로캐(Enterobacter cloacae) 및 칸디다 알비칸(Candida albicans)으로 이루어진 그룹에서 선택된 어느 하나 이상의 미생물인 바이오필름 형성을 방지하는 방법.The method of claim 14, wherein the microorganism is Pseudomonas aeruginosa , Staphylococcus epidermidis , Delisea pulchra , Methicillin resistant staphylococcus aureus , Lygo Leigonella pneumophila , Serratia , Vibrio fischeri , Vibrio harveyi , Klebsiella oxytica and Enterobacter cloacae and Candida alkanes ( Candida albicans ) A method for preventing biofilm formation, which is one or more microorganisms selected from the group consisting of.
  16. 제11항의 바이오 필름 형성 방지용 기판을 포함하는 수질 검사 센서.Water quality inspection sensor comprising a substrate for preventing biofilm formation of claim 11.
PCT/KR2011/008854 2010-11-19 2011-11-18 Method for manufacturing a substrate for preventing the formation of a biofilm using colloidal nonoparticles, substrate manufactured thereby, and sensor for testing water quality comprising the substrate WO2012067469A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180061237.5A CN103261886B (en) 2010-11-19 2011-11-18 Use colloidal nanoparticles for substrate preventing biofilm formation and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100115886 2010-11-19
KR10-2010-0115886 2010-11-19

Publications (2)

Publication Number Publication Date
WO2012067469A2 true WO2012067469A2 (en) 2012-05-24
WO2012067469A3 WO2012067469A3 (en) 2012-07-19

Family

ID=46084551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008854 WO2012067469A2 (en) 2010-11-19 2011-11-18 Method for manufacturing a substrate for preventing the formation of a biofilm using colloidal nonoparticles, substrate manufactured thereby, and sensor for testing water quality comprising the substrate

Country Status (3)

Country Link
KR (1) KR101275305B1 (en)
CN (1) CN103261886B (en)
WO (1) WO2012067469A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101372413B1 (en) * 2012-10-12 2014-03-10 삼성코닝정밀소재 주식회사 Method of fabricating patterned substrate
KR101755469B1 (en) * 2015-12-08 2017-07-07 현대자동차 주식회사 Particleate matter detection sensor
US20220233992A1 (en) * 2019-06-28 2022-07-28 Korea Institute Of Industrial Technology Fine particle aggregation method and apparatus
TWI797837B (en) 2021-11-17 2023-04-01 財團法人工業技術研究院 Optical water quality detection apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231815A (en) * 2000-02-24 2001-08-28 Nippon Kyushutai Gijutsu Kenkyusho:Kk Surface coating sheet of absorber product
KR20080004410A (en) * 2006-07-05 2008-01-09 포항공과대학교 산학협력단 Method for fabricating superhydrophobic surface and solid having superhydrophobic surface structure by the same method
KR20080026776A (en) * 2006-09-21 2008-03-26 포항공과대학교 산학협력단 Method for processing solid having fabricating superhydrophobic surface and superhydrophobic tube by the same method
JP2008542208A (en) * 2005-05-24 2008-11-27 エンバイロメンタル バイオテクノロジー シーアールシー ピーティーワイ リミテッド Methods and compositions for controlling biofilm development
KR20090013413A (en) * 2007-08-01 2009-02-05 포항공과대학교 산학협력단 Fabricating method of 3d shape structure having hydrophobic inner surface

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ295850B6 (en) * 1994-07-29 2005-11-16 Wilhelm Prof. Dr. Barthlott Self-cleaning surfaces of objects, process of their preparation and use
DE10219127A1 (en) * 2002-04-29 2003-11-06 Inst Neue Mat Gemein Gmbh Substrates with a biofilm-inhibiting coating
KR100831045B1 (en) 2006-09-01 2008-05-21 삼성전자주식회사 Method of manufacturing nano-template for the pattern media and storing media thereof
DE102007017518A1 (en) * 2007-04-13 2008-10-16 Siemens Ag Biocide / hydrophobic internal coating of condenser tubes (from industrial turbines and subcooling circuits)
CN101475173A (en) * 2009-01-20 2009-07-08 吉林大学 Method for preparing super-hydrophobic antireflex micron and nano composite structure surface
CN101520425A (en) * 2009-02-18 2009-09-02 王翥 Water quality sensor
KR101572069B1 (en) * 2009-04-07 2015-12-01 광주과학기술원 Method for fabricating nanopattern embedding nanoparticles and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231815A (en) * 2000-02-24 2001-08-28 Nippon Kyushutai Gijutsu Kenkyusho:Kk Surface coating sheet of absorber product
JP2008542208A (en) * 2005-05-24 2008-11-27 エンバイロメンタル バイオテクノロジー シーアールシー ピーティーワイ リミテッド Methods and compositions for controlling biofilm development
KR20080004410A (en) * 2006-07-05 2008-01-09 포항공과대학교 산학협력단 Method for fabricating superhydrophobic surface and solid having superhydrophobic surface structure by the same method
KR20080026776A (en) * 2006-09-21 2008-03-26 포항공과대학교 산학협력단 Method for processing solid having fabricating superhydrophobic surface and superhydrophobic tube by the same method
KR20090013413A (en) * 2007-08-01 2009-02-05 포항공과대학교 산학협력단 Fabricating method of 3d shape structure having hydrophobic inner surface

Also Published As

Publication number Publication date
KR101275305B1 (en) 2013-06-17
WO2012067469A3 (en) 2012-07-19
CN103261886A (en) 2013-08-21
CN103261886B (en) 2015-08-19
KR20120054554A (en) 2012-05-30

Similar Documents

Publication Publication Date Title
WO2012067469A2 (en) Method for manufacturing a substrate for preventing the formation of a biofilm using colloidal nonoparticles, substrate manufactured thereby, and sensor for testing water quality comprising the substrate
WO2011078625A2 (en) Aluminum surface treatment method capable of adjusting the surface adhesion characteristics of water drops
Sapelkin et al. Interaction of B50 rat hippocampal cells with stain-etched porous silicon
TWI673392B (en) Anodization architecture for electro-plate adhesion
Zhang et al. Controllable Dianthus caryophyllus-like superhydrophilic/superhydrophobic hierarchical structure based on self-congregated nanowires for corrosion inhibition and biofouling mitigation
WO2010140792A9 (en) Method for manufacturing 3-dimensional structures using thin film with columnar nano pores and manufacture thereof
KR20130140721A (en) Antibiofilm nanoporous nanostructures and method to produce same
US9720318B2 (en) Pattern definition of nanocellulose sheets through selective ashing via lithographic masking
Santoro et al. FIB section of cell–electrode interface: An approach for reducing curtaining effects
Stafslien et al. High-throughput screening of fouling-release properties: an overview
EP2871173B1 (en) Carbon material having thermal sprayed coating layer
KR101219785B1 (en) A substrate for inhibiting formation of biofilm and a method for preparing the same
JP2003325163A (en) Film for culturing cell, method for producing the same, method for culturing cell thereof and method for bioassay thereof
WO2021096227A1 (en) Ultra water-repellent aluminum alloy preparation technique for preventing biofouling and corrosion
Poinern et al. Biocompatibility of composite membranes composed of anodic aluminium oxide (AAO) and Poly (2-hydroxyethylmethacrylate) for use as a cell culture substrate
US20090202849A1 (en) Coating of a magnesium component
Flores et al. Antimicrobial behavior of novel surfaces generated by electrophoretic deposition and breakdown anodization
Kim et al. Reusable mechano-bactericidal surface with echinoid-shaped hierarchical micro/nano-structure
US11051517B2 (en) Enzyme-functionalised nanobeads for anti-biofouling purposes
Hizal et al. Nano-engineered alumina surfaces for prevention of bacteria adhesions
Sun et al. Cytocompatibility assessment of Si, plasma enhanced chemical vapor deposition-formed SiO2 and Si3N4 used for neural prosthesis: A comparative study
JP2019110819A (en) Production method of cell contact substrate
Chong et al. Viable bacterial cell patterning using a pulsed jet electrospray system
WO2023182768A1 (en) Method for producing optimal anodic oxide film for creating uniform pop nanostructure on 3000 series aluminum alloy without pre-patterning process
Yang et al. Study on Biomimetic Antifouling Surface Preparation based on Surface Microstructure of Crabs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841624

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841624

Country of ref document: EP

Kind code of ref document: A2