WO2012067342A1 - Tn-c 공통접지를 이용한 낙뢰방호장치 - Google Patents

Tn-c 공통접지를 이용한 낙뢰방호장치 Download PDF

Info

Publication number
WO2012067342A1
WO2012067342A1 PCT/KR2011/006997 KR2011006997W WO2012067342A1 WO 2012067342 A1 WO2012067342 A1 WO 2012067342A1 KR 2011006997 W KR2011006997 W KR 2011006997W WO 2012067342 A1 WO2012067342 A1 WO 2012067342A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection circuit
surge protection
lightning
power supply
facilities
Prior art date
Application number
PCT/KR2011/006997
Other languages
English (en)
French (fr)
Inventor
우제욱
서용준
우제형
홍달표
김국영
김정빈
김귀중
한재원
서성혁
Original Assignee
주식회사 그라운드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 그라운드 filed Critical 주식회사 그라운드
Priority to US13/884,410 priority Critical patent/US20130229733A1/en
Publication of WO2012067342A1 publication Critical patent/WO2012067342A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/343Preventing or reducing surge voltages; oscillations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • H02H3/22Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage of short duration, e.g. lightning
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/042Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage comprising means to limit the absorbed power or indicate damaged over-voltage protection device

Definitions

  • the present invention relates to a lightning protection device, and in particular, by applying a lottery transformer circuit for changing the independent grounding system (TT) of the delta connection system to the common grounding system (TN-C) of the Y connection system, so as to achieve an equipotential with the common ground.
  • the surge protection circuit is equipped with surge protection circuits at both ends of the input and output to block and eliminate lightning surges. It is about.
  • the delta ( ⁇ ) connection power supply method uses an independent grounding method
  • the Y (Y) connection power supply method uses a common grounding method.
  • Independent grounding is used, and most countries and developed countries around the world have adopted a common grounding scheme.
  • Korea there was a lot of confusion because of the introduction of the Wi-Fi power supply system and the Japanese independent grounding system.
  • many of the existing facilities maintain a delta-connected power supply system, so many of them maintain independent grounding that is vulnerable to lightning and surges.
  • a surge protector is installed on the secondary side of the power circuit breaker to cut off the lightning current.However, when a large amount of lightning strikes, the primary side of the insulation transformer for lightning protection is damaged or induces magnetic induction to the secondary side. There is a problem of failing to block lightning. In particular, there is a problem that the isolation transformer cannot function at all for induction lightning and surge through the earth or ground as well as the power line. Moreover, because the voltage of lightning surges is very high, if an insulation breakdown occurs in the load facility or power line, the isolation transformer or SPD (Surge Protection Device) cannot function at all.
  • SPD Service Protection Device
  • a conventional delta connection power system includes a power source 1 and a delta connection circuit 31, to which an insulating transformer 33 for lightning protection and a load facility 4 are connected.
  • the delta connection circuit 31, the insulation transformer 33, and the load facility 4 are each grounded by an independent grounding system.
  • a potential difference may occur between the power supply 1, the delta connection circuit 31, the insulation transformer 33, and the load facility 4.
  • the load facility 4 may be damaged or malfunction may occur.
  • the high voltage surge voltage does not shield and block the primary side voltage by electromagnetic induction or insulation breakdown from the primary side to the secondary side of the insulation transformer 33, and mostly 1
  • the difference in voltage of the vehicle side is induced as it is, and the problem that the load facility 4, which is an electromagnetic informatization facility such as an electric and electronic facility, an information communication facility, and a control measurement facility, malfunctions or becomes damaged is not solved.
  • the problem to be solved by the present invention is a lightning protection device which is installed in series between the power supply unit and the load facility to perform lightning protection, while removing unblocked lightning surges, and attenuating and blocking abnormal voltages to prevent lightning surges. It is to provide a lightning protection device using the TN-C common ground that can be stably operated while protecting the load facility.
  • Another problem to be solved by the present invention is to include a lottery transformer and a surge protection circuit, and the neutral ground of the lottery transformer, the grounding of the load equipment, the reference ground of the surge protection circuit to make a common ground, thereby remaining
  • the present invention provides a lightning protection device using a TN-C common ground, which can prevent damage or malfunction of load equipment due to a potential difference when an abnormal voltage is present.
  • Lightning protection device using the TN-C common ground of the present invention for solving the above problems is, connected in series between the power supply unit and the load facility to perform a lightning protection, an input unit surge protection circuit connected to the power supply unit; An output surge protection circuit connected to the load facility; A lottery transformer connected to its input part surge protection circuit and its output part surge protection circuit, each having its primary side and secondary side connected thereto; And a common grounding means connected to each of the input part surge protection circuit, the lottery transformer, the output part surge protection circuit and the load equipment so that the potential of all of them becomes the reference potential and the equipotential state.
  • the lottery transformer is a Y connection including a neutral wire
  • the input surge protection circuit and the output surge protection circuit each includes a constant voltage device
  • the neutral wire and the constant voltage device is connected to the common ground means, respectively
  • the input switch surge protection circuit may further include a first switch capable of breaking the connection with the power supply unit
  • the output switch surge protection circuit may further include a first switch capable of breaking the connection with the load facility.
  • the constant voltage device of the input surge protection circuit is connected to the power supply unit through the first switch, and the constant voltage device of the output surge protection circuit is connected to the load facility through the second switch. .
  • the power supply unit may be made of a power supply and a delta connection power supply circuit.
  • the electromagnetic equipment can be prevented from malfunctioning, eliminating unnecessary manpower waste and lightning
  • the surge prevents damage to telecommunications information equipment, signal equipment, and control equipment, and can operate effectively, resulting in economic effect.
  • FIG. 1 is a schematic configuration diagram of a system in which a load facility is installed in a conventional delta connection power system and an isolation transformer.
  • FIG. 2 is a block diagram illustrating a basic configuration of a lightning protection device in which a TN-C common ground is formed between a power supply unit and a load facility according to the concept of the present invention.
  • FIG. 3 is a circuit diagram for explaining the configuration of a lightning protection device according to a first embodiment of the present invention applied to a one-phase two-wire power system.
  • FIG. 4 is a circuit diagram for explaining the configuration of a lightning protection device according to a second embodiment of the present invention applied to a three-phase three-wire power system.
  • FIG. 5 is a configuration diagram of a facility for testing the breaking performance of the lightning surge voltage of the insulation transformer according to FIG.
  • FIG. 6 is a configuration diagram of equipment for testing the lightning surge voltage blocking performance of the lightning protection device of the present invention shown in FIG. 2.
  • FIG. 7 is a configuration diagram of a facility for testing the lightning surge current discharge performance of the insulation transformer according to FIG. 1.
  • FIG. 8 is a configuration diagram of equipment for testing the lightning surge current discharge performance of the lightning protection device of the present invention shown in FIG. 2.
  • the lightning protection device 150 of the present invention includes a power supply unit 1 and a power supply unit 35 including a delta connection power supply system 31 serving as a power distribution unit and a load facility 4. Connected in series with.
  • the lightning protection device 150 includes an input part surge protection circuit 2 and an output part surge protection circuit 3 and a lottery transformer 30 in the middle thereof. As will be described later, the input part surge protection circuit 2 and the output part are provided.
  • the surge protection circuit 3 can be shielded to prevent lightning surges from being transferred to the load facility 4.
  • the lottery transformer 30 has a Y connection, and generates a neutral line, so that residual abnormal voltage is generated or each load facility 4 and the input and output surge protection circuits 2 and 3 are lottery transformers.
  • the neutral line and the potential difference of (30) occur, the equipotential of both the neutral point of the lottery transformer 30 and the ground of the load facility 4, the reference ground of the input and output surge protection circuits (2, 3)
  • TN-C type common ground system was built.
  • the ground of the TN-C type means that the power supply is grounded, and the neutral of the trunk line and the load facility to be protected are connected to form a ground.
  • a large feature of the present invention is that, as described above, multiple bidirectional surge protection circuits and a common grounding system are provided at the input and output of the lottery transformer 30.
  • the power supply unit 35 includes the power supply 1 and the delta connection circuit 31.
  • the delta connection circuit 31 is appropriately selected according to the type of the power supply 1.
  • FIG. 3 is a circuit diagram for explaining the configuration of a lightning protection device according to a first embodiment of the present invention applied to a one-phase two-wire power system.
  • the power supply 1 is supplied to the primary side of the lottery transformer 30 through two first switches 10 in the input surge protection circuit 2 in one phase and two lines.
  • the two first switches 10 are connected to two constant voltage elements 20 for surge protection circuits, and the midpoints of the two constant voltage elements 20 for surge protection circuits are connected to the neutral line of the lottery transformer 30. It is connected.
  • the secondary side of the lottery transformer 30 has load devices 4 such as electric and electronic equipment, information and communication equipment, signal control equipment, and broadcast fire fighting equipment through two second switches 11 in the output surge protection circuit 3. It is intended to be connected with.
  • the constant voltage element 20 for the output surge protection circuit is also connected to the neutral line of the lottery transformer 30. Since the first switch 10 and the second switch 11 can electrically separate the supply power line and the load facility 4, even if the operation of the input and output surge protection circuits 2 and 3 is incomplete Ultimately, the load facility 4 can be protected. Meanwhile, the midpoint of the two constant voltage elements 20 for the surge protection circuit, the neutral line of the lottery transformer 30, the constant voltage element of the output surge protection circuit 3, and the ground portion 41 of the load facility 4 All are connected to one ground terminal block 40 to make them equipotential. Therefore, even if there is a residual abnormal voltage, damage or malfunction of the load facility 4 due to the potential difference can be prevented.
  • the constant voltage element 20 in the input and output surge protection circuits 2 and 3 is not particularly limited, but may be a gas discharge tube (GDT), a MOV, a zener diode, an SCR, a varistor, a TRIAC, and an arrester. Constant voltage element such as can be used.
  • FIG. 4 is a circuit diagram for explaining the configuration of a lightning protection device according to a second embodiment of the present invention applied to a three-phase three-wire power system.
  • the first switch 10 for three input part surge protection circuits 2 is connected to the power source 1.
  • Each of the first switches 10 is connected to the primary side of the lottery transformer 30 with one end of the constant voltage element 20 connected together.
  • the other end of the constant voltage device 20 connected to the first switch 10 is connected to the ground terminal 40 together with the neutral wire of the lottery transformer 30 to form an equipotential.
  • the components connected to the ground terminal block 40 are also connected to form an equipotential. According to this method, even in the three-phase three-wire power supply system, efficient lightning protection as described in FIG. 3 is possible.
  • FIG. 5 is a configuration diagram of a facility for testing the breaking performance of the lightning surge voltage of the insulation transformer 33 according to FIG. 1
  • FIG. 6 is a lightning surge voltage of the lightning protection device 150 of the present invention shown in FIG.
  • This is a block diagram of a facility that tested the breaking performance.
  • a lightening surge simulator (LSS) tester which generates an open circuit 1.2 / 50 mA voltage waveform and a short circuit 8/20 mA current waveform (product model name: LSS-15AX) was used to measure the secondary output voltage when the primary input voltage of 3 kV was applied. The results are shown in FIG.
  • LSS lightening surge simulator
  • FIG. 7 is a configuration diagram of a facility for testing the lightning surge current discharge performance of the insulation transformer according to FIG. 1
  • FIG. 8 is a configuration of a facility for testing the lightning surge current discharge performance of the lightning protection device of the present invention shown in FIG. It is also.
  • the discharge current was measured when a test current of 1.5 kA was applied using an LSS-15AX Lightning Surge Simulator (LSS) tester. The results are shown in FIG.
  • LSS-15AX Lightning Surge Simulator (LSS) tester The results are shown in FIG.
  • FIGS. 5 to 8. 6 are tables showing test results by the facilities of FIGS. 5 to 8. 6, when the lightning protection device of the present invention, the secondary output voltage is lowered (2.8 kV-> 0.8 kV), and the discharge current is increased (compared to the case of using the conventional insulation transformer). 0.28kA-> 0.8kA), it was confirmed that the lightning protection device of the present invention is effective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

본 발명은 TN-C 공통접지를 이용한 낙뢰방호장치에 관해 개시한다. 본 발명의 TN-C 공통접지를 이용한 낙뢰방호장치는, 전원부와 부하설비 사이에 직렬로 연결 설치되어 낙뢰방호를 행하는 것으로서, 상기 전원부에 연결되는 입력부 서지보호회로와; 상기 부하설비에 연결되는 출력부 서지보호회로와; 상기 입력부 서지보호회로와 출력부 서지보호회로에, 자신의 1차측과 2차측이 각각 연결된 복권변압기와; 상기 입력부 서지보호회로, 복권변압기, 출력부 서지보호회로 및 부하설비의 각각과 모두 연결되어 이들 모두의 전위가 기준전위와 등전위 상태가 되도록 만들어주는 공통접지수단을 구비하는 것을 특징으로 한다. 본 발명에 따르면, 전원측이나 부하설비측에서 낙뢰서지에 의한 과전류, 지락, 누전, 순간 단락 현상이 발생하여도 전자기 설비가 오동작하는 것을 방지할 수 있어서 불필요한 인력낭비를 없애고, 또한 낙뢰서지에 의해 전기전자통신 정보화설비, 신호설비, 제어설비들이 손상되는 것을 방지하고, 효과적으로 운용할 수 있어서 경제적 효과를 얻을 수 있다.

Description

TN-C 공통접지를 이용한 낙뢰방호장치
본 발명은 낙뢰방호장치에 관한 것으로, 특히 델타결선방식의 독립접지방식(TT)을 Y결선방식의 공통접지방식(TN-C)으로 변경하는 복권변압기 회로를 적용하여 공통접지와 등전위를 이루도록 구성하고, 복권변압기의 입력과 출력을 차폐시킬 뿐 아니라, 낙뢰 서지를 차단하고 제거할 수 있도록 입출력 양단에 각각 서지보호회로를 구비하여 부하회로를 보호한, TN-C 공통접지를 이용한 낙뢰방호장치에 관한 것이다.
일반적으로 델타(Δ)결선 전원공급방식은 독립접지방식을, 와이(Y)결선 전원공급방식은 공통접지방식을 사용하고 있는데, 일본을 비롯한 소말리아, 과테말라, 온두라스, 북한, 필리핀 등 10여개 국가에서는 독립접지방식을 사용하고 있으며, 전 세계 대부분의 국가와 선진국에서는 공통접지방식을 채택하고 있다. 한국의 경우, 종래에 와이결선 전원공급방식이면서도 일본의 독립접지방식을 도입하였기 때문에, 많은 혼란이 있었지만, 2005년도에 KSC-IEC로 개정이 되면서 국제기술규격에 적합한 공통접지방식으로 개정이 되었다. 그러나, 아직도 기존 시설들 중에는 델타결선방식의 전원공급계통을 유지하고 있는 설비가 많이 있기 때문에, 낙뢰와 서지(surge)에 취약한 독립접지방식을 유지하고 있는 곳이 많다. 따라서, 이와 같은 델타결선 전원계통을 간단하고 경제적인 방법으로 와이결선 전원공급방식과 공통접지방식으로 변경할 수 있는 장치가 요구되고 있다. 낙뢰서지에 대한 대책으로 전원차단기 2차 측에 서지보호기를 설치하여 낙뢰전류를 차단하려고 하고 있지만, 대용량의 낙뢰가 유입되면 낙뢰방호용 절연변압기 1차 측이 파손되거나 2차 측으로 자기유도가 되기 때문에 낙뢰차단에 실패하는 문제가 있다. 특히, 전원선 뿐이 아닌 대지나 접지를 통한 유도뢰와 서지에 대해서 절연변압기는 전혀 기능을 할 수 없다는 문제도 있다. 더욱이, 낙뢰서지의 전압은 매우 높기 때문에 부하설비나 전원선로에서 절연파괴가 일어나면, 절연변압기나 SPD(Surge Protection Device)는 낙뢰서지 방호에 대한 기능을 전혀 할 수 없다.
도 1은 종래의 델타결선 전원계통과 절연변압기에 부하설비가 설치된 시스템의 개략적 구성도이다. 도 1을 참조하면, 종래의 델타결선 전원계통으로서 전원(1)과 델타결선회로(31)이 있으며, 여기에 낙뢰방호용 절연변압기(33)와 부하설비(4)가 연결된다. 이와 같은 델타결선회로(31)와 절연변압기(33), 부하설비(4)는 각각 독립접지방식으로 그 접지시스템이 구성되어 있다. 이와 같이 각각이 독립접지방식으로 접지시스템이 구성된 경우에는, 전원(1)과 델타결선회로(31), 절연변압기(33), 부하설비(4) 간에는 전위차가 발생할 수 있다. 그런데, 이와 같이 전위차가 발생하게 되면, 낙뢰와 서지가 유입될 수 있기 때문에, 부하설비(4)가 파손되거나 오동작하는 문제가 발생할 수 있다. 이에 대해서 절연변압기(33)가 있기는 하지만, 고압의 서지전압은 절연변압기(33)의 1차 측에서 2차 측으로 전자기 유도되거나 절연파괴가 일어나면서 1차 측 전압을 차폐 차단하지 못하고, 대부분 1차 측 전압이 그대로 유도되어 전기전자 설비, 정보통신 설비, 제어계측 설비와 같이 전자기 정보화 설비인 부하설비(4)가 오동작을 하거나 손상이 되는 문제는 해결되지 못하고 있다.
따라서, 본 발명이 해결하려는 과제는, 전원부와 부하설비 사이에 직렬로 연결 설치되어 낙뢰방호를 행하는 낙뢰방호장치에서, 차단되지 않은 낙뢰서지를 제거하는 동시에 이상 전압도 감쇄, 차단하여, 낙뢰 서지에 의한 부하설비를 보호하면서, 안정적으로 운용할 수 있는, TN-C 공통접지를 이용한 낙뢰방호장치를 제공하는 것이다.
본 발명이 해결하려는 또 다른 과제는, 복권변압기와 서지보호회로를 포함하도록 구성되며 복권변압기의 중성선과 부하설비의 접지, 서지보호회로의 기준접지가 모두 공통접지되게 하여 등전위 상태를 이루게 함으로써, 잔류 이상전압이 있을 때에 전위차에 기인한 부하설비의 파손이나 오동작을 방지할 수 있는, TN-C 공통접지를 이용한 낙뢰방호장치를 제공하는 것이다.
상기 과제를 해결하기 위한 본 발명의 TN-C 공통접지를 이용한 낙뢰방호장치는, 전원부와 부하설비 사이에 직렬로 연결 설치되어 낙뢰방호를 행하는 것으로서, 상기 전원부에 연결되는 입력부 서지보호회로와; 상기 부하설비에 연결되는 출력부 서지보호회로와; 상기 입력부 서지보호회로와 출력부 서지보호회로에, 자신의 1차측과 2차측이 각각 연결된 복권변압기와; 상기 입력부 서지보호회로, 복권변압기, 출력부 서지보호회로 및 부하설비의 각각과 모두 연결되어 이들 모두의 전위가 기준전위와 등전위 상태가 되도록 만들어주는 공통접지수단을 구비하는 것을 특징으로 한다.
여기서, 상기 복권변압기가 중성선을 포함한 Y결선으로 되어 있고, 상기 입력부 서지보호회로 및 출력부 서지보호회로가 모두 각각 정전압소자를 포함하고 있으며, 상기 중성선 및 정전압소자가 상기 공통접지수단에 각각 연결되는 것이 바람직하다
더욱이, 상기 입력부 서지보호회로가 상기 전원부와의 연결을 차단할 수 있는 제1 스위치를, 상기 출력부 서지보호회로가 상기 부하설비와의 연결을 차단할 수 있는 제1 스위치를 각각 포함하는 것이 더욱 바람직하다.
또한, 상기 입력부 서지보호회로의 정전압소자가 상기 제1 스위치를 통하여 상기 전원부와 연결되어 있으며, 상기 출력부 서지보호회로의 정전압소자가 상기 제2 스위치를 통하여 상기 부하설비와 연결되어 있는 것이 바람직하다.
위에서, 상기 전원부는 전원과 델타결선 전원회로로 이루어지도록 할 수 있다.
본 발명의 낙뢰방호장치에 의하면, 전원측이나 부하설비측에서 낙뢰서지에 의한 과전류, 지락, 누전, 순간 단락 현상이 발생하여도 전자기 설비가 오동작하는 것을 방지할 수 있어서 불필요한 인력낭비를 없애고, 또한 낙뢰서지에 의해 전기전자통신 정보화설비, 신호설비, 제어설비들이 손상되는 것을 방지하고, 효과적으로 운용할 수 있어서 경제적 효과를 얻을 수 있다.
도 1은 종래의 델타결선 전원계통과 절연변압기에 부하설비가 설치된 시스템의 개략적 구성도이다.
도 2는 본 발명의 개념에 따라 전원부와 부하설비 사이에 TN-C 공통접지가 이루어진 낙뢰방호장치의 기본 구성을 설명하기 위한 구성도이다.
도 3은 1상 2선 전원계통에 적용하는 본 발명의 제1 실시예에 따른 낙뢰방호장치의 구성을 설명하기 위한 회로도이다.
도 4는 3상 3선 전원계통에 적용하는 본 발명의 제2 실시예에 따른 낙뢰방호장치의 구성을 설명하기 위한 회로도이다.
도 5는 도 1에 따른 절연변압기의 낙뢰서지전압의 차단 성능을 시험한 위한 설비의 구성도이다.
도 6은 도 2에 도시된 본 발명의 낙뢰방호장치의 낙뢰서지전압 차단 성능을 시험한 설비의 구성도이다.
도 7은 도 1에 따른 절연변압기의 낙뢰서지전류 방전성능을 시험한 설비의 구성도이다.
도 8은 도 2에 도시된 본 발명의 낙뢰방호장치의 낙뢰서지전류 방전성능을 시험한 설비의 구성도이다.
도 9는 도 5 내지 도 8의 설비에 의한 시험결과를 나타낸 도표이다.
이하에서, 첨부한 도면을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
도 2는 본 발명의 개념에 따라 전원부와 부하설비 사이에 TN-C 공통접지가 이루어진 낙뢰방호장치의 기본 구성을 설명하기 위한 구성도이다. 도 2를 참조하면, 본 발명의 낙뢰방호장치(150)는, 전원(1)과 배전역할을 하는 델타결선 전원계통(31)을 포함하는 전원부(35)와 부하설비(4)의 사이에 이들과 직렬로 연결된다. 낙뢰방호장치(150)는 크게 입력부 서지보호회로(2)와 출력부 서지보호회로(3)와 그 중간에 복권변압기(30)를 구비하는데, 후술하겠지만, 입력부 서지보호회로(2)와 출력부 서지보호회로(3) 간에 차폐가 될 수 있도록 하여 낙뢰서지가 부하설비(4)측으로 전달되지 못하게 하였다. 복권변압기(30)는 Y결선으로 되어 있으며, 중성선(Neutral line)을 생성하여, 잔류 이상전압이 발생하거나 각각의 부하설비(4)와 입력부 및 출력부 서지보호회로(2, 3)가 복권변압기(30)의 중성선(Neutral line)과 전위차가 발생할 때는, 복권변압기(30)의 중성점과 부하설비(4)의 접지, 입력부 및 출력부 서지보호회로(2, 3)의 기준접지가 모두 등전위가 되도록 공통접지로 연결하여 TN-C 방식의 공통접지시스템이 구축되게 하였다. TN-C 방식의 접지란, 전원부는 접지되어 있고, 간선의 중성선과 보호하고자 하는 부하설비를 결합하여 접지를 이루게 하는 것을 말한다. 요약하자면, 본 발명의 큰 특징은 상술한 바와 같이, 복권변압기(30)의 입력부와 출력부에 다중적인 쌍방향 서지보호회로와 공통접지시스템이 구비되어 있다는 것이다. 도 2에서 전원부(35)는 전원(1)과 델타결선회로(31)로 이루어지도록 하였는데, 델타결선회로(31)는 전원(1)의 종류에 따라 적절히 선택되는 것이다.
도 3은 1상 2선 전원계통에 적용하는 본 발명의 제1 실시예에 따른 낙뢰방호장치의 구성을 설명하기 위한 회로도이다. 도 3을 참조하면, 전원(1)의 공급은 1상 2선으로 입력부 서지보호회로(2) 내의 2개의 제1 스위치(10)들을 거쳐서 복권변압기(30)의 1차측으로 들어가도록 되어 있다. 2개의 제1 스위치(10)들은 2개의 입력부 서지보호회로용 정전압 소자(20)에 연결되어 있으며, 2개의 입력부 서지보호회로용 정전압 소자(20)의 중간점은 복권변압기(30)의 중성선에 연결되어 있다. 복권변압기(30)의 2차측은 출력부 서지보호회로(3) 내의 2개의 제2 스위치(11)들을 통하여 전기전자설비, 정보통신설비, 신호제어설비, 방송소방설비 등의 부하설비(4)와 연결되도록 되어 있다. 출력부 서지보호회로용 정전압 소자(20) 역시 복권변압기(30)의 중성선에 연결되어 있다. 제1 스위치(10)들 및 제2 스위치(11)들은 공급전원선로와 부하설비(4)를 전기적으로 분리할 수 있기 때문에, 입력부 및 출력부 서지보호회로(2, 3)의 작동이 불완전하더라도 궁극적으로 부하설비(4)를 보호할 수 있다. 한편, 2개의 입력부 서지보호회로용 정전압 소자(20)의 중간점, 복권변압기(30)의 중성선, 출력부 서지보호회로(3)의 정전압 소자 및 부하설비(4)의 접지부(41)은 모두 하나의 접지단자대(40)에 연결되어 이들이 등전위를 이루도록 해준다. 따라서, 잔류 이상전압이 있더라도 전위차에 기인한 부하설비(4)의 파손이나 오동작을 방지할 수 있다. 입력부 및 출력부 서지보호회로(2, 3) 내의 정전압 소자(20)는 특별히 제한되지는 않으나, 가스방전관(GDT), MOV, 제너다이오드, SCR, 바리스터(Varistor), TRIAC 및 어레스터(Arrester)와 같은 정전압 소자를 사용할 수 있다.
도 4는 3상 3선 전원계통에 적용하는 본 발명의 제2 실시예에 따른 낙뢰방호장치의 구성을 설명하기 위한 회로도이다. 도 4를 참조하면, 도 3과 큰 차이는 없으나, 3상 3선 전원계통이 적용되기 때문에, 전원(1)에 3개의 입력부 서지보호회로(2)용 제1 스위치(10)이 연결되며, 이 제1 스위치(10)의 각각에 정전압 소자(20)의 일단이 함께 연결된 상태로 복권변압기(30)의 1차측에 접속된다. 제1 스위치(10)에 연결된 정전압 소자(20)의 타단은 복권변압기(30)의 중성선과 함께 접지단자대(40)에 연결되어 이들이 등전위를 이루게 된다. 접지단자대(40)에는 그 외에도 3개의 출력부 서지보호회로(3)용 제2 스위치(11)에 그 일단이 각각 연결된 정전압 소자(20)의 타단 및 부하설비(4)의 접지부(41)와도 연결되어 접지단자대(40)에 연결된 구성요소들이 등전위를 이루게 된다. 이와 같은 방식에 의하면 3상 3선 전원계통에서도 도 3에서 설명한 바와 같은 효율적인 낙뢰방호가 가능하다.
도 5는 도 1에 따른 절연변압기(33)의 낙뢰서지전압의 차단 성능을 시험한 위한 설비의 구성도이며, 도 6은 도 2에 도시된 본 발명의 낙뢰방호장치(150)의 낙뢰서지전압 차단 성능을 시험한 설비의 구성도이다. 도 5 및 도 6을 참조하면, 오픈 서킷(open-circuit) 1.2/50㎲ 전압파형과 쇼트 서킷(short-circuit) 8/20㎲ 전류파형을 발생시키는 LSS(Lightning Surge Simulator) 시험기(상품모델명: LSS-15AX)를 이용하여 3kV의 1차 입력전압을 인가한 경우에 대해, 2차 출력전압을 측정하였다. 그 결과를 도 6에 나타내었다.
도 7은 도 1에 따른 절연변압기의 낙뢰서지전류 방전성능을 시험한 설비의 구성도이며, 도 8은 도 2에 도시된 본 발명의 낙뢰방호장치의 낙뢰서지전류 방전성능을 시험한 설비의 구성도이다. 도 7 및 도 5b를 참조하면, LSS-15AX LSS(Lightning Surge Simulator) 시험기를 이용하여 1.5kA의 시험전류를 인가한 경우에 대해, 방전전류를 측정하였다. 그 결과를 도 6에 나타내었다.
도 9는 도 5 내지 도 8의 설비에 의한 시험결과를 나타낸 도표이다. 도 6을 참조하면, 본 발명의 낙뢰방호장치에 의할 경우 종래기술의 절연변압기를 사용하는 경우에 비해 2차 출력 전압은 낮아지고(2.8kV --> 0.8kV), 방전전류는 많아져서(0.28kA --> 0.8kA), 본 발명의 낙뢰방호장치가 효과적임을 확인할 수 있었다.

Claims (5)

  1. 전원부와 부하설비 사이에 직렬로 연결 설치되어 낙뢰방호를 행하는 낙뢰방호장치에 있어서,
    상기 전원부에 연결되는 입력부 서지보호회로와;
    상기 부하설비에 연결되는 출력부 서지보호회로와;
    상기 입력부 서지보호회로와 출력부 서지보호회로에, 자신의 1차측과 2차측이 각각 연결된 복권변압기와;
    상기 입력부 서지보호회로, 복권변압기, 출력부 서지보호회로 및 부하설비의 각각과 모두 연결되어 이들 모두의 전위가 기준전위와 등전위 상태가 되도록 만들어주는 공통접지수단;
    을 구비하는 것을 특징으로 하는, TN-C 공통접지를 이용한 낙뢰방호장치.
  2. 제1항에 있어서, 상기 복권변압기가 중성선을 포함한 Y결선으로 되어 있고, 상기 입력부 서지보호회로 및 출력부 서지보호회로가 모두 각각 정전압소자를 포함하고 있으며, 상기 중성선 및 정전압소자가 상기 공통접지수단에 각각 연결되는 것을 특징으로 하는, TN-C 공통접지를 이용한 낙뢰방호장치.
  3. 제2항에 있어서, 상기 입력부 서지보호회로가 상기 전원부와의 연결을 차단할 수 있는 제1 스위치를, 상기 출력부 서지보호회로가 상기 부하설비와의 연결을 차단할 수 있는 제1 스위치를 각각 포함하고 있는 것을 특징으로 하는, TN-C 공통접지를 이용한 낙뢰방호장치.
  4. 제3항에 있어서, 상기 입력부 서지보호회로의 정전압소자가 상기 제1 스위치를 통하여 상기 전원부와 연결되어 있으며, 상기 출력부 서지보호회로의 정전압소자가 상기 제2 스위치를 통하여 상기 부하설비와 연결되어 있는 것을 특징으로 하는, TN-C 공통접지를 이용한 낙뢰방호장치.
  5. 제1항에 있어서, 상기 전원부가 전원과 델타결선 전원회로로 이루어진 것을 특징으로 하는, TN-C 공통접지를 이용한 낙뢰방호장치.
PCT/KR2011/006997 2010-11-18 2011-09-22 Tn-c 공통접지를 이용한 낙뢰방호장치 WO2012067342A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/884,410 US20130229733A1 (en) 2010-11-18 2011-09-22 Lightening Protection Apparatus Using TN-C Common Ground

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100115147A KR101142280B1 (ko) 2010-11-18 2010-11-18 Tn-c 공통접지를 이용한 낙뢰방호장치
KR10-2010-0115147 2010-11-18

Publications (1)

Publication Number Publication Date
WO2012067342A1 true WO2012067342A1 (ko) 2012-05-24

Family

ID=46084234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006997 WO2012067342A1 (ko) 2010-11-18 2011-09-22 Tn-c 공통접지를 이용한 낙뢰방호장치

Country Status (3)

Country Link
US (1) US20130229733A1 (ko)
KR (1) KR101142280B1 (ko)
WO (1) WO2012067342A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101520254B1 (ko) * 2013-10-14 2015-05-15 한국전기연구원 변전소 중성점 임피던스 기기를 생략한 유효접지기준을 만족하는 1선지락고장전류 억제 설계방법
KR101436512B1 (ko) * 2014-02-27 2014-09-02 주식회사 그라운드 서지방호장치
JP6390916B2 (ja) * 2015-07-31 2018-09-19 株式会社デンソー 異常検出装置
KR20210045175A (ko) 2019-10-16 2021-04-26 삼성전자주식회사 전자장치
KR20240098620A (ko) 2022-12-21 2024-06-28 이수열 서지 및 노이즈 예방용 전기 콘센트 구조체
KR102608952B1 (ko) 2022-12-21 2023-11-30 이수열 서지 및 노이즈 예방용 전기 플랜트 전원 공급 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127856A (ja) * 1997-06-30 1999-01-29 Noritz Corp 電源保護装置
KR200212792Y1 (ko) * 2000-07-26 2001-02-15 김정수 서지와 노이즈 다중 차폐 전원 장치
KR200332582Y1 (ko) * 2003-08-08 2003-11-07 조경준 통신단말기용 서지보호장치
KR200355725Y1 (ko) * 2004-04-14 2004-07-07 제일전기공업 주식회사 낙뢰로부터 보호할 수 있는 차단기
JP2008130986A (ja) * 2006-11-24 2008-06-05 Otowa Denki Kogyo Kk 電気施設の耐雷方法
KR20080108658A (ko) * 2007-06-11 2008-12-16 조경준 이중화 낙뢰 전원용 보안장치
KR20090078187A (ko) * 2008-01-14 2009-07-17 한국전력공사 접지선에 직류 전류의 차단 회로를 갖는 변압기

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012382A (en) * 1990-06-14 1991-04-30 Teal Electronics Corporation Low impedance power conditioner apparatus and method
US5515230A (en) * 1990-09-06 1996-05-07 Ashley; James R. Poly-phase coaxial power line efficiency enhancements
KR200371933Y1 (ko) 2004-10-06 2005-01-15 김철우 낙뢰보호형 누전차단기

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127856A (ja) * 1997-06-30 1999-01-29 Noritz Corp 電源保護装置
KR200212792Y1 (ko) * 2000-07-26 2001-02-15 김정수 서지와 노이즈 다중 차폐 전원 장치
KR200332582Y1 (ko) * 2003-08-08 2003-11-07 조경준 통신단말기용 서지보호장치
KR200355725Y1 (ko) * 2004-04-14 2004-07-07 제일전기공업 주식회사 낙뢰로부터 보호할 수 있는 차단기
JP2008130986A (ja) * 2006-11-24 2008-06-05 Otowa Denki Kogyo Kk 電気施設の耐雷方法
KR20080108658A (ko) * 2007-06-11 2008-12-16 조경준 이중화 낙뢰 전원용 보안장치
KR20090078187A (ko) * 2008-01-14 2009-07-17 한국전력공사 접지선에 직류 전류의 차단 회로를 갖는 변압기

Also Published As

Publication number Publication date
KR101142280B1 (ko) 2012-05-07
US20130229733A1 (en) 2013-09-05

Similar Documents

Publication Publication Date Title
WO2012067342A1 (ko) Tn-c 공통접지를 이용한 낙뢰방호장치
US11451047B2 (en) Protection of electrical devices based on electromagnetic pulse signal
US9396866B2 (en) Blocker of geomagnetically induced currents (GIC)
Tsovilis Critical insight into performance requirements and test methods for surge protective devices connected to low-voltage power systems
Gomes On the selection and installation of surge protection devices in a TT wiring system for equipment and human safety
US6385029B1 (en) Total electrical transient eliminator
CN108631311A (zh) 一种通信基站的供电装置
KR101074663B1 (ko) 쌍방향 서지보호기
CN109923749B (zh) 电力系统及故障电流限制器
Woodworth Externally gapped line arresters a critical design review
JP2009240029A (ja) 雷保護装置、収納ボックス
JPS59220017A (ja) 変圧器用サ−ジ吸収装置
Schork et al. Analysis of temporary overvoltages in AC-grids
Piparo et al. An approach to assess the probability of damage when a coordinated SPD system is installed
KR102345726B1 (ko) 다중 접지형 서지 보호장치
Borland Optimised MV neutral treatment and earth fault management
Vijayananda et al. Surge arrester with improved reliability and protection level for low bandwidth data communication in high voltage installations
JPH0630525A (ja) 電子機器の三相交流給電装置
Gurevich Protection of Telecommunication Systems in Electric Power Facilities from Electromagnetic Pulse (EMP)
JP5215702B2 (ja) 雷保護装置、雷保護機能付分電盤
GB2314219A (en) Protecting high voltage power distribution transformers from lightning strikes
Prévé et al. Dielectric stress, design and validation of MV switchgear
CN206775122U (zh) 一种具有防雷功能的铁路信号传输系统
KR100988946B1 (ko) 서지 보호 장치 및 이를 포함하는 전력 공급 보호 장치
CN103904633A (zh) 一种变电站母线下方端子箱抑制过电压的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840991

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13884410

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840991

Country of ref document: EP

Kind code of ref document: A1