WO2012066814A1 - Holding circuit, electromagnetic valve, valve selector and fluid transporting device - Google Patents

Holding circuit, electromagnetic valve, valve selector and fluid transporting device Download PDF

Info

Publication number
WO2012066814A1
WO2012066814A1 PCT/JP2011/063402 JP2011063402W WO2012066814A1 WO 2012066814 A1 WO2012066814 A1 WO 2012066814A1 JP 2011063402 W JP2011063402 W JP 2011063402W WO 2012066814 A1 WO2012066814 A1 WO 2012066814A1
Authority
WO
WIPO (PCT)
Prior art keywords
solenoid
capacitor
voltage
holding circuit
holding
Prior art date
Application number
PCT/JP2011/063402
Other languages
French (fr)
Japanese (ja)
Inventor
要一 寺本
一平 阪本
俊一 川口
Original Assignee
矢部川電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010255679A external-priority patent/JP2011146688A/en
Application filed by 矢部川電気工業株式会社 filed Critical 矢部川電気工業株式会社
Priority to US13/885,521 priority Critical patent/US9103464B2/en
Publication of WO2012066814A1 publication Critical patent/WO2012066814A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current

Definitions

  • FIG. 7 shows the heat generation reduction and power saving of the solenoid valve.
  • FIG. 8 shows the time-dependent change of the voltage in the solenoid 53 of FIG. 7
  • FIG. 9 is a graph showing the relationship between the applied voltage of the solenoid 53 and the magnetic flux density.
  • a solenoid having an inductance generates a large back electromotive force due to a self-dielectric action as a transient phenomenon in response to a rapid current change.
  • the magnitude of the back electromotive force is proportional to the rate of change of the current.
  • the counter electromotive force is generated when the current change when the voltage applied to the solenoid is reduced to the holding voltage V h from the rated voltage V r, the solenoid
  • the holding voltage V h is set to a high value so that the minimum holding voltage is not reduced even if the voltage is significantly reduced due to the back electromotive force.
  • the solenoid valve is energized only for a short time so that the heat generation of the solenoid valve used for the valve selector or the fluid transfer device does not kill the antibody in the transfer fluid.
  • the inability to continuously energize the solenoid valve limits the use of the valve selector or the fluid transfer device.
  • the magnetic flux density once decreases to point b due to the back electromotive force generated in the solenoid 53. From there, as the voltage recovers to the holding voltage V h , the magnetic flux density also tries to recover to the point B, but it actually stays at the point B ′. Thus, the magnetic flux density which has disappeared is not completely recovered, and the holding power of the solenoid valve is lowered.
  • the invention according to claim 1 includes a solenoid and a resistor connected in series, and after driving the solenoid at a rated voltage, a holding voltage lower than the rated voltage is applied to hold the driving state.
  • a circuit which is connected in series to the solenoid and the resistor, and is connected in parallel to the resistor, and is connected in parallel to the resistor;
  • the second switching means is connected in parallel with the resistor, and the second switching means is connected in parallel with the resistor, and has a time constant larger than that of the solenoid after a predetermined time has elapsed since the driving, and the second switching means Reduces the speed at which the voltage applied to the solenoid shifts from the rated voltage to the holding voltage after the switch is turned off to absorb the back electromotive force in the solenoid A capacitor.
  • the invention according to claim 2 is the holding circuit according to claim 1, wherein the capacitance C of the capacitor is the equivalent resistance component r C of the capacitor, the equivalent resistance component r L of the solenoid, and the inductance L of the solenoid. On the other hand, it is characterized by satisfying the formula (1).
  • the invention according to claim 3 is the holding circuit according to claim 2, wherein the second switching means is a second capacitor which is a capacitor connected in parallel with the capacitor, and the capacitance of the second capacitor C 2 is characterized in that it is larger than the capacitance C of the capacitor.
  • the invention according to claim 4 is the holding circuit according to claim 3, wherein the first switching means is a contactor having three contacts, and the first contact of the three contacts is the contactor.
  • the second contact is connected to a power source that applies the rated voltage
  • the third contact is connected to the solenoid
  • the contactor connects the first contact and the second contact.
  • the invention according to claim 5 is the holding circuit according to claim 4, further comprising: a diode that allows current to flow in a direction reverse to the application direction of the power supply, wherein the diode is connected in series with the discharge resistor. And connected in parallel with the solenoid, wherein the resistance value of the discharge resistor is smaller than the resistance value of the resistor.
  • the invention according to claim 7 is a valve selector including the solenoid valve according to claim 6.
  • the invention according to claim 8 is a fluid transfer device including the solenoid valve according to claim 6 or the valve selector according to claim 7.
  • the capacitor existing in parallel with the resistor absorbs the back electromotive force generated in the solenoid, and the voltage applied to the solenoid is gradually reduced from the rated voltage to the holding voltage. Therefore, for example, it is possible to lower the holding voltage while keeping the voltage applied to the solenoid at least the value of the holding voltage, and it is also possible to reduce the holding voltage to the minimum holding voltage.
  • the generation of the back electromotive force is suppressed, the decrease in the magnetic flux density remains at the point where the function of the solenoid valve can be stably maintained, and the disappearance of the magnetic flux density does not occur.
  • Patent Document 1 there is known a circuit that simply includes a diode in parallel with a solenoid and a capacitor in parallel with a resistor.
  • the capacitor C1 is for realizing the timer function.
  • the capacitor C2 is for protecting the transistor Q1 by preventing abnormal oscillation as described in the specification of Patent Document 1. Therefore, a capacitor with a small capacity of about 1 ⁇ F or less is usually used.
  • the capacitances of the capacitors C1 and C2 of Patent Document 1 are determined independently of the inductance of the solenoid.
  • the capacitor of the present invention is different from the capacitor described in Patent Document 1 in the role in the circuit, and its capacity is to absorb the transient large-scale back electromotive force generated by the solenoid. It is decided by the relation of
  • Patent Document 2 is for achieving speeding up of operation (that is, for bringing the curves a and b of FIG. 3 in Patent Document 2 closer to the curve c), the object of the present invention
  • the solution of the problem of suppression of the back electromotive force in the solenoid is not directly relevant.
  • a second capacitor having a larger capacity than the capacitor is used as the second switching means. Therefore, sufficient time for driving the solenoid valve can be secured, and the timer function can be realized without the timer circuit. Therefore, as compared with the case where the timer circuit is required, the circuit size of the holding circuit, the failure probability, and the manufacturing cost can be further easily reduced.
  • a closed circuit including the second capacitor and the solenoid is formed. Therefore, in addition to lowering the rated voltage to the holding voltage, it is possible to reduce the back electromotive force generated in the solenoid even when the power is turned off.
  • the second capacitor acts as a substitute for the second switch. Absent. Therefore, it is important that the capacitor and the second capacitor be quickly discharged when the power is turned off.
  • the resistance value of the discharge resistor connected to the second contact is smaller than the resistance value of the resistor connected to the first contact.
  • the diode allows the current flowing during discharge to bypass the solenoid as much as possible. Therefore, it becomes easier to quickly discharge the charge accumulated in the capacitor and the second capacitor.
  • the sixth aspect of the present invention it is possible to realize a solenoid valve whose holding voltage is lower than that of the related art. Further, according to claims 7 and 8 of the present application, a valve selector and a fluid transfer device using such a solenoid valve can be realized respectively. Therefore, according to the invention of claim 8 of the present application, by reducing the heat generation of the solenoid valve, it is possible to suppress that the fluid to be transferred is heated, and a valve provided with a solenoid valve which can be energized for a long time A selector or fluid transfer device can be realized. For this reason, the range of utilization of the valve selector or the fluid transfer device is expanded, and it becomes easy to transfer while reducing the damage to the heat-sensitive fluid such as the fluid containing the antibody.
  • FIG. 1 is a circuit diagram showing a holding circuit according to an embodiment of the present invention.
  • the holding circuit of FIG. 1 it is a graph which shows a time-dependent change of a voltage.
  • 7 is a graph showing the relationship between applied voltage and magnetic flux density of a solenoid in the holding circuit of FIG. 1;
  • the holding circuit of FIG. 4 it is a graph which shows a time-dependent change of a voltage and an electric current.
  • FIG. 8 is a graph showing the relationship between applied voltage and magnetic flux density of a solenoid in the holding circuit of FIG. 7;
  • FIG. 1 is a circuit diagram showing a holding circuit 1 according to an embodiment of the present invention.
  • FIG. 2 is a graph showing time-dependent changes in voltage in the holding circuit 1 of FIG.
  • Fluid transfer devices that transfer fluid are generally equipped with a valve selector that is used to transfer fluid by type.
  • a solenoid valve is widely used for open / close control in a pipe through which fluid flows.
  • the solenoid 3 in the holding circuit 1 of FIG. 1 is used, for example, as a solenoid valve.
  • a solenoid used as a solenoid valve after a rated voltage for driving as a valve is applied, a voltage smaller than the rated voltage is applied as a holding voltage for holding the opening and closing of the solenoid valve. If the solenoid has, for example, a power consumption of 1 W, it will reach a high temperature of about 80 ° C. when it is energized for one and a half minutes at the rated voltage.
  • a DC power supply 5 that supplies a direct current with a power supply voltage of V in series with a solenoid 3 (an example of the "solenoid” in the present application) (an example of the "power supply” in the present application)
  • a first switch 7 the present invention switches the presence or absence of a current flowing through the solenoid 3 by switching the conduction state (an example of the “on state” in the present application claim) and the non-conduction state (an example of the An example of the "first switching means” in the claims and a resistor 9 (an example of the "resistor” in the claims of the present application) are connected.
  • a second switch 11 (an example of a "second switching means” in the claims of the present application) and a capacitor 13 (an example of a “capacitor” in the claims of the present application) are connected in parallel to the resistor 9.
  • the second switch 11 changes from the conductive state (on) to the non-conductive state (off) after a predetermined time after the first switch 7 becomes conductive (turned on).
  • the capacitor 13 absorbs the back electromotive force in the solenoid 3 by relaxing the speed at which the voltage applied to the solenoid 3 shifts from the rated voltage to the holding voltage after the second switch 11 becomes nonconductive.
  • a diode 15 is connected in parallel with the solenoid 3.
  • the diode 15 is for preventing the failure of the first switch 7 and the second switch 11 caused by the back electromotive force of the solenoid 3. However, it is possible not to connect.
  • the operation of the conventional holding circuit 51 of FIG. 7 will be specifically described with reference to FIGS. 8 and 9.
  • the graph of FIG. 8 is a graph showing temporal changes in voltage in the holding circuit 51.
  • the horizontal axis indicates the elapsed time, and the vertical axis indicates the magnitude of the voltage.
  • the graph of FIG. 9 is a graph showing the relationship between the applied voltage of the solenoid 53 and the magnetic flux density in the holding circuit 51.
  • FIG. 9 shows the change in magnetic flux density of the solenoid 53 in this drive cycle.
  • the second switch 61 is turned off.
  • the magnetic flux density once decreases to the point b due to the back electromotive force generated in the solenoid 53. From there, as the voltage recovers to V h , the magnetic flux density also tries to recover to the point B, but actually it stays at the point B ′. That is, the eliminated magnetic flux density is not completely recovered.
  • the capacitor 13 In the conductive state of the first switch 7 and the second switch 11, the capacitor 13 is not charged at all. At the moment when the second switch 11 is turned off, charging starts with resistance zero, and when fully charged, resistance becomes infinite. That is, the capacitor 13 can be regarded as a variable resistor whose resistance value gradually increases from zero resistance to infinity. After the second switch 11 becomes non-conductive, the voltage applied to the solenoid 3 is reduced from the rated voltage to the holding voltage by the change from the resistance zero to a sufficiently large value, and the back electromotive force is generated in the solenoid 3 Absorb power.
  • the capacity of the capacitor 13 is required to have a capacity corresponding to the inductance of the solenoid 3 in order for the capacitor 13 to absorb large-scale back electromotive force in the solenoid 3.
  • the current I L generated by the back electromotive force of the solenoid 3 is expressed by equation (2).
  • T L is a time constant of the solenoid 3 and is expressed by the equation (3) using a constant I 0 , an inductance L of the solenoid 3 and an equivalent resistance component r L inherent to the solenoid 3.
  • T C is a time constant of the capacitor 13 and is expressed by the equation (5) using the constant I 1 , the capacitance C of the capacitor 13 and the equivalent resistance component r C inherent to the capacitor 13.
  • FIGS. 2 and 3 focusing on differences from the operation of the holding circuit 51 of FIG. 7 such as the operation of the capacitor 13.
  • the upper graph in FIG. 2 shows the on / off time-dependent change of the first switching means 7.
  • the lower graph of FIG. 2 shows the voltage applied to the solenoid 3.
  • the horizontal axis indicates the elapsed time, and the vertical axis indicates the magnitude of the voltage.
  • FIG. 3 is a graph showing the relationship between applied voltage and magnetic flux density of the solenoid in the holding circuit of FIG.
  • the voltage is also applied to the resistor 9 and the capacitor 13 so that the capacitor 13 starts to be charged. While the capacitor 13 is being charged, the resistance value of the capacitor 13 for the current gradually increases. Therefore, the voltage division to the resistor 9 and the capacitor 13 connected in parallel gradually increases. Meanwhile, the partial pressure to the solenoid 3 gradually decreases, and the decrease in current becomes gentle.
  • the back electromotive force that can occur in the solenoid 3 is generally large.
  • the capacity of the capacitor 13 is determined based on the equation (8), which is a capacity sufficient to absorb the back electromotive force of the solenoid 3.
  • the holding voltage V h can be reduced, and heat generation from the solenoid valve can be suppressed and power saving can be facilitated. It is also possible to reduce and set the holding voltage V h to the minimum holding voltage.
  • FIG. 1 a similar test was performed using a 24 V DC power supply as the DC power supply 5, a STV-2-M6KG 24 K DC solenoid of Takasago Electric Co., Ltd. as the solenoid 3, and a 1000 ⁇ F capacitor as the capacitor 13.
  • a resistance of 1690 ⁇ was used as the resistance 9
  • the holding voltage V h of the solenoid 3 gradually settled to 3.18 V, and the function as the solenoid valve was maintained.
  • the holding voltage of the solenoid 3 gradually settled to 3.09 V, and the same function as the solenoid valve was maintained.
  • FIG. 4 is a circuit diagram showing a holding circuit 71 according to another embodiment of the present invention.
  • FIG. 5 is a graph showing temporal changes in voltage and current in the holding circuit 71. As shown in FIG.
  • the holding circuit 71 will be described focusing on differences from the holding circuit 1.
  • the holding circuit 71 includes a capacitor 81 (an example of a “second capacitor” in the claims of the present application) instead of the second switch 11.
  • the capacitor 81 is different from the capacitor 83 (another example of the “capacitor” in the claims of the present application) corresponding to the capacitor 13, and is connected in parallel to the capacitor 83. Also, the capacitance of the capacitor 81 is larger than the capacitance of the capacitor 83.
  • the capacitor 83 plays a role to replace the switch 11. Absent. Therefore, it is important that these capacitors be discharged quickly.
  • a discharge resistor 87 is provided between the third contact 93 and the solenoid 73.
  • the discharge resistor 87 one having a resistance value smaller than that of the resistor 79 is used. Then, a large discharge current flows in the closed circuit including the discharge resistor 87. For this reason, the discharge of the charge accumulated in the capacitor 81 and the capacitor 83 is promoted compared to the case where the discharge is performed only by the closed circuit including the capacitor 81 or the capacitor 83 and the resistor 79.
  • the solenoid 73 decelerates the discharge. Therefore, it is useful that the diode 85 is connected in series to the discharge resistor 87 and in parallel to the solenoid 73.
  • the diode 85 is disposed so as to cause current to flow in the reverse direction to the application direction of the DC power supply 75, and diverts most of the discharge current so as not to pass through the solenoid 73. Therefore, diode 85 plays an even more important role in holding circuit 71 than holding circuit 1.
  • the capacitance of the capacitor 81 is an important value for the good operation of the holding circuit 71. If the capacity is small, the voltage applied to the solenoid 73 falls below the rated voltage V r before the solenoid valve is driven, resulting in an unstable operation. On the other hand, is increased (t 12 to the time t 11) the time required to reduce the holding voltage and capacitance is large, the heating value of the solenoid 73 is increased. The applicant has experimentally confirmed that if the capacitance of the capacitor 81 is three times the capacitance of the capacitor 83, it operates extremely well.
  • the capacitor 81 and the capacitor 83 may be realized as one capacitor in mounting.
  • the resistance value of the discharge resistor 87 operates extremely well if it has a resistance value at which twice the rated current of the solenoid 73 flows when discharging of the capacitor is started.
  • Holding circuit 71 replaces the second switch 11 requiring a timer function in the capacitor 81, the time t 11 from the time t 10 corresponds to the state the second switch 11 is on. The time t 11 thereafter corresponds to a state the second switch 11 is off. As a result, the timer circuit becomes unnecessary. Therefore, the circuit size of the holding circuit, the failure probability, and the manufacturing cost can be reduced.
  • the values of the individual circuit elements described above are an example for confirming the holding function of the holding circuit, and in determining the actual values, other values may be appropriately selected according to the device design. It should be a value.
  • FIG. 6 is a block diagram schematically showing a fluid transfer device 31 provided with the holding circuit 1 of FIG. 1 or the holding circuit 71 of FIG. 4 will be described.
  • FIG. 6 is a block diagram schematically showing a fluid transfer device 31 provided with the holding circuit 1 of FIG.
  • the fluid transfer device 31 includes a fluid transfer unit 33 that transfers a fluid, and a fluid transfer control unit 35 that controls the fluid transfer operation of the fluid transfer unit 33.
  • the fluid transfer unit 33 includes a valve selector 37 and a flow passage 39.
  • the valve selector 37 controls the inflow and outflow of the plurality of fluids into the flow path 39.
  • the valve selector 37 is provided with a holding circuit 1 1 shown in FIG. 1, an electromagnetic valve 41 1.
  • Holding circuit 1 1 controls the solenoid valve 41 1, to hold the operation of the solenoid valves by a low holding voltage.
  • the holding circuit 1 1 it may be with a holding circuit 71 1.
  • fluid transfer unit 33 may be one also having a retaining circuit 1 2 and the solenoid valve 41 2 in addition to the valve selector 37 parts.
  • Hold circuit 1 2 controls the solenoid valve 41 2, and holds the operation as an electromagnetic valve by a low holding voltage.
  • the holding circuit 1 2 it may be with a holding circuit 71 2.
  • the temperature of the solenoid valve rises only to the body temperature even if the solenoid valve is energized all day. Therefore, it became possible to transfer the fluid without damaging the antibody in the fluid.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Provided is a holding circuit etc. which, in a solenoid that is employed as an electromagnetic valve, makes it possible to suppress generation of counter electromotive force in the solenoid and also to prevent dissipation of magnetic flux density, while a conventional circuit layout is maintained. A capacitor (13) is connected in parallel with a resistance (9) that is connected in series with a solenoid (3). When a first switch (7) and a second switch (11) have been turned ON and the solenoid (3) is thereby driven by a rated voltage, and then the first switch (7) is turned OFF and a holding voltage is thereby held in the solenoid (3), the speed at which the voltage applied to the solenoid (3) is shifted from the rated voltage to the holding voltage is eased by the capacitor (13), and the counter electromotive force in the solenoid (3) is thereby absorbed and dissipation of magnetic flux density is prevented.

Description

保持回路、電磁弁、バルブセレクタ及び流体移送装置Holding circuit, solenoid valve, valve selector and fluid transfer device
 本発明は、保持回路、電磁弁、バルブセレクタ及び流体移送装置に関し、特に、ソレノイドに対して、定格電圧で駆動した後、定格電圧よりも低い保持電圧を印加して駆動状態を保持させる保持回路等を用いた省発熱、省電力に関する発明である。 The present invention relates to a holding circuit, a solenoid valve, a valve selector, and a fluid transfer device, and in particular, a holding circuit that applies a holding voltage lower than the rated voltage to hold a driving state after driving the solenoid with the rated voltage. It is an invention related to energy saving and power saving using
 電磁弁の発熱は、一般に望ましくない。そのため、従来より、電磁弁の発熱低減・省電力が図られてきた。例えば、図7に示す従来の保持回路51では、ソレノイド53と直列に抵抗59を接続することにより定格電圧を保持電圧に低下させる。また、図8は、図7のソレノイド53における電圧の経時変化を示し、図9は、ソレノイド53の印加電圧-磁束密度の関係を示すグラフである。 The heating of the solenoid valve is generally undesirable. Therefore, the heat generation reduction and power saving of the solenoid valve have been conventionally attempted. For example, in the conventional holding circuit 51 shown in FIG. 7, the rated voltage is reduced to the holding voltage by connecting the resistor 59 in series with the solenoid 53. Further, FIG. 8 shows the time-dependent change of the voltage in the solenoid 53 of FIG. 7, and FIG. 9 is a graph showing the relationship between the applied voltage of the solenoid 53 and the magnetic flux density.
 インダクタンスを有するソレノイドは、急激な電流変化に伴い、過渡現象として自己誘電作用による大きな逆起電力を生じる。逆起電力の大きさは、電流の変化速度に比例する。 A solenoid having an inductance generates a large back electromotive force due to a self-dielectric action as a transient phenomenon in response to a rapid current change. The magnitude of the back electromotive force is proportional to the rate of change of the current.
 図8の曲線A´―b-B´に示すように、ソレノイドに印加される電圧が定格電圧Vから保持電圧Vへと低下する際の電流変化の際に逆起電力が生じ、ソレノイドへの印加電圧が電磁弁としての機能を保持するのに必要な電圧(最低保持電圧)Vhminを下回る恐れがある。そのため、保持電圧Vを高めに設定して、逆起電力によって過渡的に電圧が大きく低下しても最低保持電圧を下回らせないようにしている。 As shown by the curve A'-b-B'in Fig. 8, the counter electromotive force is generated when the current change when the voltage applied to the solenoid is reduced to the holding voltage V h from the rated voltage V r, the solenoid There is a possibility that the voltage applied to it may fall below the voltage (minimum holding voltage) V hmin required to hold the function as a solenoid valve. Therefore, the holding voltage V h is set to a high value so that the minimum holding voltage is not reduced even if the voltage is significantly reduced due to the back electromotive force.
 しかしながら、保持電圧を高めに設定するため、電磁弁の発熱低減も省電力も不十分となっていた。さらに、発熱低減が不十分であるため、例えば、バルブセレクタ又は流体移送装置に用いられる電磁弁の発熱が移送流体中の抗体を死滅させないように、電磁弁に短時間だけ通電する運用がなされていた。このように、電磁弁に継続的に通電する運用ができないことで、バルブセレクタ又は流体移送装置の活用が制限されていた。 However, in order to set the holding voltage higher, the reduction of heat generation of the solenoid valve and the power saving have been insufficient. Furthermore, since the reduction of heat generation is insufficient, for example, the solenoid valve is energized only for a short time so that the heat generation of the solenoid valve used for the valve selector or the fluid transfer device does not kill the antibody in the transfer fluid. The As described above, the inability to continuously energize the solenoid valve limits the use of the valve selector or the fluid transfer device.
 さらに、図9に示すように、ソレノイド53に生じた逆起電力のためにいったんb点まで磁束密度が減少してしまう。そこから電圧が保持電圧Vに回復するのに伴って磁束密度もB点まで回復しようとするが、実際にはB´点でとどまってしまう。このように、消滅した磁束密度は完全には回復せずに、電磁弁の保持力が低下してしまっていた。 Furthermore, as shown in FIG. 9, the magnetic flux density once decreases to point b due to the back electromotive force generated in the solenoid 53. From there, as the voltage recovers to the holding voltage V h , the magnetic flux density also tries to recover to the point B, but it actually stays at the point B ′. Thus, the magnetic flux density which has disappeared is not completely recovered, and the holding power of the solenoid valve is lowered.
 ゆえに、本願発明は、従来の回路構成を維持しつつ、ソレノイドにおける逆起電力の発生を抑制し、さらに、磁束密度の消滅防止を可能とする保持回路等を提供することを目的とする。 Therefore, it is an object of the present invention to provide a holding circuit or the like that can suppress the generation of a back electromotive force in a solenoid while maintaining the conventional circuit configuration, and can further prevent the disappearance of the magnetic flux density.
 請求項1に係る発明は、直列に接続されたソレノイド及び抵抗を備え、前記ソレノイドに対して、定格電圧で駆動した後、前記定格電圧よりも低い保持電圧を印加して駆動状態を保持させる保持回路であって、前記ソレノイド及び前記抵抗に直列に接続され、前記ソレノイドを駆動するか否かを切り替える第1切替手段と、前記抵抗に並列に接続され、前記第1切替手段により前記定格電圧で駆動されてから所定の時間経過後に、オン状態からオフ状態となる第2切替手段と、前記抵抗に並列に接続され、前記ソレノイドの時定数よりも大きな時定数を有し、前記第2切替手段がオフ状態となった後に、前記ソレノイドに印加される電圧が前記定格電圧から前記保持電圧へ移行する速度を緩和して前記ソレノイドにおける逆起電力を吸収するコンデンサを備える。 The invention according to claim 1 includes a solenoid and a resistor connected in series, and after driving the solenoid at a rated voltage, a holding voltage lower than the rated voltage is applied to hold the driving state. A circuit, which is connected in series to the solenoid and the resistor, and is connected in parallel to the resistor, and is connected in parallel to the resistor; The second switching means is connected in parallel with the resistor, and the second switching means is connected in parallel with the resistor, and has a time constant larger than that of the solenoid after a predetermined time has elapsed since the driving, and the second switching means Reduces the speed at which the voltage applied to the solenoid shifts from the rated voltage to the holding voltage after the switch is turned off to absorb the back electromotive force in the solenoid A capacitor.
 請求項2に係る発明は、請求項1記載の保持回路であって、前記コンデンサの容量Cは、前記コンデンサの等価抵抗成分r、前記ソレノイドの等価抵抗成分r及び前記ソレノイドのインダクタンスLに対して、式(1)を満たすことを特徴とする。 The invention according to claim 2 is the holding circuit according to claim 1, wherein the capacitance C of the capacitor is the equivalent resistance component r C of the capacitor, the equivalent resistance component r L of the solenoid, and the inductance L of the solenoid. On the other hand, it is characterized by satisfying the formula (1).
 請求項3に係る発明は、請求項2記載の保持回路であって、前記第2切替手段は、前記コンデンサと並列に接続されたコンデンサである第2コンデンサであって、前記第2コンデンサの容量Cは、前記コンデンサの容量Cよりも大きいことを特徴とする。 The invention according to claim 3 is the holding circuit according to claim 2, wherein the second switching means is a second capacitor which is a capacitor connected in parallel with the capacitor, and the capacitance of the second capacitor C 2 is characterized in that it is larger than the capacitance C of the capacitor.
 請求項4に係る発明は、請求項3記載の保持回路であって、前記第1切替手段は、3つの接点を有するコンタクタであって、前記3つの接点のうち、第1接点は、前記第2コンデンサに接続され、第2接点は、前記定格電圧を印加する電源に接続され、第3接点は、前記ソレノイドに接続され、前記コンタクタは、前記第1接点と前記第2接点を接続することにより、前記第2コンデンサの充電を開始し、前記第1接点と前記第3接点を接続することにより、前記電源を含まずに、前記第2コンデンサ及び前記ソレノイドを含む閉回路を形成するものであり、前記閉回路の前記第3接点と前記ソレノイドとの間に、前記抵抗とは異なる放電抵抗を備えることを特徴とする。 The invention according to claim 4 is the holding circuit according to claim 3, wherein the first switching means is a contactor having three contacts, and the first contact of the three contacts is the contactor. The second contact is connected to a power source that applies the rated voltage, the third contact is connected to the solenoid, and the contactor connects the first contact and the second contact. Thus, the charging of the second capacitor is started, and the first contact and the third contact are connected to form a closed circuit including the second capacitor and the solenoid without the power supply. And a discharge resistance different from the resistance is provided between the third contact of the closed circuit and the solenoid.
 請求項5に係る発明は、請求項4記載の保持回路であって、前記電源の印加方向に対して逆方向に電流を流すダイオードをさらに備え、前記ダイオードは、前記放電抵抗とは直列に接続され、かつ、前記ソレノイドとは並列に接続され、前記放電抵抗の抵抗値は、前記抵抗の抵抗値よりも小さいことを特徴とする。 The invention according to claim 5 is the holding circuit according to claim 4, further comprising: a diode that allows current to flow in a direction reverse to the application direction of the power supply, wherein the diode is connected in series with the discharge resistor. And connected in parallel with the solenoid, wherein the resistance value of the discharge resistor is smaller than the resistance value of the resistor.
 請求項6に係る発明は、請求項1から5のいずれかに記載の保持回路を用いて制御される電磁弁である。 The invention according to claim 6 is a solenoid valve controlled by using the holding circuit according to any one of claims 1 to 5.
 請求項7に係る発明は、請求項6記載の電磁弁を備えるバルブセレクタである。 The invention according to claim 7 is a valve selector including the solenoid valve according to claim 6.
 請求項8に係る発明は、請求項6記載の電磁弁又は請求項7記載のバルブセレクタを備える流体移送装置である。 The invention according to claim 8 is a fluid transfer device including the solenoid valve according to claim 6 or the valve selector according to claim 7.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 本願各請求項に係る発明によれば、抵抗と並列に存在するコンデンサがソレノイドに生じる逆起電力を吸収し、ソレノイドに印加される電圧を定格電圧から保持電圧へとなだらかに減少させる。このため、例えば、ソレノイドに印加される電圧を最低保持電圧の値以上に保ちつつ保持電圧を下げることが可能となり、保持電圧を最低保持電圧にまで低減することも可能となる。また、逆起電力の発生が抑制されるため、磁束密度の減少は電磁弁の機能を安定に保持できる点でとどまり、磁束密度の消滅は生じない。 According to the invention of the present application, the capacitor existing in parallel with the resistor absorbs the back electromotive force generated in the solenoid, and the voltage applied to the solenoid is gradually reduced from the rated voltage to the holding voltage. Therefore, for example, it is possible to lower the holding voltage while keeping the voltage applied to the solenoid at least the value of the holding voltage, and it is also possible to reduce the holding voltage to the minimum holding voltage. In addition, since the generation of the back electromotive force is suppressed, the decrease in the magnetic flux density remains at the point where the function of the solenoid valve can be stably maintained, and the disappearance of the magnetic flux density does not occur.
 なお、例えば特許文献1や特許文献2に記載されているように、単に、ソレノイドと並列にダイオードを備え、抵抗と並列にコンデンサを備える回路は知られている。 For example, as described in Patent Document 1 and Patent Document 2, there is known a circuit that simply includes a diode in parallel with a solenoid and a capacitor in parallel with a resistor.
 しかしながら、特許文献1において、コンデンサC1はタイマー機能を実現するためのものである。コンデンサC2は、特許文献1の明細書中に記載の通り、異常発振を防止して、トランジスタQ1を保護するためのものである。そのため、通常は1μF以下程度の小容量のコンデンサが用いられる。このように、特許文献1のコンデンサC1及びC2の容量は、ソレノイドのインダクタンスとは無関係に決定されるものである。一方、本願発明のコンデンサは、特許文献1記載のコンデンサとは回路における役割が異なるものであり、その容量は、ソレノイドが発生させる過渡的な大規模逆起電力を吸収するため、ソレノイド及び抵抗との関係で決定されるものである。 However, in Patent Document 1, the capacitor C1 is for realizing the timer function. The capacitor C2 is for protecting the transistor Q1 by preventing abnormal oscillation as described in the specification of Patent Document 1. Therefore, a capacitor with a small capacity of about 1 μF or less is usually used. Thus, the capacitances of the capacitors C1 and C2 of Patent Document 1 are determined independently of the inductance of the solenoid. On the other hand, the capacitor of the present invention is different from the capacitor described in Patent Document 1 in the role in the circuit, and its capacity is to absorb the transient large-scale back electromotive force generated by the solenoid. It is decided by the relation of
 また、特許文献2は、作動のスピードアップを達成するためのものであり(すなわち、特許文献2における第3図の曲線a、bを曲線cに近づけるためのものであり)、本願発明の目的であるソレノイドにおける逆起電力の抑制という課題解決には直接的な関連性がないものである。 Further, Patent Document 2 is for achieving speeding up of operation (that is, for bringing the curves a and b of FIG. 3 in Patent Document 2 closer to the curve c), the object of the present invention The solution of the problem of suppression of the back electromotive force in the solenoid is not directly relevant.
 特許文献2の第3図曲線cでは、逆起電力が生じていないようにも見える。しかし、これは、ソレノイドに並列に接続されるダイオードにより生じるものである。特許文献2記載のコンデンサは、特許文献1のコンデンサC1と同様に、遅延回路として、トランジスタを制御するものである。よって、特許文献2記載のコンデンサは、ソレノイドに印加される電圧を制御するためのものではない。特許文献2記載のコンデンサもまた、本願発明のコンデンサとは回路における役割が異なるものである。 In FIG. 3 curve c of Patent Document 2, it appears that no back electromotive force is generated. However, this is caused by a diode connected in parallel to the solenoid. The capacitor described in Patent Document 2 controls a transistor as a delay circuit in the same manner as the capacitor C1 of Patent Document 1. Therefore, the capacitor described in Patent Document 2 is not for controlling the voltage applied to the solenoid. The capacitor described in Patent Document 2 also has a different role in the circuit from the capacitor of the present invention.
 本願各請求項に係る発明によれば、大幅な回路構成の変更を要せずに、逆起電力の抑制を可能とすることができる。 According to the invention according to each claim of the present application, it is possible to suppress the back electromotive force without requiring a significant change in the circuit configuration.
 また、本願請求項2に係る発明によれば、式(1)に基づいてソレノイドの逆起電力を抑制するコンデンサの値を定めることが可能となる。 Further, according to the invention of claim 2 of the present application, it becomes possible to determine the value of the capacitor for suppressing the back electromotive force of the solenoid based on the equation (1).
 さらに、本願請求項3に係る発明によれば、第2切替手段としてコンデンサよりも容量の大きな第2コンデンサを用いる。そのため、電磁弁を駆動させるために十分な時間を確保することができ、タイマー回路なしにタイマー機能を実現することが可能となる。したがって、タイマー回路を要する場合と比べて、保持回路の回路サイズ、故障確率、製作コストを低減させることがさらに容易となる。 Further, according to the invention of claim 3 of the present application, a second capacitor having a larger capacity than the capacitor is used as the second switching means. Therefore, sufficient time for driving the solenoid valve can be secured, and the timer function can be realized without the timer circuit. Therefore, as compared with the case where the timer circuit is required, the circuit size of the holding circuit, the failure probability, and the manufacturing cost can be further easily reduced.
 さらに、本願請求項4に係る発明によれば、電源を切ったときに第2コンデンサ及びソレノイドを含む閉回路が形成される。したがって、定格電圧から保持電圧に下げる際に加えて、電源を切った際にもソレノイドに発生する逆起電力を緩和することが可能となる。 Furthermore, according to the fourth aspect of the present invention, when the power is turned off, a closed circuit including the second capacitor and the solenoid is formed. Therefore, in addition to lowering the rated voltage to the holding voltage, it is possible to reduce the back electromotive force generated in the solenoid even when the power is turned off.
 ここで、コンデンサ及び第2コンデンサが完全に放電される前に、再び電磁弁を駆動するために第1接点及び第2接点が接続されると、第2コンデンサが第2スイッチに代わる役割を果たせない。したがって、電源を切った際にはコンデンサ及び第2コンデンサが速やかに放電されることが重要である。 Here, when the first contact and the second contact are connected to drive the solenoid valve again before the capacitor and the second capacitor are completely discharged, the second capacitor acts as a substitute for the second switch. Absent. Therefore, it is important that the capacitor and the second capacitor be quickly discharged when the power is turned off.
 そこで、本願請求項4に係る発明によれば、コンタクタが電源による電圧印加を停止させたときに、第2コンデンサ及び抵抗を含む閉回路だけでなく、第2コンデンサ及びソレノイドを含む閉回路も形成されることとなる。このため、第2コンデンサを速やかに放電させることが容易となる。 Therefore, according to the invention of claim 4, when the contactor stops the voltage application by the power supply, not only the closed circuit including the second capacitor and the resistor but also the closed circuit including the second capacitor and the solenoid is formed. It will be done. Therefore, it is easy to discharge the second capacitor quickly.
 さらに、本願請求項5に係る発明によれば、第2接点に接続された放電抵抗の抵抗値は、第1接点に接続された抵抗の抵抗値よりも小さい。しかも、ダイオードが、放電の際に流れる電流にできるだけソレノイドを迂回させる。したがって、コンデンサ及び第2コンデンサに蓄積した電荷を速やかに放電させることがさらに容易となる。 Furthermore, according to the invention of claim 5 of the present application, the resistance value of the discharge resistor connected to the second contact is smaller than the resistance value of the resistor connected to the first contact. Moreover, the diode allows the current flowing during discharge to bypass the solenoid as much as possible. Therefore, it becomes easier to quickly discharge the charge accumulated in the capacitor and the second capacitor.
 さらに、本願請求項6に係る発明によれば、保持電圧が従来よりも低い電磁弁が実現可能となる。また、本願請求項7及び8によれば、そのような電磁弁を用いたバルブセレクタ及び流体移送装置がそれぞれ実現可能となる。したがって、本願請求項8に係る発明によれば、電磁弁の発熱を低減することにより、移送される流体が加熱されることを抑制でき、長時間通電することも可能な電磁弁を備えたバルブセレクタ又は流体移送装置を実現できる。このため、バルブセレクタ又は流体移送装置の活用の幅が広がり、例えば抗体を含む流体のような熱に弱い流体へのダメージを低減しつつ移送することが容易となる。 Furthermore, according to the sixth aspect of the present invention, it is possible to realize a solenoid valve whose holding voltage is lower than that of the related art. Further, according to claims 7 and 8 of the present application, a valve selector and a fluid transfer device using such a solenoid valve can be realized respectively. Therefore, according to the invention of claim 8 of the present application, by reducing the heat generation of the solenoid valve, it is possible to suppress that the fluid to be transferred is heated, and a valve provided with a solenoid valve which can be energized for a long time A selector or fluid transfer device can be realized. For this reason, the range of utilization of the valve selector or the fluid transfer device is expanded, and it becomes easy to transfer while reducing the damage to the heat-sensitive fluid such as the fluid containing the antibody.
特開平3-277884号公報JP-A-3-277884 特開昭49-78225号公報JP-A-49-78225
本願発明の実施の形態に係る保持回路を示す回路図である。FIG. 1 is a circuit diagram showing a holding circuit according to an embodiment of the present invention. 図1の保持回路において、電圧の経時変化を示すグラフである。In the holding circuit of FIG. 1, it is a graph which shows a time-dependent change of a voltage. 図1の保持回路において、ソレノイドの印加電圧-磁束密度の関係を示すグラフである。7 is a graph showing the relationship between applied voltage and magnetic flux density of a solenoid in the holding circuit of FIG. 1; 本願発明の別の実施の形態に係る保持回路を示す回路図である。It is a circuit diagram showing the maintenance circuit concerning another embodiment of the present invention. 図4の保持回路において、電圧及び電流の経時変化を示すグラフである。In the holding circuit of FIG. 4, it is a graph which shows a time-dependent change of a voltage and an electric current. 図1又は図4の保持回路を備えた流体移送装置の概要を示すブロック図である。It is a block diagram which shows the outline | summary of the fluid transfer apparatus provided with the holding | maintenance circuit of FIG. 1 or FIG. 従来の保持回路を示す回路図である。It is a circuit diagram showing a conventional holding circuit. 図7の保持回路において、電圧の経時変化を示すグラフである。It is a graph which shows a time-dependent change of a voltage in the holding | maintenance circuit of FIG. 図7の保持回路において、ソレノイドの印加電圧-磁束密度の関係を示すグラフである。FIG. 8 is a graph showing the relationship between applied voltage and magnetic flux density of a solenoid in the holding circuit of FIG. 7;
 以下、図面を参照して、本願発明の実施例について述べる。なお、本願発明は、実施例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the examples.
 図1は、本願発明の実施例に係る保持回路1を示す回路図である。図2は、図1の保持回路1において、電圧の経時変化を示すグラフである。 FIG. 1 is a circuit diagram showing a holding circuit 1 according to an embodiment of the present invention. FIG. 2 is a graph showing time-dependent changes in voltage in the holding circuit 1 of FIG.
 流体を移送する流体移送装置には、一般に、流体を種類ごとに移送するために用いるバルブセレクタが備えられている。バルブセレクタにおいては、流体を通す管での開閉制御に電磁弁が広く用いられている。図1の保持回路1におけるソレノイド3は、例えば、電磁弁として用いられるものである。電磁弁として用いられるソレノイドは、弁として駆動させるための定格電圧が印加された後、電磁弁の開閉を保持するための保持電圧として、定格電圧よりも小さい電圧が印加される。ソレノイドは、例えば消費電力1Wのものであれば、定格電圧で1分半ほど通電すると80℃程度の高温となってしまう。抗体を含む流体を流体移送装置で移送する場合、このような電磁弁を用いたとすれば、電磁弁の発熱によってバルブセレクタが高温となり、移送される抗体が死滅する恐れがある。バルブセレクタの加熱を招くほかにも、電磁弁の発熱は一般に望ましくない。したがって、ソレノイドへの印加電圧を低減する保持回路が開発されてきたが、ソレノイドに発生する逆起電力が印加電圧の低減を妨げていた。 Fluid transfer devices that transfer fluid are generally equipped with a valve selector that is used to transfer fluid by type. In the valve selector, a solenoid valve is widely used for open / close control in a pipe through which fluid flows. The solenoid 3 in the holding circuit 1 of FIG. 1 is used, for example, as a solenoid valve. In a solenoid used as a solenoid valve, after a rated voltage for driving as a valve is applied, a voltage smaller than the rated voltage is applied as a holding voltage for holding the opening and closing of the solenoid valve. If the solenoid has, for example, a power consumption of 1 W, it will reach a high temperature of about 80 ° C. when it is energized for one and a half minutes at the rated voltage. When fluid containing an antibody is transferred by a fluid transfer device, if such a solenoid valve is used, the heat generated by the solenoid valve may cause the valve selector to be at a high temperature, and the transferred antibody may be killed. Besides causing heating of the valve selector, heat generation of the solenoid valve is generally undesirable. Therefore, although a holding circuit has been developed to reduce the voltage applied to the solenoid, the back electromotive force generated in the solenoid has prevented the reduction of the applied voltage.
 図1の保持回路1において、ソレノイド3(本願請求項の「ソレノイド」の一例)と直列に、電源電圧がVであり直流電流を供給する直流電源5(本願請求項の「電源」の一例)と、導通状態(本願請求項の「オン状態」の一例)と非導通状態(本願請求項の「オフ状態」の一例)を切り換えてソレノイド3に流れる電流の有無を切り替える第1スイッチ7(本願請求項の「第1切替手段」の一例)と、抵抗9(本願請求項の「抵抗」の一例)とが接続されている。抵抗9と並列に第2スイッチ11(本願請求項の「第2切替手段」の一例)及びコンデンサ13(本願請求項の「コンデンサ」の一例)が接続されている。第2スイッチ11は、第1スイッチ7が導通状態になってから(オンしてから)一定時間後に導通状態(オン)から非導通状態(オフ)となる。コンデンサ13は、第2スイッチ11が非導通状態となった後に、ソレノイド3に印加される電圧が定格電圧から保持電圧へ移行する速度を緩和してソレノイド3における逆起電力を吸収する。また、ソレノイド3と並列にダイオード15が接続されている。 In the holding circuit 1 of FIG. 1, a DC power supply 5 that supplies a direct current with a power supply voltage of V in series with a solenoid 3 (an example of the "solenoid" in the present application) (an example of the "power supply" in the present application) And a first switch 7 (the present invention switches the presence or absence of a current flowing through the solenoid 3 by switching the conduction state (an example of the “on state” in the present application claim) and the non-conduction state (an example of the An example of the "first switching means" in the claims and a resistor 9 (an example of the "resistor" in the claims of the present application) are connected. A second switch 11 (an example of a "second switching means" in the claims of the present application) and a capacitor 13 (an example of a "capacitor" in the claims of the present application) are connected in parallel to the resistor 9. The second switch 11 changes from the conductive state (on) to the non-conductive state (off) after a predetermined time after the first switch 7 becomes conductive (turned on). The capacitor 13 absorbs the back electromotive force in the solenoid 3 by relaxing the speed at which the voltage applied to the solenoid 3 shifts from the rated voltage to the holding voltage after the second switch 11 becomes nonconductive. Also, a diode 15 is connected in parallel with the solenoid 3.
 なお、ダイオード15は、ソレノイド3の逆起電力に起因する第1スイッチ7及び第2スイッチ11の故障を防止するためのものである。ただし、接続しないとすることもできる。 The diode 15 is for preventing the failure of the first switch 7 and the second switch 11 caused by the back electromotive force of the solenoid 3. However, it is possible not to connect.
 図1のコンデンサ13の動作を具体的に説明するため、まず、これが存在しない場合である図7の従来の保持回路51の動作について具体的に説明する。図7の保持回路51において、ソレノイド53、直流電源55、第1スイッチ57、抵抗59、第2スイッチ61及びダイオード63は、それぞれ、図1のソレノイド3、直流電源5、第1スイッチ7、抵抗9、第2スイッチ11、ダイオード15に対応する。 In order to specifically explain the operation of the capacitor 13 of FIG. 1, first, the operation of the conventional holding circuit 51 of FIG. 7 which does not exist will be specifically described. In the holding circuit 51 of FIG. 7, the solenoid 53, the DC power supply 55, the first switch 57, the resistor 59, the second switch 61, and the diode 63 are respectively the solenoid 3, DC power supply 5, first switch 7 and resistor of FIG. 9 corresponds to the second switch 11 and the diode 15.
 図8及び図9を参照して、図7の従来の保持回路51の動作について具体的に説明する。図8のグラフは、保持回路51において、電圧の経時変化を示すグラフである。横軸は経過時間、縦軸は電圧の大きさを示す。図9のグラフは、保持回路51において、ソレノイド53の印加電圧-磁束密度の関係を示すグラフである。 The operation of the conventional holding circuit 51 of FIG. 7 will be specifically described with reference to FIGS. 8 and 9. The graph of FIG. 8 is a graph showing temporal changes in voltage in the holding circuit 51. The horizontal axis indicates the elapsed time, and the vertical axis indicates the magnitude of the voltage. The graph of FIG. 9 is a graph showing the relationship between the applied voltage of the solenoid 53 and the magnetic flux density in the holding circuit 51.
 図8において、時刻t00において第1スイッチ57がオン(D点)となった時に、第2スイッチ61がオンであり、ソレノイド53に直流電源55の全電圧Vが印加される。このとき、ソレノイド53には定格電圧Vが印加されて、電磁弁として駆動する(A点)。時刻t01において、第2スイッチ61がタイマー機能によりオフとなり(A´点)、電源電圧Vが抵抗59にも分散して印加される。このとき、ソレノイド53に流れる電流の急激な減少に伴い、ソレノイド53に逆起電力が生じる。その結果、ソレノイド53に印加される電圧は保持電圧Vよりも大きく減少する(b点)。その後、時刻t02において、電圧は保持電圧Vまで回復する(B´点)。時刻t03において、第1スイッチ57をオフとすると(C点)、再びソレノイド33に逆起電力が生じ(C´点)、その後ソレノイドへの印加電圧はゼロとなる(D´点)。 8, when the first switch 57 is turned on (D point) at time t 00, the second switch 61 is turned on, the total voltage V of the DC power supply 55 is applied to the solenoid 53. At this time, the rated voltage Vr is applied to the solenoid 53, and the solenoid 53 is driven as a solenoid valve (point A). At time t 01 , the second switch 61 is turned off by the timer function (point A ′), and the power supply voltage V is also dispersedly applied to the resistor 59. At this time, with the rapid decrease of the current flowing to the solenoid 53, a back electromotive force is generated in the solenoid 53. As a result, the voltage applied to the solenoid 53 decreases more than the holding voltage V h (point b). Thereafter, at time t 02 , the voltage recovers to the holding voltage V h (point B ′). At time t 03, when the first switch 57 is turned off (C point), again the counter electromotive force is generated in the solenoid 33 (C'point), the voltage applied subsequent to the solenoid is zero (D'point).
 図9は、この駆動サイクルにおけるソレノイド53の磁束密度変化を示す。定格電圧が印加されて励磁された(A(A´)点)後、第2スイッチ61がオフとなる。ここで、本来なら電磁弁としての機能を安定に保持できるB点にとどまることが理想的だが、ソレノイド53に生じた逆起電力のためにいったんb点まで磁束密度が減少してしまう。そこから電圧がVに回復するのに伴って磁束密度もB点まで回復しようとするが、実際にはB´点でとどまってしまう。すなわち、消滅した磁束密度は完全には回復しない。 FIG. 9 shows the change in magnetic flux density of the solenoid 53 in this drive cycle. After the rated voltage is applied and excited (point A (A ')), the second switch 61 is turned off. Here, although it is ideally ideal to stay at the point B where the function as the solenoid valve can be stably held, the magnetic flux density once decreases to the point b due to the back electromotive force generated in the solenoid 53. From there, as the voltage recovers to V h , the magnetic flux density also tries to recover to the point B, but actually it stays at the point B ′. That is, the eliminated magnetic flux density is not completely recovered.
 このように、図7の従来の保持回路51では、図8のA´―b-B´に示すように、第2スイッチ61の非導通状態への移行時にソレノイド53において逆起電力が発生する。そして、図9に示すように、消滅した磁束密度は完全には回復せず、電磁弁の保持力が低下してしまっていた。 Thus, in the conventional holding circuit 51 of FIG. 7, as shown by A'-b-B 'of FIG. 8, the back electromotive force is generated in the solenoid 53 when the second switch 61 shifts to the non-conductive state. . Then, as shown in FIG. 9, the extinguished magnetic flux density was not completely recovered, and the holding power of the solenoid valve was lowered.
 続いて、図1の本願発明の実施例に係る保持回路1について、保持回路1の特徴であるコンデンサ13を中心に説明する。 Subsequently, the holding circuit 1 according to the embodiment of the present invention of FIG. 1 will be described focusing on the capacitor 13 which is the feature of the holding circuit 1.
 コンデンサ13は、第1スイッチ7及び第2スイッチ11の導通状態では、電荷が全く充電されていない。第2スイッチ11がオフとなった瞬間には抵抗ゼロで充電が開始され、フル充電されると抵抗無限大となる。すなわち、コンデンサ13は、抵抗ゼロから無限大まで抵抗値が徐々に増大する可変抵抗とみることができる。第2スイッチ11が非導通状態となった後に、抵抗ゼロから十分大きくなるまでの変化により、ソレノイド3に印加される電圧が定格電圧から保持電圧へ移行する速度を緩和してソレノイド3における逆起電力を吸収する。 In the conductive state of the first switch 7 and the second switch 11, the capacitor 13 is not charged at all. At the moment when the second switch 11 is turned off, charging starts with resistance zero, and when fully charged, resistance becomes infinite. That is, the capacitor 13 can be regarded as a variable resistor whose resistance value gradually increases from zero resistance to infinity. After the second switch 11 becomes non-conductive, the voltage applied to the solenoid 3 is reduced from the rated voltage to the holding voltage by the change from the resistance zero to a sufficiently large value, and the back electromotive force is generated in the solenoid 3 Absorb power.
 コンデンサ13の容量は、ソレノイド3における大規模な逆起電力をコンデンサ13が吸収するために、ソレノイド3のインダクタンスに見合う容量が必要不可欠である。ソレノイド3の逆起電力によって生じる電流ILは、式(2)で表される。ここで、TLはソレノイド3の時定数であり、定数I、ソレノイド3のインダクタンスL及びソレノイド3に固有の等価抵抗成分rを用いて式(3)で表される。 The capacity of the capacitor 13 is required to have a capacity corresponding to the inductance of the solenoid 3 in order for the capacitor 13 to absorb large-scale back electromotive force in the solenoid 3. The current I L generated by the back electromotive force of the solenoid 3 is expressed by equation (2). Here, T L is a time constant of the solenoid 3 and is expressed by the equation (3) using a constant I 0 , an inductance L of the solenoid 3 and an equivalent resistance component r L inherent to the solenoid 3.
 また、コンデンサ13が吸収する電流は、式(4)で表される。ここで、TCはコンデンサ13の時定数であり、定数I、コンデンサ13の容量C及びコンデンサ13に固有の等価抵抗成分rを用いて式(5)で表される。 Further, the current absorbed by the capacitor 13 is expressed by equation (4). Here, T C is a time constant of the capacitor 13 and is expressed by the equation (5) using the constant I 1 , the capacitance C of the capacitor 13 and the equivalent resistance component r C inherent to the capacitor 13.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ソレノイド3の逆起電力をコンデンサ13が吸収するには、コンデンサ13の時定数Tがソレノイド3の時定数Tよりも大きいことが必要である。すなわち、式(6)を満たす必要がある。式(3)、式(5)及び式(6)より、式(7)が成立する。そして、式(7)をCについて整理すると、式(8)が成立する。 In order for the capacitor 13 to absorb the back electromotive force of the solenoid 3, the time constant T c of the capacitor 13 needs to be larger than the time constant T L of the solenoid 3. That is, it is necessary to satisfy the equation (6). Formula (7) is materialized from Formula (3), Formula (5), and Formula (6). And if Formula (7) is arranged about C, Formula (8) will be materialized.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 実務上、コンデンサ13の容量を決定するためには、例えば、使用するソレノイド3のインダクタンス、等価抵抗成分r、等価抵抗成分rをテスターなどで計測し、得られたインダクタンスに見合ったコンデンサを用意すればよい。 In practice, in order to determine the capacity of the capacitor 13, for example, the inductance of the solenoid 3 to be used, the equivalent resistance component r C and the equivalent resistance component r L are measured by a tester or the like, and the capacitor corresponding to the obtained inductance is You just have to prepare.
 以下では、コンデンサ13の動作など、図7の保持回路51の動作とは異なる点を中心に、図2及び図3を参照して説明する。図2の上のグラフは、第1切替手段7のオン・オフの経時変化を示す。図2の下のグラフは、ソレノイド3に印加される電圧を示す。横軸は経過時間、縦軸は電圧の大きさを示す。図3は、図1の保持回路において、ソレノイドの印加電圧-磁束密度の関係を示すグラフである。 The following description will be made with reference to FIGS. 2 and 3, focusing on differences from the operation of the holding circuit 51 of FIG. 7 such as the operation of the capacitor 13. The upper graph in FIG. 2 shows the on / off time-dependent change of the first switching means 7. The lower graph of FIG. 2 shows the voltage applied to the solenoid 3. The horizontal axis indicates the elapsed time, and the vertical axis indicates the magnitude of the voltage. FIG. 3 is a graph showing the relationship between applied voltage and magnetic flux density of the solenoid in the holding circuit of FIG.
 <電磁弁の駆動>
 図2を参照して、電磁弁の駆動時である時刻t0において、第1スイッチ7がオン(D点)となった時に、第2スイッチ11がオンであり、ソレノイド3に電源電圧Vが全て定格電圧として印加される。このとき、ソレノイド3には定格電圧Vが印加されて、電磁弁として駆動する(A点)。
<Drive of solenoid valve>
Referring to FIG. 2, at time t 0 is the time of driving of the solenoid valve, when the first switch 7 is turned on (D point), the second switch 11 is turned on, the power supply voltage V to the solenoid 3 All are applied as a rated voltage. At this time, the rated voltage V r is applied to the solenoid 3 to drive it as a solenoid valve (point A).
 <電磁弁の保持>
 その後、時刻t1において、第2スイッチ11がタイマー機能によりオフになると(A´)、抵抗9にも電圧が分散して印加され、保持電圧は定格電圧よりも小さくなる。ソレノイド3に印加される電圧が定格電圧から保持電圧へと減少する際の動作について説明する。
<Holding of solenoid valve>
Then, at time t 1, the second switch 11 is turned off by a timer function (A'), a voltage is applied to distributed to the resistor 9, the holding voltage is smaller than the rated voltage. The operation when the voltage applied to the solenoid 3 decreases from the rated voltage to the holding voltage will be described.
 第2スイッチ11がタイマー機能によりオフになると、抵抗9及びコンデンサ13にも電圧が印加されることにより、コンデンサ13に充電され始める。コンデンサ13が充電される間は、電流にとってのコンデンサ13の抵抗値は緩やかに上昇する。そのため、並列に接続されている抵抗9及びコンデンサ13への分圧は緩やかに上昇する。その間、ソレノイド3への分圧は緩やかに減少し、電流の減少は緩やかなものとなる。 When the second switch 11 is turned off by the timer function, the voltage is also applied to the resistor 9 and the capacitor 13 so that the capacitor 13 starts to be charged. While the capacitor 13 is being charged, the resistance value of the capacitor 13 for the current gradually increases. Therefore, the voltage division to the resistor 9 and the capacitor 13 connected in parallel gradually increases. Meanwhile, the partial pressure to the solenoid 3 gradually decreases, and the decrease in current becomes gentle.
 ソレノイド3において生じうる逆起電力は一般に大きい。しかし、コンデンサ13の容量は、式(8)に基づいて決定されており、ソレノイド3の逆起電力を吸収するのに十分な容量である。 The back electromotive force that can occur in the solenoid 3 is generally large. However, the capacity of the capacitor 13 is determined based on the equation (8), which is a capacity sufficient to absorb the back electromotive force of the solenoid 3.
 結果として、逆起電力が抑制されてソレノイド3に印加される電圧は、時刻t1から時刻t2にかけて、A´からBへとゆるやかに減少する。そのため、保持回路1においては、保持電圧Vを小さくでき、電磁弁からの発熱を抑えるとともに省電力を図ることが容易となる。保持電圧Vを最低保持電圧にまで低減して設定することも可能である。 As a result, the voltage back electromotive force is applied is suppressed in the solenoid 3, the period from time t 1 to time t 2, the gradually decreases to B from A'. Therefore, in the holding circuit 1, the holding voltage V h can be reduced, and heat generation from the solenoid valve can be suppressed and power saving can be facilitated. It is also possible to reduce and set the holding voltage V h to the minimum holding voltage.
 さらに、図3は、保持回路1を用いた駆動サイクルにおけるソレノイド3の磁束密度変化を示すグラフである。定格電圧Vが印加されて励磁された(A(A´)点)後、第2切替手段11がオフとなる。保持回路1においては、ソレノイド3で逆起電力の発生が抑制されるため、磁束密度の減少は電磁弁の機能を安定に保持できるB点でとどまる。このように、図1の保持回路1では、磁束密度の消滅は生じない。 Furthermore, FIG. 3 is a graph showing a change in magnetic flux density of the solenoid 3 in a drive cycle using the holding circuit 1. After the rated voltage V r is applied and excited (point A (A ′)), the second switching means 11 is turned off. In the holding circuit 1, since the generation of the back electromotive force is suppressed by the solenoid 3, the reduction of the magnetic flux density remains at the point B where the function of the solenoid valve can be stably held. Thus, in the holding circuit 1 of FIG. 1, the extinction of the magnetic flux density does not occur.
 保持回路1と保持回路51の比較のために、一例として、図7における直流電源55として24Vの直流電源、ソレノイド53として高砂電気株式会社のSTV-2-M6KG DC24Vのソレノイドを用いて、抵抗59を変化させたときにソレノイド53が電磁弁としての機能を保持できるか否かのテストを行った。その結果、抵抗59として820Ωの抵抗を用いた場合、通常印加される5.7V程度の電圧が図8における保持電圧Vとしてソレノイド53に印加され、電磁弁としての機能が確実に保持された。1640Ωの抵抗を用いた場合には、保持電圧として3.28Vがソレノイド53に印加され、かろうじて保持されていた。しかし、1690Ωの抵抗を用いた場合、保持電圧として3.18Vがソレノイド53に印加されたが、ソレノイド53は電磁弁としての機能を保持できなかった。また、1740Ωの抵抗を用いた場合、保持電圧として3.10Vが印加され、やはり保持できなかった。 For comparison of holding circuit 1 and holding circuit 51, as an example, a DC power supply of 24 V as DC power supply 55 in FIG. 7 and a solenoid of STV-2-M6KG DC 24 V of Takasago Electric Co., Ltd. as solenoid 53, resistance 59 Was tested to determine whether the solenoid 53 could maintain its function as a solenoid valve. As a result, when a resistance of 820 Ω is used as the resistor 59, a voltage of about 5.7 V which is normally applied is applied to the solenoid 53 as the holding voltage V h in FIG. 8 and the function as a solenoid valve is reliably held. . When a 1640 ohm resistor was used, 3.28 V was applied to the solenoid 53 as a holding voltage and was barely held. However, when a resistance of 1690Ω was used, 3.18 V was applied to the solenoid 53 as a holding voltage, but the solenoid 53 could not maintain its function as a solenoid valve. In addition, when a resistance of 1740 Ω was used, 3.10 V was applied as a holding voltage and could not be held again.
 一方、図1において、直流電源5として24Vの直流電源、ソレノイド3として高砂電気株式会社のSTV-2-M6KG DC24Vのソレノイド、さらにコンデンサ13として1000μFのコンデンサを用いて、同様のテストを行った。その結果、抵抗9として1690Ωの抵抗を用いた場合にも、ソレノイド3の保持電圧Vは緩やかに3.18Vに落ち着き、電磁弁としての機能を保持した。さらに、抵抗9として1740Ωの抵抗を用いた場合にも、ソレノイド3の保持電圧は緩やかに3.09Vに落ち着き、同じく電磁弁としての機能を保持した。 On the other hand, in FIG. 1, a similar test was performed using a 24 V DC power supply as the DC power supply 5, a STV-2-M6KG 24 K DC solenoid of Takasago Electric Co., Ltd. as the solenoid 3, and a 1000 μF capacitor as the capacitor 13. As a result, even when a resistance of 1690 Ω was used as the resistance 9, the holding voltage V h of the solenoid 3 gradually settled to 3.18 V, and the function as the solenoid valve was maintained. Furthermore, even when a resistance of 1740 Ω was used as the resistance 9, the holding voltage of the solenoid 3 gradually settled to 3.09 V, and the same function as the solenoid valve was maintained.
 続いて、本願発明に係る保持回路の別の実施例について、図4及び図5を参照して説明する。図4は、本願発明の別の実施の形態に係る保持回路71を示す回路図である。図5は、保持回路71において、電圧及び電流の経時変化を示すグラフである。以下、保持回路71について、保持回路1とは異なる点を中心に説明する。 Subsequently, another embodiment of the holding circuit according to the present invention will be described with reference to FIG. 4 and FIG. FIG. 4 is a circuit diagram showing a holding circuit 71 according to another embodiment of the present invention. FIG. 5 is a graph showing temporal changes in voltage and current in the holding circuit 71. As shown in FIG. Hereinafter, the holding circuit 71 will be described focusing on differences from the holding circuit 1.
 保持回路71は、第2スイッチ11の代わりにコンデンサ81(本願請求項の「第2コンデンサ」の一例)を備える。コンデンサ81は、コンデンサ13に対応するコンデンサ83(本願請求項の「コンデンサ」の別の一例)とは異なるものであり、コンデンサ83と並列に接続されている。また、コンデンサ81の容量は、コンデンサ83の容量よりも大きいものである。 The holding circuit 71 includes a capacitor 81 (an example of a “second capacitor” in the claims of the present application) instead of the second switch 11. The capacitor 81 is different from the capacitor 83 (another example of the “capacitor” in the claims of the present application) corresponding to the capacitor 13, and is connected in parallel to the capacitor 83. Also, the capacitance of the capacitor 81 is larger than the capacitance of the capacitor 83.
 また、保持回路71は、第1スイッチ7に対応するスイッチの代わりにコンタクタ77(本願請求項の「コンタクタ」の一例)を備える。コンタクタ77は、3つの接点を有しており、それぞれ、コンデンサ81に接続された第1接点89(本願請求項の「第1接点」の一例)と、直流電源75(本願請求項の「電源」の別の一例)に接続された第2接点91(本願請求項の「第2接点」の一例)と、ソレノイド73(本願請求項の「ソレノイド」の別の一例)に接続された第3接点93(本願請求項の「第3接点」の一例)である。コモン接点である第1接点89は、直流電源75が電圧を印加する際には第2接点91に接続される。また、第1接点89は、直流電源75が電圧を印加しない際には、第3接点93に接続される。 In addition, the holding circuit 71 includes a contactor 77 (an example of the “contactor” in the claims of the present application) instead of the switch corresponding to the first switch 7. The contactor 77 has three contacts, each of which is a first contact 89 (an example of a "first contact" in the present claim) connected to the capacitor 81, and a DC power supply 75 (the power supply in the present claim). And the third contact connected to the solenoid 73 (another example of the “solenoid” in the present application). It is a contact point 93 (an example of the “third contact point” in the claims of the present application). The first contact 89, which is a common contact, is connected to the second contact 91 when the DC power supply 75 applies a voltage. The first contact point 89 is connected to the third contact point 93 when the DC power supply 75 does not apply a voltage.
 さらに、保持回路71は、第3接点93とソレノイド73との間に抵抗87(本願請求項の「放電抵抗」の一例)を備える。抵抗87は、コンデンサ81を速やかに放電させるための抵抗である。 Further, the holding circuit 71 includes a resistor 87 (an example of the “discharge resistor” in the claims) between the third contact point 93 and the solenoid 73. The resistor 87 is a resistor for rapidly discharging the capacitor 81.
 続いて、保持回路71の動作について説明する。 Subsequently, the operation of the holding circuit 71 will be described.
 <電磁弁の駆動>
 時刻t10にコンタクタ77が第1接点89と第2接点91を接続すると、その直後にソレノイド73に定格電圧が印加されて、時刻t11にかけて電磁弁が駆動する(A点―A´点)。ここで、t10からt11は、非常に短い時間である。この間、コンデンサ81及びコンデンサ83は、電流を抵抗なく流す状態(本願請求項の「オン状態」の別の一例)であり、コンデンサ81及びコンデンサ83に流れる電流の和iは、ソレノイド73の定格電流である。
<Drive of solenoid valve>
When the contactor 77 at time t 10 is connected to the first contact point 89 and the second contact 91, the in rated voltage is applied to the solenoid 73 immediately after the solenoid valve is driven to time t 11 (A point -A' point) . Here, t 11 from t 10 is very short time. During this time, the capacitor 81 and the capacitor 83 are in a state in which current flows without resistance (another example of “on-state” in the claims), and the sum i C of the currents flowing in the capacitor 81 and the capacitor 83 is the rating of the solenoid 73 It is a current.
 <電磁弁の保持>
 時刻t11の後、コンデンサ81及びコンデンサ83に電荷が充電され始め、コンデンサ81及びコンデンサ83は、電流に対する可変抵抗として機能し始める。逆起電力が吸収されながらソレノイド73に印加される電圧は緩やかに減少する(A´点―B点)。コンデンサ81及びコンデンサ83が完全に充電された時刻t12以後は、コンデンサ81及びコンデンサ83に電流は全く流れない状態となる(本願請求項の「オフ状態」の別の一例)。このとき、ソレノイド73には保持電圧Vにより電磁弁が保持される。
<Holding of solenoid valve>
After time t 11, the charge in the capacitor 81 and the capacitor 83 begins to be charged, the capacitor 81 and the capacitor 83 begins to function as a variable resistance to the current. The voltage applied to the solenoid 73 gradually decreases while the back electromotive force is absorbed (point A '-point B). Capacitor 81 and capacitor 83 is time t 12 is fully charged thereafter, a state of the capacitor 81 and the capacitor 83 no current flow at all (another example of the "off-state" in the claims). At this time, the solenoid 73 holds the solenoid valve by the holding voltage V h .
 <電磁弁の復帰~放電>
 時刻t13にコンタクタ77が第1接点89と第2接点93を接続すると、直流電源75を含まずに、コンデンサ81及びソレノイド73を含む閉回路が形成される。この閉回路では、ソレノイド73、コンデンサ81、第1接点89、第3接点93、抵抗87が順に接続されている。したがって、コンデンサ81及びコンデンサ83に充電された電荷が閉回路に放電される。時刻t12以後にコンデンサ81及びコンデンサ83に印加されていた電圧(V-V)は、ソレノイド73に印加されていた保持電圧Vよりも十分に大きい。そのため、ソレノイド73の逆起電力は緩和され、ソレノイド73に印加されていた電圧は緩やかに減少し、電磁弁は元の状態に戻る(C点―D´点)。
<Recovery of solenoid valve-discharge>
Contactor 77 at time t 13 is the connecting the first contact point 89 and the second contact 93, not including the direct-current power supply 75, a closed circuit including a capacitor 81 and solenoid 73 are formed. In this closed circuit, a solenoid 73, a capacitor 81, a first contact 89, a third contact 93, and a resistor 87 are sequentially connected. Therefore, the charge stored in the capacitors 81 and 83 is discharged to a closed circuit. Time t 12 after the voltage applied to the capacitor 81 and the capacitor 83 (V r -V h) is sufficiently larger than the holding voltage V h which has been applied to the solenoid 73. Therefore, the back electromotive force of the solenoid 73 is alleviated, the voltage applied to the solenoid 73 gradually decreases, and the solenoid valve returns to the original state (point C-point D ').
 ここで、コンデンサ81及びコンデンサ83が完全に放電される前に、再び電磁弁を駆動するために第1接点89及び第2接点91が接続されると、コンデンサ83がスイッチ11に代わる役割を果たせない。したがって、これらのコンデンサが速やかに放電されることが重要である。 Here, when the first contact 89 and the second contact 91 are connected to drive the solenoid valve again before the capacitor 81 and the capacitor 83 are completely discharged, the capacitor 83 plays a role to replace the switch 11. Absent. Therefore, it is important that these capacitors be discharged quickly.
 そこで、第3接点93とソレノイド73の間に、放電抵抗87を設置した。放電抵抗87は、抵抗79よりも抵抗値が小さいものを用いる。すると、放電抵抗87を含む閉回路に大きな放電電流が流れる。このため、コンデンサ81又はコンデンサ83と抵抗79とを含む閉回路のみで放電される場合と比べて、コンデンサ81及びコンデンサ83に蓄積された電荷の放電が促進される。 Therefore, a discharge resistor 87 is provided between the third contact 93 and the solenoid 73. As the discharge resistor 87, one having a resistance value smaller than that of the resistor 79 is used. Then, a large discharge current flows in the closed circuit including the discharge resistor 87. For this reason, the discharge of the charge accumulated in the capacitor 81 and the capacitor 83 is promoted compared to the case where the discharge is performed only by the closed circuit including the capacitor 81 or the capacitor 83 and the resistor 79.
 ここで、ソレノイド73は、放電を減速してしまう。そこで、ダイオード85が放電抵抗87に直列に、かつ、ソレノイド73と並列に接続されていることが有益となる。ダイオード85は、直流電源75の印加方向に対して逆方向に電流を流すように設置されており、放電電流の大部分をソレノイド73を経由させないように迂回させるためである。したがって、保持回路1に比べて保持回路71では、ダイオード85は、さらに重要な役割を担っている。 Here, the solenoid 73 decelerates the discharge. Therefore, it is useful that the diode 85 is connected in series to the discharge resistor 87 and in parallel to the solenoid 73. The diode 85 is disposed so as to cause current to flow in the reverse direction to the application direction of the DC power supply 75, and diverts most of the discharge current so as not to pass through the solenoid 73. Therefore, diode 85 plays an even more important role in holding circuit 71 than holding circuit 1.
 ここで、コンデンサ81の容量は保持回路71の良好な動作のために重要な値である。容量が小さいと電磁弁が駆動する前にソレノイド73への印加電圧が定格電圧Vを下回って不安定な動作となってしまう。一方、容量が大きいと保持電圧に減少するまでに要する時間(時刻t11からt12まで)が増大し、ソレノイド73の発熱量が増加してしまう。出願人は、コンデンサ81の容量がコンデンサ83の容量の3倍であれば極めて良好に動作することを実験により確認した。なお、コンデンサ81とコンデンサ83は、実装上は1つのコンデンサとして実現されてもよい。 Here, the capacitance of the capacitor 81 is an important value for the good operation of the holding circuit 71. If the capacity is small, the voltage applied to the solenoid 73 falls below the rated voltage V r before the solenoid valve is driven, resulting in an unstable operation. On the other hand, is increased (t 12 to the time t 11) the time required to reduce the holding voltage and capacitance is large, the heating value of the solenoid 73 is increased. The applicant has experimentally confirmed that if the capacitance of the capacitor 81 is three times the capacitance of the capacitor 83, it operates extremely well. The capacitor 81 and the capacitor 83 may be realized as one capacitor in mounting.
 また、出願人は、放電抵抗87の抵抗値は、コンデンサの放電を開始した時にソレノイド73の定格電流の2倍の電流が流れる抵抗値であれば極めて良好に動作することも実験により確認した。 The applicant has also confirmed by experiment that the resistance value of the discharge resistor 87 operates extremely well if it has a resistance value at which twice the rated current of the solenoid 73 flows when discharging of the capacitor is started.
 保持回路71は、タイマー機能を要する第2スイッチ11をコンデンサ81に置き換え、時刻t10から時刻t11は第2スイッチ11がオンである状態に対応する。また、時刻t11以後は、第2スイッチ11がオフである状態に対応する。この結果、タイマー回路が不要となる。このため、保持回路の回路サイズ、故障確率、製作コストを低減させることが可能となる。 Holding circuit 71 replaces the second switch 11 requiring a timer function in the capacitor 81, the time t 11 from the time t 10 corresponds to the state the second switch 11 is on. The time t 11 thereafter corresponds to a state the second switch 11 is off. As a result, the timer circuit becomes unnecessary. Therefore, the circuit size of the holding circuit, the failure probability, and the manufacturing cost can be reduced.
 なお、実施例1及び2において、上記の個々の回路素子の値は、保持回路の保持機能を確認するための一例であり、実際の値を決める上では、適宜、装置設計に合わせて別の値とすればよい。 In Examples 1 and 2, the values of the individual circuit elements described above are an example for confirming the holding function of the holding circuit, and in determining the actual values, other values may be appropriately selected according to the device design. It should be a value.
 続いて、図6を参照して、図1の保持回路1又は図4の保持回路71を用いた流体移送装置について説明する。図6は、図1の保持回路1を備えた流体移送装置31の概要を示すブロック図である。 Subsequently, with reference to FIG. 6, a fluid transfer device using the holding circuit 1 of FIG. 1 or the holding circuit 71 of FIG. 4 will be described. FIG. 6 is a block diagram schematically showing a fluid transfer device 31 provided with the holding circuit 1 of FIG.
 流体移送装置31は、流体を移送する流体移送部33と、流体移送部33の流体移送動作を制御する流体移送制御部35とを備える。流体移送部33は、バルブセレクタ37と流路39とを備える。バルブセレクタ37は、複数の流体の流路39への流入及び流路39からの流出を制御する。また、バルブセレクタ37は、図1に示される保持回路1と、電磁弁41とを備える。保持回路1は、電磁弁41を制御し、低い保持電圧によって電磁弁としての動作を保持させる。ここで、保持回路1の代わりに、保持回路71を用いるものであってもよい。 The fluid transfer device 31 includes a fluid transfer unit 33 that transfers a fluid, and a fluid transfer control unit 35 that controls the fluid transfer operation of the fluid transfer unit 33. The fluid transfer unit 33 includes a valve selector 37 and a flow passage 39. The valve selector 37 controls the inflow and outflow of the plurality of fluids into the flow path 39. The valve selector 37 is provided with a holding circuit 1 1 shown in FIG. 1, an electromagnetic valve 41 1. Holding circuit 1 1 controls the solenoid valve 41 1, to hold the operation of the solenoid valves by a low holding voltage. Here, instead of the holding circuit 1 1, it may be with a holding circuit 71 1.
 また、流体移送部33は、バルブセレクタ37部分以外にも保持回路1及び電磁弁41を有するものであってもよい。保持回路1は、電磁弁41を制御し、低い保持電圧によって電磁弁としての動作を保持させる。ここで、保持回路1の代わりに、保持回路71を用いるものであってもよい。 Further, fluid transfer unit 33 may be one also having a retaining circuit 1 2 and the solenoid valve 41 2 in addition to the valve selector 37 parts. Hold circuit 1 2 controls the solenoid valve 41 2, and holds the operation as an electromagnetic valve by a low holding voltage. Here, instead of the holding circuit 1 2, it may be with a holding circuit 71 2.
 このように発熱が抑制された電磁弁を用いたバルブセレクタ又は流体移送装置において、電磁弁に1日中通電していても電磁弁は体温程度にしか温度が上昇しない。したがって、流体中の抗体にダメージを与えずに流体を移送することが可能となった。 As described above, in the valve selector or fluid transfer device using the solenoid valve whose heat generation is suppressed, the temperature of the solenoid valve rises only to the body temperature even if the solenoid valve is energized all day. Therefore, it became possible to transfer the fluid without damaging the antibody in the fluid.
 1 保持回路、3 ソレノイド、5 電源、7 第1スイッチ、9 抵抗、11 第2スイッチ、13 コンデンサ、15 ダイオード、31 流体移送装置、37 バルブセレクタ
 
REFERENCE SIGNS LIST 1 holding circuit 3 solenoid 5 power 7 first switch 9 resistance 11 second switch 13 capacitor 15 diode 31 fluid transfer device 37 valve selector

Claims (8)

  1.  直列に接続されたソレノイド及び抵抗を備え、前記ソレノイドに対して、定格電圧で駆動した後、前記定格電圧よりも低い保持電圧を印加して駆動状態を保持させる保持回路であって、
     前記ソレノイド及び前記抵抗に直列に接続され、前記ソレノイドを駆動するか否かを切り替える第1切替手段と、
     前記抵抗に並列に接続され、前記第1切替手段により前記定格電圧で駆動されてから所定の時間経過後に、オン状態からオフ状態となる第2切替手段と、
     前記抵抗に並列に接続され、前記ソレノイドの時定数よりも大きな時定数を有し、前記第2切替手段がオフ状態となった後に、前記ソレノイドに印加される電圧が前記定格電圧から前記保持電圧へ移行する速度を緩和して前記ソレノイドにおける逆起電力を吸収するコンデンサを備える保持回路。
    A holding circuit comprising a solenoid and a resistor connected in series, and driving the solenoid with a rated voltage and thereafter applying a holding voltage lower than the rated voltage to hold a driving state,
    First switching means connected in series with the solenoid and the resistor to switch whether to drive the solenoid;
    Second switching means connected in parallel to the resistor and turned from the on state to the off state after a predetermined time has elapsed after being driven by the first switching means to the rated voltage;
    The resistor connected in parallel with the resistor has a time constant greater than the time constant of the solenoid, and the voltage applied to the solenoid after the second switching means is turned off is changed from the rated voltage to the holding voltage. A holding circuit comprising a capacitor which relaxes its speed of transition to absorb the back electromotive force in the solenoid.
  2.  前記コンデンサの容量Cは、前記コンデンサの等価抵抗成分r、前記ソレノイドの等価抵抗成分r及び前記ソレノイドのインダクタンスLに対して、式(1)を満たすことを特徴とする、請求項1記載の保持回路。
    Figure JPOXMLDOC01-appb-M000001
    The capacitance C of the capacitor satisfies Formula (1) with respect to the equivalent resistance component r C of the capacitor, the equivalent resistance component r L of the solenoid, and the inductance L of the solenoid. Holding circuit.
    Figure JPOXMLDOC01-appb-M000001
  3.  前記第2切替手段は、前記コンデンサと並列に接続されたコンデンサである第2コンデンサであって、
     前記第2コンデンサの容量Cは、前記コンデンサの容量Cよりも大きいことを特徴とする、請求項2記載の保持回路。
    The second switching means is a second capacitor which is a capacitor connected in parallel with the capacitor, and
    The capacitance C 2 of second capacitor, and greater than the capacitance C of the capacitor, the holding circuit according to claim 2, wherein.
  4.  前記第1切替手段は、3つの接点を有するコンタクタであって、
      前記3つの接点のうち、
      第1接点は、前記第2コンデンサに接続され、
      第2接点は、前記定格電圧を印加する電源に接続され、
      第3接点は、前記ソレノイドに接続され、
     前記コンタクタは、
      前記第1接点と前記第2接点を接続することにより、前記第2コンデンサの充電を開始し、
      前記第1接点と前記第3接点を接続することにより、前記電源を含まずに、前記第2コンデンサ及び前記ソレノイドを含む閉回路を形成するものであり、
     前記閉回路の前記第3接点と前記ソレノイドとの間に、前記抵抗とは異なる放電抵抗を備えることを特徴とする、請求項3記載の保持回路。
    The first switching means is a contactor having three contact points,
    Of the three contacts,
    The first contact is connected to the second capacitor,
    The second contact is connected to a power supply that applies the rated voltage,
    The third contact is connected to the solenoid,
    The contactor is
    Charging the second capacitor is started by connecting the first contact and the second contact;
    By connecting the first contact and the third contact, a closed circuit including the second capacitor and the solenoid is formed without including the power supply,
    The holding circuit according to claim 3, further comprising: a discharge resistance different from the resistance between the third contact of the closed circuit and the solenoid.
  5.  前記電源の印加方向に対して逆方向に電流を流すダイオードをさらに備え、
     前記ダイオードは、前記放電抵抗とは直列に接続され、かつ、前記ソレノイドとは並列に接続され、
     前記放電抵抗の抵抗値は、前記抵抗の抵抗値よりも小さいことを特徴とする、請求項4記載の保持回路。
    The device further comprises a diode that allows current to flow in the direction opposite to the application direction of the power supply,
    The diode is connected in series with the discharge resistor and connected in parallel with the solenoid,
    The holding circuit according to claim 4, wherein a resistance value of the discharge resistor is smaller than a resistance value of the resistor.
  6.  請求項1から5のいずれかに記載の保持回路を用いて制御される電磁弁。 A solenoid valve controlled by using the holding circuit according to any one of claims 1 to 5.
  7.  請求項6記載の電磁弁を備えるバルブセレクタ。 A valve selector comprising the solenoid valve according to claim 6.
  8.  請求項6記載の電磁弁又は請求項7記載のバルブセレクタを備える流体移送装置。
     
    A fluid transfer device comprising the solenoid valve according to claim 6 or the valve selector according to claim 7.
PCT/JP2011/063402 2009-12-14 2011-06-10 Holding circuit, electromagnetic valve, valve selector and fluid transporting device WO2012066814A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/885,521 US9103464B2 (en) 2009-12-14 2011-06-10 Holding circuit, electromagnetic valve, valve selector, and flow controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-255679 2010-11-16
JP2010255679A JP2011146688A (en) 2009-12-14 2010-11-16 Holding circuit, solenoid valve, valve selector, and fluid transport device

Publications (1)

Publication Number Publication Date
WO2012066814A1 true WO2012066814A1 (en) 2012-05-24

Family

ID=46085290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063402 WO2012066814A1 (en) 2009-12-14 2011-06-10 Holding circuit, electromagnetic valve, valve selector and fluid transporting device

Country Status (1)

Country Link
WO (1) WO2012066814A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646218U (en) * 1979-09-13 1981-04-24
JPS57137879U (en) * 1981-02-25 1982-08-28
JPH0361776A (en) * 1989-07-26 1991-03-18 Takasago Denki Kogyo Kk Dc solenoid valve
JPH03277884A (en) * 1990-03-24 1991-12-09 Yahata Denki Seisakusho:Kk Direct current (dc) current valve control circuit
JPH0436206U (en) * 1990-07-23 1992-03-26

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646218U (en) * 1979-09-13 1981-04-24
JPS57137879U (en) * 1981-02-25 1982-08-28
JPH0361776A (en) * 1989-07-26 1991-03-18 Takasago Denki Kogyo Kk Dc solenoid valve
JPH03277884A (en) * 1990-03-24 1991-12-09 Yahata Denki Seisakusho:Kk Direct current (dc) current valve control circuit
JPH0436206U (en) * 1990-07-23 1992-03-26

Similar Documents

Publication Publication Date Title
JP5713281B2 (en) Fluid transfer device and fluid transfer method
US7385791B2 (en) Apparatus and method for relay contact arc suppression
JP2003338239A (en) Hybrid dc electromagnetic contactor
JP2009095225A (en) System having circuit for suppressing arc formation in micro-electromechanical system based switch
CN105788968B (en) System and method for a freewheeling contactor circuit
US20210091561A1 (en) Electronic switch with overvoltage limiter
KR20180112767A (en) Circuit arrangement for operating the electromagnetic drive system
KR101206215B1 (en) Electronic magnetic contactor
JP6594739B2 (en) Electromagnetic magnet control device
US10978258B2 (en) Direct current circuit breaker device
JP4283312B2 (en) DC voltage drive type magnet contactor drive circuit and power converter
WO2012066814A1 (en) Holding circuit, electromagnetic valve, valve selector and fluid transporting device
EP1881511A1 (en) Hybrid switch
US8351177B2 (en) Method and apparatus for discharging a lifting magnet
JP2008199228A (en) Switch circuit, and regeneration circuit
JP2013109997A (en) Drive circuit for electromagnetic operation mechanism
CN105723491A (en) Method for controlling a contactor device, and control unit
JP5764680B2 (en) Inrush current prevention device
EP3853959B1 (en) Intrinsically safe circuitry
JP4103021B2 (en) Actuator drive
JP2010257660A (en) Operation circuit of vacuum circuit breaker
KR102167974B1 (en) Method and device for operating an inductive element
JP2016119431A (en) Superconducting magnet device
US20090260944A1 (en) Electromagnetic actuating device with driving and holding tapped coil
JP6751169B2 (en) Valve actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13885521

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840966

Country of ref document: EP

Kind code of ref document: A1