WO2012066453A1 - Commande d'un dispositif de traitement de l'air pourvu d'un filtre - Google Patents
Commande d'un dispositif de traitement de l'air pourvu d'un filtre Download PDFInfo
- Publication number
- WO2012066453A1 WO2012066453A1 PCT/IB2011/054989 IB2011054989W WO2012066453A1 WO 2012066453 A1 WO2012066453 A1 WO 2012066453A1 IB 2011054989 W IB2011054989 W IB 2011054989W WO 2012066453 A1 WO2012066453 A1 WO 2012066453A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filter
- air
- control device
- measuring
- measuring means
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/39—Monitoring filter performance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0454—Controlling adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/42—Auxiliary equipment or operation thereof
- B01D46/44—Auxiliary equipment or operation thereof controlling filtration
- B01D46/46—Auxiliary equipment or operation thereof controlling filtration automatic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F8/00—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
- F24F8/10—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F8/00—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
- F24F8/10—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
- F24F8/108—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using dry filter elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F8/00—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
- F24F8/10—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
- F24F8/15—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
- F24F8/158—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using active carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/102—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/708—Volatile organic compounds V.O.C.'s
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/91—Bacteria; Microorganisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/06—Polluted air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/45—Gas separation or purification devices adapted for specific applications
- B01D2259/4508—Gas separation or purification devices adapted for specific applications for cleaning air in buildings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2273/00—Operation of filters specially adapted for separating dispersed particles from gases or vapours
- B01D2273/30—Means for generating a circulation of a fluid in a filtration system, e.g. using a pump or a fan
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0407—Constructional details of adsorbing systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
Definitions
- the present invention relates in general to air treatment devices such as air purifiers, possible also capable of humidifying and/or de-humidifying. Particularly, the present invention relates to a method for measuring and controlling the purification performance of such devices.
- FIG. 1 schematically illustrates the basic design of an air purifier 1, comprising a housing 2 having an inner chamber 5, with an inlet port 3 and an exit port 4. An air flow passes through the chamber 5 from the inlet 3 to the exit 4, forced by a fan 6. A filter 7 is arranged between inlet 3 and exit 4, such that all air must pass the filter 7. The fan 6 may be positioned upstream or downstream of the filter 7.
- the fan 6 may be part of the purifier 1, and typically is, although it is also possible that the fan 6 is an external device.
- the purifier may be of a type integrated in air conduits, for instance in office buildings, but the purifier may also be of a stand alone or mobile type, placed in the room of which the air is to be purified.
- the inlet 3 will typically be implemented as an opening in the housing, provided with a grating.
- the exit may be implemented as an opening in the housing, provided with a grating, typically opposite the inlet.
- filters there are different types of filters possible, but generally they have a tendency of getting polluted so that the filter efficiency reduces.
- the filter surface may get polluted by non-conducting particles.
- Surface pollution by non-conducting particles similarly reduces the performance of Electrostatic Precipitation (ESP) modules in which particles are first charged by a corona wire or other means and afterwards are collected when passing electrostatically charged plates.
- ESP Electrostatic Precipitation
- the filter 7 is of an adsorption type, typically containing activated carbon, in order to remove volatile and hazardous organic components and gasses from the air.
- the activated carbon can have many different shapes (e.g.
- the activated carbon filter can also be impregnated with additional species (like KMn0 4 ) to increase its activity towards specific gasses.
- additional species like KMn0 4
- the adsorption filter may also be made of other materials like zeolites, clay, polymers, or the filter may contain mixtures of any of the above- mentioned adsorbing materials.
- the adsorbing materials typically have active spots
- filters having an operation principle based on oxidation for instance using UV light or photochemical or corona discharge techniques.
- reduction of the filter efficiency can occur, for instance caused by surface pollution (UV lamps, photocatalytic surfaces, corona wires).
- the decay rate of the filter efficiency depends on many factors such as filter structure, filter material, filter material properties such as pore size distribution, and operating conditions. It is desirable to be able to measure the actual filter efficiency and take appropriate measures.
- ⁇ 1-pass removal efficiency of the purifier for a specific pollutant, defined as
- a break-through ⁇ is defined according to the formula:
- Cm,f indicates the pollutant concentration upstream of the filter.
- the break-through ⁇ indicates the amount of pollutant passing the filter: the higher ⁇ , the lower is the quality of the filter.
- the CADR value of air-treatment devices can change dramatically over time. This change can result from a change of ⁇ as well as from a change of ⁇ . In most cases, both ⁇ and ⁇ decrease over time.
- figure 2 is a graph showing test results in accordance with DIN 71460 of an activated carbon filter when placed in a 250 m 3 /hr air-flow of 50% relative humidity containing 20 ppm of toluene.
- Figure 3 is a graph showing test results of the same filter type as figure 2, when placed in a 250 m 3 /hr air- flow of 90% relative humidity containing 20 ppm of toluene. As is typical for most activated carbon filters, figures 2 and 3 show that the filter breakthrough is substantially influenced by humidity, increasing faster at high relative humidity. High relative humidity as high as 90% and more can exist within residential homes in humid tropical regions and during rainy summer periods in moderate climates.
- FIG. 4A shows pressure drop values of a HEPA filter of360*280 mm 2 in four different situations:
- particle filters in air purifiers collect, depending on the environment and application:
- Nano-sized organic particles that can be emitted by incineration processes like the engines of automotive cars, candles or burning processes for domestic
- one of the filters is loaded with cigarette smoke which is an important pollution type in many air purification applications.
- This particle type consists of organic nano- and micronparticles.
- the horizontal axis represents flow rate in m 3 /h
- the vertical axis represents pressure drop in Pa. It can clearly be seen that ageing of the filter results in a higher pressure drop, and that the measure of increase depends on the type of particles that are collected on the filter. In the results of figure 4A, it seems that smoke does not play an important role.
- figure 4B shows the results of the same test but for a different filter type: while in figure 4A the filter was of type Coway AP- 1008BH/AP- 1008DH, the filter of figure 4B was of type YADU HJH2801. It can clearly be seen that in this filter type smoke particles do increase the pressure drop.
- Figure 4C is a graph illustrating that aging also results in a decrease of the filtering efficiency.
- the figure shows the 1-pass efficiency for soot particles (obtained in the exhaust gas of a diesel motor, and having a particle distribution in the size range of
- an air treatment apparatus may suggest the user to change filters while this is actually not needed yet, leading to unnecessarily high costs, or conversely the user continues too long with an air treatment apparatus that is actually not operating properly any more, thus leading to the user being exposed to unhealthy air.
- the present invention aims to provide an air purifier capable of providing a reliable indication of its performance and a reliable indication as to when a filter unit must be replaced or regenerated.
- the present invention proposes to measure both ⁇ and ⁇ and to multiply the measurement results in order to obtain a more reliable value of the CADR.
- the present invention provides a purifier device as mentioned in claim 1.
- Fig. 1 is a diagram schematically illustrating the basic design of an air
- Fig. 2 is a graph showing test results of an activated carbon filter
- Fig. 3 is a graph showing test results of the same filter type as figure 2, in different circumstances;
- Fig. 4A-B are graphs showing test results of pressure drop measurements on new and aged filters
- Fig. 4C is a graph showing test results of efficiency measurements on new and aged filters
- Fig. 5A is a diagram schematically illustrating an embodiment of an air
- Fig. 5B is a diagram schematically illustrating the air purifier of figure 5A when operating in monitor mode.
- the air purifier 100 has a housing 2 with an inlet opening 3 and an outlet opening 4.
- a filter support 9 holds a filter 7 in place.
- a bypass 10 is arranged in the housing, provided with a controllable closure device 11 such as a valve.
- the interior 5 of the housing 2 has a flow path from inlet 3 to outlet 4 configured as an inlet chamber 53 communicating with the inlet opening 3 at the upstream side of the filter 7, and an outlet chamber 54 communicating with the outlet opening 4 at the downstream side of the filter 7.
- the filter 7 may be placed immediately behind the inlet 3 or immediately before the outlet4, in which case the inlet chamber 53 or the outlet chamber 54 has only a small volume or is actually absent.
- a controllable propelling device 6 such as a fan (compare 6 in figure 1) is shown upstream of the inlet opening 3, but may alternatively be arranged in the inlet chamber 53, in the outlet chamber 54 or downstream of the outlet opening 4. In a stand alone or mobile purifier unit, the fan will typically be located within the housing. Since the present invention can be implemented with prior art propelling devices, a further explanation of design and operation of the propelling device, which will hereinafter simply be indicated as "fan”, is omitted here.
- the filter support 9 forms a sealing separation wall between the inlet chamber 53 and the outlet chamber 54, so that air flow from the inlet chamber 53 to the outlet chamber 54 is only possible via the filter 7 and, if the valve 1 1 is open, via the bypass 10.
- the filter may be identical to prior art filters, specifically filters that remove volatile and gaseous air pollutants or particle pollutants.
- Filters for volatile and gaseous pollutants can be made of many different materials. Most of these filters are made of activated carbon (which is the preferred embodiment, having various morphologies such as granules, sponge structure, monolith, activated carbon on corrugated structures, woven or non-woven carbon fiber structures), zeolite and/or clay materials. However, these filters can also be made of polymeric materials, metal oxides, metals, glass and other adsorbing substrates.
- Particle pollutant filters are typically non- woven fiber structures made from polymeric or glass fibers but can also consist of an ESP unit that contains charged metal surfaces.
- the air purifier 100 further comprises a control device 20, for instance a suitably programmed microcontroller or microprocessor or the like, controlling the valve 1 1.
- a control device 20 for instance a suitably programmed microcontroller or microprocessor or the like, controlling the valve 1 1.
- the control device 20 is shown outside the housing 2.
- the air purifier 100 can operate in a normal operating mode, in which, under control of the control device 20, the valve 1 1 is closed. In this mode, ambient air will pass from the inlet 3 through only the filter 7 and will leave the outlet 4 as purified air, as illustrated in figure 5 A.
- the air purifier 100 comprises a first pollutant measuring device 21 arranged upstream of the filter 7, preferably in the inlet chamber 53, preferably close to the filter 7, and a second pollutant measuring device 22 arranged downstream of the filter 7, preferably in the outlet chamber 54, preferably close to the filter 7.
- suitable pollutant measuring devices include nano-particle sensor, micron- sized particle sensor, or sensor for volatile components like TVOC, formaldehyde, C0 2 .
- the control device 20 is connected to receive measurement output signals of the pollutant measuring devices, and is designed to process these signals and to calculate the 1-pass removal efficiency r ⁇ f of the filter 7, or a value proportional thereto.
- the air purifier 100 may also comprise a humidity sensor 23 for sensing the relative humidity, also providing its measurement output signal to the control device 20.
- a humidity sensor 23 for sensing the relative humidity, also providing its measurement output signal to the control device 20.
- f can be provided in many ways, depending among other things on the type of filter. If the filter is designed for removing particles, the pollutant measuring devices should typically include particle sensors. If the filter is designed for removing one or more gases, the pollutant measuring devices should typically include gas sensors. It is also possible that the filter is designed for removing gases and particles. In case a filter is designed for removing two or more gases and/or particles, it is possible that such filter has different efficiency values ⁇ corresponding to the different pollutants to be removed, and typically there will be multiple sensors, each designed for sensing a specific pollutant.
- the air purifier 100 can operate in a flow monitoring mode, in which the control device 20 has opened the valve 11. In this mode, a small part of the air will flow through the bypass 10, bypassing the filter 7.
- the control device 20 is connected to receive the measurement output signal of the flow sensor 24, and is designed to process this signal and to calculate the flow, as volume per unit time, or a value proportional thereto.
- Suitable flow sensors are known and can be used here, such as for instance thermal sensors or acoustical sensors or rotary speed sensors, therefore a more detailed description of design and operation of such sensor is omitted here.
- the air purifier 100 may comprise pressure sensors arranged at opposite sides of the filter 7 and providing their measurement signals to the controller 20 in order to be able to calculate flow speed.
- the bypass 10 and controllable valve 11 may be omitted, and the flow speed can be calculated continuously during normal operating mode (in other words: the flow monitoring mode can be
- switching between normal operating mode and flow monitoring mode can be done in different ways. For instance, it is possible that the switching is done on the basis of time, i.e. the control device 20 would be responsive to an input timer signal triggering the control device 20 to switch at regular intervals.
- the control device 20 calculates the filter efficiency r
- an air purifier 100 which comprises:
- a housing 2 with an inlet chamber 53 communicating with an inlet opening and an outlet chamber 54 communicating with an outlet opening;
- controllable fan 6 for causing air flow from the inlet chamber to the outlet chamber through the filter
- control device 20 for controlling the fan
- the air flow ⁇ can be measured by other means, and the invention includes different methods for measuring air flow in a purifier device. It is for instance possible to use an air speed measuring device arranged in an inlet duct leading to the inlet opening 3 or in an outlet duct leading away from the outlet opening 4; an example of such measuring device is an anemometer. In such case, it is not necessary to operate a valve in a bypass opening.
- a measuring signal correlated to the air flow ⁇ can also be generated on the basis of air pressure drop over the filter 7. This can be measured by arranging pressure sensors in the chamber 53 and 54, but it is also possible to sense the force exerted on the filter as caused by the pressure difference, for instance by measuring the reaction force exerted by the filter on the housing, for instance by using deformation sensors such as piezo-elements or strain gauges.
- the sensor is located inside the housing.
- the quality of the air in the room corresponds to the quality of the incoming air, so an external sensor, or a sensor mounted in the inlet opening, can be used to monitor the quality of the ambient air before entering the purifier.
- the controller is designed to switch the purifier on or off on the basis of the quality of the incoming air, such external sensor has the added advantage, when the purifier is switched off and is not sucking in air, that the air pollution outside the purifier can be sensed so that the device can respond quicker.
- suitable sensor(s) can also be located in the outlet opening 4 or mounted at the outside of the housing 2 if the sensor(s) are exposed to an air-flow that has the same quality as the air in outlet chamber 54.
- the purifier may be provided with other air treatment devices.
- a dehumidifier may be arranged upstream of the filter 7.
- the control device 20 may be implemented in hardware, where its function is performed by individual hardware components, but it is also possible that the control device 20 is implemented in software, so that its function is performed by one or more program lines of a computer program or a programmable device such as a microprocessor, microcontroller, digital signal processor, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
L'invention concerne un purificateur d'air (100) comprenant : un corps (2) pourvu d'une chambre d'admission (53) communiquant avec un orifice d'admission et d'une chambre d'évacuation (54) communiquant avec un orifice d'évacuation; un filtre (7) pour purifier l'air; un ventilateur pouvant être commandé (6) et générant un écoulement d'air, de la chambre d'admission à la chambre d'évacuation, traversant le filtre; un dispositif de commande (20) pour commander le ventilateur; des premiers moyens de mesure (21, 22) pour mesurer un rendement d'élimination en une passe η du purificateur; un second moyen de mesure (24) pour mesurer un écoulement d'air dans le purificateur. Le dispositif de commande (20) traite les signaux de mesure reçus des premier et second moyens de mesure, calcule un taux de distribution d'air purifié CADR tel que CADR=* et, sur la base de CADR calculé, commande le ventilateur de façon à maintenir le CADR sensiblement constant ou supérieur à un niveau prédéterminé.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10191277.2 | 2010-11-16 | ||
EP10191277 | 2010-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012066453A1 true WO2012066453A1 (fr) | 2012-05-24 |
Family
ID=45372275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2011/054989 WO2012066453A1 (fr) | 2010-11-16 | 2011-11-09 | Commande d'un dispositif de traitement de l'air pourvu d'un filtre |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012066453A1 (fr) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104633848A (zh) * | 2014-12-31 | 2015-05-20 | 小米科技有限责任公司 | 剩余使用时长的确定方法及装置 |
CN104748264A (zh) * | 2015-02-12 | 2015-07-01 | 许奇艺 | 基于仿生学的空气调节器 |
CN105241039A (zh) * | 2015-10-30 | 2016-01-13 | 广东美的制冷设备有限公司 | 空气净化器控制装置、空气净化器系统及空气净化器控制方法 |
CN105311884A (zh) * | 2015-10-29 | 2016-02-10 | 小米科技有限责任公司 | 空气净化方法及装置 |
WO2016096786A1 (fr) * | 2014-12-18 | 2016-06-23 | Koninklijke Philips N.V. | Système de filtre de purificateur d'air, purificateur d'air et procédé de commande de purificateur d'air |
WO2016102521A1 (fr) * | 2014-12-24 | 2016-06-30 | Koninklijke Philips N.V. | Dispositif et procédé pour la gestion de l'air d'une pièce |
CN105920934A (zh) * | 2016-06-23 | 2016-09-07 | 金思思 | 一种清洁装置 |
CN105969432A (zh) * | 2016-07-07 | 2016-09-28 | 黄亦晴 | 一种换气装置 |
WO2017143875A1 (fr) * | 2016-02-26 | 2017-08-31 | 南通华信中央空调有限公司 | Ventilateur d'air frais à traitement de particules pm2.5 et son procédé d'utilisation |
WO2017153189A1 (fr) | 2016-03-08 | 2017-09-14 | Koninklijke Philips N.V. | Purificateur d'air comprenant un indicateur de durée de vie de filtre à air et procédé de détermination de la durée de vie d'un filtre à air |
WO2017190390A1 (fr) * | 2016-05-04 | 2017-11-09 | 朱红英 | Purificateur d'air |
WO2017203031A1 (fr) * | 2016-05-27 | 2017-11-30 | Koninklijke Philips N.V. | Purificateur d'air |
CN107477800A (zh) * | 2017-09-05 | 2017-12-15 | 广东天孜环保节能科技有限公司 | 带有智能提醒更换过滤网的新风换气机 |
CN107514690A (zh) * | 2017-08-30 | 2017-12-26 | 广东美的制冷设备有限公司 | 提示方法及空气调节装置 |
CN108072124A (zh) * | 2016-11-18 | 2018-05-25 | 天津嘉深保科技发展有限公司 | 一种会议服务用会场空气净化器 |
CN108105941A (zh) * | 2017-12-19 | 2018-06-01 | 广东美的制冷设备有限公司 | 空气净化设备及其滤网寿命估算方法、装置 |
CN108826530A (zh) * | 2018-05-14 | 2018-11-16 | 郑州丽福爱生物技术有限公司 | 一种新型多功能生物技术用的洁净空气装置 |
WO2018106809A3 (fr) * | 2016-12-06 | 2018-12-06 | Fellowes, Inc. | Purificateur d'air à capteurs et flux d'air intelligents |
WO2018198001A3 (fr) * | 2017-04-28 | 2019-01-03 | 3M Innovative Properties Company | Surveillance de la filtration de l'air basée sur des dispositifs thermoélectriques |
WO2019058572A1 (fr) * | 2017-09-20 | 2019-03-28 | シャープ株式会社 | Purificateur d'air |
GB2568041A (en) * | 2017-10-30 | 2019-05-08 | Zehnder Group Lenham Ltd | Air flow sensor |
CN110131835A (zh) * | 2019-03-29 | 2019-08-16 | 佛山市中格威电子有限公司 | 一种基于湿度参数判断空调器清洁提示的控制方法 |
WO2020055690A1 (fr) * | 2018-09-14 | 2020-03-19 | Carrier Corporation | Unité de traitement d'air |
FR3087522A1 (fr) * | 2018-10-23 | 2020-04-24 | France Air | Systeme de traitement par vecteur air |
WO2020188003A1 (fr) * | 2019-03-19 | 2020-09-24 | Munters Europe Aktiebolag | Dispositif de protection contre des particules pour un déshumidificateur |
CN112169461A (zh) * | 2020-10-14 | 2021-01-05 | 湖南白绿林环保科技有限公司 | 一种用于去除甲醛用的空气净化过滤装置 |
FR3111819A1 (fr) * | 2020-06-24 | 2021-12-31 | Edouard IVARI | Système de protection des voies respiratoires par purification de l’air inspiré et de l’air expiré. |
EP4108313A1 (fr) * | 2021-06-22 | 2022-12-28 | Microjet Technology Co., Ltd. | Procédé de notification de la durée de vie d'un filtre |
WO2024047444A1 (fr) * | 2022-08-31 | 2024-03-07 | Dyson Technology Limited | Appareil de traitement d'air |
EP4227590A4 (fr) * | 2020-10-05 | 2024-07-24 | Masam Purificadores S L | Purificateur d'air |
EP4446666A1 (fr) * | 2023-04-10 | 2024-10-16 | Versuni Holding B.V. | Dispositif de purification d'air, système de commande et procédé de fonctionnement du dispositif de purification d'air |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3728308A1 (de) * | 1986-08-29 | 1988-03-10 | Matsushita Electric Ind Co Ltd | Luftreinigungsgeraet |
EP1050332A2 (fr) * | 1999-05-04 | 2000-11-08 | Simatelex Manufactory Company Limited | Purificateur d'air |
EP1580413A1 (fr) * | 2004-03-24 | 2005-09-28 | Behr GmbH & Co. KG | Appareil et procédé de surveillance d'un filtre |
US20060278216A1 (en) * | 2005-06-08 | 2006-12-14 | Gagas John M | Range hood |
US20070034082A1 (en) * | 2005-08-10 | 2007-02-15 | Adair Joel E | Air purifier |
US20080236392A1 (en) * | 2004-09-13 | 2008-10-02 | Morse Thomas C | Axial flow scan testable filter system |
US20100058927A1 (en) * | 2006-07-14 | 2010-03-11 | Freshman Ab | Air filter arrangement and a method for manufacturing the same |
-
2011
- 2011-11-09 WO PCT/IB2011/054989 patent/WO2012066453A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3728308A1 (de) * | 1986-08-29 | 1988-03-10 | Matsushita Electric Ind Co Ltd | Luftreinigungsgeraet |
EP1050332A2 (fr) * | 1999-05-04 | 2000-11-08 | Simatelex Manufactory Company Limited | Purificateur d'air |
EP1580413A1 (fr) * | 2004-03-24 | 2005-09-28 | Behr GmbH & Co. KG | Appareil et procédé de surveillance d'un filtre |
US20080236392A1 (en) * | 2004-09-13 | 2008-10-02 | Morse Thomas C | Axial flow scan testable filter system |
US20060278216A1 (en) * | 2005-06-08 | 2006-12-14 | Gagas John M | Range hood |
US20070034082A1 (en) * | 2005-08-10 | 2007-02-15 | Adair Joel E | Air purifier |
US20100058927A1 (en) * | 2006-07-14 | 2010-03-11 | Freshman Ab | Air filter arrangement and a method for manufacturing the same |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2711258C2 (ru) * | 2014-12-18 | 2020-01-15 | Конинклейке Филипс Н.В. | Система фильтра воздухоочистителя, воздухоочиститель и способ управления воздухоочистителем |
US11890568B2 (en) | 2014-12-18 | 2024-02-06 | Koninklijke Philips N.V. | Air purifier filter system, an air purifier and a method for controlling an air purifier |
WO2016096786A1 (fr) * | 2014-12-18 | 2016-06-23 | Koninklijke Philips N.V. | Système de filtre de purificateur d'air, purificateur d'air et procédé de commande de purificateur d'air |
WO2016102521A1 (fr) * | 2014-12-24 | 2016-06-30 | Koninklijke Philips N.V. | Dispositif et procédé pour la gestion de l'air d'une pièce |
RU2679989C2 (ru) * | 2014-12-24 | 2019-02-14 | Конинклейке Филипс Н.В. | Устройство и способ управления качеством воздуха в помещении |
JP2017506579A (ja) * | 2014-12-31 | 2017-03-09 | シャオミ・インコーポレイテッド | 残りの使用期間の特定方法、装置、プログラム、及び記憶媒体 |
CN104633848A (zh) * | 2014-12-31 | 2015-05-20 | 小米科技有限责任公司 | 剩余使用时长的确定方法及装置 |
CN104633848B (zh) * | 2014-12-31 | 2017-02-22 | 小米科技有限责任公司 | 剩余使用时长的确定方法及装置 |
RU2621491C2 (ru) * | 2014-12-31 | 2017-06-06 | Сяоми Инк. | Способ определения остающегося времени использования и аппарат для него |
EP3040948A1 (fr) * | 2014-12-31 | 2016-07-06 | Xiaomi Inc. | Procédé de détermination de la durée d'utilisation restante d'un dispositif et appareil et programme informatique pour mettre en oeuvre un tel procédé |
CN104748264A (zh) * | 2015-02-12 | 2015-07-01 | 许奇艺 | 基于仿生学的空气调节器 |
CN105311884A (zh) * | 2015-10-29 | 2016-02-10 | 小米科技有限责任公司 | 空气净化方法及装置 |
CN105241039A (zh) * | 2015-10-30 | 2016-01-13 | 广东美的制冷设备有限公司 | 空气净化器控制装置、空气净化器系统及空气净化器控制方法 |
WO2017143875A1 (fr) * | 2016-02-26 | 2017-08-31 | 南通华信中央空调有限公司 | Ventilateur d'air frais à traitement de particules pm2.5 et son procédé d'utilisation |
CN108700316B (zh) * | 2016-03-08 | 2021-05-04 | 皇家飞利浦有限公司 | 包括空气过滤器寿命指示器的空气净化器和用于确定空气过滤器的寿命的方法 |
WO2017153189A1 (fr) | 2016-03-08 | 2017-09-14 | Koninklijke Philips N.V. | Purificateur d'air comprenant un indicateur de durée de vie de filtre à air et procédé de détermination de la durée de vie d'un filtre à air |
CN108700316A (zh) * | 2016-03-08 | 2018-10-23 | 皇家飞利浦有限公司 | 包括空气过滤器寿命指示器的空气净化器和用于确定空气过滤器的寿命的方法 |
JP2019513212A (ja) * | 2016-03-08 | 2019-05-23 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 空気フィルタ寿命インジケータを含む空気清浄機、及び、空気フィルタの寿命を決定するための方法 |
US11291940B2 (en) | 2016-03-08 | 2022-04-05 | Koninklijke Philips N.V. | Air purifier including air filter life-time indicator and method for determining the life-time of an air filter |
WO2017190390A1 (fr) * | 2016-05-04 | 2017-11-09 | 朱红英 | Purificateur d'air |
CN109196286B (zh) * | 2016-05-27 | 2020-12-25 | 皇家飞利浦有限公司 | 空气净化设备 |
US10760805B2 (en) | 2016-05-27 | 2020-09-01 | Koninklijke Philips N.V. | Air purifier |
CN109196286A (zh) * | 2016-05-27 | 2019-01-11 | 皇家飞利浦有限公司 | 空气净化设备 |
WO2017203031A1 (fr) * | 2016-05-27 | 2017-11-30 | Koninklijke Philips N.V. | Purificateur d'air |
RU2733796C2 (ru) * | 2016-05-27 | 2020-10-06 | Конинклейке Филипс Н.В. | Устройство очистки воздуха |
CN105920934A (zh) * | 2016-06-23 | 2016-09-07 | 金思思 | 一种清洁装置 |
CN105969432A (zh) * | 2016-07-07 | 2016-09-28 | 黄亦晴 | 一种换气装置 |
CN108072124A (zh) * | 2016-11-18 | 2018-05-25 | 天津嘉深保科技发展有限公司 | 一种会议服务用会场空气净化器 |
WO2018106809A3 (fr) * | 2016-12-06 | 2018-12-06 | Fellowes, Inc. | Purificateur d'air à capteurs et flux d'air intelligents |
US11813560B2 (en) | 2016-12-06 | 2023-11-14 | Fellowes, Inc. | Air purifier with intelligent sensors and airflow |
CN110036245A (zh) * | 2016-12-06 | 2019-07-19 | 斐乐公司 | 具有智能传感器和气流的空气净化器 |
US11338236B2 (en) | 2017-04-28 | 2022-05-24 | 3M Innovative Properties Company | Air filtration monitoring based on thermoelectric devices |
WO2018198001A3 (fr) * | 2017-04-28 | 2019-01-03 | 3M Innovative Properties Company | Surveillance de la filtration de l'air basée sur des dispositifs thermoélectriques |
CN107514690A (zh) * | 2017-08-30 | 2017-12-26 | 广东美的制冷设备有限公司 | 提示方法及空气调节装置 |
CN107477800A (zh) * | 2017-09-05 | 2017-12-15 | 广东天孜环保节能科技有限公司 | 带有智能提醒更换过滤网的新风换气机 |
CN111108329A (zh) * | 2017-09-20 | 2020-05-05 | 夏普株式会社 | 空气净化机 |
JPWO2019058572A1 (ja) * | 2017-09-20 | 2020-09-03 | シャープ株式会社 | 空気清浄機 |
CN111108329B (zh) * | 2017-09-20 | 2021-10-12 | 夏普株式会社 | 空气净化机 |
WO2019058572A1 (fr) * | 2017-09-20 | 2019-03-28 | シャープ株式会社 | Purificateur d'air |
GB2568041A (en) * | 2017-10-30 | 2019-05-08 | Zehnder Group Lenham Ltd | Air flow sensor |
GB2568041B (en) * | 2017-10-30 | 2022-11-30 | Zehnder Group Uk Ltd | Air flow sensor |
CN108105941A (zh) * | 2017-12-19 | 2018-06-01 | 广东美的制冷设备有限公司 | 空气净化设备及其滤网寿命估算方法、装置 |
CN108826530A (zh) * | 2018-05-14 | 2018-11-16 | 郑州丽福爱生物技术有限公司 | 一种新型多功能生物技术用的洁净空气装置 |
WO2020055690A1 (fr) * | 2018-09-14 | 2020-03-19 | Carrier Corporation | Unité de traitement d'air |
FR3087522A1 (fr) * | 2018-10-23 | 2020-04-24 | France Air | Systeme de traitement par vecteur air |
WO2020188003A1 (fr) * | 2019-03-19 | 2020-09-24 | Munters Europe Aktiebolag | Dispositif de protection contre des particules pour un déshumidificateur |
CN110131835A (zh) * | 2019-03-29 | 2019-08-16 | 佛山市中格威电子有限公司 | 一种基于湿度参数判断空调器清洁提示的控制方法 |
FR3111819A1 (fr) * | 2020-06-24 | 2021-12-31 | Edouard IVARI | Système de protection des voies respiratoires par purification de l’air inspiré et de l’air expiré. |
EP4227590A4 (fr) * | 2020-10-05 | 2024-07-24 | Masam Purificadores S L | Purificateur d'air |
CN112169461A (zh) * | 2020-10-14 | 2021-01-05 | 湖南白绿林环保科技有限公司 | 一种用于去除甲醛用的空气净化过滤装置 |
EP4108313A1 (fr) * | 2021-06-22 | 2022-12-28 | Microjet Technology Co., Ltd. | Procédé de notification de la durée de vie d'un filtre |
WO2024047444A1 (fr) * | 2022-08-31 | 2024-03-07 | Dyson Technology Limited | Appareil de traitement d'air |
EP4446666A1 (fr) * | 2023-04-10 | 2024-10-16 | Versuni Holding B.V. | Dispositif de purification d'air, système de commande et procédé de fonctionnement du dispositif de purification d'air |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012066453A1 (fr) | Commande d'un dispositif de traitement de l'air pourvu d'un filtre | |
US9375670B2 (en) | Air purification system | |
CN204478340U (zh) | 一种再生型空气净化系统 | |
US9737841B2 (en) | Air purification system | |
CN114608109B (zh) | 气体过滤系统和方法 | |
KR101284893B1 (ko) | 지하철 객실용 공기정화장치 | |
JP2009513334A (ja) | 空気清浄装置 | |
RU115661U1 (ru) | Фотокаталитический очиститель воздуха | |
KR101457444B1 (ko) | 플라즈마 공기 청정장치 | |
KR20210141477A (ko) | 조리 오염물 제어 방법, 장치, 및 시스템 | |
CN108025246A (zh) | 气体过滤系统和方法 | |
CN116727105A (zh) | 静电颗粒过滤 | |
Blondeau et al. | Experimental characterization of the removal efficiency and energy effectiveness of central air cleaners | |
CN112178866A (zh) | 空气净化方法、空气净化装置、空调器及其控制方法 | |
JP3831312B2 (ja) | 排気ガス清浄化装置 | |
FI92290B (fi) | Tupakkahuone | |
EP3546056A1 (fr) | Système de filtre à gaz comprenant un catalyseur de décomposition de formaldéhyde régénérable | |
CN110022960B (zh) | 用于确定空气净化设备中的颗粒过滤器的污染状态的设备和方法 | |
USRE46804E1 (en) | Regenerative air purification system and method | |
CN220624211U (zh) | 空气净化装置和空调器 | |
RU2811247C1 (ru) | Очиститель воздуха | |
RU54817U1 (ru) | Фотокаталитический очиститель воздуха | |
EP4446666A1 (fr) | Dispositif de purification d'air, système de commande et procédé de fonctionnement du dispositif de purification d'air | |
JP3114789U (ja) | 空気清浄機 | |
KR20020083563A (ko) | 고농도 유해가스 정화장치및 정화방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11799123 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11799123 Country of ref document: EP Kind code of ref document: A1 |