WO2012065441A1 - 一种电网优化直流充电系统 - Google Patents

一种电网优化直流充电系统 Download PDF

Info

Publication number
WO2012065441A1
WO2012065441A1 PCT/CN2011/076171 CN2011076171W WO2012065441A1 WO 2012065441 A1 WO2012065441 A1 WO 2012065441A1 CN 2011076171 W CN2011076171 W CN 2011076171W WO 2012065441 A1 WO2012065441 A1 WO 2012065441A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
grid
matrix
control
Prior art date
Application number
PCT/CN2011/076171
Other languages
English (en)
French (fr)
Inventor
蔡英
Original Assignee
智晖有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 智晖有限公司 filed Critical 智晖有限公司
Publication of WO2012065441A1 publication Critical patent/WO2012065441A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging

Definitions

  • the present invention relates to the field of power grid technology, and in particular, to a grid optimized DC charging system. Background technique
  • the energy density and cycle life of lithium ion battery electrode materials have been significantly improved over the past. It is estimated that by 2015, the cell energy density can exceed 200 wh/kg.
  • the room temperature cycle life can be greater than 5000 times at 70% discharge depth and greater than 12000 at 60% discharge depth.
  • the design capacity of the cell 100-80% of initial capacity
  • the design capacity can be maintained for 7 years at maximum usage (5 times per day).
  • the cell's design capacity can be maintained for 33 years. If the cell continues to be used below the design capacity (80-40% of the starting capacity), an additional 4-7 years of use can be added at the maximum usage.
  • Embodiments of the present invention provide a power grid optimized DC charging system and method, which utilizes a new battery pack to quickly store energy, and integrates smart grid optimization technology with electric vehicle DC charging technology, which can be realized in storage in battery storage. Energy provides DC fast charging for electric vehicles while providing load balancing and frequency adjustment services for the grid.
  • a power grid optimized DC charging system including:
  • a battery stack matrix for storing electrical energy and providing DC charging
  • a bidirectional power electronic device for cooperating with a battery control and management system to control charging and discharging between the battery pack matrix and the power grid;
  • a battery control and management system for ensuring that the battery stack matrix operates properly through temperature control, cell balancing, and state of charge management
  • the battery stack matrix is connected to the power grid by the two-way power electronic device.
  • the battery control and management system manages data and command communication between the charging station and the power grid, and operates the safety system of the charging station.
  • the distribution of the battery stack matrix is such that a plurality of cells are arranged in a parallel-serial-parallel-string manner.
  • Each set of said cells is connected in parallel as a module, each of said modules having sensors for measuring temperature, voltage and current, said modules being used to estimate the state of charge.
  • a plurality of the modules are connected in series to form a battery box, and the battery boxes are connected in parallel to form a battery stack.
  • the battery stack matrix is formed by connecting the plurality of battery packs in series.
  • the cooling of the module is air or liquid cooling; the liquid cooling is to build a cooling cycle fin under the battery box, the heat sink being integrated into a part of the battery rack.
  • Each of the battery racks in series is isolated by a contactor under the control of a battery control and management system.
  • Each of the battery racks is equipped with an intelligent short circuit detecting device to provide security protection for the battery rack.
  • a plurality of battery boxes are stacked in parallel on each of the battery racks.
  • the battery control and management system includes:
  • a state of charge estimating unit configured to estimate a state of charge by using voltage and current temperature of each module as input data
  • a battery matrix balancing strategy unit for balancing the battery cells each time the battery is fully charged
  • the module fault automatic detecting unit is configured to automatically detect the fault of the wiring or the battery matrix, and when a fault occurs, a warning signal is issued to remind the problem area, and in the case of a serious fault, the contactor is automatically cut off to isolate the battery matrix.
  • the fault part is configured to automatically detect the fault of the wiring or the battery matrix, and when a fault occurs, a warning signal is issued to remind the problem area, and in the case of a serious fault, the contactor is automatically cut off to isolate the battery matrix.
  • the embodiment of the invention has the following advantages:
  • Grid system regulation - can use the two-way power electronic equipment in the grid optimization charging system as a power coefficient correction device to improve grid efficiency, or can be quickly based on the instructions of the grid or battery control and management system (C) control algorithm Charge and discharge, thereby improving grid power quality indicators including voltage offset, frequency offset, three-phase unbalance, harmonics, flicker, voltage dip and surge.
  • C battery control and management system
  • the battery charging load can be dynamically adjusted according to the needs of the grid optimization according to the action signal provided by the grid control device.
  • the battery pack matrix as a versatile storage energy source not only promotes the widespread use of electric vehicles by providing fast charging services (> 200 kW), it will also enable power plant auxiliary power generation equipment to operate more efficiently. Due to the continuous operation of the main power generation equipment The state of use reduces the use of auxiliary power generation equipment and thus significantly reduces emissions of carbon dioxide, nitrogen oxides, and sulfur dioxide.
  • the response time of the battery matrix to grid load changes is much faster than today's grid response times. Its response time is in milliseconds, not the response time in minutes of a traditional power plant.
  • the smart grid optimization technology and the electric vehicle DC charging technology are functionally integrated, thereby creating a new concept of the grid optimized charging system, which provides DC fast charging for the electric vehicle by utilizing the energy stored in the battery. At the same time, it also provides load balancing and frequency adjustment services for the grid.
  • FIG. 1 is a schematic structural diagram of a power grid optimized DC charging system according to an embodiment of the present invention. detailed description
  • the embodiment of the invention provides a grid-optimized DC charging system.
  • the smart grid optimization technology and the electric vehicle DC charging technology are functionally integrated, thereby creating a new concept of the grid optimization charging system, which is utilized.
  • the energy stored in the battery provides DC fast charging for the electric vehicle, and also provides load balancing and frequency adjustment services for the grid.
  • FIG. 1 it is a structural diagram of a grid optimized DC charging system according to an embodiment of the present invention, including:
  • Battery pack matrix ⁇ used to store electrical energy, provide DC charging
  • Two-way power electronics ⁇ used in conjunction with the battery control and management system C to control the charge and discharge between the battery pack matrix and the grid;
  • Battery control and management system C used to ensure that battery pack matrix A works properly through temperature control, cell balancing and charge status management;
  • the electric vehicle DC charging device and the port D are used to charge the electric energy stored in the battery matrix A to the plurality of electric vehicles at the same time through the DC charging port.
  • the battery control and management system C further includes: a control algorithm unit and a sensing unit.
  • the battery stack matrix A is connected to the grid through the bidirectional power electronics B at all times.
  • the bidirectional power electronics B can be used in conjunction with the battery control and management system C to control the charging and discharging of the battery stack matrix A in accordance with the instructions of the grid or battery control and management system C control algorithm to provide optimized service to the grid.
  • the electrical energy stored in the battery stack matrix A can also charge multiple electric vehicles at the same time through the DC charging device and port D.
  • battery pack matrix A
  • the distribution of the battery module matrix A is a combination of many cells in a parallel-serial-parallel-string fashion. This design provides the highest reliability, stability and maintainability.
  • Each set of cells is connected in parallel as a module.
  • Each module will have sensors that measure temperature, voltage, and current to estimate the state of charge. Then several modules are connected in series to form a battery box, and then some battery boxes are connected in parallel to form a battery holder.
  • the entire battery pack matrix A is made up of a plurality of battery packs connected in series.
  • Cooling of the module can be air or liquid cooling.
  • Liquid cooling requires the construction of cooling circulation fins under the battery compartment that will be integrated into the battery rack.
  • the battery rack is designed so that each series of battery racks can be isolated by a contactor under the control of the battery control and management system C for emergency or maintenance services.
  • Each battery rack is also equipped with an intelligent short-circuit detection device to provide safety protection for the battery rack.
  • the entire matrix can be serviced at the battery box level. This means that the battery box can be taken out of the line for maintenance under any circumstances without affecting the overall functionality of the battery rack or matrix system. It also has the flexibility to increase the total matrix capacity by stacking more battery cells in parallel on each battery rack, allowing for expansion while maintaining the same DC voltage range without the need to change power electronics.
  • the two-way power electronic equipment used can be selected from the existing international advanced technology, and the standard model number is ⁇ 5.
  • the capacity of the battery pack matrix is partially modified, and the network can be connected.
  • the specification of the IEC61850 communication protocol accepts the operation instructions of the duty personnel and the regional intelligent level dispatchers in the regional information processing center of the smart grid, and can complete the programmed operation without personnel intervention according to the instructions to achieve the purpose of optimizing the power grid.
  • the battery control and management system C includes: a charging state estimating unit, a setting unit of power and state of charge values, a battery matrix balancing strategy unit, and a module fault automatic detecting unit; wherein
  • State of charge estimation unit The state of charge of the battery matrix (error ⁇ 3%) can be accurately predicted in any operating interval.
  • the state of charge estimation algorithm takes into account the voltage, current and temperature of each module and uses them as input data to estimate the state of charge.
  • Control of the state of charge of the battery is one of the most critical factors in determining the life of the battery matrix. It is also used to calculate how much stored energy in the battery matrix can be used for charging services.
  • the cells used in the battery matrix are designed to withstand 3c charge and discharge speeds. In the case of a 3c discharge rate, a fully charged battery matrix can provide half an hour of power to approximately 6,000 homes.
  • the battery management system's control software manages the discharge rate by limiting the discharge power based on battery power operating conditions. It also maximizes battery life by controlling the depth of the battery discharge (DoD). Under normal conditions, the depth of discharge will remain below 80% of the total capacity.
  • a single cell/module will use dynamic balancing to extend life and increase utilization efficiency. To save energy and reduce heat generation, the battery will dynamically balance the core each time the battery is fully charged.
  • Module Fault Auto-Detection Unit We will have a special method to automatically detect any wiring or battery matrix failure. Once a problem is found, Battery Control and Management System C can issue a warning signal to alert the administrator to the problem area. In the event of a severe fault, it also automatically cuts the contactor to isolate the faulty portion of the battery pack matrix A.
  • the Battery Control and Management System C will ensure that the Battery Pack Matrix A operates under optimal conditions through temperature control, cell balancing, and charge status management. It will also manage data and command communication between the charging station and the grid and operate the safety system of the charging station.
  • the electric vehicle DC charging device and port D adopt SAE or IEC charging standards, and have the ability of 1, 2, and 3 DC charging.
  • the maximum voltage is up to 600V and the maximum current is 400A.
  • the charging time and charging speed will be controlled by the car battery management system. Communication between the two devices during charging preparation will be confirmed using the communication protocol specified by the SAE or IEC charging standards. Recognize battery capacity and safety status.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a A computer device (which may be a personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

一种电网优化直流充电系统 本申请要求于 2010年 11 月 17 日提交中国专利局, 申请号为 201010552647.7, 发明名称为 "一种电网优化直流充电系统" 的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及电网技术领域, 特别涉及一种电网优化直流充电系 统。 背景技术
1.电池技术
近年来锂离子电池电极材料的能量密度和循环寿命比过去有显 著改善。 预计到 2015年, 电芯能量密度可超过 200wh/kg。 室温循 环寿命在 70%放电深度时可大于 5000 次,在 60%放电深度时可大于 12000 次。 我们预期在最大用量的情况下 (每天充电 5次), 电芯的 设计容量 (起始容量的 100-80% )可保持 7年。 在最小用量的情况下 (每天充电 1次), 电芯的设计容量可保持 33 年。 如果在低于设计 容量 (起始容量的 80-40% )的情况下继续使用电芯, 可以在最大用量 的情况下增加另外 4-7年的使用期。
尽管电池电极材料的能量密度和循环寿命在理论上已可以满足 电网应用的要求, 在实际应用中它仍然无法大量推广。 其主要原因是 目前的技术水平仍然无法解决大量的电芯连接的可靠性问题,以及荷 电状态估算精度和电芯动态平衡的问题。
2. 电池技术在智能电网中的应用
目前在欧美的智能电网技术的开发已渐成熟,其中一项重要的组 成部分是利用新型电池组对电能的快速存放功能来为电网提供负荷 平衡和频率调节等服务。 这一功能可使智能电网通过调整发电、用电 设备功率优化负荷平衡的智能技术系统来控制中心与电网设备之间 的信息交互, 从而达到电网运行的可靠、 安全、 经济、 高效、 环境友 好和使用安全的目标。
由于近年来数字化变电站的加速建设 , 以及数字化控制并使用
IEC61850标准的数据通讯等许多新技术, 使得大型电池组和电网的 整和成为可能。在美国和欧洲已有几个演示项目来^证用电池电源提 供负载调配和频率调节的服务的可行性,以及使用电池来存储可再生 能源的可能性。尽管该技术由于成本和电池管理系统技术的限制仍处 于试验阶段, 功能不强, 电池寿命短。
3. 直流充电技术
近来国际上对电动车的开发也已进入实用阶段。随着电动车的逐 渐应用, 对充电站的需求也日益频繁。 目前国内外的交流和直流充电 站均采用直接从电网变电的方式获取电能。但是, 鉴于当前的电网负 荷的设计能力,预计电动汽车快速充电站所需的大量能源将给现有电 网结构造成重大压力, 并可能会降低电网的整体效率。 所以尽管目前 直流充电站所需的硬件及软件技术已成熟 ,直流充电站与智能电网的 整合仍是需要解决的问题。另外一个挑战是目前直流充电器与电动车 充电接口及指令通讯的标准仍未确定。 预计到 2012年, 该标准的制 订才可在全球范围内完成。
到目前为止,还没有发现任何使用大型电池电源来提供直流快速 充电的应用,其主要原因是由于电池管理系统的不成熟造成的成本过 高。 发明内容
本发明实施例提供了一种电网优化直流充电系统和方法,利用新 型电池组对电能的快速存放功能,将智能电网优化技术与电动汽车直 流充电技术进行功能整合,可以实现在利用存储在电池存储能量为电 动汽车提供直流快速充电的同时,还能为电网提供负荷平衡和频率调 节等服务。 为达到上述目的,本发明实施例一方面提供一种电网优化直流充 电系统, 包括:
电池组矩阵, 用于存储电能, 提供直流充电;
双向电力电子设备,用于配合电池控制和管理系统来控制所述电 池组矩阵与电网之间的充放电;
电池控制和管理系统, 用于通过温度控制、 电芯平衡和充电状态 管理来确保所述电池组矩阵正常工作;
电动车直流充电设备及端口,用于将存储在所述电池矩阵中的电 能通过直流充电端口在同一时间为多个电动车充电。
所述电池组矩阵通过所述双向电力电子设备与电网相连。
所述电池控制和管理系统管理充电站与电网间的数据及指令通 讯, 并操控充电站的安全系统。
所述电池组矩阵的分布是将多个电芯按并-串 -并-串方式排列而 成的。
每一组所述电芯并行连接成模块, 每个所述模块均有测量温度、 电压和电流的传感器, 所述模块用于估算荷电状态。
将多个所述模块串联形成一个电池箱 ,再将所述电池箱并联成一 个电池组架 , 所述电池组矩阵由所述多个电池组架串联而成。
所述模块的冷却是风冷或液体冷却;所述液体冷是在电池箱下建 冷却循环散热片, 所述散热片整合成为所述电池组架的一部分。
每个串联的所述电池组架是由一个在电池控制和管理系统控制 下的接触器进行隔离。
每个所述电池组架安装一个智能短路检测设备来提供所述电池 组架的安全保护。
每个所述电池组架上堆叠并联多个电池箱。
所述电池控制和管理系统包括:
荷电状态估算单元, 用于将每个模块的电压、 电流温度作为输入 数据来估算荷电状态;
功率及荷电状态值的设定单元, 用于根据电池电源运行条件, 通 过限制放电功率来管理放电速度;
电池矩阵平衡策略单元,用于将电池在每次电池充满电时进行动 态电芯平衡;
模块故障自动检测单元,用于自动检测布线或所述电池组矩阵的 故障, 当出现故障时, 发出警告信号来提醒问题区域, 严重故障的情 况下, 则自动切断接触器以便隔离电池组矩阵的故障部分。
与现有技术相比, 本发明实施例具有以下优点:
1. 电动汽车充电一一作为直流到直流充电站为电动汽车提供电 能。
2. 负荷平衡一一根据电网负荷管理策略, 于低峰期向电池矩阵 充电,然后在高峰期向电网回馈以实现有效的临界负荷保护及负荷平 衡。
3. 电网系统调节——既可利用电网优化充电系统内的双向电力 电子设备来作为提高电网效率的功率系数校正装置 , 也可以根据电 网或电池控制和管理系统(C )控制算法的指令来快速充放电, 由此 改进电网电能质量指标包括电压偏移、频率偏移、三相不平衡、谐波、 闪变、 电压骤降和突升等。
4.可再生能源的整合一一用以存储可再生能源发电设备如风车、 太阳能板等产生的电肯¾。
5. 减少发电厂储备容量一一电池中存储的电力能源可以迅速部 署回电网, 从而减少发电厂储备容量的需求,提高电厂对负荷骤变作 出反应的能力。
6. 加载塑造一一根据电网控制装置提供动作信号, 电池充电负 载可以根据电网优化的需要进行动态调节。
7. 不间断备用电源一一当遇到局部电网断电时, 电池中存储的 电力能源可以为医院, 数据中心等重点单位提供短期电源。
使用电池组矩阵来作为一个多用途的储能源 ,不仅能通过提供快 速充电服务( > 200kW)来促进电动车辆的广泛应用, 它还将使发电厂 辅助发电设备得以更有效地运营。由于主发电设备运行在一个不断优 化状态, 因此减少了辅助发电设备的使用进而大幅减少了二氧化碳, 氧化氮, 和二氧化硫的排放。 电池矩阵对电网负荷变化的响应时间要 比当今电网的响应时间快得多。 它的响应时间是以毫秒为单位, 而不 是传统电厂以分钟为单位的响应时间。
通过本发明实施例 ,将智能电网优化技术与电动汽车直流充电技 术进行功能整合, 从而开创了一个电网优化充电系统的新概念, 其在 利用存储在电池中的能量为电动汽车提供直流快速充电的同时,还为 电网提供负荷平衡和频率调节等服务 附图说明
图 1为本发明实施例电网优化直流充电系统的关系结构示意图。 具体实施方式
本发明实施例提供了一种电网优化直流充电系统,通过本发明实 施例, 将智能电网优化技术与电动汽车直流充电技术进行功能整合, 从而开创了一个电网优化充电系统的新概念,其在利用存储在电池中 的能量为电动汽车提供直流快速充电的同时,还为电网提供负荷平衡 和频率调节等服务。
如图 1所示, 为本发明实施例电网优化直流充电系统的结构图, 包括:
电池组矩阵 Α, 用于存储电能, 提供直流充电;
双向电力电子设备 Β,用于配合电池控制和管理系统 C来控制电 池组矩阵 Α与电网之间的充放电;
电池控制和管理系统 C, 用于通过温度控制、 电芯平衡和充电状 态管理来确保电池组矩阵 A正常工作;
电动车直流充电设备及端口 D, 用于将存储在电池组矩阵 A中 的电能通过直流充电端口在同一时间为多个电动车充电。
电池控制和管理系统 C还包括: 控制算法单元和传感单元。 电池组矩阵 A在任何时候都通过双向电力电子设备 B与电网相 连。根据电网或电池控制和管理系统 C控制算法的指令,双向电力电 子设备 B可配合电池控制和管理系统 C来控制电池组矩阵 A的充放 电, 以便为电网提供优化服务。 存储在电池组矩阵 A 中的电能还可 以通过直流充电设备及端口 D在同一时间为多个电动车充电。
其中, 电池组矩阵 A:
电池组矩阵 A的分布是将许多电芯按并 -串-并-串方式排列而成 的,这样的设计可提供最高的可靠性、 稳定性和可维护性。
每一组电芯并行连接成模块。每个模块将有测量温度、 电压和电 流的传感器, 用于估算荷电状态。 然后将几个模块串联形成一个电池 箱, 再将一些电池箱并联成一个电池组架。 整个电池组矩阵 A则由 多个电池组架串联而成。
模块的冷却可以是风冷或液体冷却。液体冷却需要在电池箱下建 冷却循环散热片, 这些散热片将整合成为电池组架的一部分。
电池组架的设计将使每个串联的电池组架都可以由一个在电池 控制和管理系统 C控制下的接触器进行隔离,以便应付紧急情况或进 行维修保养服务。每个电池组架还安装了一个智能短路检测设备来提 供电池组架的安全保护。整个矩阵可以在电池箱一级进行维修保养服 务 这意味着在任何情况下都可以在线抽出电池箱进行维护, 而 不会影响电池组架或矩阵系统的总体功能。它还具有灵活地增加总矩 阵容量的能力, 只要在每个电池组架上堆叠并联更多电池箱, 既可在 保持同一直流电压范围的情况下扩容, 而不需要更改电力电子设备。
双向电力电子设备 B:
所用双向电力电子设备可选用现有国际先进技术,以标准型号为 ^5出, 针对本电池组矩阵的容量做部分修改, 既可联网。
双向电力电子设备与智能电网的数据及指令通讯亦将遵守
IEC61850通信规约的规范, 接受智能电网的区域信息处理中心站内 值班人员和区域智能层面调度人员的操作指令,并可按指令完成不用 人员干预的程序化操作, 以达到优化电网的目的。 电池控制和管理系统 C包括:荷电状态估算单元、功率及荷电状 态值的设定单元、 电池矩阵平衡策略单元和模块故障自动检测单元; 其中,
荷电状态估算单元:可以在任何运行区间准确地预测电池矩阵的 荷电状态 (误差 < 3%)。 荷电状态估计算法考虑到每个模块的电压、 电流及温度, 并用它们作为输入数据来估算荷电状态。 电池荷电状态 的控制是决定电池矩阵寿命的最关键因素之一,它还被用来计算电池 矩阵中有多少存储的能量可被用于充电服务。
功率及荷电状态值的设定单元: 电池矩阵所用电芯是按可承受 3c 充放电速度来设计的。 在 3c放电率的情况下, 完全充满电的电 池矩阵可以为约 6000 个家庭提供半小时电力。 电池管理系统的控制 软件会根据电池电源运行条件,通过限制放电功率的方法来管理放电 速度。 它还可以通过控制电池放电 (DoD) 的深度来最大化的延长电 池的寿命。在正常的条件下,放电深度将会维持在总容量的 80%以下。
电池矩阵平衡策略单元: 单个电芯 /模块将采用动态平衡来延长 寿命和提高利用效率。 为了节约能源并减少生热, 电池将在每次电池 充满电时进行动态电芯平衡。
模块故障自动检测单元:我们将有一个特殊方法来自动检测任何 布线或电池矩阵故障,一旦发现问题, 电池控制和管理系统 C可以发 出警告信号来提醒管理员问题区域。严重故障的情况下它还会自动切 断接触器以便隔离电池组矩阵 A的故障部分。
电池控制和管理系统 C将会通过温度控制、电芯平衡,和充电状 态管理来确保电池组矩阵 A在最佳条件下工作。 它还将管理充电站 与电网间的数据及指令通讯, 并操控充电站的安全系统。
电动车直流充电设备及端口 D:
电动车直流充电设备及端口 D采用 SAE或 IEC 充电标准, 具 备 1 , 2, 3级直流充电的能力。最高电压可达 600V,最大电流 400A, 充电时间及充电速度将会由汽车电池管理系统控制。充电准备期间两 个设备之间的通信将使用 SAE或 IEC充电标准规定的通信协议来确 认电池容量和安全状态。 通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明可借助软件加必需的通用硬件平台的方式来实现, 当然也可 以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以 软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服 务器, 或者网络设备等)执行本发明各个实施例所述的方法。
以上公开的仅为本发明的几个具体实施例, 但是, 本发明并非局 限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护 范围。

Claims

权利要求
1、 一种电网优化直流充电系统, 其特征在于, 包括:
电池组矩阵, 用于存储电能, 提供直流充电;
双向电力电子设备,用于配合电池控制和管理系统来控制所述电 池组矩阵与电网之间的充放电;
电池控制和管理系统, 用于通过温度控制、 电芯平衡和充电状态 管理来确保所述电池组矩阵正常工作;
电动车直流充电设备及端口,用于将存储在所述电池矩阵中的电 能通过直流充电端口在同一时间为多个电动车充电。
2、 如权利要求 1所述电网优化直流充电系统, 其特征在于, 所
3、 如权利要求 2所述电网优化直流充电系统, 其特征在于, 所 述电池控制和管理系统管理充电站与电网间的数据及指令通讯,并操 控充电站的安全系统。
4、 如权利要求 2所述电网优化直流充电系统, 其特征在于, 所 述电池组矩阵的分布是将多个电芯按并-串-并 -串方式排列而成的。
5、 如权利要求 4所述电网优化直流充电系统, 其特征在于, 每 一组所述电芯并行连接成模块,每个所述模块均有测量温度、 电压和 电流的传感器, 所述模块用于估算荷电状态。
6、 如权利要求 5所述电网优化直流充电系统, 其特征在于, 将 多个所述模块串联形成一个电池箱,再将所述电池箱并联成一个电池 组架, 所述电池组矩阵由所述多个电池组架串联而成。
7、 如权利要求 6所述电网优化直流充电系统, 其特征在于, 所 述模块的冷却是风冷或液体冷却;所述液体冷是在电池箱下建冷却循 环散热片, 所述散热片整合成为所述电池组架的一部分。
8、 如权利要求 7所述电网优化直流充电系统, 其特征在于, 每 个串联的所述电池组架是由一个在电池控制和管理系统控制下的接 触器进行隔离。
9、 如权利要求 8所述电网优化直流充电系统, 其特征在于, 每 个所述电池组架安装一个智能短路检测设备来提供所述电池组架的 安全保护。
10、 如权利要求 9所述电网优化直流充电系统, 其特征在于, 每 个所述电池组架上堆叠并联多个电池箱。
11、 如权利要求 1所述电网优化直流充电系统, 其特征在于, 所 述电池控制和管理系统包括:
荷电状态估算单元, 用于将每个模块的电压、 电流温度作为输入 数据来估算荷电状态;
功率及荷电状态值的设定单元, 用于根据电池电源运行条件, 通 过限制放电功率来管理放电速度;
电池矩阵平衡策略单元,用于将电池在每次电池充满电时进行动 态电芯平衡;
模块故障自动检测单元,用于自动检测布线或所述电池组矩阵的 故障, 当出现故障时, 发出警告信号来提醒问题区域, 严重故障的情 况下, 则自动切断接触器以便隔离电池组矩阵的故障部分。
PCT/CN2011/076171 2010-11-17 2011-06-23 一种电网优化直流充电系统 WO2012065441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010552647.7 2010-11-17
CN2010105526477A CN102468678A (zh) 2010-11-17 2010-11-17 一种电网优化直流充电系统

Publications (1)

Publication Number Publication Date
WO2012065441A1 true WO2012065441A1 (zh) 2012-05-24

Family

ID=46071965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076171 WO2012065441A1 (zh) 2010-11-17 2011-06-23 一种电网优化直流充电系统

Country Status (2)

Country Link
CN (1) CN102468678A (zh)
WO (1) WO2012065441A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8901888B1 (en) 2013-07-16 2014-12-02 Christopher V. Beckman Batteries for optimizing output and charge balance with adjustable, exportable and addressable characteristics
CN104617592A (zh) * 2015-02-05 2015-05-13 国家电网公司 储能系统的控制方法及装置
CN109274138A (zh) * 2017-07-13 2019-01-25 周锡卫 一种多储能模块组合式多功能电动汽车移动储能充电系统及控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033904B (zh) * 2015-03-20 2017-10-10 深圳奥特迅电力设备股份有限公司 矩阵式柔性充电堆及动态分配功率的充电方法
CN106160017B (zh) * 2016-06-30 2018-11-06 温州大学 基于均流偏差期望矩阵列和最小的并联供电系统优化控制方法
CN106059024A (zh) * 2016-07-22 2016-10-26 中国电力科学研究院 一种家庭电动汽车用大功率快速充电变流器
CN111404168B (zh) * 2019-12-09 2023-06-16 重庆邮电大学 基于柔性空调负荷的平抑变电站过载的调度系统及其方法
CN112688347A (zh) * 2021-01-12 2021-04-20 国网上海市电力公司 一种电网负荷波动的平缓系统和方法
CN116387658B (zh) * 2023-06-01 2023-08-08 深圳和润达科技有限公司 实现能源均衡调度策略的系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111735A (ja) * 1993-10-07 1995-04-25 Nippondenso Co Ltd 電気自動車用補機バッテリ充電システム
CN101412376A (zh) * 2008-12-03 2009-04-22 吴速 利用自然能向电动汽车供能的系统和方法
CN201623523U (zh) * 2010-03-30 2010-11-03 河南电力试验研究院 一种应急充电车和充电系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631536A (en) * 1994-05-16 1997-05-20 Tseng; Ling-Yuan Rechargeable battery vending apparatus
CN101752620B (zh) * 2009-12-23 2012-02-15 奇瑞汽车股份有限公司 一种车载锂电池充电系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111735A (ja) * 1993-10-07 1995-04-25 Nippondenso Co Ltd 電気自動車用補機バッテリ充電システム
CN101412376A (zh) * 2008-12-03 2009-04-22 吴速 利用自然能向电动汽车供能的系统和方法
CN201623523U (zh) * 2010-03-30 2010-11-03 河南电力试验研究院 一种应急充电车和充电系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8901888B1 (en) 2013-07-16 2014-12-02 Christopher V. Beckman Batteries for optimizing output and charge balance with adjustable, exportable and addressable characteristics
CN104617592A (zh) * 2015-02-05 2015-05-13 国家电网公司 储能系统的控制方法及装置
CN109274138A (zh) * 2017-07-13 2019-01-25 周锡卫 一种多储能模块组合式多功能电动汽车移动储能充电系统及控制方法
CN109274138B (zh) * 2017-07-13 2024-04-09 周锡卫 一种基于多储能模块组合式多功能电动汽车移动储能充电系统的控制方法

Also Published As

Publication number Publication date
CN102468678A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
WO2012065441A1 (zh) 一种电网优化直流充电系统
CN103595138B (zh) 一种智能微电网系统
US20120056588A1 (en) Use of Battery Energy for Power Grid Optimization and Electric Vehicle Charging
CN103647274B (zh) 一种用于可并网和离网运行的微电网系统的能量控制方法
CN103227491B (zh) 用于电动车锂电池组的数据采集和能量均衡控制装置及方法
CN101931238A (zh) 基于主从策略的微网系统协调控制方法
CN102111018A (zh) 储能系统及其控制方法
CN111404186B (zh) 一种配变动态增容智能储能装置及控制方法
US20190237980A1 (en) Battery system
JP2015092444A (ja) ハイブリッド蓄電池、ならびにそれを利用するハイブリッド蓄電装置、発蓄電ユニット、電力網システムおよび走行体
CN110011344B (zh) 一种储能系统及其控制方法
CN107069976A (zh) 一种可扩展的组串式大规模储能系统
CN112600264B (zh) 并联电池包的控制方法、系统、电子设备及车辆
CN107785919B (zh) 一种混合储能系统及其控制方法
CN105552945A (zh) 电池储能系统
CN111740474A (zh) 基于分散式控制和布局的电池储能系统及其能量调度方法
CN101728835A (zh) 一种平滑风力发电输出功率的电池电力储能装置
KR102092088B1 (ko) 전기저장장치 운전모드 제어 장치 및 방법
CN103117595A (zh) 分布式直流独立供电系统
CN112865156B (zh) 储能系统以及电力系统
Bayoumi Power electronics in smart grid distribution power systems: a review
CN203119615U (zh) 分布式直流独立供电系统
CN202772602U (zh) 兼具离网、并网两种模式的风力发电系统
CN111416373A (zh) 一种配变动态增容光储一体化装置
Fang et al. Coordinated and stable control of a hybrid energy storage system for wave generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842088

Country of ref document: EP

Kind code of ref document: A1