WO2012065348A1 - 一种并网逆变器及其交流输出滤波方法 - Google Patents

一种并网逆变器及其交流输出滤波方法 Download PDF

Info

Publication number
WO2012065348A1
WO2012065348A1 PCT/CN2011/000790 CN2011000790W WO2012065348A1 WO 2012065348 A1 WO2012065348 A1 WO 2012065348A1 CN 2011000790 W CN2011000790 W CN 2011000790W WO 2012065348 A1 WO2012065348 A1 WO 2012065348A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
filter
connected inverter
output
module
Prior art date
Application number
PCT/CN2011/000790
Other languages
English (en)
French (fr)
Inventor
刘伟增
阮少华
张新涛
Original Assignee
特变电工新疆新能源股份有限公司
特变电工西安电气科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 特变电工新疆新能源股份有限公司, 特变电工西安电气科技有限公司 filed Critical 特变电工新疆新能源股份有限公司
Priority to ES11841004T priority Critical patent/ES2768332T3/es
Priority to US13/701,298 priority patent/US9042134B2/en
Priority to EP11841004.2A priority patent/EP2562919B1/en
Publication of WO2012065348A1 publication Critical patent/WO2012065348A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to the field of grid-connected inverters, and in particular, to a grid-connected inverter and an AC output filtering method thereof. Background technique
  • the output filters of the grid-connected inverter are designed for the rated output power of the grid-connected inverter itself.
  • the harmonic distortion rate of the output current waveform of the grid-connected inverter can well meet the requirements of the grid-connected inverter.
  • the load rate is less than 25% and the inverter output power is much lower than the rated power, there are two serious problems:
  • the present invention provides a grid-connected inverter and its AC output.
  • the filtering method is such that the total harmonic distortion (THD) of the output current waveform of the grid-connected inverter can meet the requirements of the relevant standards even at a low load rate, and the grid-connected inverter is at a low load rate.
  • TDD total harmonic distortion
  • the present invention provides a grid-tied inverter, comprising: an AC output filter comprising two or more switchable filter modules in parallel, wherein a power capacity of each filter module is connected to the grid Different output power of the inverter; a monitoring module connected to the AC output of the grid-connected inverter for real-time monitoring of the AC output voltage and current of the grid-connected inverter; and a control circuit connected to the monitoring Between the module and the AC output filter, configured to calculate the output power of the grid-connected inverter according to the voltage and current monitored by the monitoring module, and switch to have the power level according to the calculated power level to which the output power belongs A filter module of a corresponding power capacity, the power level being divided according to a power capacity of the plurality of filter modules.
  • each of the filtering modules comprises a LC/LCL alternating current filter and a first alternating current contactor connected in series
  • the filter capacitor branch in the LC/LCL alternating current filter comprises a series filter capacitor and a second alternating current contactor
  • the control circuit controls switching to the corresponding filtering module by controlling on and off of the first alternating current contactor and the second alternating current contactor included in each of the filtering modules.
  • the model of the filter capacitor and the second AC contactor is selected according to the power capacity of the filter module, and the model of the first AC contactor is based on the output current value of the grid-connected inverter.
  • the size is chosen.
  • the AC output filter includes two filtering modules connected in parallel, one of which is a main filtering module and one is an auxiliary filtering module, and the power capacity of the main filtering module is a rated output power of the grid-connected inverter.
  • the power capacity of the auxiliary filtering module is 5-40% of the rated output power of the grid-connected inverter.
  • the power capacity of the auxiliary filtering module is 15-30% of the rated output power of the grid-connected inverter.
  • the monitoring module is further configured to perform real-time monitoring on the grid-connected condition of the grid-connected inverter, and determine whether the grid-connected inverter meets the grid-connecting condition, and the control circuit is further configured to determine according to the monitoring module. Whether the grid inverter satisfies the grid connection condition to control the on/off of the AC output filter: If the grid connection condition is not satisfied, the control circuit controls to cut off the communication All filter modules in the output filter, if the grid-connected condition is satisfied, the control circuit controls the corresponding filter module in the AC output filter to be turned on.
  • the number of the filtering modules is selected according to the range span of the grid-connected inverter output power and the harmonic requirements of the grid-connected inverter for the lowest load rate.
  • the present invention provides an AC output filtering method for a grid-connected inverter, the grid-connected inverter comprising an AC output filter, the AC output filter comprising two or more switchable filters in parallel
  • the module wherein the power capacity of each filter module is different output power of the grid-connected inverter
  • the filtering method comprises: real-time monitoring the AC output voltage and current of the grid-connected inverter; according to the monitored voltage and current Calculating an output power of the grid-connected inverter; and controlling, according to the calculated power level to which the output power belongs, switching to a filter module having a power capacity corresponding to the power level, the power level being based on power of the plurality of filter modules Divided by capacity.
  • each of the filtering modules includes an LC/LCL alternating current filter and a first alternating current contactor connected in series, and a filter capacitor branch in the LC/LCL alternating current filter includes a series filter capacitor and a second alternating current contact
  • switching to the corresponding filter module is controlled by controlling the on and off of the first AC contactor and the second AC contactor included in each of the filter modules.
  • the model of the filter capacitor and the second AC contactor is selected according to the power capacity of the filter module, and the model of the first AC contactor is based on the output current value of the grid-connected inverter.
  • the size is chosen.
  • the AC output filter includes two filtering modules connected in parallel, one of which is a main filtering module and one is an auxiliary filtering module, and the power capacity of the main filtering module is a rated output power of the grid-connected inverter.
  • the power capacity of the auxiliary filtering module is 5-40% of the rated output power of the grid-connected inverter.
  • the power capacity of the auxiliary filtering module is 15-30% of the rated output power of the grid-connected inverter.
  • the method further includes: performing real-time monitoring on the grid-connected condition of the grid-connected inverter, and if the grid-connected condition is not satisfied, controlling to cut off all the filtering modules in the AC output filter, if the grid-connected condition is satisfied, Then controlling the corresponding filter module in the AC output filter to be turned on.
  • the method further comprises: selecting the number of the filtering modules according to a range span of the output power of the grid-connected inverter and a harmonic requirement of the grid-connected inverter for the lowest load rate.
  • the present invention has a plurality of filtering modules designed according to different power levels in parallel in the AC output filter of the grid-connected inverter according to different output powers of the grid-connected inverter, and according to the grid connection
  • the real-time output power of the inverter is switched between the multiple filtering modules, so that the THD of the output current waveform of the grid-connected inverter can meet the relevant standards regardless of the output power of the grid-connected inverter. It requires, and effectively improves, the conversion efficiency of the grid-connected inverter at low load rates.
  • FIG. 1 is a system structural diagram of a conventional three-phase full-bridge photovoltaic grid-connected inverter
  • FIG. 2 is a system configuration diagram of a three-phase full-bridge photovoltaic grid-connected inverter according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a method for filtering an AC output of a grid-connected inverter according to an embodiment of the present invention
  • FIG. 4 is a THD comparison diagram of a single filtering method according to the prior art and a dual filtering method according to the present invention
  • Fig. 5 is a comparison diagram of conversion efficiency of a single filtering method according to the prior art and a double filtering method according to the present invention. detailed description
  • FIG. 1 is a system structure diagram of an existing three-phase full-bridge photovoltaic grid-connected inverter.
  • the photovoltaic grid-connected inverter comprises four parts: a PV panel 10, a DC filter 20, a three-phase full-bridge circuit 30 and an AC output filter 40, wherein the input end of the AC output filter 40 With the output of the three-phase full-bridge circuit 30 (ie, the AC input of the grid-connected inverter)
  • the output of the AC output filter 40 is connected to the grid as the output of the photovoltaic grid-connected inverter.
  • the AC output filter includes only one filter module designed according to the rated output power of the grid-connected inverter, such as an LC or LCL filter.
  • the AC output filter 40 of the photovoltaic grid-connected inverter is composed of two filter modules of different power capacities, gp, filter module A and filter module B, wherein the filter module A is composed of an AC filter.
  • a and the AC contactor K A2 are connected in series, and the capacitor branch circuit C1 and the AC contactor ⁇ ⁇ in the AC filter A are connected in series;
  • the filter module ⁇ is composed of an AC filter ⁇ and an AC contactor K li2 connected in series, the AC filter
  • the capacitor branch circuit capacitor C2 in B and the AC contactor K l3 ⁇ 41 are connected in series.
  • the definition filter module ⁇ is an auxiliary filter module, and the filter module B is defined as a main filter module.
  • the AC contactor ⁇ 2 and the AC contactor ⁇ ⁇ 2 are defined as a first AC contactor, and the AC contactor ⁇ 1 and the AC contactor in the capacitive branch are defined as a second AC contactor.
  • the power capacity of the main filter module is designed as the rated output power of the photovoltaic grid-connected inverter
  • the power of the auxiliary filter module ie, filter module A
  • the capacity can usually be designed to be 5% - 40% of the rated output power of the photovoltaic grid-connected inverter, preferably 15% - 30%.
  • the parameters of the inductance L1 and the capacitance C1 of the filter module A can be designed according to the power capacity of 100kw (ie, 20% of the rated power), and then according to the capacitance C1.
  • the parameters of each component can be selected according to the design method of the filter module A.
  • the photovoltaic grid-connected inverter further includes a monitoring module 50 and a control circuit 60, wherein the monitoring module 50 and the grid-connected inverter have an AC output.
  • the end connection is used for real-time monitoring of the AC output voltage and current of the grid-connected inverter;
  • the control circuit 60 is connected between the monitoring module 50 and the AC output filter 40 for the voltage and voltage monitored by the monitoring module 50.
  • Current Calculating the output power of the grid-connected inverter, and transmitting control signal 1 and control signal 2 to the filtering module A and the filtering module B included in the AC output filter 40 according to the calculated output power level to which the output power belongs.
  • the AC contactors ⁇ 1 , ⁇ 2 , ⁇ ⁇ and ⁇ ⁇ 2 are switched on and off to switch to a filter module having a power capacity corresponding to the output power level. That is to say, the monitoring module 50 and the control circuit 60 enable the grid-connected inverter to select different filtering modules to filter the AC output of the grid-connected inverter under different output power conditions to achieve an optimal filtering effect.
  • the power level is divided according to the power capacities of the plurality of filter modules included in the AC output filter 40.
  • the power level is divided into two power levels, the first power level is 500 kw-100 kw, and the second power level is below lOOkw.
  • the present invention is different from the prior art in that the AC output filter 40 according to the prior art includes only one filtering module (which may be referred to as a single filtering mode), and the AC output according to the present invention.
  • the filter 40 then includes two parallel filtering modules (which may be referred to as dual filtering).
  • the AC output filter 40 is not limited to including only the dual filter module shown in FIG. 2, and the number of parallel filter modules depends on the range span of the grid-connected inverter output power and the inverter. Harmonic requirements for the lowest load rate. Generally speaking, if the output power of the grid-connected inverter is large and the harmonic requirements are also strict, then the more filtering modules are connected in parallel according to different power levels in the circuit; if the output power span of the grid-connected inverter is not Very large, harmonic requirements are not very strict, then there are fewer filter modules in parallel in the circuit.
  • the AC filter in the parallel filter module is not limited to the LC filter shown in FIG. 2.
  • an LCL filter can also be used as the AC filter in the filter module.
  • the LCL filter is selected according to the above power capacity design.
  • Each component in the middle can be.
  • 3 is a flow chart of a dual filtering method performed by control circuit 60. In this method, the status word is set as follows:
  • FLAG is a filter module selection flag
  • FLAG 2 means that the selection filter module B (main filter module) or filter module B is working;
  • RESTART is the hot start flag of the grid-connected inverter
  • RESTARTS indicates that the grid-connected inverter needs a hot start
  • RESTARTS indicates that the hot start process is complete.
  • step S302 the control monitoring module 50 monitors the grid-connected condition of the grid-connected inverter, where the grid-connected conditions include: 1. the grid voltage, frequency, amplitude, and phase meet the set grid-connected condition; The PV array voltage reaches the minimum startup voltage of the inverter. As long as these two conditions are met, the inverter can be connected to the grid.
  • step S304 it is determined in step S304 whether the status word RESTART is equal to 1, that is, whether the grid-connected inverter requires a warm start is determined. If RESTARTS, that is, indicating that the hot start process of the grid-connected inverter has been completed, then jumps to step S310 to start performing subsequent real-time switching operations.
  • step S305 If RESTARTS, that is, it indicates that the grid-connected inverter needs a warm start, it is first delayed by 3 seconds in step S305, because in the real-time switching control, the actual hardware disconnection of the AC contactor takes a certain time, in order to Leave enough time for the AC contactor ⁇ 1 , ⁇ ⁇ 2 , ⁇ ⁇ , ⁇ ⁇ 2 to disconnect, so that the AC contactor can be completely disconnected, so it takes a certain delay.
  • the delay time is set to 3. Seconds, but in fact this delay can be any value between 1 second and 3 seconds. Then, it is judged in step S306 whether or not the status word FLAG is equal to 1.
  • step S310 the AC output voltage C7 monitored by the monitoring module 50 is obtained. with/.
  • step S311 it is judged whether the calculated output power is greater than the set reference value ⁇ .
  • the power capacity of the auxiliary filtering module ie, filtering module A.
  • filter module A For example, for a 500kw inverter, if filter module A is designed according to lOOkw, it should be 100kw. According to the reference value thus set, it can be divided into two power levels, the first power level is 500kw-100kw, and the second power level is below lOOkw.
  • the main filtering module i.e., filtering module B
  • the auxiliary filtering module i.e., filtering module A
  • control circuit 60 controls the on-off states of the AC contactors ⁇ 1 , ⁇ 2 , ⁇ 1, and ⁇ 2 according to the real-time output power of the grid-connected inverter, so that switching to have the power with the output power A filter module of the corresponding power capacity of the class.
  • the monitoring module 50 can perform real-time monitoring on the AC output voltage and current of the grid-connected inverter, and can also perform the grid-connected condition of the grid-connected inverter.
  • the real-time monitoring, and judging whether the grid-connected inverter meets the grid-connecting condition, the control circuit 60 is further configured to control the on/off of the AC output filter according to whether the grid-connected inverter determined by the monitoring module 50 satisfies the grid-connected condition: If the grid-connected condition is not satisfied, the control circuit 60 controls to cut off all of the filter modules in the AC output filter. If the grid-connected condition is satisfied, the control circuit controls the corresponding filter module in the AC output filter to be turned on.
  • the rated power of the grid-connected inverter is 500kw
  • the standard requirement is set to the inverter output current THD ⁇ 5% (refer to the standard IEEE 929-2000, "Inverter for low-voltage grid-connected photovoltaic power generation below 400V” Technical requirements and test methods, etc.).
  • Table 1 below is an experimental comparative analysis of total harmonic content (THD) and conversion efficiency for single-filter and double-filter modes of 500kw inverters at different load rates.
  • Figures 4 and 5 are graphs of the experimental data shown in Table 1. It can be seen from Table 1, Figure 4 and Figure 5 that compared with the single filtering method, the double filtering mode has a significant decrease in THD and a high conversion efficiency at low load rates.

Description

一种并网逆变器及其交流输出滤波方法 技术领域
本发明涉及并网逆变器技术领域, 尤其涉及一种并网逆变器及 其交流输出滤波方法。 背景技术
随着并网发电技术的广泛应用,并网逆变器的输出电能质量得到 了电网公司更多的关注。 为了降低并网输出谐波, 提高电能质量, 国 内外光伏发电标准 (如 UL1741 、 IEEE929-2000 ) 中均对并网电流各 次谐波及总谐波含量都提出了严格的要求。影响并网电流谐波的因素 有很多,本文主要讨论并网逆变器的交流输出滤波方式对并网电流谐 波的影响。
目前,并网逆变器的输出滤波器都是针对并网逆变器自身的额定 输出功率所设计的。 当并网逆变器输出功率在额定功率时, 并网逆变 器的输出电流波形的谐波畸变率可以很好地满足并网逆变器相关标 准的要求。 但在轻载情况下, 尤其是负载率低于 25%以下、 逆变器输 出功率远低于额定功率时, 存在以下两个严重问题:
(1)由于在低负载率情况下, 调制比很低, 开关占空比很小, 导 致并网电流谐波含量严重超标, 对电网造成较大的谐波污染;
(2)在轻载情况下, 由于滤波器空载损耗占的比重增加, 使逆变 器的转换效率也大幅降低。
这种问题对于光伏并网逆变器尤其严重。由于一天中日照强度的 自然变化,光伏并网逆变器在一天的大部分时间都工作在较低的负载 率下。 在这种情况下, 如上所述, 存在并网电流谐波含量超标和转换 效率降低的问题, 从而降低了输出电能质量。 但是, 目前尚缺乏对于 这种问题的解决方案。 发明内容
为了解决上述问题, 本发明提供一种并网逆变器及其交流输出 滤波方法,以使得并网逆变器即使在低负载率情况下其输出电流波形 的总谐波畸变率 (THD ) 也能满足相关标准的要求, 并使得并网逆变 器在低负载率情况下的转换效率得到提高。
为了实现以上目的, 本发明提供一种并网逆变器, 包括: 交流 输出滤波器, 其包括并联的两个或更多个可切换的滤波模块, 其中每 个滤波模块的功率容量为并网逆变器的不同输出功率; 监测模块, 其 与并网逆变器的交流输出端连接,用于对并网逆变器的交流输出电压 和电流进行实时监测; 和控制电路, 其连接在监测模块和交流输出滤 波器之间,用于根据通过监测模块监测到的电压和电流计算并网逆变 器的输出功率,并根据所计算的输出功率所属的功率等级控制切换到 具有与该功率等级相应的功率容量的滤波模块,所述功率等级根据所 述多个滤波模块的功率容量而划分。
优选地, 所述每个滤波模块包括串联的 LC/LCL交流滤波器和第 一交流接触器, 所述 LC/LCL交流滤波器中的滤波电容支路包括串联 的滤波电容和第二交流接触器,所述控制电路通过控制各个滤波模块 中所包括的第一交流接触器和第二交流接触器的通断来控制切换到 相应的滤波模块。
优选地, 所述每个滤波模块中, 滤波电容和第二交流接触器的 型号根据该滤波模块的功率容量来选取,所述第一交流接触器的型号 根据并网逆变器的输出电流值的大小来选取。
优选地, 所述交流输出滤波器中包括并联的两个滤波模块, 其 中一个为主滤波模块,一个为辅助滤波模块, 所述主滤波模块的功率 容量为该并网逆变器的额定输出功率,所述辅助滤波模块的功率容量 为该并网逆变器的额定输出功率的 5-40%。
优选地, 所述辅助滤波模块的功率容量为该并网逆变器的额定 输出功率的 15-30%。 '
优选地, 所述监测模块还用于对并网逆变器的并网条件进行实 时监测, 并判断并网逆变器是否满足并网条件, 控制电路还用于根据 监测模块判断得出的并网逆变器是否满足并网条件来控制交流输出 滤波器的通断: 如果并网条件不满足, 则控制电路控制切断所述交流 输出滤波器中的所有滤波模块, 如果并网条件满足, 则控制电路控制 所述交流输出滤波器中相应的滤波模块导通。
优选地, 根据并网逆变器输出功率的范围跨度和并网逆变器对 最低负载率情况下的谐波要求选取所述滤波模块的数量。
相应地, 本发明提供一种并网逆变器的交流输出滤波方法, 所 述并网逆变器包括交流输出滤波器,该交流输出滤波器包括并联的两 个或更多个可切换的滤波模块,其中每个滤波模块的功率容量为并网 逆变器的不同输出功率, 所述滤波方法包括: 对并网逆变器的交流输 出电压和电流进行实时监测;根据监测到的电压和电流计算并网逆变 器的输出功率;和根据所计算的输出功率所属的功率等级控制切换到 具有与该功率等级相应的功率容量的滤波模块,所述功率等级根据所 述多个滤波模块的功率容量而划分。
优选地, 在所述每个滤波模块包括串联的 LC/LCL交流滤波器和 第一交流接触器并且所述 LC/LCL交流滤波器中的滤波电容支路包括 串联的滤波电容和第二交流接触器的情况下,通过控制各个滤波模块 中所包括的第一交流接触器和第二交流接触器的通断来控制切换到 相应的滤波模块。
优选地, 所述每个滤波模块中, 滤波电容和第二交流接触器的 型号根据该滤波模块的功率容量来选取,所述第一交流接触器的型号 根据并网逆变器的输出电流值的大小来选取。
优选地, 所述交流输出滤波器中包括并联的两个滤波模块, 其 中一个为主滤波模块,一个为辅助滤波模块, 所述主滤波模块的功率 容量为该并网逆变器的额定输出功率,所述辅助滤波模块的功率容量 为该并网逆变器的额定输出功率的 5-40%。
优选地, 所述辅助滤波模块的功率容量为该并网逆变器的额定 输出功率的 15-30%。
优选地, 该方法还包括: 对并网逆变器的并网条件进行实时监 测, 如果并网条件不满足, 则控制切断所述交流输出滤波器中的所有 滤波模块, 如果并网条件满足, 则控制所述交流输出滤波器中相应的 滤波模块导通。 优选地, 该方法还包括: 根据并网逆变器输出功率的范围跨度 和并网逆变器对最低负载率情况下的谐波要求选取所述滤波模块的 数量。
从以上技术方案可看出, 本发明根据并网逆变器的不同输出功 率,在并网逆变器的交流输出滤波器中并联有多个按照不同功率等级 设计的滤波模块,并根据并网逆变器的实时输出功率在这多个滤波模 块之间进行相应的切换, 从而使得无论并网逆变器的输出功率如何, 并网逆变器的输出电流波形的 THD均可满足相关标准的要求,并且有 效地提高了并网逆变器在低负载率情况下的转换效率。 附图说明
图 1是现有的三相全桥光伏并网逆变器的系统结构图; 图 2 是根据本发明实施例的三相全桥光伏并网逆变器的系统结 构图;
图 3 是根据本发明实施例的并网逆变器交流输出滤波方法的流 程图;
图 4 是根据现有技术的单滤波方式和根据本发明的双滤波方式 的 THD对比图;
图 5 是根据现有技术的单滤波方式和根据本发明的双滤波方式 的转换效率对比图。 具体实施方式
以下, 将参照附图和实施例对本发明进行描述。 在以下描述中, 将以三相全桥光伏并网逆变器作为示例进行说明, 但是, 应该理解, 本发明并不限于三相全桥光伏并网逆变器,而是可同样地应用于任何 类型的并网逆变器。 ―
图 1 是现有的三相全桥光伏并网逆变器的系统结构图。 如图 1 所示, 该光伏并网逆变器包括 PV电池板 10、 直流滤波器 20、 三相全 桥电路 30和交流输出滤波器 40 四个部分, 其中, 交流输出滤波器 40的输入端与三相全桥电路 30的输出端 (即, 并网逆变器的交流输 出端) 连接, 交流输出滤波器 40的输出端作为光伏并网逆变器的输 出端接入电网。在现有技术中, 交流输出滤波器中仅包括一个根据并 网逆变器的额定输出功率设计的滤波模块, 例如一个 LC或 LCL滤波 器。
图 2 是根据本发明实施例的三相全桥光伏并网逆变器的系统结 构图。 如图 2所示, 该光伏并网逆变器的交流输出滤波器 40由两个 不同功率容量的滤波模块, gp, 滤波模块 A和滤波模块 B并联构成, 其中, 滤波模块 A由交流滤波器 A和交流接触器 KA2串联构成, 交流 滤波器 A中的电容支路由电容 C1和交流接触器 ΚΛΙ串联构成;滤波模 块 Β由交流滤波器 Β和交流接触器 Kli2串联构成, 交流滤波器 B中的 电容支路由电容 C2和交流接触器 Kl¾1串联构成。这里, 定义滤波模块 Α为辅助滤波模块, 定义滤波模块 B为主滤波模块。 这里, 将交流接 触器 ΚΛ2和交流接触器 ΚΒ2定义为第一交流接触器,将电容支路中的交 流接触器 ΚΛ 1和交流接触器 定义为第二交流接触器。
在仅包括两个并联滤波模块的情况下, 主滤波模块 (即, 滤波 模块 B ) 的功率容量设计为光伏并网逆变器的额定输出功率, 辅助滤 波模块 (即, 滤波模块 A ) 的功率容量通常可设计为光伏并网逆变器 的额定输出功率的 5%- 40%, 优选设计为 15%- 30%。 例如, 对于额定输 出功率为 500kw的并网逆变器, 可根据 lOOkw (即, 额定功率的 20% ) 的功率容量来设计滤波模块 A的电感 L1和电容 C1的参数,然后再根 据电容 C1的电流大小,选取与电容 C1串联的交流接触器 ΚΛ1的型号, 交流接触器 κΛ2的型号则根据并网逆变器的输出电流值的大小来选 取。对于作为主滤波模块的滤波模块 Β中各元器件的选型, 根据滤波 模块 Β的功率容量 (即, 500kw) 按照上述滤波模块 A的设计方法选 取其中各个元器件的参数即可。
为了实现各个滤波模块之间的切换, 如图 2 所示, 根据本发明 的光伏并网逆变器还包括监测模块 50和控制电路 60, 其中, 监测模 块 50与并网逆变器的交流输出端连接, 用于对并网逆变器的交流输 出电压和电流进行实时监测;控制电路 60连接在监测模块 50和交流 输出滤波器 40之间,用于根据通过监测模块 50监测到的电压和电流 计算并网逆变器的输出功率,并根据所计算的输出功率所属的输出功 率等级分别向交流输出滤波器 40中所包括的滤波模块 A和滤波模块 B发送控制信号 1和控制信号 2来控制交流接触器 ΚΛ1、 ΚΛ2、 ΚΒΙ和 ΚΒ2 的通断, 以切换到具有与该输出功率等级相应的功率容量的滤波模 块。也就是说, 通过监测模块 50和控制电路 60使得并网逆变器在不 同的输出功率情况下选择不同的滤波模块对并网逆变器的交流输出 进行滤波, 以达到最佳的滤波效果。
这里, 所述功率等级是根据交流输出滤波器 40中所包括的多个 滤波模块的功率容量来划分的。例如, 在包括功率容量为 500kw的主 滤波模块和功率容量为 lOOkw的辅助滤波模块的情况下,共分为两个 功率等级, 第一功率等级为 500kw-100kw, 第二功率等级为 lOOkw以 下。 当并网逆变器的输出功率在第一功率等级范围内时, 切换到主滤 波模块进行滤波, 当并网逆变器的输出功率在第二功率等级范围内 时, 切换到辅助滤波模块进行滤波。
从图 2 可看出, 本发明与现有技术的不同之处在于, 根据现有 技术的交流输出滤波器 40 仅包括一个滤波模块 (可称为单滤波方 式) , 而根据本发明的交流输出滤波器 40则包括两个并联的滤波模 块 (可称为双滤波方式) 。
但是, 应该理解, 根据本发明的交流输出滤波器 40并不限于仅 包括图 2所示的双滤波模块,并联的滤波模块的数量取决于并网逆变 器输出功率的范围跨度和逆变器对最低负载率情况下的谐波要求。一 般来讲,如果并网逆变器输出功率跨度较大,而且谐波要求也很严格, 那么电路中根据不同功率等级所并联的滤波模块就越多;如果并网逆 变器输出功率跨度不是很大, 谐波要求不是很严格, 那么电路中并联 的滤波模块也就相应的较少。 通常, 如果要求在 5%的负载率情况下 并网逆变器的输出并网电流谐波含量 <5%,则只需要选取 2个滤波模 块并联就可以了。此外, 并联的滤波模块中的交流滤波器也不限于图 2所示 LC滤波器, 例如还可以使用 LCL滤波器作为滤波模块中的交 流滤波器, 此时, 按照上述功率容量设计选取 LCL滤波器中的各个元 器件即可。 图 3是由控制电路 60执行的双滤波方法的流程图。在该方法中, 如下设置状态字:
FLAG为滤波模块选择标志;
FALG= 1 表示选择滤波模块 A (辅助滤波模块) 或者滤波模块 A 正在工作;
FLAG=2表示选择滤波模块 B (主滤波模块) 或者滤波模块 B正 在工作;
RESTART为并网逆变器热启动标志;
RESTARTS表示并网逆变器需要热启动;
RESTARTS表示热启动过程完成。
如图 3所示, 在并网逆变器开始运行后, 首先在步骤 S301中对 状态字进行初始化, 令 FLAG= 1, RESTRAT= 1。
接着, 在步骤 S302 中, 控制监测模块 50对并网逆变器的并网 条件进行监测, 这里, 并网条件包括: 1.电网电压、 频率、 幅值、 相 位符合设定并网条件; 2. PV 阵列电压达到逆变器的最小启动电压。 只要这两个条件满足, 逆变器即可并网运行。
如果不满足并网条件, 则在步骤 S303 中, 控制 ΚΛ,、 ΚΛ2、 ΚΒ1和 ΚΒ2都断开, 并令 FLAG= 1, RESTRAT= 1, 然后跳转到步骤 S302继续对 并网条件进行监测。
如果满足并网条件, 则在步骤 S304中判断状态字 RESTART是否 等于 1, 即, 判断并网逆变器是否需要热启动。 如果 RESTARTS , 即, 表明并网逆变器的热启动过程已经完成, 则跳转到步骤 S310开始执 行后续的实时切换操作。 如果 RESTARTS , 即, 表明并网逆变器需要 热启动, 则首先在步骤 S305中延迟 3秒钟, 这是因为在进行实时切 换控制中, 交流接触器实际硬件的断开需要一定的时间, 为了给交流 接触器 ΚΛ1、 ΚΛ2、 ΚΒΙ、 ΚΒ2断开留有足够的时间, 让交流接触器能够彻 底地断开, 所以需要延迟一定的时间, 这里为了保险起见, 延迟时间 设为 3秒钟,但是其实这个延迟时间可以是 1秒到 3秒之间的任何值。 然后, 在步骤 S306 中判断状态字 FLAG 是否等于 1。 如果状态字 FLAG= 1, SP , 选择滤波模块 A进行工作, 则在步骤 S307中控制断开 KB1、 KB2, 闭合 KM、 ΚΛ2。 如果状态字 FLAG≠1, 即表明 FLAG=2, 选择 滤波模块 B进行工作, 则在步骤 S308中控制断开 ΚΛ1、 ΚΛ2, 闭合 ΚΒ1、 ΚΒ2。 接着, 在步骤 S309中令 RESTATR=0, g , 表明热启动过程完成, 可以从步骤 S310开始进行后续的实时切换操作。
在步骤 S310中,根据监测模块 50监测到的交流输出电压 C7。和 /。 电流计算并网逆变器的输出功率, gp, ρο =^υοι。。
接着, 在步骤 S311中, 判断计算的输出功率 是否大于设定的 参考值 ^。 这里, 应与辅助滤波模块 (即, 滤波模块 A ) 的功率容 量一致。例如, 对于 500kw逆变器, 如果按照 lOOkw设计滤波模块 A, 则 应为 100kw。根据如此设定的参考值 , 即可分为两个功率等级, 第一功率等级为 500kw-100kw, 第二功率等级为 lOOkw以下。
如果在步骤 S31 1 中判断 PQ > , 即, 属于第一功率等级, 则应 该利用主滤波模块 (即, 滤波模块 B ) 进行滤波, 因此在步骤 S312 中判断 FLAG是否等于 1。 如果 FLAG=1, 则首先在步骤 S313 中, 将 KA1、 KA2、 KB1和 KB2都断开, 并分别在步骤 S314和 S315 中令 FLAG=2 和 RESTART=1, 以便为切换到滤波模块 B做准备, 然后, 再跳转到步 骤 S302继续进行监测。 如果 FLAG≠1, 则表明 FLAG=2, 此时滤波模 块 B正在工作, 不需要改变, 直接跳转到步骤 S302继续进行监测。
如果在步骤 S311 中判断 < , 即, 属于第二功率等级, 则应 该利用辅助滤波模块 (即, 滤波模块 A )进行滤波, 因此在步骤 S316 中判断 FLAG是否等于 2。 如果 FLAG=2, 则首先在步骤 S317 中, 将 ΚΛ1、 ΚΛ2、 ΚΒ1 ίΡ ΚΒ2都断开, 并分别在步骤 S318和 S319 中令 FLAG=1 和 RESTARTS , 以便为切换到滤波模块 A做准备, 然后, 再跳转到步 骤 S302继续进行监测。 如果 FLAG≠2, 则表明 FLAG=1, 此时滤波模 块 A正在工作, 不需要改变, 直接跳转到步骤 S302继续进行监测。
通过以上流程, 控制电路 60根据并网逆变器的实时输出功率来 控制交流接触器 ΚΑ1、 ΚΛ2、 ΚΒ1和 ΚΒ2的通断状态, 从而使得切换到具有 与该输出功率所述功率等级相应的功率容量的滤波模块。
从图 3所示流程图可看出, 监测模块 50除了对并网逆变器的交 流输出电压和电流进行实时监测,还可对并网逆变器的并网条件进行 实时监测, 并判断并网逆变器是否满足并网条件, 控制电路 60还用 于根据监测模块 50判断得出的并网逆变器是否满足并网条件来控制 交流输出滤波器的通断: 如果并网条件不满足, 则控制电路 60控制 切断所述交流输出滤波器中的所有滤波模块, 如果并网条件满足, 则 控制电路控制所述交流输出滤波器中相应的滤波模块导通。
以下, 将通过实验对比来说明本发明的技术效果。 在下述实验 对比中, 并网逆变器的额定功率为 500kw, 标准要求设为逆变器输出 电流 THD<5% (可参见标准 IEEE 929-2000, 《400V 以下低压并网光 伏发电专用逆变器技术要求和试验方法》 等) 。
以下表 1 是 500kw逆变器的单滤波方式与双滤波方式在不同负 载率情况下关于总谐波含量 (THD ) 和转换效率的实验对比分析。
表 1
Figure imgf000011_0001
图 4和图 5是表 1所示实验数据的曲线图。 从表 1、 图 4和图 5 可看出, 双滤波方式与单滤波方式相比, 在低负载率情况下, THD明 显下降, 转换效率也有所提高。
以上已参照附图和实施例对本发明进行了详细描述, 但是, 应 该理解, 本发明并不限于以上所公开的具体实施例, 任何本领域的技 术人员在此基础之上容易想到的修改和变型都应包括在本发明的保 护范围内。

Claims

权 利 要 求 书
1. 一种并网逆变器, 包括:
交流输出滤波器, 其包括并联的两个或更多个可切换的滤波模 块, 其中每个滤波模块的功率容量为并网逆变器的不同输出功率; 监测模块, 其与并网逆变器的交流输出端连接, 用于对并网逆 变器的交流输出电压和电流进行实时监测; 和
控制电路, 其连接在监测模块和交流输出滤波器之间, 用于根 据通过监测模块监测到的电压和电流计算并网逆变器的输出功率,并 根据所计算的输出功率所属的功率等级控制切换到具有与该功率等 级相应的功率容量的滤波模块,所述功率等级根据所述多个滤波模块 的功率容量而划分。
2. 根据权利要求 1所述的并网逆变器, 其特征在于, 所述每个滤波模块包括串联的 LC/LCL交流滤波器和第一交流接 触器, 所述 LC/LCL交流滤波器中的滤波电容支路包括串联的滤波电 容和第二交流接触器,
所述控制电路通过控制各个滤波模块中所包括的第一交流接触 器和第二交流接触器的通断来控制切换到相应的滤波模块。
3. 根据权利要求 2所述的并网逆变器, 其特征在于, 所述每个 滤波模块中,滤波电容和第二交流接触器的型号根据该滤波模块的功 率容量来选取,所述第一交流接触器的型号根据并网逆变器的输出电 流值的大小来选取。
4. 根据权利要求 3所述的并网逆变器, 其特征在于, 所述交流 输出滤波器中包括并联的两个滤波模块, 其中一个为主滤波模块, 一 个为辅助滤波模块,所述主滤波模块的功率容量为该并网逆变器的额 定输出功率,所述辅助滤波模块的功率容量为该并网逆变器的额定输 出功率的 5-40%。
5. 根据权利要求 4所述的并网逆变器, 其特征在于, 所述辅助 滤波模块优选的功率容量为该并网逆变器的额定输出功率的 15-30%。
6. 根据权利要求 1所述的并网逆变器, 其特征在于, 所述监测模块还用于对并网逆变器的并网条件进行实时监测, 并判断并网逆变器是否满足并网条件,控制电路还用于根据监测模块 判断得出的并网逆变器是否满足并网条件来控制交流输出滤波器的 通断: 如果并网条件不满足, 则控制电路控制切断所述交流输出滤波 器中的所有滤波模块, 如果并网条件满足, 则控制电路控制所述交流 输出滤波器中相应的滤波模块导通。
7. 根据权利要求 1-6中的任何一个所述的并网逆变器, 其特征 在于,
所述交流输出滤波器中滤波模块的数量根据并网逆变器输出功 率的范围跨度和并网逆变器对最低负载率情况下的谐波要求进行选 取。
8. —种并网逆变器的交流输出滤波方法, 所述并网逆变器包括 交流输出滤波器,该交流输出滤波器包括并联的两个或更多个可切换 的滤波模块,其中每个滤波模块的功率容量为并网逆变器的不同输出 功率, 所述滤波方法包括:
对并网逆变器的交流输出电压和电流进行实时监测;
根据监测到的电压和电流计算并网逆变器的输出功率; 和
― 根据所计算的输出功率所属的功率等级控制切换到具有与该功 率等级相应的功率容量的滤波模块,所述功率等级根据所述多个滤波 模块的功率容量而划分。
9. 根据权利要求 8所述的方法, 其特征在于, 在所述每个滤波模块包括串联的 LC/LCL交流滤波器和第一交流 接触器并且所述 LC/LCL交流滤波器中的滤波电容支路包括串联的滤 波电容和第二交流接触器的情况下,通过控制各个滤波模块中所包括 的第一交流接触器和第二交流接触器的通断来控制切换到相应的滤 波模块。
10. 根据权利要求 9所述的方法, 其特征在于, 所述每个滤波 模块中,滤波电容和第二交流接触器的型号根据该滤波模块的功率容 量来选取,所述第一交流接触器的型号根据并网逆变器的输出电流值 的大小来选取。
11 . 根据权利要求 10所述的方法, 其特征在于, 所述交流输出 滤波器中包括并联的两个滤波模块, 其中一个为主滤波模块, 一个为 辅助滤波模块,所述主滤波模块的功率容量为该并网逆变器的额定输 出功率,所述辅助滤波模块的功率容量为该并网逆变器的额定输出功 率的 5-40%。
12. 根据权利要求 11所述的方法, 其特征在于, 所述辅助滤波 模块的功率容量为该并网逆变器的额定输出功率的 15-30%。
13. 根据权利要求 8所述的方法, 其特征在于, 还包括: 对并网逆变器的并网条件进行实时监测, 如果并网条件不满足, 则控制切断所述交流输出滤波器中的所有滤波模块,如果并网条件满 足, 则控制所述交流输出滤波器中相应的滤波模块导通。
14.根据权利要求 8- 13中的任何一个所述的方法,其特征在于, 还包括:
根据并网逆变器输出功率的范围跨度和并网逆变器对最低负载 率情况下的谐波要求选取所述滤波模块的数量。
PCT/CN2011/000790 2010-11-17 2011-05-05 一种并网逆变器及其交流输出滤波方法 WO2012065348A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES11841004T ES2768332T3 (es) 2010-11-17 2011-05-05 Inversor conectado a red y procedimiento de filtración de armónicos de CA para inversor
US13/701,298 US9042134B2 (en) 2010-11-17 2011-05-05 Grid-connected inverter and method for filtering AC output thereof
EP11841004.2A EP2562919B1 (en) 2010-11-17 2011-05-05 Grid-connected inverter and ac harmonic filtering method for inverter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010553722.1 2010-11-17
CN2010105537221A CN102005953B (zh) 2010-11-17 2010-11-17 一种并网逆变器及其交流输出滤波方法

Publications (1)

Publication Number Publication Date
WO2012065348A1 true WO2012065348A1 (zh) 2012-05-24

Family

ID=43813084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000790 WO2012065348A1 (zh) 2010-11-17 2011-05-05 一种并网逆变器及其交流输出滤波方法

Country Status (5)

Country Link
US (1) US9042134B2 (zh)
EP (1) EP2562919B1 (zh)
CN (1) CN102005953B (zh)
ES (1) ES2768332T3 (zh)
WO (1) WO2012065348A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106251755A (zh) * 2016-08-22 2016-12-21 朱凌 一种便携式光伏电站模拟仪

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005953B (zh) 2010-11-17 2012-08-08 特变电工新疆新能源股份有限公司 一种并网逆变器及其交流输出滤波方法
TWI460984B (zh) 2012-10-01 2014-11-11 Ind Tech Res Inst 直交流轉換電路
US9293248B2 (en) * 2012-12-12 2016-03-22 Raytheon Company Methods and apparatus for EMI filter having switched capacitance based on loading
CN103346688B (zh) * 2013-06-24 2015-04-15 合肥工业大学 一种提高并网逆变器低载荷运行下电流质量的控制方法
US9590528B2 (en) 2014-04-11 2017-03-07 Kripya LLC Dual mode DC-AC inverter system and operation
WO2015156901A1 (en) * 2014-04-11 2015-10-15 Kripya LLC Dual mode micro-inverter system and operation
CN104124859B (zh) * 2014-07-01 2016-08-17 特变电工新疆新能源股份有限公司 一种光伏并网逆变器并网电流谐波抑制电路及方法
EP2977848B1 (en) * 2014-07-23 2018-02-14 DET International Holding Limited Impedance compensation
CN105449706A (zh) * 2014-09-25 2016-03-30 国家电网公司 一种城市太阳能发电设备发电离并网控制方法
CN104795827B (zh) * 2015-04-02 2017-10-13 欣旺达电子股份有限公司 储能逆变器的切换电路及其并网/离网切换方法和装置
KR102513991B1 (ko) * 2016-04-15 2023-03-23 엘에스일렉트릭(주) 태양광 전압 제어 장치
EP3288057A1 (de) * 2016-08-26 2018-02-28 Siemens Aktiengesellschaft Sicherheitsgerichtetes schaltgerät
CN106533147B (zh) * 2016-11-18 2019-04-16 深圳市禾望电气股份有限公司 一种变流器系统的待机方法及装置
CN106896272A (zh) * 2017-02-07 2017-06-27 中国南方电网有限责任公司超高压输电公司检修试验中心 输电线路参数测量时抑制工频感应电压的电路和测量方法
CN107465191B (zh) * 2017-09-30 2020-10-13 国网青海省电力公司 光伏电站dc/dc-dc/ac谐波控制方法
CN108521144A (zh) * 2018-04-24 2018-09-11 北京铂阳顶荣光伏科技有限公司 光伏发电系统及谐波抑制方法及设备
CN108988400B (zh) 2018-07-03 2021-04-27 中国科学院广州能源研究所 用于多机并联电力电子变压器的功率分配方法及电子设备
CN109915946B (zh) * 2019-03-21 2020-12-22 广东美的制冷设备有限公司 电控装置、室外机和空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4488200A (en) * 1982-09-23 1984-12-11 Tokyo Shibaura Denki Kabushiki Kaisha No-break power supply apparatus
JPH07177750A (ja) * 1993-12-21 1995-07-14 Toshiba Corp 電圧形インバータの出力電圧制御方式
JP2005328637A (ja) * 2004-05-14 2005-11-24 Toshiba Mitsubishi-Electric Industrial System Corp 並列多重インバータ装置
US20090116266A1 (en) * 2007-11-02 2009-05-07 Tatung Company Paralleled power conditioning system with circulating current filter
CN102005953A (zh) * 2010-11-17 2011-04-06 特变电工新疆新能源股份有限公司 一种并网逆变器及其交流输出滤波方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151387A (en) * 1971-04-06 1979-04-24 Environment/One Corporation Metal base cookware induction heating apparatus having improved power control circuit for insuring safe operation
JPS5839109A (ja) * 1981-09-01 1983-03-07 Toshiba Corp 低域通過フィルタ
US5198970A (en) * 1988-04-27 1993-03-30 Mitsubishi Denki Kabushiki Kaisha A.C. power supply apparatus
GB2301239B (en) * 1995-05-24 1999-12-01 Stephen Soar Electric converter
US6194885B1 (en) * 1997-09-30 2001-02-27 Mitsubishi Denki Kabushiki Kaisha Boosting active filter system and controller for boosting active filter
US20030007369A1 (en) * 1998-04-02 2003-01-09 Gilbreth Mark G. Power controller
US6958550B2 (en) * 1998-04-02 2005-10-25 Capstone Turbine Corporation Method and system for control of turbogenerator power and temperature
DK174165B1 (da) * 2000-10-13 2002-08-05 American Power Conversion Denm Resonanskonverter
US20020163819A1 (en) * 2000-11-07 2002-11-07 Treece William A. Hybrid microturbine/fuel cell system providing air contamination control
US20040080165A1 (en) * 2001-12-31 2004-04-29 Capstone Turbine Corporation Turbogenerator/motor controller with ancillary energy storage/discharge
DE10216596A1 (de) * 2002-04-15 2003-11-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Beleuchtungssystem
US6914418B2 (en) * 2003-04-21 2005-07-05 Phoenixtec Power Co., Ltd. Multi-mode renewable power converter system
US8084886B2 (en) * 2006-03-28 2011-12-27 Fujitsu Limited Uninterruptible power supply apparatus
JP5193445B2 (ja) * 2006-08-23 2013-05-08 パナソニック株式会社 高圧放電灯点灯装置及び照明器具
US8674754B2 (en) * 2007-02-09 2014-03-18 Intel Mobile Communications GmbH Loop filter and phase-locked loop
CN101711454A (zh) * 2007-02-26 2010-05-19 纽卡斯尔创新有限公司 集成风力涡轮机的控制器和逆变器
US20090283129A1 (en) * 2008-05-14 2009-11-19 National Semiconductor Corporation System and method for an array of intelligent inverters
JP5605548B2 (ja) * 2010-04-12 2014-10-15 富士電機株式会社 系統連系装置
EP2431832B1 (en) * 2010-09-21 2013-05-15 ABB Research Ltd Method and arrangement for tracking the maximum power point of a photovoltaic module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4488200A (en) * 1982-09-23 1984-12-11 Tokyo Shibaura Denki Kabushiki Kaisha No-break power supply apparatus
JPH07177750A (ja) * 1993-12-21 1995-07-14 Toshiba Corp 電圧形インバータの出力電圧制御方式
JP2005328637A (ja) * 2004-05-14 2005-11-24 Toshiba Mitsubishi-Electric Industrial System Corp 並列多重インバータ装置
US20090116266A1 (en) * 2007-11-02 2009-05-07 Tatung Company Paralleled power conditioning system with circulating current filter
CN102005953A (zh) * 2010-11-17 2011-04-06 特变电工新疆新能源股份有限公司 一种并网逆变器及其交流输出滤波方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"IEEE 929-2000", TECHNICAL SPECIFICATION AND TEST METHOD OF GRID-CONNECTED PV INVERTER BELOW 400 V

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106251755A (zh) * 2016-08-22 2016-12-21 朱凌 一种便携式光伏电站模拟仪
CN106251755B (zh) * 2016-08-22 2022-05-17 杭州澳宇自动化设备有限公司 一种便携式光伏电站模拟仪

Also Published As

Publication number Publication date
EP2562919B1 (en) 2019-11-13
EP2562919A4 (en) 2018-01-24
US9042134B2 (en) 2015-05-26
CN102005953A (zh) 2011-04-06
EP2562919A1 (en) 2013-02-27
US20130070490A1 (en) 2013-03-21
ES2768332T3 (es) 2020-06-22
CN102005953B (zh) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2012065348A1 (zh) 一种并网逆变器及其交流输出滤波方法
EP3522356A2 (en) Photovoltaic solid-state transformer, photovoltaic inverter system and bidirectional high-voltage converter
CN104682431B (zh) 一种储能变流器的自启动方法及其自启动系统
CN103618461B (zh) 一种桥式变换电路的控制方法及控制装置
US9923481B2 (en) Photovoltaic system and method for controlling the same
CN102427233B (zh) 一种具有谐波抑制和稳压功能的节电装置
CN103475032B (zh) 一种智能配用电柔性控制系统
CN105391047B (zh) 一种车载式直流微电网系统及控制方法
CN202221897U (zh) 低压综合配电箱
CN109921662B (zh) 高频隔离型可变拓扑ac-dc变换器的控制方法
CN204886397U (zh) 一种备用电源自动切换电路
CN111600467B (zh) 一种提升能量路由器稳定性的系统运行方法
CN108134405A (zh) 一种适用于光伏发电应用的双有源桥电路调制策略
CN104393591A (zh) 供电系统
CN203671834U (zh) 软启动充电电路
CN204441905U (zh) 一种储能变流器的自启动系统
CN203522317U (zh) 一种光伏逆变器供电装置
CN202059356U (zh) 电动机变频软启动器
CN202797977U (zh) 一种兼顾电压支撑及故障限流的电力电子系统
CN201910624U (zh) 电能优化装置
CN106208059B (zh) 可调阻抗式分布式光伏发电集群谐振抑制系统及抑制方法
CN205232070U (zh) 船用电动机启动补偿装置
CN104410267A (zh) 一种开关电源
CN105529933B (zh) Dsp控制器和具有其的三电平全桥llc变换器及控制方法
CN204707060U (zh) 一种船用多台电机软启动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841004

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011841004

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13701298

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE