WO2012064155A2 - 이동통신단말기의 출력 효율을 높이기 위한 장치 및 방법 - Google Patents

이동통신단말기의 출력 효율을 높이기 위한 장치 및 방법 Download PDF

Info

Publication number
WO2012064155A2
WO2012064155A2 PCT/KR2011/008634 KR2011008634W WO2012064155A2 WO 2012064155 A2 WO2012064155 A2 WO 2012064155A2 KR 2011008634 W KR2011008634 W KR 2011008634W WO 2012064155 A2 WO2012064155 A2 WO 2012064155A2
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage regulator
level
voltage
supply modulator
Prior art date
Application number
PCT/KR2011/008634
Other languages
English (en)
French (fr)
Other versions
WO2012064155A3 (ko
Inventor
박복주
임형선
노희상
양준석
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to US13/883,675 priority Critical patent/US9098099B2/en
Publication of WO2012064155A2 publication Critical patent/WO2012064155A2/ko
Publication of WO2012064155A3 publication Critical patent/WO2012064155A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/004Control by varying the supply voltage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/324An amplitude modulator or demodulator being used in the amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/045Circuits with power amplifiers with means for improving efficiency

Definitions

  • the present invention relates to an apparatus and a method for increasing the output efficiency of a mobile communication terminal, and a power amplification apparatus for increasing the output efficiency of a radio frequency (RF) transmitting apparatus in a mobile communication terminal and an operation method thereof.
  • RF radio frequency
  • a transceiver for a mobile communication terminal must include high efficiency, wideband signal processing capability, and linear amplification characteristics to process an increasingly wider signal and a signal having a high peak to average power ratio (PAPR).
  • PAPR peak to average power ratio
  • the mobile communication terminal uses a polar modulation type power amplifier.
  • the polar modulated power amplifier separates a phase component and an envelope component of an input signal.
  • the phase component is then up converted to an RF carrier and provided as an input signal of the power amplifier.
  • the envelope component is also modulated by a supply modulator and provided to the collector / drain power source of the power amplifier. Accordingly, the power amplifier may maintain the high efficiency and high linearity of the PAPR signal by amplifying the up-converted phase component provided through the input terminal using the modulated envelope component provided through the collector / drain stage.
  • the power amplifier modulates the amplitude of the RF signal using the output power modulated by the supply modulator. Accordingly, the linearity of the supply modulator directly affects the quality of the signal output through the power amplifier. In addition, the efficiency of the overall system is determined by the product of the efficiency of the supply modulator and the efficiency of the power amplifier.
  • FIG. 1 shows a configuration of a supply modulator according to the prior art.
  • the supply modulator 100 is configured in a hybrid form including a voltage regulator 102 and a switching regulator 104.
  • the voltage regulator 102 determines the output voltage of the supply modulator 100 by controlling the output voltage amplified in proportion to the input signal.
  • the switching regulator 104 supplies an output current.
  • the voltage regulator 102 can linearly convert a wide band signal, but has a disadvantage of low efficiency.
  • the switching regulator 104 has a very high efficiency, but has a disadvantage in that it cannot process a wide band signal. Accordingly, the supply modulator 100 determines the linearity of the output signal of the supply modulator 100 according to the high linearity of the voltage regulator 102, and the supply according to the high efficiency characteristic of the switching regulator 104. Determine the efficiency of the output power of the modulator 100.
  • the output voltage of the supply modulator 100 determined by the voltage regulator 102 of the mobile communication terminal may be limited according to the amount of battery of the mobile communication terminal.
  • an object of the present invention is to provide an apparatus and method for improving the quality of an output signal in a high power mode in a polar modulation type power amplifier.
  • an apparatus for amplifying the power of a signal in a mobile communication terminal comprises a supply modulator for generating power by modulating the envelope component of the input signal; And a power amplifier for amplifying a phase component of the input signal by using the power generated by the supply modulator as a collector / drain power source, wherein the supply modulator is a battery of the mobile communication terminal device.
  • a switching regulator for determining the output current of the supply modulator.
  • a supply modulator comprises a switching regulator for generating an output current of a modulated power signal and a voltage regulator for generating an output voltage of the modulated power signal.
  • a method for generating an output voltage in a modulator includes checking an amplitude level of a signal input to the voltage regulator, and powering one of at least two power sources having different voltages according to the magnitude of the amplitude level. And a step of generating an output voltage required by the power amplifier by using the selected power source.
  • FIG. 1 is a diagram showing the configuration of a supply modulator according to the prior art
  • FIG. 2 is a diagram showing a configuration of a supply modulator according to the present invention.
  • FIG. 3 is a diagram illustrating an envelope component of an RF output of a power amplifier according to an embodiment of the present invention
  • FIG. 4 is a diagram illustrating a graph for adaptively providing a boost power source according to an embodiment of the present invention
  • FIG. 5 is a diagram illustrating a change in performance when adaptively providing a boost power source according to an embodiment of the present invention
  • FIG. 6 is a diagram illustrating a change in performance when adaptively providing a boost power source according to another embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a procedure for adaptively providing a boost power source according to an embodiment of the present invention.
  • the mobile communication terminal uses a polar modulation type power amplifier.
  • the transmitter When the RF signal output from the transmitter of the mobile communication terminal has a high peak to average power ratio (PAPR), the transmitter has a peak power envelope in which the envelope of the RF output is higher than the idle power envelope. Envelopes can increase the efficiency of the power amplifier as well as the signal quality. That is, the efficiency of the power amplifier can be improved since the effective output power is increased only by increasing the amplitude component of the RF signal output from the transmitter.
  • PAPR peak to average power ratio
  • the peak power envelope is limited by the power supply voltage of the power amplifier.
  • the power amplifier of the mobile communication terminal cannot increase the peak power envelope due to the low power supply voltage. Accordingly, the mobile communication terminal can increase the feed power envelope by boosting the battery voltage using a DC-DC converter to obtain a high power supply voltage of the power amplifier.
  • the supply modulator When using a DC-DC converter, the supply modulator only uses a DC regulator to determine the output voltage of the supply modulator as shown in Figure 2 below to reduce losses due to the loss of the DC-DC converter. -Supply a boosted power using a DC converter. That is, the supply modulator also supplies battery power to a switching regulator that determines the majority of the output current of the supply modulator. Accordingly, the power amplifier can increase the peak of the output voltage above the battery voltage without degrading the output efficiency.
  • FIG. 2 shows a configuration of a supply modulator according to the present invention.
  • the supply modulator 200 includes a voltage regulator 202, a switching regulator 204, and a DC-DC converter 206.
  • the DC-DC converter 206 boosts the battery power of the mobile communication terminal and provides it to the voltage regulator 202.
  • the DC-DC converter 206 represents a boost DC-DC converter.
  • the voltage regulator 202 determines the output voltage of the supply modulator 200 by controlling the output voltage amplified in proportion to the input signal by using the power supplied from the DC-DC converter 206.
  • the switching regulator 204 determines the output current of the supply modulator 200 using the battery power of the mobile communication terminal.
  • the voltage regulator 202 continuously uses the power boosted by the DC-DC converter 206.
  • the voltage regulator 202 may selectively use the power boosted by the DC-DC converter 206 and the battery power of the mobile communication terminal according to the level of the input amplitude.
  • the supply modulator 200 includes a switch 208 for selecting power supplied to the voltage regulator 202 and an input amplitude level of the voltage regulator 202 according to the input amplitude level of the voltage regulator 202. It further comprises a level detector 210 for detecting the.
  • the output envelope may be represented as shown in (b) of FIG.
  • the battery voltage of the mobile communication terminal is assumed to be 3.8V (300)
  • the section over the battery voltage (3.8V) in Figure 3 (b) is less than 10% of the total duty cycle (duty cycle) appear.
  • the voltage regulator 202 uses battery power during the period in which the envelope waveform 410 is less than 3.8V in the full duty cycle as shown in FIG. 4, and boosts the voltage in the DC-DC converter 206 for the remaining period. Power supply can be used.
  • the voltage regulator 202 uses battery power or power boosted by the DC-DC converter 206 in consideration of the output envelope of the power amplifier 220. Accordingly, as shown in FIG. 2, the level detector 210 and the switch 208 that determine the power used by the voltage regulator 202 convert the input amplitude into the output envelope of the power amplifier 220. The power supply used by the voltage regulator 202 may be determined.
  • the level detector 210 and the switch 208 may determine the power used by the voltage regulator 202 in consideration of the ratio of the output envelope and the input amplitude of the power amplifier 220.
  • the mobile communication terminal when selectively determining the power used by the voltage regulator 202 according to the level of the input amplitude, the mobile communication terminal reduces the time to use the DC-DC converter 206 to the DC-DC converter. The power loss by 206 can be reduced.
  • the mobile communication terminal can reduce power consumption as shown in FIGS. 5 and 6.
  • the output current of the supply modulator is determined by dividing the output voltage determined by the voltage regulator by the impedance of the power amplifier. Accordingly, the output current of the supply modulator has the same waveform as the output voltage in a form linearly scaled to the output voltage determined by the voltage regulator.
  • the switching regulator that determines the output current may not have a slew rate for constructing the same waveform as the output voltage waveform having a wide bandwidth and high PAPR. Accordingly, the output current that is not supplied by the switching regulator is supplied by the voltage regulator.
  • FIG. 5 is a diagram illustrating a change in performance when adaptively providing a boost power source according to an exemplary embodiment of the present invention.
  • the switching regulator uses an inductor type switching DC-DC converter.
  • the switching regulator increases the slew rate of the current by reducing the size of the inductor.
  • FIG. 5A illustrates a power waveform when the boost power is continuously used in the voltage regulator
  • FIG. 5B selects the boost power according to the level of the input amplitude in the voltage regulator
  • FIG. 5C shows power consumed in FIG. 5A and FIG. 5B.
  • the voltage regulator turns on the switching regulator.
  • An additional supply 520 is provided for the insufficient current not provided by.
  • the voltage regulator continuously uses the power boosted by the DC-DC converter.
  • the voltage regulator may switch to the switching regulator.
  • the voltage regulator uses a power boosted by the DC-DC converter only in a section in which the input amplitude level is equal to or greater than the reference level, such as the adaptive supply boosting curve 530. That is, the voltage regulator uses the battery power of the mobile communication terminal in a section in which the input amplitude level is smaller than the reference level.
  • FIG. 6 illustrates a change in performance when adaptively providing a boost power source according to another embodiment of the present invention.
  • the switching regulator uses an inductor type switching DC-DC converter.
  • the switching regulator has a low slew rate due to a large inductor.
  • FIG. 6 (a) shows a power waveform when the boost power is continuously used in the voltage regulator
  • FIG. 6 (b) selects the boost power according to the level of the input amplitude in the voltage regulator
  • FIG. 6C shows power consumed in FIG. 6A and FIG. 6B.
  • the voltage regulator turns on the switching regulator.
  • An additional supply 620 is provided for the insufficient current not provided by.
  • the voltage regulator continuously uses the power boosted by the DC-DC converter.
  • the voltage regulator may switch to the switching regulator.
  • the voltage regulator uses the power boosted by the DC-DC converter only in a section in which the input amplitude level is equal to or greater than the reference level, such as the adaptive supply boosting curve 630. That is, the voltage regulator uses the battery power of the mobile communication terminal in a section in which the input amplitude level is smaller than the reference level.
  • the DC-DC converter in the voltage regulator In the case of selectively determining the power used in the voltage regulator according to the input amplitude level as shown in FIG. 6C (FIG. 6B) 660, the DC-DC converter in the voltage regulator In the case of continuously using the power up in step (FIG. 6 (a)) it can reduce the power consumption than 650 (670).
  • FIG. 7 illustrates a procedure for adaptively providing a boost power source according to an embodiment of the present invention.
  • the supply modulator checks an input amplitude level in step 701.
  • the supply modulator uses the level detector 210 of FIG. 2 to check the amplitude level of the signal input to the supply modulator.
  • the supply modulator compares the input amplitude level with a reference level. For example, the supply modulator converts the input amplitude level identified in step 701 into an output envelope of the power amplifier 220 and compares it with the reference level. For another example, the supply modulator may compare the reference level determined in consideration of the ratio of the output envelope and the input amplitude of the power amplifier 220 to the input amplitude level identified in step 701.
  • the supply modulator recognizes that it supplies power boosted by a voltage regulator. Accordingly, the supply modulator proceeds to step 705 to amplify the input power of the voltage regulator. For example, the supply modulator boosts the battery power of the mobile communication terminal using the DC-DC converter 206 of FIG.
  • step 707 determines the output voltage using the power boosted in step 705.
  • the voltage regulator 202 of the supply modulator 200 determines the output voltage using the power boosted by the DC-DC converter 206.
  • the supply modulator recognizes that the power supply is not boosted by the voltage regulator. Accordingly, the supply modulator proceeds to step 709 to determine the output voltage using the unpowered power. For example, as shown in FIG. 2, the voltage regulator 202 of the supply modulator 200 determines the output voltage using the battery power of the mobile communication terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 발명은 이동통신단말기에서 출력 효율을 높이기 위한 장치 및 방법에 관한 것이다. 이때, 이동통신단말 장치는, 입력 신호의 포락선 성분을 변조하여 전력을 생성하는 공급 변조기(supply modulator)와, 상기 공급 변조기에서 생성된 전력을 콜렉터(collector)/드레인(drain)의 전원으로 사용하여 상기 입력 신호의 위상 성분을 증폭하는 전력 증폭기를 포함하여 구성되며, 상기 공급 변조기는, 상기 이동통신단말 장치의 배터리 전원을 승압시키는 DC-DC 변환기와, 상기 DC-DC 변환기에서 승압된 전원을 이용하여 출력 전압을 결정하는 전압 레귤레이터(voltage regulator)와, 상기 이동통신단말 장치의 배터리 전원을 이용하여 출력 전류를 결정하는 전환 레귤레이터(switching regulator)를 포함한다.

Description

이동통신단말기의 출력 효율을 높이기 위한 장치 및 방법
본 발명은 이동통신단말기의 출력 효율을 높이기 위한 장치 및 방법에 관한 것으로서, 이동통신단말기에서 RF(Radio Frequency) 송신 장치의 출력 효율을 높이기 위한 전력 증폭 장치 및 그 동작 방법에 관한 것이다.
통신시스템은 이동통신 기술이 진화함에 따라 점점 더 높은 데이터율(data rate)의 신호를 처리하고, 전송 신호의 광대역화 및 복잡한 변조 방식을 필요로 한다. 이에 따라, 이동통신단말기의 송수신 장치는 점점 더 광대역화된 신호 및 높은 PAPR(Peak to Average Power Ratio)을 갖는 신호를 처리하기 위해 고효율과 광대역 신호 처리 능력 및 선형 증폭 특성을 포함해야 한다.
상술한 특성을 달성하기 위해 이동통신단말기는 극 변조(polar modulation) 방식의 전력 증폭기를 사용한다.
상기 극 변조 방식의 전력 증폭기는 입력 신호의 위상(phase) 성분과 포락선(envelope) 성분을 분리한다. 이후, 상기 위상 성분은 RF 반송파로 상향 변환(up conversion)되어 전력 증폭기의 입력 신호로 제공된다. 또한, 상기 포락선 성분은 공급 변조기(supply modulator)의 의해 변조되어 상기 전력 증폭기의 콜렉터(collector)/드레인(drain) 전원으로 제공된다. 이에 따라, 상기 전력 증폭기는 콜렉터/드레인 단을 통해 제공받은 변조된 포락선 성분을 이용하여 입력단을 통해 제공받은 상향 변환된 위상 성분을 증폭하여 고효율과 높은 PAPR 신호의 선형성을 유지할 수 있다.
상술한 바와 같이 전력 증폭기는 공급 변조기에 의해 변조된 출력 전원을 이용하여 RF 신호의 진폭을 변조(AM modulation)한다. 이에 따라, 상기 공급 변조기의 선형성은 전력 증폭기를 통해 출력되는 신호의 품질에 직접적인 영향을 미친다. 또한, 전체 시스템의 효율은 상기 공급 변조기의 효율과 상기 전력 증폭기의 효율이 곱해진 값으로 결정된다.
도 1은 종래 기술에 따른 공급 변조기의 구성을 도시하고 있다.
상기 도 1에 도시된 바와 같이 공급 변조기(100)는 전압 레귤레이터(voltage regulator)(102)와 전환 레귤레이터(switching regulator)(104)를 포함하는 하이브리드(hybrid)한 형태로 구성된다.
상기 전압 레귤레이터(102)는 입력 신호에 정비례하게 증폭된 전압이 출력되도록 제어하여 상기 공급 변조기(100)의 출력 전압을 결정한다.
상기 전환 레귤레이터(104)는 출력 전류를 공급한다.
일반적으로 상기 전압 레귤레이터(102)는 넓은 대역의 신호를 선형적으로 변환할 수 있지만, 효율이 낮은 단점이 있다. 상기 전환 레귤레이터(104)는 매우 높은 효율을 갖지만, 넓은 대역의 신호를 처리할 수 없는 단점이 있다. 이에 따라, 상기 공급 변조기(100)는 상기 전압 레귤레이터(102)의 고 선형성에 따라 상기 공급 변조기(100)의 출력 신호의 선형성을 결정하고, 상기 전환 레귤레이터(104)의 고 효율 특성에 따라 상기 공급 변조기(100)의 출력 전력의 효율을 결정한다.
하지만, 이동통신단말기의 배터리 용량이 한정적이기 때문에 이동통신단말기의 전압 레귤레이터(102)에서 결정하는 상기 공급 변조기(100)의 출력 전압은 상기 이동통신단말기의 배터리 양에 따라 제한될 수 있다.
상기 전압 레귤레이터(102)에서 사용할 수 있는 배터리 전압이 한정된 경우, 송신기가 최대 전력을 소모하는 고 전력 모드에서의 출력 신호의 품질이 저하되는 문제가 발생할 수 있다.
따라서, 본 발명의 목적은 극 변조(polar modulation) 방식의 전력 증폭기에서 고 전력 모드에서의 출력 신호의 품질을 향상시키기 위한 장치 및 방법을 제공함에 있다.
본 발명의 다른 목적은 극 변조 방식의 전력 증폭기에서 고 전력 모드에서의 출력 전력의 효율을 향상시키기 위한 장치 및 방법을 제공함에 있다.
본 발명의 또 다른 목적은 극 변조 방식의 전력 증폭기에서 고 전력 모드에서의 출력 신호의 품질을 향상시키기 위한 공급 변조 장치(supply modulator) 및 그 동작 방법을 제공함에 있다.
본 발명의 또 다른 목적은 극 변조 방식의 전력 증폭기에서 고 전력 모드에서의 출력 전력의 효율을 향상시키기 위한 공급 변조 장치 및 그 동작 방법을 제공함에 있다.
본 발명의 또 다른 목적은 극 변조 방식의 전력 증폭기에서 고 전력 모드에서의 출력 효율 및 신호 품질을 높이기 위해 공급 변조기를 구성하는 전압 레귤레이터의 입력 전압을 부스팅하기 위한 장치 및 방법을 제공함에 있다.
본 발명의 또 다른 목적은 극 변조 방식의 전력 증폭기에서 전압 레귤레이터의 입력 진폭 레벨에 따라 적응적으로 전압 레귤레이터의 입력 전압을 부스팅하기 위한 장치 및 방법을 제공함에 있다.
본 발명의 목적들을 달성하기 위한 본 발명의 제 1 견지에 따르면, 이동통신단말기에서 신호의 전력을 증폭하기 위한 장치는, 입력 신호의 포락선 성분을 변조하여 전력을 생성하는 공급 변조기(supply modulator)와, 상기 공급 변조기에서 생성된 전력을 콜렉터(collector)/드레인(drain)의 전원으로 사용하여 상기 입력 신호의 위상 성분을 증폭하는 전력 증폭기를 포함하며, 상기 공급 변조기는, 상기 이동통신단말 장치의 배터리 전원을 승압시키는 DC-DC 변환기와, 상기 DC-DC 변환기에서 승압된 전원을 이용하여 상기 공급 변조기의 출력 전압을 결정하는 전압 레귤레이터(voltage regulator)와, 상기 이동통신단말 장치의 배터리 전원을 이용하여 상기 공급 변조기의 출력 전류를 결정하는 전환 레귤레이터(switching regulator)를 포함하는 것을 특징으로 한다.
본 발명의 제 2 견지에 따르면, 변조된 전원 신호의 출력 전류를 생성하는 전환 레귤레이터(switching regulator) 및 상기 변조된 전원 신호의 출력 전압을 생성하는 전압 레귤레이터(voltage regulator)를 포함하는 공급 변조기(supply modulator)에서 출력 전압을 생성하기 위한 방법은, 상기 전압 레귤레이터로 입력되는 신호의 진폭 레벨을 확인하는 과정과, 상기 진폭 레벨의 크기에 따라 서로 다른 전압을 갖는 적어도 두 개의 전원들 중 어느 하나의 전원을 선택하는 과정과, 상기 선택한 전원을 이용하여 전력 증폭기에서 필요한 출력 전압을 생성하는 과정을 포함하는 것을 특징으로 한다.
도 1은 종래 기술에 따른 공급 변조기의 구성을 도시하는 도면,
도 2는 본 발명에 따른 공급 변조기의 구성을 도시하는 도면,
도 3은 본 발명의 실시 예에 따른 전력 증폭기의 RF 출력에 대한 포락선 성분을 도시하는 도면,
도 4는 본 발명의 실시 예에 따른 적응적으로 부스트 전원을 제공하는 그래프를 도시하는 도면,
도 5는 본 발명의 실시 예에 따른 적응적으로 부스트 전원을 제공하는 경우의 성능 변화를 도시하는 도면,
도 6은 본 발명의 다른 실시 예에 따른 적응적으로 부스트 전원을 제공하는 경우의 성능 변화를 도시하는 도면, 및
도 7은 본 발명의 실시 예에 따른 적응적으로 부스트 전원을 제공하기 위한 절차를 도시하는 도면.
이하 본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 상세히 설명한다. 그리고, 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하 본 발명은 이동통신단말기에서 RF(Radio Frequency) 송신 장치의 출력 효율을 높이기 위한 기술에 대해 설명한다.
이하 설명에서 이동통신단말기는 극 변조(polar modulation) 방식의 전력 증폭기를 사용하는 것으로 가정한다.
이동통신단말기의 송신기에서 출력하는 RF 신호가 높은 PAPR(Peak to Average Power Ratio)를 갖는 경우, 송신기는 RF 출력의 포락선(envelope)이 대기 전력 포락선(idle power envelope) 대비 높은 피크 전력 포락선(peak power envelope)을 가져야 신호 품질뿐만 아니라 전력 증폭기의 효율을 높일 수 있다. 즉, 상기 송신기에서 출력되는 RF 신호의 진폭 성분을 키워야 실효 출력이 증대되는 효과를 얻으므로 전력 증폭기의 효율이 향상시킬 수 있다.
하지만, 상기 피크 전력 포락선은 전력 증폭기의 전원 전압에 의해 제한된다. 예를 들어, 이동통신단말기의 전원이 4.2V ~ 3.4V 범위 값을 갖는 경우, 상기 이동통신단말기의 전력 증폭기는 낮은 전원 전압으로 인해 피크 전력 포락선을 증대시킬 수 없다. 이에 따라, 상기 이동통신단말기는 전력 증폭기의 높은 전원 전압을 얻기 위해 DC-DC 변환기를 이용하여 배터리 전압을 승압시켜 피드 전력 포락선을 증대시킬 수 있다.
DC-DC 변환기를 사용하는 경우, 상기 공급 변조기는 DC-DC 변환기의 손실에 의한 손실을 줄이기 위해 하기 도 2에 도시된 바와 같이 상기 공급 변조기의 출력 전압을 결정하는 전압 레귤레이터(voltage regulator)에만 DC-DC 변환기를 이용하여 승압된 전원을 공급한다. 즉, 상기 공급 변조기는 상기 공급 변조기의 출력 전류의 대부분을 결정하는 전환 레귤레이터(switching regulator)에는 배터리 전원을 그대도 공급한다. 이에 따라, 상기 전력 증폭기는 출력 효율의 저하 없이 출력 전압의 피크를 배터리 전압 이상으로 높일 수 있다.
도 2는 본 발명에 따른 공급 변조기의 구성을 도시하고 있다.
상기 도 2에 도시된 바와 같이 상기 공급 변조기(200)는 전압 레귤레이터(202), 전환 레귤레이터(204) 및 DC-DC 변환기(206)를 포함하여 구성된다.
상기 DC-DC 변환기(206)는 이동통신단말기의 배터리 전원을 승압시켜 상기 전압 레귤레이터(202)로 제공한다. 여기서, 상기 DC-DC 변환기(206)는 부스트(Boost) DC-DC 변환기를 나타낸다.
상기 전압 레귤레이터(202)는 상기 DC-DC 변환기(206)로부터 제공받은 전원을 이용하여 입력 신호에 정비례하게 증폭된 전압이 출력되도록 제어하여 상기 공급 변조기(200)의 출력 전압을 결정한다.
상기 전환 레귤레이터(204)는 상기 이동통신단말기의 배터리 전원을 이용하여 상기 공급 변조기(200)의 출력 전류를 결정한다.
상술한 실시 예에서 전압 레귤레이터(202)는 상기 DC-DC 변환기(206)에서 승압된 전원을 지속적으로 사용한다.
다른 실시 예에서 전압 레귤레이터(202)는 입력 진폭의 레벨에 따라 상기 DC-DC 변환기(206)에서 승압된 전원과 상기 이동통신단말기의 배터리 전원을 선택적으로 사용할 수도 있다. 이 경우, 상기 공급 변조기(200)는 상기 전압 레귤레이터(202)의 입력 진폭 레벨에 따라 상기 전압 레귤레이터(202)로 공급되는 전원을 선택하는 스위치(208)와 상기 전압 레귤레이터(202)의 입력 진폭 레벨을 검출하는 레벨 검출기(210)를 더 포함하여 구성된다.
예를 들어, 도 3의 (a)에 도시된 바와 같은 신호를 전력 증폭기(220)에서 증폭하는 경우, 출력 포락선은 도 3의 (b)와 같이 나타낼 수 있다. 이때, 상기 이동통신단말기의 배터리 전압이 3.8V(300)이라고 가정하는 경우, 상기 도 3의 (b)에서 배터리 전압(3.8V)을 넘는 구간이 전체 듀티 사이클(duty cycle)의 10% 미만인 것으로 나타난다. 이에 따라, 상기 전압 레귤레이터(202)는 도 4에 도시된 바와 같이 전체 듀티 사이클에서 포락선 파형(410)이 3.8V 미만인 구간 동안 배터리 전원을 사용하고, 나머지 구간 동안 DC-DC 변환기(206)에서 승압된 전원을 사용할 수도 있다.
상술한 실시 예에서 전압 레귤레이터(202)는 상기 전력 증폭기(220)의 출력 포락선을 고려하여 배터리 전원을 사용하거나 DC-DC 변환기(206)에서 승압된 전원을 사용한다. 이에 따라, 상기 도 2에 도시된 바와 같이 전압 레귤레이터(202)에서 사용하는 전원을 결정하는 레벨 검출기(210)와 스위치(208)는 입력 진폭을 상기 전력 증폭기(220)의 출력 포락선으로 환산하여 상기 전압 레귤레이터(202)에서 사용하는 전원을 결정할 수 있다.
다른 실시 예에서, 상기 레벨 검출기(210)와 스위치(208)는 상기 전력 증폭기(220)의 출력 포락선과 입력 진폭의 비율을 고려하여 상기 전압 레귤레이터(202)에서 사용하는 전원을 결정할 수도 있다.
상술한 바와 같이 입력 진폭의 레벨에 따라 상기 전압 레귤레이터(202)에서 사용하는 전원을 선택적으로 결정하는 경우, 상기 이동통신단말기는 DC-DC 변환기(206)를 사용하는 시간을 줄여 상기 DC-DC 변환기(206)에 의한 전력 손실을 줄일 수 있다.
또한, 상기 이동통신단말기는 하기 도 5와 도 6에 도시된 바와 같이 전력 소모를 줄일 수 있다. 공급 변조기의 출력 전류는 전압 레귤레이터에서 결정한 출력 전압를 전력 증폭기의 임피던스(impedance)로 나눈 값으로 결정된다. 이에 따라, 상기 공급 변조기의 출력 전류는 상기 전압 레귤레이터에서 결정한 출력 전압에 선형적으로 스케일링된 형태로 상기 출력 전압과 동일한 파형을 갖는다.
하지만, 상기 출력 전류를 결정하는 전환 레귤레이터는 광대역이면서 높은 PAPR을 갖는 출력 전압 파형과 동일한 파형을 구성하기 위한 슬루율(slew rate)을 가질 수 없다. 이에 따라, 상기 전환 레귤레이터에서 공급하지 못하는 출력 전류는 상기 전압 레귤레이터에서 공급한다.
도 5는 본 발명의 실시 예에 따른 적응적으로 부스트 전원을 제공하는 경우의 성능 변화를 도시하고 있다. 이하 설명에서 전환 레귤레이터는 인덕터 타입의 전환 DC-DC 변환기를 사용하는 것으로 가정한다. 이때, 상기 전환 레귤레이터는 인덕터의 크기를 줄여 전류의 슬루율을 높인 것으로 가정한다.
상기 도 5에서 상기 도 5의 (a)는 전압 레귤레이터에서 부스트 전원을 지속적으로 사용하는 경우의 전력 파형을 나타내고, 상기 도 5의 (b)는 전압 레귤레이터에서 입력 진폭의 레벨에 따라 부스트 전원을 선택적으로 사용하는 경우의 전력 파형을 나타내며, 상기 도 5의 (c)는 상기 도 5의 (a)와 상기 도 5의 (b)에서 소모되는 전력을 나타낸다.
상기 도 5의 (a)에 도시된 바와 같이 전환 레귤레이터가 공급하는 전류에 의한 입력 전력(510)이 공급 변조기에서 전력 증폭기로 입력한 전력(500)을 만족시키지 못하는 경우, 전압 레귤레이터는 상기 전환 레귤레이터에 의해 제공되지 못하는 부족한 전류를 추가 공급(520)한다. 이때, 상기 전압 레귤레이터는 DC-DC 변환기에서 승압된 전원을 지속적으로 사용한다.
상기 도 5의 (b)에 도시된 바와 같이 전환 레귤레이터가 공급하는 전류에 의한 입력 전력(510)이 공급 변조기에서 전력 증폭기로 입력한 전력(500)을 만족시키지 못하는 경우, 전압 레귤레이터는 상기 전환 레귤레이터에 의해 제공되지 못하는 부족한 전류를 추가 공급(540)한다. 이때, 상기 전압 레귤레이터는 적응 공급 부스팅 곡선(530)과 같이 입력 진폭 레벨이 기준 레벨 이상인 구간에서만 DC-DC 변환기에서 승압된 전원을 사용한다. 즉, 상기 전압 레귤레이터는 상기 입력 진폭 레벨이 기준 레벨보다 작은 구간에서 상기 이동통신단말기의 배터리 전원을 사용한다.
상기 도 5의 (c)에 도시된 바와 같이 입력 진폭의 레벨에 따라 상기 전압 레귤레이터에서 사용하는 전원을 선택적으로 결정하는 경우(도 5의 (b))(560), 전압 레귤레이터에서 DC-DC 변환기에서 승압된 전원을 지속적으로 사용하는 경우(도 5의(a))(550)보다 전력 소모를 줄일 수 있다(570).
도 6은 본 발명의 다른 실시 예에 따른 적응적으로 부스트 전원을 제공하는 경우의 성능 변화를 도시하고 있다. 이하 설명에서 전환 레귤레이터는 인덕터 타입의 전환 DC-DC 변환기를 사용하는 것으로 가정한다. 이때, 상기 전환 레귤레이터는 인덕터의 크기가 길어 전류의 슬루율이 낮은 것으로 가정한다.
상기 도 6에서 상기 도 6의 (a)는 전압 레귤레이터에서 부스트 전원을 지속적으로 사용하는 경우의 전력 파형을 나타내고, 상기 도 6의 (b)는 전압 레귤레이터에서 입력 진폭의 레벨에 따라 부스트 전원을 선택적으로 사용하는 경우의 전력 파형을 나타내며, 상기 도 6의 (c)는 상기 도 6의 (a)와 상기 도 6의 (b)에서 소모되는 전력을 나타낸다.
상기 도 6의 (a)에 도시된 바와 같이 전환 레귤레이터가 공급하는 전류에 의한 입력 전력(610)이 공급 변조기에서 전력 증폭기로 입력한 전력(600)을 만족시키지 못하는 경우, 전압 레귤레이터는 상기 전환 레귤레이터에 의해 제공되지 못하는 부족한 전류를 추가 공급(620)한다. 이때, 상기 전압 레귤레이터는 DC-DC 변환기에서 승압된 전원을 지속적으로 사용한다.
상기 도 6의 (b)에 도시된 바와 같이 전환 레귤레이터가 공급하는 전류에 의한 입력 전력(610)이 공급 변조기에서 전력 증폭기로 입력한 전력(600)을 만족시키지 못하는 경우, 전압 레귤레이터는 상기 전환 레귤레이터에 의해 제공되지 못하는 부족한 전류를 추가 공급(640)한다. 이때, 상기 전압 레귤레이터는 적응 공급 부스팅 곡선(630)과 같이 입력 진폭 레벨이 기준 레벨 이상인 구간에서만 DC-DC 변환기에서 승압된 전원을 사용한다. 즉, 상기 전압 레귤레이터는 상기 입력 진폭 레벨이 기준 레벨보다 작은 구간에서 상기 이동통신단말기의 배터리 전원을 사용한다.
상기 도 6의 (c)에 도시된 바와 같이 입력 진폭의 레벨에 따라 상기 전압 레귤레이터에서 사용하는 전원을 선택적으로 결정하는 경우(도 6의 (b))(660), 전압 레귤레이터에서 DC-DC 변환기에서 승압된 전원을 지속적으로 사용하는 경우(도 6의(a))(650)보다 전력 소모를 줄일 수 있다(670).
도 7은 본 발명의 실시 예에 따른 적응적으로 부스트 전원을 제공하기 위한 절차를 도시하고 있다.
상기 도 7을 참조하면 상기 공급 변조기는 701단계에서 입력 진폭 레벨을 확인한다. 예를 들어, 상기 공급 변조기는 상기 도 2에서 레벨 검출기(210)을 이용하여 상기 공급 변조기로 입력되는 신호의 진폭 레벨을 확인한다.
이후, 상기 공급 변조기는 703단계로 진행하여 상기 입력 진폭 레벨과 기준 레벨을 비교한다. 예를 들어, 상기 공급 변조기는 상기 701단계에서 확인한 입력 진폭 레벨을 상기 전력 증폭기(220)의 출력 포락선으로 환산하여 상기 기준 레벨과 비교한다. 다른 예를 들어, 상기 공급 변조기는 상기 전력 증폭기(220)의 출력 포락선과 입력 진폭의 비율을 고려하여 결정한 상기 기준 레벨과 상기 701단계에서 확인한 입력 진폭 레벨을 비교할 수도 있다.
상기 입력 진폭 레벨이 상기 기준 레벨보다 큰 경우, 상기 공급 변조기는 전압 레귤레이터로 승압된 전원을 공급하는 것으로 인식한다. 이에 따라, 상기 공급 변조기는 705단계로 진행하여 상기 전압 레귤레이터의 입력 전원을 증폭한다. 예를 들어, 상기 공급 변조기는 상기 도 2의 DC-DC 변환기(206)를 이용하여 이동통신단말기의 배터리 전원을 승압시킨다.
이후, 상기 공급 변조기는 707단계로 진행하여 상기 705단계에서 승압한 전원을 이용하여 출력 전압을 결정한다. 예를 들어, 상기 도 2에 도시된 바와 같이 공급 변조기(200)의 전압 레귤레이터(202)는 DC-DC 변환기(206)에서 승압된 전원을 이용하여 출력 전압을 결정한다.
한편, 상기 703단계에서 입력 진폭 레벨이 상기 기준 레벨보다 작은 경우, 상기 공급 변조기는 전압 레귤레이터로 승압되지 않은 전원을 공급하는 것으로 인식한다. 이에 따라, 상기 공급 변조기는 709단계로 진행하여 승압되지 않은 전원을 이용하여 출력 전압을 결정한다. 예를 들어, 상기 도 2에 도시된 바와 같이 공급 변조기(200)의 전압 레귤레이터(202)는 이동통신단말기의 배터리 전원을 이용하여 출력 전압을 결정한다.
상술한 바와 같이 극 변조 방식의 전력 증폭기에서 공급 변조기를 구성하는 전압 레귤레이터의 입력 전압을 부스팅함으로써, 고 전력 모드에서의 출력 효율 및 신호 품질을 높일 수 있다.
또한, 상기 전압 레귤레이터의 입력 진폭 레벨에 따라 상기 입력 전압을 적응적으로 부스팅함으로써, 한정된 전원 전압에 의한 전력 손실을 줄일 수 있는 이점이 있다.
한편 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능하다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.

Claims (15)

  1. 이동통신단말기에서 신호의 전력을 증폭하기 위한 장치에 있어서,
    입력 신호의 포락선 성분을 변조하여 전력을 생성하는 공급 변조기(supply modulator)와,
    상기 공급 변조기에서 생성된 전력을 콜렉터(collector)/드레인(drain)의 전원으로 사용하여 상기 입력 신호의 위상 성분을 증폭하는 전력 증폭기를 포함하며,
    상기 공급 변조기는,
    상기 이동통신단말 장치의 배터리 전원을 승압시키는 DC-DC 변환기와,
    상기 DC-DC 변환기에서 승압된 전원을 이용하여 상기 공급 변조기의 출력 전압을 결정하는 전압 레귤레이터(voltage regulator)와,
    상기 이동통신단말 장치의 배터리 전원을 이용하여 상기 공급 변조기의 출력 전류를 결정하는 전환 레귤레이터(switching regulator)를 포함하는 것을 특징으로 하는 장치.
  2. 제 1항에 있어서, 상기 전압 레귤레이터는, 상기 전환 레귤레이터에서 생성한 출력 전류의 부족량을 추가 공급하기 위한 전류를 생성하는 것을 특징으로 하는 장치.
  3. 제 1항에 있어서, 상기 전환 레귤레이터는, 인덕터 타입의 전환 DC-DC 변환기를 포함하는 것을 특징으로 하는 장치.
  4. 제 1항에 있어서, 상기 공급 변조기는,
    상기 전압 레귤레이터로 입력되는 신호의 진폭 레벨을 확인하는 레벨 검출기와,
    상기 레벨 검출기에서 확인한 진폭 레벨에 따라 상기 전압 레귤레이터로 공급하는 전원을 선택하는 스위치를 더 포함하는 것을 특징으로 하는 장치.
  5. 제 4항에 있어서, 상기 스위치는, 상기 레벨 검출기에서 확인한 진폭 레벨이 기준 레벨보다 작은 경우, 상기 전압 레귤레이터로 상기 이동통신단말기의 전원을 연결하고,
    상기 레벨 검출기에서 확인한 진폭 레벨이 기준 레벨보다 크거나 같은 경우, 상기 전압 레귤레이터로 상기 DC-DC 변환기에서 승압된 전원을 연결하는 것을 특징으로 하는 장치.
  6. 제 5항에 있어서, 상기 전압 레귤레이터는, 상기 레벨 검출기에서 확인한 진폭 레벨이 기준 레벨보다 작은 경우, 상기 스위치에 따라 상기 이동통신단말기의 전원을 이용하여 출력 전압을 결정하고,
    상기 레벨 검출기에서 확인한 진폭 레벨이 기준 레벨보다 크거나 같은 경우, 상기 스위치에 따라 상기 DC-DC 변환기에서 승압된 전원을 이용하여 출력 전압을 결정하는 것을 특징으로 하는 장치.
  7. 제 1항에 있어서, 상기 DC-DC 변환기는, 부스트(boost) DC-DC 변환기를 포함하는 것을 특징으로 하는 장치.
  8. 공급 변조 장치에 있어서, 상기 공급 변조 장치의 출력 전류를 결정하는 전환 레귤레이터(switching regulator)와,
    입력 신호의 전압 크기를 고려하여 상기 공급 변조 장치의 출력 전압을 결정하는 전압 레귤레이터(voltage regulator)를 포함하며,
    상기 전압 레귤레이터는, 상기 전압 레귤레이터의 입력 신호의 전압 크기에 따라 서로 다른 전압을 갖는 적어도 두 개의 전원들 중 어느 하나의 전원을 선택하여 상기 공급 변조 장치의 출력 전압을 결정하는 것을 특징으로 하는 장치.
  9. 제 8항에 있어서, 상기 전압 레귤레이터는, 상기 전환 레귤레이터에서 생성한 출력 전류의 부족량을 추가 공급하기 위한 전류를 생성하는 것을 특징으로 하는 장치.
  10. 제 8항에 있어서, 상기 공급 변조 장치의 배터리 전원을 승압시키는 DC-DC 변환기를 더 포함하는 것을 특징으로 하는 장치.
  11. 제 10항에 있어서, 상기 전압 레귤레이터는, 상기 전압 레귤레이터로 입력되는 신호의 진폭 레벨이 기준 레벨보다 작은 경우, 배터리 전원을 이용하여 출력 전압을 결정하고,
    상기 전압 레귤레이터로 입력되는 신호의 진폭 레벨이 기준 레벨보다 크거나 같은 경우, 상기 DC-DC 변환기에서 승압된 전원을 이용하여 출력 전압을 결정하는 것을 특징으로 하는 장치.
  12. 제 8항에 있어서, 상기 공급 변조기는,
    상기 전압 레귤레이터로 입력되는 신호의 진폭 레벨을 확인하는 레벨 검출기와,
    상기 레벨 검출기에서 확인한 진폭 레벨에 따라 상기 전압 레귤레이터로 공급하는 전원을 선택하는 스위치를 더 포함하는 것을 특징으로 하는 장치.
  13. 제 12항에 있어서, 상기 스위치는, 상기 레벨 검출기에서 확인한 진폭 레벨이 기준 레벨보다 작은 경우, 상기 전압 레귤레이터로 배터리 전원을 연결하고,
    상기 레벨 검출기에서 확인한 진폭 레벨이 기준 레벨보다 크거나 같은 경우, 상기 전압 레귤레이터로 상기 배터리 전원을 승압시킨 전원을 연결하는 것을 특징으로 하는 장치.
  14. 변조된 전원 신호의 출력 전류를 생성하는 전환 레귤레이터(switching regulator) 및 상기 변조된 전원 신호의 출력 전압을 생성하는 전압 레귤레이터(voltage regulator)를 포함하는 공급 변조기(supply modulator)에서 출력 전압을 생성하기 위한 방법에 있어서,
    상기 전압 레귤레이터로 입력되는 신호의 진폭 레벨을 확인하는 과정과,
    상기 진폭 레벨의 크기에 따라 서로 다른 전압을 갖는 적어도 두 개의 전원들 중 어느 하나의 전원을 선택하는 과정과,
    상기 선택한 전원을 이용하여 전력 증폭기에서 필요한 출력 전압을 생성하는 과정을 포함하는 것을 특징으로 하는 방법.
  15. 제 14항에 있어서, 상기 전원을 선택하는 과정은,
    상기 진폭 레벨이 기준 레벨보다 크거나 같은 경우, 배터리 전원을 선택하는 과정과,
    상기 진폭 레벨이 상기 기준 레벨보다 작은 경우, 상기 배터리 전원이 승압된 전원을 선택하는 과정을 포함하는 것을 특징으로 하는 방법.
PCT/KR2011/008634 2010-11-11 2011-11-11 이동통신단말기의 출력 효율을 높이기 위한 장치 및 방법 WO2012064155A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/883,675 US9098099B2 (en) 2010-11-11 2011-11-11 Device and method for increasing output efficiency of mobile communication terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0111896 2010-11-11
KR1020100111896A KR101743014B1 (ko) 2010-11-11 2010-11-11 이동통신단말기의 출력 효율을 높이기 위한 장치 및 방법

Publications (2)

Publication Number Publication Date
WO2012064155A2 true WO2012064155A2 (ko) 2012-05-18
WO2012064155A3 WO2012064155A3 (ko) 2012-07-19

Family

ID=46051457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008634 WO2012064155A2 (ko) 2010-11-11 2011-11-11 이동통신단말기의 출력 효율을 높이기 위한 장치 및 방법

Country Status (3)

Country Link
US (1) US9098099B2 (ko)
KR (1) KR101743014B1 (ko)
WO (1) WO2012064155A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108011724A (zh) * 2016-11-02 2018-05-08 三星电子株式会社 电源调制器及包括电源调制器的通信装置

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101800728B1 (ko) 2011-10-14 2017-11-24 삼성전자주식회사 전력 증폭기의 동작 영역을 확대하기 위한 장치 및 방법
KR101786587B1 (ko) 2011-10-14 2017-10-19 삼성전자주식회사 전력 증폭기의 전압을 생성하기 위한 장치 및 방법
EP2648323B1 (en) * 2012-04-03 2018-09-05 Nxp B.V. Switched-Mode Power Supply with Feedforward Control based on Load Setpoint
EP3163746B1 (en) * 2014-08-11 2018-11-07 Huawei Technologies Co., Ltd. Power amplifier, radio remote unit and base station
KR101691077B1 (ko) * 2015-10-07 2016-12-29 포항공과대학교 산학협력단 다중 레벨의 전원전압을 이용한 포락선 추적 전력증폭 장치
KR101681048B1 (ko) * 2015-10-07 2016-12-12 포항공과대학교 산학협력단 다양한 대역폭 신호에 대한 고효율 및 고속 포락선 추적형 전력증폭 장치
US10193502B2 (en) * 2016-02-26 2019-01-29 Qorvo Us, Inc. Dual-mode envelope tracking power management circuit
US10069470B2 (en) 2016-08-12 2018-09-04 Qorvo Us, Inc. Multi-mode envelope tracking amplifier circuit
US10181826B2 (en) 2017-04-25 2019-01-15 Qorvo Us, Inc. Envelope tracking amplifier circuit
US10326405B2 (en) 2017-05-18 2019-06-18 Qualcomm Incorporated Class-H switching amplifier circuit having supply voltage proportional to an audio signal
US10158330B1 (en) 2017-07-17 2018-12-18 Qorvo Us, Inc. Multi-mode envelope tracking amplifier circuit
US10158329B1 (en) 2017-07-17 2018-12-18 Qorvo Us, Inc. Envelope tracking power amplifier circuit
US10284412B2 (en) * 2017-07-17 2019-05-07 Qorvo Us, Inc. Voltage memory digital pre-distortion circuit
US10326490B2 (en) 2017-08-31 2019-06-18 Qorvo Us, Inc. Multi radio access technology power management circuit
US10530305B2 (en) 2017-10-06 2020-01-07 Qorvo Us, Inc. Nonlinear bandwidth compression circuitry
US10673385B2 (en) * 2017-11-08 2020-06-02 Mediatek Inc. Supply modulator, modulated power supply circuit, and associated control method
US10439557B2 (en) 2018-01-15 2019-10-08 Qorvo Us, Inc. Envelope tracking power management circuit
US10637408B2 (en) 2018-01-18 2020-04-28 Qorvo Us, Inc. Envelope tracking voltage tracker circuit and related power management circuit
US10742170B2 (en) 2018-02-01 2020-08-11 Qorvo Us, Inc. Envelope tracking circuit and related power amplifier system
US10944365B2 (en) 2018-06-28 2021-03-09 Qorvo Us, Inc. Envelope tracking amplifier circuit
US11088618B2 (en) 2018-09-05 2021-08-10 Qorvo Us, Inc. PWM DC-DC converter with linear voltage regulator for DC assist
US10911001B2 (en) 2018-10-02 2021-02-02 Qorvo Us, Inc. Envelope tracking amplifier circuit
US11018638B2 (en) 2018-10-31 2021-05-25 Qorvo Us, Inc. Multimode envelope tracking circuit and related apparatus
US10985702B2 (en) 2018-10-31 2021-04-20 Qorvo Us, Inc. Envelope tracking system
US10938351B2 (en) 2018-10-31 2021-03-02 Qorvo Us, Inc. Envelope tracking system
US10680556B2 (en) 2018-11-05 2020-06-09 Qorvo Us, Inc. Radio frequency front-end circuit
US11031909B2 (en) 2018-12-04 2021-06-08 Qorvo Us, Inc. Group delay optimization circuit and related apparatus
US11082007B2 (en) 2018-12-19 2021-08-03 Qorvo Us, Inc. Envelope tracking integrated circuit and related apparatus
US11146213B2 (en) 2019-01-15 2021-10-12 Qorvo Us, Inc. Multi-radio access technology envelope tracking amplifier apparatus
US11025458B2 (en) 2019-02-07 2021-06-01 Qorvo Us, Inc. Adaptive frequency equalizer for wide modulation bandwidth envelope tracking
US10998859B2 (en) 2019-02-07 2021-05-04 Qorvo Us, Inc. Dual-input envelope tracking integrated circuit and related apparatus
US11233481B2 (en) 2019-02-18 2022-01-25 Qorvo Us, Inc. Modulated power apparatus
US11374482B2 (en) 2019-04-02 2022-06-28 Qorvo Us, Inc. Dual-modulation power management circuit
US11082009B2 (en) 2019-04-12 2021-08-03 Qorvo Us, Inc. Envelope tracking power amplifier apparatus
US11018627B2 (en) 2019-04-17 2021-05-25 Qorvo Us, Inc. Multi-bandwidth envelope tracking integrated circuit and related apparatus
US11424719B2 (en) 2019-04-18 2022-08-23 Qorvo Us, Inc. Multi-bandwidth envelope tracking integrated circuit
US11031911B2 (en) 2019-05-02 2021-06-08 Qorvo Us, Inc. Envelope tracking integrated circuit and related apparatus
US11349436B2 (en) 2019-05-30 2022-05-31 Qorvo Us, Inc. Envelope tracking integrated circuit
US11018632B2 (en) * 2019-08-01 2021-05-25 Iwave Technologies Co., Ltd. Envelope tracking power amplifier module and envelope tracking method for the same
US11539289B2 (en) 2019-08-02 2022-12-27 Qorvo Us, Inc. Multi-level charge pump circuit
US10707822B1 (en) * 2019-09-07 2020-07-07 Eridan Communications, Inc. Dynamic power supply for polar modulation transmitters and envelope tracking transmitters
US11309922B2 (en) 2019-12-13 2022-04-19 Qorvo Us, Inc. Multi-mode power management integrated circuit in a small formfactor wireless apparatus
US11349513B2 (en) 2019-12-20 2022-05-31 Qorvo Us, Inc. Envelope tracking system
US11539330B2 (en) 2020-01-17 2022-12-27 Qorvo Us, Inc. Envelope tracking integrated circuit supporting multiple types of power amplifiers
US11716057B2 (en) 2020-01-28 2023-08-01 Qorvo Us, Inc. Envelope tracking circuitry
US11728774B2 (en) 2020-02-26 2023-08-15 Qorvo Us, Inc. Average power tracking power management integrated circuit
US11196392B2 (en) 2020-03-30 2021-12-07 Qorvo Us, Inc. Device and device protection system
US11588449B2 (en) 2020-09-25 2023-02-21 Qorvo Us, Inc. Envelope tracking power amplifier apparatus
US11728796B2 (en) 2020-10-14 2023-08-15 Qorvo Us, Inc. Inverted group delay circuit
US11909385B2 (en) 2020-10-19 2024-02-20 Qorvo Us, Inc. Fast-switching power management circuit and related apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089971A1 (ja) * 2009-02-05 2010-08-12 日本電気株式会社 電力増幅器及び電力増幅方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300826B1 (en) * 2000-05-05 2001-10-09 Ericsson Telefon Ab L M Apparatus and method for efficiently amplifying wideband envelope signals
US8301088B2 (en) 2007-10-26 2012-10-30 Panasonic Corporation Polar modulation transmitter with envelope modulator path switching

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089971A1 (ja) * 2009-02-05 2010-08-12 日本電気株式会社 電力増幅器及び電力増幅方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D.K. ET AL.: 'High efficiency and wideband envelope tracking power amplifier with sweet spot tracking' IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM 23 May 2010, pages 255 - 258 *
J.K. ET AL.: 'Supply modulators for RF polar transmitters' IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM 17 April 2008, pages 417 - 420 *
J.N.K. ET AL.: 'Polar SiGe Class E and F Amplifiers Using Switch-Mode Supply Modulation' IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES vol. 55, no. 5, May 2007, pages 845 - 856 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108011724A (zh) * 2016-11-02 2018-05-08 三星电子株式会社 电源调制器及包括电源调制器的通信装置
CN108011724B (zh) * 2016-11-02 2020-09-29 三星电子株式会社 电源调制器及包括电源调制器的通信装置

Also Published As

Publication number Publication date
KR20120050577A (ko) 2012-05-21
US20130229229A1 (en) 2013-09-05
KR101743014B1 (ko) 2017-06-02
WO2012064155A3 (ko) 2012-07-19
US9098099B2 (en) 2015-08-04

Similar Documents

Publication Publication Date Title
WO2012064155A2 (ko) 이동통신단말기의 출력 효율을 높이기 위한 장치 및 방법
US8588713B2 (en) Power management system for multi-carriers transmitter
WO2013055171A1 (en) Apparatus and method for modulating supply for a power amplifier
US7368985B2 (en) High frequency power amplifier and transmitter
US7702300B1 (en) Envelope modulator saturation detection using a DC-DC converter
US9407476B2 (en) Apparatus and method for power amplification
CN102405595B (zh) 基于波形线性的pa增益状态切换
US7881399B2 (en) Transmission circuit and communication device
KR20010012138A (ko) 효율적 신호 전력 증폭을 위한 장치 및 방법
JP2022551601A (ja) 遠隔無線充電送信端部、受信端部、及びシステム
US20130270924A1 (en) Electronic equipment, module, and system
US8289011B2 (en) Switched mode power supply for a transmitter
CN100370686C (zh) 跟踪电源控制
CN108390691A (zh) 一种上行载波聚合装置及移动终端
US9473089B2 (en) Hybrid power module
CN114337818A (zh) 可见光数字音频通信装置
KR102291764B1 (ko) GaN FET이 채용된 저전력 PFC 전원부 및 앰프출력부 통합모듈 및 그 통합모듈이 구비된 전관방송 시스템용 장비
WO2010101441A2 (en) Apparatus and method for improving linearity of transmitter
US20240056032A1 (en) Power supply circuit for power amplifier and communication apparatus
CN105703643A (zh) 一种无线输电装置和方法
CN102478873B (zh) 一种电源调制器
MXPA05003101A (es) Metodo para optimizar un punto operativo de un amplificador de potencia en una terminal movil de acceso multiple de division de codigo de ancho de banda.
CN110247674A (zh) 基于电源电压编码调制的一线通射频前端控制方法及系统
CN1399414A (zh) 无线通信装置
US8964968B2 (en) System, voice cable assembly, and method for voice communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840231

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13883675

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840231

Country of ref document: EP

Kind code of ref document: A2