WO2012063667A1 - Dc power supply system - Google Patents

Dc power supply system Download PDF

Info

Publication number
WO2012063667A1
WO2012063667A1 PCT/JP2011/075031 JP2011075031W WO2012063667A1 WO 2012063667 A1 WO2012063667 A1 WO 2012063667A1 JP 2011075031 W JP2011075031 W JP 2011075031W WO 2012063667 A1 WO2012063667 A1 WO 2012063667A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage unit
unit
power storage
converter
Prior art date
Application number
PCT/JP2011/075031
Other languages
French (fr)
Japanese (ja)
Inventor
亮二 松井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012063667A1 publication Critical patent/WO2012063667A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a DC power supply system, and more particularly to a configuration for stably supplying DC power to a DC load.
  • each of a plurality of power supply units connected to a DC bus has a current control unit, and the current control unit
  • a configuration is disclosed in which the direct current voltage command value or the controllability of the direct current voltage is autonomously changed according to the current input to and output from the corresponding power supply unit.
  • the DC power supply system described in Patent Document 1 autonomously and cooperatively operates a plurality of distributed power supplies, and can easily add a power supply unit without depending on the device capacity.
  • the voltage of the DC bus is stabilized without control by directly connecting a voltage source having a high voltage stabilizing capability such as a storage battery to the DC bus without using a power converter. Is possible.
  • the present invention has been made to solve such problems, and an object thereof is to stabilize the voltage of a DC bus in a DC power supply system in which a power storage unit is directly connected to the DC bus without using a power converter. That is.
  • a DC power supply system for supplying DC power to a DC load, wherein a DC bus disposed between the system power and the DC load and a power supply voltage are output to the DC bus.
  • the power converter includes a DC / AC converter that converts DC power from a DC bus into AC power and supplies the power to system power, and AC / AC that converts AC power from the system power into DC power and supplies it to the DC bus.
  • DC converter includes a DC / AC converter that converts DC power from a DC bus into AC power and supplies the power to system power, and AC / AC that converts AC power from the system power into DC power and supplies it to the DC bus.
  • the DC power supply system sets the DC / AC converter to a current control mode in which the current value of its own path is controlled to be the current target value, while the power storage unit monitors the power storage unit.
  • a first power conversion control unit that stops the power conversion operation of the DC / AC converter when the abnormality of the unit is detected; and when the power storage unit is normal, the AC / DC converter is set to the current control mode.
  • the second power conversion control sets the AC / DC converter to a voltage control mode for controlling the voltage of the DC bus to the voltage target value.
  • the conversion control unit further includes a power cutoff unit for cutting off the power storage unit from the DC bus by the switch.
  • the power storage unit monitoring unit outputs a power storage unit shut-off command to the power shut-off unit when an abnormality of the power storage unit is detected, and also notifies the first and second power conversion control units of power storage unit shut-off. Output a signal.
  • the first power conversion control unit stops the power conversion operation of the DC / AC converter when receiving the cutoff notice signal.
  • the second power conversion control unit sets the AC / DC converter to the voltage control mode when receiving the cutoff notice signal.
  • the power storage unit monitoring unit outputs a shut-off command after a predetermined period has elapsed since the shut-off notice signal was output.
  • the power storage unit monitoring unit outputs a power storage unit cutoff notice signal to the first and second power conversion control units when an abnormality of the power storage unit is detected.
  • the first power conversion control unit stops the power conversion operation of the DC / AC converter when receiving the cutoff notice signal.
  • the second power conversion control unit sets the AC / DC converter to the voltage control mode when receiving the cutoff notice signal. After the power conversion operation of the DC / AC converter by the first power conversion control unit is stopped by the first power conversion control unit and after the voltage control mode is set by the second power conversion control unit, the power conversion unit Outputs a shutoff command for the power storage unit.
  • the power storage unit monitoring unit further includes a notification unit that outputs a cutoff notice signal and notifies the abnormality of the power storage unit.
  • the power storage unit is directly connected to the DC bus.
  • the voltage of the DC bus can be stabilized even when the power storage unit is cut off, and stable to a DC load. Therefore, it is possible to construct a DC power supply system that can supply electric power.
  • FIG. 1 schematically shows an overall configuration of a DC power supply system according to an embodiment of the present invention.
  • FIG. It is a figure which shows the charging capacity-voltage curve of an electrical storage part.
  • It is a schematic block diagram of the DC / AC converter in FIG.
  • It is a figure which shows the control structure of the control part in FIG.
  • It is a schematic block diagram of the AC / DC converter in FIG.
  • It is a figure which shows the control structure of the control part in FIG.
  • It is a timing chart for demonstrating the process at the time of abnormality detection in a battery monitoring unit.
  • It is a figure which shows roughly the whole structure of the DC power supply system according to the example of a change of embodiment of this invention.
  • FIG. 1 is a diagram schematically showing an overall configuration of a DC power feeding system according to an embodiment of the present invention.
  • the DC power supply system includes a DC bus 1, a power storage unit 3, a system power system 4, a DC load 5, a battery monitoring unit 6, and a switch 7.
  • the DC bus 1 supplies DC power to DC load 5.
  • the DC load 5 is, for example, an electric device such as an air conditioner, a refrigerator, a washing machine, a television, a lighting device, or a personal computer used at home. Alternatively, it may be an electric device such as a computer, a copier or a facsimile used in an office, or an electric device such as a showcase or a lighting device used in a store.
  • a power storage unit 3 and a system power system 4 are connected to the DC bus 1.
  • DC power supply system a case where one DC bus 1, power storage unit 3, system power system 4 and one DC load 5 are provided will be described. There may be one or more.
  • the power storage unit 3 includes, for example, a secondary battery configured to be chargeable / dischargeable, such as a lithium ion secondary battery.
  • the power storage unit 3 is configured by connecting a plurality of battery cells in series, and has rated voltages of 380 V and 10 Ah as an example.
  • FIG. 2 is a diagram showing a charge capacity-voltage curve of the power storage unit 3.
  • the horizontal axis represents the charge capacity (Ah) of the power storage unit 3
  • the vertical axis represents the voltage (V) of the power storage unit 3.
  • power storage unit 3 is 300 V when it is empty (charging capacity is 0%), 360 V when charging capacity is 20%, 380 V when charging capacity is 50%, and charging capacity of 80 %, It becomes 400V, and when fully charged (charge capacity is 100%), it becomes 420V.
  • the power storage unit 3 is not limited to a lithium ion battery, but is a lead storage battery or nickel hydride. It is also possible to use a battery or the like.
  • the power storage unit 3 is “directly connected” to the DC bus 1, and exchanges DC power with the DC bus 1.
  • “directly connected” means that a power converter such as a DC / DC converter is not interposed between the DC bus 1 and the power storage unit 3. Therefore, the voltage of DC bus 1 is substantially equal to the power supply voltage of power storage unit 3. Since the power storage unit 3 is directly connected to the DC bus 1 in this way, the voltage fluctuation of the DC bus 1 due to a sudden load change can be suppressed by utilizing the high voltage stabilization capability of the power storage unit 3. .
  • the switch 7 is disposed between the power storage unit 3 and the DC bus 1.
  • the switch 7 electrically connects the power storage unit 3 to the DC bus 1 and activates the shutdown signal SD ( When this occurs, the electric circuit between the power storage unit 3 and the DC bus 1 is cut off.
  • Battery monitoring unit 6 monitors the state of power storage unit 3 in order to protect power storage unit 3 from overcharge, overdischarge, temperature rise, and the like. Specifically, charging / discharging current detection unit 60 detects charging / discharging current Ib that is inserted in DC bus 1 and input / output to / from power storage unit 3, and outputs the detected value to battery monitoring unit 6. . Charging / discharging voltage detection unit 62 detects charging / discharging voltage Vb of power storage unit 3 and outputs the detected value to battery monitoring unit 6. The temperature detection unit 64 detects the temperature Tb of the power storage unit 3 and outputs the detected value to the battery monitoring unit 6.
  • the charge / discharge current detection unit 60 detects the discharge current Idc from the power storage unit 3 as a positive charge / discharge current Ib, and detects the charge current Ich to the power storage unit 3 as a negative charge / discharge current Ib. To do.
  • the battery monitoring unit 6 includes a detection value of the charge / discharge current Ib from the charge / discharge current detection unit 60, a detection value of the charge / discharge voltage Vb from the charge / discharge voltage detection unit 62, and a detection value of the storage battery temperature Tb from the temperature detection unit 64. Based on the above, the state (charged state and temperature state) of the power storage unit 3 is monitored. When the abnormality of the power storage unit 3 is detected, the battery monitoring unit 6 activates the shutdown signal SD (protection command) to protect the power storage unit 3, thereby causing the switch 7 to connect the power storage unit 3 to the DC bus. Cut off the electrical circuit to 1
  • SD protection command
  • the battery monitoring unit 6 activates the shutdown notice signal SDN for notifying the shutoff of the power storage unit 3 prior to activating (shutoff command) the above-described shutdown signal SD.
  • the activated shutdown notice signal SDN is transmitted to the DC / AC converter 42 and the AC / DC converter 44 in the system power system 4.
  • the DC / AC converter 42 receives the shutdown notice signal SDN from the battery monitoring unit 6, the DC / AC converter 42 stops the power conversion operation.
  • the AC / DC converter 44 receives the shutdown notice signal SDN from the battery monitoring unit 6, it switches from the “current control mode” to the “voltage control mode” by the method described later.
  • the grid power system 4 exchanges DC power with the DC bus 1.
  • the grid power system 4 includes a DC / AC converter 42, an AC / DC converter 44, and a grid power 40.
  • System power 40 is power received from an electric power company or the like (for example, AC 200V).
  • the DC / AC converter 42 and the AC / DC converter 44 are connected in parallel between the DC bus 1 and the system power 40.
  • system power 40 is purchased (purchased) from an electric power company or the like via AC / DC converter 44, and surplus power is supplied via electric power company via DC / AC converter 42. It is possible to sell to (e.g., sell electricity).
  • the current flowing through the DC / AC converter 42 is expressed as Icell
  • the current flowing through the AC / DC converter 44 is expressed as Ibuy.
  • the current supplied to the DC load 5 is denoted as Iload.
  • the current obtained by subtracting the current Iload from the current Ibuy becomes the charging current Ich of the power storage unit 3. Further, at the time of power sale, a current obtained by subtracting the current Iload from the discharge current Idc of the power storage unit 3 is the current Icell.
  • the values of the currents Isel and Ibuy can be freely set by the user or administrator of the DC power supply system.
  • FIG. 3 is a schematic configuration diagram of the DC / AC converter 42 in FIG.
  • DC / AC converter 42 includes DC / AC converter 30, interconnection reactor 32, controller 34, DC voltage detector 36, and own path current detector 38. .
  • the DC / AC conversion unit 30 converts the DC power received from the DC bus 1 into AC power according to the drive signal DRV1 from the control unit 34, and outputs the AC power to the system power 40 (FIG. 1).
  • DC / AC conversion unit 30 includes transistors Q1 to Q4, which are switching elements, and diodes D1 to D4.
  • Transistors Q1 and Q2 are connected in series between positive bus PL and negative bus SL constituting DC bus 1.
  • Interconnection reactor 32 is connected between the connection point of transistors Q 1 and Q 2 and system power 40.
  • Transistors Q3 and Q4 are connected in series between positive bus PL and negative bus SL.
  • Interconnection reactor 32 is connected between the connection point of transistors Q 3 and Q 4 and system power 40. Between the collector and emitter of each of the transistors Q1 to Q4, diodes D1 to D4 that flow current from the emitter side to the collector side are respectively connected.
  • IGBTs Insulated Gate Bipolar Transistors
  • MOSFET Metal Oxide Semiconductor Field-Effect Transistor
  • DC voltage detector 36 is connected between positive bus PL and negative bus SL, detects voltage value Vdc of DC power supplied from DC bus 1 to DC / AC converter 30, and controls the detection result. To the unit 34.
  • the own path current detection unit 38 is inserted in the negative bus SL, detects the current value (own path current value) Isel of the DC power supplied from the DC bus 1 to the DC / AC conversion unit 30, and the detection result is obtained. Output to the control unit 34.
  • the control unit 34 is based on the voltage value Vdc received from the DC voltage detection unit 36, the own path current value Isel received from the own path current detection unit 38, and the shutdown notice signal SDN received from the battery monitoring unit 6.
  • a drive signal DRV1 for controlling on / off of the transistors Q1 to Q4 is generated according to a control structure to be described later, and the DC / AC converter 30 is controlled.
  • FIG. 4 is a diagram showing a control structure of the control unit 34 in FIG.
  • control unit 34 includes a subtraction unit 340, a switching unit 342, a switching element drive signal generation unit 344, and a control target value selection unit 346.
  • the control target value selection unit 346 determines the current target value Isell * of the own path current value Isell.
  • This current target value Isell * can be determined in advance so as to have a different current value according to the date and time, for example, and can be stored in a storage unit (not shown). Or you may make it acquire a desired electric current value suitably by communicating between the control part 34 and the exterior of a direct-current power feeding system.
  • the control target value selection unit 346 further deactivates the switching signal and outputs it to the switching unit 342 when receiving the shutdown notice signal SDN activated from the battery monitoring unit 6. On the other hand, when the shutdown notice signal SDN is deactivated, the control target value selection unit 346 activates the switching signal and outputs it to the switching unit 342.
  • the subtraction unit 340 calculates a current deviation from the difference between the self-path current value Isel and the current target value Isel * and outputs the current deviation to the switching unit 342.
  • switching unit 342 selects either the current deviation received from subtraction unit 340 or a stop command for stopping the operation of DC / AC conversion unit 30. Output to the switching element drive signal generator 344. Specifically, the switching unit 342 selects the current deviation received from the subtracting unit 340 and drives the switching element when the switching signal is activated, that is, when the shutdown notice signal SDN is deactivated. The signal is output to the signal generator 344. On the other hand, when the switching signal is deactivated, that is, when the shutdown notice signal SDN is activated, the switching unit 342 selects a stop command and outputs it to the switching element drive signal generation unit 344.
  • the switching element drive signal generation unit 344 includes at least a proportional element (P: proportional element) and an integral element (I: integral element). Upon receiving a current deviation from the switching unit 342, the switching element drive signal generation unit 344 converts the input current deviation into a current deviation. In response, an operation signal is generated. Then, when the switching element drive signal generation unit 344 generates a duty command that defines the on-duty of the transistors Q1 to Q4 of the DC / AC conversion unit 30 based on the operation signal, the switching device drive signal generation unit 344 compares the generated duty command with a carrier wave. Then, the drive signal DRV1 is generated and the DC / AC conversion unit 30 is controlled.
  • P proportional element
  • I integral element
  • control unit 34 determines that self-path current value Isel is a predetermined current target value Icell *.
  • the drive signal DRV1 is generated to control the DC / AC conversion unit 30 (hereinafter also referred to as “current control mode”).
  • the switching element drive signal generation unit 344 receives a stop command from the switching unit 342, the switching element drive signal generation unit 344 stops the power conversion operation in the DC / AC conversion unit 30. Specifically, switching element drive signal generation unit 344 blocks the gates of transistors Q1-Q4 included in DC / AC conversion unit 30. Therefore, when shutdown notice signal SDN is activated, that is, when abnormality of power storage unit 3 is detected, DC / AC conversion unit 30 stops its operation. At this time, the DC / AC conversion unit 30 stops before the shutdown signal SD is activated and the electric circuit between the power storage unit 3 and the DC bus 1 is cut off.
  • FIG. 5 is a schematic configuration diagram of the AC / DC converter 44 in FIG.
  • AC / DC converter 44 includes a rectifier 52, a booster circuit 50, a controller 54, a DC voltage detector 56, and a self-path current detector 58.
  • Rectifying unit 52 includes diodes D7 and D8 connected in series between positive bus PL and negative bus SL, and diodes D9 and D10 connected in series between positive bus PL and negative bus SL.
  • the rectifying unit 52 receives AC power from the system power 40 between the connection point of the diodes D7 and D8 and the connection point of the diodes D9 and D10, and rectifies this AC power into DC power.
  • the booster circuit 50 boosts the DC power from the rectifier 52 in accordance with the drive signal DRV2 from the controller 54.
  • Booster circuit 50 includes an inductor L1 connected in series between the output terminals of rectifier 52, transistor Q5 as a switching element, diodes D5 and D6, and inductor L1, and a smoothing capacitor C1.
  • Smoothing capacitor C1 is connected between positive bus PL and negative bus SL, and reduces an AC component included in a DC voltage between positive bus PL and negative bus SL.
  • an IGBT can be used as the transistor Q5.
  • a power switching element such as a power MOSFET may be used.
  • control unit 54 turns on / off transistor Q5 at a predetermined duty ratio.
  • a discharge current flows from positive rectifier 52 through inductor L1 and diode D6 to positive bus PL.
  • a pump current flows from rectifier 52 through inductor L1, transistor Q5 and negative bus SL in this order.
  • the inductor L1 accumulates electromagnetic energy by this pump current.
  • the transistor Q5 transitions from the on state to the off state, the inductor L1 superimposes the accumulated electromagnetic energy on the discharge current.
  • the average voltage of the DC power supplied from the booster circuit 50 to the positive bus PL and the negative bus SL is boosted by a voltage corresponding to the electromagnetic energy accumulated in the inductor L1 according to the duty ratio.
  • control unit 54 In order to control the boosting operation of the booster circuit 50, the control unit 54 generates a drive signal DRV2 that controls on / off of the transistor Q5.
  • DC voltage detection unit 56 is connected between positive bus PL and negative bus SL, detects voltage value Vdc of DC power supplied from booster circuit 50 to DC bus 1, and outputs the detection result to control unit 54. Output.
  • the own path current detection unit 58 is inserted in the negative bus SL, detects the current value (own path current value) Ibuy of DC power supplied from the booster circuit 50 to the DC bus 1, and the detection result is the control unit 54. Output to.
  • the control unit 54 Based on the voltage value Vdc received from the DC voltage detection unit 56, the own path current value Ibuy received from the own path current detection unit 58, and the shutdown notice signal SDN received from the battery monitoring unit 6, the control unit 54 A drive signal DRV2 for controlling on / off of the transistor Q5 is generated according to a control structure described later, and the booster circuit 50 is controlled.
  • FIG. 6 is a diagram showing a control structure of the control unit 54 in FIG. Referring to FIG. 6, control unit 54 includes subtraction units 540 and 542, switching unit 544, switching element drive signal generation unit 546, and control target value selection unit 548.
  • the control target value selection unit 548 determines the current target value Ibuy * of the own path current value Ibuy.
  • This current target value Ibuy * can be determined in advance so as to have a different current value according to the date and time, for example, and can be stored in a storage unit (not shown). Or you may make it acquire a desired electric current value suitably by communicating between the control part 54 and the exterior of a direct-current power feeding system.
  • the control target value selection unit 548 further determines a voltage target value Vdc * of the DC voltage value Vdc.
  • This voltage target value Vdc * can be determined in advance so as to have a voltage value equal to the rated voltage 380 V of power storage unit 3, for example, and stored in a storage unit (not shown). Or you may make it acquire a desired electric current value suitably by communicating between the control part 54 and the exterior of a direct-current power feeding system.
  • control target value selection unit 548 further deactivates the switching signal and outputs it to the switching unit 544 when receiving the activated shutdown notice signal SDN from the battery monitoring unit 6. On the other hand, when shutdown notice signal SDN is inactivated, control target value selection unit 548 activates the switching signal and outputs the switching signal to switching unit 544.
  • the subtraction unit 542 calculates a current deviation from the difference between the self-path current value Ibuy and the current target value Ibuy *, and outputs the current deviation to the switching unit 544.
  • the subtraction unit 540 calculates a voltage deviation from the difference between the DC voltage value Vdc and the voltage target value Vdc *, and outputs the voltage deviation to the switching unit 544.
  • the switching unit 544 selects either the current deviation received from the subtraction unit 542 or the voltage deviation received from the subtraction unit 540 based on the switching signal output from the control target value selection unit 548 to switch the switching element drive signal.
  • the data is output to the generation unit 546.
  • switching unit 544 selects the current deviation received from subtraction unit 542 and outputs it to switching element drive signal generation unit 546 when the switching signal is activated.
  • the switching unit 544 selects the voltage deviation received from the subtracting unit 540 and selects the switching element drive signal generating unit when the switching signal is inactivated, that is, when the shutdown notice signal SDN is activated. To 546.
  • the switching element drive signal generation unit 546 is configured to include at least a proportional element and an integration element, and when receiving a current deviation from the switching unit 544, generates an operation signal according to the input current deviation. Then, when the switching element drive signal generation unit 546 generates a duty command that defines the on-duty of the transistor Q5 of the booster circuit 50 based on the operation signal, the switching element drive signal generation unit 546 compares the generated duty command with a carrier wave, DRV2 is generated and the booster circuit 50 is controlled. As described above, the control unit 54 controls the booster circuit 50 by generating the drive signal DRV2 so that the self-path current value Ibuy becomes the predetermined current target value Ibuy * (current control mode).
  • the switching element drive signal generation unit 546 receives a voltage deviation from the switching unit 544, the switching element drive signal generation unit 546 generates an operation signal according to the input voltage deviation. Then, when the switching element drive signal generation unit 546 generates a duty command that defines the on-duty of the transistor Q5 of the booster circuit 50 based on the operation signal, the switching element drive signal generation unit 546 compares the generated duty command with a carrier wave, DRV2 is generated and the booster circuit 50 is controlled. As described above, the control unit 54 controls the booster circuit 50 by generating the drive signal DRV2 so that the DC voltage value Vdc becomes the predetermined voltage target value Vdc * (hereinafter also referred to as “voltage control mode”). .
  • the control unit 54 determines that the self-path current Ibuy is equal to the predetermined current target value Ibuy *.
  • the drive signal DRV2 is generated so as to control the booster circuit 50 (current control mode).
  • shutdown notice signal SDN is activated, that is, when abnormality of power storage unit 3 is detected, drive signal DRV2 is generated and boosted so that DC voltage value Vdc becomes a predetermined voltage target value Vdc *.
  • the circuit 50 is controlled (voltage control mode). That is, when an abnormality of power storage unit 3 is detected, control unit 54 switches booster circuit 50 from the current control mode to the voltage control mode. The switching of the control mode is executed prior to the shutdown signal SD being activated and the electric path between the power storage unit 3 and the DC bus 1 being cut off.
  • FIG. 7 is a timing chart for explaining processing at the time of abnormality detection in the battery monitoring unit 6 (FIG. 1).
  • the battery monitoring unit 6 uses the charge / discharge current value Ib input from the charge / discharge current detector 60, the charge / discharge voltage value Vb input from the charge / discharge voltage detector 62, and the storage battery temperature Tb input from the temperature detector 64. Based on this, abnormality diagnosis of the power storage unit 3 is executed. Then, as shown in FIG. 7, when an abnormality of the power storage unit 3 is detected at time t2, the battery monitoring unit 6 activates the shutdown notice signal SDN (logic high).
  • the activated shutdown notice signal SDN is transmitted to the DC / AC converter 42 and the AC / DC converter 44 in the system power system 4, respectively.
  • control unit 34 stops the power conversion operation in DC / AC converter 42 in response to activation of shutdown notice signal SDN.
  • control unit 54 changes the control mode for booster circuit 50 from the current control mode in response to activation of shutdown notice signal SDN. Switch to voltage control mode.
  • the battery monitoring unit 6 activates the shutdown signal SD (logic high).
  • the switch 7 interrupts the electrical path between the power storage unit 3 and the DC bus 1.
  • the predetermined period is a time lag in communication between the battery monitoring unit 6 and the grid power system 4 and is set to about several milliseconds to several seconds as an example.
  • the DC / AC converter 42 is stopped in the system power system 4 prior to cutting off the electric circuit between the power storage unit 3 and the DC bus 1,
  • the control mode for the AC / DC converter 44 is switched from the current control mode to the voltage control mode.
  • the battery monitoring unit 6 when the abnormality of the power storage unit 3 is detected, the battery monitoring unit 6 generates the shutdown notice signal SDN and notifies the abnormality of the power storage unit 3 so that the DC power supply system
  • the user or the administrator can be notified of the abnormality of the power storage unit 3.
  • a method of turning on an abnormality notification lamp or generating an alarm sound can be considered.
  • it is also possible to use methods such as light, display on a remote controller, display on a display connected to the DC load 5 and the like.
  • the configuration in which the grid power system 4 includes the DC / AC converter 42 and the AC / DC converter 44 has been described as an example.
  • the DC power received from the DC bus 1 is converted into AC power.
  • a configuration including a bidirectional DC / AC converter configured to convert AC power from the system power into DC power and supply it to the DC bus 1 while supplying to the system power. It is.
  • the bidirectional DC / AC converter performs control in the voltage control mode so as to maintain the voltage value Vdc of the DC bus 1 at the predetermined target voltage Vdc *.
  • the system power system 4 that has received the shutdown notice signal SDN receives the shutdown signal.
  • the present invention can also be applied to a configuration that outputs SD to the switch 7.
  • FIG. 8 is a diagram schematically showing an overall configuration of a DC power supply system according to a modification of the embodiment of the present invention.
  • the DC power supply system switches the shutdown signal SD from the grid power system 4 to the DC power supply system shown in FIG. 1, instead of the configuration in which the shutdown signal SD is output from the battery monitoring unit 6 to the switch 7. 7 is configured to output to 7.
  • the battery monitoring unit 6 activates the shutdown notice signal SDN when an abnormality of the power storage unit 3 is detected.
  • the activated shutdown notice signal SDN is transmitted to the DC / AC converter 42 and the AC / DC converter 44 in the system power system 4.
  • control part 34 will stop power conversion operation in DC / AC conversion part 30, if shutdown notice signal SDN is received.
  • control unit 54 switches booster circuit 50 from the current control mode to the voltage control mode upon receipt of shutdown notice signal SDN.
  • the system power system 4 activates (shuts down) the shutdown signal SD and outputs it to the switch 7. Therefore, in response to the activation of the shutdown signal SD, the switch 7 interrupts the electrical path between the power storage unit 3 and the DC bus 1.
  • the grid power system 4 stops the power conversion operation of the DC / AC converter 42 while the AC / DC
  • the converter 44 is controlled in the voltage control mode so as to maintain the voltage value Vdc of the DC bus 1 at a predetermined target voltage Vdc *, and then the power storage unit 3 is disconnected from the DC bus 1. Therefore, an effect similar to the effect in the embodiment of the present invention described above can be exhibited.
  • the shutdown signal SD is activated by the system power system 4 after switching the control mode for the AC / DC converter 44 to the voltage control mode, so that the voltage value Vdc of the DC bus 1 is stabilized. The degree can be improved. As a result, even after the abnormality of the power storage unit 3 is detected, it is possible to continuously supply DC power to the DC load 5 continuously.
  • the present invention can be used in a DC power supply system for supplying DC power to a DC load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

In the disclosed DC power supply system having a power storage unit (3) directly connected to a DC bus (1), if an anomaly has been detected in the power storage unit (3), a battery monitoring unit (6) activates and outputs a shutdown signal (SD) (an interrupt command), and, preceding output of the interrupt command, outputs an activated shutdown warning signal (SDN) to a grid power system (4). In the grid power system (4), the shutdown warning signal (SDN) is received, the DC/AC converter (42) stops power conversion operation and the AC/DC converter (44) is switched from a current control mode to a voltage control mode. Thereafter, a switch (7) interrupts the electric circuit between the power storage unit (3) and the DC bus (1) pursuant of the interrupt command.

Description

直流給電システムDC power supply system
 この発明は、直流給電システムに関し、より特定的には、直流負荷に直流電力を安定して給電するための構成に関する。 The present invention relates to a DC power supply system, and more particularly to a configuration for stably supplying DC power to a DC load.
 近年、太陽電池、風力発電装置および燃料電池のような分散電源装置が普及し始めている。現状では、分散電源装置が発電した直流電力を交流電力に変換し、さらに、その交流電力を、電力を消費する機器において直流電力に変換して使用する。このように、直流-交流変換および交流-直流変換が行なわれるため、その電力変換のたびに電力損失が生じる。そこで、分散電源装置が発電する直流電力を交流電力に変換することなく、直流電力のまま送電して機器で使用することにより、変換損失を低減させる直流給電システムが提案されている。 In recent years, distributed power supply devices such as solar cells, wind power generators and fuel cells have begun to spread. At present, the DC power generated by the distributed power supply device is converted into AC power, and the AC power is converted into DC power and used in a device that consumes the power. Thus, since DC-AC conversion and AC-DC conversion are performed, a power loss occurs at each power conversion. Therefore, a DC power feeding system has been proposed that reduces conversion loss by transmitting DC power as it is and using it in equipment without converting the DC power generated by the distributed power supply into AC power.
 このような直流給電システムとして、たとえば特開2005-224009号公報(特許文献1)には、直流バスに接続された複数の電源ユニットの各々が電流制御部を有しており、該電流制御部が、対応する電源ユニットに入出力する電流に従って自律的に直流電圧指令値または直流電圧の制御性を変更する構成が開示されている。この特許文献1に記載の直流給電システムは、複数の分散電源を自律的に協調運転するとともに、装置容量に依存せずに、簡単に電源ユニットを追加することを可能としている。 As such a DC power supply system, for example, in Japanese Patent Application Laid-Open No. 2005-224209 (Patent Document 1), each of a plurality of power supply units connected to a DC bus has a current control unit, and the current control unit However, a configuration is disclosed in which the direct current voltage command value or the controllability of the direct current voltage is autonomously changed according to the current input to and output from the corresponding power supply unit. The DC power supply system described in Patent Document 1 autonomously and cooperatively operates a plurality of distributed power supplies, and can easily add a power supply unit without depending on the device capacity.
特開2005-224009号公報JP 2005-224209 A
 しかしながら、上記の特許文献1に記載の直流給電システムにおいては、複数の分散電源を自律的に協調運転することが可能になる一方で、各電源ユニットにおける入出力電流が変化すると、この変化に応じて直流バスの電圧の制御目標値が変更されるため、システム全体の制御が複雑化するという問題があった。 However, in the DC power supply system described in Patent Document 1, it is possible to autonomously and cooperatively operate a plurality of distributed power sources. On the other hand, when the input / output current in each power supply unit changes, Since the control target value of the DC bus voltage is changed, there is a problem that the control of the entire system becomes complicated.
 また、電源ユニットごとに電力変換器を設ける必要あるため、該電力変換器における変換損失が増大するとともに、システムのコストアップが発生するという問題があった。 Further, since it is necessary to provide a power converter for each power supply unit, there is a problem that conversion loss in the power converter increases and the cost of the system increases.
 このような課題を解決するためには、蓄電池のような電圧安定化能力の高い電圧源を電力変換器を介さず直流バスに直結することによって、直流バスの電圧を無制御で安定化させることが可能である。 In order to solve such a problem, the voltage of the DC bus is stabilized without control by directly connecting a voltage source having a high voltage stabilizing capability such as a storage battery to the DC bus without using a power converter. Is possible.
 しかしながら、上記のように、蓄電池を直流バスに直結させる構成においては、蓄電池に異常が検知された場合には、蓄電池を過充電や過放電などから保護するために蓄電池を直流バスから速やかに遮断する必要が生じる。このように蓄電池が直流バスから遮断された場合においても、直流バスの電圧変動を抑制し、直流負荷に対して安定して直流電力を供給できる直流給電システムの構築が求められる。 However, as described above, in the configuration in which the storage battery is directly connected to the DC bus, when an abnormality is detected in the storage battery, the storage battery is promptly disconnected from the DC bus in order to protect the storage battery from overcharge or overdischarge. Need to do. Thus, even when the storage battery is disconnected from the DC bus, it is required to construct a DC power supply system that can suppress voltage fluctuation of the DC bus and stably supply DC power to the DC load.
 それゆえ、この発明は係る課題を解決するためになされたものであり、その目的は、直流バスに電力変換器を介さず蓄電部を直結した直流給電システムにおいて、直流バスの電圧を安定化することである。 SUMMARY OF THE INVENTION Therefore, the present invention has been made to solve such problems, and an object thereof is to stabilize the voltage of a DC bus in a DC power supply system in which a power storage unit is directly connected to the DC bus without using a power converter. That is.
 この発明のある局面に従えば、直流負荷に直流電力を供給するための直流給電システムであって、系統電力および直流負荷の間に配設された直流バスと、電源電圧を直流バスに出力する蓄電部と、蓄電部の異常を検知する蓄電部監視ユニットと、直流バスおよび蓄電部の間を接続/遮断するためのスイッチと、直流バスおよび系統電力の間で電力変換する電力変換装置とを備える。電力変換装置は、直流バスからの直流電力を交流電力に変換して系統電力へ供給する直流/交流変換器と、系統電力からの交流電力を直流電力に変換して直流バスへ供給する交流/直流変換器とを含む。直流給電システムは、蓄電部が正常であるときには、直流/交流変換器を、自経路の電流値が電流目標値になるように制御される電流制御モードに設定する一方、蓄電部監視ユニットにより蓄電部の異常が検知されたときには、直流/交流変換器の電力変換動作を停止させる第1の電力変換制御部と、蓄電部が正常であるときには、交流/直流変換器を電流制御モードに設定する一方、蓄電部監視ユニットにより蓄電部の異常が検知されたときには、交流/直流変換器を、直流バスの電圧が電圧目標値になるように制御する電圧制御モードに設定する第2の電力変換制御部と、蓄電部監視ユニットにより蓄電部の異常が検知されたときには、第1の電力変換制御部による直流/交流変換器の電力変換動作の停止後であって、かつ、第2の電力変換制御部による電圧制御モードの設定後に、スイッチにより蓄電部を直流バスから遮断する電源遮断部とをさらに備える。 According to an aspect of the present invention, there is provided a DC power supply system for supplying DC power to a DC load, wherein a DC bus disposed between the system power and the DC load and a power supply voltage are output to the DC bus. A power storage unit, a power storage unit monitoring unit that detects an abnormality of the power storage unit, a switch for connecting / disconnecting between the DC bus and the power storage unit, and a power converter that converts power between the DC bus and the system power Prepare. The power converter includes a DC / AC converter that converts DC power from a DC bus into AC power and supplies the power to system power, and AC / AC that converts AC power from the system power into DC power and supplies it to the DC bus. DC converter. When the power storage unit is normal, the DC power supply system sets the DC / AC converter to a current control mode in which the current value of its own path is controlled to be the current target value, while the power storage unit monitors the power storage unit. A first power conversion control unit that stops the power conversion operation of the DC / AC converter when the abnormality of the unit is detected; and when the power storage unit is normal, the AC / DC converter is set to the current control mode. On the other hand, when an abnormality of the power storage unit is detected by the power storage unit monitoring unit, the second power conversion control sets the AC / DC converter to a voltage control mode for controlling the voltage of the DC bus to the voltage target value. And when the abnormality of the power storage unit is detected by the power storage unit monitoring unit, after the power conversion operation of the DC / AC converter by the first power conversion control unit is stopped and the second power After setting of the voltage control mode by the conversion control unit further includes a power cutoff unit for cutting off the power storage unit from the DC bus by the switch.
 好ましくは、蓄電部監視ユニットは、蓄電部の異常が検知されたときに、電源遮断部に蓄電部の遮断指令を出力するとともに、第1および第2の電力変換制御部に蓄電部の遮断予告信号を出力する。第1の電力変換制御部は、遮断予告信号を受けたときに、直流/交流変換器の電力変換動作を停止させる。第2の電力変換制御部は、遮断予告信号を受けたときに、交流/直流変換器を電圧制御モードに設定する。蓄電部監視ユニットは、遮断予告信号を出力してから所定期間経過後に遮断指令を出力する。 Preferably, the power storage unit monitoring unit outputs a power storage unit shut-off command to the power shut-off unit when an abnormality of the power storage unit is detected, and also notifies the first and second power conversion control units of power storage unit shut-off. Output a signal. The first power conversion control unit stops the power conversion operation of the DC / AC converter when receiving the cutoff notice signal. The second power conversion control unit sets the AC / DC converter to the voltage control mode when receiving the cutoff notice signal. The power storage unit monitoring unit outputs a shut-off command after a predetermined period has elapsed since the shut-off notice signal was output.
 好ましくは、蓄電部監視ユニットは、蓄電部の異常が検知されたときに、第1および第2の電力変換制御部に蓄電部の遮断予告信号を出力する。第1の電力変換制御部は、遮断予告信号を受けたときに、直流/交流変換器の電力変換動作を停止させる。第2の電力変換制御部は、遮断予告信号を受けたときに、交流/直流変換器を電圧制御モードに設定する。電力変換装置は、第1の電力変換制御部による直流/交流変換器の電力変換動作の停止後であって、かつ、第2の電力変換制御部による電圧制御モードの設定後に、電源遮断部に蓄電部の遮断指令を出力する。 Preferably, the power storage unit monitoring unit outputs a power storage unit cutoff notice signal to the first and second power conversion control units when an abnormality of the power storage unit is detected. The first power conversion control unit stops the power conversion operation of the DC / AC converter when receiving the cutoff notice signal. The second power conversion control unit sets the AC / DC converter to the voltage control mode when receiving the cutoff notice signal. After the power conversion operation of the DC / AC converter by the first power conversion control unit is stopped by the first power conversion control unit and after the voltage control mode is set by the second power conversion control unit, the power conversion unit Outputs a shutoff command for the power storage unit.
 好ましくは、蓄電部監視ユニットは、遮断予告信号を出力するとともに、蓄電部の異常を報知する報知部をさらに含む。 Preferably, the power storage unit monitoring unit further includes a notification unit that outputs a cutoff notice signal and notifies the abnormality of the power storage unit.
 好ましくは、蓄電部は、直流バスに直結される。 Preferably, the power storage unit is directly connected to the DC bus.
 この発明によれば、直流バスに電力変換器を介さず蓄電部を直結した直流給電システムにおいて、蓄電部が遮断された場合においても直流バスの電圧を安定化することができ、直流負荷に安定的に電力を供給可能な直流給電システムを構築することができる。 According to the present invention, in a DC power supply system in which a power storage unit is directly connected to a DC bus without a power converter, the voltage of the DC bus can be stabilized even when the power storage unit is cut off, and stable to a DC load. Therefore, it is possible to construct a DC power supply system that can supply electric power.
この発明の実施の形態に従う直流給電システムの全体の構成を概略的に示す図である。1 schematically shows an overall configuration of a DC power supply system according to an embodiment of the present invention. FIG. 蓄電部の充電容量-電圧曲線を示す図である。It is a figure which shows the charging capacity-voltage curve of an electrical storage part. 図1におけるDC/AC変換器の概略構成図である。It is a schematic block diagram of the DC / AC converter in FIG. 図3における制御部の制御構造を示す図である。It is a figure which shows the control structure of the control part in FIG. 図1におけるAC/DC変換器の概略構成図である。It is a schematic block diagram of the AC / DC converter in FIG. 図5における制御部の制御構造を示す図である。It is a figure which shows the control structure of the control part in FIG. 電池監視ユニットにおける異常検知時の処理を説明するためのタイミングチャートである。It is a timing chart for demonstrating the process at the time of abnormality detection in a battery monitoring unit. 本発明の実施の形態の変更例に従う直流給電システムの全体の構成を概略的に示す図である。It is a figure which shows roughly the whole structure of the DC power supply system according to the example of a change of embodiment of this invention.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当する部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the same or corresponding parts in the drawings are denoted by the same reference numerals and description thereof will not be repeated.
 図1は、この発明の実施の形態に従う直流給電システムの全体の構成を概略的に示す図である。 FIG. 1 is a diagram schematically showing an overall configuration of a DC power feeding system according to an embodiment of the present invention.
 図1を参照して、本実施の形態に従う直流給電システムは、直流バス1と、蓄電部3と、系統電力システム4と、直流負荷5と、電池監視ユニット6と、スイッチ7とを備える。 Referring to FIG. 1, the DC power supply system according to the present embodiment includes a DC bus 1, a power storage unit 3, a system power system 4, a DC load 5, a battery monitoring unit 6, and a switch 7.
 直流バス1は、直流負荷5に直流電力を供給する。直流負荷5は、一例として、家庭で使用される空調機、冷蔵庫、洗濯機、テレビ、照明装置またはパーソナルコンピュータのような電気機器である。あるいは、オフィスで使用されるコンピュータ、複写機またはファクシミリのような電気機器や、または、店舗で使用されるショーケースまたは照明装置のような電気機器であってもよい。直流バス1には、蓄電部3および系統電力システム4が接続されている。 DC bus 1 supplies DC power to DC load 5. The DC load 5 is, for example, an electric device such as an air conditioner, a refrigerator, a washing machine, a television, a lighting device, or a personal computer used at home. Alternatively, it may be an electric device such as a computer, a copier or a facsimile used in an office, or an electric device such as a showcase or a lighting device used in a store. A power storage unit 3 and a system power system 4 are connected to the DC bus 1.
 なお、本実施の形態に従う直流給電システムにおいては、直流バス1、蓄電部3、系統電力システム4および直流負荷5をそれぞれ1個ずつ備える場合について説明するが、これらの個数には制限がなく、1個でも複数個であってもよい。 In the DC power supply system according to the present embodiment, a case where one DC bus 1, power storage unit 3, system power system 4 and one DC load 5 are provided will be described. There may be one or more.
 (蓄電部の構成)
 蓄電部3は、一例として、リチウムイオン二次電池などの充放電可能に構成された二次電などからなる。蓄電部3は、複数の電池セルを直列接続して構成されており、一例として、定格電圧380Vおよび10Ahを有している。
(Configuration of power storage unit)
The power storage unit 3 includes, for example, a secondary battery configured to be chargeable / dischargeable, such as a lithium ion secondary battery. The power storage unit 3 is configured by connecting a plurality of battery cells in series, and has rated voltages of 380 V and 10 Ah as an example.
 図2は、蓄電部3の充電容量-電圧曲線を示す図である。図2において、横軸は蓄電部3の充電容量(Ah)、縦軸は蓄電部3の電圧(V)を示している。図2を参照して、蓄電部3は、空状態(充電容量が0%)のときに300Vとなり、充電容量20%のときに360Vとなり、充電容量50%のときに380Vとなり、充電容量80%のときに400Vとなり、満充電状態(充電容量が100%)のときに420Vとなる。 FIG. 2 is a diagram showing a charge capacity-voltage curve of the power storage unit 3. In FIG. 2, the horizontal axis represents the charge capacity (Ah) of the power storage unit 3, and the vertical axis represents the voltage (V) of the power storage unit 3. Referring to FIG. 2, power storage unit 3 is 300 V when it is empty (charging capacity is 0%), 360 V when charging capacity is 20%, 380 V when charging capacity is 50%, and charging capacity of 80 %, It becomes 400V, and when fully charged (charge capacity is 100%), it becomes 420V.
 なお、上述の図2に示す特性は、蓄電部3の一例として、リチウムイオン二次電池を用いた場合について説明したが、蓄電部3としては、リチウムイオン電池に限らず、鉛蓄電池またはニッケル水素電池などを使用することも可能である。 The above-described characteristics shown in FIG. 2 have been described with respect to the case where a lithium ion secondary battery is used as an example of the power storage unit 3. However, the power storage unit 3 is not limited to a lithium ion battery, but is a lead storage battery or nickel hydride. It is also possible to use a battery or the like.
 ここで、図1に示す構成において、蓄電部3は、直流バス1に「直結」されており、直流バス1との間で直流電力の授受を行なう。ここで、「直結」とは、直流バス1と蓄電部3との間に、DC/DC変換器のような電力変換器が介在していないことを意味する。したがって、直流バス1の電圧は、蓄電部3の電源電圧とほぼ等しくなる。このように蓄電部3を直流バス1に直結する構成としたことにより、蓄電部3が有する高い電圧安定化能力を活かして、急激な負荷変動による直流バス1の電圧変動を抑制することができる。 Here, in the configuration shown in FIG. 1, the power storage unit 3 is “directly connected” to the DC bus 1, and exchanges DC power with the DC bus 1. Here, “directly connected” means that a power converter such as a DC / DC converter is not interposed between the DC bus 1 and the power storage unit 3. Therefore, the voltage of DC bus 1 is substantially equal to the power supply voltage of power storage unit 3. Since the power storage unit 3 is directly connected to the DC bus 1 in this way, the voltage fluctuation of the DC bus 1 due to a sudden load change can be suppressed by utilizing the high voltage stabilization capability of the power storage unit 3. .
 スイッチ7は、蓄電部3と直流バス1との間に配設される。スイッチ7は、電池監視ユニット6からのシャットダウン信号SDが非活性化(導通指令に相当する。)されると、蓄電部3を直流バス1と電気的に接続し、シャットダウン信号SDが活性化(遮断指令に相当する。)されると、蓄電部3と直流バス1との間の電路を遮断する。 The switch 7 is disposed between the power storage unit 3 and the DC bus 1. When the shutdown signal SD from the battery monitoring unit 6 is deactivated (corresponding to a conduction command), the switch 7 electrically connects the power storage unit 3 to the DC bus 1 and activates the shutdown signal SD ( When this occurs, the electric circuit between the power storage unit 3 and the DC bus 1 is cut off.
 電池監視ユニット6は、過充電、過放電および温度上昇などから蓄電部3を保護するために、蓄電部3の状態を監視する。具体的には、充放電電流検出部60は、直流バス1に介挿され、蓄電部3に対して入出力される充放電電流Ibを検出し、その検出値を電池監視ユニット6へ出力する。充放電電圧検出部62は、蓄電部3の充放電電圧Vbを検出し、その検出値を電池監視ユニット6へ出力する。温度検出部64は、蓄電部3の温度Tbを検出し、その検出値を電池監視ユニット6へ出力する。なお、充放電電流検出部60は、蓄電部3からの放電電流Idcを、正値の充放電電流Ibとして検出し、蓄電部3への充電電流Ichを、負値の充放電電流Ibとして検出する。電池監視ユニット6は、充放電電流検出部60からの充放電電流Ibの検出値、充放電電圧検出部62からの充放電電圧Vbの検出値および温度検出部64からの蓄電池温度Tbの検出値に基づいて、蓄電部3の状態(充電状態および温度状態)を監視する。そして、蓄電部3の異常が検知されると、電池監視ユニット6は、蓄電部3を保護するためにシャットダウン信号SDを活性化(遮断指令)することにより、スイッチ7によって蓄電部3と直流バス1との間の電路を遮断する。 Battery monitoring unit 6 monitors the state of power storage unit 3 in order to protect power storage unit 3 from overcharge, overdischarge, temperature rise, and the like. Specifically, charging / discharging current detection unit 60 detects charging / discharging current Ib that is inserted in DC bus 1 and input / output to / from power storage unit 3, and outputs the detected value to battery monitoring unit 6. . Charging / discharging voltage detection unit 62 detects charging / discharging voltage Vb of power storage unit 3 and outputs the detected value to battery monitoring unit 6. The temperature detection unit 64 detects the temperature Tb of the power storage unit 3 and outputs the detected value to the battery monitoring unit 6. The charge / discharge current detection unit 60 detects the discharge current Idc from the power storage unit 3 as a positive charge / discharge current Ib, and detects the charge current Ich to the power storage unit 3 as a negative charge / discharge current Ib. To do. The battery monitoring unit 6 includes a detection value of the charge / discharge current Ib from the charge / discharge current detection unit 60, a detection value of the charge / discharge voltage Vb from the charge / discharge voltage detection unit 62, and a detection value of the storage battery temperature Tb from the temperature detection unit 64. Based on the above, the state (charged state and temperature state) of the power storage unit 3 is monitored. When the abnormality of the power storage unit 3 is detected, the battery monitoring unit 6 activates the shutdown signal SD (protection command) to protect the power storage unit 3, thereby causing the switch 7 to connect the power storage unit 3 to the DC bus. Cut off the electrical circuit to 1
 さらに、電池監視ユニット6は、上述のシャットダウン信号SDを活性化(遮断指令)するのに先行して、蓄電部3の遮断を予告するためのシャットダウン予告信号SDNを活性化する。この活性化されたシャットダウン予告信号SDNは、系統電力システム4内のDC/AC変換器42およびAC/DC変換器44へ送信される。DC/AC変換器42は、電池監視ユニット6からシャットダウン予告信号SDNを受けると、電力変換動作を停止する。一方、AC/DC変換器44は、電池監視ユニット6からシャットダウン予告信号SDNを受けると、後述する方法によって、「電流制御モード」から「電圧制御モード」に切換わる。 Further, the battery monitoring unit 6 activates the shutdown notice signal SDN for notifying the shutoff of the power storage unit 3 prior to activating (shutoff command) the above-described shutdown signal SD. The activated shutdown notice signal SDN is transmitted to the DC / AC converter 42 and the AC / DC converter 44 in the system power system 4. When the DC / AC converter 42 receives the shutdown notice signal SDN from the battery monitoring unit 6, the DC / AC converter 42 stops the power conversion operation. On the other hand, when the AC / DC converter 44 receives the shutdown notice signal SDN from the battery monitoring unit 6, it switches from the “current control mode” to the “voltage control mode” by the method described later.
 (系統電力システムの構成)
 図1に示す構成において、系統電力システム4は、直流バス1との間で直流電力を授受する。系統電力システム4は、DC/AC変換器42と、AC/DC変換器44と、系統電力40とを含む。
(System power system configuration)
In the configuration shown in FIG. 1, the grid power system 4 exchanges DC power with the DC bus 1. The grid power system 4 includes a DC / AC converter 42, an AC / DC converter 44, and a grid power 40.
 系統電力40は、電力会社等から受電する電力(たとえば、AC200Vとする)である。DC/AC変換器42およびAC/DC変換器44は、直流バス1および系統電力40の間に並列接続される。本実施の形態に従う直流給電システムにおいては、AC/DC変換器44を介して電力会社等から系統電力40を買う(買電)するとともに、DC/AC変換器42を介して余剰電力を電力会社等に売る(売電)することを可能に構成されている。なお、図1では、DC/AC変換器42に流れる電流をIsell、AC/DC変換器44に流れる電流をIbuyと表記する。また、直流負荷5に供給される電流をIloadと表記する。買電時においては、電流Ibuyから電流Iloadを差し引いた電流が、蓄電部3の充電電流Ichとなる。また、売電時においては、蓄電部3の放電電流Idcから電流Iloadを差し引いた電流が、電流Isellとなる。電流IsellおよびIbuyをどのような値にするかについては、直流給電システムの使用者または管理者が自在に設定することができる。 System power 40 is power received from an electric power company or the like (for example, AC 200V). The DC / AC converter 42 and the AC / DC converter 44 are connected in parallel between the DC bus 1 and the system power 40. In the DC power supply system according to the present embodiment, system power 40 is purchased (purchased) from an electric power company or the like via AC / DC converter 44, and surplus power is supplied via electric power company via DC / AC converter 42. It is possible to sell to (e.g., sell electricity). In FIG. 1, the current flowing through the DC / AC converter 42 is expressed as Icell, and the current flowing through the AC / DC converter 44 is expressed as Ibuy. The current supplied to the DC load 5 is denoted as Iload. At the time of power purchase, the current obtained by subtracting the current Iload from the current Ibuy becomes the charging current Ich of the power storage unit 3. Further, at the time of power sale, a current obtained by subtracting the current Iload from the discharge current Idc of the power storage unit 3 is the current Icell. The values of the currents Isel and Ibuy can be freely set by the user or administrator of the DC power supply system.
 DC/AC変換器42は、直流バス1から受ける直流電力を交流電力に変換して系統電力40へ供給する。図3は、図1におけるDC/AC変換器42の概略構成図である。 The DC / AC converter 42 converts the DC power received from the DC bus 1 into AC power and supplies it to the system power 40. FIG. 3 is a schematic configuration diagram of the DC / AC converter 42 in FIG.
 図3を参照して、DC/AC変換器42は、DC/AC変換部30と、連系リアクトル32と、制御部34と、直流電圧検出部36と、自経路電流検出部38とを含む。 Referring to FIG. 3, DC / AC converter 42 includes DC / AC converter 30, interconnection reactor 32, controller 34, DC voltage detector 36, and own path current detector 38. .
 DC/AC変換部30は、制御部34からの駆動信号DRV1に応じて、直流バス1から受けた直流電力を交流電力に変換して系統電力40(図1)へ出力する。DC/AC変換部30は、スイッチング素子であるトランジスタQ1~Q4と、ダイオードD1~D4とを含む。トランジスタQ1,Q2は、直流バス1を構成する正母線PLおよび負母線SLの間に直列に接続される。連系リアクトル32は、トランジスタQ1およびQ2の接続点と系統電力40との間に接続される。トランジスタQ3,Q4は、正母線PLおよび負母線SLの間に直列に接続される。連系リアクトル32は、トランジスタQ3およびQ4の接続点と系統電力40との間に接続される。各トランジスタQ1~Q4のコレクタ-エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD1~D4がそれぞれ接続されている。 The DC / AC conversion unit 30 converts the DC power received from the DC bus 1 into AC power according to the drive signal DRV1 from the control unit 34, and outputs the AC power to the system power 40 (FIG. 1). DC / AC conversion unit 30 includes transistors Q1 to Q4, which are switching elements, and diodes D1 to D4. Transistors Q1 and Q2 are connected in series between positive bus PL and negative bus SL constituting DC bus 1. Interconnection reactor 32 is connected between the connection point of transistors Q 1 and Q 2 and system power 40. Transistors Q3 and Q4 are connected in series between positive bus PL and negative bus SL. Interconnection reactor 32 is connected between the connection point of transistors Q 3 and Q 4 and system power 40. Between the collector and emitter of each of the transistors Q1 to Q4, diodes D1 to D4 that flow current from the emitter side to the collector side are respectively connected.
 なお、トランジスタQ1~Q4として、たとえば、IGBT(Insulated Gate Bipolar Transistor)を用いることができる。または、パワーMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)等の電力スイッチング素子を用いてもよい。 For example, IGBTs (Insulated Gate Bipolar Transistors) can be used as the transistors Q1 to Q4. Alternatively, a power switching element such as a power MOSFET (Metal Oxide Semiconductor Field-Effect Transistor) may be used.
 直流電圧検出部36は、正母線PLと負母線SLとの間に接続され、直流バス1からDC/AC変換部30へ供給される直流電力の電圧値Vdcを検出し、その検出結果を制御部34へ出力する。 DC voltage detector 36 is connected between positive bus PL and negative bus SL, detects voltage value Vdc of DC power supplied from DC bus 1 to DC / AC converter 30, and controls the detection result. To the unit 34.
 自経路電流検出部38は、負母線SLに介挿され、直流バス1からDC/AC変換部30へ供給される直流電力の電流値(自経路電流値)Isellを検出し、その検出結果を制御部34へ出力する。 The own path current detection unit 38 is inserted in the negative bus SL, detects the current value (own path current value) Isel of the DC power supplied from the DC bus 1 to the DC / AC conversion unit 30, and the detection result is obtained. Output to the control unit 34.
 制御部34は、直流電圧検出部36から受けた電圧値Vdcと、自経路電流検出部38から受けた自経路電流値Isellと、電池監視ユニット6から受けたシャットダウン予告信号SDNとに基づいて、後述する制御構造に従って、トランジスタQ1~Q4のオン・オフを制御する駆動信号DRV1を生成し、DC/AC変換部30を制御する。 The control unit 34 is based on the voltage value Vdc received from the DC voltage detection unit 36, the own path current value Isel received from the own path current detection unit 38, and the shutdown notice signal SDN received from the battery monitoring unit 6. A drive signal DRV1 for controlling on / off of the transistors Q1 to Q4 is generated according to a control structure to be described later, and the DC / AC converter 30 is controlled.
 図4は、図3における制御部34の制御構造を示す図である。
 図4を参照して、制御部34は、減算部340と、切替部342と、スイッチング素子駆動信号生成部344と、制御目標値選択部346とを含む。
FIG. 4 is a diagram showing a control structure of the control unit 34 in FIG.
Referring to FIG. 4, control unit 34 includes a subtraction unit 340, a switching unit 342, a switching element drive signal generation unit 344, and a control target value selection unit 346.
 制御目標値選択部346は、自経路電流値Isellの電流目標値Isell*を決定する。この電流目標値Isell*は、たとえば日時に応じて異なる電流値となるように事前に決定し、図示しない記憶部に格納しておくことができる。あるいは、制御部34と直流給電システムの外部との間で通信を行なうことによって、所望の電流値を適宜取得するようにしてもよい。 The control target value selection unit 346 determines the current target value Isell * of the own path current value Isell. This current target value Isell * can be determined in advance so as to have a different current value according to the date and time, for example, and can be stored in a storage unit (not shown). Or you may make it acquire a desired electric current value suitably by communicating between the control part 34 and the exterior of a direct-current power feeding system.
 制御目標値選択部346は、さらに、電池監視ユニット6から活性化されたシャットダウン予告信号SDNを受けたときには、切替信号を非活性化して切替部342へ出力する。一方、シャットダウン予告信号SDNが非活性化されているときには、制御目標値選択部346は、切替信号を活性化して切替部342へ出力する。 The control target value selection unit 346 further deactivates the switching signal and outputs it to the switching unit 342 when receiving the shutdown notice signal SDN activated from the battery monitoring unit 6. On the other hand, when the shutdown notice signal SDN is deactivated, the control target value selection unit 346 activates the switching signal and outputs it to the switching unit 342.
 減算部340は、自経路電流値Isellと電流目標値Isell*との差から電流偏差を演算し、切替部342へ出力する。 The subtraction unit 340 calculates a current deviation from the difference between the self-path current value Isel and the current target value Isel * and outputs the current deviation to the switching unit 342.
 切替部342は、制御目標値選択部346から出力された切替信号に基づいて、減算部340から受けた電流偏差およびDC/AC変換部30の動作を停止させる停止指令のいずれか一方を選択してスイッチング素子駆動信号生成部344へ出力する。具体的には、切替部342は、切替信号が活性化されているとき、すなわち、シャットダウン予告信号SDNが非活性化されているときには、減算部340から受けた電流偏差を選択してスイッチング素子駆動信号生成部344へ出力する。一方、切替部342は、切替信号が非活性化されているとき、すなわち、シャットダウン予告信号SDNが活性化されているときには、停止指令を選択してスイッチング素子駆動信号生成部344へ出力する。 Based on the switching signal output from control target value selection unit 346, switching unit 342 selects either the current deviation received from subtraction unit 340 or a stop command for stopping the operation of DC / AC conversion unit 30. Output to the switching element drive signal generator 344. Specifically, the switching unit 342 selects the current deviation received from the subtracting unit 340 and drives the switching element when the switching signal is activated, that is, when the shutdown notice signal SDN is deactivated. The signal is output to the signal generator 344. On the other hand, when the switching signal is deactivated, that is, when the shutdown notice signal SDN is activated, the switching unit 342 selects a stop command and outputs it to the switching element drive signal generation unit 344.
 スイッチング素子駆動信号生成部344は、少なくとも比例要素(P:proportional element)および積分要素(I:integral element)を含んで構成され、切替部342から電流偏差を受けると、この入力された電流偏差に応じて操作信号を生成する。そして、スイッチング素子駆動信号生成部344は、この操作信号に基づいてDC/AC変換部30のトランジスタQ1~Q4のオンデューティーを規定するデューティー指令を生成すると、この生成したデューティー指令と搬送波とを比較して、駆動信号DRV1を生成して、DC/AC変換部30を制御する。 The switching element drive signal generation unit 344 includes at least a proportional element (P: proportional element) and an integral element (I: integral element). Upon receiving a current deviation from the switching unit 342, the switching element drive signal generation unit 344 converts the input current deviation into a current deviation. In response, an operation signal is generated. Then, when the switching element drive signal generation unit 344 generates a duty command that defines the on-duty of the transistors Q1 to Q4 of the DC / AC conversion unit 30 based on the operation signal, the switching device drive signal generation unit 344 compares the generated duty command with a carrier wave. Then, the drive signal DRV1 is generated and the DC / AC conversion unit 30 is controlled.
 以上のように、シャットダウン予告信号SDNが非活性化されているとき、すなわち、蓄電部3の異常が検知されていないときには、制御部34は、自経路電流値Isellが所定の電流目標値Isell*となるように駆動信号DRV1を生成してDC/AC変換部30を制御する(以下、「電流制御モード」とも称す)。 As described above, when shutdown notice signal SDN is inactivated, that is, when abnormality of power storage unit 3 is not detected, control unit 34 determines that self-path current value Isel is a predetermined current target value Icell *. The drive signal DRV1 is generated to control the DC / AC conversion unit 30 (hereinafter also referred to as “current control mode”).
 これに対して、スイッチング素子駆動信号生成部344は、切替部342から停止指令を受けたときには、DC/AC変換部30における電力変換動作を停止させる。具体的には、スイッチング素子駆動信号生成部344は、DC/AC変換部30に含まれるトランジスタQ1~Q4のゲートを遮断する。したがって、シャットダウン予告信号SDNが活性化されたとき、すなわち、蓄電部3の異常が検知されたときには、DC/AC変換部30は動作を停止する。このとき、DC/AC変換部30は、シャットダウン信号SDが活性化されて蓄電部3と直流バス1との間の電路が遮断されるのに先行して、停止する。 In contrast, when the switching element drive signal generation unit 344 receives a stop command from the switching unit 342, the switching element drive signal generation unit 344 stops the power conversion operation in the DC / AC conversion unit 30. Specifically, switching element drive signal generation unit 344 blocks the gates of transistors Q1-Q4 included in DC / AC conversion unit 30. Therefore, when shutdown notice signal SDN is activated, that is, when abnormality of power storage unit 3 is detected, DC / AC conversion unit 30 stops its operation. At this time, the DC / AC conversion unit 30 stops before the shutdown signal SD is activated and the electric circuit between the power storage unit 3 and the DC bus 1 is cut off.
 再び図1を参照して、AC/DC変換器44は、系統電力40から受ける交流電力を直流電力に変換して直流バス1へ供給する。図5は、図1におけるAC/DC変換器44の概略構成図である。 Referring again to FIG. 1, the AC / DC converter 44 converts AC power received from the system power 40 into DC power and supplies it to the DC bus 1. FIG. 5 is a schematic configuration diagram of the AC / DC converter 44 in FIG.
 図5を参照して、AC/DC変換器44は、整流部52と、昇圧回路50と、制御部54と、直流電圧検出部56と、自経路電流検出部58とを含む。 Referring to FIG. 5, AC / DC converter 44 includes a rectifier 52, a booster circuit 50, a controller 54, a DC voltage detector 56, and a self-path current detector 58.
 整流部52は、正母線PLおよび負母線SLの間に直列接続されたダイオードD7およびD8と、正母線PLおよび負母線SLの間に直列接続されたダイオードD9およびD10とを含む。整流部52は、ダイオードD7およびD8の接続点およびダイオードD9およびD10の接続点の間に系統電力40からの交流電力を受け、この交流電力を直流電力に整流する。 Rectifying unit 52 includes diodes D7 and D8 connected in series between positive bus PL and negative bus SL, and diodes D9 and D10 connected in series between positive bus PL and negative bus SL. The rectifying unit 52 receives AC power from the system power 40 between the connection point of the diodes D7 and D8 and the connection point of the diodes D9 and D10, and rectifies this AC power into DC power.
 昇圧回路50は、制御部54からの駆動信号DRV2に応じて、整流部52からの直流電力を昇圧する。昇圧回路50は、整流部52の出力端子間に直列接続されたインダクタL1およびスイッチング素子であるトランジスタQ5、ダイオードD5,D6およびインダクタL1からなる昇圧チョッパ回路と、平滑コンデンサC1とを含む。 The booster circuit 50 boosts the DC power from the rectifier 52 in accordance with the drive signal DRV2 from the controller 54. Booster circuit 50 includes an inductor L1 connected in series between the output terminals of rectifier 52, transistor Q5 as a switching element, diodes D5 and D6, and inductor L1, and a smoothing capacitor C1.
 平滑コンデンサC1は、正母線PLと負母線SLとの間に接続され、正母線PLおよび負母線SLの間の直流電圧に含まれる交流成分を低減する。なお、トランジスタQ5として、たとえば、IGBTを用いることができる。または、パワーMOSFET等の電力スイッチング素子を用いてもよい。 Smoothing capacitor C1 is connected between positive bus PL and negative bus SL, and reduces an AC component included in a DC voltage between positive bus PL and negative bus SL. For example, an IGBT can be used as the transistor Q5. Alternatively, a power switching element such as a power MOSFET may be used.
 以下、昇圧回路50の昇圧動作について説明する。昇圧動作時においては、制御部54は、トランジスタQ5を所定のデューティー比でオン・オフさせる。トランジスタQ5のオン期間においては、整流部52からインダクタL1およびダイオードD6を順に介して、放電電流が正母線PLへ流れる。同時に、整流部52からインダクタL1、トランジスタQ5および負母線SLを順に介して、ポンプ電流が流れる。インダクタL1は、このポンプ電流により電磁エネルギーを蓄積する。続いて、トランジスタQ5がオン状態からオフ状態に遷移すると、インダクタL1は、蓄積した電磁エネルギーを放電電流に重畳する。その結果、昇圧回路50から正母線PLおよび負母線SLへ供給される直流電力の平均電圧は、デューティー比に応じてインダクタL1に蓄積される電磁エネルギーに相当する電圧だけ昇圧される。 Hereinafter, the boosting operation of the booster circuit 50 will be described. During the boosting operation, control unit 54 turns on / off transistor Q5 at a predetermined duty ratio. In the ON period of transistor Q5, a discharge current flows from positive rectifier 52 through inductor L1 and diode D6 to positive bus PL. At the same time, a pump current flows from rectifier 52 through inductor L1, transistor Q5 and negative bus SL in this order. The inductor L1 accumulates electromagnetic energy by this pump current. Subsequently, when the transistor Q5 transitions from the on state to the off state, the inductor L1 superimposes the accumulated electromagnetic energy on the discharge current. As a result, the average voltage of the DC power supplied from the booster circuit 50 to the positive bus PL and the negative bus SL is boosted by a voltage corresponding to the electromagnetic energy accumulated in the inductor L1 according to the duty ratio.
 このような昇圧回路50の昇圧動作を制御するため、制御部54は、トランジスタQ5のオン・オフを制御する駆動信号DRV2を生成する。 In order to control the boosting operation of the booster circuit 50, the control unit 54 generates a drive signal DRV2 that controls on / off of the transistor Q5.
 直流電圧検出部56は、正母線PLと負母線SLとの間に接続され、昇圧回路50から直流バス1へ供給される直流電力の電圧値Vdcを検出し、その検出結果を制御部54へ出力する。 DC voltage detection unit 56 is connected between positive bus PL and negative bus SL, detects voltage value Vdc of DC power supplied from booster circuit 50 to DC bus 1, and outputs the detection result to control unit 54. Output.
 自経路電流検出部58は、負母線SLに介挿され、昇圧回路50から直流バス1へ供給される直流電力の電流値(自経路電流値)Ibuyを検出し、その検出結果を制御部54へ出力する。 The own path current detection unit 58 is inserted in the negative bus SL, detects the current value (own path current value) Ibuy of DC power supplied from the booster circuit 50 to the DC bus 1, and the detection result is the control unit 54. Output to.
 制御部54は、直流電圧検出部56から受けた電圧値Vdcと、自経路電流検出部58から受けた自経路電流値Ibuyと、電池監視ユニット6から受けたシャットダウン予告信号SDNとに基づいて、後述する制御構造に従って、トランジスタQ5のオン・オフを制御する駆動信号DRV2を生成し、昇圧回路50を制御する。 Based on the voltage value Vdc received from the DC voltage detection unit 56, the own path current value Ibuy received from the own path current detection unit 58, and the shutdown notice signal SDN received from the battery monitoring unit 6, the control unit 54 A drive signal DRV2 for controlling on / off of the transistor Q5 is generated according to a control structure described later, and the booster circuit 50 is controlled.
 図6は、図5における制御部54の制御構造を示す図である。
 図6を参照して、制御部54は、減算部540,542と、切替部544と、スイッチング素子駆動信号生成部546と、制御目標値選択部548とを含む。
FIG. 6 is a diagram showing a control structure of the control unit 54 in FIG.
Referring to FIG. 6, control unit 54 includes subtraction units 540 and 542, switching unit 544, switching element drive signal generation unit 546, and control target value selection unit 548.
 制御目標値選択部548は、自経路電流値Ibuyの電流目標値Ibuy*を決定する。この電流目標値Ibuy*は、たとえば日時に応じて異なる電流値となるように事前に決定し、図示しない記憶部に格納しておくことができる。あるいは、制御部54と直流給電システムの外部との間で通信を行なうことによって、所望の電流値を適宜取得するようにしてもよい。 The control target value selection unit 548 determines the current target value Ibuy * of the own path current value Ibuy. This current target value Ibuy * can be determined in advance so as to have a different current value according to the date and time, for example, and can be stored in a storage unit (not shown). Or you may make it acquire a desired electric current value suitably by communicating between the control part 54 and the exterior of a direct-current power feeding system.
 制御目標値選択部548は、さらに、直流電圧値Vdcの電圧目標値Vdc*を決定する。この電圧目標値Vdc*は、たとえば蓄電部3の定格電圧380Vに等しい電圧値となるように事前に決定し、図示しない記憶部に格納しておくことができる。あるいは、制御部54と直流給電システムの外部との間で通信を行なうことによって、所望の電流値を適宜取得するようにしてもよい。 The control target value selection unit 548 further determines a voltage target value Vdc * of the DC voltage value Vdc. This voltage target value Vdc * can be determined in advance so as to have a voltage value equal to the rated voltage 380 V of power storage unit 3, for example, and stored in a storage unit (not shown). Or you may make it acquire a desired electric current value suitably by communicating between the control part 54 and the exterior of a direct-current power feeding system.
 制御目標値選択部548は、さらに、電池監視ユニット6から活性化されたシャットダウン予告信号SDNを受けたときには、切替信号を非活性化して切替部544へ出力する。一方、シャットダウン予告信号SDNが非活性化されているときには、制御目標値選択部548は、切替信号を活性化して切替部544へ出力する。 The control target value selection unit 548 further deactivates the switching signal and outputs it to the switching unit 544 when receiving the activated shutdown notice signal SDN from the battery monitoring unit 6. On the other hand, when shutdown notice signal SDN is inactivated, control target value selection unit 548 activates the switching signal and outputs the switching signal to switching unit 544.
 減算部542は、自経路電流値Ibuyと電流目標値Ibuy*との差から電流偏差を演算し、切替部544へ出力する。 The subtraction unit 542 calculates a current deviation from the difference between the self-path current value Ibuy and the current target value Ibuy *, and outputs the current deviation to the switching unit 544.
 減算部540は、直流電圧値Vdcと電圧目標値Vdc*との差から電圧偏差を演算し、切替部544へ出力する。 The subtraction unit 540 calculates a voltage deviation from the difference between the DC voltage value Vdc and the voltage target value Vdc *, and outputs the voltage deviation to the switching unit 544.
 切替部544は、制御目標値選択部548から出力された切替信号に基づいて、減算部542から受けた電流偏差および減算部540から受けた電圧偏差のいずれか一方を選択してスイッチング素子駆動信号生成部546へ出力する。具体的には、切替部544は、切替信号が活性化されているときには、減算部542から受けた電流偏差を選択してスイッチング素子駆動信号生成部546へ出力する。一方、切替部544は、切替信号が非活性化されているとき、すなわち、シャットダウン予告信号SDNが活性化されているときには、減算部540から受けた電圧偏差を選択してスイッチング素子駆動信号生成部546へ出力する。 The switching unit 544 selects either the current deviation received from the subtraction unit 542 or the voltage deviation received from the subtraction unit 540 based on the switching signal output from the control target value selection unit 548 to switch the switching element drive signal. The data is output to the generation unit 546. Specifically, switching unit 544 selects the current deviation received from subtraction unit 542 and outputs it to switching element drive signal generation unit 546 when the switching signal is activated. On the other hand, the switching unit 544 selects the voltage deviation received from the subtracting unit 540 and selects the switching element drive signal generating unit when the switching signal is inactivated, that is, when the shutdown notice signal SDN is activated. To 546.
 スイッチング素子駆動信号生成部546は、少なくとも比例要素および積分要素を含んで構成され、切替部544から電流偏差を受けると、この入力された電流偏差に応じて操作信号を生成する。そして、スイッチング素子駆動信号生成部546は、この操作信号に基づいて昇圧回路50のトランジスタQ5のオンデューティーを規定するデューティー指令を生成すると、この生成したデューティー指令と搬送波とを比較して、駆動信号DRV2を生成して、昇圧回路50を制御する。以上のように、制御部54は、自経路電流値Ibuyが所定の電流目標値Ibuy*となるように駆動信号DRV2を生成して昇圧回路50を制御する(電流制御モード)。 The switching element drive signal generation unit 546 is configured to include at least a proportional element and an integration element, and when receiving a current deviation from the switching unit 544, generates an operation signal according to the input current deviation. Then, when the switching element drive signal generation unit 546 generates a duty command that defines the on-duty of the transistor Q5 of the booster circuit 50 based on the operation signal, the switching element drive signal generation unit 546 compares the generated duty command with a carrier wave, DRV2 is generated and the booster circuit 50 is controlled. As described above, the control unit 54 controls the booster circuit 50 by generating the drive signal DRV2 so that the self-path current value Ibuy becomes the predetermined current target value Ibuy * (current control mode).
 これに対して、スイッチング素子駆動信号生成部546は、切替部544から電圧偏差を受けると、この入力された電圧偏差に応じて操作信号を生成する。そして、スイッチング素子駆動信号生成部546は、この操作信号に基づいて昇圧回路50のトランジスタQ5のオンデューティーを規定するデューティー指令を生成すると、この生成したデューティー指令と搬送波とを比較して、駆動信号DRV2を生成して、昇圧回路50を制御する。以上のように、制御部54は、直流電圧値Vdcが所定の電圧目標値Vdc*となるように駆動信号DRV2を生成して昇圧回路50を制御する(以下、「電圧制御モード」とも称す)。 On the other hand, when the switching element drive signal generation unit 546 receives a voltage deviation from the switching unit 544, the switching element drive signal generation unit 546 generates an operation signal according to the input voltage deviation. Then, when the switching element drive signal generation unit 546 generates a duty command that defines the on-duty of the transistor Q5 of the booster circuit 50 based on the operation signal, the switching element drive signal generation unit 546 compares the generated duty command with a carrier wave, DRV2 is generated and the booster circuit 50 is controlled. As described above, the control unit 54 controls the booster circuit 50 by generating the drive signal DRV2 so that the DC voltage value Vdc becomes the predetermined voltage target value Vdc * (hereinafter also referred to as “voltage control mode”). .
 上述のように、制御部54は、シャットダウン予告信号SDNが非活性化されているとき、すなわち、蓄電部3の異常が検知されていないときには、自経路電流Ibuyが所定の電流目標値Ibuy*となるように駆動信号DRV2を生成して昇圧回路50を制御する(電流制御モード)。そして、シャットダウン予告信号SDNが活性化されたとき、すなわち、蓄電部3の異常が検知されたときには、直流電圧値Vdcが所定の電圧目標値Vdc*となるように駆動信号DRV2を生成して昇圧回路50を制御する(電圧制御モード)。すなわち、蓄電部3の異常が検知されたときには、制御部54は、昇圧回路50について、電流制御モードから電圧制御モードに切換える。なお、この制御モードの切換えは、シャットダウン信号SDが活性化されて蓄電部3と直流バス1との間の電路が遮断されるのに先行して、実行される。 As described above, when the shutdown notice signal SDN is deactivated, that is, when the abnormality of the power storage unit 3 is not detected, the control unit 54 determines that the self-path current Ibuy is equal to the predetermined current target value Ibuy *. The drive signal DRV2 is generated so as to control the booster circuit 50 (current control mode). When shutdown notice signal SDN is activated, that is, when abnormality of power storage unit 3 is detected, drive signal DRV2 is generated and boosted so that DC voltage value Vdc becomes a predetermined voltage target value Vdc *. The circuit 50 is controlled (voltage control mode). That is, when an abnormality of power storage unit 3 is detected, control unit 54 switches booster circuit 50 from the current control mode to the voltage control mode. The switching of the control mode is executed prior to the shutdown signal SD being activated and the electric path between the power storage unit 3 and the DC bus 1 being cut off.
 以下、蓄電部3の異常が検知された場合の直流給電システムの運転制御(異常時制御)について、図面を参照して説明する。 Hereinafter, the operation control (control at the time of abnormality) of the DC power supply system when an abnormality of the power storage unit 3 is detected will be described with reference to the drawings.
 (異常時制御)
 図7は、電池監視ユニット6(図1)における異常検知時の処理を説明するためのタイミングチャートである。
(Control when abnormal)
FIG. 7 is a timing chart for explaining processing at the time of abnormality detection in the battery monitoring unit 6 (FIG. 1).
 電池監視ユニット6は、充放電電流検出部60から入力される充放電電流値Ib、充放電電圧検出部62から入力される充放電電圧値Vbおよび温度検出部64から入力される蓄電池温度Tbに基づいて、蓄電部3の異常診断を実行する。そして、図7に示すように、時刻t2において蓄電部3の異常が検知された場合には、電池監視ユニット6は、シャットダウン予告信号SDNを活性化(論理ハイ)させる。 The battery monitoring unit 6 uses the charge / discharge current value Ib input from the charge / discharge current detector 60, the charge / discharge voltage value Vb input from the charge / discharge voltage detector 62, and the storage battery temperature Tb input from the temperature detector 64. Based on this, abnormality diagnosis of the power storage unit 3 is executed. Then, as shown in FIG. 7, when an abnormality of the power storage unit 3 is detected at time t2, the battery monitoring unit 6 activates the shutdown notice signal SDN (logic high).
 活性化されたシャットダウン予告信号SDNは、系統電力システム4内のDC/AC変換器42およびAC/DC変換器44へそれぞれ送信される。DC/AC変換器42においては、図3および図4で説明したように、制御部34が、シャットダウン予告信号SDNの活性化に応じて、DC/AC変換器42における電力変換動作を停止させる。 The activated shutdown notice signal SDN is transmitted to the DC / AC converter 42 and the AC / DC converter 44 in the system power system 4, respectively. In DC / AC converter 42, as described with reference to FIGS. 3 and 4, control unit 34 stops the power conversion operation in DC / AC converter 42 in response to activation of shutdown notice signal SDN.
 また、AC/DC変換器44においては、図5および図6で説明したように、制御部54が、シャットダウン予告信号SDNの活性化に応じて、昇圧回路50に対する制御モードを、電流制御モードから電圧制御モードに切換える。 In AC / DC converter 44, as described in FIGS. 5 and 6, control unit 54 changes the control mode for booster circuit 50 from the current control mode in response to activation of shutdown notice signal SDN. Switch to voltage control mode.
 続いて、時刻t2から所定期間が経過した時刻t3において、電池監視ユニット6は、シャットダウン信号SDを活性化(論理ハイ)させる。このシャットダウン信号SDの活性化に応じて、スイッチ7によって蓄電部3と直流バス1との間の電路が遮断される。なお、所定期間は、電池監視ユニット6および系統電力システム4の間の通信におけるタイムラグを考慮したものであり、一例として、数ミリ秒~数秒程度に設定される。この所定期間を設けたことによって、タイムラグの影響を受けることなく、蓄電部3および直流バス1の間の電路が遮断されるよりも前に、確実に昇圧回路50に対する制御モードが切換えられる。 Subsequently, at time t3 when a predetermined period has elapsed from time t2, the battery monitoring unit 6 activates the shutdown signal SD (logic high). In response to the activation of the shutdown signal SD, the switch 7 interrupts the electrical path between the power storage unit 3 and the DC bus 1. Note that the predetermined period is a time lag in communication between the battery monitoring unit 6 and the grid power system 4 and is set to about several milliseconds to several seconds as an example. By providing this predetermined period, the control mode for the booster circuit 50 is switched reliably before the electric circuit between the power storage unit 3 and the DC bus 1 is cut off without being affected by the time lag.
 すなわち、蓄電部3の異常検知時においては、蓄電部3と直流バス1との間の電路を遮断するのに先行して、系統電力システム4において、DC/AC変換器42を停止するとともに、AC/DC変換器44に対する制御モードを電流制御モードから電圧制御モードに切換える。 That is, at the time of abnormality detection of the power storage unit 3, the DC / AC converter 42 is stopped in the system power system 4 prior to cutting off the electric circuit between the power storage unit 3 and the DC bus 1, The control mode for the AC / DC converter 44 is switched from the current control mode to the voltage control mode.
 ここで、蓄電部3の異常が検知された場合には、蓄電部3の保護の観点から蓄電部3を直流バス1から遮断させる必要がある一方で、蓄電部3の遮断後においては、負荷変動によって直流バス1の電圧が低下してしまう可能性がある。本実施の形態に従う直流給電システムにおいては、蓄電部3を遮断するのに先行して、DC/AC変換器42の電力変換動作を停止させるとともに、AC/DC変換器44に対して、直流バス1の電圧値Vdcを所定の目標電圧Vdc*に維持するように電圧制御モードによる制御が実行される。そのため、その後に、蓄電部3を直流バス1から遮断したことによって、直流バス1の電圧値が低下するのを抑制することができる。この結果、蓄電部3の異常が検知された後においても、継続して、直流負荷5に直流電力を安定的に供給することが可能となる。 Here, when an abnormality of the power storage unit 3 is detected, it is necessary to disconnect the power storage unit 3 from the DC bus 1 from the viewpoint of protection of the power storage unit 3. There is a possibility that the voltage of the DC bus 1 is lowered due to the fluctuation. In the DC power supply system according to the present embodiment, the power conversion operation of DC / AC converter 42 is stopped prior to shutting off power storage unit 3, and the DC bus is connected to AC / DC converter 44. Control in the voltage control mode is executed so that the voltage value Vdc of 1 is maintained at the predetermined target voltage Vdc *. Therefore, it is possible to prevent the voltage value of the DC bus 1 from decreasing by shutting off the power storage unit 3 from the DC bus 1 thereafter. As a result, even after the abnormality of the power storage unit 3 is detected, it is possible to continuously supply DC power to the DC load 5 continuously.
 なお、蓄電部3の異常が検知された場合には、電池監視ユニット6は、上記のシャットダウン予告信号SDNを生成するとともに、蓄電部3の異常を報知する構成とすることにより、直流給電システムの使用者または管理者に蓄電部3の異常を知らせることができる。なお、異常を報知する手段としては、異常報知灯を点灯させる、あるいは、警報音を発生させる、という手法が考えられる。あるいは、光、リモコンへの表示、直流負荷5に接続される表示器への表示などの手法を用いることも可能である。 In addition, when the abnormality of the power storage unit 3 is detected, the battery monitoring unit 6 generates the shutdown notice signal SDN and notifies the abnormality of the power storage unit 3 so that the DC power supply system The user or the administrator can be notified of the abnormality of the power storage unit 3. As means for notifying abnormality, a method of turning on an abnormality notification lamp or generating an alarm sound can be considered. Alternatively, it is also possible to use methods such as light, display on a remote controller, display on a display connected to the DC load 5 and the like.
 なお、本実施の形態においては、一例として、系統電力システム4がDC/AC変換器42およびAC/DC変換器44を備える構成について説明したが、直流バス1から受ける直流電力を交流電力に変換して系統電力へ供給する一方、系統電力からの交流電力を直流電力に変換して直流バス1へ供給することが可能に構成された双方向DC/AC変換器を備える構成とすることも可能である。この場合、双方向DC/AC変換器は、電池監視ユニット6からシャットダウン予告信号SDNを受けると、直流バス1の電圧値Vdcを所定の目標電圧Vdc*に維持するように電圧制御モードによる制御を行なう。 In the present embodiment, the configuration in which the grid power system 4 includes the DC / AC converter 42 and the AC / DC converter 44 has been described as an example. However, the DC power received from the DC bus 1 is converted into AC power. It is also possible to have a configuration including a bidirectional DC / AC converter configured to convert AC power from the system power into DC power and supply it to the DC bus 1 while supplying to the system power. It is. In this case, when receiving the shutdown notice signal SDN from the battery monitoring unit 6, the bidirectional DC / AC converter performs control in the voltage control mode so as to maintain the voltage value Vdc of the DC bus 1 at the predetermined target voltage Vdc *. Do.
 (変更例)
 本発明は、上述した電池監視ユニット6がシャットダウン信号SDおよびシャットダウン予告信号SDNをスイッチ7および系統電力システム4へそれぞれ出力する構成に代えて、シャットダウン予告信号SDNを受けた系統電力システム4がシャットダウン信号SDをスイッチ7へ出力する構成についても適用できる。
(Example of change)
In the present invention, instead of the configuration in which the battery monitoring unit 6 described above outputs the shutdown signal SD and the shutdown notice signal SDN to the switch 7 and the system power system 4, respectively, the system power system 4 that has received the shutdown notice signal SDN receives the shutdown signal. The present invention can also be applied to a configuration that outputs SD to the switch 7.
 図8は、本発明の実施の形態の変更例に従う直流給電システムの全体の構成を概略的に示す図である。 FIG. 8 is a diagram schematically showing an overall configuration of a DC power supply system according to a modification of the embodiment of the present invention.
 図8を参照して、直流給電システムは、図1に示す直流給電システムにおいて、電池監視ユニット6からスイッチ7へシャットダウン信号SDを出力する構成に代えて、系統電力システム4からシャットダウン信号SDをスイッチ7へ出力する構成としたものである。 Referring to FIG. 8, the DC power supply system switches the shutdown signal SD from the grid power system 4 to the DC power supply system shown in FIG. 1, instead of the configuration in which the shutdown signal SD is output from the battery monitoring unit 6 to the switch 7. 7 is configured to output to 7.
 具体的には、電池監視ユニット6は、蓄電部3の異常が検知された場合には、シャットダウン予告信号SDNを活性化する。この活性化されたシャットダウン予告信号SDNは、系統電力システム4内のDC/AC変換器42およびAC/DC変換器44へ送信される。これにより、DC/AC変換器42においては、制御部34は、シャットダウン予告信号SDNを受けると、DC/AC変換部30における電力変換動作を停止する。また、AC/DC変換器44においては、制御部54は、シャットダウン予告信号SDNを受けると、昇圧回路50について、電流制御モードから電圧制御モードに切換える。 Specifically, the battery monitoring unit 6 activates the shutdown notice signal SDN when an abnormality of the power storage unit 3 is detected. The activated shutdown notice signal SDN is transmitted to the DC / AC converter 42 and the AC / DC converter 44 in the system power system 4. Thereby, in DC / AC converter 42, control part 34 will stop power conversion operation in DC / AC conversion part 30, if shutdown notice signal SDN is received. In AC / DC converter 44, control unit 54 switches booster circuit 50 from the current control mode to the voltage control mode upon receipt of shutdown notice signal SDN.
 そして、DC/AC変換器42およびAC/DC変換器44の各々において上記の処理が完了すると、系統電力システム4は、シャットダウン信号SDを活性化(遮断指令)してスイッチ7へ出力する。したがって、このシャットダウン信号SDの活性化に応じて、スイッチ7によって蓄電部3と直流バス1との間の電路が遮断される。 Then, when the above processing is completed in each of the DC / AC converter 42 and the AC / DC converter 44, the system power system 4 activates (shuts down) the shutdown signal SD and outputs it to the switch 7. Therefore, in response to the activation of the shutdown signal SD, the switch 7 interrupts the electrical path between the power storage unit 3 and the DC bus 1.
 その他については、上述した実施の形態についての記載と同様であるので、詳細な説明は繰り返さない。 Others are the same as those described in the above-described embodiment, and detailed description will not be repeated.
 本発明の実施の形態の変更例によれば、蓄電部3の異常が検知された場合には、系統電力システム4が、DC/AC変換器42の電力変換動作を停止させる一方、AC/DC変換器44に対して、直流バス1の電圧値Vdcを所定の目標電圧Vdc*に維持するように電圧制御モードによる制御を行ない、その後に、蓄電部3を直流バス1から遮断させる。したがって、上述の本発明の実施の形態における効果と同様の効果を発揮させることができる。さらに、本変更例において、シャットダウン信号SDは、系統電力システム4によって、AC/DC変換器44に対する制御モードを電圧制御モードに切換えた後に活性化されるため、直流バス1の電圧値Vdcの安定度を向上することができる。この結果、蓄電部3の異常が検知された後においても、継続して、直流負荷5に直流電力を安定的に供給することが可能となる。 According to the modification of the embodiment of the present invention, when the abnormality of the power storage unit 3 is detected, the grid power system 4 stops the power conversion operation of the DC / AC converter 42 while the AC / DC The converter 44 is controlled in the voltage control mode so as to maintain the voltage value Vdc of the DC bus 1 at a predetermined target voltage Vdc *, and then the power storage unit 3 is disconnected from the DC bus 1. Therefore, an effect similar to the effect in the embodiment of the present invention described above can be exhibited. Furthermore, in this modification, the shutdown signal SD is activated by the system power system 4 after switching the control mode for the AC / DC converter 44 to the voltage control mode, so that the voltage value Vdc of the DC bus 1 is stabilized. The degree can be improved. As a result, even after the abnormality of the power storage unit 3 is detected, it is possible to continuously supply DC power to the DC load 5 continuously.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 この発明は、直流負荷に直流電力を供給するための直流給電システムに利用することができる。 The present invention can be used in a DC power supply system for supplying DC power to a DC load.
 1 直流バス、3 蓄電部、4 系統電力システム、5 直流負荷、6 電池監視ユニット、7 スイッチ、30 DC/AC変換部、32 連系リアクトル、34 制御部、36,56 直流電圧検出部、38,58 自経路電流検出部、40 系統電力、42 DC/AC変換器、44 AC/DC変換器、50 昇圧回路、52 整流部、54 制御部、340,540,542 減算部、342,544 切替部、344,546 スイッチング素子駆動信号生成部、346,548 制御目標値選択部、C1 平滑コンデンサ、D1~D9 ダイオード、PL 正母線、SL 負母線、Q1~Q5 トランジスタ。 1 DC bus, 3 power storage unit, 4 grid power system, 5 DC load, 6 battery monitoring unit, 7 switch, 30 DC / AC conversion unit, 32 interconnection reactor, 34 control unit, 36, 56 DC voltage detection unit, 38 , 58 Self-path current detection unit, 40 system power, 42 DC / AC converter, 44 AC / DC converter, 50 booster circuit, 52 rectification unit, 54 control unit, 340, 540, 542 subtraction unit, 342, 544 switching Unit, 344, 546, switching element drive signal generation unit, 346, 548, control target value selection unit, C1, smoothing capacitor, D1-D9 diode, PL positive bus, SL negative bus, Q1-Q5 transistor.

Claims (6)

  1.  直流負荷に直流電力を供給するための直流給電システムであって、
     系統電力および前記直流負荷の間に配設された直流バスと、
     電源電圧を前記直流バスに出力する蓄電部と、
     前記蓄電部の異常を検知する蓄電部監視ユニットと、
     前記直流バスおよび前記蓄電部の間を接続/遮断するためのスイッチと、
     前記直流バスおよび前記系統電力の間で電力変換する電力変換装置とを備え、
     前記電力変換装置は、
     前記直流バスからの直流電力を交流電力に変換して前記系統電力へ供給する直流/交流変換器と、
     前記系統電力からの交流電力を直流電力に変換して前記直流バスへ供給する交流/直流変換器とを含み、
     前記蓄電部が正常であるときには、前記直流/交流変換器を、自経路の電流値が電流目標値になるように制御される電流制御モードに設定する一方、前記蓄電部監視ユニットにより前記蓄電部の異常が検知されたときには、前記直流/交流変換器の電力変換動作を停止させる第1の電力変換制御部と、
     前記蓄電部が正常であるときには、前記交流/直流変換器を前記電流制御モードに設定する一方、前記蓄電部監視ユニットにより前記蓄電部の異常が検知されたときには、前記交流/直流変換器を、前記直流バスの電圧が電圧目標値になるように制御する電圧制御モードに設定する第2の電力変換制御部と、
     前記蓄電部監視ユニットにより前記蓄電部の異常が検知されたときには、前記第1の電力変換制御部による前記直流/交流変換器の電力変換動作の停止後であって、かつ、前記第2の電力変換制御部による前記電圧制御モードの設定後に、前記スイッチにより前記蓄電部を前記直流バスから遮断する電源遮断部とをさらに備える、直流給電システム。
    A DC power supply system for supplying DC power to a DC load,
    A DC bus disposed between the grid power and the DC load;
    A power storage unit for outputting a power supply voltage to the DC bus;
    A power storage unit monitoring unit for detecting an abnormality of the power storage unit;
    A switch for connecting / disconnecting between the DC bus and the power storage unit;
    A power converter for converting power between the DC bus and the grid power,
    The power converter is
    A DC / AC converter that converts DC power from the DC bus into AC power and supplies the AC power;
    An AC / DC converter that converts AC power from the grid power into DC power and supplies the DC bus,
    When the power storage unit is normal, the DC / AC converter is set to a current control mode in which the current value of its own path is controlled to be a current target value, while the power storage unit monitoring unit sets the power storage unit A first power conversion control unit that stops the power conversion operation of the DC / AC converter;
    When the power storage unit is normal, the AC / DC converter is set to the current control mode, while when the power storage unit abnormality is detected by the power storage unit monitoring unit, the AC / DC converter is A second power conversion control unit that sets a voltage control mode for controlling the voltage of the DC bus to a voltage target value;
    When abnormality of the power storage unit is detected by the power storage unit monitoring unit, after the power conversion operation of the DC / AC converter by the first power conversion control unit is stopped and the second power A DC power supply system, further comprising: a power cutoff unit that shuts off the power storage unit from the DC bus by the switch after the voltage control mode is set by the conversion control unit.
  2.  前記蓄電部監視ユニットは、前記蓄電部の異常が検知されたときに、前記電源遮断部に前記蓄電部の遮断指令を出力するとともに、前記第1および第2の電力変換制御部に前記蓄電部の遮断予告信号を出力し、
     前記第1の電力変換制御部は、前記遮断予告信号を受けたときに、前記直流/交流変換器の電力変換動作を停止させ、
     前記第2の電力変換制御部は、前記遮断予告信号を受けたときに、前記交流/直流変換器を前記電圧制御モードに設定し、
     前記蓄電部監視ユニットは、前記遮断予告信号を出力してから所定期間経過後に前記遮断指令を出力する、請求項1に記載の直流給電システム。
    The power storage unit monitoring unit outputs a shutdown command for the power storage unit to the power shut-off unit when an abnormality of the power storage unit is detected, and the power storage unit to the first and second power conversion control units. Output a shut-off warning signal,
    When the first power conversion control unit receives the cutoff notice signal, the first power conversion control unit stops the power conversion operation of the DC / AC converter,
    The second power conversion control unit sets the AC / DC converter to the voltage control mode when receiving the cutoff notice signal,
    2. The DC power supply system according to claim 1, wherein the power storage unit monitoring unit outputs the cutoff command after a predetermined period of time has passed since the cutoff notice signal was output.
  3.  前記蓄電部監視ユニットは、前記遮断予告信号を出力するとともに、前記蓄電部の異常を報知する報知部をさらに含む、請求項2に記載の直流給電システム。 The DC power supply system according to claim 2, wherein the power storage unit monitoring unit further includes a notification unit that outputs the cutoff notice signal and notifies an abnormality of the power storage unit.
  4.  前記蓄電部監視ユニットは、前記蓄電部の異常が検知されたときに、前記第1および第2の電力変換制御部に前記蓄電部の遮断予告信号を出力し、
     前記第1の電力変換制御部は、前記遮断予告信号を受けたときに、前記直流/交流変換器の電力変換動作を停止させ、
     前記第2の電力変換制御部は、前記遮断予告信号を受けたときに、前記交流/直流変換器を前記電圧制御モードに設定し、
     前記電力変換装置は、前記第1の電力変換制御部による前記直流/交流変換器の電力変換動作の停止後であって、かつ、前記第2の電力変換制御部による前記電圧制御モードの設定後に、前記電源遮断部に前記蓄電部の遮断指令を出力する、請求項1に記載の直流給電システム。
    The power storage unit monitoring unit outputs an interruption notice signal of the power storage unit to the first and second power conversion control units when an abnormality of the power storage unit is detected,
    When the first power conversion control unit receives the cutoff notice signal, the first power conversion control unit stops the power conversion operation of the DC / AC converter,
    The second power conversion control unit sets the AC / DC converter to the voltage control mode when receiving the cutoff notice signal,
    The power conversion device is after the power conversion operation of the DC / AC converter by the first power conversion control unit is stopped and after the voltage control mode is set by the second power conversion control unit. The DC power supply system according to claim 1, wherein a shutoff command for the power storage unit is output to the power shutoff unit.
  5.  前記蓄電部監視ユニットは、前記遮断予告信号を出力するとともに、前記蓄電部の異常を報知する報知部をさらに含む、請求項4に記載の直流給電システム。 The DC power feeding system according to claim 4, wherein the power storage unit monitoring unit further includes a notification unit that outputs the cutoff notice signal and notifies an abnormality of the power storage unit.
  6.  前記蓄電部は、前記直流バスに直結される、請求項1に記載の直流給電システム。 The DC power supply system according to claim 1, wherein the power storage unit is directly connected to the DC bus.
PCT/JP2011/075031 2010-11-12 2011-10-31 Dc power supply system WO2012063667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010253964A JP4932026B1 (en) 2010-11-12 2010-11-12 DC power supply system
JP2010-253964 2010-11-12

Publications (1)

Publication Number Publication Date
WO2012063667A1 true WO2012063667A1 (en) 2012-05-18

Family

ID=46050818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075031 WO2012063667A1 (en) 2010-11-12 2011-10-31 Dc power supply system

Country Status (2)

Country Link
JP (2) JP4932026B1 (en)
WO (1) WO2012063667A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013219291A1 (en) * 2013-09-25 2015-03-26 Robert Bosch Gmbh A method of storing a fault of a cell monitoring circuit and lithium-ion battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176163A (en) * 2013-03-07 2014-09-22 Sharp Corp Dc power feeding system, power converter and method for controlling dc power feeding system
JP6690383B2 (en) * 2016-04-26 2020-04-28 株式会社Gsユアサ Power management system, battery management device, battery device, and vehicle power management method
WO2020137348A1 (en) * 2018-12-29 2020-07-02 シオン電機株式会社 Dc power supply device and dc power system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670445U (en) * 1993-03-09 1994-09-30 新電元工業株式会社 DC power supply circuit
JPH07336912A (en) * 1994-06-14 1995-12-22 Hitachi Ltd Uninterruptible power unit and its control method
JP2005224009A (en) * 2004-02-05 2005-08-18 My Way Giken Kk Distributed power supply device
JP2010252516A (en) * 2009-04-15 2010-11-04 Nec Engineering Ltd Dc power system and output control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3964852B2 (en) * 2003-10-22 2007-08-22 大阪瓦斯株式会社 Distributed power generation system
JP5424633B2 (en) * 2008-12-19 2014-02-26 キヤノン株式会社 Charging apparatus, charging method and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670445U (en) * 1993-03-09 1994-09-30 新電元工業株式会社 DC power supply circuit
JPH07336912A (en) * 1994-06-14 1995-12-22 Hitachi Ltd Uninterruptible power unit and its control method
JP2005224009A (en) * 2004-02-05 2005-08-18 My Way Giken Kk Distributed power supply device
JP2010252516A (en) * 2009-04-15 2010-11-04 Nec Engineering Ltd Dc power system and output control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013219291A1 (en) * 2013-09-25 2015-03-26 Robert Bosch Gmbh A method of storing a fault of a cell monitoring circuit and lithium-ion battery

Also Published As

Publication number Publication date
JP2012135207A (en) 2012-07-12
JP4932026B1 (en) 2012-05-16
JP2012105504A (en) 2012-05-31
JP5450685B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5903622B2 (en) Power supply system and charge / discharge power conditioner
KR101531625B1 (en) Charging apparatus
JP5497397B2 (en) Power supply system
JP2011200096A (en) Power storage system
WO2012115098A1 (en) Electricity storage system
WO2011039599A1 (en) Power distribution system
WO2013065588A1 (en) Power conversion device, and electricity storage system and method for controlling same
JPWO2010032300A1 (en) Inverter for grid connection
US20130002027A1 (en) Uninterruptible power supply
CN115776130B (en) Off-grid switching method, energy storage converter, energy storage system and power system
WO2017169665A1 (en) Power conditioner, power supply system, and current control method
JP2012210018A (en) Dc power-feeding system
JP5450685B2 (en) Power converter
JP2016524439A (en) Uninterruptible DC power supply
JP2013165624A (en) Power conditioner for power storage device and power storage device
JP2014176163A (en) Dc power feeding system, power converter and method for controlling dc power feeding system
JP6391473B2 (en) Battery system
JP2015122841A (en) Power storage system and power generation system
JP2013165577A (en) Power conditioner, power generation system, and current suppression circuit
JPH10248180A (en) Power converting apparatus
JP6707309B2 (en) Power supply system
US10886744B2 (en) Power conversion system, power supply system and power conversion device
JP2015027203A (en) Power conditioner, power conditioner system, and method of controlling power conditioner
JP6076381B2 (en) Power supply system
KR101476337B1 (en) A energy storage system and a method of controlling the energy storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840192

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840192

Country of ref document: EP

Kind code of ref document: A1