WO2012063637A1 - Multilayered hardcoat film for injection molding, process for producing same, and process for producing injection-molded object using the multilayered hardcoat film - Google Patents

Multilayered hardcoat film for injection molding, process for producing same, and process for producing injection-molded object using the multilayered hardcoat film Download PDF

Info

Publication number
WO2012063637A1
WO2012063637A1 PCT/JP2011/074504 JP2011074504W WO2012063637A1 WO 2012063637 A1 WO2012063637 A1 WO 2012063637A1 JP 2011074504 W JP2011074504 W JP 2011074504W WO 2012063637 A1 WO2012063637 A1 WO 2012063637A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
injection
resin
group
layer
Prior art date
Application number
PCT/JP2011/074504
Other languages
French (fr)
Japanese (ja)
Inventor
裕明 山田
禎寿 後藤
敬一 林
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011220236A external-priority patent/JP5735394B2/en
Priority claimed from JP2011220237A external-priority patent/JP5794883B2/en
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to KR1020137014529A priority Critical patent/KR101902492B1/en
Priority to CN201180054153.9A priority patent/CN103201080B/en
Publication of WO2012063637A1 publication Critical patent/WO2012063637A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14811Multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2633/00Use of polymers of unsaturated acids or derivatives thereof for preformed parts, e.g. for inserts
    • B29K2633/04Polymers of esters
    • B29K2633/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2667/00Use of polyesters or derivatives thereof for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2669/00Use of PC, i.e. polycarbonates or derivatives thereof for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/007Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/005Layered products coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating

Definitions

  • the present invention relates to a hard coat film laminate for injection molding, a method for producing the same, and a method for producing an injection molded article using the hard coat film laminate, for example, windows for automobiles, aircraft, buildings, schools, shops, etc.
  • a hard coat film laminate for injection molding necessary for the production of a molded article of PET (polyethylene terephthalate) resin, a method for producing the same, and a method for producing an injection molded article using the same.
  • thermoplastic resins such as polycarbonate have been widely used as alternative materials because of their lighter weight than glass or metal.
  • polycarbonate resin has a lower surface hardness than glass and is easily scratched. To prevent this, the surface is protected by applying paint or pasting a curable film on it. Yes.
  • Patent Document 1 discloses a base material layer made of a mixed resin composition containing a polycarbonate resin and a polyester resin, and an ultraviolet curable resin composition containing an acrylic polymer.
  • An invention relating to a hard coat film for injection molding provided with a hard coat layer made of a cured product is described.
  • Patent Document 2 discloses that a curable coating agent is applied to a resin film, the coating agent is semi-cured, and then mounted in a mold to obtain a polycarbonate resin.
  • Patent Document 2 An invention relating to a method for producing a polycarbonate resin molded article obtained by injection molding, peeling off a resin film, and further curing the coating agent to cure the surface is described.
  • a silicone coating agent obtained by adding colloidal silica to an organosilane having a structure of R n Si (OH) 4-n and an acrylic coating agent are mentioned as preferable ones.
  • acrylic and silicone coating agents that have been used mainly as hard coats to protect the surface of injection-molded resin until now are not sufficient in terms of scratch resistance.
  • the surface hardness can be fully expressed, but the adhesiveness to injection molded products is excellent, and at the same time, the ability to follow the mold is satisfied. There is a further need for such a hard coat film laminate.
  • the present invention has been made in order to solve the above-described problems, and has a very high surface hardness as a hard coat of a molded article of polycarbonate resin, PMMA resin, or PET resin.
  • An object of the present invention is to provide a hard coat film laminate for injection molding that is excellent in followability.
  • an object of this invention is to provide the method of manufacturing such a hard coat film laminated body for injection molding.
  • this invention aims at providing the manufacturing method of the injection molded object using this hard coat film laminated body.
  • a photocurable resin composition containing a photocurable siliceous silsesquioxane resin is cured to form a hard coat layer.
  • a base material layer containing at least one of polycarbonate, polymethyl methacrylate, or polyethylene terephthalate By stacking and integrating with a base material layer containing at least one of polycarbonate, polymethyl methacrylate, or polyethylene terephthalate, and mounting it in a mold, a molded product of polycarbonate resin, PMMA resin, or PET resin It has been found that a hard coat having a high surface hardness can be formed on the surface with a good adhesion through a base material layer, and that the following property to the mold can be satisfied, and the present invention has been completed.
  • the gist of the present invention is as follows.
  • a single layer of a resin selected from the group consisting of polycarbonate, polymethyl methacrylate, and polyethylene terephthalate, or a base layer composed of two or more layers, and a single layer laminated on one side of the base layer A hard coat film laminate for injection molding comprising a hard coat layer, wherein the hard coat layer comprises a photocurable resin composition containing a photo-curing cage silsesquioxane resin.
  • a hard coat film laminate for injection molding characterized by being cured and having a thickness of 20 ⁇ m or more, a transmittance at a wavelength of 550 nm of 90% or more, and a glass transition temperature of 230 ° C. or more.
  • the cage silsesquioxane resin has the following general formula (1): RSix 3 (1)
  • R shows the organic functional group or vinyl group which has a (meth) acryloyl group
  • X shows the hydrolysis group chosen from an alkoxy group or an acetoxy group.
  • the silicon compound is hydrolyzed and partially condensed, and the obtained hydrolysis product is further recondensed in the presence of a nonpolar solvent and a basic catalyst.
  • the cage silsesquioxane resin is represented by the following general formula (2): [RSiO 3/2 ] n (2) [In Formula (2), R shows the organic functional group or vinyl group which has a (meth) acryloyl group, and n shows 8, 10, 12, or 14.
  • R shows the organic functional group or vinyl group which has a (meth) acryloyl group
  • n shows 8, 10, 12, or 14.
  • R is the following general formula (3): [In the formula (3), R 1 represents a hydrogen atom or a methyl group, and m represents an integer of 1 to 3.
  • R 1 represents a hydrogen atom or a methyl group
  • m represents an integer of 1 to 3.
  • a single layer of one type of resin selected from the group consisting of polycarbonate, polymethyl methacrylate, and polyethylene terephthalate, or a base layer composed of two or more types and a hard coat layer were laminated and integrated.
  • a method for producing a hard coat film laminate for injection molding wherein a photocurable resin composition containing a photocurable siliceous silsesquioxane resin is applied to one side of a base material layer and cured.
  • a hard coat film for injection molding characterized by forming a hard coat layer having a thickness of 20 ⁇ m or more, a transmittance of 90% or more at a wavelength of 550 nm, and a glass transition temperature of 230 ° C. or more A manufacturing method of a layered product.
  • the hard coat film laminate for injection molding provided with the hard coat layer formed is placed in an injection mold, and in that state, one of polycarbonate, polymethyl methacrylate, or polyethylene terephthalate is injected into the mold
  • the hard coat layer is formed by curing a photocurable resin composition containing a photocurable siliceous silsesquioxane resin and has a thickness of 20 ⁇ m or more, and has a transmittance of 90% at a wavelength of 550 nm.
  • the cage silsesquioxane resin has the following general formula (1): RSix 3 (1)
  • R shows the organic functional group or vinyl group which has a (meth) acryloyl group
  • X shows the hydrolysis group chosen from an alkoxy group or an acetoxy group.
  • the silicon compound is hydrolyzed and partially condensed, and the obtained hydrolysis product is further recondensed in the presence of a nonpolar solvent and a basic catalyst.
  • the method for producing an injection-molded article according to [9] which is obtained.
  • the cage silsesquioxane resin is represented by the following general formula (2): [RSiO 3/2 ] n (2)
  • R shows the organic functional group or vinyl group which has a (meth) acryloyl group
  • n shows 8, 10, 12, or 14.
  • R is the following general formula (3): [In the formula (3), R 1 represents a hydrogen atom or a methyl group, and m represents an integer of 1 to 3. The method for producing an injection-molded article according to [10] or [11], wherein the organic functional group is represented by the formula:
  • the hard coat film laminate for injection molding of the present invention forms a hard coat layer from a photocurable resin composition containing a photocurable siliceous silsesquioxane resin.
  • the hard coat layer is formed on the surface of the injection molded product through the base material layer containing one or more of polycarbonate, polymethyl methacrylate, or polyethylene terephthalate, the hard coat layer has excellent adhesion. It is possible to prevent peeling.
  • a hard coat film laminate for injection molding comprising a base material layer containing one or more of polycarbonate, polymethyl methacrylate, or polyethylene terephthalate and a hard coat layer is placed in an injection mold, In this state, by injecting polycarbonate resin, PMMA resin, or PET resin into the mold, resin molding is performed, and at the same time, the hard coat film laminate is integrated with the surface of the resin molded body, so that glass or metal is formed. It is possible to obtain an injection molded body that can be used as an alternative material.
  • a predetermined hard coat layer with a photocurable resin composition containing a photocurable siliceous silsesquioxane resin, it is possible to follow the mold while maintaining sufficient surface hardness. In addition, it is possible to impart high surface hardness to the surface of the injection molded product.
  • the hard coat layer since the hard coat layer is formed on the surface of the injection molded product through the base material layer containing one or more of polycarbonate, polymethyl methacrylate, or polyethylene terephthalate, the hard coat layer has excellent adhesion. While being able to prevent peeling, it is possible to integrate at the same time as the molding at the time of injection molding, and it is excellent in productivity.
  • FIG. 1 is a schematic cross-sectional view showing a hard coat film laminate of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the state of insert molding using the hard coat film laminate of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an injection molded body obtained by insert molding.
  • FIG. 4 is a schematic view showing an example of an injection molding machine used in the method for producing an injection molded body of the present invention.
  • FIG. 5 shows the light transmittance of only the hard coat layer in the hard coat film laminate of the present invention.
  • FIG. 6 shows the measurement results of the glass transition temperature of only the hard coat layer in the hard coat film laminate of the present invention.
  • the hard coat film laminate 1 includes a hard coat layer 2 on one side of a single layer of a single resin selected from the group consisting of polycarbonate, PMMA, and PET, or a base layer 4 composed of two or more layers.
  • the cover layer 3 of the plastic film is formed by laminating and integrating.
  • the resin for forming the base material layer is preferably a film-like resin, and preferably one resin film selected from the group consisting of polycarbonate, PMMA, and PET may be used alone as the base material layer.
  • a plurality of layers in which two or more kinds of resin films are laminated may be used as the base material layer.
  • a base material layer composed of a single layer of a polycarbonate film, a PMMA film, or a PET film, or a base material layer in which two polycarbonate films and a PMMA film are bonded together is more preferable.
  • the thickness of the base material layer is preferably in the range of 30 to 300 ⁇ m including the case of a single layer and the case of a plurality of layers. If it is smaller than 30 ⁇ m, the strength as a base material layer is insufficient and there is a risk of breakage. On the contrary, if it is larger than 300 ⁇ m, the followability to the mold shape is deteriorated at the time of injection molding. Further, for each resin of polycarbonate, PMMA, and PET used in the present invention, an ultraviolet absorber, a plasticizer, a pigment, or the like may be used as an additive. In the present invention, the entire thickness of the hard coat film laminate for injection molding is not particularly limited, and preferably has a suitable thickness range described for each layer.
  • the hard coat layer 2 preferably has a thickness of 20 ⁇ m or more by curing a photocurable resin composition containing a photocurable siliceous silsesquioxane resin, and has a glass transition temperature. Is made of a transparent resin layer having a transmittance of not less than 230 ° C. and a transmittance of 90% or more at a wavelength of 550 nm.
  • the thickness of the preferred hard coat layer is 20 ⁇ m or more, preferably in the range of 20 to 400 ⁇ m, and more preferably in the range of 50 to 80 ⁇ m.
  • the thickness is less than 20 ⁇ m, sufficient surface hardness cannot be obtained.
  • the thickness exceeds 400 ⁇ m, flexibility is impaired, and for example, it may be difficult to obtain a molded product having a curved surface. is there.
  • the hard coat film laminate of the present invention is used for window glass of automobiles and aircraft, the surface becomes high temperature by direct sunlight. Further, when used as a housing for a personal computer or a portable electronic device, heat is generated inside the device. Therefore, the hard coat layer needs to have heat resistance to prevent deformation due to heat, and the resin forming the hard coat layer has a glass transition temperature of 230 ° C. or higher, preferably 250 ° C. or higher.
  • the transmittance at a wavelength of 550 nm is preferably 90% or more in a liquid crystal display portion of a window glass of an automobile or an aircraft, a personal computer, or a portable electronic device.
  • content of the said cage silsesquioxane resin in a photocurable resin composition is 3 mass% with respect to the mass of a photocurable resin composition.
  • the amount is preferably in the above range, and more preferably in the range of 5 to 70% by mass.
  • the content is less than 3% by mass, the glass transition temperature of the transparent resin layer tends to be low in the hard coat film laminate for injection molding, and the heat resistance at the mold temperature at the time of injection molding may be insufficient. is there.
  • the content exceeds 70% by mass the toughness of the hard coat layer is impaired, and there is a possibility that appearance defects such as cracks are generated on the surface by handling.
  • the glass transition temperature of the hard coat layer can be adjusted, for example, even when the content of the cage silsesquioxane resin is the same.
  • the glass transition temperature of the transparent resin layer is appropriately adjusted by adjusting the content of the cage silsesquioxane resin, because it varies depending on the glass transition temperature of other resins used in combination with the cage silsesquioxane resin. Can be adjusted.
  • the upper limit of the glass transition temperature of the hard coat layer is about 450 ° C. in consideration of containing an organic substance.
  • the vertical silsesquioxane resin that forms a preferred hard coat layer in the present invention is a vertical silsesquioxane resin having photocurability.
  • cage-type silsesquioxane resins include the following general formula (1): RSix 3 (1)
  • the silicon compound represented by the formula is hydrolyzed in the presence of an organic polar solvent and a basic catalyst and partially condensed, and the resulting hydrolysis product is further recondensed in the presence of a nonpolar solvent and a basic catalyst. Things.
  • R represents an organic functional group having a (meth) acryloyl group or a vinyl group
  • X represents a hydrolysis group such as an alkoxy group or an acetoxy group.
  • such a cage silsesquioxane resin is represented by the following general formula (2): [RSiO 3/2 ] n (2) It is preferable that it is a cage-type silsesquioxane resin represented by these.
  • R represents an organic functional group having a (meth) acryloyl group or a vinyl group
  • n represents 8, 10, 12 or 14.
  • the R is represented by the general formula (3): It is preferable that it is an organic functional group represented by these.
  • R 1 represents a hydrogen atom or a methyl group.
  • m represents an integer of 1 to 3.
  • Such a cage silsesquioxane resin has a reactive functional group composed of an organic functional group having a (meth) acryloyl group on all silicon atoms in the resin, and has a controlled molecular weight distribution and molecular structure.
  • a cage silsesquioxane resin is preferred.
  • the molecular structure of such a cage silsesquioxane resin may not be a completely closed polyhedron, and may be a structure in which a part is cleaved, for example.
  • the average molecular weight of such cage-type silsesquioxane resin is not particularly limited, and such cage-type silsesquioxane resin may be an oligomer.
  • the photocurable resin composition referred to in the present invention is not particularly limited as long as it is a resin composition that can be cured by irradiation with active energy rays.
  • a photocurable resin composition may contain other resins in addition to the cage silsesquioxane.
  • the other resin that can be used by mixing with the cage silsesquioxane resin in this way is not particularly limited as long as the resin has compatibility and reactivity with the cage silsesquioxane resin.
  • (Meth) acrylic acid, methyl (meth) acrylate, and the like are mentioned as the resin having a (meth) acrylic group, and it is not directly reactive with the cage silsesquioxane, but can be used in combination.
  • such a photocurable resin composition may further contain a filler-based additive as long as it does not inhibit photocurability.
  • a filler-based additive include fine particle fillers such as silica, alumina and titanium oxide, glass fiber short fibers or long fibers, and plastic fibers such as styrene and polyester.
  • Such a photocurable resin composition usually further contains a photopolymerization initiator.
  • photopolymerization initiators include alkynephenone-based, acylphosphine oxide-based, and titanium cene-based photopolymerization initiators.
  • photopolymerization initiators include ⁇ -hydroxyalkylphenone, biacetylacetophenone, benzophenone, benzyl, benzoylisobutyl ether, benzyldimethyl ketal, (1-hydroxycyclohexyl) phenylketone, (1-hydroxy-1 -Methylethyl) phenyl ketone, ( ⁇ -hydroxyisopropyl) (p-isopropylphenyl) ketone, diethylthioxanthone, ethyl anthraquinone, bis (diethylamino) benzophenone and the like.
  • a photocurable resin composition what contains a well-known solvent as a diluent may be used for viscosity adjustment etc., but time is considered when the devolatilization removal process of a solvent is considered. Therefore, from the viewpoint that the production efficiency is reduced, and from the viewpoint that residual solvent exists in the cured film and leads to deterioration of the properties of the molded film, it is preferable to use a solvent having a content of 5% or less. It is more preferable to use those not containing.
  • the hard coat film laminate for injection molding of the present invention is prepared, for example, when a polycarbonate film is used alone as a base material layer, and the photocurable resin composition is prepared on the surface of the polycarbonate film layer in advance. It can be manufactured by curing after forming the transparent resin layer.
  • the method for applying the photocurable resin composition in this way is not particularly limited, and a known method can be adopted as appropriate.
  • a known coating device can be adopted.
  • a coating method known methods such as gravure coating, roll coating, reverse coating, knife coating, die coating, lip coating, doctor coating, extrusion coating, slide coating, wire bar coating, curtain coating, extrusion coating, spinner coating, etc.
  • a coating method can be adopted.
  • an ultraviolet irradiation method in which ultraviolet rays are generated and irradiated on the photocurable resin composition after application to be photocured is adopted.
  • the ultraviolet lamp used in such a method include a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a pulse type xenon lamp, a xenon / mercury mixed lamp, a low-pressure sterilization lamp, and an electrodeless lamp.
  • a metal halide lamp or a high-pressure mercury lamp it is preferable to use a metal halide lamp or a high-pressure mercury lamp.
  • irradiation exposure may be in the range of 20 ⁇ 10000mJ / cm 2, it is preferably in the range of at 100 ⁇ 10000mJ / cm 2. Further, from the viewpoint of effective use of light energy, it is preferable to attach an elliptical, parabolic, or diffusive reflector to the ultraviolet lamp, and a heat cut filter or the like may be attached as a cooling measure.
  • a cooling device to the irradiated part of the ultraviolet lamp.
  • a cooling device By such a cooling device, it is possible to suppress thermal deformation of the hard coat film laminate for injection molding induced by heat generated from the ultraviolet lamp.
  • a cooling method of such a cooling device a known method such as an air cooling method or a water cooling method can be employed.
  • the ultraviolet curing reaction is a radical reaction
  • the reaction inhibition by oxygen is received. Therefore, from the viewpoint of suppressing reaction inhibition by oxygen in the curing reaction of the photocurable resin composition, it is preferable to cover the surface with a cover layer made of a transparent plastic film after applying the photocurable resin composition.
  • the oxygen concentration on the surface of the photocurable resin composition is preferably 1% or less, and preferably 0.1% or less. preferable. In order to reduce the oxygen concentration in this way, it is preferable to employ a transparent plastic film having no voids on the surface and low oxygen permeability.
  • film materials include PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PBT (polybutylene phthalate), PC (polycarbonate), polypropylene, polyethylene, acetate resin, acrylic resin, and vinyl fluoride.
  • Plastics such as resin, polyamide, polyarylate, cellophane, polyethersulfone and norbornene resin. These plastics can be used alone or in combination of two or more. Since such a plastic film must be able to be peeled off from the cured photocurable resin composition (hard coat layer), the surface of the plastic film is subjected to easy peeling treatment such as silicon coating or fluorine coating. It is preferable to use what is.
  • the hard coat layer 2 and the plastic film are formed on one surface of a single layer of a single resin selected from the group consisting of polycarbonate, polymethyl methacrylate, and polyethylene terephthalate, or a base layer 4 composed of two or more types.
  • the hard coat film laminate in which the cover layer 3 is laminated and integrated is placed in an injection mold.
  • the hard coat film laminate 1 is arranged in a flat shape in the cavity of the first injection mold 5.
  • the cover layer 3 of the plastic film of the hard coat film laminate 1 is disposed so as to contact the cavity wall surface of the first injection mold 5.
  • the second injection mold 6 is overlaid on the first injection mold 5 and closed, and in this state, the cavities in the molds 5 and 6 are inserted through the injection gate.
  • a thermoplastic resin is injected into the container.
  • injection molding of a thermoplastic resin is performed to form a resin molded body, and at the same time, the hard coat film laminate is integrally formed on the surface of the resin molded body.
  • the plastic film cover layer 3 on the surface of FIG. 3 is peeled off to obtain an injection molded body 8 having a hard coat portion on the surface.
  • FIG. 4 is a schematic view showing the entire injection molding machine equipped with a mechanism for continuously supplying the hard coat film laminate 1.
  • the second injection molding 6 in FIG. 2 is arranged on the fixed side platen 11
  • the first injection mold 5 is arranged on the movable side platen 9, and harder than the film loading machine 13 along the movable side platen 9.
  • the first injection mold 5 is overlapped with the second injection mold 6 and closed, and then from the nozzle 12.
  • the injection molded body 8 is obtained by injecting the thermoplastic resin.
  • the hard coat film laminated body 1 for obtaining the next injection molding body can be supplied by operating a film loading machine.
  • the film loading machine only needs to have a mechanism for continuously unwinding from the supply side, and does not necessarily have a mechanism for winding.
  • the base material layer (base material layer containing at least one of polycarbonate, polymethyl methacrylate, or polyethylene terephthalate) 4
  • the resin is not particularly limited as long as it is a thermoplastic resin that can be melted and integrated with each other, and is preferably a polycarbonate resin, a PMMA resin, or a PET resin.
  • the injection molding resin may contain various additives such as an antioxidant, a light stabilizer, an ultraviolet absorber, a lubricant, and a plasticizer inhibitor.
  • a planar mold and a mold having a curvature can be used as the shape of the injection mold.
  • a mold having a curvature is preferably set so that the elongation is 0.1% to 10%, the length to the end, and the amount of sagging.
  • Example 1 The following structural formula (4) 25 parts of silsesquioxane, 65 parts of dipentaerythritol (manufactured by Nippon Kayaku Co., Ltd., trade name “KAYARAD DPHA”), dimethylol tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name “light acrylate DCP— A ”) 10 parts and 2.5 parts of hydroxycyclohexyl phenyl ketone (Ciba Specialty Chemicals, trade name” IRGACURE 184 ”) are stirred and mixed uniformly, and then defoamed to obtain a liquid photocurable resin composition. Got.
  • a polycarbonate film (manufactured by Sumitomo Chemical Co., Ltd., trade name “Technoloy”) obtained by surface-treating the obtained liquid photocurable resin composition with a silane coupling agent (trade name “KBE-903”, manufactured by Shin-Etsu Chemical Co., Ltd.) in advance. C000 ”) so that the thickness after curing was 0.05 mm.
  • a transparent cover film material: polyethylene terephthalate, light transmittance of 90% or more at a wavelength of 550 nm
  • ultraviolet rays are emitted from a metal halide lamp at 6400 mJ / cm 2.
  • the hard coating layer is cured by irradiating with an irradiation exposure amount of 1 to 3, whereby a hard layer for injection molding having a three-layer structure of a base material layer 4-hard coat layer 2-cover layer 3 made of polycarbonate resin as shown in FIG. Coated film laminate 1 was obtained.
  • FIG. 2A a part of the cover layer 3 remains on the cavity wall surface of the first injection mold while the hard coat film laminate 1 is kept flat in the first injection mold 5.
  • the second injection mold was overlaid on the first injection mold, and in this state, it was dried in advance at 120 ° C. for 24 hours from the injection gate into the cavity in the mold.
  • a polycarbonate resin trade name “Taflon 1900” manufactured by Idemitsu Co., Ltd.
  • FIG. An injection molded body 8 having a hard coat portion made of the hard coat film laminate 1 on the surface of a resin molded body 7 made of a polycarbonate resin having a thickness of 3 mm as shown in FIG.
  • ⁇ Surface hardness evaluation method> The molded body provided with the hard coat portion was subjected to scratch hardness (pencil method) according to JIS K5600-5-4. A steel wool test was also conducted. The steel wool test was performed using an eraser testing machine (manufactured by Honko Seisakusho Co., Ltd.) using steel wool # 0000, and the steel wool was reciprocated with a load of 500 g.
  • ⁇ Strength evaluation method> A bending test was performed on a molded body having a hard coat portion.
  • a test piece of 120 mm ⁇ 30 mm is placed on a base having an opening at the center (opening: 80 mm ⁇ 50 mm), and from the upper side, a push core tip R: SR5, speed: 5 mm / cm, indentation
  • the bending stress when pressed down to a depth of 40 mm and the surface state of the hard coat layer were observed.
  • Example 2 The liquid photocurable resin composition was applied so that the thickness after curing was 0.025 mm, and after obtaining an injection molded body 8 provided with a hard coat portion in the same manner as in Example 1, Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 The polycarbonate film side of the polycarbonate PMMA film (manufactured by Sumitomo Chemical Co., Ltd., trade name “Technoloy C001”) in which the polycarbonate film and the PMMA film are bonded together is previously a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBE-903”). Surface treatment with.
  • An injection-molded article provided with the above-mentioned liquid photocurable resin composition on the surface-treated polycarbonate film side so that the thickness after curing is 0.07 mm, and having a hard coat portion in the same manner as in Example 1. After obtaining 8, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 2 As a comparative example, the product name Iupilon sheet MR58 (thickness: 0.65 mm) manufactured by Mitsubishi Gas Chemical Co., Ltd., which had an acrylic hard coat applied to the surface of a polycarbonate sheet, was attached and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 The liquid photocurable resin composition described above was applied to a PMMA film (manufactured by Sumitomo Chemical Co., Ltd., trade name “Technoloy S001G”) which was previously surface-treated with a silane coupling agent (trade name “KBE-903” manufactured by Shin-Etsu Chemical Co., Ltd.). It applied so that the thickness after hardening might be set to 0.1 mm, and the hard coat film laminated body 1 for injection molding was obtained by the method similar to Example 1.
  • a PMMA film manufactured by Sumitomo Chemical Co., Ltd., trade name “Technoloy S001G”
  • a silane coupling agent trade name “KBE-903” manufactured by Shin-Etsu Chemical Co., Ltd.
  • the injection resin was changed to PMMA resin (manufactured by Sumitomo Chemical Co., Ltd., trade name “Sumipex HT55X”) in the same manner as in Example 1, resin temperature 250 ° C., mold temperature 80 ° C., set injection pressure 129 MPa, injection time 6 seconds.
  • the injection molded body 8 provided with the hard coat portion made of the hard coat film laminate 1 on the surface of the resin molded body 7 made of 1.6 mm thick PMMA resin as shown in FIG. It was. Table 1 shows the results of evaluation in the same manner as in Example 1.
  • Example 5 15 parts of silsesquioxane represented by the above structural formula (4), 55 parts of dipentaerythritol (manufactured by Nippon Kayaku Co., Ltd., trade name “KAYARAD DPHA”), dimethylol tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., product) 30 parts of the name “light acrylate DCP-A”) and 2.5 parts of hydroxycyclohexyl phenyl ketone (manufactured by Ciba Specialty Chemicals, trade name “IRGACURE 184”) are stirred and mixed uniformly, and then defoamed and liquidized. A photocurable resin composition was obtained.
  • dipentaerythritol manufactured by Nippon Kayaku Co., Ltd., trade name “KAYARAD DPHA”
  • dimethylol tricyclodecane diacrylate manufactured by Kyoeisha Chemical Co., Ltd., product
  • Example 1 shows the results of evaluation in the same manner as in Example 1.
  • Example 6 70 parts of silsesquioxane represented by the structural formula (4), 20 parts of dipentaerythritol (manufactured by Nippon Kayaku Co., Ltd., trade name “KAYARAD DPHA”), dimethylol tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., product) 10 parts of the name “light acrylate DCP-A”) and 2.5 parts of hydroxycyclohexyl phenyl ketone (Ciba Specialty Chemicals, trade name “IRGACURE 184”) are uniformly stirred and mixed, and then defoamed to form a liquid. A photocurable resin composition was obtained.
  • dipentaerythritol manufactured by Nippon Kayaku Co., Ltd., trade name “KAYARAD DPHA”
  • dimethylol tricyclodecane diacrylate manufactured by Kyoeisha Chemical Co., Ltd., product
  • Example 1 shows the results of evaluation in the same manner as in Example 1.
  • the liquid photocurable resin composition used in Example 1 above was applied on PET for the base layer so that the thickness after curing was 0.050 mm, and another cover layer PET was then applied thereon. After pressure-bonding to the coated photocurable resin, the hard coat layer was cured by irradiating ultraviolet rays with an ultra-high pressure mercury lamp at an irradiation exposure amount of 6400 mJ / cm 2 . After curing, the PET for the base layer and the cover layer were peeled off to obtain a film having only the hard coat layer.
  • ⁇ Dynamic viscoelasticity measurement> The glass transition temperature of only the hard coat layer was measured with a dynamic viscoelasticity measuring device (DVE-V4 Rheospectr manufactured by UBM Co., Ltd.). The results are as shown in FIG. 6, and the glass transition temperature represented by tan ⁇ was not observed in the measurement up to 230 ° C.
  • E ′ represents the storage elastic modulus
  • E ′′ represents the loss elastic modulus
  • tan ⁇ E ′′ / E ′.
  • Hard coat film laminate 2 for injection molding 2 Hard coat layer 3: Cover layer 4: Base material layer 5: First injection mold 6: Second injection mold 7: Resin molded body 8: Injection molded body 9: Movable side platen 10: Tie bar 11: Fixed side platen 12: Nozzle 13: Film loading machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Provided are: a multilayered hardcoat film for injection molding which, as a hardcoat for molded resin articles, has an extremely high surface hardness, excellent adhesion, and excellent conformability to molds; a process for producing the multilayered hardcoat film; and a process for producing an injection-molded object using the multilayered hardcoat film. A hardcoat layer which has a thickness of 20 µm or more, a transmittance measured at a wavelength of 550 nm of 90% or higher, and a glass transition temperature of 230ºC or higher is formed by applying a photocurable resin composition containing a cage silsesquioxane resin that has photocurability to one surface of a base-layer film constituted of, for example, a polycarbonate resin and curing the composition. Thus, a multilayered hardcoat film for injection molding is obtained. This multilayered hardcoat film is placed in a mold for injection molding, and a resin is molded. Simultaneously therewith, the multilayered hardcoat film is integrated with the surface of the molded resin object.

Description

射出成形用ハードコートフィルム積層体、その製造方法、及びそのハードコートフィルム積層体を利用した射出成形体の製造方法Hard coat film laminate for injection molding, method for producing the same, and method for producing injection molded article using the hard coat film laminate
 本発明は、射出成形用ハードコートフィルム積層体、その製造方法、及びそのハードコートフィルム積層体を利用した射出成形体の製造方法に関し、例えば、自動車、航空機、ビル、学校、各商店などの窓ガラスや、自動車、航空機などの灯具カバー、照明カバーのほか、パソコンや携帯型電子機器などの筐体や各種部品をはじめとして幅広く利用されているポリカーボネート樹脂、PMMA(ポリメタクリル酸メチル)樹脂、又はPET(ポリエチレンテレフタレート)樹脂の成形品の製造に必要な射出成形用ハードコートフィルム積層体、その製造方法、及びそれを利用した射出成形体の製造方法に関するものである。 The present invention relates to a hard coat film laminate for injection molding, a method for producing the same, and a method for producing an injection molded article using the hard coat film laminate, for example, windows for automobiles, aircraft, buildings, schools, shops, etc. In addition to glass, lamp covers and lighting covers for automobiles, aircraft, etc., polycarbonate resin, PMMA (polymethyl methacrylate) resin, which is widely used for housings and various parts such as personal computers and portable electronic devices, or The present invention relates to a hard coat film laminate for injection molding necessary for the production of a molded article of PET (polyethylene terephthalate) resin, a method for producing the same, and a method for producing an injection molded article using the same.
 従来、ポリカーボネート等の熱可塑性樹脂の射出成形品は、ガラスや金属に比べて軽量であることなどの理由から、これらの代替材料として広く使用されている。しかし、ポリカーボネート樹脂等はガラスよりも表面硬度が低く傷が付きやすいことから、それを防ぐために表面に塗料を塗布したり、硬化性フィルムを貼り合わせるなどして表面を保護することが行われている。 Conventionally, injection molded products of thermoplastic resins such as polycarbonate have been widely used as alternative materials because of their lighter weight than glass or metal. However, polycarbonate resin has a lower surface hardness than glass and is easily scratched. To prevent this, the surface is protected by applying paint or pasting a curable film on it. Yes.
 例えば、特開2008-260202号公報(特許文献1)には、ポリカーボネート樹脂とポリエステル樹脂とを含んだ混合樹脂組成物からなる基材層と、アクリル系ポリマーを含んだ紫外線硬化型樹脂組成物の硬化物からなるハードコート層とを備えた射出成形用ハードコートフィルムに係る発明が記載されている。また、特開2002-1759号公報(特許文献2)には、樹脂フィルムに硬化性のコーティング剤を塗布して該コーティング剤を半硬化した後、これを金型内に装着してポリカーボネート樹脂を射出成形し、樹脂フィルムを剥離してから更にコーティング剤を硬化させて表面硬化されたポリカーボネート樹脂成形品の製造方法に係る発明が記載されている。そしてこの特許文献2には、RSi(OH)4-nの構造を有するオルガノシランにコロイダルシリカを添加したシリコーン系コーティング剤や、アクリル系コーティング剤が好ましいものとして挙げられている。 For example, Japanese Patent Application Laid-Open No. 2008-260202 (Patent Document 1) discloses a base material layer made of a mixed resin composition containing a polycarbonate resin and a polyester resin, and an ultraviolet curable resin composition containing an acrylic polymer. An invention relating to a hard coat film for injection molding provided with a hard coat layer made of a cured product is described. Japanese Patent Application Laid-Open No. 2002-1759 (Patent Document 2) discloses that a curable coating agent is applied to a resin film, the coating agent is semi-cured, and then mounted in a mold to obtain a polycarbonate resin. An invention relating to a method for producing a polycarbonate resin molded article obtained by injection molding, peeling off a resin film, and further curing the coating agent to cure the surface is described. In Patent Document 2, a silicone coating agent obtained by adding colloidal silica to an organosilane having a structure of R n Si (OH) 4-n and an acrylic coating agent are mentioned as preferable ones.
 ところが、これまで射出成形樹脂の表面を保護するハードコートとして主に使用されているアクリル系やシリコーン系のコーティング剤では、耐傷付性の点で十分であるとは言えない。また、樹脂成形品がより幅広い用途で使用されるようになるためには、表面硬度を十分発現せしめることができながら射出成形品に対する密着性に優れ、しかも、金型への追従性を同時に満足できるようなハードコートフィルム積層体が更に必要となる。 However, acrylic and silicone coating agents that have been used mainly as hard coats to protect the surface of injection-molded resin until now are not sufficient in terms of scratch resistance. In addition, in order for resin molded products to be used in a wider range of applications, the surface hardness can be fully expressed, but the adhesiveness to injection molded products is excellent, and at the same time, the ability to follow the mold is satisfied. There is a further need for such a hard coat film laminate.
特開2008-260202号公報JP 2008-260202 A 特開2002-1759号公報JP 2002-1759 A
 本発明は、上述した課題を解決するためになされたものであり、ポリカーボネート樹脂、PMMA樹脂、又はPET樹脂の成形品のハードコートとして非常に表面硬度が高く、樹脂成形品に対する密着性や金型への追従性に優れた射出成形用ハードコートフィルム積層体を提供することを目的とする。また、本発明は、このような射出成形用ハードコートフィルム積層体を製造する方法を提供することを目的とする。更に、本発明は、このハードコートフィルム積層体を利用した射出成形体の製造方法を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and has a very high surface hardness as a hard coat of a molded article of polycarbonate resin, PMMA resin, or PET resin. An object of the present invention is to provide a hard coat film laminate for injection molding that is excellent in followability. Moreover, an object of this invention is to provide the method of manufacturing such a hard coat film laminated body for injection molding. Furthermore, this invention aims at providing the manufacturing method of the injection molded object using this hard coat film laminated body.
 前記目的を達成するために本発明者等は鋭意検討した結果、好適には、光硬化性を有する籠型シルセスキオキサン樹脂を含有した光硬化性樹脂組成物を硬化させてハードコート層とし、これをポリカーボネート、ポリメタクリル酸メチル、又はポリエチレンテレフタレートの1種以上を含んだ基材層と積層一体化して金型内に装着することで、ポリカーボネート樹脂、PMMA樹脂、又はPET樹脂の成形品の表面に、基材層を介して高い表面硬度のハードコートを密着性良く形成することができ、しかも、金型に対する追従性も満足できることを見出し、本発明を完成した。 As a result of intensive studies by the present inventors in order to achieve the above object, preferably, a photocurable resin composition containing a photocurable siliceous silsesquioxane resin is cured to form a hard coat layer. , By stacking and integrating with a base material layer containing at least one of polycarbonate, polymethyl methacrylate, or polyethylene terephthalate, and mounting it in a mold, a molded product of polycarbonate resin, PMMA resin, or PET resin It has been found that a hard coat having a high surface hardness can be formed on the surface with a good adhesion through a base material layer, and that the following property to the mold can be satisfied, and the present invention has been completed.
 すなわち、本発明の要旨は次のとおりである。
[1]ポリカーボネート、ポリメタクリル酸メチル、及びポリエチレンテレフタレートからなる群から選ばれた1種の樹脂の単層又は2種以上の複数層からなる基材層と、該基材層の片面に積層一体化されたハードコート層とを備えた射出成形用ハードコートフィルム積層体であって、前記ハードコート層は、光硬化性を有する籠型シルセスキオキサン樹脂を含有した光硬化性樹脂組成物を硬化させて厚みが20μm以上からなり、波長550nmでの透過率が90%以上であって、且つ、ガラス転移温度が230℃以上であることを特徴とする射出成形用ハードコートフィルム積層体。
That is, the gist of the present invention is as follows.
[1] A single layer of a resin selected from the group consisting of polycarbonate, polymethyl methacrylate, and polyethylene terephthalate, or a base layer composed of two or more layers, and a single layer laminated on one side of the base layer A hard coat film laminate for injection molding comprising a hard coat layer, wherein the hard coat layer comprises a photocurable resin composition containing a photo-curing cage silsesquioxane resin. A hard coat film laminate for injection molding characterized by being cured and having a thickness of 20 μm or more, a transmittance at a wavelength of 550 nm of 90% or more, and a glass transition temperature of 230 ° C. or more.
[2]前記籠型シルセスキオキサン樹脂は、下記一般式(1):
   RSiX   ・・・(1)
〔式(1)中、Rは(メタ)アクリロイル基を有する有機官能基又はビニル基を示し、Xはアルコキシ基、又はアセトキシ基から選ばれる加水分解基を示す。〕で表わされるケイ素化合物を有機極性溶媒及び塩基性触媒存在下で加水分解反応させると共に一部縮合させ、得られた加水分解生成物を更に非極性溶媒及び塩基性触媒存在下で再縮合させて得られるものであることを特徴とする[1]に記載の射出成形用ハードコートフィルム積層体。
[2] The cage silsesquioxane resin has the following general formula (1):
RSix 3 (1)
[In Formula (1), R shows the organic functional group or vinyl group which has a (meth) acryloyl group, X shows the hydrolysis group chosen from an alkoxy group or an acetoxy group. In the presence of an organic polar solvent and a basic catalyst, the silicon compound is hydrolyzed and partially condensed, and the obtained hydrolysis product is further recondensed in the presence of a nonpolar solvent and a basic catalyst. The hard coat film laminate for injection molding as described in [1], which is obtained.
[3]前記籠型シルセスキオキサン樹脂が、下記一般式(2):
   [RSiO3/2   ・・・(2)
〔式(2)中、Rは(メタ)アクリロイル基を有する有機官能基又はビニル基を示し、nは8、10、12又は14を示す。〕で表わされる籠型シルセスキオキサン樹脂であることを特徴とする[1]又は[2]に記載の射出成形用ハードコートフィルム積層体。
[3] The cage silsesquioxane resin is represented by the following general formula (2):
[RSiO 3/2 ] n (2)
[In Formula (2), R shows the organic functional group or vinyl group which has a (meth) acryloyl group, and n shows 8, 10, 12, or 14. The hard coat film laminate for injection molding according to [1] or [2], wherein the laminate is a cage-type silsesquioxane resin represented by
[4]前記Rが、下記一般式(3):
Figure JPOXMLDOC01-appb-I000003
 
〔式(3)中、Rは水素原子又はメチル基を示し、mは1~3の整数を示す。〕で表わされる有機官能基であることを特徴とする[2]又は[3]に記載の射出成形用ハードコートフィルム積層体。
[4] R is the following general formula (3):
Figure JPOXMLDOC01-appb-I000003

[In the formula (3), R 1 represents a hydrogen atom or a methyl group, and m represents an integer of 1 to 3. The hard coat film laminate for injection molding according to [2] or [3], which is an organic functional group represented by
[5]前記ハードコート層側の表面にプラスチックフィルムのカバー層を更に備えることを特徴とする[1]~[4]のうちいずれか一項に記載の射出成形用ハードコートフィルム積層体。 [5] The injection-coated hard coat film laminate according to any one of [1] to [4], further comprising a plastic film cover layer on the surface of the hard coat layer.
[6]前記基材層の厚みが30~300μmの範囲であることを特徴とする[1]~[5]のうちいずれか一項に記載の射出成形用ハードコートフィルム積層体。 [6] The hard coat film laminate for injection molding according to any one of [1] to [5], wherein the thickness of the base material layer is in the range of 30 to 300 μm.
[7]ポリカーボネート、ポリメタクリル酸メチル、及びポリエチレンテレフタレートからなる群から選ばれた1種の樹脂の単層又は2種以上の複数層からなる基材層とハードコート層とが積層一体化された射出成形用ハードコートフィルム積層体の製造方法であって、基材層の片面に光硬化性を有する籠型シルセスキオキサン樹脂を含んだ光硬化性樹脂組成物を塗布して硬化させることで、厚さが20μm以上であり、波長550nmでの透過率が90%以上であって、且つ、ガラス転移温度が230℃以上のハードコート層を形成することを特徴とする射出成形用ハードコートフィルム積層体の製造方法。 [7] A single layer of one type of resin selected from the group consisting of polycarbonate, polymethyl methacrylate, and polyethylene terephthalate, or a base layer composed of two or more types and a hard coat layer were laminated and integrated. A method for producing a hard coat film laminate for injection molding, wherein a photocurable resin composition containing a photocurable siliceous silsesquioxane resin is applied to one side of a base material layer and cured. A hard coat film for injection molding characterized by forming a hard coat layer having a thickness of 20 μm or more, a transmittance of 90% or more at a wavelength of 550 nm, and a glass transition temperature of 230 ° C. or more A manufacturing method of a layered product.
[8]ポリカーボネート、ポリメタクリル酸メチル、及びポリエチレンテレフタレートからなる群から選ばれた1種の樹脂の単層又は2種以上の複数層からなる基材層と、該基材層の片面に積層一体化されたハードコート層とを備えた射出成形用ハードコートフィルム積層体を射出成形型内に配置して、その状態で型内にポリカーボネート、ポリメタクリル酸メチル、又はポリエチレンテレフタレートのいずれかを射出することによって樹脂の成形を行うと同時に樹脂成形体の表面に前記ハードコートフィルム積層体を一体化させることを特徴とする射出成形体の製造方法。 [8] A single layer of a single resin selected from the group consisting of polycarbonate, polymethyl methacrylate, and polyethylene terephthalate, or a base layer composed of two or more types of layers, and laminated on one side of the base layer The hard coat film laminate for injection molding provided with the hard coat layer formed is placed in an injection mold, and in that state, one of polycarbonate, polymethyl methacrylate, or polyethylene terephthalate is injected into the mold A method for producing an injection-molded product, wherein the molding of the resin is performed at the same time and the hard coat film laminate is integrated with the surface of the resin molded product.
[9]前記ハードコート層は、光硬化性を有する籠型シルセスキオキサン樹脂を含有した光硬化性樹脂組成物を硬化させて厚みが20μm以上からなり、波長550nmでの透過率が90%以上であって、且つ、ガラス転移温度が230℃以上であることを特徴とする[8]に記載の射出成形体の製造方法。 [9] The hard coat layer is formed by curing a photocurable resin composition containing a photocurable siliceous silsesquioxane resin and has a thickness of 20 μm or more, and has a transmittance of 90% at a wavelength of 550 nm. The method for producing an injection-molded article according to [8], wherein the glass transition temperature is 230 ° C. or higher.
[10]前記籠型シルセスキオキサン樹脂は、下記一般式(1):
   RSiX   ・・・(1)
〔式(1)中、Rは(メタ)アクリロイル基を有する有機官能基又はビニル基を示し、Xはアルコキシ基、又はアセトキシ基から選ばれる加水分解基を示す。〕で表わされるケイ素化合物を有機極性溶媒及び塩基性触媒存在下で加水分解反応させると共に一部縮合させ、得られた加水分解生成物を更に非極性溶媒及び塩基性触媒存在下で再縮合させて得られるものであることを特徴とする[9]に記載の射出成形体の製造方法。
[10] The cage silsesquioxane resin has the following general formula (1):
RSix 3 (1)
[In Formula (1), R shows the organic functional group or vinyl group which has a (meth) acryloyl group, X shows the hydrolysis group chosen from an alkoxy group or an acetoxy group. In the presence of an organic polar solvent and a basic catalyst, the silicon compound is hydrolyzed and partially condensed, and the obtained hydrolysis product is further recondensed in the presence of a nonpolar solvent and a basic catalyst. The method for producing an injection-molded article according to [9], which is obtained.
[11]前記籠型シルセスキオキサン樹脂が、下記一般式(2):
   [RSiO3/2   ・・・(2)
〔式(2)中、Rは(メタ)アクリロイル基を有する有機官能基又はビニル基を示し、nは8、10、12又は14を示す。〕で表わされる籠型シルセスキオキサン樹脂であることを特徴とする[9]又は[10]に記載の射出成形体の製造方法。
[11] The cage silsesquioxane resin is represented by the following general formula (2):
[RSiO 3/2 ] n (2)
[In Formula (2), R shows the organic functional group or vinyl group which has a (meth) acryloyl group, and n shows 8, 10, 12, or 14. ] The manufacturing method of the injection-molded article according to [9] or [10], characterized in that it is a cage-type silsesquioxane resin represented by
[12]前記Rが、下記一般式(3):

Figure JPOXMLDOC01-appb-I000004
 
〔式(3)中、Rは水素原子又はメチル基を示し、mは1~3の整数を示す。〕で表わされる有機官能基であることを特徴とする[10]又は[11]に記載の射出成形体の製造方法。
[12] R is the following general formula (3):

Figure JPOXMLDOC01-appb-I000004

[In the formula (3), R 1 represents a hydrogen atom or a methyl group, and m represents an integer of 1 to 3. The method for producing an injection-molded article according to [10] or [11], wherein the organic functional group is represented by the formula:
[13]前記ハードコート層側の表面にプラスチックフィルムのカバー層を更に備えることを特徴とする[8]~[12]のうちいずれか一項に記載の射出成形体の製造方法。 [13] The method for producing an injection-molded article according to any one of [8] to [12], further comprising a plastic film cover layer on the surface of the hard coat layer side.
[14]前記基材層の厚みが30~300μmの範囲であることを特徴とする[8]~[13]のうちいずれか一項に記載の射出成形体の製造方法。 [14] The method for producing an injection-molded article according to any one of [8] to [13], wherein the thickness of the base material layer is in the range of 30 to 300 μm.
[15]前記射出成形用ハードコートフィルム積層体がロール状態に巻き取られた状態から射出成形型内に連続的に供給されることを特徴とする[8]~[14]のうちいずれか一項に記載の射出成形体の製造方法。 [15] Any one of [8] to [14], wherein the injection-molded hard coat film laminate is continuously fed into an injection mold from a state wound up in a roll state. A method for producing an injection-molded article according to item.
[16]前記射出成形用ハードコートフィルム積層体がシート状にカットされた状態から射出成形型内に1枚ずつ供給されることを特徴とする[8]~[14]のうちいずれか一項に記載の射出成形体の製造方法。 [16] Any one of [8] to [14], wherein the injection-molded hard coat film laminate is supplied into the injection mold one by one from a state of being cut into a sheet shape. A method for producing an injection-molded article according to 1.
 本発明ではポリカーボネート、ポリメタクリル酸メチル、又はポリエチレンテレフタレートの1種以上を含んだ基材層と所定の光硬化性樹脂組成物を硬化させたハードコート層との積層構造体にすることにより、十分な表面硬度を保ったまま、フィルムインサート成形に使える効果が生ずる。すなわち、本発明の射出成形用ハードコートフィルム積層体は、光硬化性を有する籠型シルセスキオキサン樹脂を含有した光硬化性樹脂組成物からハードコート層を形成するため、金型への追従性に優れ、しかも、射出成形品の表面に対して高い表面硬度を付与せしめることができる。また、ポリカーボネート、ポリメタクリル酸メチル、又はポリエチレンテレフタレートの1種以上を含んだ基材層を介して射出成形品の表面にハードコート層を形成することから、密着性に優れて、ハードコート層が剥がれてしまうようなことを防止することができる。 In the present invention, by making a laminated structure of a base material layer containing one or more of polycarbonate, polymethyl methacrylate, or polyethylene terephthalate and a hard coat layer obtained by curing a predetermined photocurable resin composition, An effect that can be used for film insert molding while maintaining a high surface hardness is obtained. That is, the hard coat film laminate for injection molding of the present invention forms a hard coat layer from a photocurable resin composition containing a photocurable siliceous silsesquioxane resin. In addition, it is possible to impart high surface hardness to the surface of the injection molded product. In addition, since the hard coat layer is formed on the surface of the injection molded product through the base material layer containing one or more of polycarbonate, polymethyl methacrylate, or polyethylene terephthalate, the hard coat layer has excellent adhesion. It is possible to prevent peeling.
 また、本発明ではポリカーボネート、ポリメタクリル酸メチル、又はポリエチレンテレフタレートの1種以上を含んだ基材層とハードコート層とを備えた射出成形用ハードコートフィルム積層体を射出成形型内に配置せしめ、この状態で型内にポリカーボネート樹脂、PMMA樹脂、又はPET樹脂を射出することによって、樹脂の成形を行うと同時に樹脂成形体の表面に前記ハードコートフィルム積層体を一体化することにより、ガラスや金属の代替材料として利用可能な射出成形体を得ることができる。特に、光硬化性を有する籠型シルセスキオキサン樹脂を含有した光硬化性樹脂組成物によって所定のハードコート層を形成することにより、十分な表面硬度を保ったまま、金型への追従性に優れ、しかも、射出成形品の表面に対して高い表面硬度を付与せしめることができる。また、ポリカーボネート、ポリメタクリル酸メチル、又はポリエチレンテレフタレートの1種以上を含んだ基材層を介して射出成形品の表面にハードコート層を形成することから、密着性に優れて、ハードコート層が剥がれてしまうようなことを防止することができると共に、射出成形の際に成形と同時に一体化が可能であって生産性に優れる。 Further, in the present invention, a hard coat film laminate for injection molding comprising a base material layer containing one or more of polycarbonate, polymethyl methacrylate, or polyethylene terephthalate and a hard coat layer is placed in an injection mold, In this state, by injecting polycarbonate resin, PMMA resin, or PET resin into the mold, resin molding is performed, and at the same time, the hard coat film laminate is integrated with the surface of the resin molded body, so that glass or metal is formed. It is possible to obtain an injection molded body that can be used as an alternative material. In particular, by forming a predetermined hard coat layer with a photocurable resin composition containing a photocurable siliceous silsesquioxane resin, it is possible to follow the mold while maintaining sufficient surface hardness. In addition, it is possible to impart high surface hardness to the surface of the injection molded product. In addition, since the hard coat layer is formed on the surface of the injection molded product through the base material layer containing one or more of polycarbonate, polymethyl methacrylate, or polyethylene terephthalate, the hard coat layer has excellent adhesion. While being able to prevent peeling, it is possible to integrate at the same time as the molding at the time of injection molding, and it is excellent in productivity.
図1は、本発明のハードコートフィルム積層体を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing a hard coat film laminate of the present invention. 図2は、本発明のハードコートフィルム積層体を用いてインサート成型する様子を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing the state of insert molding using the hard coat film laminate of the present invention. 図3は、インサート成型によって得られた射出成形体を示す断面模式図である。FIG. 3 is a schematic cross-sectional view showing an injection molded body obtained by insert molding. 図4は、本発明の射出成形体の製造方法に使用する射出成形機の一例を示す模式図である。FIG. 4 is a schematic view showing an example of an injection molding machine used in the method for producing an injection molded body of the present invention. 図5は、本発明のハードコートフィルム積層体におけるハードコート層のみの光線透過率を示す。FIG. 5 shows the light transmittance of only the hard coat layer in the hard coat film laminate of the present invention. 図6は、本発明のハードコートフィルム積層体におけるハードコート層のみのガラス転移温度の測定結果を示す。FIG. 6 shows the measurement results of the glass transition temperature of only the hard coat layer in the hard coat film laminate of the present invention.
 以下、本発明を詳細に説明する。
 図1に、本発明の射出成形用ハードコートフィルム積層体1の一実施形態を示す。このハードコートフィルム積層体1は、ポリカーボネート、PMMA、及びPETからなる群から選ばれた1種の樹脂の単層又は2種以上の複数層からなる基材層4の片面にハードコート層2とプラスチックフィルムのカバー層3が積層一体化されたものからなる。基材層を形成する樹脂はフィルム状のものを用いるのがよく、好適には、ポリカーボネート、PMMA、及びPETからなる群から選ばれた1種の樹脂フィルムを単独で基材層として用いてもよく、2種以上の樹脂フィルムを積層させた複数層のものを基材層として用いてもよい。なかでも、ポリカーボネートフィルム、PMMAフィルム、若しくはPETフィルムの単層からなる基材層、又は、ポリカーボネートフィルムとPMMAフィルムとが2枚貼り合わされた基材層がより好適である。
Hereinafter, the present invention will be described in detail.
In FIG. 1, one Embodiment of the hard coat film laminated body 1 for injection molding of this invention is shown. The hard coat film laminate 1 includes a hard coat layer 2 on one side of a single layer of a single resin selected from the group consisting of polycarbonate, PMMA, and PET, or a base layer 4 composed of two or more layers. The cover layer 3 of the plastic film is formed by laminating and integrating. The resin for forming the base material layer is preferably a film-like resin, and preferably one resin film selected from the group consisting of polycarbonate, PMMA, and PET may be used alone as the base material layer. In addition, a plurality of layers in which two or more kinds of resin films are laminated may be used as the base material layer. Among these, a base material layer composed of a single layer of a polycarbonate film, a PMMA film, or a PET film, or a base material layer in which two polycarbonate films and a PMMA film are bonded together is more preferable.
 また、基材層の厚みについては、単層からなる場合と複数層からなる場合を含めて30~300μmの範囲であることが好ましい。30μmより小さいと基材層としての強度が不足し、破断する恐れがある。反対に、300μmより大きいと射出成形時に金型形状への追従性が低下する。また、本発明で用いるポリカーボネート、PMMA、及びPETの各樹脂には、それぞれ紫外線吸収剤、可塑剤、顔料等を添加剤として使用しても差し支えない。なお、本発明において、射出成形用ハードコートフィルム積層体の全体の厚みは特に制限されず、各層それぞれで説明する好適な厚み範囲を有したものにするのが好ましい。 In addition, the thickness of the base material layer is preferably in the range of 30 to 300 μm including the case of a single layer and the case of a plurality of layers. If it is smaller than 30 μm, the strength as a base material layer is insufficient and there is a risk of breakage. On the contrary, if it is larger than 300 μm, the followability to the mold shape is deteriorated at the time of injection molding. Further, for each resin of polycarbonate, PMMA, and PET used in the present invention, an ultraviolet absorber, a plasticizer, a pigment, or the like may be used as an additive. In the present invention, the entire thickness of the hard coat film laminate for injection molding is not particularly limited, and preferably has a suitable thickness range described for each layer.
 本発明において、前記ハードコート層2は、好適には、光硬化性を有する籠型シルセスキオキサン樹脂を含有した光硬化性樹脂組成物を硬化させて厚みが20μm以上からなり、ガラス転移温度が230℃以上であって、且つ、波長550nmでの透過率が90%以上の透明な樹脂層からなる。 In the present invention, the hard coat layer 2 preferably has a thickness of 20 μm or more by curing a photocurable resin composition containing a photocurable siliceous silsesquioxane resin, and has a glass transition temperature. Is made of a transparent resin layer having a transmittance of not less than 230 ° C. and a transmittance of 90% or more at a wavelength of 550 nm.
 このように好適なハードコート層(透明樹脂層)の厚みは20μm以上であり、好ましくは20~400μmの範囲であり、より好ましい厚みは50~80μmの範囲であるのがよい。厚みが20μmに満たない場合には十分な表面硬度を得ることができず、反対に厚みが400μmを超えると柔軟性が損なわれ、例えば曲面を有するような成型物を得ることが困難な場合がある。 Thus, the thickness of the preferred hard coat layer (transparent resin layer) is 20 μm or more, preferably in the range of 20 to 400 μm, and more preferably in the range of 50 to 80 μm. When the thickness is less than 20 μm, sufficient surface hardness cannot be obtained. On the other hand, when the thickness exceeds 400 μm, flexibility is impaired, and for example, it may be difficult to obtain a molded product having a curved surface. is there.
 本発明のハードコートフィルム積層体を自動車や航空機の窓ガラス用として使用することを想定すると、直射日光により表面が高温となる。また、パソコンや携帯型電子機器などの筐体用として使用する場合には、機器内部に熱が発生する。そのため、ハードコート層は熱による変形を防ぐために耐熱性が必要となり、ハードコート層を形成する樹脂はガラス転移温度が230℃以上、好ましくは250℃以上であるのがよい。また、自動車や航空機の窓ガラスやパソコンや携帯型電子機器の液晶表示部分では視認性を確保するため波長550nmでの透過率が90%以上であるのがよい。 Assuming that the hard coat film laminate of the present invention is used for window glass of automobiles and aircraft, the surface becomes high temperature by direct sunlight. Further, when used as a housing for a personal computer or a portable electronic device, heat is generated inside the device. Therefore, the hard coat layer needs to have heat resistance to prevent deformation due to heat, and the resin forming the hard coat layer has a glass transition temperature of 230 ° C. or higher, preferably 250 ° C. or higher. In addition, the transmittance at a wavelength of 550 nm is preferably 90% or more in a liquid crystal display portion of a window glass of an automobile or an aircraft, a personal computer, or a portable electronic device.
 また、このような好適なハードコート層を形成する上で、光硬化性樹脂組成物における前記籠型シルセスキオキサン樹脂の含有量は、光硬化性樹脂組成物の質量に対して3質量%以上となる量であることが好ましく、5~70質量%の範囲内であることがより好ましい。前記含有量が3%質量未満では射出成型用ハードコートフィルム積層体において透明樹脂層のガラス転移温度が低くなる傾向にあり、射出成型時の金型温度での耐熱性が不十分となるおそれがある。他方、前記含有量が70質量%を超えると、ハードコート層の靭性が損なわれ、ハンドリングにより表面にクラック発生等の外観不良が発生するおそれがある。このように籠型シルセスキオキサン樹脂の含有量を調節することにより、ハードコート層のガラス転移温度を調節することができ、例えば、前記籠型シルセスキオキサン樹脂の含有量が同じ場合でも、前記籠型シルセスキオキサン樹脂と併用する他の樹脂等のガラス転移温度により変動するため、前記籠型シルセスキオキサン樹脂の含有量を適宜調節することにより、透明樹脂層のガラス転移温度を調節することができる。なお、ハードコート層のガラス転移温度の上限値は、有機物を含んでいることを考慮すると450℃程度である。 Moreover, when forming such a suitable hard-coat layer, content of the said cage silsesquioxane resin in a photocurable resin composition is 3 mass% with respect to the mass of a photocurable resin composition. The amount is preferably in the above range, and more preferably in the range of 5 to 70% by mass. When the content is less than 3% by mass, the glass transition temperature of the transparent resin layer tends to be low in the hard coat film laminate for injection molding, and the heat resistance at the mold temperature at the time of injection molding may be insufficient. is there. On the other hand, when the content exceeds 70% by mass, the toughness of the hard coat layer is impaired, and there is a possibility that appearance defects such as cracks are generated on the surface by handling. Thus, by adjusting the content of the cage silsesquioxane resin, the glass transition temperature of the hard coat layer can be adjusted, for example, even when the content of the cage silsesquioxane resin is the same. The glass transition temperature of the transparent resin layer is appropriately adjusted by adjusting the content of the cage silsesquioxane resin, because it varies depending on the glass transition temperature of other resins used in combination with the cage silsesquioxane resin. Can be adjusted. Note that the upper limit of the glass transition temperature of the hard coat layer is about 450 ° C. in consideration of containing an organic substance.
 本発明において好適なハードコート層を形成する籠型シルセスキオキサン樹脂は、光硬化性を有する籠型シルセスキオキサン樹脂である。このような籠型シルセスキオキサン樹脂としては、例えば下記一般式(1):
   RSiX   ・・・(1)
で表わされるケイ素化合物を有機極性溶媒及び塩基性触媒存在下で加水分解反応させると共に一部縮合させ、得られた加水分解生成物を更に非極性溶媒及び塩基性触媒存在下で再縮合させてなるものが挙げられる。なお、前記一般式(1)において、Rは(メタ)アクリロイル基を有する有機官能基又はビニル基を示し、Xはアルコキシ基、アセトキシ基等の加水分解基を示す。
The vertical silsesquioxane resin that forms a preferred hard coat layer in the present invention is a vertical silsesquioxane resin having photocurability. Examples of such cage-type silsesquioxane resins include the following general formula (1):
RSix 3 (1)
The silicon compound represented by the formula is hydrolyzed in the presence of an organic polar solvent and a basic catalyst and partially condensed, and the resulting hydrolysis product is further recondensed in the presence of a nonpolar solvent and a basic catalyst. Things. In the general formula (1), R represents an organic functional group having a (meth) acryloyl group or a vinyl group, and X represents a hydrolysis group such as an alkoxy group or an acetoxy group.
 また、本発明においては、このような籠型シルセスキオキサン樹脂が、下記一般式(2):
   [RSiO3/2   ・・・(2)
で表される籠型シルセスキオキサン樹脂であることが好ましい。なお、前記一般式(2)において、Rは(メタ)アクリロイル基を有する有機官能基又はビニル基を示し、nは8、10、12又は14を示す。
In the present invention, such a cage silsesquioxane resin is represented by the following general formula (2):
[RSiO 3/2 ] n (2)
It is preferable that it is a cage-type silsesquioxane resin represented by these. In the general formula (2), R represents an organic functional group having a (meth) acryloyl group or a vinyl group, and n represents 8, 10, 12 or 14.
 さらに、本発明においては、前記Rが、一般式(3):
Figure JPOXMLDOC01-appb-I000005
 
で表わされる有機官能基であることが好ましい。なお、前記一般式(3)において、Rは水素原子又はメチル基を示す。また、前記一般式(3)において、mは1~3の整数を示す。
Furthermore, in the present invention, the R is represented by the general formula (3):
Figure JPOXMLDOC01-appb-I000005

It is preferable that it is an organic functional group represented by these. In the general formula (3), R 1 represents a hydrogen atom or a methyl group. In the general formula (3), m represents an integer of 1 to 3.
 このような籠型シルセスキオキサン樹脂は、樹脂中のケイ素原子全てに(メタ)アクリロイル基を有する有機官能基からなる反応性官能基を有し、且つ、分子量分布及び分子構造の制御された籠型シルセスキオキサン樹脂であることが好ましい。また、このような籠型シルセスキオキサン樹脂の分子構造は、完全に閉じた多面体でなくてもよく、例えば、一部が開裂したような構造であってもよい。また、このような籠型シルセスキオキサン樹脂の平均分子量も特に限定されず、このような籠型シルセスキオキサン樹脂がオリゴマーであってもよい。 Such a cage silsesquioxane resin has a reactive functional group composed of an organic functional group having a (meth) acryloyl group on all silicon atoms in the resin, and has a controlled molecular weight distribution and molecular structure. A cage silsesquioxane resin is preferred. Further, the molecular structure of such a cage silsesquioxane resin may not be a completely closed polyhedron, and may be a structure in which a part is cleaved, for example. Moreover, the average molecular weight of such cage-type silsesquioxane resin is not particularly limited, and such cage-type silsesquioxane resin may be an oligomer.
 本発明でいう光硬化性樹脂組成物とは、活性エネルギー線を照射して硬化可能な樹脂組成物であればよく、特に制限されない。このような光硬化性樹脂組成物には、前記籠型シルセスキオキサン以外に他の樹脂が含まれていてもよい。このように籠型シルセスキオキサン樹脂と混合して用いることができる他の樹脂としては籠型シルセスキオキサン樹脂と相溶性及び反応性を有する樹脂であればよく、特に限定されないが、例えば(メタ)アクリル基を有する樹脂として(メタ)アクリル酸、(メタ)アクリル酸メチル等が挙げられ、前記籠型シルセスキオキサンとは直接反応性を有していないが、併用可能な樹脂として、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂が挙げられる。また、このような光硬化性樹脂組成物は、光硬化性を阻害しない範囲であれば、フィラー系添加物を更に含有していてもよい。フィラー系添加物の具体例としては、シリカ、アルミナ、酸化チタン等の微粒子フィラーや、ガラスファイバー短繊維又は長繊維、スチレンやポリエステル等のプラスチック繊維が挙げられる。 The photocurable resin composition referred to in the present invention is not particularly limited as long as it is a resin composition that can be cured by irradiation with active energy rays. Such a photocurable resin composition may contain other resins in addition to the cage silsesquioxane. The other resin that can be used by mixing with the cage silsesquioxane resin in this way is not particularly limited as long as the resin has compatibility and reactivity with the cage silsesquioxane resin. (Meth) acrylic acid, methyl (meth) acrylate, and the like are mentioned as the resin having a (meth) acrylic group, and it is not directly reactive with the cage silsesquioxane, but can be used in combination. , Epoxy resin, urethane resin, and silicone resin. Moreover, such a photocurable resin composition may further contain a filler-based additive as long as it does not inhibit photocurability. Specific examples of the filler-based additive include fine particle fillers such as silica, alumina and titanium oxide, glass fiber short fibers or long fibers, and plastic fibers such as styrene and polyester.
 また、このような光硬化性樹脂組成物は、通常、光重合開始剤を更に含有する。このような光重合開始剤としては、例えば、アルキンフェノン系、アシルフォスフィンオキサイド系、チタンセン系等の光重合開始剤が挙げられる。このような光重合開始剤の具体例としては、α-ヒドロキシアルキルフェノン、ビアセチルアセトフェノン、ベンゾフェノン、ベンジル、ベンゾイルイソブチルエーテル、ベンジルジメチルケタール、(1-ヒドロキシシクロヘキシル)フェニルケトン、(1-ヒドロキシ-1-メチルエチル)フェニルケトン、(α-ヒドロキシイソプロピル)(p-イソプロピルフェニル)ケトン、ジエチルチオキサントン、エチルアンスラキノン、ビス(ジエチルアミノ)ベンゾフェノン等が挙げられる。 Moreover, such a photocurable resin composition usually further contains a photopolymerization initiator. Examples of such photopolymerization initiators include alkynephenone-based, acylphosphine oxide-based, and titanium cene-based photopolymerization initiators. Specific examples of such photopolymerization initiators include α-hydroxyalkylphenone, biacetylacetophenone, benzophenone, benzyl, benzoylisobutyl ether, benzyldimethyl ketal, (1-hydroxycyclohexyl) phenylketone, (1-hydroxy-1 -Methylethyl) phenyl ketone, (α-hydroxyisopropyl) (p-isopropylphenyl) ketone, diethylthioxanthone, ethyl anthraquinone, bis (diethylamino) benzophenone and the like.
 なお、このような光硬化性樹脂組成物としては、粘度調整等のために、公知の溶媒を希釈剤として含有しているものを使用してよいが、溶媒の揮発除去工程を考慮すると時間を要し生産効率が低下するという観点、並びに硬化フィルム内部に残留溶媒等が存在し成形フィルムの特性低下につながるという観点から、溶媒の含有量が5%以下のものを使用することが好ましく、溶媒を含有していないものを使用することがより好ましい。 In addition, as such a photocurable resin composition, what contains a well-known solvent as a diluent may be used for viscosity adjustment etc., but time is considered when the devolatilization removal process of a solvent is considered. Therefore, from the viewpoint that the production efficiency is reduced, and from the viewpoint that residual solvent exists in the cured film and leads to deterioration of the properties of the molded film, it is preferable to use a solvent having a content of 5% or less. It is more preferable to use those not containing.
 次に、以上説明した本発明の射出成形用ハードコートフィルム積層体を製造する方法について説明する。本発明の射出成形用ハードコートフィルム積層体は、例えば、基材層としてポリカーボネートフィルムを単独で用いる場合には、ポリカーボネートフィルムを予め準備し、前記ポリカーボネートフィルム層の表面に前記光硬化性樹脂組成物を塗布した後に硬化せしめて前記透明樹脂層を形成させることにより製造することができる。 Next, a method for producing the hard coat film laminate for injection molding of the present invention described above will be described. The hard coat film laminate for injection molding of the present invention is prepared, for example, when a polycarbonate film is used alone as a base material layer, and the photocurable resin composition is prepared on the surface of the polycarbonate film layer in advance. It can be manufactured by curing after forming the transparent resin layer.
 このように光硬化性樹脂組成物を塗布する方法としては、特に限定されず適宜公知の方法を採用することができる。塗布装置としては、公知の塗布装置を採用することができるが、塗布ヘッドを用いて硬化反応を起こすとゲル状の付着物が筋や異物の原因となるため、望ましくは塗布ヘッドには紫外線が当たらないようにすることが好ましい。また、塗布方式としては、グラビアコート、ロールコート、リバースコート、ナイフコート、ダイコート、リップコート、ドクターコート、エクストルージョンコート、スライドコート、ワイヤーバーコート、カーテンコート、押出コート、スピナーコート等の公知の塗布方法を採用することができる。 The method for applying the photocurable resin composition in this way is not particularly limited, and a known method can be adopted as appropriate. As the coating device, a known coating device can be adopted. However, when a curing reaction is caused by using the coating head, gel-like deposits cause streaks and foreign matters. It is preferable not to hit. In addition, as a coating method, known methods such as gravure coating, roll coating, reverse coating, knife coating, die coating, lip coating, doctor coating, extrusion coating, slide coating, wire bar coating, curtain coating, extrusion coating, spinner coating, etc. A coating method can be adopted.
 また、光硬化性樹脂組成物を塗布した後に硬化せしめる方法としては、例えば、塗布後の光硬化性樹脂組成物上に紫外線を発生させて照射して光硬化させるという紫外線照射法を採用することができる。このような方法に用いる紫外線ランプとして、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、パルス型キセノンランプ、キセノン/水銀混合ランプ、低圧殺菌ランプ、無電極ランプが挙げられる。これらの紫外線ランプの中でも、メタルハライドランプ又は高圧水銀ランプを用いることが好ましい。また、照射条件はそれぞれのランプの条件によって異なるが、照射露光量は20~10000mJ/cmの範囲であればよく、100~10000mJ/cmでの範囲であることが好ましい。また、光エネルギーの有効利用の観点から、紫外線ランプには楕円型、放物線型、拡散型等の反射板を取り付けることが好ましく、さらには、冷却対策として熱カットフィルター等を取り付けてもよい。 In addition, as a method of curing after applying the photocurable resin composition, for example, an ultraviolet irradiation method in which ultraviolet rays are generated and irradiated on the photocurable resin composition after application to be photocured is adopted. Can do. Examples of the ultraviolet lamp used in such a method include a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a pulse type xenon lamp, a xenon / mercury mixed lamp, a low-pressure sterilization lamp, and an electrodeless lamp. Among these ultraviolet lamps, it is preferable to use a metal halide lamp or a high-pressure mercury lamp. Although irradiation conditions vary depending on the conditions of the respective lamp, irradiation exposure may be in the range of 20 ~ 10000mJ / cm 2, it is preferably in the range of at 100 ~ 10000mJ / cm 2. Further, from the viewpoint of effective use of light energy, it is preferable to attach an elliptical, parabolic, or diffusive reflector to the ultraviolet lamp, and a heat cut filter or the like may be attached as a cooling measure.
 また、紫外線ランプの照射箇所には、冷却装置を取り付けることが好ましい。このような冷却装置により、紫外線ランプからの発生する熱に誘発される射出成形用ハードコートフィルム積層体の熱変形を抑制することができる。このような冷却装置の冷却方式としては、空冷方式、水冷方式等の公知の方法を採用することができる。 Moreover, it is preferable to attach a cooling device to the irradiated part of the ultraviolet lamp. By such a cooling device, it is possible to suppress thermal deformation of the hard coat film laminate for injection molding induced by heat generated from the ultraviolet lamp. As a cooling method of such a cooling device, a known method such as an air cooling method or a water cooling method can be employed.
 なお、このように紫外線照射法により光硬化性樹脂組成物を硬化せしめる場合には、紫外線硬化反応はラジカル反応であるため酸素による反応阻害を受ける。そのため、光硬化性樹脂組成物の硬化反応における酸素による反応阻害を抑制するという観点から、光硬化性樹脂組成物を塗布した後にその表面を透明なプラスチックフィルムからなるカバー層で覆うことが好ましい。また、このように光硬化性樹脂組成物の表面をカバー層で覆うことより、光硬化性樹脂組成物の表面における酸素濃度1%以下にすることが好ましく、0.1%以下にすることが好ましい。このように酸素濃度を小さくするためには、表面に空孔がなく、酸素透過率の小さい透明なプラスチックフィルムを採用することが好ましい。このようなフィルムの材質としては、例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PBT(ポリブチレンフタレート)、PC(ポリカーボネート)、ポリプロピレン、ポリエチレン、アセテート樹脂、アクリル系樹脂、フッ化ビニル系樹脂、ポリアミド、ポリアリレート、セロファン、ポリエーテルスルホン、ノルボルネン系樹脂等のプラスチックが挙げられる。これらのプラスチックは、1種を単独でまたは2種以上を組み合わせて使用することができる。このようなプラスチックフィルムは、硬化後の光硬化性樹脂組成物(ハードコート層)との剥離が可能でなければならないため、プラスチックフィルムの表面にシリコン塗布、フッ素塗布等の易剥離処理が施されているものを用いることが好ましい。 In addition, when hardening a photocurable resin composition by an ultraviolet irradiation method in this way, since the ultraviolet curing reaction is a radical reaction, the reaction inhibition by oxygen is received. Therefore, from the viewpoint of suppressing reaction inhibition by oxygen in the curing reaction of the photocurable resin composition, it is preferable to cover the surface with a cover layer made of a transparent plastic film after applying the photocurable resin composition. In addition, by covering the surface of the photocurable resin composition with the cover layer in this manner, the oxygen concentration on the surface of the photocurable resin composition is preferably 1% or less, and preferably 0.1% or less. preferable. In order to reduce the oxygen concentration in this way, it is preferable to employ a transparent plastic film having no voids on the surface and low oxygen permeability. Examples of such film materials include PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PBT (polybutylene phthalate), PC (polycarbonate), polypropylene, polyethylene, acetate resin, acrylic resin, and vinyl fluoride. Plastics such as resin, polyamide, polyarylate, cellophane, polyethersulfone and norbornene resin. These plastics can be used alone or in combination of two or more. Since such a plastic film must be able to be peeled off from the cured photocurable resin composition (hard coat layer), the surface of the plastic film is subjected to easy peeling treatment such as silicon coating or fluorine coating. It is preferable to use what is.
 次に、本発明にかかる射出成形体8の製造方法について説明する。まず、ポリカーボネート、ポリメタクリル酸メチル、及びポリエチレンテレフタレートからなる群から選ばれた1種の樹脂の単層又は2種以上の複数層からなる基材層4の片面にハードコート層2とプラスチックフィルムのカバー層3が積層一体化されたハードコートフィルム積層体を射出成形型内に配置せしめる。例えば図2(a)に示すように、第1射出成形型5のキャビティー内にハードコートフィルム積層体1を平面状のまま配置する。このときハードコートフィルム積層体1のプラスチックフィルムのカバー層3が第1射出成形型5のキャビティー壁面に当接するように配置する。 Next, a method for manufacturing the injection molded body 8 according to the present invention will be described. First, the hard coat layer 2 and the plastic film are formed on one surface of a single layer of a single resin selected from the group consisting of polycarbonate, polymethyl methacrylate, and polyethylene terephthalate, or a base layer 4 composed of two or more types. The hard coat film laminate in which the cover layer 3 is laminated and integrated is placed in an injection mold. For example, as shown in FIG. 2 (a), the hard coat film laminate 1 is arranged in a flat shape in the cavity of the first injection mold 5. At this time, the cover layer 3 of the plastic film of the hard coat film laminate 1 is disposed so as to contact the cavity wall surface of the first injection mold 5.
 しかる後、図2(b)に示すように、第1射出成形型5に第2射出成形型6を重ね合わせて閉締し、この状態で射出ゲートを介して型5、6内のキャビティーに熱可塑性樹脂を射出する。この時、熱可塑性樹脂の射出成形が行われて樹脂成形体が形成されると同時に該樹脂成形体の表面に前記ハードコートフィルム積層体が賦形されつつ一体化される。その後、図3の表面にあるプラスチックフィルムのカバー層3を剥離することによって、表面にハードコート部を備えた射出成形体8が得られる。 Thereafter, as shown in FIG. 2B, the second injection mold 6 is overlaid on the first injection mold 5 and closed, and in this state, the cavities in the molds 5 and 6 are inserted through the injection gate. A thermoplastic resin is injected into the container. At this time, injection molding of a thermoplastic resin is performed to form a resin molded body, and at the same time, the hard coat film laminate is integrally formed on the surface of the resin molded body. Thereafter, the plastic film cover layer 3 on the surface of FIG. 3 is peeled off to obtain an injection molded body 8 having a hard coat portion on the surface.
 また、図4はハードコートフィルム積層体1を連続的に供給する機構を備えた射出成形機の全体を表す模式図である。ここでは固定側プラテン11に図2における第2射出成型6を配置し、可動側プラテン9に前記第1射出成形型5を配置し、可動側プラテン9に沿うようにしてフィルム装填機13よりハードコートフィルム積層体1を第1射出成形型5に供給し、可動側プラテン9を移動させることで第1射出成形型5を第2射出成形型6と重ね合わせて閉締したのち、ノズル12より熱可塑性樹脂を射出することで射出成形体8が得られる。その後、フィルム装填機を操作することで次の射出成形体を得るためのハードコートフィルム積層体1を供給することができる。なお、フィルム装填機は供給側から連続的に巻き出す機構を有していればよく、必ずしも巻き取りのための機構を有していなくてもよい。 FIG. 4 is a schematic view showing the entire injection molding machine equipped with a mechanism for continuously supplying the hard coat film laminate 1. Here, the second injection molding 6 in FIG. 2 is arranged on the fixed side platen 11, the first injection mold 5 is arranged on the movable side platen 9, and harder than the film loading machine 13 along the movable side platen 9. After the coated film laminate 1 is supplied to the first injection mold 5 and the movable platen 9 is moved, the first injection mold 5 is overlapped with the second injection mold 6 and closed, and then from the nozzle 12. The injection molded body 8 is obtained by injecting the thermoplastic resin. Then, the hard coat film laminated body 1 for obtaining the next injection molding body can be supplied by operating a film loading machine. The film loading machine only needs to have a mechanism for continuously unwinding from the supply side, and does not necessarily have a mechanism for winding.
 前記射出成形用樹脂としては、即ち前記樹脂成形体7を構成する熱可塑性樹脂としては、前記基材層(ポリカーボネート、ポリメタクリル酸メチル、又はポリエチレンテレフタレートの1種以上を含んだ基材層)4と溶融一体化し得て透明性を有する熱可塑性樹脂であれば特に限定されないが、好適には、ポリカーボネート樹脂、PMMA樹脂、又はPET樹脂であるのがよい。 As the resin for injection molding, that is, as the thermoplastic resin constituting the resin molding 7, the base material layer (base material layer containing at least one of polycarbonate, polymethyl methacrylate, or polyethylene terephthalate) 4 The resin is not particularly limited as long as it is a thermoplastic resin that can be melted and integrated with each other, and is preferably a polycarbonate resin, a PMMA resin, or a PET resin.
 また、前記射出成形用樹脂には、酸化防止剤、光安定剤、紫外線吸収剤、滑剤、可塑剤防止剤等の各種添加剤などを配合してもよい。 The injection molding resin may contain various additives such as an antioxidant, a light stabilizer, an ultraviolet absorber, a lubricant, and a plasticizer inhibitor.
 前記射出成形型の形状は、平面形状金型及び曲率がある金型を使用することができる。曲率がある金型は伸び率が0.1%~10%となるようなRと端部までの長さ及び落ち込み量に設定されたものが望ましい。 As the shape of the injection mold, a planar mold and a mold having a curvature can be used. A mold having a curvature is preferably set so that the elongation is 0.1% to 10%, the length to the end, and the amount of sagging.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、特に断りのない限り「部」は「質量部」を表す。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples. Note that “part” means “part by mass” unless otherwise specified.
(実施例1)
 下記構造式(4)

Figure JPOXMLDOC01-appb-I000006
 
で表わされるシルセスキオキサン25部、ジペンタエリスリトール(日本化薬社製、商品名「KAYARAD DPHA」)65部、ジメチロールトリシクロデカンジアクリレート(共栄社化学社製、商品名「ライトアクリレートDCP-A」)10部、及びヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティ・ケミカルズ社製、商品名「IRGACURE184」)2.5部を均一に攪拌混合した後、脱泡して液状の光硬化性樹脂組成物を得た。
Example 1
The following structural formula (4)

Figure JPOXMLDOC01-appb-I000006

25 parts of silsesquioxane, 65 parts of dipentaerythritol (manufactured by Nippon Kayaku Co., Ltd., trade name “KAYARAD DPHA”), dimethylol tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name “light acrylate DCP— A ") 10 parts and 2.5 parts of hydroxycyclohexyl phenyl ketone (Ciba Specialty Chemicals, trade name" IRGACURE 184 ") are stirred and mixed uniformly, and then defoamed to obtain a liquid photocurable resin composition. Got.
 次に、得られた液状の光硬化性樹脂組成物を、予めシランカップリング剤(信越化学工業製、商品名「KBE-903」)で表面処理したポリカーボネートフィルム(住友化学製、商品名「テクノロイC000」)に硬化後の厚みが0.05mmとなるように塗布した。そして、透明カバーフィルム(材質:ポリエチレンテレフタレート、波長550nmでの光透過率90%以上)を塗工した光硬化性樹脂へ圧着してカバー層とした後、メタルハライドランプにて紫外線を6400mJ/cmの照射露光量で照射してハードコート層を硬化させることにより、図1に示すようなポリカーボネート樹脂からなる基材層4-ハードコート層2-カバー層3の三層構造からなる射出成形用ハードコートフィルム積層体1を得た。 Next, a polycarbonate film (manufactured by Sumitomo Chemical Co., Ltd., trade name “Technoloy”) obtained by surface-treating the obtained liquid photocurable resin composition with a silane coupling agent (trade name “KBE-903”, manufactured by Shin-Etsu Chemical Co., Ltd.) in advance. C000 ") so that the thickness after curing was 0.05 mm. Then, a transparent cover film (material: polyethylene terephthalate, light transmittance of 90% or more at a wavelength of 550 nm) is pressure-bonded to a photocurable resin to form a cover layer, and then ultraviolet rays are emitted from a metal halide lamp at 6400 mJ / cm 2. The hard coating layer is cured by irradiating with an irradiation exposure amount of 1 to 3, whereby a hard layer for injection molding having a three-layer structure of a base material layer 4-hard coat layer 2-cover layer 3 made of polycarbonate resin as shown in FIG. Coated film laminate 1 was obtained.
 次に、図2(a)に示すように、第1射出成形型5内にハードコートフィルム積層体1を平面状のままカバー層3の一部が第1射出成形金型のキャビティー壁面に当接する態様で配置した後、第1射出成形金型の上に第2射出成形金型を重ね合わせ、この状態で射出ゲートより金型内のキャビティーに、予め120℃で24時間乾燥せしめたポリカーボネート樹脂(出光株式会社製、商品名「タフロン1900」)を、樹脂温度280℃、金型温度80℃、設定射出圧力1700kg/cm、射出時間3秒の条件で射出することによって、図3に示すような厚み3mmのポリカーボネート樹脂からなる樹脂成形体7の表面にハードコートフィルム積層体1からなるハードコート部を備えた射出成形体8を得た。 Next, as shown in FIG. 2A, a part of the cover layer 3 remains on the cavity wall surface of the first injection mold while the hard coat film laminate 1 is kept flat in the first injection mold 5. After placing in a contact manner, the second injection mold was overlaid on the first injection mold, and in this state, it was dried in advance at 120 ° C. for 24 hours from the injection gate into the cavity in the mold. By injecting a polycarbonate resin (trade name “Taflon 1900” manufactured by Idemitsu Co., Ltd.) under the conditions of a resin temperature of 280 ° C., a mold temperature of 80 ° C., a set injection pressure of 1700 kg / cm 2 , and an injection time of 3 seconds, FIG. An injection molded body 8 having a hard coat portion made of the hard coat film laminate 1 on the surface of a resin molded body 7 made of a polycarbonate resin having a thickness of 3 mm as shown in FIG.
 上記のようにして得られたハードコート部を備えた射出成形体8について、以下のようにして表面硬度及び強度を評価した。結果を表1に示す。 The surface hardness and strength of the injection molded body 8 provided with the hard coat portion obtained as described above were evaluated as follows. The results are shown in Table 1.
 <表面硬度評価法>
 ハードコート部を備えた成形体に対してJIS K5600-5-4 引っかき硬度(鉛筆法)に準拠して行った。また、スチールウール試験を行った。スチールウール試験は消しゴム試験機(株式会社本光製作所製)を用い、スチールウール#0000を用いて行い、荷重500gでスチールウールを往復させた。
<Surface hardness evaluation method>
The molded body provided with the hard coat portion was subjected to scratch hardness (pencil method) according to JIS K5600-5-4. A steel wool test was also conducted. The steel wool test was performed using an eraser testing machine (manufactured by Honko Seisakusho Co., Ltd.) using steel wool # 0000, and the steel wool was reciprocated with a load of 500 g.
 <強度評価法>
 ハードコート部を備えた成形体に対して曲げ試験を行った。試験方法としては、中央が開口している土台の上に(開口部:80mm×50mm)、120mm×30mmの試験片を置き、上方から、押し芯先端R:SR5、速度:5mm/cm、押し込み深さ40mmまで押し込んだときの曲げ応力、及びハードコート層の表面状態を観察した。
<Strength evaluation method>
A bending test was performed on a molded body having a hard coat portion. As a test method, a test piece of 120 mm × 30 mm is placed on a base having an opening at the center (opening: 80 mm × 50 mm), and from the upper side, a push core tip R: SR5, speed: 5 mm / cm, indentation The bending stress when pressed down to a depth of 40 mm and the surface state of the hard coat layer were observed.
(実施例2)
 上記の液状の光硬化性樹脂組成物を硬化後の厚みが0.025mmとなるように塗布し、実施例1と同様の方法でハードコート部を備えた射出成形体8を得た後、実施例1と同様に評価を行った。結果を表1に示す。
(Example 2)
The liquid photocurable resin composition was applied so that the thickness after curing was 0.025 mm, and after obtaining an injection molded body 8 provided with a hard coat portion in the same manner as in Example 1, Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例3)
 ポリカーボネートフィルムとPMMAフィルムとが貼り合わされたポリカーボネート・PMMAフィルム(住友化学製、商品名「テクノロイC001」)のポリカーボネートフィルム側を予めシランカップリング剤(信越化学工業製、商品名「KBE-903」)で表面処理した。表面処理したポリカーボネートフィルム側に上記の液状の光硬化性樹脂組成物を硬化後の厚みが0.07mmとなるように塗布し、実施例1と同様の方法でハードコート部を備えた射出成形体8を得た後、実施例1と同様に評価を行った。結果を表1に示す。
(Example 3)
The polycarbonate film side of the polycarbonate PMMA film (manufactured by Sumitomo Chemical Co., Ltd., trade name “Technoloy C001”) in which the polycarbonate film and the PMMA film are bonded together is previously a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBE-903”). Surface treatment with. An injection-molded article provided with the above-mentioned liquid photocurable resin composition on the surface-treated polycarbonate film side so that the thickness after curing is 0.07 mm, and having a hard coat portion in the same manner as in Example 1. After obtaining 8, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例1)
 上記の液状の光硬化性樹脂組成物を硬化後の厚みが0.015mmとなるように塗布し、実施例1と同様の方法でハードコート部を備えた射出成形体8を得た後、実施例1と同様に評価を行った。結果を表1に示す。
(Comparative Example 1)
The above liquid photocurable resin composition was applied so that the thickness after curing was 0.015 mm, and after obtaining an injection-molded body 8 having a hard coat portion by the same method as in Example 1, it was carried out. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例2)
 比較例としてポリカーボネートシートの表面にアクリル系ハードコートが施された三菱ガス化学製商品名ユーピロン・シートMR58(厚み0.65mm)を貼着して、実施例1と同様に評価を行った。結果を表1に示す。
(Comparative Example 2)
As a comparative example, the product name Iupilon sheet MR58 (thickness: 0.65 mm) manufactured by Mitsubishi Gas Chemical Co., Ltd., which had an acrylic hard coat applied to the surface of a polycarbonate sheet, was attached and evaluated in the same manner as in Example 1. The results are shown in Table 1.
(実施例4)
 上記の液状の光硬化性樹脂組成物を、予めシランカップリング剤(信越化学工業製、商品名「KBE-903」)で表面処理したPMMAフィルム(住友化学製、商品名「テクノロイS001G」)に硬化後の厚みが0.1mmとなるように塗布し、実施例1と同様の方法で射出成形用ハードコートフィルム積層体1を得た。その後、実施例1と同様の方法で射出樹脂をPMMA樹脂(住友化学製、商品名「スミペックス HT55X」)にして、樹脂温度250℃、金型温度80℃、設定射出圧力129MPa、射出時間6秒の条件で射出することによって、図3に示すような厚み1.6mmのPMMA樹脂からなる樹脂成形体7の表面にハードコートフィルム積層体1からなるハードコート部を備えた射出成形体8を得た。実施例1と同様に評価を行った結果を表1に示す。
Example 4
The liquid photocurable resin composition described above was applied to a PMMA film (manufactured by Sumitomo Chemical Co., Ltd., trade name “Technoloy S001G”) which was previously surface-treated with a silane coupling agent (trade name “KBE-903” manufactured by Shin-Etsu Chemical Co., Ltd.). It applied so that the thickness after hardening might be set to 0.1 mm, and the hard coat film laminated body 1 for injection molding was obtained by the method similar to Example 1. FIG. Thereafter, the injection resin was changed to PMMA resin (manufactured by Sumitomo Chemical Co., Ltd., trade name “Sumipex HT55X”) in the same manner as in Example 1, resin temperature 250 ° C., mold temperature 80 ° C., set injection pressure 129 MPa, injection time 6 seconds. The injection molded body 8 provided with the hard coat portion made of the hard coat film laminate 1 on the surface of the resin molded body 7 made of 1.6 mm thick PMMA resin as shown in FIG. It was. Table 1 shows the results of evaluation in the same manner as in Example 1.
(実施例5)
 上記構造式(4)で表わされるシルセスキオキサン15部、ジペンタエリスリトール(日本化薬社製、商品名「KAYARAD DPHA」)55部、ジメチロールトリシクロデカンジアクリレート(共栄社化学社製、商品名「ライトアクリレートDCP-A」)30部、及びヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティ・ケミカルズ社製、商品名「IRGACURE184」)2.5部を均一に攪拌混合した後、脱泡して液状の光硬化性樹脂組成物を得た。
(Example 5)
15 parts of silsesquioxane represented by the above structural formula (4), 55 parts of dipentaerythritol (manufactured by Nippon Kayaku Co., Ltd., trade name “KAYARAD DPHA”), dimethylol tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., product) 30 parts of the name “light acrylate DCP-A”) and 2.5 parts of hydroxycyclohexyl phenyl ketone (manufactured by Ciba Specialty Chemicals, trade name “IRGACURE 184”) are stirred and mixed uniformly, and then defoamed and liquidized. A photocurable resin composition was obtained.
 上記の液状の光硬化性樹脂組成物を硬化後の厚みが0.050mmとなるように塗布し、実施例1と同様の方法でハードコート部を備えた射出成形体8を得た。実施例1と同様に評価を行った結果を表1に示す。 The above liquid photocurable resin composition was applied so that the thickness after curing was 0.050 mm, and an injection-molded body 8 provided with a hard coat portion was obtained in the same manner as in Example 1. Table 1 shows the results of evaluation in the same manner as in Example 1.
(実施例6)
 上記構造式(4)で表わされるシルセスキオキサン70部、ジペンタエリスリトール(日本化薬社製、商品名「KAYARAD DPHA」)20部、ジメチロールトリシクロデカンジアクリレート(共栄社化学社製、商品名「ライトアクリレートDCP-A」)10部、及びヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティ・ケミカルズ社製、商品名「IRGACURE184」)2.5部を均一に攪拌混合した後、脱泡して液状の光硬化性樹脂組成物を得た。
(Example 6)
70 parts of silsesquioxane represented by the structural formula (4), 20 parts of dipentaerythritol (manufactured by Nippon Kayaku Co., Ltd., trade name “KAYARAD DPHA”), dimethylol tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., product) 10 parts of the name “light acrylate DCP-A”) and 2.5 parts of hydroxycyclohexyl phenyl ketone (Ciba Specialty Chemicals, trade name “IRGACURE 184”) are uniformly stirred and mixed, and then defoamed to form a liquid. A photocurable resin composition was obtained.
 上記の液状の光硬化性樹脂組成物を硬化後の厚みが0.050mmとなるように塗布し、実施例1と同様の方法でハードコート部を備えた射出成形体8を得た。実施例1と同様に評価を行った結果を表1に示す。 The above liquid photocurable resin composition was applied so that the thickness after curing was 0.050 mm, and an injection-molded body 8 provided with a hard coat portion was obtained in the same manner as in Example 1. Table 1 shows the results of evaluation in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
(参考例)
 上記実施例1で用いた液状の光硬化性樹脂組成物を硬化後の厚みが0.050mmとなるように基材層用のPET上に塗布し、その上から別のカバー層用のPETを、塗工した光硬化性樹脂へ圧着した後、超高圧水銀ランプにて紫外線を6400mJ/cmの照射露光量で照射してハードコート層を硬化せしめた。硬化後、基材層用及びカバー層用のPETをそれぞれ剥離することによってハードコート層のみのフィルムを得た。
(Reference example)
The liquid photocurable resin composition used in Example 1 above was applied on PET for the base layer so that the thickness after curing was 0.050 mm, and another cover layer PET was then applied thereon. After pressure-bonding to the coated photocurable resin, the hard coat layer was cured by irradiating ultraviolet rays with an ultra-high pressure mercury lamp at an irradiation exposure amount of 6400 mJ / cm 2 . After curing, the PET for the base layer and the cover layer were peeled off to obtain a film having only the hard coat layer.
<光線透過率測定>
 ハードコート層のみの光線透過率は分光光度計(株式会社日立製作所製、Spectrophotometer U-4000)で測定したところ、550nmでの透過率91.7%であった。結果を図5に示す。
<Light transmittance measurement>
The light transmittance of only the hard coat layer was measured with a spectrophotometer (manufactured by Hitachi, Ltd., Spectrophotometer U-4000), and the transmittance at 550 nm was 91.7%. The results are shown in FIG.
<動的粘弾性測定>
 ハードコート層のみのガラス転移温度は動的粘弾性測定装置(株式会社ユービーエム製、DVE-V4レオスペクトラー)で測定した。結果は図6に示したとおりであり、tanδで表されるガラス転移温度は230℃までの測定では観測されなかった。なお、ここで、E’は貯蔵弾性率を示し、E’’は損失弾性率を示し、tanδ=E’’/E’である。
<Dynamic viscoelasticity measurement>
The glass transition temperature of only the hard coat layer was measured with a dynamic viscoelasticity measuring device (DVE-V4 Rheospectr manufactured by UBM Co., Ltd.). The results are as shown in FIG. 6, and the glass transition temperature represented by tan δ was not observed in the measurement up to 230 ° C. Here, E ′ represents the storage elastic modulus, E ″ represents the loss elastic modulus, and tan δ = E ″ / E ′.
 また、実施例5及び実施例6で用いた光硬化性樹脂組成物についても同様に光線透過率、動的年弾性測定を行ったが、いずれも透過率90%以上であり、230℃までの測定でガラス転移温度は観測されなかった。 Moreover, although the light transmittance and the dynamic annual elasticity measurement were similarly performed about the photocurable resin composition used in Example 5 and Example 6, both were 90% or more of transmittance, up to 230 ° C. No glass transition temperature was observed in the measurement.
1:射出成形用ハードコートフィルム積層体
2:ハードコート層
3:カバー層
4:基材層
5:第1射出成形型
6:第2射出成形型
7:樹脂成形体
8:射出成形体
9:可動側プラテン
10:タイバー
11:固定側プラテン
12:ノズル
13:フィルム装填機
1: Hard coat film laminate 2 for injection molding 2: Hard coat layer 3: Cover layer 4: Base material layer 5: First injection mold 6: Second injection mold 7: Resin molded body 8: Injection molded body 9: Movable side platen 10: Tie bar 11: Fixed side platen 12: Nozzle 13: Film loading machine

Claims (16)

  1.  ポリカーボネート、ポリメタクリル酸メチル、及びポリエチレンテレフタレートからなる群から選ばれた1種の樹脂の単層又は2種以上の複数層からなる基材層と、該基材層の片面に積層一体化されたハードコート層とを備えた射出成形用ハードコートフィルム積層体であって、前記ハードコート層は、光硬化性を有する籠型シルセスキオキサン樹脂を含有した光硬化性樹脂組成物を硬化させて厚みが20μm以上からなり、波長550nmでの透過率が90%以上であって、且つ、ガラス転移温度が230℃以上であることを特徴とする射出成形用ハードコートフィルム積層体。 A single layer of one type of resin selected from the group consisting of polycarbonate, polymethyl methacrylate, and polyethylene terephthalate, or a base layer composed of two or more types of layers, and laminated and integrated on one side of the base layer A hard coat film laminate for injection molding comprising a hard coat layer, wherein the hard coat layer is obtained by curing a photocurable resin composition containing a photocurable siliceous silsesquioxane resin. A hard coat film laminate for injection molding, characterized in that the thickness is 20 μm or more, the transmittance at a wavelength of 550 nm is 90% or more, and the glass transition temperature is 230 ° C. or more.
  2.  前記籠型シルセスキオキサン樹脂は、下記一般式(1):
       RSiX   ・・・(1)
    〔式(1)中、Rは(メタ)アクリロイル基を有する有機官能基又はビニル基を示し、Xはアルコキシ基、又はアセトキシ基から選ばれる加水分解基を示す。〕で表わされるケイ素化合物を有機極性溶媒及び塩基性触媒存在下で加水分解反応させると共に一部縮合させ、得られた加水分解生成物を更に非極性溶媒及び塩基性触媒存在下で再縮合させて得られるものであることを特徴とする請求項1に記載の射出成形用ハードコートフィルム積層体。
    The cage silsesquioxane resin has the following general formula (1):
    RSix 3 (1)
    [In Formula (1), R shows the organic functional group or vinyl group which has a (meth) acryloyl group, X shows the hydrolysis group chosen from an alkoxy group or an acetoxy group. In the presence of an organic polar solvent and a basic catalyst, the silicon compound is hydrolyzed and partially condensed, and the obtained hydrolysis product is further recondensed in the presence of a nonpolar solvent and a basic catalyst. The hard coat film laminate for injection molding according to claim 1, which is obtained.
  3.  前記籠型シルセスキオキサン樹脂が、下記一般式(2):
       [RSiO3/2   ・・・(2)
    〔式(2)中、Rは(メタ)アクリロイル基を有する有機官能基又はビニル基を示し、nは8、10、12又は14を示す。〕で表わされる籠型シルセスキオキサン樹脂であることを特徴とする請求項1又は2に記載の射出成形用ハードコートフィルム積層体。
    The cage silsesquioxane resin has the following general formula (2):
    [RSiO 3/2 ] n (2)
    [In Formula (2), R shows the organic functional group or vinyl group which has a (meth) acryloyl group, and n shows 8, 10, 12, or 14. The hard coat film laminate for injection molding according to claim 1, wherein the laminate is a cage silsesquioxane resin represented by the formula:
  4.  前記Rが、下記一般式(3):
    Figure JPOXMLDOC01-appb-I000001
     
    〔式(3)中、Rは水素原子又はメチル基を示し、mは1~3の整数を示す。〕で表わされる有機官能基であることを特徴とする請求項2又は3に記載の射出成形用ハードコートフィルム積層体。
    R is the following general formula (3):
    Figure JPOXMLDOC01-appb-I000001

    [In the formula (3), R 1 represents a hydrogen atom or a methyl group, and m represents an integer of 1 to 3. The hard coat film laminate for injection molding according to claim 2 or 3, wherein the organic functional group is represented by the formula:
  5.  前記ハードコート層側の表面にプラスチックフィルムのカバー層を更に備えることを特徴とする請求項1~4のうちいずれか一項に記載の射出成形用ハードコートフィルム積層体。 The hard coat film laminate for injection molding according to any one of claims 1 to 4, further comprising a plastic film cover layer on the surface of the hard coat layer side.
  6.  前記基材層の厚みが30~300μmの範囲であることを特徴とする請求項1~5のうちいずれか一項に記載の射出成形用ハードコートフィルム積層体。 The hard coat film laminate for injection molding according to any one of claims 1 to 5, wherein the thickness of the base material layer is in the range of 30 to 300 µm.
  7.  ポリカーボネート、ポリメタクリル酸メチル、及びポリエチレンテレフタレートからなる群から選ばれた1種の樹脂の単層又は2種以上の複数層からなる基材層とハードコート層とが積層一体化された射出成形用ハードコートフィルム積層体の製造方法であって、基材層の片面に光硬化性を有する籠型シルセスキオキサン樹脂を含んだ光硬化性樹脂組成物を塗布して硬化させることで、厚さが20μm以上であり、波長550nmでの透過率が90%以上であって、且つ、ガラス転移温度が230℃以上のハードコート層を形成することを特徴とする射出成形用ハードコートフィルム積層体の製造方法。 For injection molding in which a single layer of a single resin selected from the group consisting of polycarbonate, polymethyl methacrylate, and polyethylene terephthalate or a base layer composed of two or more layers and a hard coat layer are laminated and integrated. A method for producing a hard coat film laminate, wherein a photocurable resin composition containing a photocurable silsesquioxane resin is applied to one side of a base material layer and cured to obtain a thickness Of a hard coat film laminate for injection molding, characterized in that a hard coat layer having a glass transition temperature of 230 ° C. or higher is formed at a transmittance of 90% or higher at a wavelength of 550 nm. Production method.
  8.  ポリカーボネート、ポリメタクリル酸メチル、及びポリエチレンテレフタレートからなる群から選ばれた1種の樹脂の単層又は2種以上の複数層からなる基材層と、該基材層の片面に積層一体化されたハードコート層とを備えた射出成形用ハードコートフィルム積層体を射出成形型内に配置して、その状態で型内にポリカーボネート、ポリメタクリル酸メチル、又はポリエチレンテレフタレートのいずれかを射出することによって樹脂の成形を行うと同時に樹脂成形体の表面に前記ハードコートフィルム積層体を一体化させることを特徴とする射出成形体の製造方法。 A single layer of one type of resin selected from the group consisting of polycarbonate, polymethyl methacrylate, and polyethylene terephthalate, or a base layer composed of two or more types of layers, and laminated and integrated on one side of the base layer A resin by placing a hard coat film laminate for injection molding provided with a hard coat layer in an injection mold and injecting any of polycarbonate, polymethyl methacrylate, or polyethylene terephthalate into the mold in that state A method for producing an injection-molded product, wherein the hard coat film laminate is integrated with the surface of the resin molded product at the same time as the molding is performed.
  9.  前記ハードコート層は、光硬化性を有する籠型シルセスキオキサン樹脂を含有した光硬化性樹脂組成物を硬化させて厚みが20μm以上からなり、波長550nmでの透過率が90%以上であって、且つ、ガラス転移温度が230℃以上であることを特徴とする請求項8に記載の射出成形体の製造方法。 The hard coat layer is formed by curing a photocurable resin composition containing a photocurable siliceous silsesquioxane resin, having a thickness of 20 μm or more, and having a transmittance of 90% or more at a wavelength of 550 nm. And the glass transition temperature is 230 degreeC or more, The manufacturing method of the injection molded object of Claim 8 characterized by the above-mentioned.
  10.  前記籠型シルセスキオキサン樹脂は、下記一般式(1):
       RSiX   ・・・(1)
    〔式(1)中、Rは(メタ)アクリロイル基を有する有機官能基又はビニル基を示し、Xはアルコキシ基、又はアセトキシ基から選ばれる加水分解基を示す。〕で表わされるケイ素化合物を有機極性溶媒及び塩基性触媒存在下で加水分解反応させると共に一部縮合させ、得られた加水分解生成物を更に非極性溶媒及び塩基性触媒存在下で再縮合させて得られるものであることを特徴とする請求項9に記載の射出成形体の製造方法。
    The cage silsesquioxane resin has the following general formula (1):
    RSix 3 (1)
    [In Formula (1), R shows the organic functional group or vinyl group which has a (meth) acryloyl group, X shows the hydrolysis group chosen from an alkoxy group or an acetoxy group. In the presence of an organic polar solvent and a basic catalyst, the silicon compound is hydrolyzed and partially condensed, and the obtained hydrolysis product is further recondensed in the presence of a nonpolar solvent and a basic catalyst. The method for producing an injection-molded article according to claim 9, which is obtained.
  11.  前記籠型シルセスキオキサン樹脂が、下記一般式(2):
       [RSiO3/2   ・・・(2)
    〔式(2)中、Rは(メタ)アクリロイル基を有する有機官能基又はビニル基を示し、nは8、10、12又は14を示す。〕で表わされる籠型シルセスキオキサン樹脂であることを特徴とする請求項9又は10に記載の射出成形体の製造方法。
    The cage silsesquioxane resin has the following general formula (2):
    [RSiO 3/2 ] n (2)
    [In Formula (2), R shows the organic functional group or vinyl group which has a (meth) acryloyl group, and n shows 8, 10, 12, or 14. The method for producing an injection-molded article according to claim 9 or 10, wherein the resin is a cage-type silsesquioxane resin represented by the formula:
  12.  前記Rが、下記一般式(3):

    Figure JPOXMLDOC01-appb-I000002
     
    〔式(3)中、Rは水素原子又はメチル基を示し、mは1~3の整数を示す。〕で表わされる有機官能基であることを特徴とする請求項10又は11に記載の射出成形体の製造方法。
    R is the following general formula (3):

    Figure JPOXMLDOC01-appb-I000002

    [In the formula (3), R 1 represents a hydrogen atom or a methyl group, and m represents an integer of 1 to 3. The method for producing an injection-molded article according to claim 10 or 11, wherein the organic functional group is represented by the formula:
  13.  前記ハードコート層側の表面にプラスチックフィルムのカバー層を更に備えることを特徴とする請求項8~12のうちいずれか一項に記載の射出成形体の製造方法。 The method for producing an injection-molded article according to any one of claims 8 to 12, further comprising a plastic film cover layer on the surface of the hard coat layer side.
  14.  前記基材層の厚みが30~300μmの範囲であることを特徴とする請求項8~13のうちいずれか一項に記載の射出成形体の製造方法。 The method for producing an injection-molded article according to any one of claims 8 to 13, wherein the thickness of the base material layer is in the range of 30 to 300 µm.
  15.  前記射出成形用ハードコートフィルム積層体がロール状態に巻き取られた状態から射出成形型内に連続的に供給されることを特徴とする請求項8~14のうちいずれか一項に記載の射出成形体の製造方法。 The injection according to any one of claims 8 to 14, wherein the injection-molded hard coat film laminate is continuously supplied into the injection mold from a state of being wound in a roll state. Manufacturing method of a molded object.
  16.  前記射出成形用ハードコートフィルム積層体がシート状にカットされた状態から射出成形型内に1枚ずつ供給されることを特徴とする請求項8~14のうちいずれか一項に記載の射出成形体の製造方法。 The injection molding according to any one of claims 8 to 14, wherein the injection-molded hard coat film laminate is supplied into the injection mold one by one from a state of being cut into a sheet shape. Body manufacturing method.
PCT/JP2011/074504 2010-11-10 2011-10-25 Multilayered hardcoat film for injection molding, process for producing same, and process for producing injection-molded object using the multilayered hardcoat film WO2012063637A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137014529A KR101902492B1 (en) 2010-11-10 2011-10-25 Multilayered hardcoat film for injection molding, process for producing same, and process for producing injection-molded object using the multilayered hardcoat film
CN201180054153.9A CN103201080B (en) 2010-11-10 2011-10-25 Injection moulding hard coat film duplexer, its manufacture method and make use of the manufacture method of injection molded article of this hard coat film duplexer

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010251693 2010-11-10
JP2010-251693 2010-11-10
JP2011-032006 2011-02-17
JP2011032006 2011-02-17
JP2011220236A JP5735394B2 (en) 2011-02-17 2011-10-04 Method for producing injection molded article using hard coat film laminate for injection molding
JP2011220237A JP5794883B2 (en) 2010-11-10 2011-10-04 Hard-coated film laminate for injection molding, method for producing the same, and injection-molded body
JP2011-220237 2011-10-04
JP2011-220236 2011-10-04

Publications (1)

Publication Number Publication Date
WO2012063637A1 true WO2012063637A1 (en) 2012-05-18

Family

ID=46050789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074504 WO2012063637A1 (en) 2010-11-10 2011-10-25 Multilayered hardcoat film for injection molding, process for producing same, and process for producing injection-molded object using the multilayered hardcoat film

Country Status (1)

Country Link
WO (1) WO2012063637A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104057680A (en) * 2013-03-19 2014-09-24 新日铁住金化学株式会社 Resin laminate and molding method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178904A (en) * 2008-01-30 2009-08-13 Nippon Steel Chem Co Ltd Laminate comprising decorative printed film
JP2009214499A (en) * 2008-03-12 2009-09-24 Dainippon Printing Co Ltd Method for manufacturing decorative resin molded article, and decorative resin molded article
JP2010064384A (en) * 2008-09-11 2010-03-25 Ono Sangyo Kk Resin molded product
JP2010125719A (en) * 2008-11-28 2010-06-10 Nippon Steel Chem Co Ltd Glass with scattering preventing performance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178904A (en) * 2008-01-30 2009-08-13 Nippon Steel Chem Co Ltd Laminate comprising decorative printed film
JP2009214499A (en) * 2008-03-12 2009-09-24 Dainippon Printing Co Ltd Method for manufacturing decorative resin molded article, and decorative resin molded article
JP2010064384A (en) * 2008-09-11 2010-03-25 Ono Sangyo Kk Resin molded product
JP2010125719A (en) * 2008-11-28 2010-06-10 Nippon Steel Chem Co Ltd Glass with scattering preventing performance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104057680A (en) * 2013-03-19 2014-09-24 新日铁住金化学株式会社 Resin laminate and molding method using the same

Similar Documents

Publication Publication Date Title
KR101902492B1 (en) Multilayered hardcoat film for injection molding, process for producing same, and process for producing injection-molded object using the multilayered hardcoat film
TWI760385B (en) Transparent substrate having antiglare property and antireflective property, and manufacturing method thereof
KR101379491B1 (en) Hard coating film and method of preparing of hard coating film
KR101415840B1 (en) Hard coating film
KR101555737B1 (en) Process for continuously producing acrylic resin sheet
TWI753069B (en) Transparent resin substrate
US20130209796A1 (en) Polycarbonate with hard coat layer
CN107531029B (en) Active energy ray-curable resin composition, antifogging and antifouling laminate, article and method for producing same, and antifouling method
JPWO2020008961A1 (en) Decorative film, decoration method, manufacturing method of decorative molded body, and decorative molded film
JP6369187B2 (en) Anti-fingerprint anti-reflection film for insert molding and resin molded product using the same
JP5735394B2 (en) Method for producing injection molded article using hard coat film laminate for injection molding
KR20140114795A (en) Resin laminate and molding method using the same
JP5794883B2 (en) Hard-coated film laminate for injection molding, method for producing the same, and injection-molded body
JP5616036B2 (en) Laminate formed by laminating a substrate, an intermediate film, and a fine relief structure film
WO2012063637A1 (en) Multilayered hardcoat film for injection molding, process for producing same, and process for producing injection-molded object using the multilayered hardcoat film
JP7229833B2 (en) Laminated film for molding
KR20090035233A (en) Hard coating film for display with excellent reflective appearance
JP2020082439A (en) Substrate with resin cured layer, decorative sheet, vehicular window, and method for manufacturing substrate with resin cured layer
WO2021070632A1 (en) Curved member production method and hard-coated polycarbonate resin layered body for heat bending
TWI791705B (en) Laminated body, molded body, and manufacturing method thereof
TW202311037A (en) Anti-reflective film and resin molded article using same
JP2023006496A (en) Laminate film and molded body, and method for manufacturing the same
KR20240063238A (en) Coating composition with low reflectivity, excellent thermoformability and wear resistance, manufacturing method thereof, and coating method using the same
JP2024033400A (en) Laminated film and method for producing the same and molded body
JP2022110332A (en) Antireflection substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840674

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137014529

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11840674

Country of ref document: EP

Kind code of ref document: A1