WO2012063599A1 - Non-contact angle sensor - Google Patents

Non-contact angle sensor Download PDF

Info

Publication number
WO2012063599A1
WO2012063599A1 PCT/JP2011/073648 JP2011073648W WO2012063599A1 WO 2012063599 A1 WO2012063599 A1 WO 2012063599A1 JP 2011073648 W JP2011073648 W JP 2011073648W WO 2012063599 A1 WO2012063599 A1 WO 2012063599A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
case
rotating shaft
magnet
shaft
Prior art date
Application number
PCT/JP2011/073648
Other languages
French (fr)
Japanese (ja)
Inventor
村上 博治
鈴木 祐二
Original Assignee
東京コスモス電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京コスモス電機株式会社 filed Critical 東京コスモス電機株式会社
Priority to CN201180047924.1A priority Critical patent/CN103154671B/en
Priority to NZ608672A priority patent/NZ608672A/en
Publication of WO2012063599A1 publication Critical patent/WO2012063599A1/en
Priority to HK13109922.9A priority patent/HK1182761A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors

Definitions

  • This invention relates to a non-contact angle sensor equipped with an automatic return mechanism for a rotating shaft, which is used for detecting the position of various devices.
  • Patent Document 1 discloses an automatic return mechanism for the rotation shaft of an angle sensor.
  • the angle sensor disclosed in Patent Document 1 is a contact-type angle sensor and does not use a magnet but uses a slider. Yes.
  • the slider has a defect that it is liable to cause poor contact due to adhesion of harmful gas or oil.
  • FIG. 10 shows a principle configuration of an angle sensor described in Patent Document 2 as a conventional example of a non-contact type angle sensor using a magnet.
  • this conventional example does not have an automatic return mechanism for the rotating shaft.
  • the magnet 2 is fixed to the rear end opposite to the drive end (front end) of the rotating shaft 10 with the center axis aligned, and the magnet 2 is opposed to the rear end surface in the axial direction at a distance.
  • a sensor 4 is fixed on the printed circuit board 3.
  • the magnet 2 is magnetized in a direction perpendicular to the rotary shaft 10, and the magnetic flux 5 from the magnet 2 passes through the magnetic sensor 4 in parallel with the plate surface of the printed circuit board 3.
  • a voltage corresponding to the rotation angle is output from the magnetic sensor 4 when the direction of the magnetic flux passing through the magnetic sensor 4 is rotated in a plane parallel to the substrate 3 by the rotation of the rotating shaft 10.
  • the magnetic sensor 4 includes a bridge circuit using a magnetoresistive element and a differential amplifier that amplifies the differential output voltage of the bridge circuit.
  • An object of the present invention is to provide a non-contact type angle sensor having excellent durability that can be kept accurate for a long period of time, and therefore can maintain accuracy, in view of the above-described problems.
  • the non-contact type angle sensor according to the present invention is A rotating shaft having a case, a rotor housed in the case, one end protruding from the case, and the other end inserted and fixed at the rotation center of the rotor, and the rotating shaft is inserted in the case, and the rotor is inserted into the case
  • Coil spring that urges the rotor to a neutral angle position
  • an annular bearing that is fixed in the case and that allows the rotation shaft to be inserted and freely supports the intermediate portion thereof, and the rotor rear end surface to be radially outward from the rotation shaft.
  • a magnetic sensor that outputs an electric signal, and a cover for closing the casing from the back of the substrate, the shaft end portion of the rotary shaft is characterized in that it is supported by a bearing hole formed in the inner wall of the cover.
  • a magnet is attached to the rotor at a position spaced radially outward from the rotating shaft supported by the annular bearing at the intermediate portion, and a magnetic sensor is also provided on the substrate spaced radially outward from the rotating shaft, The rear end of the rotating shaft is supported by a bearing hole formed in the cover. For this reason, the angular blur of the rotating shaft can be kept small over a long period of use, and durability can be enhanced.
  • FIG. 5B is a cross-sectional view taken along the line 5A-5A in FIG. 2A when the rotation shaft is in a neutral angle position state.
  • the elements on larger scale of FIG. 5A Sectional drawing of the state which rotated the rotating shaft counterclockwise. Sectional drawing of the state which rotated the rotating shaft clockwise.
  • the figure for demonstrating the positional relationship of a magnet and a magnetic sensor The graph which shows the example of the relationship between the rotation angle by the angle sensor of this invention, and output voltage. Sectional drawing corresponding to FIG. 5A of a modified example.
  • the non-contact angle sensor according to the present invention outputs an electric signal corresponding to the rotation angle from the neutral angle position by rotating the rotation shaft.
  • 1A and 1B show the appearance of an embodiment of a non-contact type angle sensor according to the present invention.
  • FIG. 2A is a cross-sectional view taken along line 2A-2A in FIG. 1B
  • FIG. 2B is a cross-sectional view taken along line 2B-2B in FIG. It is shown.
  • FIG. 3 is an exploded view of each part.
  • the case 20 has a cylindrical accommodating portion 21, and a rectangular plate-like terminal lead-out portion 22 is formed in a radially projecting manner from the outer peripheral surface of the accommodating portion 21 on the back side thereof.
  • a pair of attachment portions 23 are formed so as to protrude from the outer peripheral surface in a flange shape in opposite directions in the radial direction.
  • a stepped cylindrical portion 24 is formed on the front surface of the accommodating portion 21 so as to be concentric with the accommodating portion 21.
  • a spring receiver 25 is formed on the inner peripheral surface of the housing portion 21 in a circular arc shape and extended in the direction of the rotation center line as shown by a broken line in FIG. 2B, and as shown in FIGS.
  • FIG. 2A shows the 2A-2A section upside down in FIG. 1B.
  • annular bearing 31 is accommodated in the cylindrical portion 24 of the case 20, and a metal sleeve 32 is accommodated in each sleeve hole 23 a of the pair of attachment portions 23.
  • the case 20 and the annular bearing 31 are each made of synthetic resin.
  • the annular bearing 31 and the sleeve 32 are insert-molded in the case 20.
  • the case 20 and the annular bearing 31 are both made of a synthetic resin.
  • a resin having high rigidity and excellent flame retardancy is used for the case 20, and a resin having excellent wear resistance is used for the annular bearing 31.
  • the rotor 40 has a disc portion 41 and a pair of spring guides 42 and 43 that are concentric with the disc portion 41 and project in the axial direction at right angles from one surface thereof and are arc-shaped in cross section. Molded.
  • the pair of spring guides 42 and 43 each have an arc shape in cross section, and these arcs are positioned on the same circumference.
  • an arc-shaped notch 41a (see FIG. 4) is formed in a portion located on the outer peripheral side of one spring guide 43.
  • the cylindrical rotary shaft 33 is made of metal, and has an oval portion 33a formed at one end thereof, and a small-diameter shaft end portion 33b is formed to protrude from the tip surface of the oval portion 33a.
  • the oval portion 33a is insert-molded into the disc portion 41 of the rotor 40 so that the rotation axis 33 and the rotation center of the rotor 40 coincide with each other, and is integrated with the rotor 40, and is positioned at the center of the arc formed by the spring guides 42 and 43. Is done.
  • the shaft end portion 33 b formed on the front end surface of the oval portion 33 a protrudes from the back side of the disc portion 41 of the rotor 40.
  • a rectangular plate-shaped magnet 34 is attached to the back side of the disc portion 41 of the rotor 40 at a position away from the rotation shaft 33 radially outward.
  • the magnet 34 is magnetized in the long side direction, and the long side is set to the rotational tangent direction of the rotor 40.
  • the coil spring 35 is inserted into the rotary shaft 33 and accommodated in a space in the pair of spring guides 42 and 43 of the rotor 40.
  • the pair of spring guides 42, 43 surround the coil spring 35 along the outer diameter of the coil spring 35, so that the coil spring 35 is held in contact with the pair of spring guides 42, 43.
  • the rotary shaft 33 is inserted into a hole 31a of an annular bearing 31 that is insert-molded in the case 20, and is pivotally supported at an intermediate portion.
  • a lip seal 36 is disposed in front of the annular bearing 31 in the cylindrical portion 24 of the case 20, and a washer 37 and an E ring 38 for restricting the movement of the lip seal 36 are disposed in front of the lip seal 36.
  • the E-ring 38 is fitted into an E-ring insertion groove 33c provided on the rotary shaft 33, and prevents the lip seal 36 and the washer 37 from falling off.
  • the front side of the case 20 is sealed with a lip seal 36.
  • the substrate 50 is attached to the opening on the back side of the housing portion 21 of the case 20 in parallel with the back surface of the rotor 40 with a gap.
  • the substrate 50 includes a circular portion 51 having a shaft hole 59 formed in the center, and a rectangular portion 52 extending radially outward from the outer peripheral arc side of the circular portion 51.
  • a printed wiring (not shown) is formed on the substrate 50, and the magnetic sensor 53 is spaced apart from the rotating shaft 33 radially outward from the rotating shaft 33 and spaced apart from the magnet 34 in the axial direction of the rotating shaft 33. Is provided.
  • the magnetic sensor 53 includes a bridge circuit composed of a magnetoresistive element and a plurality of resistors.
  • a magnetic sensor using a GMR element (Giant Magneto Resistance element) as a magnetoresistive element of the bridge circuit is used as a mold package component. It is commercially available.
  • the output of the magnetic sensor 53 that is the differential output of the bridge circuit is amplified by a differential amplifier 54 provided on the substrate 50.
  • the output of the differential amplifier 54 is output from the terminal 61 as a voltage representing the detection angle.
  • Terminal insertion holes 58 are formed in the rectangular portion 52 of the substrate 50, and terminals 61 are respectively caulked and attached to these terminal insertion holes 58.
  • the caulking portion 61a of the terminal 61 is shown as a shape after being caulked.
  • the power supply to the magnetic sensor 53 and the operational amplifier 54, the derivation of the angle detection voltage, and the like are performed from the terminal 61 through the printed wiring on the substrate 50.
  • the substrate 50 is press-fitted into the accommodating portion 21 of the case 20 and is abutted against and abutted against the abutting portion 21 a formed on the inner peripheral wall of the accommodating portion 21. Thereby, the substrate 50 is positioned in the axial direction of the rotary shaft 33.
  • a cover 62 is further attached to the opening on the back side of the housing portion 21 of the case 20 from behind the substrate 50.
  • the cover 62 is fixed by heat caulking a heat caulking portion 21b provided in the housing portion 21 of the case 20.
  • a bearing hole 62a is formed on the inner surface of the cover 62 for bearing a shaft end portion 33b with a reduced diameter formed at the tip of the rotary shaft 33.
  • the shaft end portion 33b is pivotally supported by the bearing hole 62a. The Therefore, the rotating shaft 33 is supported by the intermediate portion and the rear end portion thereof.
  • the adhesive 63 is applied and filled around the cover 62 attached to the case 20 as shown in FIGS. 2A and 2B, and the back side of the case 20 is thereby sealed. Further, in this example, a space is provided in the portion where the terminal 61 is located inside the case 20, and the periphery of the terminal 61 and the periphery of the caulking portion 61a are filled with the adhesive 63 as shown in FIG. 2B. Thereby, the terminal 61 is firmly fixed, and ion migration due to water electrolysis between the terminals 61 can be prevented.
  • FIG. 5A shows a cross section taken along 5A-5A in FIG. 2A, showing a state where the rotating shaft 33 is located at a neutral angle position
  • FIG. 5B shows an enlarged view of a region surrounded by a broken line in FIG. 5A.
  • the arc angle of the spring guide 43 whose section of the rotor 40 is arc-shaped and the arc angle of the arc-shaped spring receiver 25 projecting in the direction of the rotation axis on the inner peripheral surface of the case 20 are substantially equal.
  • Both end portions 35 a and 35 b of the coil spring 35 are elastically contacted with both end surfaces 43 a and 43 b in the circumferential direction of the spring guide 43 of the rotor 40 and both end surfaces 25 a and 25 b in the circumferential direction of the spring receiver 25 on the inner peripheral surface of the case 20.
  • FIG. 6A and 6B show a state in which the rotary shaft 33 is rotated counterclockwise and clockwise, respectively.
  • the spring guide 43 of the rotor 40 is elastically connected to one end 35a of the coil spring 35 in FIG. 6A. 6B, the other end 35b is pressed against its elasticity.
  • the direction of the magnetic flux passing through the magnetic sensor 53 from the magnet 34 rotates, and a desired output signal can be obtained from the terminal 61.
  • the rotational force of the rotating shaft 33 is released, the rotor 40 and the rotating shaft 33 are returned to the original neutral angle position shown in FIG. 5A by the elastic restoring force of the coil spring 35.
  • FIG. 7 shows an example of the relationship between the rotation angle position of the magnet 34 fixed to the rotor 33 and the mutual overlapping with respect to the magnetic sensor 53 fixed to the substrate 50.
  • the magnetic sensor 53 is a rectangular mold package having a short side length A and a long side length B close to each other.
  • the center Os is separated from the center Ox of the rotation axis by a distance Rs, and connects the centers Ox and Os.
  • the straight line is parallel to the long side.
  • the magnet 34 is a rectangle whose long side length L is at least twice as long as the short side length W, and is magnetized in the long side direction.
  • the length W of the short side of the magnet 34 is preferably B / 2 ⁇ W ⁇ B with respect to the length B of the long side of the magnetic sensor 53.
  • the center Om of the magnet 34 is on the straight line between the centers Os and Ox, and the magnet 34 covers at least half of the magnetic sensor 53 on the center Ox side.
  • the magnet 34 has a size corresponding to the size of the magnetic sensor 53 so that the detected output voltage is required for the purpose of using the angle sensor.
  • the distances Rs and Rm from the rotation axis center Ox to the centers Os and Om of the magnetic sensor 53 and the magnet 34 are determined.
  • the ratio B / A of the long side to the short side of the magnetic sensor 53 is 1.25
  • the spring guide 42 is formed so that the counterclockwise rotation allowable angle range from the counterclockwise end surface of the spring guide 42 to the spring receiver 25 is at least 2 ⁇ .
  • the magnet 34 is attached to the rear end surface of the rotor 40 facing the surface of the substrate 50 while being shifted in the radial direction from the rotary shaft 33, and the intermediate portion of the rotary shaft 33 is the annular bearing 31.
  • the shaft end portion 33b of the rear end portion of the rotating shaft 33 is supported by the bearing hole 62a of the cover 62, so that the rear end of the rotating shaft 10 as shown in FIG.
  • the angular blur of the rotating shaft is less and the durability is high over a long period of time.
  • this angle sensor is used, for example, for detecting the rotation angle of a forward / reverse accelerator lever in an electric cart, a scooter or the like, or detecting the depression angle of an automobile accelerator.

Abstract

A non-contact angle sensor provided with an automatic return mechanism, configured in such a manner that a rotating shaft (33) is affixed to the center of rotation of a rotor (40) housed within a case (20), the intermediate section of the rotating shaft is inserted through and supported by an annular bearing (31), a coiled spring (35) through which the rotating shaft is inserted within the case presses the rotor relative to the case to a neutral angle position, a magnet (34) is affixed to the rear surface of the rotor so as to be separated outward in the radial direction from the rotating shaft, a magnetic sensor (53) is provided on a circuit board (50), which is provided within the case so as to face the rear surface of the rotor, so as to be separated outward in the radial direction from the rotating shaft and so as to face the magnet at an interval, and a bearing end (33b) of the rotating shaft (33) is supported by a bearing hole (62a) formed in the inner wall of a cover (62) for closing the case from behind the circuit board.

Description

非接触式角度センサNon-contact angle sensor
 この発明は各種機器類の位置検出に利用される、回転軸の自動復帰機構を備えた非接触式角度センサに関する。 This invention relates to a non-contact angle sensor equipped with an automatic return mechanism for a rotating shaft, which is used for detecting the position of various devices.
 角度センサの回転軸の自動復帰機構は例えば特許文献1に示されているが、特許文献1が開示する角度センサは接触式角度センサであり、マグネットを使用せず、摺動子を使用している。摺動子は有害ガスや油などの付着により接触不良を起こしやすい欠点がある。
 図10にマグネットを使用した非接触式角度センサの従来例として、特許文献2に記載されている角度センサの原理的構成を示す。ただし、この従来例は回転軸の自動復帰機構を有してない。この従来例では回転軸10の駆動端(先端)と反対側の後端にマグネット2が中心軸を一致させて固定されており、そのマグネット2の軸方向後端面と間隔を置いて対向する磁気センサ4がプリント回路基板3上に固定されている。マグネット2は回転軸10と直角な方向に磁化されており、マグネット2からの磁束5はプリント回路基板3の板面と平行に磁気センサ4を透過する。回転軸10の回転により磁気センサ4を透過する磁束の方向が基板3と平行な面内で回転することにより回転角度に応じた電圧が磁気センサ4から出力される。なお、特許文献2において磁気センサ4は磁気抵抗素子を使用したブリッジ回路とブリッジ回路の差分出力電圧を増幅する差動増幅器を含んでいる。
For example, Patent Document 1 discloses an automatic return mechanism for the rotation shaft of an angle sensor. However, the angle sensor disclosed in Patent Document 1 is a contact-type angle sensor and does not use a magnet but uses a slider. Yes. The slider has a defect that it is liable to cause poor contact due to adhesion of harmful gas or oil.
FIG. 10 shows a principle configuration of an angle sensor described in Patent Document 2 as a conventional example of a non-contact type angle sensor using a magnet. However, this conventional example does not have an automatic return mechanism for the rotating shaft. In this conventional example, the magnet 2 is fixed to the rear end opposite to the drive end (front end) of the rotating shaft 10 with the center axis aligned, and the magnet 2 is opposed to the rear end surface in the axial direction at a distance. A sensor 4 is fixed on the printed circuit board 3. The magnet 2 is magnetized in a direction perpendicular to the rotary shaft 10, and the magnetic flux 5 from the magnet 2 passes through the magnetic sensor 4 in parallel with the plate surface of the printed circuit board 3. A voltage corresponding to the rotation angle is output from the magnetic sensor 4 when the direction of the magnetic flux passing through the magnetic sensor 4 is rotated in a plane parallel to the substrate 3 by the rotation of the rotating shaft 10. In Patent Document 2, the magnetic sensor 4 includes a bridge circuit using a magnetoresistive element and a differential amplifier that amplifies the differential output voltage of the bridge circuit.
実用新案登録第2533523号公報Utility Model Registration No. 2533523 特表2007-516415号公報(国際公開番号WO 2004/113928)Special Table 2007-516415 Publication (International Publication Number WO 番号 2004/113928)
 特許文献2によるこの従来の角度センサの構成においては、マグネット2の中心と磁気センサ4の中心とが回転軸10の中心と一致するように配置されている。従って、回転軸10はその中間部のみで図示してない軸受けにより回転自在に支持する必要があり、回転軸10の後端はマグネット2が取り付けられているので支持することはできない。そのため、長期使用により回転軸10と軸受間の摩擦による磨耗により、回転軸10の角度ブレが大きくなり、角度センサとして耐久性が悪い問題があった。 In the configuration of this conventional angle sensor according to Patent Document 2, the center of the magnet 2 and the center of the magnetic sensor 4 are arranged so as to coincide with the center of the rotating shaft 10. Therefore, the rotating shaft 10 needs to be supported by a bearing (not shown) only at its intermediate portion, and cannot be supported because the magnet 2 is attached to the rear end of the rotating shaft 10. Therefore, due to wear due to friction between the rotary shaft 10 and the bearing due to long-term use, the angular blur of the rotary shaft 10 becomes large, and there is a problem that durability as an angle sensor is poor.
 この発明の目的は上述した問題に鑑み、長期間に渡って変動が少なく、従って精度を維持することができる耐久性の優れた非接触式角度センサを提供することにある。 An object of the present invention is to provide a non-contact type angle sensor having excellent durability that can be kept accurate for a long period of time, and therefore can maintain accuracy, in view of the above-described problems.
 この発明による非接触式角度センサは、
 ケースと、ケース内に収容されたロータと、ケースから突出した一端と、ロータの回転中心に挿通固定された他端とを有する回転軸と、ケース内で回転軸が挿通され、ケースに対しロータを中立角度位置に付勢するコイルばねと、ケース内に固定され、回転軸が挿通されてその中間部を回動自由に支持する環状軸受と、ロータの後端面に、回転軸から半径方向外側に離れて固定され、ロータの回転接線方向に磁化されているマグネットと、ケース内に固定され、ロータの後端面と間隔を空けて対向し、回転軸の軸端部を自由に挿通させる軸穴が形成された基板と、基板上に回転軸から半径方向外側に離れてロータの回転角度範囲内でマグネットの少なくとも一部と回転軸方向に一定の間隔を空けて対向し、マグネットからの磁束の方向に依存した電気信号を出力する磁気センサと、基板の背面からケースを閉じるカバーとを含み、回転軸の軸端部はカバーの内壁に形成された軸受穴に支持されていることを特徴とする。
The non-contact type angle sensor according to the present invention is
A rotating shaft having a case, a rotor housed in the case, one end protruding from the case, and the other end inserted and fixed at the rotation center of the rotor, and the rotating shaft is inserted in the case, and the rotor is inserted into the case Coil spring that urges the rotor to a neutral angle position, an annular bearing that is fixed in the case and that allows the rotation shaft to be inserted and freely supports the intermediate portion thereof, and the rotor rear end surface to be radially outward from the rotation shaft. A shaft hole that is fixed to the magnet and magnetized in the rotational tangential direction of the rotor, is fixed in the case, faces the rear end surface of the rotor with a space, and allows the shaft end of the rotating shaft to pass freely Is opposed to at least a part of the magnet at a certain distance in the rotation axis direction within the rotation angle range of the rotor and spaced apart radially outward from the rotation axis on the substrate, and the magnetic flux from the magnet Depends on direction A magnetic sensor that outputs an electric signal, and a cover for closing the casing from the back of the substrate, the shaft end portion of the rotary shaft is characterized in that it is supported by a bearing hole formed in the inner wall of the cover.
 この発明では、中間部を環状軸受で支持された回転軸から半径方向外側に離れた位置でロータにマグネットを取付け、更に磁気センサも回転軸から半径方向外側に離れて基板上に設けており、回転軸の後端をカバーに形成した軸受穴で支持する構成としている。そのため長期の使用に渡って回転軸の角度ブレを小さく保つことができ、耐久性を高めることができる。 In the present invention, a magnet is attached to the rotor at a position spaced radially outward from the rotating shaft supported by the annular bearing at the intermediate portion, and a magnetic sensor is also provided on the substrate spaced radially outward from the rotating shaft, The rear end of the rotating shaft is supported by a bearing hole formed in the cover. For this reason, the angular blur of the rotating shaft can be kept small over a long period of use, and durability can be enhanced.
この発明による角度センサの一実施例を示す斜視図。The perspective view which shows one Example of the angle sensor by this invention. 図1Aの正面図。The front view of FIG. 1A. 図1Bの2A-2A断面図。2A-2A sectional view of FIG. 1B. 図1Bの2B-2B断面図。2B-2B sectional view of FIG. 1B. 図1に示した角度センサの分解斜視図。The disassembled perspective view of the angle sensor shown in FIG. マグネットのロータへの取り付けを説明するための図。The figure for demonstrating the attachment to the rotor of a magnet. 回転軸が中立角度位置の状態にある時の図2Aの5A-5A断面図。FIG. 5B is a cross-sectional view taken along the line 5A-5A in FIG. 2A when the rotation shaft is in a neutral angle position state. 図5Aの部分拡大図。The elements on larger scale of FIG. 5A. 回転軸を反時計方向に回しきった状態の断面図。Sectional drawing of the state which rotated the rotating shaft counterclockwise. 回転軸を時計方向に回しきった状態の断面図。Sectional drawing of the state which rotated the rotating shaft clockwise. マグネットと磁気センサの位置関係を説明するための図。The figure for demonstrating the positional relationship of a magnet and a magnetic sensor. この発明の角度センサによる回転角度と出力電圧の関係の例を示すグラフ。The graph which shows the example of the relationship between the rotation angle by the angle sensor of this invention, and output voltage. 変形実施例の図5Aに対応する断面図。Sectional drawing corresponding to FIG. 5A of a modified example. 従来の角度センサの分解斜視図。The exploded perspective view of the conventional angle sensor.
 この発明の実施形態を図面を参照して実施例により説明する。
 この発明による非接触式角度センサは、回転軸を回動して中立角度位置からの回転角度に対応する電気信号を出力するものである。図1A,1Bはこの発明による非接触式角度センサの一実施例の外観を示したものであり、図2Aは図1Bにおける2A-2A断面,図2Bは図1Bにおける2B-2B断面の構造を示したものである。また、図3は各部に分解して示したものである。
Embodiments of the present invention will be described with reference to the drawings.
The non-contact angle sensor according to the present invention outputs an electric signal corresponding to the rotation angle from the neutral angle position by rotating the rotation shaft. 1A and 1B show the appearance of an embodiment of a non-contact type angle sensor according to the present invention. FIG. 2A is a cross-sectional view taken along line 2A-2A in FIG. 1B, and FIG. 2B is a cross-sectional view taken along line 2B-2B in FIG. It is shown. FIG. 3 is an exploded view of each part.
 ケース20は円筒状の収容部21を有し、収容部21の背面側にはその外周面から方形板状の端子導出部22が半径方向に突出形成され、収容部21の前面側にはその外周面から一対の取り付け部23が互いに半径方向逆向きにフランジ状に大きく突出形成されている。また、収容部21の前面には収容部21と同心状に段付きの円筒部24が突出形成されている。収容部21の内周面には断面が円弧状で回転中心線方向に延長されたばね受け25が図2Bに破線で示すように突出形成されており、後述の図5A,5Bに示すようにその周方向一端面25a,25bで後述のコイルばね35の一端35a,35bを弾性的に受ける。そのばね受け25の後端面の周方向中央から更に、周方向幅が狭くされたストッパー26が図2Bに破線で示すように円筒部24の中心線方向に延長形成されている。なお、図2Aは図1Bにおいて2A-2A断面を上下反転して示している。 The case 20 has a cylindrical accommodating portion 21, and a rectangular plate-like terminal lead-out portion 22 is formed in a radially projecting manner from the outer peripheral surface of the accommodating portion 21 on the back side thereof. A pair of attachment portions 23 are formed so as to protrude from the outer peripheral surface in a flange shape in opposite directions in the radial direction. Further, a stepped cylindrical portion 24 is formed on the front surface of the accommodating portion 21 so as to be concentric with the accommodating portion 21. A spring receiver 25 is formed on the inner peripheral surface of the housing portion 21 in a circular arc shape and extended in the direction of the rotation center line as shown by a broken line in FIG. 2B, and as shown in FIGS. 5A and 5B to be described later, One end 35a, 35b of a coil spring 35, which will be described later, is elastically received by the circumferential end surface 25a, 25b. A stopper 26 having a narrower circumferential width is formed extending from the center of the rear end surface of the spring receiver 25 in the direction of the center line of the cylindrical portion 24 as indicated by a broken line in FIG. 2B. Note that FIG. 2A shows the 2A-2A section upside down in FIG. 1B.
 ケース20の円筒部24には環状軸受31が収容配置されており、また一対の取り付け部23の各スリーブ穴23aには金属製のスリーブ32が収容配置されている。ケース20及び環状軸受31はそれぞれ合成樹脂製とされ、この例では環状軸受31及びスリーブ32はケース20にインサート成形されている。なお、ケース20と環状軸受31は共に合成樹脂製とされるが、ケース20には高剛性で難燃性に優れた樹脂を用い、環状軸受31には耐摩耗性に優れた樹脂を用いる。 An annular bearing 31 is accommodated in the cylindrical portion 24 of the case 20, and a metal sleeve 32 is accommodated in each sleeve hole 23 a of the pair of attachment portions 23. The case 20 and the annular bearing 31 are each made of synthetic resin. In this example, the annular bearing 31 and the sleeve 32 are insert-molded in the case 20. The case 20 and the annular bearing 31 are both made of a synthetic resin. However, a resin having high rigidity and excellent flame retardancy is used for the case 20, and a resin having excellent wear resistance is used for the annular bearing 31.
 ロータ40は円板部41と、その円板部41と同心状にその一面から直角に軸方向に突出形成された断面が円弧状の一対のばねガイド42,43とを有し、合成樹脂で成型されている。一対のばねガイド42,43はそれぞれ断面円弧状をなし、それら円弧は同一円周上に位置されている。円板部41には、一方のばねガイド43の外周側に位置する部分に円弧状の切り欠き41a(図4参照)が形状されている。この切り欠き41aはロータ40をケース20の収容部21内に装着する時に、収容部内周面に突出形成されたばね受け25を通過させると共に、装着後はストッパー26の回動範囲を制限することによりローター40の回動可能範囲を規定している。 The rotor 40 has a disc portion 41 and a pair of spring guides 42 and 43 that are concentric with the disc portion 41 and project in the axial direction at right angles from one surface thereof and are arc-shaped in cross section. Molded. The pair of spring guides 42 and 43 each have an arc shape in cross section, and these arcs are positioned on the same circumference. In the disk portion 41, an arc-shaped notch 41a (see FIG. 4) is formed in a portion located on the outer peripheral side of one spring guide 43. When the rotor 40 is mounted in the housing portion 21 of the case 20, the notch 41 a allows the spring receiver 25 that is formed to protrude on the inner peripheral surface of the housing portion to pass therethrough and restricts the rotation range of the stopper 26 after mounting. The range in which the rotor 40 can be rotated is defined.
 円柱状の回転軸33は金属製とされ、その一端には小判形部33aが形成され、さらに小判形部33aの先端面に小径の軸端部33bが突出形成されている。回転軸33とロータ40の回転中心が一致するように小判形部33aがロータ40の円板部41にインサート成形されてロータ40と一体化され、ばねガイド42,43のなす円弧の中心に位置される。なお、小判形部33aの先端面に形成されている軸端部33bはロータ40の円板部41の背面側より突出される。 The cylindrical rotary shaft 33 is made of metal, and has an oval portion 33a formed at one end thereof, and a small-diameter shaft end portion 33b is formed to protrude from the tip surface of the oval portion 33a. The oval portion 33a is insert-molded into the disc portion 41 of the rotor 40 so that the rotation axis 33 and the rotation center of the rotor 40 coincide with each other, and is integrated with the rotor 40, and is positioned at the center of the arc formed by the spring guides 42 and 43. Is done. Note that the shaft end portion 33 b formed on the front end surface of the oval portion 33 a protrudes from the back side of the disc portion 41 of the rotor 40.
 図4に示すようにロータ40の円板部41の背面側には長方形板状のマグネット34が回転軸33から半径方向外側に離れた位置に取り付けられる。マグネット34は、その長辺方向に磁化されており、その長辺はロータ40の回転接線方向とされている。 As shown in FIG. 4, a rectangular plate-shaped magnet 34 is attached to the back side of the disc portion 41 of the rotor 40 at a position away from the rotation shaft 33 radially outward. The magnet 34 is magnetized in the long side direction, and the long side is set to the rotational tangent direction of the rotor 40.
 コイルばね35は回転軸33に挿通されてロータ40の一対のばねガイド42,43内の空間に収容される。一対のばねガイド42,43はコイルばね35の外径に沿ってコイルばね35を囲み、これによりコイルばね35は一対のばねガイド42,43に外接して保持される。 The coil spring 35 is inserted into the rotary shaft 33 and accommodated in a space in the pair of spring guides 42 and 43 of the rotor 40. The pair of spring guides 42, 43 surround the coil spring 35 along the outer diameter of the coil spring 35, so that the coil spring 35 is held in contact with the pair of spring guides 42, 43.
 回転軸33はケース20にインサート成形されている環状軸受31の穴31aに挿通されて中間部で軸支されている。ケース20の円筒部24において環状軸受31の前方にはリップシール36が配置され、さらにその前方にリップシール36の移動を規制するワッシャ37、Eリング38が配置される。Eリング38は回転軸33に設けられているEリング挿入溝33cに嵌め込まれ、リップシール36とワッシャ37の脱落を防いでいる。ケース20の前面側はリップシール36によって封止される。 The rotary shaft 33 is inserted into a hole 31a of an annular bearing 31 that is insert-molded in the case 20, and is pivotally supported at an intermediate portion. A lip seal 36 is disposed in front of the annular bearing 31 in the cylindrical portion 24 of the case 20, and a washer 37 and an E ring 38 for restricting the movement of the lip seal 36 are disposed in front of the lip seal 36. The E-ring 38 is fitted into an E-ring insertion groove 33c provided on the rotary shaft 33, and prevents the lip seal 36 and the washer 37 from falling off. The front side of the case 20 is sealed with a lip seal 36.
 ケース20の収容部21の背面側開口部には基板50がロータ40の背面と間隔を空けて平行に取り付けられる。基板50は中心に軸穴59が形成された円形部51と、その円形部51の外周円弧辺から半径方向外側に延長された方形部52をと有している。基板50には図示してないプリント配線が形成されており、基板50上には回転軸33から半径方向外側に離れて、かつ回転軸33の軸方向においてマグネット34と間隔を空けて磁気センサ53が設けられている。磁気センサ53には磁気抵抗素子と複数の抵抗とから構成されたブリッジ回路が含まれており、ブリッジ回路の磁気抵抗素子としてGMR素子(Giant Magneto Resistance素子)を使用した磁気センサはモールドパッケージ部品として市販されている。ブリッジ回路の差分出力である磁気センサ53の出力は基板50上に設けられた差動増幅器54により増幅される。差動増幅器54の出力は端子61から検出角度を表す電圧として出力される。 The substrate 50 is attached to the opening on the back side of the housing portion 21 of the case 20 in parallel with the back surface of the rotor 40 with a gap. The substrate 50 includes a circular portion 51 having a shaft hole 59 formed in the center, and a rectangular portion 52 extending radially outward from the outer peripheral arc side of the circular portion 51. A printed wiring (not shown) is formed on the substrate 50, and the magnetic sensor 53 is spaced apart from the rotating shaft 33 radially outward from the rotating shaft 33 and spaced apart from the magnet 34 in the axial direction of the rotating shaft 33. Is provided. The magnetic sensor 53 includes a bridge circuit composed of a magnetoresistive element and a plurality of resistors. A magnetic sensor using a GMR element (Giant Magneto Resistance element) as a magnetoresistive element of the bridge circuit is used as a mold package component. It is commercially available. The output of the magnetic sensor 53 that is the differential output of the bridge circuit is amplified by a differential amplifier 54 provided on the substrate 50. The output of the differential amplifier 54 is output from the terminal 61 as a voltage representing the detection angle.
 基板50の方形部52には端子挿入穴58が形成されており、これら端子挿入穴58には端子61がそれぞれかしめられて取り付けられる。なお、図3では端子61のかしめ部61aはかしめられた後の形状として示している。磁気センサ53、作動増幅器54に対する電源供給、角度検出電圧の導出などは基板50上のプリント配線を通して端子61から行われる。 Terminal insertion holes 58 are formed in the rectangular portion 52 of the substrate 50, and terminals 61 are respectively caulked and attached to these terminal insertion holes 58. In FIG. 3, the caulking portion 61a of the terminal 61 is shown as a shape after being caulked. The power supply to the magnetic sensor 53 and the operational amplifier 54, the derivation of the angle detection voltage, and the like are performed from the terminal 61 through the printed wiring on the substrate 50.
 基板50はケース20の収容部21内に圧入され、収容部21の内周壁に形成された突き当て部21aに突き当てられて収容される。これにより、基板50は回転軸33の軸方向に位置決めされる。 The substrate 50 is press-fitted into the accommodating portion 21 of the case 20 and is abutted against and abutted against the abutting portion 21 a formed on the inner peripheral wall of the accommodating portion 21. Thereby, the substrate 50 is positioned in the axial direction of the rotary shaft 33.
 ケース20の収容部21の背面側開口部にはさらに基板50の背後からカバー62が取り付けられる。カバー62はケース20の収容部21内に設けられている熱かしめ部21bを熱かしめすることによって固定される。カバー62の内面には回転軸33の先端に形成されている径が細くされた軸端部33bを軸受する軸受穴62aが形成されており、軸端部33bはこの軸受穴62aに軸支される。従って、回転軸33はその中間部と後端部で支持されることになる。 A cover 62 is further attached to the opening on the back side of the housing portion 21 of the case 20 from behind the substrate 50. The cover 62 is fixed by heat caulking a heat caulking portion 21b provided in the housing portion 21 of the case 20. A bearing hole 62a is formed on the inner surface of the cover 62 for bearing a shaft end portion 33b with a reduced diameter formed at the tip of the rotary shaft 33. The shaft end portion 33b is pivotally supported by the bearing hole 62a. The Therefore, the rotating shaft 33 is supported by the intermediate portion and the rear end portion thereof.
 ケース20に取り付けられたカバー62の周囲には図2A,2Bに示したように接着剤63が塗布・充填され、これによりケース20の背面側が封止される。また、この例ではケース20内部において端子61が位置する部分に空間部を設け、端子61の周囲及びかしめ部61aの周囲にも図2Bに示したように接着剤63を充填している。これにより、端子61は堅固に固定され、また端子61間の水分の電気分解によるイオンマイグレーションを防止することができるものとなっている。 The adhesive 63 is applied and filled around the cover 62 attached to the case 20 as shown in FIGS. 2A and 2B, and the back side of the case 20 is thereby sealed. Further, in this example, a space is provided in the portion where the terminal 61 is located inside the case 20, and the periphery of the terminal 61 and the periphery of the caulking portion 61a are filled with the adhesive 63 as shown in FIG. 2B. Thereby, the terminal 61 is firmly fixed, and ion migration due to water electrolysis between the terminals 61 can be prevented.
 次に、コイルばね35の径方向に導出されている両端部35a,35bの、ケース20内における位置・係止状態について図5A,5Bを参照して説明する。 Next, the position / locking state in the case 20 of both end portions 35a and 35b led out in the radial direction of the coil spring 35 will be described with reference to FIGS. 5A and 5B.
 図5Aは図2Aにおける5A-5A断面を示し、回転軸33が中立角度位置に位置している状態を示したものであり、図5Bは図5Aにおける破線で囲まれる領域の拡大図を示す。ロータ40の断面が円弧状のバネガイド43の円弧角とケース20の内周面に回転軸方向に突設された円弧状のバネ受け25の円弧角はほぼ等しくされている。コイルばね35の両端部35a,35bはロータ40のばねガイド43の周方向両端面43a,43bと、ケース20の内周面のばね受25の周方向両端面25a,25bとを挟んで弾接されている。これにより、回転軸33の中立角度位置におけるロータ40とケース20の周方向の相対的ガタを抑圧している。 FIG. 5A shows a cross section taken along 5A-5A in FIG. 2A, showing a state where the rotating shaft 33 is located at a neutral angle position, and FIG. 5B shows an enlarged view of a region surrounded by a broken line in FIG. 5A. The arc angle of the spring guide 43 whose section of the rotor 40 is arc-shaped and the arc angle of the arc-shaped spring receiver 25 projecting in the direction of the rotation axis on the inner peripheral surface of the case 20 are substantially equal. Both end portions 35 a and 35 b of the coil spring 35 are elastically contacted with both end surfaces 43 a and 43 b in the circumferential direction of the spring guide 43 of the rotor 40 and both end surfaces 25 a and 25 b in the circumferential direction of the spring receiver 25 on the inner peripheral surface of the case 20. Has been. Thereby, the relative play in the circumferential direction of the rotor 40 and the case 20 at the neutral angle position of the rotation shaft 33 is suppressed.
 図6A,6Bはそれぞれ回転軸33が反時計方向及び時計方向に回転された状態を示したものであり、ロータ40のばねガイド43は図6Aではコイルばね35の一方の端部35aをその弾性に抗して押圧し、図6Bでは他方の端部35bをその弾性に抗して押圧している。ロータ40が回転することによりマグネット34からの磁気センサ53を透過する磁束の方向が回転し、所望の出力信号を端子61より得ることができる。回転軸33の回転力を解除すると、コイルばね35の弾性復元力により、ロータ40及び回転軸33は図5Aに示した元の中立角度位置に復帰する。 6A and 6B show a state in which the rotary shaft 33 is rotated counterclockwise and clockwise, respectively. In FIG. 6A, the spring guide 43 of the rotor 40 is elastically connected to one end 35a of the coil spring 35 in FIG. 6A. 6B, the other end 35b is pressed against its elasticity. As the rotor 40 rotates, the direction of the magnetic flux passing through the magnetic sensor 53 from the magnet 34 rotates, and a desired output signal can be obtained from the terminal 61. When the rotational force of the rotating shaft 33 is released, the rotor 40 and the rotating shaft 33 are returned to the original neutral angle position shown in FIG. 5A by the elastic restoring force of the coil spring 35.
 図7は基板50に固定された磁気センサ53に対するロータ33に固定されたマグネット34の回転角度位置と互いの重なりの関係の例を示す。磁気センサ53は短辺の長さAと長辺の長さBとが近い矩形のモールドパッケージであり、その中心Osは回転軸の中心Oxから距離Rsだけ離れており、中心OxとOsを結ぶ直線は長辺と平行とされている。マグネット34は長辺の長さLが短辺の長さWの少なくとも2倍以上の長方形であり、長辺方向に磁化されている。マグネット34の短辺の長さWは好ましくは磁気センサ53の長辺の長さBに対しB/2<W<Bとされている。 FIG. 7 shows an example of the relationship between the rotation angle position of the magnet 34 fixed to the rotor 33 and the mutual overlapping with respect to the magnetic sensor 53 fixed to the substrate 50. The magnetic sensor 53 is a rectangular mold package having a short side length A and a long side length B close to each other. The center Os is separated from the center Ox of the rotation axis by a distance Rs, and connects the centers Ox and Os. The straight line is parallel to the long side. The magnet 34 is a rectangle whose long side length L is at least twice as long as the short side length W, and is magnetized in the long side direction. The length W of the short side of the magnet 34 is preferably B / 2 <W <B with respect to the length B of the long side of the magnetic sensor 53.
 中立角度位置においてはマグネット34と磁気センサ53の配置は中心OxとOsを結ぶ直線に対し対称なので、一方向の回転についてのみ説明する。ロータの中立角度位置において、マグネット34の中心Omが中心OsとOx間の直線上にあり、マグネット34は磁気センサ53の、中心Ox側の少なくとも半分を覆っている。回転軸を時計方向に角度θだけ回転し、マグネット34が破線で示す位置となった時、角度センサが使用される目的に要求される検出出力電圧となるよう磁気センサ53の寸法に対しマグネット34の寸法及び回転軸中心Oxから磁気センサ53及びマグネット34の中心Os,Omまでの距離Rs,Rm等を決める。 Since the arrangement of the magnet 34 and the magnetic sensor 53 is symmetrical with respect to the straight line connecting the centers Ox and Os at the neutral angle position, only rotation in one direction will be described. At the neutral angle position of the rotor, the center Om of the magnet 34 is on the straight line between the centers Os and Ox, and the magnet 34 covers at least half of the magnetic sensor 53 on the center Ox side. When the rotation axis is rotated clockwise by an angle θ, and the magnet 34 reaches the position indicated by the broken line, the magnet 34 has a size corresponding to the size of the magnetic sensor 53 so that the detected output voltage is required for the purpose of using the angle sensor. And the distances Rs and Rm from the rotation axis center Ox to the centers Os and Om of the magnetic sensor 53 and the magnet 34 are determined.
 例えば、磁気センサ53の長辺と短辺の比B/Aを1.25とし、マグネットの長辺と短辺の比L/Wを4とし、Rs/A=1.5とした場合、例えば図8に示すように、回転角度θと検出電圧の関係は中立角度位置(θ=0°)を挟んでほぼ±22°の範囲でほぼ線形の関係が得られた。 For example, when the ratio B / A of the long side to the short side of the magnetic sensor 53 is 1.25, the ratio L / W of the long side to the short side of the magnet is 4, and Rs / A = 1.5, for example, as shown in FIG. As described above, the relationship between the rotation angle θ and the detection voltage is almost linear within a range of about ± 22 ° across the neutral angle position (θ = 0 °).
[変形実施例]
 前述の実施例では回転軸を回動して中立角度位置を中心とする両方向の角度範囲で回動可能な角度センサの例を示したが、中立角度位置から一方向のみの角度範囲で回動可能にしてもよい。その場合は、例えば図9に図5Aと対応させて断面を示すように、回転軸33の中立角度位置においてケース20の内周面から中心方向に突出したばね受け25と、ロータ40のばねガイド43が回転軸33を中心とする同一円周上で隣接するように形成される。このとき、ばねガイド42の左回り方向端面からばね受け25までの左回り回動許容角範囲は少なくとも2θとなるようばねガイド42は形成されている。図9の中立角度位置を図7に示す破線で示すマグネットの角度位置を中立角度位置とし、左回りに回転軸を回動させて回転角の増加と共に出力電圧が大となる特性を得るためには、マグネットの磁化方向を図7,8で説明した実施例の場合の磁化方向と逆にする。この構成により中立角度位置から反時計方向に2θまで回転角の検出を可能とできる。
[Modification]
In the above-described embodiment, an example of an angle sensor that can rotate in a bi-directional angle range centered on the neutral angle position by rotating the rotation shaft has been described. However, the angle sensor can be rotated only in one direction from the neutral angle position. It may be possible. In this case, for example, as shown in FIG. 9 corresponding to FIG. 5A, the spring receiver 25 protruding in the center direction from the inner peripheral surface of the case 20 at the neutral angle position of the rotary shaft 33 and the spring guide of the rotor 40. 43 are formed so as to be adjacent to each other on the same circumference around the rotation shaft 33. At this time, the spring guide 42 is formed so that the counterclockwise rotation allowable angle range from the counterclockwise end surface of the spring guide 42 to the spring receiver 25 is at least 2θ. To obtain the characteristic that the output voltage increases as the rotation angle increases by turning the rotation shaft counterclockwise by setting the neutral angle position of FIG. 9 to the neutral angle position indicated by the broken line shown in FIG. The magnetization direction of the magnet is reversed to the magnetization direction in the embodiment described with reference to FIGS. With this configuration, the rotation angle can be detected from the neutral angle position to 2θ counterclockwise.
 以上説明したように、この発明による角度センサでは基板50の表面と対向するロータ40の後端面に回転軸33から半径方向にずらしてマグネット34が取り付けられ、回転軸33の中間部が環状軸受31で支持されるのに加えて、回転軸33の後端部の軸端部33bをカバー62の軸受穴62aで支持しているため、特許文献1による図10のように回転軸10の後端部にマグネット2が取り付けられ、従って後端部が支持されてない構成に比べて、回転軸の角度ブレが少なく、長期間に渡って耐久性が高い。 As described above, in the angle sensor according to the present invention, the magnet 34 is attached to the rear end surface of the rotor 40 facing the surface of the substrate 50 while being shifted in the radial direction from the rotary shaft 33, and the intermediate portion of the rotary shaft 33 is the annular bearing 31. In addition, the shaft end portion 33b of the rear end portion of the rotating shaft 33 is supported by the bearing hole 62a of the cover 62, so that the rear end of the rotating shaft 10 as shown in FIG. Compared to the configuration in which the magnet 2 is attached to the part and the rear end part is not supported, the angular blur of the rotating shaft is less and the durability is high over a long period of time.
 なお、この角度センサは例えば電動カートやスクータ等における前進・後退アクセルレバーの回転角の検出や、自動車のアクセルの踏み込み角度の検出等に用いられる。 Note that this angle sensor is used, for example, for detecting the rotation angle of a forward / reverse accelerator lever in an electric cart, a scooter or the like, or detecting the depression angle of an automobile accelerator.

Claims (3)

  1.  ケースと、
     前記ケース内に回転可能に収容されたロータと、
     前記ケースから突出した一端と、前記ロータの回転中心に挿通固定された他端とを有する回転軸と、
     前記ケース内で前記回転軸が挿通され、前記ケースに対し前記ロータを中立角度位置に付勢するコイルばねと、
     前記ケース内に固定され、前記回転軸が挿通されてその中間部を回動自由に支持する環状軸受と、
     前記ロータの後端面に、前記回転軸から半径方向外側に離れて固定され、前記ロータの回転接線方向に磁化されているマグネットと、
     前記ケース内に固定され、前記ロータの後端面と間隔を空けて対向し、前記回転軸の軸端部を自由に挿通させる軸穴が形成された基板と、
     前記基板上に前記回転軸から半径方向外側に離れて前記ロータの回転角度範囲内で前記マグネットの少なくとも一部と回転軸方向に一定の間隔を空けて対向し、前記マグネットからの磁束の方向に依存した電気信号を出力する磁気センサと、
     前記基板の背面から前記ケースを閉じるカバーと、
    を含み、
     前記回転軸の前記軸端部は前記カバーの内壁に形成された軸受穴に支持されている非接触式角度センサ。
    Case and
    A rotor rotatably accommodated in the case;
    A rotating shaft having one end protruding from the case and the other end inserted and fixed at the rotation center of the rotor;
    A coil spring through which the rotating shaft is inserted and energizing the rotor to a neutral angle position with respect to the case;
    An annular bearing fixed in the case, the rotation shaft being inserted therethrough, and rotatably supporting an intermediate portion thereof;
    A magnet that is fixed to the rear end surface of the rotor so as to be radially outward from the rotating shaft and is magnetized in the rotational tangential direction of the rotor;
    A substrate fixed in the case, opposed to the rear end surface of the rotor with a space therebetween, and formed with a shaft hole through which the shaft end of the rotating shaft is freely inserted;
    On the substrate, facing away from the rotation axis in the radial direction and facing at least a part of the magnet at a certain distance in the rotation axis direction within a rotation angle range of the rotor, in the direction of the magnetic flux from the magnet A magnetic sensor that outputs a dependent electrical signal;
    A cover for closing the case from the back of the substrate;
    Including
    The shaft end of the rotating shaft is a non-contact angle sensor supported by a bearing hole formed in the inner wall of the cover.
  2.  請求項1記載の非接触式角度センサにおいて、前記ロータは前記回転軸を中心として前記コイルばねを囲み、前記コイルばねの外径に沿う断面円弧状のばねガイドを備え、
     前記ケースはその内周面から中心に向かって突出したばね受けを備え、
     前記コイルばねの径方向に導出された両端部の一方は前記ばねガイドの周方向一端と前記ロータの一方の回転方向において弾接し、前記コイルばねの径方向に導出された他端部は前記ばね受けの周方向一端と前記ロータの他方の回転方向において弾接されている。
    2. The non-contact angle sensor according to claim 1, wherein the rotor includes a spring guide that surrounds the coil spring around the rotation axis and has an arcuate cross section along an outer diameter of the coil spring,
    The case includes a spring support protruding from the inner peripheral surface thereof toward the center,
    One end of both ends derived in the radial direction of the coil spring is in elastic contact with one circumferential direction end of the spring guide in one rotational direction of the rotor, and the other end derived in the radial direction of the coil spring is the spring. It is elastically contacted with the circumferential end of the receiver in the other rotational direction of the rotor.
  3.  請求項1又は2記載の非接触式角度センサにおいて、前記マグネットは長辺の長さが短辺の長さの少なくとも2倍以上の長方形であり、その長辺方向に磁化されており、前記マグネットの短辺の長さは前記磁気センサの、回転軸半径方向の長さの半分より大とされている。 3. The non-contact angle sensor according to claim 1, wherein the magnet has a rectangular shape whose long side is at least twice as long as the short side, and is magnetized in the long side direction. The length of the short side of the magnetic sensor is larger than half the length of the magnetic sensor in the radial direction of the rotation axis.
PCT/JP2011/073648 2010-11-12 2011-10-14 Non-contact angle sensor WO2012063599A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180047924.1A CN103154671B (en) 2010-11-12 2011-10-14 Non-contact angle sensor
NZ608672A NZ608672A (en) 2010-11-12 2011-10-14 Non-contact angle sensor
HK13109922.9A HK1182761A1 (en) 2010-11-12 2013-08-26 Non-contact angle sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010253464A JP5475618B2 (en) 2010-11-12 2010-11-12 Non-contact angle sensor
JP2010-253464 2010-11-12

Publications (1)

Publication Number Publication Date
WO2012063599A1 true WO2012063599A1 (en) 2012-05-18

Family

ID=46050752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073648 WO2012063599A1 (en) 2010-11-12 2011-10-14 Non-contact angle sensor

Country Status (5)

Country Link
JP (1) JP5475618B2 (en)
CN (1) CN103154671B (en)
HK (1) HK1182761A1 (en)
NZ (1) NZ608672A (en)
WO (1) WO2012063599A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122862A (en) * 2012-12-21 2014-07-03 Hitachi Constr Mach Co Ltd Angle detection device for construction machine
CN105162045A (en) * 2015-10-29 2015-12-16 国网山东省电力公司莱芜供电公司 Trolley special for assembly and disassembly of high-position grounding wire
JP2017090288A (en) * 2015-11-12 2017-05-25 川崎重工業株式会社 Change drum rotational position detector and motorcycle
CN107796298B (en) * 2016-09-05 2024-04-19 泰科电子(上海)有限公司 Angle sensor
CN110326197B (en) * 2016-09-23 2021-10-19 苏州力特奥维斯保险丝有限公司 Rotary position sensor with dual magnet configuration
US11125583B2 (en) 2016-09-23 2021-09-21 Suzhou Littelfuse Ovs Co., Ltd. Integrated dual rotary position sensor
CN109341636B (en) * 2018-09-19 2024-03-12 西安旭彤电子科技股份有限公司 Self-resetting angular displacement sensor
JP7334560B2 (en) * 2019-09-26 2023-08-29 日本精機株式会社 Rotation angle detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388118U (en) * 1989-12-25 1991-09-09
JP2001208510A (en) * 2000-01-28 2001-08-03 Denso Corp Angle-of-rotation detector
US20040174159A1 (en) * 2003-03-05 2004-09-09 Claudia Ramirez Securement feature for rotary position sensor
US6816770B1 (en) * 2004-03-26 2004-11-09 Sunpex Technology Co., Ltd. Direction and speed control device for a motor vehicle
JP2007516415A (en) * 2003-06-25 2007-06-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Device with magnetic field dependent angle sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3141647B2 (en) * 1993-04-15 2001-03-05 松下電器産業株式会社 Rotary electronic components
JP3475549B2 (en) * 1995-02-24 2003-12-08 株式会社デンソー Non-contact type position sensor
JP5069210B2 (en) * 2008-12-15 2012-11-07 東京コスモス電機株式会社 Rotation angle sensor
CN201407991Y (en) * 2009-05-15 2010-02-17 河北衡绅汽车电子有限公司 Non-contact angle sensor for electronic accelerator pedals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388118U (en) * 1989-12-25 1991-09-09
JP2001208510A (en) * 2000-01-28 2001-08-03 Denso Corp Angle-of-rotation detector
US20040174159A1 (en) * 2003-03-05 2004-09-09 Claudia Ramirez Securement feature for rotary position sensor
JP2007516415A (en) * 2003-06-25 2007-06-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Device with magnetic field dependent angle sensor
US6816770B1 (en) * 2004-03-26 2004-11-09 Sunpex Technology Co., Ltd. Direction and speed control device for a motor vehicle

Also Published As

Publication number Publication date
JP2012103185A (en) 2012-05-31
CN103154671B (en) 2015-07-08
CN103154671A (en) 2013-06-12
NZ608672A (en) 2013-12-20
HK1182761A1 (en) 2013-12-06
JP5475618B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2012063599A1 (en) Non-contact angle sensor
JP4470577B2 (en) Rotation angle detector
JP5301864B2 (en) Rotational position sensor
JP4376150B2 (en) Rotation angle detector
US6252394B1 (en) Rotary movement sensor equipped with means of assembly with a drive shaft designed to minimize the effects of a misalignment in the connection
JP5069210B2 (en) Rotation angle sensor
JP5102083B2 (en) Rotation sensor unit
JP2012103185A5 (en)
JP2005345153A (en) Rotation angle detector
JP7066706B2 (en) Torque index sensor and steering device including it
JP2006017663A (en) Rotation-angle sensitive device
JP2010286299A (en) Rotation angle sensor
JP3958115B2 (en) Rotation detector
JP2007187540A (en) Angle detector
US6400144B1 (en) Magnetic position sensor on a common supporting element
WO2007119323A1 (en) Angle detection device
JP2009019926A (en) Magnetic angle sensor
JP5343592B2 (en) Encoder
JP5400571B2 (en) Angular position sensor for assembly on a rotating shaft
JP2000155025A (en) Rotary sensor
JP5192926B2 (en) Rotation angle detector
JP2003194580A (en) Angle-of-rotation sensor
JP2001133212A (en) Non-contact type rotation angle sensor and sensor core
KR102534522B1 (en) Assembly for sensing and apparatus for steering
JP2001141412A (en) Non-contact type rotating angle sensor and sensor core

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047924.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839611

Country of ref document: EP

Kind code of ref document: A1