WO2012063591A1 - Processes for producing porous metal body and porous metal-containing body, and porous metal body and porous metal-containing body - Google Patents

Processes for producing porous metal body and porous metal-containing body, and porous metal body and porous metal-containing body Download PDF

Info

Publication number
WO2012063591A1
WO2012063591A1 PCT/JP2011/073481 JP2011073481W WO2012063591A1 WO 2012063591 A1 WO2012063591 A1 WO 2012063591A1 JP 2011073481 W JP2011073481 W JP 2011073481W WO 2012063591 A1 WO2012063591 A1 WO 2012063591A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
porous body
metal
polymer
porous
Prior art date
Application number
PCT/JP2011/073481
Other languages
French (fr)
Japanese (ja)
Inventor
宇山浩
辻本敬
嶋村剛直
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2012542851A priority Critical patent/JP5769153B2/en
Publication of WO2012063591A1 publication Critical patent/WO2012063591A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1137Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers by coating porous removable preforms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1089Alloys containing non-metals by partial reduction or decomposition of a solid metal compound

Definitions

  • the present invention relates to a metal porous body, a method for producing a metal-containing porous body, a metal porous body, and a metal-containing porous body.
  • Porous materials and porous membranes are often used in various fields as separating agents, adsorbents, and the like.
  • As the inorganic porous material a great deal of research has been conducted on silica-based porous materials.
  • silica-based porous bodies a technique for producing porous silica particles is common. This porous silica particle has been put to practical use as an analytical material.
  • a lump of material having a structure in which a continuous skeleton and voids are intertwined with each other is called a monolith body.
  • the present inventors have already completed a method for producing a thick monolith body by thermally induced phase separation of an acrylic resin or the like (for example, Patent Document 1).
  • the template method is a method in which a metal is attached to the surface of a polymer, colloidal silica, etc., and the polymer is sintered to obtain a porous metal body (for example, Non-Patent Document 1).
  • the thin-film metal porous body obtained by such a method has a pore diameter of about 200 to 600 nm and a medium specific surface area (for example, 10 to 30 m 2 / g in the case of Ni).
  • the metal porous body obtained by such a template method can be expected to be applied to optical materials such as metamaterials, but the metal porous body obtained by any method is a thin film type. This is because the submicron pores in the polymer used as a raw material in the template method are narrow, and as a result, it is difficult to infiltrate metals and metal precursors (metal ions, etc.) into the submicron pores. Conceivable.
  • the metal porous body is produced by a sol-gel method, a metal salt sintering method, a dealloying method, or the like.
  • an organic-inorganic hybrid aerogel can be obtained by a nanomelting process (for example, Non-Patent Document 2).
  • a porous metal body can be produced in the supercritical phase.
  • a porous metal body obtained by such a sol-gel method has a pore diameter of about 2 to 50 nm, a large specific surface area (95 to 300 m 2 / g), a small density (1/170 or less of bulk Fe).
  • Such a sol-gel method has the advantage that the porosity can be controlled by annealing.
  • such a sol-gel method has a problem because volume change and cracking of the obtained metal porous body occur.
  • the metal salt sintering method is a method of obtaining a porous metal body by sintering a paste in which a metal salt and dextrin are mixed (for example, Non-Patent Document 3).
  • the metal porous body obtained by such a metal salt sintering method has a pore diameter of 1 to 15 ⁇ m.
  • the dealloying method uses a difference in reactivity between two or more alloys to elute base metals with electricity or acid (for example, Non-Patent Document 4).
  • the metal porous body obtained by such a dealloying method has a pore diameter of 100 nm or less, a relatively large (70 to 100 m 2 / g when using Raney nickel), and a size of several centimeters. Have.
  • only easy-to-handle metals can be used as raw materials. Specifically, Au—Ag, Au—Cu, Ni—Al (Raney nickel) can be used. Etc. can only be used as raw materials.
  • this dealloying method has a problem in that the metal to be eluted remains in the metal porous body, and the form of the metal porous body obtained is limited to a thin film or a porous body having a small size. There is.
  • the present invention provides a method for producing a thick monolithic metal porous body in a safe and simple manner, and a thick monolithic metal-containing porous body as a raw material for such a metal porous body.
  • the object is to provide a method of manufacturing.
  • the present invention is a method for producing a porous metal body,
  • the manufacturing method includes: Reduction treatment and sintering to a metal ion-containing porous body in which a chelate group and a metal ion of a raw material porous body modified with a functional group having a chelate group are monolithic and containing a polymer as a main component.
  • the metal ion-containing porous body is modified with a functional group having a chelate group
  • the monolithic raw material porous body containing a polymer as a main component is brought into contact with metal ions, and the chelate group of the raw material porous body Obtained by coordination bond with the metal ion
  • the monolithic porous material containing a polymer as a main component, modified with a functional group having a chelate group is converted into a monolithic porous material containing a polymer as a main component, and a functional group having a chelate group.
  • the monolithic porous body containing a polymer as a main component is: A polymer solution is prepared by dissolving the polymer in a liquid containing water and a poor solvent for the polymer, which is miscible with water and excluding water, and water.
  • the polymer is A homopolymer of esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom; A copolymer containing esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom; Homopolymers of methacrylic acid and esters of lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of hydroxy, carboxyl, oxiranyl and halogen atoms, and methacrylic acid and hydroxy 1 or more selected from the group consisting of copolymers
  • the present invention is a method for producing a metal-containing porous body
  • the manufacturing method includes: The metal ion-containing porous body in which the chelate group and metal ion of the raw material porous body modified with a functional group having a chelate group, which is monolithic, and containing a polymer as a main component is coordinated, is subjected to a reduction treatment, Including a step of obtaining a metal-containing porous body, The metal ion-containing porous body is modified with a functional group having a chelate group, the monolithic raw material porous body containing a polymer as a main component is brought into contact with metal ions, and the chelate group of the raw material porous body Obtained by coordination bond with the metal ion, The monolithic porous material containing a polymer as a main component, modified with a functional group having a chelate group, is converted into a monolithic porous material containing a polymer as a main component, and a functional
  • a polymer solution is prepared by dissolving the polymer in a liquid containing water and a poor solvent for the polymer, which is miscible with water and excluding water, and water.
  • the polymer is A homopolymer of esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom; A copolymer containing esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom; Homopolymers of methacrylic acid and esters of lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of hydroxy, carboxyl, oxiranyl and halogen atoms, and methacrylic acid and hydroxy 1 or more selected from the group consisting of copolymers
  • FIG. 1 shows an SEM image of the raw material porous material of p (GM) obtained in Example 1 (2).
  • FIG. 2 shows an SEM image of the PEI-formed raw material porous body obtained in Example 1 (3).
  • FIG. 3 shows an SEM image of the Ni metal-containing porous material obtained in Example 1 (5).
  • FIG. 4 shows an SEM image of the Ni metal porous body obtained in Example 1 (6).
  • FIG. 5 shows an SEM image of the Au metal-containing porous material obtained in Example 2 (2).
  • FIG. 6 shows an SEM image of the Au metal porous body obtained in Example 2 (3).
  • FIG. 7 shows an SEM image of the Cu metal-containing porous material obtained in Example 3 (2).
  • FIG. 8 shows an SEM image of the Cu metal porous body obtained in Example 3 (3).
  • FIG. 9 shows an SEM image of the Ni metal-containing porous material obtained in Example 4 (2).
  • FIG. 10 shows an SEM image of the Ni metal porous body obtained in Example 4 (3).
  • FIG. 11 shows
  • the “metal-containing porous body” is a material containing a metal, preferably a material other than a metal having a plurality of holes, in an object made of a material other than a metal having a plurality of holes. It means a material containing metal on the surface of an object (including the surface in a hole).
  • the “metal porous body” means a metal material having a plurality of pores. This porous metal means that it is substantially made of metal. For example, this metal material means that 90% by weight or more of metal is contained.
  • the “metal ion-containing porous body” is made of a material containing a metal ion in an object made of a material other than a metal having a plurality of pores, preferably a material other than a metal having a plurality of pores. It means a material containing metal ions on the surface of an object (including the surface in a hole).
  • the present invention is a method for producing a metal porous body, which is a monolithic raw material porous body modified with a functional group having a chelate group and containing a polymer as a main component.
  • the metal ion-containing porous body is subjected to reduction treatment and sintering treatment simultaneously or sequentially to obtain a metal porous body.
  • the reduction treatment and the sintering treatment are performed simultaneously, or the reduction treatment is followed by sintering. This is done by performing processing.
  • the said reduction process will not be limited if it is a process which reduces the metal ion contained in the said metal ion containing porous body.
  • the said sintering process will not be limited if it is a process which sinters the polymer contained in the said metal ion containing porous body.
  • the metal ion-containing porous body is subjected to reduction treatment and sintering treatment simultaneously or sequentially to obtain a metal porous body, Sintering the metal ion-containing porous body in a hydrogen atmosphere, or Reducing the metal ion-containing porous body with a reducing agent to convert the metal ions to metal and then sintering in an air atmosphere, It is preferable to be carried out either way.
  • the step of obtaining the metal porous body by sintering the metal ion-containing porous body in a hydrogen atmosphere includes, for example, 1 to 20 in a mixed atmosphere of an inert gas and hydrogen gas. It can be carried out by heating at a rate of ° C / min, preferably 1 to 12 ° C / min.
  • Examples of the inert gas include argon gas and nitrogen gas.
  • the step of converting ions into metal can be performed, for example, as follows.
  • the metal ion-containing porous material is added to the reducing agent solution and shaken at room temperature (eg, 0 to 50 ° C., preferably 20 to 30 ° C.) for 1 to 72 hours.
  • the reducing agent include hydrogen, sodium borohydride, ammonium borohydride, aldehyde, hydrazine, dimethylaminoborane, reducing sugar, alcohol and the like.
  • the solvent for the pre-reducing agent solution include water, methanol, ethanol, 1-propanol, 2-propanol, butanol, dimethyl sulfoxide, dimethylformamide, acetonitrile, tetrahydrofuran, acetone, pyrrolidone and the like.
  • Examples of the concentration of the reducing agent solution include 0.05 to 2M. Thereafter, the porous body is washed with a solvent such as water, and the obtained porous body is dried at room temperature under reduced pressure. In this way, the metal ion-containing porous body can be reduced to convert the metal ions into metal.
  • the step of sintering in an air atmosphere is, for example, Can be done in this way.
  • the metal ion-containing porous body can be reduced and heated at a rate of 1 to 20 ° C./min, preferably 1 to 2 ° C./min while blowing air.
  • a step of further sintering in a hydrogen atmosphere may be optionally performed.
  • the step of sintering in an arbitrary hydrogen atmosphere is performed by reducing the metal ion-containing porous body and sintering it in an air atmosphere, and then, for example, 1 to 20 ° C./min, preferably 1 in a hydrogen atmosphere. Heating can be performed at a rate of ⁇ 10 ° C./min.
  • a porous metal body that is monolithic and thicker than the membrane can be obtained.
  • the shape of the metal porous body is not limited, the shortest of the three directions of the height and width of the metal porous body is referred to as thickness for convenience.
  • the thickness of the metal porous body is, for example, 0.05 mm or more, preferably 0.1 mm or more, more preferably 0.2 mm or more.
  • the porous metal body has, for example, a pore diameter of, for example, 0.001 ⁇ m to 5 ⁇ m, preferably 0.002 ⁇ m to 3 ⁇ m, and a skeleton diameter of the pores of, for example, 0.001 ⁇ m to 5 ⁇ m, preferably 0.002 ⁇ m to 2 ⁇ m. is there.
  • a metal porous body is useful as a catalyst, a battery material, a sensor material, and a deodorizing material.
  • the metal ion-containing porous body is obtained by bringing a raw material porous body modified with a functional group having a chelate group into contact with a metal ion and a raw material porous body containing a polymer as a main component. It can be obtained by coordinating the metal chelate group and the metal ion.
  • the raw material porous body containing a polymer as a main component, which is modified with a functional group having a chelate group, is contacted with a metal ion, and the chelate group of the raw material porous body is coordinated with the metal ion.
  • the step of obtaining the bonded metal ion-containing porous body can be performed, for example, as follows.
  • a solution containing a compound containing a metal ion is added to a raw material porous body that is modified with a functional group having a chelate group and includes a polymer as a main component, and is added at room temperature (for example, 0 to 50 And shake for 1 to 72 hours.
  • the compound containing a metal ion is not limited as long as it contains a metal that can be dissolved in water.
  • Examples of the metal include gold, silver, platinum, palladium, nickel, copper, manganese, rhodium, cobalt, ruthenium, rhenium, molybdenum, tin, zinc, iron, titanium, vanadium, chromium, osmium, iridium, bismuth, cadmium and gallium. Is mentioned.
  • Examples of the solvent for the solution of the compound include water.
  • Examples of the concentration of the solution containing the compound containing metal ions include 0.01 to 2M. Thereafter, the porous body is washed with a solvent such as water, and the obtained porous body is dried at room temperature under reduced pressure. In this way, the step of obtaining a metal ion-containing porous body in which the raw material porous body and metal ions are brought into contact and the chelate group of the raw material porous body and the metal ions are coordinated is performed. it can.
  • the metal ions are gold, silver, platinum, palladium, nickel, copper, manganese, rhodium, cobalt, ruthenium, rhenium, molybdenum, tin, zinc, iron, titanium, vanadium, chromium, osmium, It is preferably at least one selected from the group consisting of ions of iridium, bismuth, cadmium and gallium.
  • the monolithic raw material porous material containing a polymer as a main component which is modified with the functional group having a chelating group, is converted into a monolithic porous material containing a polymer as a main component. It is obtained by modifying with a compound containing a functional group having.
  • the step of modifying the monolithic porous body containing a polymer as a main component with a compound containing a functional group having a chelate group can be performed, for example, as follows.
  • a solution containing a compound containing a functional group having a chelate group is added to the monolithic porous body containing a polymer as a main component, and heated (for example, 20 to 90 ° C., preferably 30 to 80 ° C.). Shake for 2 to 24 hours.
  • the solvent for the solution of the compound include water, methanol, ethanol, propanol, butanol, dimethyl sulfoxide, dimethylformamide, acetonitrile, tetrahydrofuran, acetone, and pyrrolidone.
  • the porous body is washed with a solvent such as water, and the obtained porous body is dried at room temperature under reduced pressure.
  • the step of modifying the monolithic porous body containing a polymer as a main component with a compound containing a functional group having a chelate group can be performed.
  • the compound containing a functional group having a chelate group includes an amine, a condensate of amine and ethylenediaminetetraacetic acid, a condensate of amine and epichlorohydrin, and a condensate of amine and iminodiacetic acid. And a condensate of amine and bromoacetic acid, a compound having a functional group such as phosphine, thiol and carbene.
  • amine alkylamine
  • heterocyclic amines for example, piperazine
  • polyallylamine polyvinylamine and the like.
  • the compound containing a functional group having a chelate group is the condensate
  • the compound is a condensate of an amine and ethylenediaminetetraacetic acid
  • the monolithic porous body containing a polymer as a main component is first converted into an amine. Then, by condensing the amine and ethylenediaminetetraacetic acid, finally, a monolithic raw material porous body containing a polymer as a main component is modified with the functional group having the chelate group.
  • the monolithic porous body containing a polymer as a main component is miscible with water and dissolves the polymer in a liquid containing water and a poor solvent for the polymer excluding water. It is obtained by preparing a polymer solution, separating the polymer precipitate deposited from the polymer solution, and drying the polymer precipitate.
  • the polymer is A homopolymer of esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom;
  • a copolymer containing esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom;
  • Homopolymers of methacrylic acid and esters of lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of hydroxy, carboxyl, oxiranyl and halogen atoms, and methacrylic acid and hydroxy 1 or more selected from the group consisting of copolymers containing esters with lower alkyl alcohols having 1 to 6 carbon atoms which may
  • Examples of homopolymers of esters of acrylic acid and lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom include: , Homopolymers of hydroxymethyl ester of acrylic acid, homopolymers of carboxylic acid carboxyl ethyl ester, homopolymers of glycidyl acrylate, and homopolymers of chloromethyl ester of acrylic acid.
  • Examples of homopolymers of esters of methacrylic acid and lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom include: , Methacrylic acid hydroxymethyl ester homopolymer, methacrylic acid carboxyl ethyl ester homopolymer, glycidyl methacrylate homopolymer, methacrylic acid chloromethyl ester homopolymer, and the like.
  • Examples of the copolymer containing methacrylic acid and esters of a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom include A copolymer of esters and acrylic acid of methacrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom, A copolymer of methacrylic acid and an ester of methacrylic acid with a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom, Methacrylic acid and hydroxy group, carboxy A copolymer of an ester and an acryl
  • Copolymers of methacrylic acid and esters of methacrylic acid esters of lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of hydroxy groups, carboxyl groups, oxiranyl groups and halogen atoms
  • Examples include a copolymer of glycidyl methacrylate and methyl methacrylate.
  • the polymerization method for producing the polymer is not limited, and may be radical polymerization, ionic polymerization, or the like.
  • the monomer composition ratio is not limited, but examples include a polymer whose solubility in water is low.
  • the molar ratio of glycidyl methacrylate is preferably 5 mol% to 50 mol%.
  • the monomer sequence of the polymer may be random, block or the like.
  • the molecular weight of the polymer is not limited, for example, the number average molecular weight (Mn) is 1,000 to 100,000,000, preferably 2,000 to 50,000,000, more preferably 3 , 20,000 to 20,000,000. Further, for example, the weight average molecular weight (Mw) is 1,000 to 150,000,000, preferably 2,000 to 80,000,000, more preferably 3,000 to 40,000,000. is there.
  • the molecular weight distribution is generally measured by size exclusion chromatography. Examples of size exclusion chromatography include gel permeation chromatography (GPC) and gel filtration chromatography (GFC). Using chloroform or THF as the mobile phase of GPC and a polystyrene gel column as the column, the number average molecular weight and the like can be determined in terms of polystyrene.
  • the monolithic porous body containing a polymer as a main component is miscible with water and contains a poor solvent for the polymer excluding water and a liquid containing water.
  • the poor solvent means a solvent having a small ability to dissolve the polymer. Specifically, it means that 50 g or more, preferably 30 g or more, more preferably 10 g or more of the polymer does not dissolve with respect to 1 L of the poor solvent.
  • the poor solvent is miscible with water and excludes water.
  • Examples of the poor solvent include aliphatic alcohols.
  • Examples of the aliphatic alcohol include an aliphatic alcohol containing an aliphatic hydrocarbon having 1 to 8 carbon atoms and having 1 or more hydroxyl groups, preferably an aliphatic alcohol having 1 to 3 carbon atoms and having 1 to 6 carbon atoms.
  • Examples thereof include aliphatic alcohols containing hydrocarbons, more preferably aliphatic alcohols containing aliphatic hydrocarbons having 1 to 3 carbon atoms and having 1 hydroxyl group.
  • the aliphatic alcohol includes methanol, ethanol, n-propanol, i-propanol, n-butanol, 2-butanol, i-butanol, t-butanol, n-pentanol, t-amyl alcohol, n-hexanol, 2-ethylhexanol, n-octanol, ethylene glycol, propylene glycol, glycerin, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, 2- Examples include ethoxyethanol and 2-methoxyethanol.
  • the liquid contains, for example, an aliphatic alcohol and water, preferably an aliphatic alcohol containing an aliphatic hydrocarbon having 1 to 8 carbon atoms having one or more hydroxyl groups, and water, more preferably a hydroxyl group. And an aliphatic alcohol containing an aliphatic hydrocarbon having 1 to 6 carbon atoms and 1 to 6 carbon atoms, and water, more preferably ethanol or i-propanol and water.
  • the ratio of the poor solvent and water contained in the liquid is not particularly limited, but the ratio of the poor solvent / (water + the poor solvent) is, for example, 30 to 99%, preferably 50 to 97%, and more preferably. May be 60-95%.
  • the temperature at which the polymer and the liquid are mixed and the polymer is dissolved in the liquid is not particularly limited, but is, for example, 10 to 80 ° C., preferably 15 to 75 ° C., more preferably 20 to It may be 70 ° C.
  • the polymer and the liquid are mixed and the polymer is dissolved in the liquid
  • physical stimulation may be applied.
  • the physical stimulation include stirring, shaking, ultrasonic treatment, and the like.
  • a metal ion-containing porous body that is monolithic and thicker than the membrane can be obtained.
  • the shape of the metal ion-containing porous body is not limited, but the shortest of the three directions of the vertical and horizontal heights of the metal ion-containing porous body is referred to as thickness for convenience.
  • the thickness of the metal ion-containing porous body is, for example, 0.5 mm or more, preferably 0.7 mm or more, more preferably 1 mm or more.
  • the pore size of the metal ion-containing porous body is, for example, 0.01 ⁇ m to 5 ⁇ m, preferably 0.03 ⁇ m to 3 ⁇ m, and the skeleton diameter of the pore is, for example, 0.01 ⁇ m to 5 ⁇ m, preferably 0.03 ⁇ m to 3 ⁇ m.
  • the method for producing a metal-containing porous body according to the present invention includes a chelate group and a metal ion of a raw material porous body that is modified with a functional group having a chelate group and that includes a polymer as a main component. It includes a step of performing a reduction treatment on the metal ion-containing porous body coordinated and obtaining a metal-containing porous body.
  • the step of reducing the metal ion-containing porous material can be performed, for example, as follows.
  • the metal ion-containing porous material is added to the reducing agent solution and shaken at room temperature (eg, 0 to 50 ° C., preferably 20 to 30 ° C.) for 1 to 72 hours.
  • the reducing agent include hydrogen, sodium borohydride, ammonium borohydride, aldehyde, hydrazine, dimethylaminoborane, reducing sugar, alcohol and the like.
  • Examples of the solvent for the pre-reducing agent solution include water, methanol, ethanol, 1-propanol, 2-propanol, butanol, dimethyl sulfoxide, dimethylformamide, acetonitrile, tetrahydrofuran, acetone, pyrrolidone and the like.
  • Examples of the concentration of the reducing agent solution include 0.05 to 2M.
  • the metal ion-containing porous body is a monolithic raw material porous body modified with a functional group having a chelate group and containing a polymer as a main component. And metal ions are contacted, and the chelate group of the raw material porous body and the metal ions are coordinated and obtained,
  • the monolithic raw material porous material modified with a functional group having a chelate group and containing a polymer as a main component is a monolithic porous material containing a polymer as a main component.
  • the monolithic porous body containing a polymer as a main component is miscible with water and dissolves the polymer in a liquid containing water and a poor solvent for the polymer excluding water. It is obtained by preparing a polymer solution, separating the polymer precipitate deposited from the polymer solution, and drying the polymer precipitate.
  • the metal ion-containing porous body in which the chelate group of the raw material porous body containing a polymer as a main component and the metal ion are coordinated and bonded is a monolith-like porous body modified with the method for producing a metal porous body of the present invention
  • a metal-containing porous body that is monolithic and thicker than the film can be obtained.
  • the shape of the metal-containing porous body is not limited, but the shortest of the three directions of the vertical and horizontal heights of the metal-containing porous body is referred to as thickness for convenience.
  • the metal-containing porous body has a thickness of, for example, 0.5 mm or more, preferably 0.7 mm or more, and more preferably 1 mm or more.
  • the pore diameter of the metal-containing porous body is, for example, 0.01 ⁇ m to 5 ⁇ m, preferably 0.03 ⁇ m to 3 ⁇ m, and the skeleton diameter of the pore is, for example, 0.01 ⁇ m to 5 ⁇ m, preferably 0.03 ⁇ m to 3 ⁇ m.
  • a metal-containing porous body is useful as a catalyst, a sensor, a luminescent material, and a disinfectant.
  • MMA Methyl methacrylate
  • GMA Glycidyl methacrylate
  • PEI Polyethyleneimine
  • EDTA Ethylenediaminetetraacetic acid p (GM): MMA-GMA copolymer
  • DMSO Dimethyl sulfoxide
  • NMR Nuclear Magnetic Resonance
  • GPC Gel Permeation Chromatography
  • TOSOH DP-8020 pump TOSOH RI-8020 RI detector
  • TOSOH SD-8020 degasser TOSOH CO-8020 column oven
  • TOSOH AS-8020 autosampler TOSOH TSK gel Measurement was performed by connecting two columns of GMH-M and TOSOH TSK gel GMH-N.
  • Bio Shaker MBR-022UP (TAITEC) Differential thermal thermogravimetric simultaneous measurement device (TG-DTA): Seiko Instruments Inc., SSC / 5200 (TG / DTA220) EDX (Energy Dispersive X-ray Spectroscopy) Hitachi Tabletop Microscope: Miniscope TM3000 Scanning electron microscope SEM: Hitachi S-3000N (manufactured by Hitachi High-Technologies Corporation) Ion sputtering: Hitachi E-1010 BET (specific surface area measurement): Micromeritics Tristar 3000 (Shimadzu Corporation) Conductivity measurement: SANWA Digital Multimeter CD770 Furnace under hydrogen atmosphere: Horizontal atmosphere tubular furnace (manufactured by Asahi Rika Seisakusho) In this specification, the pore diameter and the skeleton diameter were determined from images taken using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the porous body was subjected to sputtering for 150 s with a discharge current of 15.0 mA, and then subjected to SEM observation at an applied voltage of 15.0 kV to 25.0 kV.
  • Terminals were applied to both ends of a measurement sample molded to a width of 1 mm, and the minimum and maximum values were measured when measured twice at three locations, top, bottom, left and right.
  • Ni metal-containing porous body and a Ni metal porous body were produced according to the following scheme 1.
  • MMA-GMA copolymer (hereinafter referred to as p (GM))
  • p (GM) MMA-GMA copolymer
  • methyl methacrylate 152 mmol, 30 g, manufactured by Wako Pure Chemical Industries
  • glycidyl methacrylate (15.2 mmol) 4.65 g, manufactured by Nacalai tex
  • azobisisobutyronitrile 0.1 mmol, 0.0301 g, manufactured by Wako Pure Chemical Industries
  • toluene 120 mL, manufactured by Nacalai tex
  • the obtained solid was in the shape of a sample tube (columnar). This was solvent-replaced with 10 mL of water for 2 hours, the operation of discarding the water after solvent replacement and replacing it with new water was performed twice, followed by drying at room temperature under reduced pressure for 8 hours at 10 Torr and p (GM) Raw material porous body (dimension: diameter 10 mm, thickness 12 mm, substantially cylindrical shape, 120 mg) was obtained.
  • the obtained p (GM) raw material porous body had a BET specific surface area of 7.50 m 2 / g.
  • the results of elemental analysis of the obtained raw material porous material of p (GM) were C: 59.2% and H9.43% (theoretical values were C: 65.2%, H9.43%). .
  • the SEM image of the obtained raw material porous body of p (GM) is shown in FIG.
  • the raw material porous material of p (GM) was confirmed to be a porous material having a co-continuous structure with a skeleton diameter of 1 to 2 ⁇ m and a pore diameter of 1 to 2 ⁇ m.
  • the obtained raw material porous material of p (GM) did not show conductivity.
  • PEI raw material porous material a raw material porous material of p (GM) (hereinafter referred to as “PEI raw material porous material”) (200 mg) was obtained.
  • the obtained PEI raw material porous body had a BET specific surface area of 5.00 m 2 / g.
  • the results of elemental analysis of the obtained PEI-formed raw material porous body were C: 50.7%, H8.58%, and N10.1%.
  • the SEM image of the obtained PEI-formed raw material porous body is shown in FIG. As shown in FIG.
  • the PEI material porous body was a porous body having a co-continuous structure having a skeleton diameter of 1 to 2 ⁇ m and a pore diameter of 1 to 2.5 ⁇ m.
  • the porous body was dried at room temperature under reduced pressure for 8 hours at 10 Torr to obtain a raw material porous body converted to EDTA-PEI (hereinafter referred to as “EDTA-PEI converted raw material porous body”) (230 mg).
  • the resulting EDTA-PEI raw material porous body had a BET specific surface area of 3.70 m 2 / g.
  • the results of elemental analysis of the obtained EDTA-PEI raw material porous material were C: 50.9%, H 7.27%, and N 5.72%.
  • the obtained EDTA-PEI raw material porous material did not show conductivity.
  • Ni ion-containing porous body in which the chelate group of the raw material porous body and Ni ions are coordinated.
  • porous body a metal ion-containing porous body (hereinafter referred to as “Ni ion-containing”) in which the chelate group of the raw material porous body and Ni ions are coordinated.
  • porosity a metal ion-containing porous body (hereinafter referred to as “porous body”) (275 mg).
  • the results of elemental analysis of the obtained Ni ion-containing porous material were C: 4.39%, H26.3%, and N2.51%.
  • the resistance value of the obtained Ni ion-containing porous body was 20 ⁇ 10 6 ⁇ , and the Ni ion-containing porous body did not exhibit conductivity.
  • the Ni ion-containing porous body had a thickness of 2 cm, a pore diameter of 0.6 ⁇ m to 1.2 ⁇ m, and a pore skeleton diameter of 0.5 ⁇ m to 1.0
  • Ni metal-containing porous body in which Ni ions were converted to metal.
  • the SEM image of the obtained Ni metal containing porous body is shown in FIG.
  • the Ni metal-containing porous body was confirmed to be a porous body having a co-continuous structure with a skeleton diameter of 1 to 2 ⁇ m and a pore diameter of 1 to 2.5 ⁇ m.
  • the thickness of the Ni metal-containing porous body was 2 cm.
  • Ni metal containing porous body (10 mg) obtained in Example 1 (5) was baked at a rate of 10 ° C / min while flowing air to make a Ni metal porous body. (25 mg) was obtained.
  • the presence of Ni was confirmed by an EDX apparatus.
  • the results of elemental analysis of the obtained Ni metal porous body were C: 1.44%, H0.52%, N0.13% (theoretical values were C: 0%, H0%, N0%). . It can be estimated that the obtained Ni metal porous body is substantially composed of Ni metal.
  • the SEM image of the obtained Ni metal porous body is shown in FIG. As shown in FIG.
  • the Ni metal porous body was a porous body having a co-continuous structure with a skeleton diameter of 0.05 ⁇ m to 0.4 ⁇ m and a pore diameter of 0.4 ⁇ m to 1 ⁇ m.
  • the obtained Ni metal porous body had a resistance value of 50 ⁇ , and the Ni metal porous body exhibited conductivity.
  • the thickness of the Ni metal porous body was 0.5 mm.
  • the substrate is washed with water, dried at room temperature under reduced pressure for 8 hours at 10 Torr, and a metal ion-containing porous body in which the chelate group of the raw material porous body and Au ions are coordinated (hereinafter referred to as “Au ion-containing”). (Referred to as “porous body”) (23 mg).
  • the Au ion-containing porous body had a thickness of 2 cm, a pore diameter of 0.8 ⁇ m to 1.5 ⁇ m, and a pore skeleton diameter of 0.3 ⁇ m to 1.0 ⁇ m.
  • the SEM image of the obtained Au metal containing porous body is shown in FIG.
  • the Au metal-containing porous body was confirmed to be a porous body having a co-continuous structure with a skeleton diameter of 1 to 2 ⁇ m and a pore diameter of 1 to 2.5 ⁇ m.
  • the thickness of the Au metal-containing porous body was 2 cm.
  • Example 2 (2) Production of Au metal porous body Au metal-containing porous body (23 mg) obtained in Example 2 (2) was baked at a rate of 2 ° C / min while flowing air, and Au metal porous body (4.3 mg) was obtained.
  • the presence of Au was confirmed by an EDX apparatus.
  • the SEM image of the obtained Au metal porous body is shown in FIG.
  • the Au metal porous body was confirmed to be a porous body having a co-continuous structure having a skeleton diameter of 0.1 ⁇ m to 0.3 ⁇ m and a pore diameter of 0.8 ⁇ m to 1 ⁇ m.
  • the obtained Au metal porous body had a resistance value of 0.75 ⁇ , and the Au metal porous body exhibited electrical conductivity.
  • the thickness of the Au metal porous body was 0.5 mm.
  • a Cu metal-containing porous body and a Cu metal porous body were produced according to the following scheme 3.
  • Cu ion-containing porous body in which the chelate group of the raw material porous body and Cu ions are coordinated (hereinafter referred to as “Cu ion-containing”). (Referred to as “porous body”) (64 mg).
  • the Cu ion-containing porous body had a thickness of 1.2 cm, a pore diameter of 0.7 ⁇ m to 1.4 ⁇ m, and a pore skeleton diameter of 0.5 ⁇ m to 1.0 ⁇ m.
  • the SEM image of the obtained Cu metal containing porous body is shown in FIG. As shown in FIG. 7, it was confirmed that the Cu metal-containing porous body was a porous body having a co-continuous structure having a skeleton diameter of 1 to 2 ⁇ m and a pore diameter of 1 to 2.5 ⁇ m. In addition, it can be estimated from the fact that the pores have the same or similar shape in the SEM photographs of a plurality of porous body samples. The thickness of the Cu metal-containing porous body was 1.2 cm.
  • Ni metal-containing porous body and Ni metal porous body were produced according to Scheme 4 below.
  • Ni ion-containing porous body in which the chelate group of the raw material porous body and Ni ions are coordinated.
  • porous body 142 mg.
  • the Ni ion-containing porous body had a thickness of 2 cm, a pore diameter of 0.6 ⁇ m to 1.2 ⁇ m, and a pore skeleton diameter of 0.5 ⁇ m to 1.0 ⁇ m.
  • Ni metal-containing porous body in which Ni ions were converted to metal.
  • the SEM image of the obtained Ni metal containing porous body is shown in FIG.
  • the Ni metal-containing porous body was confirmed to be a porous body having a co-continuous structure having a skeleton diameter of 0.6 to 1.0 ⁇ m and a pore diameter of 0.8 to 1.0 ⁇ m.
  • Ni metal containing porous body (60 mg) obtained in Example 4 (2) was baked at a rate of 2 ° C./min while flowing air to make a Ni metal porous body. (9 mg) was obtained.
  • the presence of Ni was confirmed by an EDX apparatus.
  • the SEM image of the obtained Ni metal porous body is shown in FIG.
  • the Ni metal porous body was confirmed to be a porous body having a co-continuous structure with a skeleton diameter of 0.05 ⁇ m to 0.4 ⁇ m and a pore diameter of 0.4 ⁇ m to 1 ⁇ m.
  • the pores have the same or similar shape in the SEM photographs of a plurality of porous body samples.
  • the thickness of the Ni metal ion-containing porous body was 0.6 mm.
  • the obtained Ni metal porous body had a resistance value of 90 ⁇ , and the Ni metal porous body exhibited conductivity.
  • a Ni metal porous body was produced according to the following scheme 5.
  • Example 4 Production of metal porous body by converting Ni ions to metal Ni ion-containing porous body (95 mg, thickness 9.1 mm) obtained in Example 4 (1) was mixed with argon and hydrogen (argon: hydrogen (volume The mixture was fired to 250 ° C. at a rate of 10 ° C./min while flowing a mixed gas of ratio 2: 1), and then heated to 450 ° C. at a rate of 2 ° C./min. After maintaining the temperature for 2 hours as it was, heating was stopped and the mixture was allowed to cool to convert Ni ions into metal, thereby obtaining a Ni metal porous body (5.5 mg). In the obtained Ni metal porous body, the presence of Ni was confirmed by an EDX apparatus.
  • the SEM image of the obtained Ni metal porous body is shown in FIG.
  • the Ni metal porous body had a skeleton diameter of 0.05 ⁇ m to 0.4 ⁇ m and a pore diameter of 0.2 ⁇ m to 1 ⁇ m.
  • the thickness of the Ni metal porous body was 2 mm, the resistance value was 45 ⁇ (at a width of 2 mm), and the Ni metal porous body exhibited conductivity.
  • porous metal bodies can be obtained by the method of the present invention.
  • a metal porous body may be applicable as a catalyst, battery material, sensor material, deodorizing material and the like.
  • various types of metal-containing porous bodies can be obtained by the method of the present invention.
  • Such a metal-containing porous body may be applicable as a catalyst, a sensor, a luminescent material, a bactericidal agent, and the like.

Abstract

A process for producing a porous metal body which includes a step of subjecting a porous metal-ion-containing body to reduction and sintering either simultaneously or successively to obtain a porous metal body, said porous metal-ion-containing body being a body obtained by employing a monolith-shaped starting porous body which comprises a polymer as the main component and which is modified with functional groups having chelating groups, and coordinating metal ions to the chelating groups. A process for producing a porous metal-containing body which includes a step of reducing a porous metal-ion-containing body to obtain a porous metal-containing body, said porous metal-ion-containing body being a body obtained by employing a monolith-shaped starting porous body which comprises a polymer as the main component and which is modified with functional groups having chelating groups, and coordinating metal ions to the chelating groups.

Description

金属多孔質体および金属含有多孔質体の製造方法ならびに金属多孔質体および金属含有多孔質体Metal porous body, method for producing metal-containing porous body, metal porous body and metal-containing porous body
 本発明は、金属多孔質体および金属含有多孔質体の製造方法ならびに金属多孔質体および金属含有多孔質体に関する。 The present invention relates to a metal porous body, a method for producing a metal-containing porous body, a metal porous body, and a metal-containing porous body.
 多孔質体および多孔質膜は、分離剤、吸着剤等として多方面で多く用いられている。無機系多孔質体としては、シリカ系多孔質体に関して膨大な研究がなされている。シリカ系多孔質体の中でも多孔質体シリカ粒子を作成する技術が一般的である。この多孔質体シリカ粒子は、分析用材料として実用化されている。 Porous materials and porous membranes are often used in various fields as separating agents, adsorbents, and the like. As the inorganic porous material, a great deal of research has been conducted on silica-based porous materials. Among the silica-based porous bodies, a technique for producing porous silica particles is common. This porous silica particle has been put to practical use as an analytical material.
 連続した骨格と空隙が互いに絡み合った構造を有する一塊の材料は、モノリス体と呼ばれる。本発明者らは、既に、アクリル樹脂等の熱誘起相分離により、厚みのあるモノリス体の製造方法を完成している(例えば、特許文献1)。 A lump of material having a structure in which a continuous skeleton and voids are intertwined with each other is called a monolith body. The present inventors have already completed a method for producing a thick monolith body by thermally induced phase separation of an acrylic resin or the like (for example, Patent Document 1).
 ところで、金属多孔質体としては、骨格及び孔サイズがサブミクロンオーダー以上の薄膜タイプの製造が、既に報告されている。具体的には、テンプレート法が報告されている。前記テンプレート法は、ポリマー、コロイダルシリカ等の表面に金属を付着させて、そのポリマーを焼結して、金属多孔質体を得る方法である(例えば、非特許文献1)。このような方法により得られた薄膜タイプの金属多孔質体は、200~600nm程度の孔径と、中程度の比表面積(例えばNiの場合10~30m/g)を有する。このようなテンプレート法により得られる金属多孔質体は、メタマテリアルなど光学材料への応用が期待できるが、いずれの方法によっても得られる金属多孔質体は、薄膜タイプである。これは、テンプレート法において原料として用いられるポリマーにおけるサブミクロン孔が狭小であり、その結果、金属や金属前駆体(金属イオンなど)をサブミクロン孔へ浸透させるのが困難であることが一因として考えられる。 By the way, as a metal porous body, manufacture of the thin film type whose frame | skeleton and pore size are more than a submicron order has already been reported. Specifically, the template method has been reported. The template method is a method in which a metal is attached to the surface of a polymer, colloidal silica, etc., and the polymer is sintered to obtain a porous metal body (for example, Non-Patent Document 1). The thin-film metal porous body obtained by such a method has a pore diameter of about 200 to 600 nm and a medium specific surface area (for example, 10 to 30 m 2 / g in the case of Ni). The metal porous body obtained by such a template method can be expected to be applied to optical materials such as metamaterials, but the metal porous body obtained by any method is a thin film type. This is because the submicron pores in the polymer used as a raw material in the template method are narrow, and as a result, it is difficult to infiltrate metals and metal precursors (metal ions, etc.) into the submicron pores. Conceivable.
 金属多孔質体は、ゾル-ゲル法、金属塩の焼結法、脱合金化法等により製造することも知られている。ゾル-ゲル法によれば、nanosmeltingプロセスにより有機-無機ハイブリッドエアロゲルを得ることができる(例えば、非特許文献2)。このゾル-ゲル法によれば、超臨界相において金属多孔質体を製造することができる。このようなゾル-ゲル法により得られる金属多孔質体は、2~50nm程度の孔径と、大きな比表面積(95~300m/g)と、小さな密度(バルクFeの170分の1以下)とを有する。このようなゾル-ゲル法は、アニーリングによって多孔度を制御することができるという利点を有する。一方、このようなゾル-ゲル法によれば、得られる金属多孔質体の体積変化やクラッキングが生じるため、問題がある。 It is also known that the metal porous body is produced by a sol-gel method, a metal salt sintering method, a dealloying method, or the like. According to the sol-gel method, an organic-inorganic hybrid aerogel can be obtained by a nanomelting process (for example, Non-Patent Document 2). According to this sol-gel method, a porous metal body can be produced in the supercritical phase. A porous metal body obtained by such a sol-gel method has a pore diameter of about 2 to 50 nm, a large specific surface area (95 to 300 m 2 / g), a small density (1/170 or less of bulk Fe). Have Such a sol-gel method has the advantage that the porosity can be controlled by annealing. On the other hand, such a sol-gel method has a problem because volume change and cracking of the obtained metal porous body occur.
 金属塩の焼結法は、金属塩とデキストリンを混合したペーストを、焼結することにより金属多孔質体を得る方法である(例えば、非特許文献3)。このような金属塩の焼結法により得られる金属多孔質体は、1~15μmの孔径を有する。 The metal salt sintering method is a method of obtaining a porous metal body by sintering a paste in which a metal salt and dextrin are mixed (for example, Non-Patent Document 3). The metal porous body obtained by such a metal salt sintering method has a pore diameter of 1 to 15 μm.
 脱合金化法は、2種以上の合金の反応性の差異を利用し、電気的または酸などにより卑金属を溶出させる方法である(例えば、非特許文献4)。このような脱合金化法により得られる金属多孔質体は、100nm以下の孔径と、比較的大きな(Raneyニッケルを用いた場合、70~100m/g)比表面積と、数cmの大きさを有する。しかしながら、このような脱合金化法においては、耐酸性の観点から、扱いやすい金属しか原料にすることができず、具体的には、Au-Ag、Au-Cu、Ni-Al(Raneyニッケル)等しか原料にすることができない。さらに、この脱合金化法には、溶出させるほうの金属が金属多孔質体に残留する、得られる金属多孔質体の形態が薄膜か、または寸法の小さな多孔質体に限定されるという問題点がある。 The dealloying method uses a difference in reactivity between two or more alloys to elute base metals with electricity or acid (for example, Non-Patent Document 4). The metal porous body obtained by such a dealloying method has a pore diameter of 100 nm or less, a relatively large (70 to 100 m 2 / g when using Raney nickel), and a size of several centimeters. Have. However, in such a dealloying method, from the viewpoint of acid resistance, only easy-to-handle metals can be used as raw materials. Specifically, Au—Ag, Au—Cu, Ni—Al (Raney nickel) can be used. Etc. can only be used as raw materials. Furthermore, this dealloying method has a problem in that the metal to be eluted remains in the metal porous body, and the form of the metal porous body obtained is limited to a thin film or a porous body having a small size. There is.
特開2009-30017号公報JP 2009-30017 A
 そこで、本発明は、安全かつ簡便に、厚みのあるモノリス状の金属多孔質体を製造する方法および、そのような金属多孔質体の原料となる厚みのあるモノリス状の金属含有多孔質体を製造する方法を提供することを目的とする。 Accordingly, the present invention provides a method for producing a thick monolithic metal porous body in a safe and simple manner, and a thick monolithic metal-containing porous body as a raw material for such a metal porous body. The object is to provide a method of manufacturing.
 本発明は、金属多孔質体の製造方法であって、
 前記製造方法は、
 キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体のキレート基と金属イオンとを配位結合させた金属イオン含有多孔質体に還元処理および焼結処理を同時または順次行い、金属多孔質体を得る工程を含み、
 前記金属イオン含有多孔質体が、キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体と金属イオンとを接触させ、前記原料多孔質体のキレート基と前記金属イオンとを配位結合させることにより得られ、
 前記キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体が、モノリス状の、主成分としてポリマーを含む多孔質体を、キレート基を有する官能基を含む化合物で修飾することにより得られ、
 前記モノリス状の、主成分としてポリマーを含む多孔質体は、
 水と相互に混和性であり、かつ水を除く、前記ポリマーに対する貧溶媒と、水とを含む液体に、前記ポリマーを溶解してポリマー溶液を調製し、
 前記ポリマー溶液から析出したポリマー析出物を分離し、
 前記ポリマー析出物を乾燥して得られ、
 前記ポリマーは、
アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類のホモポリマー、
アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類を含むコポリマー、
メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類のホモポリマーおよび
メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類を含むコポリマー
からなる群から選択される1以上である。
The present invention is a method for producing a porous metal body,
The manufacturing method includes:
Reduction treatment and sintering to a metal ion-containing porous body in which a chelate group and a metal ion of a raw material porous body modified with a functional group having a chelate group are monolithic and containing a polymer as a main component. Including performing a process simultaneously or sequentially to obtain a porous metal body,
The metal ion-containing porous body is modified with a functional group having a chelate group, the monolithic raw material porous body containing a polymer as a main component is brought into contact with metal ions, and the chelate group of the raw material porous body Obtained by coordination bond with the metal ion,
The monolithic porous material containing a polymer as a main component, modified with a functional group having a chelate group, is converted into a monolithic porous material containing a polymer as a main component, and a functional group having a chelate group. Obtained by modifying with a compound containing,
The monolithic porous body containing a polymer as a main component is:
A polymer solution is prepared by dissolving the polymer in a liquid containing water and a poor solvent for the polymer, which is miscible with water and excluding water, and water.
Separating the polymer precipitate deposited from the polymer solution;
Obtained by drying the polymer precipitate,
The polymer is
A homopolymer of esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom;
A copolymer containing esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom;
Homopolymers of methacrylic acid and esters of lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of hydroxy, carboxyl, oxiranyl and halogen atoms, and methacrylic acid and hydroxy 1 or more selected from the group consisting of copolymers containing esters with lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a group, a carboxyl group, an oxiranyl group and a halogen atom It is.
 また、本発明は、金属含有多孔質体の製造方法であって、
 前記製造方法は、
 キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体のキレート基と金属イオンとを配位結合させた金属イオン含有多孔質体に還元処理を行い、金属含有多孔質体を得る工程を含み、
 前記金属イオン含有多孔質体が、キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体と金属イオンとを接触させ、前記原料多孔質体のキレート基と前記金属イオンとを配位結合させることにより得られ、
 前記キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体が、モノリス状の、主成分としてポリマーを含む多孔質体を、キレート基を有する官能基を含む化合物で修飾することにより得られ、
 前記モノリス状の、主成分としてポリマーを含む多孔質体が、
 水と相互に混和性であり、かつ水を除く、前記ポリマーに対する貧溶媒と、水とを含む液体に、前記ポリマーを溶解してポリマー溶液を調製し、
 前記ポリマー溶液から析出したポリマー析出物を分離し、
 前記ポリマー析出物を乾燥して得られ、
 前記ポリマーが、
アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類のホモポリマー、
アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類を含むコポリマー、
メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類のホモポリマーおよび
メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類を含むコポリマー
からなる群から選択される1以上である。
Further, the present invention is a method for producing a metal-containing porous body,
The manufacturing method includes:
The metal ion-containing porous body in which the chelate group and metal ion of the raw material porous body modified with a functional group having a chelate group, which is monolithic, and containing a polymer as a main component is coordinated, is subjected to a reduction treatment, Including a step of obtaining a metal-containing porous body,
The metal ion-containing porous body is modified with a functional group having a chelate group, the monolithic raw material porous body containing a polymer as a main component is brought into contact with metal ions, and the chelate group of the raw material porous body Obtained by coordination bond with the metal ion,
The monolithic porous material containing a polymer as a main component, modified with a functional group having a chelate group, is converted into a monolithic porous material containing a polymer as a main component, and a functional group having a chelate group. Obtained by modifying with a compound containing,
The monolithic porous body containing a polymer as a main component,
A polymer solution is prepared by dissolving the polymer in a liquid containing water and a poor solvent for the polymer, which is miscible with water and excluding water, and water.
Separating the polymer precipitate deposited from the polymer solution;
Obtained by drying the polymer precipitate,
The polymer is
A homopolymer of esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom;
A copolymer containing esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom;
Homopolymers of methacrylic acid and esters of lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of hydroxy, carboxyl, oxiranyl and halogen atoms, and methacrylic acid and hydroxy 1 or more selected from the group consisting of copolymers containing esters with lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a group, a carboxyl group, an oxiranyl group and a halogen atom It is.
 本発明により、安全かつ簡便に、厚みのあるモノリス状の金属多孔質体および金属含有多孔質体を製造する方法を提供することが可能である。 According to the present invention, it is possible to provide a method for producing a thick monolithic metal porous body and a metal-containing porous body in a safe and simple manner.
図1は、実施例1(2)で得られたp(GM)の原料多孔質体のSEM画像を示す。FIG. 1 shows an SEM image of the raw material porous material of p (GM) obtained in Example 1 (2). 図2は、実施例1(3)で得られたPEI化原料多孔質体のSEM画像を示す。FIG. 2 shows an SEM image of the PEI-formed raw material porous body obtained in Example 1 (3). 図3は、実施例1(5)で得られたNi金属含有多孔質体のSEM画像を示す。FIG. 3 shows an SEM image of the Ni metal-containing porous material obtained in Example 1 (5). 図4は、実施例1(6)で得られたNi金属多孔質体のSEM画像を示す。FIG. 4 shows an SEM image of the Ni metal porous body obtained in Example 1 (6). 図5は、実施例2(2)で得られたAu金属含有多孔質体のSEM画像を示す。FIG. 5 shows an SEM image of the Au metal-containing porous material obtained in Example 2 (2). 図6は、実施例2(3)で得られたAu金属多孔質体のSEM画像を示す。FIG. 6 shows an SEM image of the Au metal porous body obtained in Example 2 (3). 図7は、実施例3(2)で得られたCu金属含有多孔質体のSEM画像を示す。FIG. 7 shows an SEM image of the Cu metal-containing porous material obtained in Example 3 (2). 図8は、実施例3(3)で得られたCu金属多孔質体のSEM画像を示す。FIG. 8 shows an SEM image of the Cu metal porous body obtained in Example 3 (3). 図9は、実施例4(2)で得られたNi金属含有多孔質体のSEM画像を示す。FIG. 9 shows an SEM image of the Ni metal-containing porous material obtained in Example 4 (2). 図10は、実施例4(3)で得られたNi金属多孔質体のSEM画像を示す。FIG. 10 shows an SEM image of the Ni metal porous body obtained in Example 4 (3). 図11は、実施例5(1)で得られたNi金属多孔質体のSEM画像を示す。FIG. 11 shows an SEM image of the Ni metal porous body obtained in Example 5 (1).
 本発明において、「金属含有多孔質体」とは、複数の孔を有する金属以外の材料からなる物体に、金属が含まれている材料、好ましくは、複数の孔を有する金属以外の材料からなる物体の表面(孔内の表面も含む)上に、金属が含まれている材料を意味する。また、「金属多孔質体」とは、複数の孔を有する金属材料を意味する。この金属多孔質体は、ほぼ金属からなることを意味する。例えば、この金属材料には、金属が90重量%以上、含まれていることを意味する。また、「金属イオン含有多孔質体」とは、複数の孔を有する金属以外の材料からなる物体に、金属イオンが含まれている材料、好ましくは、複数の孔を有する金属以外の材料からなる物体の表面(孔内の表面も含む)上に、金属イオンが含まれている材料を意味する。 In the present invention, the “metal-containing porous body” is a material containing a metal, preferably a material other than a metal having a plurality of holes, in an object made of a material other than a metal having a plurality of holes. It means a material containing metal on the surface of an object (including the surface in a hole). The “metal porous body” means a metal material having a plurality of pores. This porous metal means that it is substantially made of metal. For example, this metal material means that 90% by weight or more of metal is contained. Further, the “metal ion-containing porous body” is made of a material containing a metal ion in an object made of a material other than a metal having a plurality of pores, preferably a material other than a metal having a plurality of pores. It means a material containing metal ions on the surface of an object (including the surface in a hole).
 本発明は、前記のように、金属多孔質体の製造方法であって、前記製造方法は、キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体のキレート基と金属イオンとを配位結合させた金属イオン含有多孔質体に還元処理および焼結処理を同時または順次行い、金属多孔質体を得る工程を含む。 As described above, the present invention is a method for producing a metal porous body, which is a monolithic raw material porous body modified with a functional group having a chelate group and containing a polymer as a main component. The metal ion-containing porous body in which the chelate group and the metal ion are coordinated and bonded, and a reduction process and a sintering process are performed simultaneously or sequentially to obtain a metal porous body.
 前記金属イオン含有多孔質体に還元処理および焼結処理を同時または順次行い、金属多孔質体を得る工程は、例えば、還元処理と焼結処理を同時に行うか、または還元処理の後、焼結処理を行うことにより成される。前記還元処理は、前記金属イオン含有多孔質体に含まれる金属イオンを還元するような処理であれば、限定されない。また、前記焼結処理は、前記金属イオン含有多孔質体に含まれるポリマーを焼結するような処理であれば、限定されない。 The metal ion-containing porous body is subjected to reduction treatment and sintering treatment simultaneously or sequentially to obtain a metal porous body. For example, the reduction treatment and the sintering treatment are performed simultaneously, or the reduction treatment is followed by sintering. This is done by performing processing. The said reduction process will not be limited if it is a process which reduces the metal ion contained in the said metal ion containing porous body. Moreover, the said sintering process will not be limited if it is a process which sinters the polymer contained in the said metal ion containing porous body.
 前記金属イオン含有多孔質体に還元処理および焼結処理を同時または順次行い、金属多孔質体を得る工程は、
 前記金属イオン含有多孔質体を水素雰囲気下で焼結するか、または、
 前記金属イオン含有多孔質体を還元剤で還元して、前記金属イオンを金属に変換し、次いで空気雰囲気下で焼結するか、
 いずれかにより行われるのが好ましい。
The metal ion-containing porous body is subjected to reduction treatment and sintering treatment simultaneously or sequentially to obtain a metal porous body,
Sintering the metal ion-containing porous body in a hydrogen atmosphere, or
Reducing the metal ion-containing porous body with a reducing agent to convert the metal ions to metal and then sintering in an air atmosphere,
It is preferable to be carried out either way.
 前記金属イオン含有多孔質体を水素雰囲気下で焼結して金属多孔質体を得る工程は、例えば、前記金属イオン含有多孔質体を不活性ガスと水素ガスの混合雰囲気下に、1~20℃/分、好ましくは1~12℃/分の速度で加熱して行うことができる。前記不活性ガスと水素ガスの混合雰囲気としては、例えば、不活性ガス:水素ガス(容積比)=3~1:1の雰囲気が挙げられる。前記不活性ガスとしては、アルゴンガス、窒素ガス等が挙げられる。 The step of obtaining the metal porous body by sintering the metal ion-containing porous body in a hydrogen atmosphere includes, for example, 1 to 20 in a mixed atmosphere of an inert gas and hydrogen gas. It can be carried out by heating at a rate of ° C / min, preferably 1 to 12 ° C / min. Examples of the mixed atmosphere of the inert gas and hydrogen gas include an atmosphere of inert gas: hydrogen gas (volume ratio) = 3 to 1: 1. Examples of the inert gas include argon gas and nitrogen gas.
 前記金属イオン含有多孔質体を還元剤で還元して、前記金属イオンを金属に変換し、次いで空気雰囲気下で焼結する工程のうち、前記金属イオン含有多孔質体を還元して、前記金属イオンを金属に変換する工程は、例えば、以下のようにして行うことができる。 Of the steps of reducing the metal ion-containing porous body with a reducing agent, converting the metal ions to metal, and then sintering in an air atmosphere, reducing the metal ion-containing porous body, The step of converting ions into metal can be performed, for example, as follows.
 還元剤の溶液に、例えば、前記金属イオン含有多孔質体を加え、室温(例えば、0~50℃、好ましくは20~30℃)で1~72時間、振とうする。前記還元剤としては、水素、水素化ホウ素ナトリウム、水素化ホウ素アンモニウム、アルデヒド、ヒドラジン、ジメチルアミノボラン、還元糖、アルコール等が挙げられる。前還元剤の溶液用の溶媒としては、水、メタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール、ジメチルスルホキシド、ジメチルホルムアミド、アセトニトリル、テトラヒドロフラン、アセトン、ピロリドン等が挙げられる。前記還元剤の溶液の濃度としては、例えば、0.05~2Mが挙げられる。この後、前記多孔質体を、水等の溶媒で洗浄し、得られた多孔質体を減圧下で常温で乾燥させる。このようにして、前記金属イオン含有多孔質体を還元して、前記金属イオンを金属に変換する工程を行うことができる。 For example, the metal ion-containing porous material is added to the reducing agent solution and shaken at room temperature (eg, 0 to 50 ° C., preferably 20 to 30 ° C.) for 1 to 72 hours. Examples of the reducing agent include hydrogen, sodium borohydride, ammonium borohydride, aldehyde, hydrazine, dimethylaminoborane, reducing sugar, alcohol and the like. Examples of the solvent for the pre-reducing agent solution include water, methanol, ethanol, 1-propanol, 2-propanol, butanol, dimethyl sulfoxide, dimethylformamide, acetonitrile, tetrahydrofuran, acetone, pyrrolidone and the like. Examples of the concentration of the reducing agent solution include 0.05 to 2M. Thereafter, the porous body is washed with a solvent such as water, and the obtained porous body is dried at room temperature under reduced pressure. In this way, the metal ion-containing porous body can be reduced to convert the metal ions into metal.
 前記金属イオン含有多孔質体を還元剤で還元して、前記金属イオンを金属に変換し、次いで空気雰囲気下で焼結する工程のうち、空気雰囲気下で焼結する工程は、例えば、以下のようにして行うことができる。例えば、前記金属イオン含有多孔質体を還元した後に空気を吹き込みながら、1~20℃/分、好ましくは1~2℃/分の速度で加熱して行うことができる。この後、さらに水素雰囲気下で焼結する工程を任意に行ってもよい。この任意の水素雰囲気下で焼結する工程は、前記金属イオン含有多孔質体を還元し、空気雰囲気下で焼結した後に、例えば、水素雰囲気下に、1~20℃/分、好ましくは1~10℃/分の速度で加熱して行うことができる。 Of the steps of reducing the metal ion-containing porous body with a reducing agent, converting the metal ions to metal, and then sintering in an air atmosphere, the step of sintering in an air atmosphere is, for example, Can be done in this way. For example, the metal ion-containing porous body can be reduced and heated at a rate of 1 to 20 ° C./min, preferably 1 to 2 ° C./min while blowing air. Thereafter, a step of further sintering in a hydrogen atmosphere may be optionally performed. The step of sintering in an arbitrary hydrogen atmosphere is performed by reducing the metal ion-containing porous body and sintering it in an air atmosphere, and then, for example, 1 to 20 ° C./min, preferably 1 in a hydrogen atmosphere. Heating can be performed at a rate of ˜10 ° C./min.
 このような本発明の製造方法によれば、モノリス状であり、膜より厚みがある金属多孔質体を得ることができる。この金属多孔質体の形状は限定されないが、この金属多孔質体の縦横高さの3つの方向のうち、最も短いものを便宜的に厚みと呼ぶ。前記金属多孔質体の厚みは、例えば0.05mm以上であり、好ましくは0.1mm以上であり、より好ましくは0.2mm以上である。前記金属多孔質体は、例えば孔径は、例えば0.001μm~5μm、好ましくは0.002μm~3μmであり、前記孔の骨格径は、例えば0.001μm~5μm、好ましくは0.002μm~2μmである。このような金属多孔質体は、触媒、電池材料、センサー材料、脱臭材として有用である。 According to the production method of the present invention, a porous metal body that is monolithic and thicker than the membrane can be obtained. Although the shape of the metal porous body is not limited, the shortest of the three directions of the height and width of the metal porous body is referred to as thickness for convenience. The thickness of the metal porous body is, for example, 0.05 mm or more, preferably 0.1 mm or more, more preferably 0.2 mm or more. The porous metal body has, for example, a pore diameter of, for example, 0.001 μm to 5 μm, preferably 0.002 μm to 3 μm, and a skeleton diameter of the pores of, for example, 0.001 μm to 5 μm, preferably 0.002 μm to 2 μm. is there. Such a metal porous body is useful as a catalyst, a battery material, a sensor material, and a deodorizing material.
 前記金属イオン含有多孔質体は、前記のように、キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体と金属イオンとを接触させ、前記原料多孔質体のキレート基と前記金属イオンとを配位結合させることにより得られる。前記キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体と金属イオンとを接触させ、前記原料多孔質体のキレート基と前記金属イオンとを配位結合させた金属イオン含有多孔質体を得る工程は、例えば、以下のようにして行うことができる。 As described above, the metal ion-containing porous body is obtained by bringing a raw material porous body modified with a functional group having a chelate group into contact with a metal ion and a raw material porous body containing a polymer as a main component. It can be obtained by coordinating the metal chelate group and the metal ion. The raw material porous body containing a polymer as a main component, which is modified with a functional group having a chelate group, is contacted with a metal ion, and the chelate group of the raw material porous body is coordinated with the metal ion. The step of obtaining the bonded metal ion-containing porous body can be performed, for example, as follows.
 まず、例えば、前記キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体に前記金属イオンを含む化合物を含む溶液を加え、室温(例えば、0~50℃、好ましくは20~30℃)で1~72時間、振とうする。前記金属イオンを含む化合物としては、水に溶解することができる金属を含む化合物であれば限定されず、例えば、前記金属のハロゲン化物塩、前記金属の硫酸塩、亜硫酸塩、水酸化物塩、硝酸塩、亜硝酸塩、リン酸塩、有機酸塩(酢酸塩、ナフテン酸塩、2-エチルヘキサン塩)などが挙げられる。前記金属としては、金、銀、白金、パラジウム、ニッケル、銅、マンガン、ロジウム、コバルト、ルテニウム、レニウム、モリブデン、錫、亜鉛、鉄、チタン、バナジウム、クロミウム、オセニウム、イリジウム、ビスマス、カドミウムおよびガリウムが挙げられる。前記化合物の溶液用の溶媒としては、水が挙げられる。前記金属イオンを含む化合物を含む溶液の濃度としては、例えば、0.01~2Mが挙げられる。この後、前記多孔質体を、水等の溶媒で洗浄し、得られた多孔質体を減圧下で常温で乾燥させる。このようにして、前記原料多孔質体と金属イオンとを接触させ、前記原料多孔質体のキレート基と前記金属イオンとを配位結合させた金属イオン含有多孔質体を得る工程を行うことができる。 First, for example, a solution containing a compound containing a metal ion is added to a raw material porous body that is modified with a functional group having a chelate group and includes a polymer as a main component, and is added at room temperature (for example, 0 to 50 And shake for 1 to 72 hours. The compound containing a metal ion is not limited as long as it contains a metal that can be dissolved in water. For example, the metal halide salt, the metal sulfate, the sulfite, the hydroxide salt, Nitrate, nitrite, phosphate, organic acid salt (acetate, naphthenate, 2-ethylhexane salt) and the like. Examples of the metal include gold, silver, platinum, palladium, nickel, copper, manganese, rhodium, cobalt, ruthenium, rhenium, molybdenum, tin, zinc, iron, titanium, vanadium, chromium, osmium, iridium, bismuth, cadmium and gallium. Is mentioned. Examples of the solvent for the solution of the compound include water. Examples of the concentration of the solution containing the compound containing metal ions include 0.01 to 2M. Thereafter, the porous body is washed with a solvent such as water, and the obtained porous body is dried at room temperature under reduced pressure. In this way, the step of obtaining a metal ion-containing porous body in which the raw material porous body and metal ions are brought into contact and the chelate group of the raw material porous body and the metal ions are coordinated is performed. it can.
 本発明の製造方法において、前記金属イオンは、金、銀、白金、パラジウム、ニッケル、銅、マンガン、ロジウム、コバルト、ルテニウム、レニウム、モリブデン、錫、亜鉛、鉄、チタン、バナジウム、クロミウム、オセニウム、イリジウム、ビスマス、カドミウムおよびガリウムのイオンからなる群から選択される1以上であるのが好ましい。 In the production method of the present invention, the metal ions are gold, silver, platinum, palladium, nickel, copper, manganese, rhodium, cobalt, ruthenium, rhenium, molybdenum, tin, zinc, iron, titanium, vanadium, chromium, osmium, It is preferably at least one selected from the group consisting of ions of iridium, bismuth, cadmium and gallium.
 本発明において、前記キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体は、モノリス状の、主成分としてポリマーを含む多孔質体を、キレート基を有する官能基を含む化合物で修飾することにより得られる。前記モノリス状の、主成分としてポリマーを含む多孔質体を、キレート基を有する官能基を含む化合物で修飾する工程は、例えば、以下のようにして行うことができる。 In the present invention, the monolithic raw material porous material containing a polymer as a main component, which is modified with the functional group having a chelating group, is converted into a monolithic porous material containing a polymer as a main component. It is obtained by modifying with a compound containing a functional group having. The step of modifying the monolithic porous body containing a polymer as a main component with a compound containing a functional group having a chelate group can be performed, for example, as follows.
 まず、前記モノリス状の、主成分としてポリマーを含む多孔質体に、例えば、前記キレート基を有する官能基を含む化合物を含む溶液を加え、加熱(例えば、20~90℃、好ましくは30~80℃で)しながら2~24時間、振とうする。前記化合物の溶液用の溶媒としては、水、メタノール、エタノール、プロパノール、ブタノール、ジメチルスルホキシド、ジメチルホルムアミド、アセトニトリル、テトラヒドロフラン、アセトン、ピロリドン等が挙げられる。この後、前記多孔質体を、水等の溶媒で洗浄し、得られた多孔質体を減圧下で常温で乾燥させる。このようにして、前記モノリス状の、主成分としてポリマーを含む多孔質体を、キレート基を有する官能基を含む化合物で修飾する工程を行うことができる。 First, for example, a solution containing a compound containing a functional group having a chelate group is added to the monolithic porous body containing a polymer as a main component, and heated (for example, 20 to 90 ° C., preferably 30 to 80 ° C.). Shake for 2 to 24 hours. Examples of the solvent for the solution of the compound include water, methanol, ethanol, propanol, butanol, dimethyl sulfoxide, dimethylformamide, acetonitrile, tetrahydrofuran, acetone, and pyrrolidone. Thereafter, the porous body is washed with a solvent such as water, and the obtained porous body is dried at room temperature under reduced pressure. Thus, the step of modifying the monolithic porous body containing a polymer as a main component with a compound containing a functional group having a chelate group can be performed.
 本発明の製造方法において、前記キレート基を有する官能基を含む化合物は、アミン、アミンとエチレンジアミン四酢酸との縮合体、アミンとエピクロロヒドリンとの縮合体、アミンとイミノジ酢酸との縮合体、アミンとブロモ酢酸との縮合体、ホスフィン、チオール、カルベンなどの官能基を有する化合物などから選択されるのが好ましい。前記アミンとしては、アルキルアミン、分岐状または直鎖状ポリエチレンイミン[例えば、式HN(CHCHNH)Hで表されるポリエチレンアミン(例えば、エチレンジアミン(n=1)、ジエチレントリアミン(n=2)、トリエチレンテトラミン(n=3))]、複素環式アミン(例えばピペラジン)、ポリアリルアミン、ポリビニルアミン等が挙げられる。前記キレート基を有する官能基を含む化合物が前記縮合体である場合、例えばアミンとエチレンジアミン四酢酸との縮合体である場合、前記モノリス状の、主成分としてポリマーを含む多孔質体を、まずアミンで修飾し、次いで、そのアミンとエチレンジアミン四酢酸とを縮合させることにより、最終的に、前記キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体を得ることができる。 In the production method of the present invention, the compound containing a functional group having a chelate group includes an amine, a condensate of amine and ethylenediaminetetraacetic acid, a condensate of amine and epichlorohydrin, and a condensate of amine and iminodiacetic acid. And a condensate of amine and bromoacetic acid, a compound having a functional group such as phosphine, thiol and carbene. Examples of the amine, alkylamine, branched or linear polyethyleneimine [e.g., polyethylene amine of the formula H 2 N (CH 2 CH 2 NH) n H ( e.g., ethylene diamine (n = 1), diethylene triamine ( n = 2), triethylenetetramine (n = 3))], heterocyclic amines (for example, piperazine), polyallylamine, polyvinylamine and the like. When the compound containing a functional group having a chelate group is the condensate, for example, when the compound is a condensate of an amine and ethylenediaminetetraacetic acid, the monolithic porous body containing a polymer as a main component is first converted into an amine. Then, by condensing the amine and ethylenediaminetetraacetic acid, finally, a monolithic raw material porous body containing a polymer as a main component is modified with the functional group having the chelate group. Obtainable.
 前記モノリス状の、主成分としてポリマーを含む多孔質体は、水と相互に混和性であり、かつ水を除く、前記ポリマーに対する貧溶媒と、水とを含む液体に、前記ポリマーを溶解してポリマー溶液を調製し、前記ポリマー溶液から析出したポリマー析出物を分離し、前記ポリマー析出物を乾燥することにより、得る。 The monolithic porous body containing a polymer as a main component is miscible with water and dissolves the polymer in a liquid containing water and a poor solvent for the polymer excluding water. It is obtained by preparing a polymer solution, separating the polymer precipitate deposited from the polymer solution, and drying the polymer precipitate.
 この際、前記ポリマーは、
アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類のホモポリマー、
アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類を含むコポリマー、
メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類のホモポリマーおよび
メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類を含むコポリマー
からなる群から選択される1以上である。
At this time, the polymer is
A homopolymer of esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom;
A copolymer containing esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom;
Homopolymers of methacrylic acid and esters of lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of hydroxy, carboxyl, oxiranyl and halogen atoms, and methacrylic acid and hydroxy 1 or more selected from the group consisting of copolymers containing esters with lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a group, a carboxyl group, an oxiranyl group and a halogen atom It is.
 前記アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類のホモポリマーとしては、例えば、アクリル酸ヒドロキシメチルエステルのホモポリマー、アクリル酸カルボキシルエチルエステルのホモポリマー、アクリル酸グリシジルのホモポリマー、アクリル酸クロロメチルエステルのホモポリマー等が挙げられる。 Examples of homopolymers of esters of acrylic acid and lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom include: , Homopolymers of hydroxymethyl ester of acrylic acid, homopolymers of carboxylic acid carboxyl ethyl ester, homopolymers of glycidyl acrylate, and homopolymers of chloromethyl ester of acrylic acid.
 前記アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類を含むコポリマーとしては、例えば、前記アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類とアクリル酸のコポリマー、前記アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類とメタクリル酸のコポリマー、前記アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類とアクリル酸エステル類のコポリマー、前記アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類とメタクリル酸エステル類のコポリマー等が挙げられる。 Examples of the copolymer containing an ester of acrylic acid and an ester of a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom, A copolymer of an acrylic acid and an ester of acrylic acid and an ester of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom, A copolymer of esters and methacrylic acid of acrylic acid and one or more lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom, Acrylic acid and hydroxy group, carboxyl group, Copolymers of esters and acrylate esters with lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of silanyl groups and halogen atoms, acrylic acid and hydroxy groups, carboxyl groups And copolymers of esters and methacrylic esters with lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of an oxiranyl group and a halogen atom.
 前記メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類のホモポリマーとしては、例えば、メタクリル酸ヒドロキシメチルエステルのホモポリマー、メタクリル酸カルボキシルエチルエステルのホモポリマー、メタクリル酸グリシジルのホモポリマー、メタクリル酸クロロメチルエステルのホモポリマー等が挙げられる。 Examples of homopolymers of esters of methacrylic acid and lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom include: , Methacrylic acid hydroxymethyl ester homopolymer, methacrylic acid carboxyl ethyl ester homopolymer, glycidyl methacrylate homopolymer, methacrylic acid chloromethyl ester homopolymer, and the like.
 前記メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類を含むコポリマーとしては、例えば、前記メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類とアクリル酸のコポリマー、前記メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類とメタクリル酸のコポリマー、前記メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類とアクリル酸エステル類のコポリマー、前記メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類とメタクリル酸エステル類のコポリマー等が挙げられる。前記メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類とメタクリル酸エステル類のコポリマーとしては、例えば、グリシジルメタクリレートとメタクリル酸メチルとのコポリマーが挙げられる。 Examples of the copolymer containing methacrylic acid and esters of a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom include A copolymer of esters and acrylic acid of methacrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom, A copolymer of methacrylic acid and an ester of methacrylic acid with a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom, Methacrylic acid and hydroxy group, carboxy A copolymer of an ester and an acrylate ester with a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a group, an oxiranyl group and a halogen atom, the methacrylic acid and a hydroxy group, Examples thereof include a copolymer of an ester with a lower alkyl alcohol having 1 to 6 carbon atoms and a methacrylic acid ester which may contain one or more selected from the group consisting of a carboxyl group, an oxiranyl group and a halogen atom. Copolymers of methacrylic acid and esters of methacrylic acid esters of lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of hydroxy groups, carboxyl groups, oxiranyl groups and halogen atoms Examples include a copolymer of glycidyl methacrylate and methyl methacrylate.
 なお、前記ポリマーを製造する際の重合法は、限定されず、例えば、ラジカル重合、イオン重合等であってもよい。また、前記ポリマーがコポリマーの場合、モノマー組成比は限定されないが、そのポリマーの水に対する溶解性が低くなるようなものが挙げられる。例えば、メタクリル酸メチルとグリシジルメタクリレートとの共重合体の場合、グリシジルメタクリレートのモル比は5モル%~50モル%が好ましい。前記ポリマーのモノマー配列はランダム、ブロック等であってもよい。さらに、前記ポリマーの分子量は限定されないが、例えば、数平均分子量(Mn)は1,000~100,000,000であり、好ましくは2,000~50,000,000であり、より好ましくは3,000~20,000,000である。また、例えば、重量平均分子量(Mw)は1,000~150,000,000であり、好ましくは2,000~80,000,000であり、より好ましくは3,000~40,000,000である。分子量分布の測定は、サイズ排除クロマトグラフィーで測定するのが一般的である。サイズ排除クロマトグラフィーとしては、例えは、ゲル浸透クロマトグラフィー(GPC)やゲル濾過クロマトグラフィー(GFC)が挙げられる。GPCの移動相としてクロロホルムやTHFを、カラムとしてポリスチレンゲルカラムを用い、数平均分子量等はポリスチレン換算で求めることができる。 The polymerization method for producing the polymer is not limited, and may be radical polymerization, ionic polymerization, or the like. In the case where the polymer is a copolymer, the monomer composition ratio is not limited, but examples include a polymer whose solubility in water is low. For example, in the case of a copolymer of methyl methacrylate and glycidyl methacrylate, the molar ratio of glycidyl methacrylate is preferably 5 mol% to 50 mol%. The monomer sequence of the polymer may be random, block or the like. Further, although the molecular weight of the polymer is not limited, for example, the number average molecular weight (Mn) is 1,000 to 100,000,000, preferably 2,000 to 50,000,000, more preferably 3 , 20,000 to 20,000,000. Further, for example, the weight average molecular weight (Mw) is 1,000 to 150,000,000, preferably 2,000 to 80,000,000, more preferably 3,000 to 40,000,000. is there. The molecular weight distribution is generally measured by size exclusion chromatography. Examples of size exclusion chromatography include gel permeation chromatography (GPC) and gel filtration chromatography (GFC). Using chloroform or THF as the mobile phase of GPC and a polystyrene gel column as the column, the number average molecular weight and the like can be determined in terms of polystyrene.
 前記のとおり、前記モノリス状の、主成分としてポリマーを含む多孔質体は、水と相互に混和性であり、かつ水を除く、前記ポリマーに対する貧溶媒と、水とを含む液体に、前記ポリマーを溶解してポリマー溶液を調製し、前記ポリマー溶液から析出したポリマー析出物を分離し、前記ポリマー析出物を乾燥することにより、得る。本願において前記貧溶媒とは、前記ポリマーを溶かす能力の小さい溶媒のことを意味する。具体的には、前記貧溶媒1Lに対して前記ポリマー50g以上が、好ましくは30g以上が、より好ましくは10g以上が溶解しないことを意味する。また、前記貧溶媒は、水と相互に混和性であり、水を除く。 As described above, the monolithic porous body containing a polymer as a main component is miscible with water and contains a poor solvent for the polymer excluding water and a liquid containing water. Is dissolved to prepare a polymer solution, the polymer precipitate deposited from the polymer solution is separated, and the polymer precipitate is dried. In the present application, the poor solvent means a solvent having a small ability to dissolve the polymer. Specifically, it means that 50 g or more, preferably 30 g or more, more preferably 10 g or more of the polymer does not dissolve with respect to 1 L of the poor solvent. The poor solvent is miscible with water and excludes water.
 前記貧溶媒としては、例えば、脂肪族アルコール等が挙げられる。前記脂肪族アルコールとしては、例えば、水酸基を1以上有する炭素原子数が1~8の脂肪族炭化水素を含む脂肪族アルコール、好ましくは水酸基を1~3有する炭素原子数が1~6の脂肪族炭化水素を含む脂肪族アルコール、より好ましくは水酸基を1有する炭素原子数が1~3の脂肪族炭化水素を含む脂肪族アルコールが挙げられる。具体的には、前記脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、2-ブタノール、i-ブタノール、t-ブタノール、n-ペンタノール、t-アミルアルコール、n-ヘキサノール、2-エチルヘキサノール、n-オクタノール、エチレングリコール、プロピレングリコール、グリセリン、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、2-エトキシエタノール、2-メトキシエタノール等が挙げられる。 Examples of the poor solvent include aliphatic alcohols. Examples of the aliphatic alcohol include an aliphatic alcohol containing an aliphatic hydrocarbon having 1 to 8 carbon atoms and having 1 or more hydroxyl groups, preferably an aliphatic alcohol having 1 to 3 carbon atoms and having 1 to 6 carbon atoms. Examples thereof include aliphatic alcohols containing hydrocarbons, more preferably aliphatic alcohols containing aliphatic hydrocarbons having 1 to 3 carbon atoms and having 1 hydroxyl group. Specifically, the aliphatic alcohol includes methanol, ethanol, n-propanol, i-propanol, n-butanol, 2-butanol, i-butanol, t-butanol, n-pentanol, t-amyl alcohol, n-hexanol, 2-ethylhexanol, n-octanol, ethylene glycol, propylene glycol, glycerin, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, 2- Examples include ethoxyethanol and 2-methoxyethanol.
 前記液体としては、例えば、脂肪族アルコールと水とを含み、好ましくは水酸基を1以上有する炭素原子数が1~8の脂肪族炭化水素を含む脂肪族アルコールと水とを含み、より好ましくは水酸基を1~3有する炭素原子数が1~6の脂肪族炭化水素を含む脂肪族アルコールと水とを含み、さらに好ましくはエタノールまたはiープロパノールと水とを含む。 The liquid contains, for example, an aliphatic alcohol and water, preferably an aliphatic alcohol containing an aliphatic hydrocarbon having 1 to 8 carbon atoms having one or more hydroxyl groups, and water, more preferably a hydroxyl group. And an aliphatic alcohol containing an aliphatic hydrocarbon having 1 to 6 carbon atoms and 1 to 6 carbon atoms, and water, more preferably ethanol or i-propanol and water.
 前記液体に含まれる前記貧溶媒と水との割合は、特に限定されないが、前記貧溶媒/(水+前記貧溶媒)の割合は、例えば30~99%、好ましくは50~97%、より好ましくは60~95%であってもよい。 The ratio of the poor solvent and water contained in the liquid is not particularly limited, but the ratio of the poor solvent / (water + the poor solvent) is, for example, 30 to 99%, preferably 50 to 97%, and more preferably. May be 60-95%.
 本発明において、前記ポリマーと前記液体とを混合し、前記ポリマーを前記液体に溶解する際の温度は特に限定されないが、例えば、10~80℃、好ましくは15~75℃、より好ましくは20~70℃であってもよい。 In the present invention, the temperature at which the polymer and the liquid are mixed and the polymer is dissolved in the liquid is not particularly limited, but is, for example, 10 to 80 ° C., preferably 15 to 75 ° C., more preferably 20 to It may be 70 ° C.
 本発明において、前記ポリマーと前記液体とを混合し、前記ポリマーを前記液体に溶解する際、物理的刺激を与えて行ってもよい。その物理的刺激としては、例えば、攪拌、振とう、超音波処理等が挙げられる。 In the present invention, when the polymer and the liquid are mixed and the polymer is dissolved in the liquid, physical stimulation may be applied. Examples of the physical stimulation include stirring, shaking, ultrasonic treatment, and the like.
 このような工程によれば、モノリス状であり、膜より厚みがある金属イオン含有多孔質体を得ることができる。この金属イオン含有多孔質体の形状は限定されないが、この金属イオン含有多孔質体の縦横高さの3つの方向のうち、最も短いものを便宜的に厚みと呼ぶ。前記金属イオン含有多孔質体の厚みは、例えば0.5mm以上であり、好ましくは0.7mm以上であり、より好ましくは1mm以上である。前記金属イオン含有多孔質体の孔径は、例えば0.01μm~5μm、好ましくは0.03μm~3μm、前記孔の骨格径は、例えば0.01μm~5μm、好ましくは0.03μm~3μmである。 According to such a process, a metal ion-containing porous body that is monolithic and thicker than the membrane can be obtained. The shape of the metal ion-containing porous body is not limited, but the shortest of the three directions of the vertical and horizontal heights of the metal ion-containing porous body is referred to as thickness for convenience. The thickness of the metal ion-containing porous body is, for example, 0.5 mm or more, preferably 0.7 mm or more, more preferably 1 mm or more. The pore size of the metal ion-containing porous body is, for example, 0.01 μm to 5 μm, preferably 0.03 μm to 3 μm, and the skeleton diameter of the pore is, for example, 0.01 μm to 5 μm, preferably 0.03 μm to 3 μm.
 前記のように本発明の金属含有多孔質体の製造方法は、キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体のキレート基と金属イオンとを配位結合させた金属イオン含有多孔質体に還元処理を行い、金属含有多孔質体を得る工程を含む。 As described above, the method for producing a metal-containing porous body according to the present invention includes a chelate group and a metal ion of a raw material porous body that is modified with a functional group having a chelate group and that includes a polymer as a main component. It includes a step of performing a reduction treatment on the metal ion-containing porous body coordinated and obtaining a metal-containing porous body.
 前記金属イオン含有多孔質体に還元処理を行う工程は、例えば、以下のようにして行うことができる。還元剤の溶液に、前記金属イオン含有多孔質体を加え、室温(例えば、0~50℃、好ましくは20~30℃)で1~72時間、振とうする。前記還元剤としては、水素、水素化ホウ素ナトリウム、水素化ホウ素アンモニウム、アルデヒド、ヒドラジン、ジメチルアミノボラン、還元糖、アルコール等が挙げられる。前還元剤の溶液用の溶媒としては、水、メタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール、ジメチルスルホキシド、ジメチルホルムアミド、アセトニトリル、テトラヒドロフラン、アセトン、ピロリドン等が挙げられる。前記還元剤の溶液の濃度としては、例えば、0.05~2Mが挙げられる。この後、前記多孔質体を、水等の溶媒で洗浄し、得られた多孔質体を減圧下で常温で乾燥させる。このようにして、前記金属イオン含有多孔質体を還元して、前記金属イオンを金属に変換し、金属含有多孔質体を得る工程を行うことができる。 The step of reducing the metal ion-containing porous material can be performed, for example, as follows. The metal ion-containing porous material is added to the reducing agent solution and shaken at room temperature (eg, 0 to 50 ° C., preferably 20 to 30 ° C.) for 1 to 72 hours. Examples of the reducing agent include hydrogen, sodium borohydride, ammonium borohydride, aldehyde, hydrazine, dimethylaminoborane, reducing sugar, alcohol and the like. Examples of the solvent for the pre-reducing agent solution include water, methanol, ethanol, 1-propanol, 2-propanol, butanol, dimethyl sulfoxide, dimethylformamide, acetonitrile, tetrahydrofuran, acetone, pyrrolidone and the like. Examples of the concentration of the reducing agent solution include 0.05 to 2M. Thereafter, the porous body is washed with a solvent such as water, and the obtained porous body is dried at room temperature under reduced pressure. In this manner, a step of reducing the metal ion-containing porous body to convert the metal ions into a metal to obtain a metal-containing porous body can be performed.
 前記金属含有多孔質体の製造方法において、前記のように、前記金属イオン含有多孔質体は、キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体と金属イオンとを接触させ、前記原料多孔質体のキレート基と前記金属イオンとを配位結合させることにより得られ、
 前記キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体は、モノリス状の、主成分としてポリマーを含む多孔質体を、キレート基を有する官能基を含む化合物で修飾することにより得られ、
 前記モノリス状の、主成分としてポリマーを含む多孔質体は、水と相互に混和性であり、かつ水を除く、前記ポリマーに対する貧溶媒と、水とを含む液体に、前記ポリマーを溶解してポリマー溶液を調製し、前記ポリマー溶液から析出したポリマー析出物を分離し、前記ポリマー析出物を乾燥して得られる。
In the method for producing a metal-containing porous body, as described above, the metal ion-containing porous body is a monolithic raw material porous body modified with a functional group having a chelate group and containing a polymer as a main component. And metal ions are contacted, and the chelate group of the raw material porous body and the metal ions are coordinated and obtained,
The monolithic raw material porous material modified with a functional group having a chelate group and containing a polymer as a main component is a monolithic porous material containing a polymer as a main component. Obtained by modifying with a compound containing,
The monolithic porous body containing a polymer as a main component is miscible with water and dissolves the polymer in a liquid containing water and a poor solvent for the polymer excluding water. It is obtained by preparing a polymer solution, separating the polymer precipitate deposited from the polymer solution, and drying the polymer precipitate.
 前記キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体、前記モノリス状の、主成分としてポリマーを含む多孔質体、および前記キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体のキレート基と金属イオンとを配位結合させた金属イオン含有多孔質体は、本発明の金属多孔質体の製造方法における、前記キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体、前記モノリス状の、主成分としてポリマーを含む多孔質体、および前記キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体のキレート基と金属イオンとを配位結合させた金属イオン含有多孔質体と同様にして得ることができる。 Monolithic raw material porous body containing polymer as main component, modified with functional group having chelate group, monolithic porous body containing polymer as main component, and functional group having chelate group The metal ion-containing porous body in which the chelate group of the raw material porous body containing a polymer as a main component and the metal ion are coordinated and bonded is a monolith-like porous body modified with the method for producing a metal porous body of the present invention A monolithic raw material porous material containing a polymer as a main component, a monolithic porous material containing a polymer as a main component, and the chelating group modified with a functional group having the chelating group Metal ions containing monolithic, functionally modified, raw material porous material containing polymer as a main component and coordinated with chelating groups and metal ions It can be obtained in the same manner as porous bodies.
 このような本発明の製造方法によれば、モノリス状であり、膜より厚みがある金属含有多孔質体を得ることができる。この金属含有多孔質体の形状は限定されないが、この金属含有多孔質体の縦横高さの3つの方向のうち、最も短いものを便宜的に厚みと呼ぶ。前記金属含有多孔質体の厚みは、例えば0.5mm以上であり、好ましくは0.7mm以上であり、より好ましくは1mm以上である。前記金属含有多孔質体の孔径は、例えば0.01μm~5μm、好ましくは0.03μm~3μm、前記孔の骨格径は、例えば0.01μm~5μm、好ましくは0.03μm~3μmである。このような金属含有多孔質体は、触媒、センサー、発光材料、殺菌剤として有用である。 According to such a production method of the present invention, a metal-containing porous body that is monolithic and thicker than the film can be obtained. The shape of the metal-containing porous body is not limited, but the shortest of the three directions of the vertical and horizontal heights of the metal-containing porous body is referred to as thickness for convenience. The metal-containing porous body has a thickness of, for example, 0.5 mm or more, preferably 0.7 mm or more, and more preferably 1 mm or more. The pore diameter of the metal-containing porous body is, for example, 0.01 μm to 5 μm, preferably 0.03 μm to 3 μm, and the skeleton diameter of the pore is, for example, 0.01 μm to 5 μm, preferably 0.03 μm to 3 μm. Such a metal-containing porous body is useful as a catalyst, a sensor, a luminescent material, and a disinfectant.
 以下に本発明を実施例によりさらに具体的に説明するが、本発明の範囲は、以下の実施例により限定されない。
 本明細書の記載において、以下の略語を使用する。
 MMA:メタクリル酸メチル
 GMA:グリシジルメタクリレート
 PEI:ポリエチレンイミン
 EDTA:エチレンジアミン四酢酸
 p(GM):MMA-GMA共重合体
 DMSO:ジメチルスルホキシド
The present invention will be described more specifically with reference to the following examples. However, the scope of the present invention is not limited by the following examples.
The following abbreviations are used in the description of the present specification.
MMA: Methyl methacrylate GMA: Glycidyl methacrylate PEI: Polyethyleneimine EDTA: Ethylenediaminetetraacetic acid p (GM): MMA-GMA copolymer DMSO: Dimethyl sulfoxide
 本明細書において、測定機器は以下の機器を用いた。
 NMR(核磁気共鳴):ブルーカー(Bruker)DPX 400
 GPC(ゲル浸透クロマトグラフィー):TOSOH DP-8020ポンプ、TOSOH RI-8020 RI検出器、TOSOH SD-8020 デガッサー、TOSOH CO-8020 カラムオーブン、TOSOH AS-8020 オートサンプラで構成されており、TOSOH TSK gel GMH-MとTOSOH TSK gel GMH-Nの2つのカラムをつないで測定した。
In this specification, the following devices were used as measuring devices.
NMR (Nuclear Magnetic Resonance): Bruker DPX 400
GPC (Gel Permeation Chromatography): TOSOH DP-8020 pump, TOSOH RI-8020 RI detector, TOSOH SD-8020 degasser, TOSOH CO-8020 column oven, TOSOH AS-8020 autosampler, TOSOH TSK gel Measurement was performed by connecting two columns of GMH-M and TOSOH TSK gel GMH-N.
 バイオシェイカー:MBR-022UP (TAITEC)
 示差熱熱重量同時測定装置(TG-DTA):セイコーインスツルメンツ株式会社、SSC/5200(TG/DTA220)
 EDX(エネルギー分散X線分光法) 日立卓上顕微鏡:Miniscope TM3000
 走査型電子顕微鏡 SEM:日立S-3000N(株式会社日立ハイテクノロジーズ製)
 イオンスパッタ:日立E-1010
 BET(比表面積測定):マイクロメリティックス トライスター3000(島津製作所)
 導電率測定:SANWA デジタルマルチメーター CD770
 水素雰囲気下炉:横型雰囲気管状炉(アサヒ理化製作所製)
 本明細書において孔径および骨格径は、走査電子顕微鏡(SEM)を用いて撮影した画像より求めた。
Bio Shaker: MBR-022UP (TAITEC)
Differential thermal thermogravimetric simultaneous measurement device (TG-DTA): Seiko Instruments Inc., SSC / 5200 (TG / DTA220)
EDX (Energy Dispersive X-ray Spectroscopy) Hitachi Tabletop Microscope: Miniscope TM3000
Scanning electron microscope SEM: Hitachi S-3000N (manufactured by Hitachi High-Technologies Corporation)
Ion sputtering: Hitachi E-1010
BET (specific surface area measurement): Micromeritics Tristar 3000 (Shimadzu Corporation)
Conductivity measurement: SANWA Digital Multimeter CD770
Furnace under hydrogen atmosphere: Horizontal atmosphere tubular furnace (manufactured by Asahi Rika Seisakusho)
In this specification, the pore diameter and the skeleton diameter were determined from images taken using a scanning electron microscope (SEM).
 <SEM観察>
 多孔質体について、15.0mAの放電電流で150sスパッタリングを行った後、15.0kVから25.0kVの印加電圧でSEM観察を行った。
<SEM observation>
The porous body was subjected to sputtering for 150 s with a discharge current of 15.0 mA, and then subjected to SEM observation at an applied voltage of 15.0 kV to 25.0 kV.
 <BET比表面積測定>
 多孔質体について、サンプル脱ガス装置を用い、減圧下40℃で240分間脱気した後、BET3点法による比表面積測定を行った。
<BET specific surface area measurement>
The porous body was degassed for 240 minutes at 40 ° C. under reduced pressure using a sample degasser, and then the specific surface area was measured by the BET three-point method.
 <導電性>
 幅1mmに成形した測定試料の両端に端子を当て、上下左右3カ所で2回ずつ計ったときの最小値と最大値を記録した。
<Conductivity>
Terminals were applied to both ends of a measurement sample molded to a width of 1 mm, and the minimum and maximum values were measured when measured twice at three locations, top, bottom, left and right.
 <MnとMw>
 Mn(数平均分子量)、Mw(重量平均分子量)およびMw/Mn(分子量分布)は、GPC(ゲルパー浸透クロマトグラフィー)を用い、クロロホルム溶媒で、40℃で測定した。得られた重合体の分子量は、ポリスチレン換算の分子量をユニバーサル法によりポリスチレン換算値に変換した。
<Mn and Mw>
Mn (number average molecular weight), Mw (weight average molecular weight) and Mw / Mn (molecular weight distribution) were measured at 40 ° C. with a chloroform solvent using GPC (gel permeation chromatography). The molecular weight of the obtained polymer was converted from polystyrene equivalent molecular weight to polystyrene equivalent by the universal method.
 <Ni金属多孔質体の製造>
 Ni金属含有多孔質体およびNi金属多孔質体を、以下のスキーム1に従い、製造した。
<Manufacture of Ni metal porous body>
A Ni metal-containing porous body and a Ni metal porous body were produced according to the following scheme 1.
Figure JPOXMLDOC01-appb-C000001
                  
Figure JPOXMLDOC01-appb-C000001
                  
 (1)MMA-GMA共重合体(以下、p(GM)と呼ぶ)の製造
 撹拌子を入れた200mLナスフラスコにメタクリル酸メチル(152mmol、30g、和光純薬製)、グリシジルメタクリレート(15.2mmol、4.65g、ナカライテクス製)、アゾビスイソブチロニトリル(0.1mmol、0.0301g、和光純薬製)およびトルエン(120mL、ナカライテクス製)を加えた。混合溶液をスターラー上に設置した油浴中、撹拌しながら80℃で加熱した。6時間後、加熱を止め、メタノール(キシダ製)2L中で再沈殿を行ったところ白色固体が得られた。得られた固体を吸引ろ過により集め、50℃、10Torrで減圧乾燥を行った。生成物の分子量はGPC(展開溶媒:クロロホルム、検量線トルエン)により、Mn=99,400、Mw=272,000、Mw/Mn=2.74であることを確認した。重合比は、MMA:GMA=89:11であることをNMRにより確認した。
(1) Production of MMA-GMA copolymer (hereinafter referred to as p (GM)) In a 200 mL eggplant flask containing a stirrer, methyl methacrylate (152 mmol, 30 g, manufactured by Wako Pure Chemical Industries), glycidyl methacrylate (15.2 mmol) 4.65 g, manufactured by Nacalai tex), azobisisobutyronitrile (0.1 mmol, 0.0301 g, manufactured by Wako Pure Chemical Industries) and toluene (120 mL, manufactured by Nacalai tex) were added. The mixed solution was heated at 80 ° C. with stirring in an oil bath placed on a stirrer. After 6 hours, the heating was stopped and reprecipitation was performed in 2 L of methanol (manufactured by Kishida), whereby a white solid was obtained. The obtained solid was collected by suction filtration and dried under reduced pressure at 50 ° C. and 10 Torr. The molecular weight of the product was confirmed by GPC (developing solvent: chloroform, calibration curve toluene) to be Mn = 99,400, Mw = 272,000, and Mw / Mn = 2.74. The polymerization ratio was confirmed by NMR to be MMA: GMA = 89: 11.
 (2)モノリス状の、主成分としてp(GM)を含む原料多孔質体(以下、「p(GM)の原料多孔質体」と呼ぶ)の製造
 撹拌子を入れた5mLのサンプル管にエタノール(信和アルコール産業製):水(80:20vol%)の混合溶液にp(GM)(Mw=272,000)を120mg/mLの濃度で加え、撹拌しながら60℃で加熱して溶解させた。その後、混合液から撹拌子を取り出してバイオシェイカー中20℃で8時間冷却して相分離を誘起させ、白色固体を得た。得られた固体はサンプル管(円柱状)の形状であった。これを10mLの水で2時間溶媒置換し、溶媒置換後の水を廃棄して新たな水に入れ替えるという操作を2回行った後、10Torrで8時間の常温減圧乾燥を行ってp(GM)の原料多孔質体(寸法:直径10mm、厚み12mmの略円柱状、120mg)を得た。得られたp(GM)の原料多孔質体のBET比表面積は7.50m/gであった。得られたp(GM)の原料多孔質体の元素分析の結果は、C:59.2%、H9.43%であった(理論値は、C:65.2%、H9.43%)。得られたp(GM)の原料多孔質体のSEM画像を図1に示す。図1に示すように、p(GM)の原料多孔質体は、骨格径が1~2μmおよび孔径1~2μmの共連続構造を有する多孔質体であることが確認できた。なお、孔が共連続構造であることは、複数の多孔質体サンプルのSEM写真において、孔の形状が同一または類似の形状であることから推測できた。得られたp(GM)の原料多孔質体は、導電性を示さなかった。
(2) Production of monolithic raw material porous body containing p (GM) as a main component (hereinafter referred to as “p (GM) raw material porous body”) Ethanol in a 5 mL sample tube containing a stirrer (Shinwa Alcohol Sangyo Co., Ltd.): p (GM) (Mw = 272,000) was added to a mixed solution of water (80:20 vol%) at a concentration of 120 mg / mL, and dissolved by heating at 60 ° C. with stirring. . Thereafter, the stir bar was taken out from the mixed solution and cooled in a bioshaker at 20 ° C. for 8 hours to induce phase separation to obtain a white solid. The obtained solid was in the shape of a sample tube (columnar). This was solvent-replaced with 10 mL of water for 2 hours, the operation of discarding the water after solvent replacement and replacing it with new water was performed twice, followed by drying at room temperature under reduced pressure for 8 hours at 10 Torr and p (GM) Raw material porous body (dimension: diameter 10 mm, thickness 12 mm, substantially cylindrical shape, 120 mg) was obtained. The obtained p (GM) raw material porous body had a BET specific surface area of 7.50 m 2 / g. The results of elemental analysis of the obtained raw material porous material of p (GM) were C: 59.2% and H9.43% (theoretical values were C: 65.2%, H9.43%). . The SEM image of the obtained raw material porous body of p (GM) is shown in FIG. As shown in FIG. 1, the raw material porous material of p (GM) was confirmed to be a porous material having a co-continuous structure with a skeleton diameter of 1 to 2 μm and a pore diameter of 1 to 2 μm. In addition, it can be estimated from the fact that the pores have the same or similar shape in the SEM photographs of a plurality of porous body samples. The obtained raw material porous material of p (GM) did not show conductivity.
 (3)キレート基を有する官能基で修飾された、モノリス状の、主成分としてp(GM)を含む原料多孔質体の製造
 あらかじめ実施例1(2)で得られたp(GM)の原料多孔質体(120mg)をエタノール中で8時間浸漬した。サンプル管に質量比で分岐状ポリエチレンイミン(Mw=300、日本触媒)75wt%のエタノール混合溶液5mLとp(GM)原料多孔質体を加え、バイオシェイカーによって8時間、攪拌しながら40℃で加熱した。生成物を10mLの水で2時間溶媒置換し、溶媒置換後の水を廃棄して新たな水に入れ替えるという操作を2回行った後、10Torrで8時間の常温減圧乾燥を行ってPEI化されたp(GM)の原料多孔質体(以下、「PEI化原料多孔質体」と呼ぶ)(200mg)を得た。得られたPEI化原料多孔質体のBET比表面積は5.00m/gであった。得られたPEI化原料多孔質体の元素分析の結果は、C:50.7%、H8.58%、N10.1%であった。得られたPEI化原料多孔質体のSEM画像を図2に示す。図2に示すように、PEI化原料多孔質体は、骨格径が1~2μmおよび孔径1~2.5μmの共連続構造を有する多孔質体であることが確認できた。なお、孔が共連続構造であることは、複数の多孔質体サンプルのSEM写真において、孔の形状が同一または類似の形状であることから推測できた。
(3) Production of a raw material porous body modified with a functional group having a chelate group and containing p (GM) as a main component, a raw material of p (GM) obtained in advance in Example 1 (2) The porous body (120 mg) was immersed in ethanol for 8 hours. Add 5 mL of ethanol mixture solution of 75 wt% branched polyethyleneimine (Mw = 300, Nippon Shokubai) by mass ratio and porous material of p (GM) material to the sample tube, and heat at 40 ° C. with stirring for 8 hours with a bioshaker. did. The product was solvent-replaced with 10 mL of water for 2 hours, and the operation of discarding the water after solvent replacement and replacing it with new water was performed twice, followed by drying at room temperature under reduced pressure for 8 hours at 10 Torr to form PEI. In addition, a raw material porous material of p (GM) (hereinafter referred to as “PEI raw material porous material”) (200 mg) was obtained. The obtained PEI raw material porous body had a BET specific surface area of 5.00 m 2 / g. The results of elemental analysis of the obtained PEI-formed raw material porous body were C: 50.7%, H8.58%, and N10.1%. The SEM image of the obtained PEI-formed raw material porous body is shown in FIG. As shown in FIG. 2, it was confirmed that the PEI material porous body was a porous body having a co-continuous structure having a skeleton diameter of 1 to 2 μm and a pore diameter of 1 to 2.5 μm. In addition, it can be estimated from the fact that the pores have the same or similar shape in the SEM photographs of a plurality of porous body samples.
 10mLのサンプル管に0.5Mのエチレンジアミン四酢酸・二無水物(東京化成製)のジメチルスルホキシド(DMSO、和光純薬製)溶液5mLとPEI化原料多孔質体200mgを加え、バイオシェイカーによって24時間、振とうしながら40℃で加熱した。反応後、得られた多孔質体をDMSO、0.1M水酸化ナトリウム水溶液(和光純薬製)、水の順に洗浄した。その多孔質体を10Torrで8時間の常温減圧乾燥を行って、EDTA-PEI化された原料多孔質体(以下、「EDTA-PEI化原料多孔質体」と呼ぶ)(230mg)を得た。得られたEDTA-PEI化原料多孔質体のBET比表面積は3.70m/gであった。得られたEDTA-PEI化原料多孔質体の元素分析の結果は、C:50.9%、H7.27%、N5.72%であった。得られたEDTA-PEI化原料多孔質体は、導電性を示さなかった。 To a 10 mL sample tube, add 5 mL of a 0.5 M ethylenediaminetetraacetic acid dianhydride (manufactured by Tokyo Chemical Industry) dimethyl sulfoxide (DMSO, Wako Pure Chemical Industries) solution and 200 mg of PEI raw material porous material, and use a bioshaker for 24 hours And heated at 40 ° C. with shaking. After the reaction, the obtained porous body was washed with DMSO, 0.1 M aqueous sodium hydroxide solution (manufactured by Wako Pure Chemical Industries), and water in this order. The porous body was dried at room temperature under reduced pressure for 8 hours at 10 Torr to obtain a raw material porous body converted to EDTA-PEI (hereinafter referred to as “EDTA-PEI converted raw material porous body”) (230 mg). The resulting EDTA-PEI raw material porous body had a BET specific surface area of 3.70 m 2 / g. The results of elemental analysis of the obtained EDTA-PEI raw material porous material were C: 50.9%, H 7.27%, and N 5.72%. The obtained EDTA-PEI raw material porous material did not show conductivity.
 (4)前記原料多孔質体のキレート基とNiイオンとを配位結合させた金属イオン含有多孔質体の製造
 あらかじめ実施例1(3)で得られたEDTA-PEI化原料多孔質体(120mg)をエタノール中で8時間浸漬した。塩化ニッケル(無水)(8mmol、1.03g)を10mLの水に溶解し、0.8Mの塩化ニッケル水溶液を調整した。10mLのサンプル管に0.8Mの塩化ニッケル水溶液5mLと実施例1(3)で得られたEDTA-PEI化原料多孔質体(230mg)を加え、バイオシェイカーによって常温で24時間、振とうした。反応後、水で洗浄し、10Torrで8時間の常温減圧乾燥を行って前記原料多孔質体のキレート基とNiイオンとを配位結合させた金属イオン含有多孔質体(以下、「Niイオン含有多孔質体」と呼ぶ)(275mg)を得た。得られたNiイオン含有多孔質体の元素分析の結果は、C:4.39%、H26.3%、N2.51%であった。得られたNiイオン含有多孔質体の抵抗値は、20×10Ωであり、Niイオン含有多孔質体は導電性を示さなかった。前記Niイオン含有多孔質体の厚みは、2cmであり、孔径は0.6μm~1.2μmであり、前記孔の骨格径は0.5μm~1.0μmであった。
(4) Production of metal ion-containing porous material in which the chelate group of the raw material porous material and Ni ions are coordinated and bonded EDTA-PEI raw material porous material (120 mg) previously obtained in Example 1 (3) ) Was immersed in ethanol for 8 hours. Nickel chloride (anhydrous) (8 mmol, 1.03 g) was dissolved in 10 mL of water to prepare a 0.8 M nickel chloride aqueous solution. To a 10 mL sample tube, 5 mL of 0.8 M nickel chloride aqueous solution and the EDTA-PEI raw material porous material (230 mg) obtained in Example 1 (3) were added, and shaken with a bioshaker at room temperature for 24 hours. After the reaction, it is washed with water, dried at room temperature under reduced pressure for 8 hours at 10 Torr, and a metal ion-containing porous body (hereinafter referred to as “Ni ion-containing”) in which the chelate group of the raw material porous body and Ni ions are coordinated. (Referred to as “porous body”) (275 mg). The results of elemental analysis of the obtained Ni ion-containing porous material were C: 4.39%, H26.3%, and N2.51%. The resistance value of the obtained Ni ion-containing porous body was 20 × 10 6 Ω, and the Ni ion-containing porous body did not exhibit conductivity. The Ni ion-containing porous body had a thickness of 2 cm, a pore diameter of 0.6 μm to 1.2 μm, and a pore skeleton diameter of 0.5 μm to 1.0 μm.
 (5)Niイオンを金属に変換した、金属含有多孔質体の製造
 水素化ホウ素ナトリウム(10mmol、0.0378g、和光純薬製)を10mLのメタノールに溶解し、1Mの水素化ホウ素ナトリウムのメタノール溶液を調整した。10mLのサンプル管に1Mの水素化ホウ素ナトリウムのメタノール溶液5mLと実施例1(4)で得たNiイオン含有多孔質体(275mg)を加え、バイオシェイカーによって常温で24時間、振とうした。反応後、水で洗浄し、10Torrで8時間の常温減圧乾燥を行ってNiイオンを金属に変換した、Ni金属含有多孔質体を得た。得られたNi金属含有多孔質体のSEM画像を図3に示す。図3に示すように、Ni金属含有多孔質体は、骨格径が1~2μmおよび孔径1~2.5μmの共連続構造を有する多孔質体であることが確認できた。なお、孔が共連続構造であることは、複数の多孔質体サンプルのSEM写真において、孔の形状が同一または類似の形状であることから推測できた。前記Ni金属含有多孔質体の厚みは、2cmであった。
(5) Manufacture of a metal-containing porous body obtained by converting Ni ions into metal Sodium borohydride (10 mmol, 0.0378 g, manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 10 mL of methanol, and 1M sodium borohydride methanol. The solution was adjusted. To a 10 mL sample tube, 5 mL of a 1M sodium borohydride methanol solution and the Ni ion-containing porous material (275 mg) obtained in Example 1 (4) were added, and the mixture was shaken with a bioshaker at room temperature for 24 hours. After the reaction, it was washed with water and dried at room temperature under reduced pressure for 8 hours at 10 Torr to obtain a Ni metal-containing porous body in which Ni ions were converted to metal. The SEM image of the obtained Ni metal containing porous body is shown in FIG. As shown in FIG. 3, the Ni metal-containing porous body was confirmed to be a porous body having a co-continuous structure with a skeleton diameter of 1 to 2 μm and a pore diameter of 1 to 2.5 μm. In addition, it can be estimated from the fact that the pores have the same or similar shape in the SEM photographs of a plurality of porous body samples. The thickness of the Ni metal-containing porous body was 2 cm.
 (6)Ni金属多孔質体の製造
 実施例1(5)で得たNi金属含有多孔質体(10mg)を空気をフローしながら、10℃/分の速度で焼成してNi金属多孔質体(25mg)を得た。得られたNi金属多孔質体は、EDX装置によりNiの存在が確認された。得られたNi金属多孔質体の元素分析の結果は、C:1.44%、H0.52%、N0.13%であった(理論値は、C:0%、H0%、N0%)。得られたNi金属多孔質体は、ほぼNi金属から構成されていると推定できる。得られたNi金属多孔質体のSEM画像を図4に示す。図4に示すように、Ni金属多孔質体は、骨格径が0.05μm~0.4μmおよび孔径0.4μm~1μmの共連続構造を有する多孔質体であることが確認できた。なお、孔が共連続構造であることは、複数の多孔質体サンプルのSEM写真において、孔の形状が同一または類似の形状であることから推測できた。得られたNi金属多孔質体の抵抗値は、50Ωであり、Ni金属多孔質体は導電性を示した。前記Ni金属多孔質体の厚みは、0.5mmであった。
(6) Manufacture of Ni metal porous body Ni metal containing porous body (10 mg) obtained in Example 1 (5) was baked at a rate of 10 ° C / min while flowing air to make a Ni metal porous body. (25 mg) was obtained. In the obtained Ni metal porous body, the presence of Ni was confirmed by an EDX apparatus. The results of elemental analysis of the obtained Ni metal porous body were C: 1.44%, H0.52%, N0.13% (theoretical values were C: 0%, H0%, N0%). . It can be estimated that the obtained Ni metal porous body is substantially composed of Ni metal. The SEM image of the obtained Ni metal porous body is shown in FIG. As shown in FIG. 4, it was confirmed that the Ni metal porous body was a porous body having a co-continuous structure with a skeleton diameter of 0.05 μm to 0.4 μm and a pore diameter of 0.4 μm to 1 μm. In addition, it can be estimated from the fact that the pores have the same or similar shape in the SEM photographs of a plurality of porous body samples. The obtained Ni metal porous body had a resistance value of 50Ω, and the Ni metal porous body exhibited conductivity. The thickness of the Ni metal porous body was 0.5 mm.
  <Au金属多孔質体の製造>
 Au金属含有多孔質体およびAu金属多孔質体を、以下のスキーム2に従い、製造した。
<Manufacture of Au metal porous body>
An Au metal-containing porous body and an Au metal porous body were produced according to the following scheme 2.
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
 (1)前記原料多孔質体のキレート基とAuイオンとを配位結合させた金属イオン含有多孔質体の製造
 あらかじめ実施例1(3)で得られたEDTA-PEI化原料多孔質体(20mg)をエタノール中で8時間浸漬した。H[AuCl](2mmol、0.68g)を5mLの水に溶解し、0.4MのH[AuCl]水溶液を調整した。10mLのサンプル管に0.4MのH[AuCl]水溶液5mLと実施例1(3)で得られたEDTA-PEI化原料多孔質体(20mg)を加え、バイオシェイカーによって常温で24時間、振とうした。反応後、水で洗浄し、10Torrで8時間の常温減圧乾燥を行って前記原料多孔質体のキレート基とAuイオンとを配位結合させた金属イオン含有多孔質体(以下、「Auイオン含有多孔質体」と呼ぶ)(23mg)を得た。前記Auイオン含有多孔質体の厚みは、2cmであり、孔径は0.8μm~1.5μmであり、前記孔の骨格径は0.3μm~1.0μmであった。
(1) Production of metal ion-containing porous material in which the chelate group of the raw material porous material and Au ions are coordinated and bonded EDTA-PEI raw material porous material (20 mg) previously obtained in Example 1 (3) ) Was immersed in ethanol for 8 hours. H [AuCl 4 ] (2 mmol, 0.68 g) was dissolved in 5 mL of water to prepare a 0.4 M H [AuCl 4 ] aqueous solution. To a 10 mL sample tube, add 5 mL of 0.4 M H [AuCl 4 ] aqueous solution and the porous EDTA-PEI raw material (20 mg) obtained in Example 1 (3), and shake with a bioshaker at room temperature for 24 hours. That ’s it. After the reaction, the substrate is washed with water, dried at room temperature under reduced pressure for 8 hours at 10 Torr, and a metal ion-containing porous body in which the chelate group of the raw material porous body and Au ions are coordinated (hereinafter referred to as “Au ion-containing”). (Referred to as “porous body”) (23 mg). The Au ion-containing porous body had a thickness of 2 cm, a pore diameter of 0.8 μm to 1.5 μm, and a pore skeleton diameter of 0.3 μm to 1.0 μm.
 (2)Auイオンを金属に変換した、金属含有多孔質体の製造
 水素化ホウ素ナトリウム(0.5mmol、19mg、和光純薬製)を5mLのメタノールに溶解し、100mMの水素化ホウ素ナトリウムのメタノール溶液を調整した。10mLのサンプル管に100mMの水素化ホウ素ナトリウムのメタノール溶液5mLと実施例2(1)で得たAuイオン含有多孔質体(23mg)を加え、バイオシェイカーによって常温で24時間、振とうした。反応後、水で洗浄し、10Torrで8時間の常温減圧乾燥を行ってAuイオンを金属に変換した、Au金属含有多孔質体を得た。得られたAu金属含有多孔質体のSEM画像を図5に示す。図5に示すように、Au金属含有多孔質体は、骨格径が1~2μmおよび孔径1~2.5μmの共連続構造を有する多孔質体であることが確認できた。なお、孔が共連続構造であることは、複数の多孔質体サンプルのSEM写真において、孔の形状が同一または類似の形状であることから推測できた。前記Au金属含有多孔質体の厚みは、2cmであった。
(2) Production of metal-containing porous material by converting Au ions to metal Sodium borohydride (0.5 mmol, 19 mg, manufactured by Wako Pure Chemical Industries) was dissolved in 5 mL of methanol, and 100 mM of sodium borohydride methanol. The solution was adjusted. To a 10 mL sample tube, 5 mL of a 100 mM sodium borohydride methanol solution and an Au ion-containing porous material (23 mg) obtained in Example 2 (1) were added, and the mixture was shaken with a bioshaker at room temperature for 24 hours. After the reaction, it was washed with water and dried at room temperature under reduced pressure for 8 hours at 10 Torr to obtain Au metal-containing porous material in which Au ions were converted to metal. The SEM image of the obtained Au metal containing porous body is shown in FIG. As shown in FIG. 5, the Au metal-containing porous body was confirmed to be a porous body having a co-continuous structure with a skeleton diameter of 1 to 2 μm and a pore diameter of 1 to 2.5 μm. In addition, it can be estimated from the fact that the pores have the same or similar shape in the SEM photographs of a plurality of porous body samples. The thickness of the Au metal-containing porous body was 2 cm.
 (3)Au金属多孔質体の製造
 実施例2(2)で得たAu金属含有多孔質体(23mg)を空気をフローしながら、2℃/分の速度で焼成してAu金属多孔質体(4.3mg)を得た。得られたAu金属多孔質体は、EDX装置によりAuの存在が確認された。得られたAu金属多孔質体のSEM画像を図6に示す。図6に示すように、Au金属多孔質体は、骨格径が0.1μm~0.3μmおよび孔径0.8μm~1μmの共連続構造を有する多孔質体であることが確認できた。なお、孔が共連続構造であることは、複数の多孔質体サンプルのSEM写真において、孔の形状が同一または類似の形状であることから推測できた。得られたAu金属多孔質体の抵抗値は、0.75Ωであり、Au金属多孔質体は導電性を示した。前記Au金属多孔質体の厚みは、0.5mmであった。
(3) Production of Au metal porous body Au metal-containing porous body (23 mg) obtained in Example 2 (2) was baked at a rate of 2 ° C / min while flowing air, and Au metal porous body (4.3 mg) was obtained. In the obtained Au metal porous body, the presence of Au was confirmed by an EDX apparatus. The SEM image of the obtained Au metal porous body is shown in FIG. As shown in FIG. 6, the Au metal porous body was confirmed to be a porous body having a co-continuous structure having a skeleton diameter of 0.1 μm to 0.3 μm and a pore diameter of 0.8 μm to 1 μm. In addition, it can be estimated from the fact that the pores have the same or similar shape in the SEM photographs of a plurality of porous body samples. The obtained Au metal porous body had a resistance value of 0.75Ω, and the Au metal porous body exhibited electrical conductivity. The thickness of the Au metal porous body was 0.5 mm.
  <Cu金属多孔質体の製造>
 Cu金属含有多孔質体およびCu金属多孔質体を、以下のスキーム3に従い、製造した。
<Manufacture of Cu metal porous body>
A Cu metal-containing porous body and a Cu metal porous body were produced according to the following scheme 3.
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
 (1)前記原料多孔質体のキレート基とCuイオンとを配位結合させた金属イオン含有多孔質体の製造
 あらかじめ実施例1(3)で得られたEDTA-PEI化原料多孔質体(50mg)をエタノール中で24時間浸漬した。CuCl(20mmol、0.34g)を100mLの水に溶解し、0.2MのCuCl水溶液を調整した。10mLのサンプル管に0.2MのCuCl水溶液100mLと実施例1(3)で得られたEDTA-PEI化原料多孔質体(50mg)を加え、バイオシェイカーによって常温で24時間、振とうした。反応後、水で洗浄し、10Torrで8時間の常温減圧乾燥を行って前記原料多孔質体のキレート基とCuイオンとを配位結合させた金属イオン含有多孔質体(以下、「Cuイオン含有多孔質体」と呼ぶ)(64mg)を得た。前記Cuイオン含有多孔質体の厚みは、1.2cmであり、孔径は0.7μm~1.4μmであり、前記孔の骨格径は0.5μm~1.0μmであった。
(1) Production of metal ion-containing porous material in which the chelate group of the raw material porous material and Cu ions are coordinated and bonded EDTA-PEI raw material porous material (50 mg) previously obtained in Example 1 (3) ) Was immersed in ethanol for 24 hours. CuCl 2 (20 mmol, 0.34 g) was dissolved in 100 mL of water to prepare a 0.2 M aqueous CuCl 2 solution. To a 10 mL sample tube, 100 mL of 0.2 M CuCl 2 aqueous solution and the porous EDTA-PEI material (50 mg) obtained in Example 1 (3) were added, and shaken with a bioshaker at room temperature for 24 hours. After the reaction, it is washed with water, dried at room temperature under reduced pressure for 8 hours at 10 Torr, and a metal ion-containing porous body in which the chelate group of the raw material porous body and Cu ions are coordinated (hereinafter referred to as “Cu ion-containing”). (Referred to as “porous body”) (64 mg). The Cu ion-containing porous body had a thickness of 1.2 cm, a pore diameter of 0.7 μm to 1.4 μm, and a pore skeleton diameter of 0.5 μm to 1.0 μm.
 (2)Cuイオンを金属に変換した、金属含有多孔質体の製造
 水素化ホウ素ナトリウム(2.0mmol、75mg、和光純薬製)を20mLのメタノールに溶解し、100mMの水素化ホウ素ナトリウムのメタノール溶液を調整した。10mLのサンプル管に100mMの水素化ホウ素ナトリウムのメタノール溶液20mLと実施例2(1)で得たCuイオン含有多孔質体(64mg)を加え、バイオシェイカーによって常温で24時間、振とうした。反応後、水で洗浄し、10Torrで8時間の常温減圧乾燥を行ってCuイオンを金属に変換した、Cu金属含有多孔質体を得た。得られたCu金属含有多孔質体のSEM画像を図7に示す。図7に示すように、Cu金属含有多孔質体は、骨格径が1~2μmおよび孔径1~2.5μmの共連続構造を有する多孔質体であることが確認できた。なお、孔が共連続構造であることは、複数の多孔質体サンプルのSEM写真において、孔の形状が同一または類似の形状であることから推測できた。前記Cu金属含有多孔質体の厚みは、1.2cmであった。
(2) Production of a metal-containing porous material obtained by converting Cu ions into metal Sodium borohydride (2.0 mmol, 75 mg, manufactured by Wako Pure Chemical Industries) was dissolved in 20 mL of methanol, and 100 mM of sodium borohydride methanol. The solution was adjusted. To a 10 mL sample tube, 20 mL of a 100 mM sodium borohydride methanol solution and Cu ion-containing porous material (64 mg) obtained in Example 2 (1) were added, and the mixture was shaken with a bioshaker at room temperature for 24 hours. After the reaction, it was washed with water and dried at room temperature under reduced pressure for 8 hours at 10 Torr to obtain a Cu metal-containing porous body in which Cu ions were converted to metal. The SEM image of the obtained Cu metal containing porous body is shown in FIG. As shown in FIG. 7, it was confirmed that the Cu metal-containing porous body was a porous body having a co-continuous structure having a skeleton diameter of 1 to 2 μm and a pore diameter of 1 to 2.5 μm. In addition, it can be estimated from the fact that the pores have the same or similar shape in the SEM photographs of a plurality of porous body samples. The thickness of the Cu metal-containing porous body was 1.2 cm.
 (3)Cu金属多孔質体の製造
 実施例3(2)で得たCu金属含有多孔質体(30mg)を空気をフローしながら、2℃/分の速度で焼成してCu金属多孔質体(5.5mg)を得た。得られたCu金属多孔質体は、EDX装置によりCuの存在が確認された。得られたCu金属多孔質体のSEM画像を図8に示す。図8に示すように、Cu金属多孔質体は、骨格径が0.4~1μmおよび孔径0.8~2μmの共連続構造を有する多孔質体であることが確認できた。なお、孔が共連続構造であることは、複数の多孔質体サンプルのSEM写真において、孔の形状が同一または類似の形状であることから推測できた。前記Cu金属多孔質体の厚みは、2.0mmであった。
(3) Production of Cu metal porous body Cu metal-containing porous body (30 mg) obtained in Example 3 (2) was baked at a rate of 2 ° C / min while flowing air to form a Cu metal porous body. (5.5 mg) was obtained. In the obtained Cu metal porous body, the presence of Cu was confirmed by an EDX apparatus. The SEM image of the obtained Cu metal porous body is shown in FIG. As shown in FIG. 8, it was confirmed that the Cu metal porous body was a porous body having a co-continuous structure having a skeleton diameter of 0.4 to 1 μm and a pore diameter of 0.8 to 2 μm. In addition, it can be estimated from the fact that the pores have the same or similar shape in the SEM photographs of a plurality of porous body samples. The thickness of the Cu metal porous body was 2.0 mm.
 <別のNi金属多孔質体の製造>
 別のNi金属含有多孔質体およびNi金属多孔質体を、以下のスキーム4に従い、製造した。
<Manufacture of another Ni metal porous body>
Another Ni metal-containing porous body and Ni metal porous body were produced according to Scheme 4 below.
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
 (1)前記原料多孔質体のキレート基とNiイオンとを配位結合させた金属イオン含有多孔質体の製造
 あらかじめ実施例1(3)で得られたPEI化原料多孔質体(100mg)をエタノール中で24時間浸漬した。塩化ニッケル(無水)(10mmol、1.26g)を50mLの水に溶解し、0.2Mの塩化ニッケル水溶液を調整した。10mLのサンプル管に200mMの塩化ニッケル水溶液50mLと実施例1(3)で得られたPEI化原料多孔質体(100mg)を加え、バイオシェイカーによって常温で24時間、振とうした。反応後、水で洗浄し、10Torrで8時間の常温減圧乾燥を行って前記原料多孔質体のキレート基とNiイオンとを配位結合させた金属イオン含有多孔質体(以下、「Niイオン含有多孔質体」と呼ぶ)(142mg)を得た。前記Niイオン含有多孔質体の厚みは、2cmであり、孔径は0.6μm~1.2μmであり、前記孔の骨格径は0.5μm~1.0μmであった。
(1) Production of metal ion-containing porous material in which chelate group of Ni material and Ni ion are coordinated and bonded PEI material porous material (100 mg) obtained in Example 1 (3) in advance Soaking in ethanol for 24 hours. Nickel chloride (anhydrous) (10 mmol, 1.26 g) was dissolved in 50 mL of water to prepare a 0.2 M nickel chloride aqueous solution. To a 10 mL sample tube, 50 mL of 200 mM nickel chloride aqueous solution and the PEI raw material porous material (100 mg) obtained in Example 1 (3) were added, and shaken with a bioshaker at room temperature for 24 hours. After the reaction, it is washed with water, dried at room temperature under reduced pressure for 8 hours at 10 Torr, and a metal ion-containing porous body (hereinafter referred to as “Ni ion-containing”) in which the chelate group of the raw material porous body and Ni ions are coordinated. (Referred to as “porous body”) (142 mg). The Ni ion-containing porous body had a thickness of 2 cm, a pore diameter of 0.6 μm to 1.2 μm, and a pore skeleton diameter of 0.5 μm to 1.0 μm.
 (2)Niイオンを金属に変換した、金属含有多孔質体の製造
 水素化ホウ素ナトリウム(5mmol、188mg、和光純薬製)を50mLのメタノールに溶解し、100mMの水素化ホウ素ナトリウムのメタノール溶液を調整した。10mLのサンプル管に100mMの水素化ホウ素ナトリウムのメタノール溶液50mLと実施例4(1)で得たNiイオン含有多孔質体(50mg)を加え、バイオシェイカーによって常温で24時間、振とうした。反応後、水で洗浄し、10Torrで8時間の常温減圧乾燥を行ってNiイオンを金属に変換した、Ni金属含有多孔質体を得た。得られたNi金属含有多孔質体のSEM画像を図9に示す。図9に示すように、Ni金属含有多孔質体は、骨格径が0.6~1.0μmおよび孔径0.8~1.0μmの共連続構造を有する多孔質体であることが確認できた。なお、孔が共連続構造であることは、複数の多孔質体サンプルのSEM写真において、孔の形状が同一または類似の形状であることから推測できた。
(2) Manufacture of a metal-containing porous body in which Ni ions are converted to metal Sodium borohydride (5 mmol, 188 mg, manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 50 mL of methanol, and a methanol solution of 100 mM sodium borohydride is added. It was adjusted. To a 10 mL sample tube, 50 mL of a 100 mM sodium borohydride methanol solution and the Ni ion-containing porous material (50 mg) obtained in Example 4 (1) were added and shaken with a bioshaker at room temperature for 24 hours. After the reaction, it was washed with water and dried at room temperature under reduced pressure for 8 hours at 10 Torr to obtain a Ni metal-containing porous body in which Ni ions were converted to metal. The SEM image of the obtained Ni metal containing porous body is shown in FIG. As shown in FIG. 9, the Ni metal-containing porous body was confirmed to be a porous body having a co-continuous structure having a skeleton diameter of 0.6 to 1.0 μm and a pore diameter of 0.8 to 1.0 μm. . In addition, it can be estimated from the fact that the pores have the same or similar shape in the SEM photographs of a plurality of porous body samples.
 (3)Ni金属多孔質体の製造
 実施例4(2)で得たNi金属含有多孔質体(60mg)を空気をフローしながら、2℃/分の速度で焼成してNi金属多孔質体(9mg)を得た。得られたNi金属多孔質体は、EDX装置によりNiの存在が確認された。得られたNi金属多孔質体のSEM画像を図10に示す。図10に示すように、Ni金属多孔質体は、骨格径が0.05μm~0.4μmおよび孔径0.4μm~1μmの共連続構造を有する多孔質体であることが確認できた。なお、孔が共連続構造であることは、複数の多孔質体サンプルのSEM写真において、孔の形状が同一または類似の形状であることから推測できた。前記Ni金属イオン含有多孔質体の厚みは、0.6mmであった。得られたNi金属多孔質体の抵抗値は、90Ωであり、Ni金属多孔質体は導電性を示した。
(3) Manufacture of Ni metal porous body Ni metal containing porous body (60 mg) obtained in Example 4 (2) was baked at a rate of 2 ° C./min while flowing air to make a Ni metal porous body. (9 mg) was obtained. In the obtained Ni metal porous body, the presence of Ni was confirmed by an EDX apparatus. The SEM image of the obtained Ni metal porous body is shown in FIG. As shown in FIG. 10, the Ni metal porous body was confirmed to be a porous body having a co-continuous structure with a skeleton diameter of 0.05 μm to 0.4 μm and a pore diameter of 0.4 μm to 1 μm. In addition, it can be estimated from the fact that the pores have the same or similar shape in the SEM photographs of a plurality of porous body samples. The thickness of the Ni metal ion-containing porous body was 0.6 mm. The obtained Ni metal porous body had a resistance value of 90Ω, and the Ni metal porous body exhibited conductivity.
 <別のNi金属多孔質体の製造>
 Ni金属多孔質体を、以下のスキーム5に従い、製造した。
<Manufacture of another Ni metal porous body>
A Ni metal porous body was produced according to the following scheme 5.
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
(1)Niイオンを金属に変換した、金属多孔質体の製造
 実施例4(1)で得たNiイオン含有多孔質体(95mg、厚み9.1mm)をアルゴンと水素(アルゴン:水素(容積比)=2:1)の混合気体をフローしながら10℃/分の速度で250℃まで焼成し、次いで2℃/分の速度で450℃まで昇温した。そのまま2時間温度を維持した後、加温を止め、放冷してNiイオンを金属に変換した、Ni金属多孔質体(5.5mg)を得た。得られたNi金属多孔質体は、EDX装置によりNiの存在が確認された。得られたNi金属多孔質体のSEM画像を図11に示す。図11に示すように、Ni金属多孔質体の骨格径は0.05μm~0.4μmであり、孔径は0.2μm~1μmであった。Ni金属多孔質体の厚みは2mmであり、抵抗値は45Ω(幅2mmにおいて)であり、Ni金属多孔質体は導電性を示した。なお、孔が共連続構造であることは、複数の多孔質体サンプルのSEM写真において、孔の形状が同一または類似の形状であることから推測できた。
(1) Production of metal porous body by converting Ni ions to metal Ni ion-containing porous body (95 mg, thickness 9.1 mm) obtained in Example 4 (1) was mixed with argon and hydrogen (argon: hydrogen (volume The mixture was fired to 250 ° C. at a rate of 10 ° C./min while flowing a mixed gas of ratio 2: 1), and then heated to 450 ° C. at a rate of 2 ° C./min. After maintaining the temperature for 2 hours as it was, heating was stopped and the mixture was allowed to cool to convert Ni ions into metal, thereby obtaining a Ni metal porous body (5.5 mg). In the obtained Ni metal porous body, the presence of Ni was confirmed by an EDX apparatus. The SEM image of the obtained Ni metal porous body is shown in FIG. As shown in FIG. 11, the Ni metal porous body had a skeleton diameter of 0.05 μm to 0.4 μm and a pore diameter of 0.2 μm to 1 μm. The thickness of the Ni metal porous body was 2 mm, the resistance value was 45Ω (at a width of 2 mm), and the Ni metal porous body exhibited conductivity. In addition, it can be estimated from the fact that the pores have the same or similar shape in the SEM photographs of a plurality of porous body samples.
 本発明の方法により、様々な種類の金属多孔質体を得ることができる。このような金属多孔質体は、触媒、電池材料、センサー材料、脱臭材等として応用できる可能性がある。また、本発明の方法により、様々な種類の金属含有多孔質体を得ることができる。このような金属含有多孔質体は、触媒、センサー、発光材料、殺菌剤等として応用できる可能性がある。 Various types of porous metal bodies can be obtained by the method of the present invention. Such a metal porous body may be applicable as a catalyst, battery material, sensor material, deodorizing material and the like. Moreover, various types of metal-containing porous bodies can be obtained by the method of the present invention. Such a metal-containing porous body may be applicable as a catalyst, a sensor, a luminescent material, a bactericidal agent, and the like.

Claims (9)

  1.  金属多孔質体の製造方法であって、
     前記製造方法は、
     キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体のキレート基と金属イオンとを配位結合させた金属イオン含有多孔質体に還元処理および焼結処理を同時または順次行い、金属多孔質体を得る工程を含み、
     前記金属イオン含有多孔質体が、キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体と金属イオンとを接触させ、前記原料多孔質体のキレート基と前記金属イオンとを配位結合させることにより得られ、
     前記キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体が、モノリス状の、主成分としてポリマーを含む多孔質体を、キレート基を有する官能基を含む化合物で修飾することにより得られ、
     前記モノリス状の、主成分としてポリマーを含む多孔質体が、
     水と相互に混和性であり、かつ水を除く、前記ポリマーに対する貧溶媒と、水とを含む液体に、前記ポリマーを溶解してポリマー溶液を調製し、
     前記ポリマー溶液から析出したポリマー析出物を分離し、
     前記ポリマー析出物を乾燥して得られ、
     前記ポリマーが、
    アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類のホモポリマー、
    アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類を含むコポリマー、
    メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類のホモポリマーおよび
    メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類を含むコポリマー
    からなる群から選択される1以上である製造方法。
    A method for producing a porous metal body,
    The manufacturing method includes:
    Reduction treatment and sintering to a metal ion-containing porous body in which a chelate group and a metal ion of a raw material porous body modified with a functional group having a chelate group are monolithic and containing a polymer as a main component. Including performing a process simultaneously or sequentially to obtain a porous metal body,
    The metal ion-containing porous body is modified with a functional group having a chelate group, the monolithic raw material porous body containing a polymer as a main component is brought into contact with metal ions, and the chelate group of the raw material porous body Obtained by coordination bond with the metal ion,
    The monolithic porous material containing a polymer as a main component, modified with a functional group having a chelate group, is converted into a monolithic porous material containing a polymer as a main component, and a functional group having a chelate group. Obtained by modifying with a compound containing,
    The monolithic porous body containing a polymer as a main component,
    A polymer solution is prepared by dissolving the polymer in a liquid containing water and a poor solvent for the polymer, which is miscible with water and excluding water, and water.
    Separating the polymer precipitate deposited from the polymer solution;
    Obtained by drying the polymer precipitate,
    The polymer is
    A homopolymer of esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom;
    A copolymer containing esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom;
    Homopolymers of methacrylic acid and esters of lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of hydroxy, carboxyl, oxiranyl and halogen atoms, and methacrylic acid and hydroxy 1 or more selected from the group consisting of copolymers containing esters with lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a group, a carboxyl group, an oxiranyl group and a halogen atom The manufacturing method which is.
  2.  前記キレート基を有する官能基を含む化合物が、アミン、アミンとエチレンジアミン四酢酸との縮合体、アミンとエピクロロヒドリンとの縮合体、アミンとイミノジ酢酸との縮合体、アミンとブロモ酢酸との縮合体、ならびにホスフィン、チオールおよび/またはカルベンの官能基を有する化合物からなる群から選択される1以上である請求項1に記載の製造方法。 The compound containing a functional group having a chelate group is an amine, a condensate of amine and ethylenediaminetetraacetic acid, a condensate of amine and epichlorohydrin, a condensate of amine and iminodiacetic acid, an amine and bromoacetic acid. The production method according to claim 1, which is at least one selected from the group consisting of a condensate and a compound having a functional group of phosphine, thiol and / or carbene.
  3.  前記金属イオンが、金、銀、白金、パラジウム、ニッケル、銅、マンガン、ロジウム、コバルト、ルテニウム、レニウム、モリブデン、錫、亜鉛、鉄、チタン、バナジウム、クロミウム、オセニウム、イリジウム、ビスマス、カドミウムおよびガリウムのイオンからなる群から選択される1以上である請求項1または2に記載の製造方法。 The metal ions are gold, silver, platinum, palladium, nickel, copper, manganese, rhodium, cobalt, ruthenium, rhenium, molybdenum, tin, zinc, iron, titanium, vanadium, chromium, osmium, iridium, bismuth, cadmium and gallium. The production method according to claim 1, wherein the production method is one or more selected from the group consisting of ions.
  4.  前記金属イオン含有多孔質体に還元処理および焼結処理を同時または順次行い、金属多孔質体を得る工程が、
     前記金属イオン含有多孔質体を水素雰囲気下で焼結するか、または、
     前記金属イオン含有多孔質体を還元剤で還元して、前記金属イオンを金属に変換し、次いで酸素雰囲気下で焼結するか、
     いずれかにより行われる請求項1~3のいずれかに記載の製造方法。
    The metal ion-containing porous body is subjected to reduction treatment and sintering treatment simultaneously or sequentially to obtain a metal porous body,
    Sintering the metal ion-containing porous body in a hydrogen atmosphere, or
    Reducing the metal ion-containing porous body with a reducing agent to convert the metal ions to metal and then sintering in an oxygen atmosphere,
    The production method according to any one of claims 1 to 3, which is carried out by any of the methods.
  5.  請求項1~4のいずれかに記載の製造方法により得られた金属多孔質体であって、骨格径が、0.001μm~5μmの範囲である金属多孔質体。 5. A porous metal body obtained by the production method according to claim 1, wherein the skeleton diameter is in the range of 0.001 μm to 5 μm.
  6.  金属含有多孔質体の製造方法であって、
     前記製造方法は、
     キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体のキレート基と金属イオンとを配位結合させた金属イオン含有多孔質体に還元処理を行い、金属含有多孔質体を得る工程を含み、
     前記金属イオン含有多孔質体が、キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体と金属イオンとを接触させ、前記原料多孔質体のキレート基と前記金属イオンとを配位結合させることにより得られ、
     前記キレート基を有する官能基で修飾された、モノリス状の、主成分としてポリマーを含む原料多孔質体が、モノリス状の、主成分としてポリマーを含む多孔質体を、キレート基を有する官能基を含む化合物で修飾することにより得られ、
     前記モノリス状の、主成分としてポリマーを含む多孔質体が、
     水と相互に混和性であり、かつ水を除く、前記ポリマーに対する貧溶媒と、水とを含む液体に、前記ポリマーを溶解してポリマー溶液を調製し、
     前記ポリマー溶液から析出したポリマー析出物を分離し、
     前記ポリマー析出物を乾燥して得られ、
     前記ポリマーが、
    アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類のホモポリマー、
    アクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類を含むコポリマー、
    メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類のホモポリマーおよび
    メタクリル酸とヒドロキシ基、カルボキシル基、オキシラニル基およびハロゲン原子からなる群から選択される1以上を含んでいてもよい炭素数1~6の低級アルキルアルコールとのエステル類を含むコポリマー
    からなる群から選択される1以上である製造方法。
    A method for producing a metal-containing porous body,
    The manufacturing method includes:
    The metal ion-containing porous body in which the chelate group and metal ion of the raw material porous body modified with a functional group having a chelate group, which is monolithic, and containing a polymer as a main component is coordinated, is subjected to a reduction treatment, Including a step of obtaining a metal-containing porous body,
    The metal ion-containing porous body is modified with a functional group having a chelate group, the monolithic raw material porous body containing a polymer as a main component is brought into contact with metal ions, and the chelate group of the raw material porous body Obtained by coordination bond with the metal ion,
    The monolithic porous material containing a polymer as a main component, modified with a functional group having a chelate group, is converted into a monolithic porous material containing a polymer as a main component, and a functional group having a chelate group. Obtained by modifying with a compound containing,
    The monolithic porous body containing a polymer as a main component,
    A polymer solution is prepared by dissolving the polymer in a liquid containing water and a poor solvent for the polymer, which is miscible with water and excluding water, and water.
    Separating the polymer precipitate deposited from the polymer solution;
    Obtained by drying the polymer precipitate,
    The polymer is
    A homopolymer of esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom;
    A copolymer containing esters of acrylic acid and a lower alkyl alcohol having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a hydroxy group, a carboxyl group, an oxiranyl group and a halogen atom;
    Homopolymers of methacrylic acid and esters of lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of hydroxy, carboxyl, oxiranyl and halogen atoms, and methacrylic acid and hydroxy 1 or more selected from the group consisting of copolymers containing esters with lower alkyl alcohols having 1 to 6 carbon atoms which may contain one or more selected from the group consisting of a group, a carboxyl group, an oxiranyl group and a halogen atom The manufacturing method which is.
  7.  前記キレート基を有する官能基を含む化合物が、アミン、アミンとエチレンジアミン四酢酸との縮合体、アミンとエピクロロヒドリンとの縮合体、アミンとイミノジ酢酸との縮合体、アミンとブロモ酢酸との縮合体、ならびにホスフィン、チオールおよび/またはカルベンの官能基を有する化合物からなる群から選択される1以上である請求項6に記載の製造方法。 The compound containing a functional group having a chelate group is an amine, a condensate of amine and ethylenediaminetetraacetic acid, a condensate of amine and epichlorohydrin, a condensate of amine and iminodiacetic acid, an amine and bromoacetic acid. The production method according to claim 6, which is at least one selected from the group consisting of a condensate and a compound having a functional group of phosphine, thiol and / or carbene.
  8.  前記金属イオンが、金、銀、白金、パラジウム、ニッケル、銅、マンガン、ロジウム、コバルト、ルテニウム、レニウム、モリブデン、錫、亜鉛、鉄、チタン、バナジウム、クロミウム、オセニウム、イリジウム、ビスマス、カドミウムおよびガリウムのイオンからなる群から選択される1以上である請求項6~8のいずれかに記載の製造方法。 The metal ions are gold, silver, platinum, palladium, nickel, copper, manganese, rhodium, cobalt, ruthenium, rhenium, molybdenum, tin, zinc, iron, titanium, vanadium, chromium, osmium, iridium, bismuth, cadmium and gallium. The production method according to any one of claims 6 to 8, wherein the production method is at least one selected from the group consisting of ions.
  9.  請求項6~8のいずれかに記載の製造方法により得られた金属含有多孔質体であって、骨格径が、0.001μm~5μmの範囲である金属含有多孔質体。 9. A metal-containing porous material obtained by the production method according to claim 6, wherein the skeleton has a skeleton diameter in the range of 0.001 μm to 5 μm.
PCT/JP2011/073481 2010-11-09 2011-10-13 Processes for producing porous metal body and porous metal-containing body, and porous metal body and porous metal-containing body WO2012063591A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012542851A JP5769153B2 (en) 2010-11-09 2011-10-13 Metal porous body, method for producing metal-containing porous body, metal porous body and metal-containing porous body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-251317 2010-11-09
JP2010251317 2010-11-09

Publications (1)

Publication Number Publication Date
WO2012063591A1 true WO2012063591A1 (en) 2012-05-18

Family

ID=46050744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073481 WO2012063591A1 (en) 2010-11-09 2011-10-13 Processes for producing porous metal body and porous metal-containing body, and porous metal body and porous metal-containing body

Country Status (2)

Country Link
JP (1) JP5769153B2 (en)
WO (1) WO2012063591A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199880A1 (en) 2013-06-14 2014-12-18 日清紡ホールディングス株式会社 Porous carbon catalyst, method for producing same, electrode and battery
WO2015076881A1 (en) * 2013-11-19 2015-05-28 United Technologies Corporation Method for fabricating metal foams having ligament diameters below one micron

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239028A (en) * 2002-02-15 2003-08-27 Japan Science & Technology Corp Method of producing nickel porous body with nanofine pore structure
JP2006022367A (en) * 2004-07-07 2006-01-26 Kawamura Inst Of Chem Res Method for producing metallic porous body
JP2008115439A (en) * 2006-11-06 2008-05-22 National Institute Of Advanced Industrial & Technology Palladium/silver alloy spherical porous body in which blending ratio is controlled, and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414020B2 (en) * 2007-06-22 2014-02-12 国立大学法人大阪大学 Method of dissolving (meth) acrylic ester polymer in liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239028A (en) * 2002-02-15 2003-08-27 Japan Science & Technology Corp Method of producing nickel porous body with nanofine pore structure
JP2006022367A (en) * 2004-07-07 2006-01-26 Kawamura Inst Of Chem Res Method for producing metallic porous body
JP2008115439A (en) * 2006-11-06 2008-05-22 National Institute Of Advanced Industrial & Technology Palladium/silver alloy spherical porous body in which blending ratio is controlled, and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199880A1 (en) 2013-06-14 2014-12-18 日清紡ホールディングス株式会社 Porous carbon catalyst, method for producing same, electrode and battery
WO2015076881A1 (en) * 2013-11-19 2015-05-28 United Technologies Corporation Method for fabricating metal foams having ligament diameters below one micron
US10071425B2 (en) 2013-11-19 2018-09-11 United Technologies Corporation Method for fabricating metal foams having ligament diameters below one micron

Also Published As

Publication number Publication date
JPWO2012063591A1 (en) 2014-05-12
JP5769153B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
Kim et al. Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions
Yin et al. Thermal stability of ZIF-8 under oxidative and inert environments: A practical perspective on using ZIF-8 as a catalyst support
JP2018509499A (en) Metallized, open cell foam and fibrous substrate
WO2012036034A1 (en) Amidoxime-modified polyacrylonitrile porous medium
JP5377483B2 (en) Composition containing fine metal particles and method for producing the same
WO2014069474A1 (en) Porous graft copolymer particles, method for producing same, and adsorbent material using same
US20150191491A1 (en) Preparation method of zeolitic imidazolate framework-90 in water-based system
JPWO2009060803A1 (en) Copper fine particles, production method thereof and copper fine particle dispersion
CN112118904A (en) Method for preparing a colloidal suspension of a metal-organic framework in a polymer solution and use thereof
CN110479109B (en) Preparation method of polyvinylidene fluoride mixed matrix membrane with high flux and strong pollution resistance
Bozbag et al. Thermodynamic control of metal loading and composition of carbon aerogel supported Pt–Cu alloy nanoparticles by supercritical deposition
JP2013111562A (en) Composition and method for manufacturing ammonia using the composition
Chaipuang et al. Synthesis of copper (II) ion‐imprinted polymers via suspension polymerization
TW201210944A (en) Silver particles and a process for making them
US20170213615A1 (en) Metal nanoparticle dispersion and metal coating film
KR101654136B1 (en) Method for preparing mesoporous carbon catalyst composite
JP5769153B2 (en) Metal porous body, method for producing metal-containing porous body, metal porous body and metal-containing porous body
WO2012098146A1 (en) Liquid compositions of fluorinated anion exchange polymers
US9565776B2 (en) Method for treating substrate that support catalyst particles for plating processing
CN116764606B (en) BPA molecular imprinting PAN/MOF nanofiber polymer membrane and preparation method and application thereof
JP5648229B2 (en) Electroless plating metal film manufacturing method and plating coated substrate
Peng et al. Facile surface modification of PVDF microfiltration membrane by strong physical adsorption of amphiphilic copolymers
JPWO2013069681A1 (en) Vinyl chloride copolymer porous body and method for producing the same
JP2014114447A (en) Graft copolymer whose graft chain possesses an aromatic nitrogen-containing heterocycle, method for manufacturing the same, and ion adsorbent using the same
JP5854427B2 (en) Hydrogen storage material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012542851

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840466

Country of ref document: EP

Kind code of ref document: A1