WO2012063325A1 - Current control method and controller for motor - Google Patents

Current control method and controller for motor Download PDF

Info

Publication number
WO2012063325A1
WO2012063325A1 PCT/JP2010/069952 JP2010069952W WO2012063325A1 WO 2012063325 A1 WO2012063325 A1 WO 2012063325A1 JP 2010069952 W JP2010069952 W JP 2010069952W WO 2012063325 A1 WO2012063325 A1 WO 2012063325A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
motor
phase
axis
unit
Prior art date
Application number
PCT/JP2010/069952
Other languages
French (fr)
Japanese (ja)
Inventor
成年 横川
Original Assignee
東芝機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝機械株式会社 filed Critical 東芝機械株式会社
Priority to PCT/JP2010/069952 priority Critical patent/WO2012063325A1/en
Priority to DE112010005981T priority patent/DE112010005981T5/en
Priority to US13/884,239 priority patent/US9054622B2/en
Priority to KR1020137011933A priority patent/KR101683953B1/en
Publication of WO2012063325A1 publication Critical patent/WO2012063325A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a motor control device, and in particular, a motor current that achieves high speed and high output while ensuring stability by appropriately controlling and flowing a d-axis current through a dq-converted motor armature.
  • the present invention relates to a control method and a control device.
  • the motor is driven by applying a voltage between the motor wires and passing a current through the armature.
  • a counter electromotive voltage is generated when the motor rotates.
  • the applied voltage is higher than the back electromotive voltage, current flows and the motor can be driven.
  • the back electromotive force also increases and the applied voltage has an upper limit, eventually causing voltage saturation in the motor armature, which prevents current from flowing, thereby generating torque. It becomes impossible to drive the motor.
  • the line voltage waveform of each phase of the motor is a rectangular wave or a pseudo-rectangular wave, so that the effective value voltage is compared to the general case of supplying a sinusoidal phase voltage to each phase.
  • has been proposed see, for example, Japanese Patent No. 3939481).
  • the inverter circuit that drives the motor is controlled in order to prevent the voltage saturation by controlling the reactive current to flow from the set speed near the speed at which the voltage saturation occurs. If there is enough room, it cannot be said that the motor's capacity has been maximized. Since the control method of Japanese Patent No. 3939481 is controlled so that the waveform of the line voltage of each phase of the motor is a rectangular wave or a pseudo-rectangular wave, if the inverter circuit that drives the motor has a sufficient margin, the motor capacity is maximized. Although it can be pulled out to the limit, it lacks stability, and in the worst case, the control may become unstable.
  • the object of the present invention is to provide a current control method and a control device that realizes high speed and high output while drawing out the capability of the motor as much as possible and ensuring stability.
  • a converter unit that rectifies and smoothes an AC power supply and outputs a DC main circuit voltage, an inverter unit that supplies a current for driving the motor using the main circuit voltage, and a current that flows through the motor From the current detector for detecting the armature current, the position detector for detecting the motor speed attached to the motor, the q-axis current command (Iqr), the data from the current detector and the position detector It is equipped with a current control unit that outputs a signal that drives the inverter unit and controls the armature current that flows to the motor, and draws out the motor's capabilities as much as possible to achieve high speed and high output while ensuring stability It is characterized by realizing.
  • the current control unit receives the q-axis current command (Iqr), and uses the maximum value (Imax) of the combined current of the q-axis and the d-axis and the d-axis current command (Idr) described later to determine the q-axis current limit value (Iqlimit).
  • Limit flag that informs the upper control unit that performs speed control when the q-axis current command is limited to prevent Iqr from exceeding Iqlimit and to prevent speed overshoot, etc.
  • Limit processing unit that turns ON, PI compensation unit to increase gain, and voltage command (Vq) output from PI compensation unit is limited to preset limit value by the limit of parts used in control device
  • a converter, a d-axis current command generator for obtaining the Idr using the Vql and Vdl, and an electrical angular velocity ( ⁇ ) described later, and a signal from the current detector is converted into data that can be processed by the current controller.
  • the block diagram of the Example of the current control method and control apparatus by this invention The flowchart of a limit process part.
  • the block diagram of a PI compensation part The flowchart of a d-axis current command generation part.
  • FIG. 1 is a block diagram showing a first embodiment according to the present invention.
  • the power source in FIG. 1 represents an AC power source and supplies an AC voltage.
  • the supplied AC voltage is rectified and smoothed by the converter unit 1 to output a main circuit DC voltage.
  • FIG. 3 is a block diagram showing a motor current control method and a control device for driving the motor 5 by switching the inverter unit 2 using the control signal output from the main circuit DC voltage from the current control unit 3.
  • the limit flag output from the current control unit 3 informs the host control unit that performs speed control and the like that the q-axis current command is limited, and prevents speed overshoot and the like.
  • the current control unit 3 in FIG. 1 that controls the armature current flowing through the motor is described below.
  • the limit processing unit 301 uses a maximum value (Imax) of a combined current of q-axis and d-axis and a d-axis current command (hereinafter referred to as Idr) described later.
  • Iqlimit a q-axis current limit value of a combined current of q-axis and d-axis and a d-axis current command (hereinafter referred to as Idr) described later.
  • the q-axis current limit value (hereinafter referred to as Iqlimit) is obtained by ⁇ (lmax ⁇ 2-Idr ⁇ 2>.
  • Iqrl the q-axis current limit command value (hereinafter referred to as Iqrl) is limited to Iqlimit and the limit flag is turned ON. If Iqr is 0 or more and Iqlimit or less or Iqr is 0 or less and -Iqlimit or more, Iqrl is set to Iqr and the limit flag is turned OFF. If Iqr is smaller than 0 and smaller than -Iqlimit, Iqrl is limited to -Iqlimit and the limit flag is turned ON. As described above, Iqrl is obtained and output from the limit processing unit 301.
  • a value obtained by subtracting a q-axis current (hereinafter referred to as Iq) actually flowing through the motor from Iqrl output from the limit processing unit 301 is input to a PI compensation unit 302a (see FIG. 3 for details) for increasing the gain.
  • the voltage command (hereinafter referred to as Vq) output from the PI compensation unit 302a is input to the VqLimit processing unit 303a that limits the limit value set in advance from the limit of components used in the control device.
  • VqLimit is a method of increasing the phase voltage by moving the neutral point and increasing the torque, and the main circuit DC voltage / 2 ⁇ 1. If Vq is larger than VLimit, a process of clamping to VLimit is performed, and a clamped q-axis voltage command (hereinafter referred to as Vql) is output.
  • a value obtained by subtracting a d-axis current (hereinafter referred to as “ld”) actually flowing through the motor from Idr described later is input to the PI compensation unit 302b).
  • the voltage command (hereinafter referred to as Vd) output from the PI compensation unit 302b is input to the VdLimit processing unit 303b that limits to a preset limit value.
  • VdLimit processing unit 303b if Vd is larger than the VLimit, a process of clamping to VLimit is performed, and a clamped d-axis voltage command (hereinafter referred to as Vdl) is output.
  • Vdl clamped d-axis voltage command
  • a two-phase to three-phase converter 304 (converts the two-phase clamped voltage commands (Vql and Vdl) output from the VqLimit processor 303a and the VdLimit processor 303b into a three-phase voltage to actually drive the motor.
  • the two-phase to three-phase conversion unit 304 is a general content and will not be described. Refer to various documents.), And the signal output from the two-phase to three-phase conversion unit 304 is converted into a pulse.
  • a PWM conversion unit 305 for conversion (the PWM conversion unit 305 does not directly affect the present invention, so the explanation is omitted. Refer to various documents) to drive the inverter unit to move the motor.
  • a current detector for three phases may be provided, and the current detection unit 307 may simply convert the data into data that can be processed by the current control unit 3.
  • the Iq and Id are output from the three-phase ⁇ two-phase converter 308 that converts the three-phase current of each phase output from the current detector 307 into a two-phase current.
  • the position detector 309 that receives a signal from the position detector 6 attached to the motor converts the signal from the position detector 6 into data that can be processed by the current controller 3 and calculates the electrical angular velocity ⁇ of the motor, Output.
  • VdVqerr Vdl ⁇ 2 + Vql ⁇ 2-VLimit ⁇ 2
  • VdVqerr Vdl ⁇ 2 + -Vqr ⁇ 2-VLimit ⁇ 2 is obtained.
  • the VdVqerr is subjected to integral compensation (when the switch in FIG. 5 is OFF) or PI compensation (when the switch in FIG. 5 is ON) with an integrator having an integration constant ⁇ i (see FIG. 5), and Idri is output.
  • integral compensation when the switch in FIG. 5 is OFF
  • PI compensation when the switch in FIG. 5 is ON
  • Idri is output.
  • Idri When Idri is less than 0, Idr is 0, and when Idri is 0 or more, Idmax (Idmax is a constant value obtained in advance according to the characteristics of the motor. Usually, it is the same as lmax and may be different depending on the motor. ) Is greater than I), Idr is set to Idmax, and Idri is equal to or greater than 0. (See Figure 4 for details.) The above processing is performed by the current control unit 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A controller for a motor according to the present invention is characterized in being provided with: a converter which rectifies and smoothes an AC power source and outputs a primary circuit DC voltage; an inverter which uses the primary circuit voltage to produce a current for driving a motor; a current detector for detecting armature current flowing in the motor; a position detector which is attached to the motor and detects the motor speed; and a current controller which receives a q-axis current command (Iqr) and uses data from the current detector and data from the position detector to output a signal for driving the inverter and to control the armature current flowing in the motor. The motor controller extracts the best possible performance of the motor, and achieves high speed and high output while maintaining stability.

Description

モータの電流制御方法及び制御装置Motor current control method and control apparatus
 本発明は、モータの制御装置に関わるもので,特にdq変換したモータの電機子にd軸電流を適切に制御し流す事によって安定性を確保しながらの高速高出力化を実現するモータの電流制御方法および制御装置に関する。 The present invention relates to a motor control device, and in particular, a motor current that achieves high speed and high output while ensuring stability by appropriately controlling and flowing a d-axis current through a dq-converted motor armature. The present invention relates to a control method and a control device.
 モータは,モータの線間に電圧を印加して電機子に電流を流すことによって駆動する。一方,モータが回転すると逆起電圧が発生する。印加した電圧が逆起電圧より高いと電流が流れ,モータを駆動することができる。モータの回転数が高くなると逆起電圧も高くなり,印加する電圧は上限が有る為,ついにはモータの電機子における電圧飽和が発生し,電流を流す事ができなくなり,それにより,トルクが出なくなりモータを駆動できなくなる。 The motor is driven by applying a voltage between the motor wires and passing a current through the armature. On the other hand, a counter electromotive voltage is generated when the motor rotates. When the applied voltage is higher than the back electromotive voltage, current flows and the motor can be driven. As the motor speed increases, the back electromotive force also increases and the applied voltage has an upper limit, eventually causing voltage saturation in the motor armature, which prevents current from flowing, thereby generating torque. It becomes impossible to drive the motor.
 より大きなトルクが必要な場合,印加電圧を高くすれば良いが,それを実現する為には大きな設備が必要となりコストが掛かってしまう。また,モータ及びモータを駆動するインバータの容量を大きくする方法も考えられるが,これも前記同様コストが掛かってしまい,望ましくない。そこで,近年,コストが掛からず,より大きなトルクを発生させる為に電圧飽和の発生を防止する方法等が提案されている。 If a larger torque is required, the applied voltage may be increased, but a large facility is required to realize this, and costs are increased. A method of increasing the capacity of the motor and the inverter that drives the motor is also conceivable, but this is also not desirable because it costs the same as described above. Therefore, in recent years, methods for preventing the occurrence of voltage saturation have been proposed in order to generate a larger torque at a low cost.
 モータの電機子における電圧飽和の発生を防止する方法として,d軸方向を界磁界の方向とする電機子にd軸電流を流し,モータが回転する時に発生する逆起電圧を低減することによってトルクを発生させるq軸電流をより多く流す事ができるようになるので,より高速に,より大きな出力が出せるようになる電流制御方法が提案されている(例えば,特開平9-84400参照)。 As a method for preventing the occurrence of voltage saturation in the armature of the motor, torque is generated by reducing the counter electromotive voltage generated when the motor rotates by passing a d-axis current through the armature whose d-axis direction is the direction of the field magnetic field. Therefore, a current control method has been proposed that can output a larger output at a higher speed (see, for example, JP-A-9-84400).
 また,高出力化の方法としてモータの各相の線間電圧波形を矩形波又は疑似矩形波とすることで,各相へ正弦波状の相電圧を供給する一般的な場合と比べて実効値電圧を増大させる制御方法が提案されている(例えば,特許第3939481号参照)。 In addition, as a method of increasing the output, the line voltage waveform of each phase of the motor is a rectangular wave or a pseudo-rectangular wave, so that the effective value voltage is compared to the general case of supplying a sinusoidal phase voltage to each phase. Has been proposed (see, for example, Japanese Patent No. 3939481).
 特開平9-84400の制御方法は安定性は有るが,電圧飽和が発生する速度の近傍の設定速度から無効電流を流すように制御し,電圧飽和を防止する為,モータを駆動するインバータ回路に充分余裕がある場合,モータの能力を最大限に引き出しているとは言えない。特許第3939481号の制御方法はモータの各相の線間電圧の波形を矩形波又は疑似矩形波にするよう制御する為,モータを駆動するインバータ回路に充分余裕があれば,モータの能力を最大限に引き出す事はできるが,安定性に欠け,最悪の場合,制御が不安定になる可能性が有る。 Although the control method of Japanese Patent Laid-Open No. 9-84400 is stable, the inverter circuit that drives the motor is controlled in order to prevent the voltage saturation by controlling the reactive current to flow from the set speed near the speed at which the voltage saturation occurs. If there is enough room, it cannot be said that the motor's capacity has been maximized. Since the control method of Japanese Patent No. 3939481 is controlled so that the waveform of the line voltage of each phase of the motor is a rectangular wave or a pseudo-rectangular wave, if the inverter circuit that drives the motor has a sufficient margin, the motor capacity is maximized. Although it can be pulled out to the limit, it lacks stability, and in the worst case, the control may become unstable.
発明の要旨Summary of the Invention
 本発明は,モータの能力を極力引き出し,安定性を確保しながらの高速高出力化を実現する電流制御方法及び制御装置を提供する事を目的とする。 The object of the present invention is to provide a current control method and a control device that realizes high speed and high output while drawing out the capability of the motor as much as possible and ensuring stability.
 上記目的を達成する為に,交流電源を整流・平滑して直流の主回路電圧を出力するコンバータ部と,主回路電圧を用いてモータを駆動させる為の電流を流すインバータ部と,モータに流れる電機子電流を検出する電流検出器と,モータに取り付けられたモータ速度を検出する位置検出器と,q軸電流指令(Iqr)を受けて,前記電流検出器からのデータと前記位置検出器からのデータとを用い,インバータ部を駆動する信号を出力し,モータに流れる電機子電流を制御する電流制御部とを備え,モータの能力を極力引き出し,安定性を確保しながらの高速高出力化を実現する事を特徴とする。 In order to achieve the above object, a converter unit that rectifies and smoothes an AC power supply and outputs a DC main circuit voltage, an inverter unit that supplies a current for driving the motor using the main circuit voltage, and a current that flows through the motor From the current detector for detecting the armature current, the position detector for detecting the motor speed attached to the motor, the q-axis current command (Iqr), the data from the current detector and the position detector It is equipped with a current control unit that outputs a signal that drives the inverter unit and controls the armature current that flows to the motor, and draws out the motor's capabilities as much as possible to achieve high speed and high output while ensuring stability It is characterized by realizing.
 電流制御部は,q軸電流指令(Iqr)を受けて,q軸とd軸の合成電流の最大値(Imax)と後述するd軸電流指令(Idr)を用いてq軸電流リミヅト値(Iqlimit)を求め,IqrをIqlimit以上にならないように制限し,速度のオーバーシュート等を防止する為に,速度制御等を行なう上位制御部にq軸電流指令を制限した時に制限した事を知らせるリミットフラグをONするリミット処理部と,ゲインを高める為のPI補償部と,PI補償部から出力された電圧指令(Vq)を制御装置で使用している部品等の制限より予め設定したリミット値に制限するVqLimit処理部(Vq用)及びVdLimit処理部(Vd用)と,VqLimit処理部及びVdLimit処理部から出力された2相のクランプされた電圧指令(Vql及びVdl)を実際にモータを駆動する為に3相電圧に変換する2相→3相変換部と,2相→3相変換部から出力された信号をパルスに変換するPWM変換部と,前記VqlとVdlと,後述する電気角速度(ω)を用いて前記Idrを求めるd軸電流指令生成部と,前記電流検出器からの信号を電流制御部で処理できるデータに変換する電流検出部と,電流検出部から出力された各相の3相電流を2相電流に変換する3相→2相変換部と,前記位置検出器からの信号を電流制御部で処理できるデータに変換する位置検出部とを備える。 The current control unit receives the q-axis current command (Iqr), and uses the maximum value (Imax) of the combined current of the q-axis and the d-axis and the d-axis current command (Idr) described later to determine the q-axis current limit value (Iqlimit). Limit flag that informs the upper control unit that performs speed control when the q-axis current command is limited to prevent Iqr from exceeding Iqlimit and to prevent speed overshoot, etc. Limit processing unit that turns ON, PI compensation unit to increase gain, and voltage command (Vq) output from PI compensation unit is limited to preset limit value by the limit of parts used in control device The VqLimit processing unit (for Vq) and VdLimit processing unit (for Vd), and the two-phase clamps output from the VqLimit processing unit and VdLimit processing unit PWM that converts the signals output from the two-phase to three-phase converter and the signals output from the two-phase to three-phase converter into pulses to convert the voltage command (Vql and Vdl) into a three-phase voltage to actually drive the motor A converter, a d-axis current command generator for obtaining the Idr using the Vql and Vdl, and an electrical angular velocity (ω) described later, and a signal from the current detector is converted into data that can be processed by the current controller. The current detection unit, the three-phase to two-phase conversion unit that converts the three-phase current of each phase output from the current detection unit into a two-phase current, and the data that can be processed by the current control unit A position detecting unit for conversion.
 本発明によれば,モータの能力を極力引き出し,安定性を確保しながらの高速高出力化を実現する電流制御方法及び制御装置を提供できる。 According to the present invention, it is possible to provide a current control method and a control apparatus that realize high speed and high output while drawing out the capability of the motor as much as possible and ensuring stability.
本発明による電流制御方法及び制御装置の実施例ブロック図。The block diagram of the Example of the current control method and control apparatus by this invention. リミット処理部のフローチャート。The flowchart of a limit process part. PI補償部のブロック図。The block diagram of a PI compensation part. d軸電流指令生成部のフローチャート。The flowchart of a d-axis current command generation part. 図4の積分S406のブロック図。The block diagram of integration S406 of FIG.
 以下,本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described.
<実施例1>
 本発明による電流制御方法及び制御装置の実施例1を図1を参照して説明する。図1は,本発明による実施例1を示すブロック図である。図1の電源は交流電源を示しており,交流電圧を供給する。供給された交流電圧をコンバータ部1で整流・平滑し,主回路直流電圧を出力する。その主回路直流電圧を電流制御部3から出力されたコントロール信号でインバータ部2をスイッチングし,モータ5を駆動するといったモータの電流制御方法及び制御装置を表したブロック図である。電流制御部3から出力されるリミットフラグは,速度制御等を行なう上位制御部にq軸電流指令を制限した事を知らせ,速度のオーバーシュート等を防ぐ。
<Example 1>
A first embodiment of a current control method and a control apparatus according to the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing a first embodiment according to the present invention. The power source in FIG. 1 represents an AC power source and supplies an AC voltage. The supplied AC voltage is rectified and smoothed by the converter unit 1 to output a main circuit DC voltage. FIG. 3 is a block diagram showing a motor current control method and a control device for driving the motor 5 by switching the inverter unit 2 using the control signal output from the main circuit DC voltage from the current control unit 3. The limit flag output from the current control unit 3 informs the host control unit that performs speed control and the like that the q-axis current command is limited, and prevents speed overshoot and the like.
 モータに流れる電機子電流を制御する図1の電流制御部3について以下に示す。 The current control unit 3 in FIG. 1 that controls the armature current flowing through the motor is described below.
 外部からのq軸電流指令(以下Iqrと示す)を受け,リミット処理部301ではq軸とd軸の合成電流の最大値(Imax)と後述するd軸電流指令(以下Idrと示す〉を用いてq軸電流リミヅト値(以下Iqlimitと示す〉を√(lmax^2-Idr^2〉で求める。 In response to an external q-axis current command (hereinafter referred to as Iqr), the limit processing unit 301 uses a maximum value (Imax) of a combined current of q-axis and d-axis and a d-axis current command (hereinafter referred to as Idr) described later. The q-axis current limit value (hereinafter referred to as Iqlimit) is obtained by √ (lmax ^ 2-Idr ^ 2>.
 一方,Iqrが0以上で,かつIqlimitより大きければq軸電流リミット指令値(以下Iqrlと示す)をIqlimitに制限し,リミットフラグをONする。Iqrが0以上で,かつIqlimit以下もしくはIqrが0以下で,かつ-Iqlimit以上であればIqrlをIqrにし,リミットフラグをOFFする。また,Iqrが0より小さくて,-Iqlimitより小さい場合は,Iqrlを-Iqlimitに制限し,リミットフラグをONする。以上のようにIqrlを求め,リミット処理部301から出力される。(詳細は図2を参照。)
 リミット処理部301から出力されたIqrlから実際にモータに流れているq軸電流(以下Iqと示す)を引いた値をゲインを高める為のPI補償部302a(詳細は図3参照)に入力する。PI補償部302aから出力された電圧指令(以下Vqと示す)を制御装置で使用している部品等の制限より予め設定したリミット値に制限するVqLimit処理部303aに入力する。
On the other hand, if Iqr is greater than or equal to 0 and greater than Iqlimit, the q-axis current limit command value (hereinafter referred to as Iqrl) is limited to Iqlimit and the limit flag is turned ON. If Iqr is 0 or more and Iqlimit or less or Iqr is 0 or less and -Iqlimit or more, Iqrl is set to Iqr and the limit flag is turned OFF. If Iqr is smaller than 0 and smaller than -Iqlimit, Iqrl is limited to -Iqlimit and the limit flag is turned ON. As described above, Iqrl is obtained and output from the limit processing unit 301. (See Figure 2 for details.)
A value obtained by subtracting a q-axis current (hereinafter referred to as Iq) actually flowing through the motor from Iqrl output from the limit processing unit 301 is input to a PI compensation unit 302a (see FIG. 3 for details) for increasing the gain. . The voltage command (hereinafter referred to as Vq) output from the PI compensation unit 302a is input to the VqLimit processing unit 303a that limits the limit value set in advance from the limit of components used in the control device.
 VqLimit処理部303aでは主回路直流電圧の1/2を制限電圧VLimit(VLimitは中性点を移動して相電圧を高くし,トルクを大きくする手法を用いると主回路直流電圧/2×1.15に上げる事ができる)とし,VqがVLimitより大きければVLimitにクランプする処理を行い,クランプされたq軸電圧指令(以下Vqlと示す)を出力する。 In the VqLimit processing unit 303a, 1/2 of the main circuit DC voltage is set to the limit voltage VLimit (VLimit is a method of increasing the phase voltage by moving the neutral point and increasing the torque, and the main circuit DC voltage / 2 × 1. If Vq is larger than VLimit, a process of clamping to VLimit is performed, and a clamped q-axis voltage command (hereinafter referred to as Vql) is output.
 また,後述するIdrから実際にモータに流れているd軸電流(以下ldと示す)を引いた値をPI補償部302b)に入力する。PI補償部302bから出力された電圧指令(以下Vdと示す)を予め設定したリミット値に制限するVdLimit処理部303bに入力する。 Also, a value obtained by subtracting a d-axis current (hereinafter referred to as “ld”) actually flowing through the motor from Idr described later is input to the PI compensation unit 302b). The voltage command (hereinafter referred to as Vd) output from the PI compensation unit 302b is input to the VdLimit processing unit 303b that limits to a preset limit value.
 VdLimit処理部303bではVdが前記VLimitより大きければVLimitにクランプする処理を行い,クランプされたd軸電圧指令(以下Vdlと示す)を出力する。 In the VdLimit processing unit 303b, if Vd is larger than the VLimit, a process of clamping to VLimit is performed, and a clamped d-axis voltage command (hereinafter referred to as Vdl) is output.
 VqLimit処理部303a及びVdLimit処理部303bから出力された2相のクランプされた電圧指令(Vql及びVdl)を実際にモータを駆動する為に3相電圧に変換する2相→3相変換部304(2相→3相変換部304については一般的な内容であるので説明を省略する。各種文献を参照の事。)に入力し,2相→3相変換部304から出力された信号をパルスに変換するPWM変換部305(PWM変換部305は本発明に直接影響するものでは無いので説明を省略する。各種文献を参照の事。)がインバータ部を駆動してモータを動かす。 A two-phase to three-phase converter 304 (converts the two-phase clamped voltage commands (Vql and Vdl) output from the VqLimit processor 303a and the VdLimit processor 303b into a three-phase voltage to actually drive the motor. The two-phase to three-phase conversion unit 304 is a general content and will not be described. Refer to various documents.), And the signal output from the two-phase to three-phase conversion unit 304 is converted into a pulse. A PWM conversion unit 305 for conversion (the PWM conversion unit 305 does not directly affect the present invention, so the explanation is omitted. Refer to various documents) to drive the inverter unit to move the motor.
 電流検出器4からの信号を電流制御部3で処理できるデータに変換する電流検出部307では図1の説明では2相分の電流から残りの3相目の電流をlv=-(lu+lw)から求めて出力する。3相分の電流検出器を設けて電流検出部307では電流制御部3で処理できるデータに変換するだけでも良い。 In the current detection unit 307 that converts the signal from the current detector 4 into data that can be processed by the current control unit 3, in the description of FIG. 1, the current of the third phase is changed from lv = − (lu + lw) from the current of the two phases. Find and output. A current detector for three phases may be provided, and the current detection unit 307 may simply convert the data into data that can be processed by the current control unit 3.
 電流検出部307から出力された各相の3相電流を2相電流に変換する3相→2相変換部308からIqとIdを出力する。 The Iq and Id are output from the three-phase → two-phase converter 308 that converts the three-phase current of each phase output from the current detector 307 into a two-phase current.
 モータに取り付けられた位置検出器6からの信号を受け取る位置検出部309では位置検出器6からの信号を電流制御部3で処理できるデータに変換・微分しモータの電気角速度ωを計算して,出力する。 The position detector 309 that receives a signal from the position detector 6 attached to the motor converts the signal from the position detector 6 into data that can be processed by the current controller 3 and calculates the electrical angular velocity ω of the motor, Output.
 d軸電流指令生成部306では前記Vqlが0以上で且つ前記ωが0以下またはVqlが0より小さくて且つωが0以上の場合は,VdVqerr=Vdl^2+Vql^2-VLimit^2でVdVqerrを求め,それ以外の条件の場合は,VdVqerr=Vdl^2+-Vqr^2-VLimit^2でVdVqerrを求める。 In the d-axis current command generation unit 306, when Vql is 0 or more and ω is 0 or less or Vql is less than 0 and ω is 0 or more, VdVqerr = Vdl ^ 2 + Vql ^ 2-VLimit ^ 2 For other conditions, VdVqerr = Vdl ^ 2 + -Vqr ^ 2-VLimit ^ 2 is obtained.
 そのVdVqerrを積分定数ωiの積分器(図5参照)で積分補償(図5のスイッチがOFFの場合)若しくはPI補償(図5のスイッチがONの場合)し,Idriを出力する。図5のスイッチのON/OFFの切り換えは制御性を見てパラメータ等で切り換える方法や,プログラム等でリアルタイムで切り換える方法等が考えられる。 The VdVqerr is subjected to integral compensation (when the switch in FIG. 5 is OFF) or PI compensation (when the switch in FIG. 5 is ON) with an integrator having an integration constant ωi (see FIG. 5), and Idri is output. As for the ON / OFF switching of the switch in FIG. 5, a method of switching by a parameter or the like in view of controllability, a method of switching in real time by a program or the like can be considered.
 Idriが0より小さい場合はIdrを0に,Idriが0以上の場合で,Idmax(Idmaxはモータの特性による予め求められた一定値。前記lmaxと通常は同じで,モータによっては違う場合も有る)より大きい場合はIdrをIdmaxに,Idriが0以上の場合で,Idmax以下の場合はIdrをIdriにする処理を行なう。(詳細は図4参照。〉
 以上の処理を電流制御部3で行なう。
When Idri is less than 0, Idr is 0, and when Idri is 0 or more, Idmax (Idmax is a constant value obtained in advance according to the characteristics of the motor. Usually, it is the same as lmax and may be different depending on the motor. ) Is greater than I), Idr is set to Idmax, and Idri is equal to or greater than 0. (See Figure 4 for details.)
The above processing is performed by the current control unit 3.

Claims (4)

  1.  交流電源を整流・平滑して直流の主回路電圧を出力するコンバータ部と,
     主回路電圧を用いてモータを駆動させる為の電流を流すインバータ部と,
     モータに流れる電機子電流を検出する電流検出器と,
     モータに取り付けられたモータ速度を検出する位置検出器と,
     q軸電流指令(Iqr)を受けて,前記電流検出器からのデータと前記位置検出器からのデータとを用い,インバータ部を駆動する信号を出力し,モータに流れる電機子電流を制御する電流制御部とを備え,モータの能力を極力引き出し,安定性を確保しながらの高速高出力化を実現する事を特徴とするモータの電流制御方法。
    A converter section for rectifying and smoothing an AC power supply and outputting a DC main circuit voltage;
    An inverter section for supplying a current for driving the motor using the main circuit voltage;
    A current detector for detecting the armature current flowing in the motor;
    A position detector for detecting the motor speed attached to the motor;
    A current that receives the q-axis current command (Iqr), uses the data from the current detector and the data from the position detector, outputs a signal for driving the inverter unit, and controls the armature current flowing through the motor A motor current control method characterized by comprising a control unit and drawing out the motor capacity as much as possible to achieve high speed and high output while ensuring stability.
  2.  前記電流制御部は,
     q軸電流指令(Iqr)を受けて,q軸とd軸の合成電流の最大値(Imax)と後述するd軸電流指令(Idr)を用いてq軸電流リミット値(Iqlimit)を計算してIqrをIqlimit以上にならないように制限しq軸電流リミット指令値(Iqrl)を求め,速度のオーバーシュート等を防止する為に,速度制御等を行なう上位制御部にq軸電流指令を制限した時に制限した事を知らせるリミットフラグをONするリミット処理部と,
     ゲインを高める為のPI補償部と,
     PI補償部から出力された電圧指令(Vq)を制御装置で使用している部品等の制限より予め設定したリミット値に制限するVqLimit処理部(Vq用)及びVdLimit処理部(Vd用)と,
     VqLimit処理部及びVdLimit処理部から出力された2相電圧(Vql及びVdl)を実際にモータを駆動する為に3相電圧に変換する2相→3相変換部と,
     2相→3相変換部から出力された信号をパルスに変換するPWM変換部と,
     前記VqlとVdlと,後述する電気角速度(ω)を用いて前記Idrを求めるd軸電流指令生成部と,
     前記電流検出器からの信号を電流制御部で処理できるデータに変換する電流検出部と,
     電流検出部から出力された各相の3相電流を2相電流に変換する3相→2相変換部と,
     前記位置検出器からの信号を電流制御部で処理できるデータに変換する位置検出部とを備える請求項1に記載のモータの電流制御方法。
    The current controller is
    In response to the q-axis current command (Iqr), the q-axis current limit value (Iqlimit) is calculated using the maximum value (Imax) of the combined current of the q-axis and the d-axis and the d-axis current command (Idr) described later. When Iqr is limited so that it does not exceed Iqlimit, the q-axis current limit command value (Iqrl) is obtained, and in order to prevent speed overshoot, etc. A limit processing section that turns on a limit flag to notify that the limit has occurred;
    A PI compensator to increase the gain;
    A VqLimit processing unit (for Vq) and a VdLimit processing unit (for Vd) that limit the voltage command (Vq) output from the PI compensation unit to a preset limit value from the limitation of components used in the control device;
    A two-phase to three-phase conversion unit that converts the two-phase voltages (Vql and Vdl) output from the VqLimit processing unit and the VdLimit processing unit into a three-phase voltage to actually drive the motor;
    A PWM converter that converts a signal output from the two-phase to three-phase converter into a pulse;
    A d-axis current command generation unit for obtaining the Idr using the Vql and Vdl and an electrical angular velocity (ω) described later;
    A current detector that converts the signal from the current detector into data that can be processed by a current controller;
    A three-phase to two-phase converter that converts the three-phase current of each phase output from the current detector into a two-phase current;
    The motor current control method according to claim 1, further comprising: a position detection unit that converts a signal from the position detector into data that can be processed by the current control unit.
  3.  交流電源を整流・平滑して直流の主回路電圧を出力するコンバータ部と,
     主回路電圧を用いてモータを駆動させる為の電流を流すインバータ部と,
     モータに流れる電機子電流を検出する電流検出器と,
     モータに取り付けられたモータ速度を検出する位置検出器と,
     q軸電流指令(Iqr)を受けて,前記電流検出器からのデータと前記位置検出器からのデータとを用い,インバータ部を駆動する信号を出力し,モータに流れる電機子電流を制御する電流制御部とを備え,モータの能力を極力引き出し,安定性を確保しながらの高速高出力化を実現する事を特徴とするモータの制御装置。
    A converter section for rectifying and smoothing an AC power supply and outputting a DC main circuit voltage;
    An inverter section for supplying a current for driving the motor using the main circuit voltage;
    A current detector for detecting the armature current flowing in the motor;
    A position detector for detecting the motor speed attached to the motor;
    A current that receives the q-axis current command (Iqr), uses the data from the current detector and the data from the position detector, outputs a signal for driving the inverter unit, and controls the armature current flowing through the motor A motor control device, which is equipped with a control unit and draws out the capabilities of the motor as much as possible to achieve high speed and high output while ensuring stability.
  4.  前記電流制御部は,
     q軸電流指令(Iqr)を受けて,q軸とd軸の合成電流の最大値(Imax)と後述するd軸電流指令(Idr)を用いてq軸電流リミット値(Iqlimit)を計算してIqrをIqlimit以上にならないように制限しq軸電流リミット指令値(Iqrl)を求め,速度のオーバーシュート等を防止する為に,速度制御等を行なう上位制御部にq軸電流指令を制限した時に制限した事を知らせるリミットフラグをONするリミット処理部と,
     ゲインを高める為のPI補償部と,
     PI補償部から出力された電圧指令(Vq)を制御装置で使用している部品等の制限より予め設定したリミット値に制限するVqLimit処理部(Vq用)及びVdLimit処理部(Vd用)と,
     VqLimit処理部及びVdLimit処理部から出力された2相電圧(Vql及びVdl)を実際にモータを駆動する為に3相電圧に変換する2相→3相変換部と,
     2相→3相変換部から出力された信号をパルスに変換するPWM変換部と,
     前記VqlとVdlと,後述する電気角速度(ω)を用いて前記Idrを求めるd軸電流指令生成部と,
     前記電流検出器からの信号を電流制御部で処理できるデータに変換する電流検出部と,
     電流検出部から出力された各相の3相電流を2相電流に変換する3相→2相変換部と,
     前記位置検出器からの信号を電流制御部で処理できるデータに変換する位置検出部とを備える請求項3に記載のモータの制御装置。
    The current controller is
    In response to the q-axis current command (Iqr), the q-axis current limit value (Iqlimit) is calculated using the maximum value (Imax) of the combined current of the q-axis and the d-axis and the d-axis current command (Idr) described later. When Iqr is limited so that it does not exceed Iqlimit, the q-axis current limit command value (Iqrl) is obtained, and in order to prevent speed overshoot, etc. A limit processing section that turns on a limit flag to notify that the limit has occurred;
    A PI compensator to increase the gain;
    A VqLimit processing unit (for Vq) and a VdLimit processing unit (for Vd) that limit the voltage command (Vq) output from the PI compensation unit to a preset limit value from the limitation of components used in the control device;
    A two-phase to three-phase conversion unit that converts the two-phase voltages (Vql and Vdl) output from the VqLimit processing unit and the VdLimit processing unit into a three-phase voltage to actually drive the motor;
    A PWM converter that converts a signal output from the two-phase to three-phase converter into a pulse;
    A d-axis current command generation unit for obtaining the Idr using the Vql and Vdl and an electrical angular velocity (ω) described later;
    A current detector that converts the signal from the current detector into data that can be processed by a current controller;
    A three-phase to two-phase converter that converts the three-phase current of each phase output from the current detector into a two-phase current;
    The motor control device according to claim 3, further comprising: a position detection unit that converts a signal from the position detector into data that can be processed by a current control unit.
PCT/JP2010/069952 2009-09-15 2010-11-09 Current control method and controller for motor WO2012063325A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2010/069952 WO2012063325A1 (en) 2010-11-09 2010-11-09 Current control method and controller for motor
DE112010005981T DE112010005981T5 (en) 2010-11-09 2010-11-09 Method for controlling the current of an engine and control unit of an engine
US13/884,239 US9054622B2 (en) 2009-09-15 2010-11-09 Method of controlling a current of a motor and control device of a motor
KR1020137011933A KR101683953B1 (en) 2010-11-09 2010-11-09 Current control method and controller for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069952 WO2012063325A1 (en) 2010-11-09 2010-11-09 Current control method and controller for motor

Publications (1)

Publication Number Publication Date
WO2012063325A1 true WO2012063325A1 (en) 2012-05-18

Family

ID=46050507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069952 WO2012063325A1 (en) 2009-09-15 2010-11-09 Current control method and controller for motor

Country Status (3)

Country Link
KR (1) KR101683953B1 (en)
DE (1) DE112010005981T5 (en)
WO (1) WO2012063325A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020381A (en) * 2004-06-30 2006-01-19 Hitachi Ltd Motor drive, electric actuator, and electric power steering system
JP2006081287A (en) * 2004-09-09 2006-03-23 Aisin Aw Co Ltd Apparatus and method for electric drive control and program therefor
JP2007151294A (en) * 2005-11-28 2007-06-14 Toshiba Mach Co Ltd Method for controlling current in servo motor, current control program, recording medium, and servo motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984400A (en) 1995-09-14 1997-03-28 Fanuc Ltd Method for controlling current of servomotor
JP3939481B2 (en) 2000-01-05 2007-07-04 本田技研工業株式会社 AC motor control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020381A (en) * 2004-06-30 2006-01-19 Hitachi Ltd Motor drive, electric actuator, and electric power steering system
JP2006081287A (en) * 2004-09-09 2006-03-23 Aisin Aw Co Ltd Apparatus and method for electric drive control and program therefor
JP2007151294A (en) * 2005-11-28 2007-06-14 Toshiba Mach Co Ltd Method for controlling current in servo motor, current control program, recording medium, and servo motor

Also Published As

Publication number Publication date
KR101683953B1 (en) 2016-12-07
KR20130131331A (en) 2013-12-03
DE112010005981T5 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
AU2012208179B2 (en) Power conversion apparatus
JP5257365B2 (en) Motor control device and control method thereof
JP5120669B2 (en) Control device for motor drive device
WO2011122105A1 (en) Control device for an electric motor drive device
WO2013084461A1 (en) Electric motor control device
WO2013021562A1 (en) Motor control device
WO2013046728A1 (en) Power conversion device
JP5549751B1 (en) Inverter device, control method for inverter device, and motor drive system
JP5220298B2 (en) Voltage type inverter controller
JP5370769B2 (en) Control device for motor drive device
JP2007143235A (en) Drive controller of ac motor
JP4596906B2 (en) Electric motor control device
JP7329735B2 (en) motor controller
JP2011024276A (en) Controller for winding field type synchronous machine
TWI383574B (en) Method and apparatus of field weakening for ac motor drives
JP2014138520A (en) Motor controller and motor control method
JP4881038B2 (en) Control device for permanent magnet synchronous motor
US9054622B2 (en) Method of controlling a current of a motor and control device of a motor
WO2012063325A1 (en) Current control method and controller for motor
JP2005033932A (en) Motor controller
JP5634693B2 (en) Motor current control method and control apparatus
JP2005168140A (en) Motor controller and its control method
JP5862690B2 (en) Control device for motor drive device and motor drive system
JP2007312462A (en) Motor control device
JPWO2007097183A1 (en) Electric motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137011933

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13884239

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100059810

Country of ref document: DE

Ref document number: 112010005981

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP