JP5634693B2 - Motor current control method and control apparatus - Google Patents

Motor current control method and control apparatus Download PDF

Info

Publication number
JP5634693B2
JP5634693B2 JP2009212622A JP2009212622A JP5634693B2 JP 5634693 B2 JP5634693 B2 JP 5634693B2 JP 2009212622 A JP2009212622 A JP 2009212622A JP 2009212622 A JP2009212622 A JP 2009212622A JP 5634693 B2 JP5634693 B2 JP 5634693B2
Authority
JP
Japan
Prior art keywords
current
axis current
phase
value
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009212622A
Other languages
Japanese (ja)
Other versions
JP2011066946A (en
Inventor
成年 横川
成年 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2009212622A priority Critical patent/JP5634693B2/en
Priority to US13/884,239 priority patent/US9054622B2/en
Publication of JP2011066946A publication Critical patent/JP2011066946A/en
Application granted granted Critical
Publication of JP5634693B2 publication Critical patent/JP5634693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

本発明はモータの制御装置に関わるもので,特にdq変換したモータの電機子にd軸電流を適切に制御し流す事によって安定性を確保しながらの高速高出力化を実現するモータの電流制御方法および制御装置に関する。   The present invention relates to a motor control device, and in particular, motor current control that achieves high speed and high output while ensuring stability by appropriately controlling and flowing d-axis current through a dq converted motor armature. The present invention relates to a method and a control device.

モータは,モータの線間に電圧を印加して電機子に電流を流すことによって駆動する。一方,モータが回転すると逆起電圧が発生する。印加した電圧が逆起電圧より高いと電流が流れ,モータを駆動することができる。モータの回転数が高くなると逆起電圧も高くなり,印加する電圧は上限が有る為,ついにはモータの電機子における電圧飽和が発生し,電流を流す事ができなくなり,それにより,トルクが出なくなりモータを駆動できなくなる。   The motor is driven by applying a voltage between the motor wires and causing a current to flow through the armature. On the other hand, a counter electromotive voltage is generated when the motor rotates. When the applied voltage is higher than the back electromotive voltage, current flows and the motor can be driven. As the motor speed increases, the back electromotive force also increases and the applied voltage has an upper limit, eventually causing voltage saturation in the motor armature, which prevents current from flowing, thereby generating torque. It becomes impossible to drive the motor.

より大きなトルクが必要な場合,印加電圧を高くすれば良いが,それを実現する為には大きな設備が必要となりコストが掛かってしまう。また,モータ及びモータを駆動するインバータの容量を大きくする方法も考えられるが,これも前記同様コストが掛かってしまい,望ましくない。そこで,近年,コストが掛からず,より大きなトルクを発生させる為に電圧飽和の発生を防止する方法等が提案されている。   If a larger torque is required, the applied voltage may be increased. However, a large facility is required to realize this, and costs are increased. A method of increasing the capacity of the motor and the inverter that drives the motor is also conceivable, but this is also not desirable because it costs the same as described above. Therefore, in recent years, methods for preventing the occurrence of voltage saturation have been proposed in order to generate a larger torque at a low cost.

モータの電機子における電圧飽和の発生を防止する方法として,d軸方向を界磁界の方向とする電機子にd軸電流を流し,モータが回転する時に発生する逆起電圧を低減することによってトルクを発生させるq軸電流をより多く流す事ができるようになるので,より高速に,より大きな出力が出せるようになる電流制御方法が提案されている(例えば,特許文献1参照)。   As a method of preventing the occurrence of voltage saturation in the motor armature, torque is generated by reducing the back electromotive force generated when the motor rotates by applying d-axis current to the armature whose d-axis direction is the direction of the field field. Since a larger amount of q-axis current can be supplied, a current control method has been proposed that can output a larger output at a higher speed (for example, see Patent Document 1).

また,高出力化の方法としてモータの各相の線間電圧波形を矩形波又は疑似矩形波とすることで,各相へ正弦波状の相電圧を供給する一般的な場合と比べて実効値電圧を増大させる制御方法が提案されている(例えば,特許文献2参照)。   In addition, as a method of increasing the output, the line voltage waveform of each phase of the motor is a rectangular wave or a pseudo-rectangular wave, so that the effective value voltage is compared to the general case of supplying a sinusoidal phase voltage to each phase. There has been proposed a control method for increasing (see, for example, Patent Document 2).

特開平9-84400JP-A-9-84400 特許第3939481号Japanese Patent No. 3939481

特許文献1の制御方法は安定性は有るが,電圧飽和が発生する速度の近傍の設定速度から無効電流を流すように制御し,電圧飽和を防止する為,モータを駆動するインバータ回路に充分余裕がある場合,モータの能力を最大限に引き出しているとは言えない。特許文献2の制御方法はモータの各相の線間電圧の波形を矩形波又は疑似矩形波にするよう制御する為,モータを駆動するインバータ回路に充分余裕があれば,モータの能力を最大限に引き出す事はできるが,安定性に欠け,最悪の場合,制御が不安定になる可能性が有る。
本発明は,モータの能力を極力引き出し,安定性を確保しながらの高速高出力化を実現する電流制御方法及び制御装置を提供する事を目的とする。
Although the control method of Patent Document 1 is stable, the inverter circuit that drives the motor has a sufficient margin to prevent voltage saturation by controlling the reactive current to flow from a set speed near the speed at which voltage saturation occurs. If there is, it cannot be said that the motor's capacity is being maximized. Since the control method of Patent Document 2 controls the waveform of the line voltage of each phase of the motor to be a rectangular wave or a pseudo-rectangular wave, if the inverter circuit that drives the motor has a sufficient margin, the motor capacity is maximized. However, it is not stable and in the worst case, the control may become unstable.
SUMMARY OF THE INVENTION An object of the present invention is to provide a current control method and a control device that can realize high speed and high output while ensuring the stability of the motor as much as possible.

上記目的を達成する為に,交流電源を整流・平滑して直流の主回路電圧を出力するコンバータ部と,主回路電圧を用いてモータを駆動させる為の電流を流すインバータ部と,モータに流れる電機子電流を検出する電流検出器と,モータに取り付けられたモータ速度を検出する位置検出器と,q軸電流指令(Iqr)を受けて,前記電流検出器からのデータと前記位置検出器からのデータとを用い,インバータ部を駆動する信号を出力し,モータに流れる電機子電流を制御する電流制御部とを備え,モータの能力を極力引き出し,安定性を確保しながらの高速高出力化を実現する事を特徴とする。   In order to achieve the above object, a converter unit that rectifies and smoothes an AC power supply and outputs a DC main circuit voltage, an inverter unit that supplies a current for driving the motor using the main circuit voltage, and a current that flows through the motor From the current detector that detects the armature current, the position detector that detects the motor speed attached to the motor, the q-axis current command (Iqr), the data from the current detector and the position detector It is equipped with a current control unit that outputs a signal that drives the inverter unit and controls the armature current that flows to the motor, and draws out the motor's capabilities as much as possible to achieve high speed and high output while ensuring stability It is characterized by realizing.

電流制御部は,q軸電流指令(Iqr)を受けて,q軸とd軸の合成電流の最大値(Imax)と後述するd軸電流指令(Idr)を用いてq軸電流リミット値(Iqlimit)を求め,IqrをIqlimit以上にならないように制限し,速度のオーバーシュート等を防止する為に,速度制御等を行なう上位制御部にq軸電流指令を制限した時に制限した事を知らせるリミットフラグをONするリミット処理部と,ゲインを高める為のPI補償部と,PI補償部から出力された電圧指令(Vq)を制御装置で使用している部品等の制限より予め設定したリミット値に制限するVqLimit処理部(Vq用)及びVdLimit処理部(Vd用)と,VqLimit処理部及びVdLimit処理部から出力された2相のクランプされた電圧指令(Vql及びVdl)を実際にモータを駆動する為に3相電圧に変換する2相→3相変換部と,2相→3相変換部から出力された信号をパルスに変換するPWM変換部と,前記VqlとVdlと,後述する電気角速度(ω)を用いて前記Idrを求めるd軸電流指令生成部と,前記電流検出器からの信号を電流制御部で処理できるデータに変換する電流検出部と,電流検出部から出力された各相の3相電流を2相電流に変換する3相→2相変換部と,前記位置検出器からの信号を電流制御部で処理できるデータに変換する位置検出部とを備える。   The current control unit receives the q-axis current command (Iqr) and uses the maximum value (Imax) of the combined current of the q-axis and d-axis and the d-axis current command (Idr) described later to determine the q-axis current limit value (Iqlimit ) And limit Iqr so that it does not exceed Iqlimit, and to prevent speed overshoot, etc., a limit flag that informs the upper control unit that performs speed control etc. when the q-axis current command is limited Limit processing unit that turns ON, PI compensation unit to increase gain, and voltage command (Vq) output from PI compensation unit is limited to the preset limit value by the limit of parts used in the control device In order to actually drive the motor with the VqLimit processing unit (for Vq) and VdLimit processing unit (for Vd) and the two-phase clamped voltage command (Vql and Vdl) output from the VqLimit processing unit and VdLimit processing unit The signals output from the 2-phase → 3-phase converter that converts to 3-phase voltage and the 2-phase → 3-phase converter A PWM converter that converts the signal to the source, a d-axis current command generator that obtains the Idr using the Vql and Vdl, and an electrical angular velocity (ω) described later, and a signal from the current detector processed by the current controller A current detector that converts the data into possible data, a three-phase to two-phase converter that converts the three-phase current of each phase output from the current detector into a two-phase current, and a current controller that receives the signal from the position detector A position detection unit that converts the data into data that can be processed in

本発明によれば,モータの能力を極力引き出し,安定性を確保しながらの高速高出力化を実現する電流制御方法及び制御装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the electric current control method and control apparatus which draw out the capability of a motor as much as possible, and implement | achieve high-speed high output, ensuring stability are provided.

本発明による電流制御方法及び制御装置の実施例ブロック図Example block diagram of current control method and control apparatus according to the present invention リミット処理部のフローチャートFlow chart of limit processing unit PI補償部のブロック図Block diagram of PI compensation unit d軸電流指令生成部のフローチャートFlow chart of d-axis current command generator 図4の積分S406のブロック図Block diagram of integration S406 in FIG.

以下,本発明の実施例を説明する。   Examples of the present invention will be described below.

本発明による電流制御方法及び制御装置の実施例1を図1を参照して説明する。図1は,本発明による実施例1を示すブロック図である。図1の電源は交流電源を示しており,交流電圧を供給する。供給された交流電圧をコンバータ部1で整流・平滑し,主回路直流電圧を出力する。その主回路直流電圧を電流制御部3から出力されたコントロール信号でインバータ部2をスイッチングし,モータ5を駆動するといったモータの電流制御方法及び制御装置を表したブロック図である。電流制御部3から出力されるリミットフラグは,速度制御等を行なう上位制御部にq軸電流指令を制限した事を知らせ,速度のオーバーシュート等を防ぐ。   A first embodiment of a current control method and a control apparatus according to the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing Embodiment 1 according to the present invention. The power source shown in Fig. 1 is an AC power source and supplies an AC voltage. The supplied AC voltage is rectified and smoothed by the converter unit 1 and the main circuit DC voltage is output. FIG. 3 is a block diagram showing a motor current control method and a control device for driving the motor 5 by switching the inverter unit 2 using the control signal output from the main circuit DC voltage from the current control unit 3. The limit flag output from the current control unit 3 informs the host control unit that performs speed control and the like that the q-axis current command has been limited, and prevents speed overshoot and the like.

モータに流れる電機子電流を制御する図1の電流制御部3について以下に示す。
外部からのq軸電流指令(以下Iqrと示す)を受け,リミット処理部301ではq軸とd軸の合成電流の最大値(Imax)と後述するd軸電流指令(以下Idrと示す)を用いてq軸電流リミット値(以下Iqlimitと示す)を√(Imax^2−Idr^2)で求める。
The current control unit 3 in FIG. 1 that controls the armature current flowing through the motor will be described below.
In response to an external q-axis current command (hereinafter referred to as Iqr), the limit processing unit 301 uses the maximum value (Imax) of the combined current of q-axis and d-axis and a d-axis current command (hereinafter referred to as Idr) described later. The q-axis current limit value (hereinafter referred to as Iqlimit) is obtained by √ (Imax ^ 2−Idr ^ 2).

一方,Iqrが0以上で,かつIqlimitより大きければq軸電流リミット指令値(以下Iqrlと示す)をIqlimitに制限し,リミットフラグをONする。Iqrが0以上で,かつIqlimit以下もしくはIqrが0以下で,かつ−Iqlimit以上であればIqrlをIqrにし,リミットフラグをOFFする。また,Iqrが0より小さくて,−Iqlimitより小さい場合は,Iqrlを−Iqlimitに制限し,リミットフラグをONする。以上のようにIqrlを求め,リミット処理部301から出力される。(詳細は図2を参照)   On the other hand, if Iqr is greater than 0 and greater than Iqlimit, the q-axis current limit command value (hereinafter referred to as Iqrl) is limited to Iqlimit and the limit flag is turned ON. If Iqr is 0 or more and Iqlimit or less or Iqr is 0 or less and -Iqlimit or more, Iqrl is set to Iqr and the limit flag is turned OFF. If Iqr is smaller than 0 and smaller than -Iqlimit, Iqrl is limited to -Iqlimit and the limit flag is turned ON. As described above, Iqrl is obtained and output from the limit processing unit 301. (See Figure 2 for details)

リミット処理部301から出力されたIqrlから実際にモータに流れているq軸電流(以下Iqと示す)を引いた値をゲインを高める為のPI補償部302a(詳細は図3参照)に入力する。PI補償部302aから出力された電圧指令(以下Vqと示す)を制御装置で使用している部品等の制限より予め設定したリミット値に制限するVqLimit処理部303aに入力する。   The value obtained by subtracting the q-axis current (Iq) that is actually flowing to the motor from Iqrl output from the limit processing unit 301 is input to the PI compensation unit 302a (see FIG. 3 for details) for increasing the gain. . The voltage command (hereinafter referred to as Vq) output from the PI compensation unit 302a is input to the VqLimit processing unit 303a that limits the limit value set in advance from the limit of components used in the control device.

VqLimit処理部303aでは主回路直流電圧の1/2を制限電圧VLimit (VLimitは中性点を移動して相電圧を高くし,トルクを大きくする手法を用いると主回路直流電圧/2×1.15に上げる事ができる)とし,VqがVLimitより大きければVLimitにクランプする処理を行い,クランプされたq軸電圧指令(以下Vqlと示す)を出力する。   In the VqLimit processing unit 303a, half of the main circuit DC voltage is set to the limit voltage VLimit (VLimit increases the phase voltage by moving the neutral point and increases the torque to the main circuit DC voltage / 2 × 1.15. If Vq is greater than VLimit, it will clamp to VLimit and output the clamped q-axis voltage command (hereinafter referred to as Vql).

また,後述するIdrから実際にモータに流れているd軸電流(以下Idと示す)を引いた値をPI補償部302b)に入力する。PI補償部302bから出力された電圧指令(以下Vdと示す)を予め設定したリミット値に制限するVdLimit処理部303bに入力する。   Further, a value obtained by subtracting a d-axis current (hereinafter referred to as Id) actually flowing in the motor from Idr described later is input to the PI compensation unit 302b). The voltage command (hereinafter referred to as Vd) output from the PI compensation unit 302b is input to the VdLimit processing unit 303b that limits to a preset limit value.

VdLimit処理部303bではVdが前記VLimitより大きければVLimitにクランプする処理を行い,クランプされたd軸電圧指令(以下Vdlと示す)を出力する。   If Vd is larger than the VLimit, the VdLimit processing unit 303b performs a process of clamping to the VLimit and outputs a clamped d-axis voltage command (hereinafter referred to as Vdl).

VqLimit処理部303a及びVdLimit処理部303bから出力された2相のクランプされた電圧指令(Vql及びVdl)を実際にモータを駆動する為に3相電圧に変換する2相→3相変換部304(2相→3相変換部304については一般的な内容であるので説明を省略する。各種文献を参照の事。)に入力し,2相→3相変換部304から出力された信号をパルスに変換するPWM変換部305(PWM変換部305は本発明に直接影響するものでは無いので説明を省略する。各種文献を参照の事。)がインバータ部を駆動してモータを動かす。   Two-phase to three-phase conversion unit 304 that converts the two-phase clamped voltage commands (Vql and Vdl) output from the VqLimit processing unit 303a and the VdLimit processing unit 303b into a three-phase voltage to actually drive the motor. The two-phase to three-phase converter 304 is a general content and will not be described here. Refer to various documents.) And the signal output from the two-phase to three-phase converter 304 is converted into a pulse. A PWM conversion unit 305 for conversion (the PWM conversion unit 305 does not directly affect the present invention and will not be described. Refer to various documents) to drive the inverter unit to move the motor.

電流検出器4からの信号を電流制御部3で処理できるデータに変換する電流検出部307では図1の説明では2相分の電流から残りの3相目の電流をIv=−(Iu+Iw)から求めて出力する。3相分の電流検出器を設けて電流検出部307では電流制御部3で処理できるデータに変換するだけでも良い。   In the explanation of FIG. 1, the current detection unit 307 that converts the signal from the current detector 4 into data that can be processed by the current control unit 3 converts the current of the second phase from the current of the second phase from Iv = − (Iu + Iw). Find and output. A current detector for three phases may be provided and the current detection unit 307 may simply convert the data into data that can be processed by the current control unit 3.

電流検出部307から出力された各相の3相電流を2相電流に変換する3相→2相変換部308からIqとIdを出力する。
モータに取り付けられた位置検出器6からの信号を受け取る位置検出部309では位置検出器6からの信号を電流制御部3で処理できるデータに変換・微分しモータの電気角速度ωを計算して,出力する。
Iq and Id are output from the three-phase → two-phase conversion unit 308 that converts the three-phase current of each phase output from the current detection unit 307 into a two-phase current.
The position detector 309 that receives a signal from the position detector 6 attached to the motor converts and differentiates the signal from the position detector 6 into data that can be processed by the current controller 3, and calculates the electrical angular velocity ω of the motor. Output.

d軸電流指令生成部306では前記Vqlが0以上で且つ前記ωが0以下またはVqlが0より小さくて且つωが0以上の場合は,VdVqerr=Vdl^2Vql^2−VLimit^2でVdVqerrを求め,それ以外の条件の場合は,VdVqerr=Vdl^2+−Vqr^2−VLimit^2でVdVqerrを求める。 In the d-axis current command generation unit 306, when Vql is 0 or more and ω is 0 or less or Vql is less than 0 and ω is 0 or more, VdVqerr = Vdl ^ 2 + Vql ^ 2-VLimit ^ 2 VdVqerr is obtained, and in the case of other conditions, VdVqerr = Vdl ^ 2 + − Vqr ^ 2-VLimit ^ 2 is obtained.

そのVdVqerrを積分定数ωiの積分器(図5参照)で積分補償(図5のスイッチがOFFの場合)若しくはPI補償(図5のスイッチがONの場合)し,Idriを出力する。図5のスイッチのON/OFFの切り換えは制御性を見てパラメータ等で切り換える方法や,プログラム等でリアルタイムで切り換える方法等が考えられる。   The VdVqerr is subjected to integral compensation (when the switch in FIG. 5 is OFF) or PI compensation (when the switch in FIG. 5 is ON) with an integrator having an integration constant ωi (see FIG. 5), and Idri is output. As for the ON / OFF switching of the switch in FIG. 5, there are a method of switching by a parameter or the like in view of controllability, a method of switching in real time by a program or the like.

Idriが0より小さい場合はIdrを0に,Idriが0以上の場合で,Idmax(Idmaxはモータの特性による予め求められた一定値。前記Imaxと通常は同じで,モータによっては違う場合も有る)より大きい場合はIdrをIdmaxに,Idriが0以上の場合で,Idmax以下の場合はIdrをIdriにする処理を行なう。(詳細は図4参照)
以上の処理を電流制御部3で行なう。
If Idri is less than 0, Idr is 0. If Idri is greater than 0, Idmax (Idmax is a constant value determined in advance according to the motor characteristics. It is usually the same as Imax, but may be different depending on the motor. If it is greater than I), Idr is set to Idmax, and if Idri is 0 or more, if it is less than Idmax, Idr is set to Idri. (See Figure 4 for details)
The above processing is performed by the current control unit 3.

1 コンバータ部
2 インバータ部
3 電流制御部
4 電流検出器
5 モータ
6 位置検出器
1 Converter section
2 Inverter section
3 Current controller
4 Current detector
5 Motor
6 Position detector

Claims (4)

交流電源を整流・平滑して直流の主回路電圧を出力するコンバータ部と,
主回路電圧を用いてモータを駆動させる為の電流を流すインバータ部と,
モータに流れる電機子電流を検出する電流検出器と,
モータに取り付けられたモータ速度を検出する位置検出器と,
q軸電流指令(Iqr)を受けて,前記電流検出器からのデータと前記位置検出器からのデータとを用い,インバータ部を駆動する信号を出力し,モータに流れる電機子電流を制御する電流制御部と、
を備え,
前記電流制御部は,
前記電流検出器からの信号を電流制御部で処理できるデータに変換する電流検出部と,
電流検出部から出力された各相の3相電流を2相電流に変換する3相→2相変換部と,
d軸電流指令値(Idr)を生成するd軸電流指令生成部と,
q軸電流指令(Iqr)を受けて,q軸とd軸の合成電流指令値の最大値(Imax)とd軸電流指令(Idr)とを用いてq軸電流リミット値(Iqlimit)を
√(lmax^2−Idr^2〉
として計算して、
q軸電流指令(Iqr)が0以上で,かつ,q軸電流リミット値(Iqlimit)より大きければ,q軸電流リミット指令値(Iqrl)をq軸電流リミット値(Iqlimit)に制限し,リミットフラグをONし、
q軸電流指令(Iqr)が0以上で,かつ,q軸電流リミット値(Iqlimit)以下であれば,もしくは,q軸電流指令(Iqr)が0以下で,かつ,−Iqlimit以上であれば、q軸電流リミット指令値(Iqrl)をq軸電流指令(Iqr)にし,リミットフラグをOFFし、
q軸電流指令(Iqr)が0より小さくて,−Iqlimitより小さい場合は,q軸電流リミット指令値(Iqrl)を−Iqlimitに制限し,リミットフラグをONする、
というようにq軸電流リミット指令値(Iqrl)を作用させるリミット処理部と、
リミット処理部の出力値(Iqrl)から前記3相→2相変換部の出力値であるq軸電流(Iq)を引いた値が入力される、ゲインを高める為のPI補償部と,
PI補償部から出力された電圧指令(Vq)を予め設定したリミット値に制限するVqLimit処理部(Vq用)と、
d軸電流指令値(Idr)から前記3相→2相変換部の出力値であるd軸電流(Id)を引いた値が入力される、ゲインを高める為の第2PI補償部と,
第2PI補償部から出力された電圧指令(Vd)を予め設定したリミット値に制限するVdLimit処理部(Vd用)と、
VqLimit処理部(Vq用)及びVdLimit処理部(Vd用)から出力された2相電圧(Vql及びVdl)を実際にモータを駆動する為に3相電圧に変換する2相→3相変換部と,
2相→3相変換部から出力された信号をパルスに変換するPWM変換部と,
を有する
ことを特徴とするモータの電流制御装置
を用いるモータの電流制御方法。
A converter section for rectifying and smoothing an AC power supply and outputting a DC main circuit voltage;
An inverter section for supplying a current for driving the motor using the main circuit voltage;
A current detector for detecting the armature current flowing in the motor;
A position detector for detecting the motor speed attached to the motor;
A current that receives the q-axis current command (Iqr), uses the data from the current detector and the data from the position detector, outputs a signal for driving the inverter unit, and controls the armature current flowing through the motor A control unit;
With
The current controller is
A current detector that converts the signal from the current detector into data that can be processed by a current controller;
A three-phase to two-phase converter that converts the three-phase current of each phase output from the current detector into a two-phase current;
a d-axis current command generator for generating a d-axis current command value (Idr);
In response to the q- axis current command (Iqr) , the q-axis current limit value (Iqlimit) is calculated using the maximum value (Imax) of the combined current command value of the q-axis and the d-axis and the d-axis current command (Idr).
√ (lmax ^ 2-Idr ^ 2>
Calculated as,
If the q-axis current command (Iqr) is greater than 0 and greater than the q-axis current limit value (Iqlimit), the q-axis current limit command value (Iqrl) is limited to the q-axis current limit value (Iqlimit), and the limit flag ON,
If the q-axis current command (Iqr) is not less than 0 and not more than the q-axis current limit value (Iqlimit), or if the q-axis current command (Iqr) is not more than 0 and not less than -Iqlimit, Set q-axis current limit command value (Iqrl) to q-axis current command (Iqr), turn off the limit flag,
If the q-axis current command (Iqr) is smaller than 0 and smaller than -Iqlimit, the q-axis current limit command value (Iqrl) is limited to -Iqlimit and the limit flag is turned ON.
A limit processing unit that applies the q-axis current limit command value (Iqrl) and so on,
A PI compensation unit for increasing the gain, to which a value obtained by subtracting the q-axis current (Iq), which is the output value of the three-phase to two-phase conversion unit, is input from the output value (Iqrl) of the limit processing unit ;
A VqLimit processing unit (for Vq) that limits the voltage command (Vq) output from the PI compensation unit to a preset limit value ;
a second PI compensator for increasing the gain, to which a value obtained by subtracting a d-axis current (Id), which is an output value of the three-phase to two-phase converter, from a d-axis current command value (Idr);
A VdLimit processing unit (for Vd) that limits the voltage command (Vd) output from the second PI compensation unit to a preset limit value ;
A two-phase to three-phase conversion unit that converts the two-phase voltages (Vql and Vdl) output from the VqLimit processing unit (for Vq) and the VdLimit processing unit (for Vd) into a three-phase voltage to actually drive the motor; ,
A PWM converter that converts a signal output from the two-phase to three-phase converter into a pulse;
A motor current control method using a motor current control device characterized by comprising:
前記位置検出器からの信号に基づいてモータの電気角速度(ω)を計算する工程と、
前記2相電圧(Vql及びVdl)と前記電気角速度(ω)とを用いて、d軸電流指令値(Idr)を補償する工程と、
を更に備えたことを特徴とする請求項1に記載のモータの電流制御方法。
Calculating the electrical angular velocity (ω) of the motor based on the signal from the position detector;
Compensating the d-axis current command value (Idr) using the two-phase voltage (Vql and Vdl) and the electrical angular velocity (ω);
The motor current control method according to claim 1, further comprising:
交流電源を整流・平滑して直流の主回路電圧を出力するコンバータ部と,
主回路電圧を用いてモータを駆動させる為の電流を流すインバータ部と,
モータに流れる電機子電流を検出する電流検出器と,
モータに取り付けられたモータ速度を検出する位置検出器と,
q軸電流指令(Iqr)を受けて,前記電流検出器からのデータと前記位置検出器からのデータとを用い,インバータ部を駆動する信号を出力し,モータに流れる電機子電流を制御する電流制御部と、
を備え,
前記電流制御部は,
前記電流検出器からの信号を電流制御部で処理できるデータに変換する電流検出部と,
電流検出部から出力された各相の3相電流を2相電流に変換する3相→2相変換部と,
d軸電流指令値(Idr)を生成するd軸電流指令生成部と,
q軸電流指令(Iqr)を受けて,q軸とd軸の合成電流指令値の最大値(Imax)とd軸電流指令(Idr)とを用いてq軸電流リミット値(Iqlimit)を
√(lmax^2−Idr^2〉
として計算して、
q軸電流指令(Iqr)が0以上で,かつ,q軸電流リミット値(Iqlimit)より大きければ,q軸電流リミット指令値(Iqrl)をq軸電流リミット値(Iqlimit)に制限し,リミットフラグをONし、
q軸電流指令(Iqr)が0以上で,かつ,q軸電流リミット値(Iqlimit)以下であれば,もしくは,q軸電流指令(Iqr)が0以下で,かつ,−Iqlimit以上であれば、q軸電流リミット指令値(Iqrl)をq軸電流指令(Iqr)にし,リミットフラグをOFFし、
q軸電流指令(Iqr)が0より小さくて,−Iqlimitより小さい場合は,q軸電流リミット指令値(Iqrl)を−Iqlimitに制限し,リミットフラグをONする、
というようにq軸電流リミット指令値(Iqrl)を作用させるリミット処理部と、
リミット処理部の出力値(Iqrl)から前記3相→2相変換部の出力値であるq軸電流(Iq)を引いた値が入力される、ゲインを高める為のPI補償部と,
PI補償部から出力された電圧指令(Vq)を予め設定したリミット値に制限するVqLimit処理部(Vq用)と、
d軸電流指令値(Idr)から前記3相→2相変換部の出力値であるd軸電流(Id)を引いた値が入力される、ゲインを高める為の第2PI補償部と,
第2PI補償部から出力された電圧指令(Vd)を予め設定したリミット値に制限するVdLimit処理部(Vd用)と、
VqLimit処理部(Vq用)及びVdLimit処理部(Vd用)から出力された2相電圧(Vql及びVdl)を実際にモータを駆動する為に3相電圧に変換する2相→3相変換部と,
2相→3相変換部から出力された信号をパルスに変換するPWM変換部と,
を有する
ことを特徴とするモータの電流制御装置。
A converter section for rectifying and smoothing an AC power supply and outputting a DC main circuit voltage;
An inverter section for supplying a current for driving the motor using the main circuit voltage;
A current detector for detecting the armature current flowing in the motor;
A position detector for detecting the motor speed attached to the motor;
A current that receives the q-axis current command (Iqr), uses the data from the current detector and the data from the position detector, outputs a signal for driving the inverter unit, and controls the armature current flowing through the motor A control unit;
With
The current controller is
A current detector that converts the signal from the current detector into data that can be processed by a current controller;
A three-phase to two-phase converter that converts the three-phase current of each phase output from the current detector into a two-phase current;
a d-axis current command generator for generating a d-axis current command value (Idr);
In response to the q- axis current command (Iqr) , the q-axis current limit value (Iqlimit) is calculated using the maximum value (Imax) of the combined current command value of the q-axis and the d-axis and the d-axis current command (Idr).
√ (lmax ^ 2-Idr ^ 2>
Calculated as,
If the q-axis current command (Iqr) is greater than 0 and greater than the q-axis current limit value (Iqlimit), the q-axis current limit command value (Iqrl) is limited to the q-axis current limit value (Iqlimit), and the limit flag ON,
If the q-axis current command (Iqr) is not less than 0 and not more than the q-axis current limit value (Iqlimit), or if the q-axis current command (Iqr) is not more than 0 and not less than -Iqlimit, Set q-axis current limit command value (Iqrl) to q-axis current command (Iqr), turn off the limit flag,
If the q-axis current command (Iqr) is smaller than 0 and smaller than -Iqlimit, the q-axis current limit command value (Iqrl) is limited to -Iqlimit and the limit flag is turned ON.
A limit processing unit that applies the q-axis current limit command value (Iqrl) and so on,
A PI compensation unit for increasing the gain, to which a value obtained by subtracting the q-axis current (Iq), which is the output value of the three-phase to two-phase conversion unit, is input from the output value (Iqrl) of the limit processing unit ;
A VqLimit processing unit (for Vq) that limits the voltage command (Vq) output from the PI compensation unit to a preset limit value ;
a second PI compensator for increasing the gain, to which a value obtained by subtracting a d-axis current (Id), which is an output value of the three-phase to two-phase converter, from a d-axis current command value (Idr);
A VdLimit processing unit (for Vd) that limits the voltage command (Vd) output from the second PI compensation unit to a preset limit value ;
A two-phase to three-phase conversion unit that converts the two-phase voltages (Vql and Vdl) output from the VqLimit processing unit (for Vq) and the VdLimit processing unit (for Vd) into a three-phase voltage to actually drive the motor; ,
A PWM converter that converts a signal output from the two-phase to three-phase converter into a pulse;
Current control device of a motor according to claim <br/> to have.
前記電流制御部は,前記位置検出器からの信号に基づいてモータの電気角速度(ω)を計算する位置検出部を更に有しており、
前記d軸電流指令生成部は、前記2相電圧(Vql及びVdl)と前記電気角速度(ω)とを用いて、d軸電流指令値(Idr)を補償するようになっている
ことを特徴とする請求項1に記載のモータの電流制御装置。
The current control unit further includes a position detection unit that calculates an electrical angular velocity (ω) of the motor based on a signal from the position detector,
The d-axis current command generation unit is configured to compensate for a d-axis current command value (Idr) using the two-phase voltages (Vql and Vdl) and the electrical angular velocity (ω). The motor current control device according to claim 1.
JP2009212622A 2009-09-15 2009-09-15 Motor current control method and control apparatus Active JP5634693B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009212622A JP5634693B2 (en) 2009-09-15 2009-09-15 Motor current control method and control apparatus
US13/884,239 US9054622B2 (en) 2009-09-15 2010-11-09 Method of controlling a current of a motor and control device of a motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009212622A JP5634693B2 (en) 2009-09-15 2009-09-15 Motor current control method and control apparatus

Publications (2)

Publication Number Publication Date
JP2011066946A JP2011066946A (en) 2011-03-31
JP5634693B2 true JP5634693B2 (en) 2014-12-03

Family

ID=43952599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009212622A Active JP5634693B2 (en) 2009-09-15 2009-09-15 Motor current control method and control apparatus

Country Status (1)

Country Link
JP (1) JP5634693B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004229487A (en) * 2002-11-29 2004-08-12 Toyoda Mach Works Ltd Motor control device and method for controlling motor
JP4137849B2 (en) * 2004-06-21 2008-08-20 三菱電機株式会社 Servo motor control method and apparatus
JP5257365B2 (en) * 2007-11-15 2013-08-07 株式会社安川電機 Motor control device and control method thereof

Also Published As

Publication number Publication date
JP2011066946A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP5257365B2 (en) Motor control device and control method thereof
WO2011122105A1 (en) Control device for an electric motor drive device
WO2011122104A1 (en) Control device for an electric motor drive device
CN101449456A (en) Electromotor diver and compressor diver
JP5549751B1 (en) Inverter device, control method for inverter device, and motor drive system
WO2008047438A1 (en) Vector controller of permanent magnet synchronous motor
AU2012208179A1 (en) Power conversion apparatus
CN108450055B (en) Control device for permanent magnet type rotating electric machine
JP5370769B2 (en) Control device for motor drive device
JP2015165757A (en) Inverter controller and control method
WO2015137372A1 (en) Electric apparatus drive device
JP5284895B2 (en) Winding field synchronous machine controller
JP5728968B2 (en) Control device and control method for induction motor
JP4596906B2 (en) Electric motor control device
JP2009189146A (en) Control unit for electric motor
JP7329735B2 (en) motor controller
US9231514B2 (en) Motor control apparatus and motor control method
US9054622B2 (en) Method of controlling a current of a motor and control device of a motor
JP2005033932A (en) Motor controller
JP5634693B2 (en) Motor current control method and control apparatus
JP2014176135A (en) Motor drive device, inverter controller, and inverter control method
KR101683953B1 (en) Current control method and controller for motor
JP5862690B2 (en) Control device for motor drive device and motor drive system
JP2007312462A (en) Motor control device
JPWO2007097183A1 (en) Electric motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141015

R150 Certificate of patent or registration of utility model

Ref document number: 5634693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350