WO2012062720A1 - Dispositif de refroidissement pour fibre optique ameliore - Google Patents

Dispositif de refroidissement pour fibre optique ameliore Download PDF

Info

Publication number
WO2012062720A1
WO2012062720A1 PCT/EP2011/069585 EP2011069585W WO2012062720A1 WO 2012062720 A1 WO2012062720 A1 WO 2012062720A1 EP 2011069585 W EP2011069585 W EP 2011069585W WO 2012062720 A1 WO2012062720 A1 WO 2012062720A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
block
main
optical fiber
secondary channel
Prior art date
Application number
PCT/EP2011/069585
Other languages
English (en)
Inventor
François CORSO
Original Assignee
Delachaux S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delachaux S.A. filed Critical Delachaux S.A.
Priority to KR1020137014912A priority Critical patent/KR20140009242A/ko
Priority to SG2013032750A priority patent/SG189545A1/en
Priority to CN2011800535595A priority patent/CN103339073A/zh
Priority to US13/825,000 priority patent/US9322601B2/en
Priority to BR112013011301A priority patent/BR112013011301A2/pt
Priority to JP2013537163A priority patent/JP2013542911A/ja
Priority to MX2013005121A priority patent/MX2013005121A/es
Priority to EP11779409.9A priority patent/EP2637979A1/fr
Publication of WO2012062720A1 publication Critical patent/WO2012062720A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Definitions

  • the invention relates to devices for manufacturing an optical fiber. More particularly, the invention relates to devices for cooling the optical fiber during a method of manufacturing said optical fiber.
  • a method of manufacturing an optical fiber known from the state of the art comprises a furnace 12 in which glass is heated, preferably in the form of a preform ( glass bar).
  • the oven is generally located in height, preferably at the top of a tower T of a height generally ranging from 20 to 35 meters.
  • the oven 12 comprises an outlet orifice 120 located in a lower part of the oven facing the bottom of the tower. From this orifice 120 leaves a rope 13 of partially melted glass (that is to say whose rheology allows to flow through this orifice). This rope then forms the otic fiber itself.
  • Below the furnace 12 is a cooling zone 142 through which the optical fiber is cooled.
  • the cooling zone 142 more particularly comprises a cooling device 14 through which the optical fiber 13 is cooled. Such a device will be described in more detail below.
  • a cooling device known from the state of the art comprises a hermetic formwork 140 in which the optical fiber 13 circulates at the outlet of the oven to be cooled. In the formwork, a coolant is injected. This fluid is preferably cold helium for cooling the fiber without damaging (unlike an injection of water which would deteriorate the fiber).
  • the helium is injected through the inlet 144 located in the upper part of the formwork, that is to say near the entrance of the fiber 13 in the formwork 140.
  • the helium comes into contact with the fiber 13 for the cool can come out of the formwork driven by the fiber 13.
  • Water is sometimes used to cool the formwork 140 itself. However, criticisms have been made that water leakage from the formwork can occur.
  • an object of the present invention is to provide a cooling device, in particular for optical fiber, which makes it possible to substantially increase the heat exchange between the fiber circulating therein and the cooling fluid used.
  • the invention relates to a device for cooling an optical fiber, comprising a main channel opening to accommodate the passage of the optical fiber, characterized in that the main channel comprises a plurality of orifices distributed along the main channel, the device further comprises a heat transfer fluid distribution chamber fluidically connected to the plurality of orifices.
  • the optical fiber cooling device comprises two parts, each of the parts comprising at least one receiving surface on which is arranged a half-channel so that once the two parts put in contact at their surface of reception, the two parts form a main opening channel for receiving the passage of the optical fiber, characterized in that each of the parts is a block of a thermally conductive material and in that at least one of the parts comprises a cylindrical secondary channel fluidically connected to a plurality of orifices distributed along the half-channel of this portion to form a heat transfer fluid distribution chamber for the plurality of orifices.
  • the invention comprises at least one of the following characteristics:
  • the device comprises a secondary channel forming said distribution chamber, the secondary channel being connected to the main channel by a plurality of passages, each connected to an orifice of the main channel,
  • the ratio between the diameter of the secondary channel and the diameter of the plurality of orifices is chosen so that the secondary channel forms a distribution chamber allowing the coolant to be injected in parallel over all the orifices, the ratio between the diameter of the secondary channel and the diameter of the plurality of orifices is between 3 and 100,
  • the device comprises a heat transfer fluid fluidically connected to the secondary channel
  • the device is made of a thermally conductive material preferably comprising aluminum,
  • the device further comprises a cooling duct of the device, the orifices are spaced from each other by a distance ranging from 5 mm to 200 mm,
  • the device comprises at least one seal making it possible to seal the periphery of the main channel
  • the block forming the other of the parts also comprises a secondary channel and cooling ducts symmetrical with respect to the contact plane of the receiving surfaces.
  • the invention also relates to a tower for manufacturing an optical fiber, characterized in that it comprises at least one cooling device according to the invention.
  • the invention also relates to a method for manufacturing a cooling device according to the invention, characterized in that it comprises the following steps:
  • the method comprises at least one of the following steps:
  • the secondary channel is drilled in the block, which makes it possible to have a smooth internal surface favoring the establishment of a turbulent regime.
  • the method further comprises a black color anodizing step to form a radiation absorption layer.
  • FIG. 1a is a schematic representation of a manufacturing tower of an optical fiber according to the state of the art
  • FIG. 1b is a schematic representation of a device for cooling the optical fiber according to the state of the prior art
  • FIGS. 2a and 2b are views in perspective of an optical fiber cooling device according to a method of FIG. embodiment of the present invention
  • FIG. 2c is a sectional view of a seal of an optical fiber cooling device according to an embodiment of the present invention
  • FIG. 3 is a representation of a portion of an optical fiber cooling device according to FIG. an embodiment of the present invention
  • FIG. 4 is a side view of a section along plane IV-IV of a portion of an optical fiber cooling device according to an embodiment of the present invention
  • FIGS. 5a and 5b are diagrammatic representations of an optical fiber cooling device according to an embodiment of the present invention, respectively in an open and closed position
  • FIG. 6 is a schematic representation of a production tower of FIG.
  • An optical fiber according to an embodiment of the present invention is a functional graph of a method of manufacturing an optical fiber cooling device according to an embodiment of the present invention.
  • a half portion 20 is, according to the present embodiment, formed from a block E of a thermally conductive material, preferably aluminum 7075 (known under the following trade names: "Zicral”, “Ergal And “Fortal Constructal”).
  • This block E is preferably in the form of a rectangular parallelepiped having a main axis A.
  • the block E comprises four longitudinal surfaces along the axis A: 201, 202, 203 and 204 delimited by two surfaces 205 and 206, perpendicular to the axis A.
  • the length of the block E (along the axis A) is preferably but not limited to between 2600 and 3000 mm.
  • the surface 204 is more particularly intended for receiving the optical fiber.
  • the surface 204 comprises a main groove 2040 in the form of a half-cylinder of circular section. This 2040 main half-canal is located parallel to the main axis A and preferably in the middle of the surface 204 of the block E.
  • Part 29 comprising a block E ', is the symmetrical block E with respect to a plane parallel to surface 204 so that the receiving surfaces of the fiber (204 of part 20 and 294 of part 29) are in look at each other.
  • the receiving surface 294 also comprises a main longitudinal half-channel 2940, symmetrical with the half-channel 2040 so that bringing the two reception surfaces 204 and 294 into contact makes it possible to define a passage in the form of a cylindrical main channel C of circular section parallel to the axis A and located in the center of the cooling device 2, the passage being formed by the two main half-channels 2040 and 2940.
  • This main channel is intended for circulation, within the optical fiber to be cooled.
  • the diameter of the main channel must be greater than that of the optical fiber, preferably from 5 mm to 20 mm (against a diameter of 125 ⁇ for an optical fiber).
  • the receiving surface of the fiber 204 also comprises two secondary longitudinal ribs 2042 and 2044 located on either side of the main half-channel 2040 and parallel thereto. These secondary grooves 2042 and 2044 are intended, just as their symmetry of the receiving surface 294 to receive seals 207a and 207b to form, once the receiving surfaces 204 and 294 brought into contact, a hermetic closure of the perimeter of the channel main C with the outside of the cooling device at the surfaces 201, 202 and 203 (and their symmetrical half-portion 29). Obviously the main channel being open, this hermetic closure does not concern the surfaces 205 and 206 (and their symmetrical half-portion 29) since the inlet and the outlet of the main channel C are located on these surfaces. With reference to FIG.
  • the seal 207a (just like the seal 207b) comprises a cylindrical portion 2070 of circular section with a longitudinal protuberance 2072 whose main axis is parallel to the main axis of the cylindrical portion 2070 and extending perpendicularly to the outer surface of the cylindrical portion 2070.
  • This protuberance 2072 is preferably in the form of rectangular plate, one of the long sides is in contact with the cylindrical portion 2070 and comprises a plurality of fins 2073 on the two opposite faces of the protuberance 2072.
  • the seal 207a is inserted at its protuberance 2072 in the secondary groove 2042 of small width (preferably 3.8 mm) and whose depth (preferably 8 mm) is greater than the height. protrusion 2072 (preferably 6 mm).
  • the fins 2073 of the protuberance 2072 being in contact with the secondary groove walls 2042, make it possible to hold the seal 207a in place in the groove 2042.
  • the secondary groove 2942 of the receiving surface 294 of the half-portion 29, in Regarding the groove 2042 is preferably of less depth than the corresponding groove 2042 but of greater width.
  • the groove 2942 has the shape of the secondary groove 2044 of the surface 204 of the half-portion 20.
  • the cylindrical portion 2070 of the seal 207a protruding from the groove 2042 is crushed in the groove 2942 when the surfaces 204 and 294.
  • the cylindrical portion 2070 of the seal 207a tends to conform to the shape of the groove 2942 and thus to form a hermetic seal relative to the outside as previously explained.
  • the secondary grooves 2044 and 2944 (respectively belonging to the receiving surfaces 204 and 294 and facing each other) have the opposite correspondence of the grooves 2042 and 2942 so that the seal 207b is inserted into the groove 2944 at its protruding portion 2072 and its cylindrical portion 2070 collapses against the secondary groove 2044 of the receiving surface 204.
  • the symmetry between the blocks E and E 'with respect to the contact plane between the receiving surfaces 204 and 294 therefore does not concern the shape of the secondary grooves facing each other.
  • the surfaces 201, 202 and 203 (and their symmetry of the half portion 29) are covered with an insulating layer 211.
  • This insulator prevents condensation on the external surfaces of the device, which can cause droplets of water. It is generally desired that the generation of these water droplets is avoided because these droplets can cause deterioration of equipment on which they can fall, or in case of contact with the optical fiber.
  • the half-channels of the receiving surfaces 204 and 294 are covered with a radiation absorption layer 2041 for absorbing the radiation emitted by the fiber at the furnace outlet, for example by anodizing black color.
  • a radiation absorption layer 2041 for absorbing the radiation emitted by the fiber at the furnace outlet, for example by anodizing black color.
  • the main half-channel 2040 of the cooling device comprises a plurality of orifices 2046 distributed along the half-channel 2040.
  • the cooling device further comprises an inlet 208 of heat transfer fluid fluidically connected at the plurality of orifices 2046.
  • the orifices 2046 are spaced from each other by a distance of from 5 mm to 200 mm.
  • the orifices 2046 have a diameter ranging from 0.2 mm to 2 mm. It is in particular provided that the orifices are spaced from each other of the same spacing or on the contrary that the orifices are spaced with a variable spacing.
  • the block E forming the half-portion 20 of the device further comprises a secondary channel 209, parallel to the main half-channel 2040, the two being connected by a plurality of passages 2092, each connected to a port 2046 of the main half-channel 2040.
  • the secondary channel 209 is located in such a way that its main axis coincides with the main axis A of the block E.
  • the secondary channel 209 is cylindrical in shape with a circular cross-section of a diameter ranging from from 6 mm to 20 mm and preferably from 13 mm.
  • the passages 2092 are preferably perpendicular to the axis A and are located in the median plane of the main half-channel 2040.
  • the block E also comprises at least one heat transfer fluid inlet 208, the inlet 208 being fluidically connected to the secondary channel 209 by a passage 2094 perpendicular to the axis A; the inlet 208 is thus fluidly connected to the plurality of orifices 2046.
  • the inlet 208 may be provided with a pneumatic connection element as shown in FIG. 2a.
  • the block E comprises two inputs 208a and 208b situated at the two ends of the secondary channel 209.
  • the secondary channel 209 forms a heat transfer fluid distribution chamber for the plurality of orifices 2046.
  • the fact that the fluid is first injected into the secondary channel 209 forming a dispensing chamber allows the fluid to be injected. ecté in parallel on all 2046 orifices.
  • the fluid comes into contact with the fiber over the entire length of the main channel, which increases the exchange surface between the fluid and the fiber.
  • the ratio between the diameter of the secondary channel 209 and the diameter of the orifices 2046 makes it possible to create the distribution chamber effect. This ratio is preferably between 3 and 100.
  • the relative dimensioning of the channel and the secondary orifices thus makes it possible to have a distribution chamber with a uniform and continuous distribution of helium on the optical fiber, and a flow rate identical to the level of each secondary orifice. This is further not influenced by the helium feed rate.
  • the block E also comprises ducts 210a and 210b parallel to the axis A and located on either side of the secondary channel 209 so that the main axes of the secondary channel 209 and ducts 210a and 210b are included in the same plane. , comprising the main axis A and parallel to the receiving surface 204.
  • the conduits 210a and 210b are preferably of the same shape and diameter as the secondary channel 209. Although a different vocabulary has been used to better distinguish them, the " channel "and the" conduit "refer to a similar technical reality.
  • the conduits 210a and 210b serve as a cooling circuit of the block E with a heat transfer fluid passing through it (for example chilled water).
  • the two ducts are connected at one of their ends by a pipe element so that the inlet and the outlet of the heat transfer fluid can be on the same surface of the block E.
  • the ducts 210a and 210b are also provided with a connection element.
  • the block E 'of the half-portion 29 comprises a secondary channel and cooling ducts symmetrical with respect to the contact plane of the receiving surfaces 204 and 294.
  • a method of manufacturing a cooling device comprises the following steps: at. providing a block E of a thermally conductive material, preferably aluminum 7075, the block comprising at least one flat surface 204 (step 701),
  • step 702 forming a main half-channel 2040 on the flat surface 204 of the block E (step 702) for example using a ball mill,
  • step 705 e. piercing at least one inlet 208 for the inner channel 209 (step 705), f. drilling / drilling two cooling ducts 210a and 210b in block E (step 706),
  • connection elements i. arranging, if necessary, connection elements at the inlet 208 and the cooling ducts 210a and 210b (step 709),
  • step 710 arranging an insulating layer on at least one surface of the block E, other than the receiving surface 204 which accommodates the half-channel 2040 (step 710), k. providing a second block E 'and performing at least step b and preferably all of the steps b to j on the block E' (step 711),
  • the different channels, ducts, and orifices formed in the solid blocks are preferably made by drilling.
  • Such a manufacturing technique makes it possible to form perfectly circular channels, not having asymmetries which would concentrate the stresses and could therefore damage the device.
  • the drilling technique makes it possible to have a circular channel with an internal surface presenting fewer defects with respect to the channel formed by extrusion. For the secondary helium supply channel, this characteristic favors the creation of a turbulent helium regime.
  • each block E and E ' is arranged opposite one another at their receiving surface 204 and 294, on the arm of a jack, respectively 3a and 3b, the two jacks being arranged on the same frame 3c so that, when the two cylinders 3a and 3b are in their extended position, the two blocks E and E 'are brought into contact, by translation, via their respective flat surfaces 204 and 294, so that the two halves channels (respectively 2040 and 2940) form a main channel of the two blocks E and E 'assembled.
  • the two blocks are separated from each other by translation, the two receiving surfaces 204 and 294 remaining parallel.
  • the reception surfaces 204 and 294 being smooth, they allow cleaning of their facilitated surface.
  • a tower T for manufacturing an optical fiber 13 is provided with a cooling zone Z downstream of the oven (not shown) from which the optical fiber leaves, the cooling zone Z comprising, for example three cooling devices such as that described above, respectively 1, and 1 ", the optical fiber 13 thus flowing in the main channel of each of the devices 1, and 1" to be then cooled.
  • helium H (whose trajectory is represented by the black arrows) is injected by the inputs 208 to be distributed via the channel secondary 209 to all the orifices 2049 of the main channel.
  • the helium H is immediately in a turbulent regime and comes into thermal contact with the optical fiber in several places at the same time.
  • the turbulent regime of helium as well as the fact that it is injected by a plurality of orifices at a time, makes it possible to increase the exchange surface between the cold helium and the fiber.
  • the fiber is cooled much more efficiently than with known devices of the state of the art.
  • the radiation absorption layer of the main channel absorbs the radiation of the fiber at the outlet of the oven, in particular with black anodization.
  • the thermal energy recovered by the material of the blocks E and E 'forming the device allows to be evacuated by the cooling ducts, in which circulates a coolant, such as chilled water.

Abstract

L'invention concerne un dispositif de refroidissement (1, 1', 1 ") d'une fibre optique (13), comprenant deux parties (20, 29), chacune des parties (20,29) comprenant au moins une surface de réception (204, 294) sur laquelle est agencé un demi-canal (240, 2940) de sorte qu'une fois les deux parties (20,29) mises en contact au niveau de leur surface de réception (204, 294), les deux parties (20,29) forment un canal principal débouchant destiné à accueillir le passage de la fibre optique (13), caractérisé en ce que chacune des parties (20,29) est un bloc d'un matériau thermiquement conducteur et en ce qu'au moins l'une (20) des parties comprend un canal secondaire (209) cylindrique fluidiquement connecté à une pluralité d'orifices (2046) répartis le long du demi-canal (2040) de cette partie (20) pour former une chambre de distribution de fluide caloporteur pour la pluralité d'orifices (2046).

Description

DISPOSITIF DE REFROIDISSEMENT POUR FIBRE OPTIQUE
AMELIORE
L'invention concerne les dispositifs de fabrication d'une fibre optique. Plus particulièrement l'invention concerne les dispositifs de refroidissement de la fibre optique lors d'un procédé de fabrication de ladite fibre optique.
En référence à la figure l a (tirée du document US 5,418,881) un procédé de fabrication d'une fibre optique connu de l'état de la technique comprend un four 12 dans lequel est chauffé du verre, préférentiellement sous la forme d'une préforme (barreau en verre). Le four est généralement situé en hauteur, préférentiellement en haut d'une tour T d'une hauteur allant généralement de 20 à 35 mètres. Le four 12 comprend un orifice de sortie 120 situé dans une partie basse du four en regard du bas de la tour. De cet orifice 120 sort un filin 13 de verre partiellement fondu (c'est-à-dire dont la rhéologie permet de pouvoir couler à travers cet orifice). Ce filin forme alors la fibre otique proprement dite. En dessous du four 12 est une située une zone de refroidissement 142 à travers laquelle la fibre optique est refroi die. Préférentiell ement, la zone de refroi di ssement 142 comprend plus particuli èrement un di spositif de refroidissement 14 à travers duquel la fibre optique 13 est refroidie. Un tel dispositif sera décrit plus en détail dans la suite.
Une fois, la fibre optique 13 refroidie, elle continue vers le bas son parcours dans des stations de traitement ultérieures 15, 16, 17, 18, pour des opérations telles que le gainage par exemple. Au final, la fibre 13 est généralement embobinée pour le transport et l'utilisation ultérieure de la fibre. En référence à la figure lb, un dispositif de refroidissement connu de l'état de la technique comprend un coffrage hermétique 140 au sein duquel circule la fibre optique 13 en sortie de four pour y être refroidie. Dans le coffrage, un fluide de refroidissement est inj ecté. Ce fluide est préférentiellement de l'hélium froid permettant de refroidir la fibre sans la détériorer (contrairement à une injection d'eau qui, elle, détériorerait la fibre).
L'hélium est injecté par l'entrée 144 située en partie haute du coffrage, c'est-à-dire à proximité de l'entrée de la fibre 13 dans le coffrage 140. L'hélium vient en contact avec la fibre 13 pour la refroidir puisse sort du coffrage entraîné par la fibre 13.
Toutefois des critiques ont été émises quant à ce dispositif de refroidissement en ce que la température de l'hélium augmente rapidement au contact de la fibre (dont la température en sortie de four peut atteindre 1000°C) ; en conséquence le refroidissement de la fibre 13 n'est effectif que sur une portion du coffrage 140.
De l ' eau est parfois utilisée pour refroidir le coffrage 140 proprement dit. Cependant, des critiques ont été émises en ce que des fuites d'eau hors du coffrage peuvent avoir lieu.
Ainsi, un but de la présente invention est de fournir un di spositif de refroidissement, notamment pour fibre optique, qui permette d' augmenter sensiblement l'échange thermique entre la fibre circulant en son sein et le fluide de refroidissement utilisé.
Un autre but de l a présente inventi on est de fournir un di spositif de refroidissement notamment pour fibre optique, qui permette d'économiser au maximum l'hélium. En effet, l'hélium est un gaz onéreux et on veut pouvoir l'utiliser au maximum pour son effet de refroidissement vis-à-vis de la fibre optique. Encore un autre but de la présente invention est de fournir un dispositif de refroidissement évitant tout problème de fuite d'eau. A cet effet, l 'invention concerne un dispositif de refroidissement d'une fibre optique, comprenant un canal principal débouchant destiné à accueillir le passage de la fibre optique, caractérisé en ce que le canal principal comprend une pluralité d'orifices répartis le long du canal principal, le dispositif comprend en outre une chambre de distribution de fluide caloporteur fluidiquement connectée à la pluralité d'orifices.
De préférence, le dispositif de refroidissement de fibre optique comprend deux parties, chacune des parties comprenant au moins une surface de réception sur laquelle est agencé un demi-canal de sorte qu'une fois les deux parties mises en contact au niveau de leur surface de réception, les deux parties forment un canal principal débouchant destiné à accueillir le passage de la fibre optique, caractérisé en ce que chacune des parties est un bloc d'un matériau thermiquement conducteur et en ce qu'au moins l'une des parties comprend un canal secondaire cylindrique fluidiquement connecté à une pluralité d'orifices répartis le long du demi-canal de cette partie pour former une chambre de distribution de fluide caloporteur pour la pluralité d'orifices.
Avantageusement mais facultativement, l'invention comprend au moins l'une des caractéristiques suivantes :
- l e dispositif comprend un canal secondaire formant ladite chambre de distribution, le canal secondaire étant relié au canal principal par une pluralité de passages, chacun connecté à un orifice du canal principal,
le rapport entre le diamètre du canal secondaire et le diamètre de la pluralité d'orifices est choisi de manière à ce que le canal secondaire forme une chambre de de distribution permettant au fluide caloporteur d'être injecté en parallèle sur l'ensemble des orifices, le rapport entre le diamètre du canal secondaire et le diamètre de la pluralité d'orifices est compris entre 3 et 100,
le dispositif comprend une entrée de fluide caloporteur fluidiquement connecté au canal secondaire,
- le di spositif est réalisé avec un matériau thermiquement conducteur comprenant préférentiellement de l'aluminium,
le dispositif comprend en outre un conduit de refroidissement du dispositif, les orifices sont espacés les uns des autres d'une distance allant de 5 mm à 200 mm,
- le dispositif comprend au moins un joint permettant de fermer hermétiquement le pourtour du canal principal,
le canal principal est recouvert d'une couche d'absorption du rayonnement, le bloc formant l'autre des parties comprend également un canal secondaire et des conduits de refroidissement en symétrie par rapport au plan de contact des surfaces de réception.
L'invention concerne également une tour de fabrication d'une fibre optique, caractérisée en ce qu'elle comprend au moins un dispositif de refroidissement selon l'invention.
L'invention concerne également un procédé de fabrication d'un dispositif de refroidissement selon l'invention, caractérisé en ce qu'il comprend les étapes suivantes :
a) fournir un premier bloc d'un matériau thermo-conducteur, le premier bloc comprenant au moins une surface de réception,
b) réaliser un demi-canal principal sur la surface plane du premier bloc, c) réaliser un canal secondaire, de préférence cylindrique, dans le premier bloc, d) réaliser une pluralité de passages entre le canal secondaire et le demi-canal principal du premier bloc,
e) réaliser au moins une entrée pour le canal secondaire,
f) fournir un second bloc et réaliser au moins l'étape b sur le premier bloc, g) mettre en contact les deux blocs via leur surface de réception, de sorte que les deux demi-canaux forment un canal principal des deux blocs assemblés.
Avantageusement mais facultativement, le procédé comprend au moins l'une des étapes suivantes :
réaliser sur le second bloc les étapes b à e,
percer (706) deux conduits (210a, 210b) de refroidissement dans le premier bloc (E) et/ou dans le second bloc (Ε'). Avantageusement, le canal secondaire est foré dans le bloc, ce qui permet d'avoir une surface interne lisse favorisant l'établissement d'un régime turbulent.
De manière encore avantageuse, le procédé comprend en outre une étape d'anodisation de couleur noire pour former une couche d' absorption du rayonnement.
D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre d'un exemple non limitatif de sa mise en œuvre, faite au regard des figures annexées sur lesquelles :
- la figure la est une représentation schématique d'une tour de fabrication d'une fibre optique selon l'état de la technique,
la figure lb est une représentation schématique d'un dispositif de refroidissement de la fibre optique selon l'état de la technique connue, les figures 2a et 2b sont des représentations en perspective cavalière d'un dispositif de refroidissement de fibre optique selon un mode de réalisation de la présente invention,
la figure 2c est une coupe d'un joint d'un dispositif de refroidissement de fibre optique selon un mode de réalisation de la présente invention, la figure 3 est une représentation d' une partie d' un di spositif de refroidissement de fibre optique selon un mode de réalisation de la présente invention, la figure 4 est une vue cavalière d'une coupe selon le plan IV-IV d'une partie d'un dispositif de refroidissement de fibre optique selon un mode de réalisation de la présente invention,
les figures 5a et 5b sont des représentations schématiques d'un dispositif de refroidissement de fibre optique selon un mode de réalisation de la présente invention, respectivement selon une position ouverte et fermée, la figure 6 est une représentation schématique d'une tour de fabrication d'une fibre optique selon un mode de réalisation de la présente invention, la figure 7 est un graphe fonctionnel d'un procédé de fabrication d'un dispositif de refroidissement de fibre optique selon un mode de réalisation de la présente invention.
En référence aux figures 2a et 2b, un dispositif 2 de refroidissement, notamment pour fibre optique, selon une réalisation particulière de la présente invention comprend un élément de réception de la fibre composé de deux parties 20 et 29, globalement symétriques par rapport à un plan, en regard l'une de l'autre.
Une demi-partie 20 est, selon le présent mode de réalisation, formée à partir d'un bloc E d'un matériau thermo-conducteur, préférentiellement de l'aluminium 7075 (connu sous les noms commerciaux suivants : « Zicral », « Ergal » et « Fortal Constructal »).
Ce bloc E est préférentiellement en forme de parallélépipède rectangle ayant un axe principal A. Le bloc E comprend quatre surfaces longitudinales le long de l'axe A : 201, 202, 203 et 204 délimitées par deux surfaces 205 et 206, perpendiculaires à l' axe A. La longueur du bloc E (le long de l' axe A) est préférentiellement mais non limitativement comprise entre 2600 et 3000 mm.
La surface 204 est plus particulièrement destinée à la réception de la fibre optique. A cet égard, la surface 204 comprend une rainure principale 2040 en forme de demi-cylindre de section circulaire. Ce demi-canal principal 2040 est situé parallèlement à l'axe principal A et préférentiellement au milieu de la surface 204 du bloc E.
La partie 29 comprenant un bloc E', est le symétrique du bloc E par rapport à un plan parallèle à la surface 204 de sorte que les surfaces de réception de la fibre (204 de la partie 20 et 294 de la partie 29) soient en regard l'une de l'autre. La surface de réception 294 comprend également un demi-canal principal 2940 longitudinale, symétrique du demi-canal 2040 de sorte que la mise en contact des deux surfaces de réception 204 et 294 permette de définir un passage sous forme d'un canal principal cylindrique C de section circulaire parallèle à l'axe A et situé au centre du dispositif de refroidissement 2, le passage étant formé par les deux demi-canaux principaux 2040 et 2940. Ce canal principal est destiné à la circulation, en son sein de la fibre optique pour y être refroidie. En conséquence, le diamètre du canal principal doit être supérieur à celui de la fibre optique, préférentiellement de 5 mm à 20 mm (contre un diamètre de 125 μιη pour une fibre optique).
La surface de réception de la fibre 204 comprend également deux nervures longitudinales secondaires 2042 et 2044 situées de part et d'autre du demi-canal principal 2040 et parallèles à celui-ci. Ces rainures secondaires 2042 et 2044 sont destinées, tout comme leur symétrique de la surface de réception 294 à recevoir des joints 207a et 207b afin de former, une fois les surfaces de réception 204 et 294 mises en contact, une fermeture hermétique du pourtour du canal principal C avec l'extérieur du dispositif de refroidissement au niveau des surfaces 201, 202 et 203 (ainsi que leur symétrique de la demi-partie 29). Bien évidemment le canal principal étant débouchant, cette fermeture hermétique ne concerne pas les surfaces 205 et 206 (ainsi que leur symétrique de la demi-partie 29) puisque l'entrée et de la sortie du canal principal C se situent sur ces surfaces. En référence à la figure 2c, le joint 207a (tout comme le joint 207b) comprend une partie cylindrique 2070 de section circulaire avec une protubérance longitudinale 2072 dont l'axe principal est parallèle à l'axe principal de la partie cylindrique 2070 et s' étendant perpendiculairement à la surface externe de la partie cylindrique 2070. Cette protubérance 2072 est préférentiellement en forme de plaque rectangulaire dont un des longs cotés est en contact avec la partie cylindrique 2070 et comprend une pluralité d'ailettes 2073 sur les deux faces opposées de la protubérance 2072.
De retour aux figure 2a et 2b, le joint 207a est inséré au niveau de sa protubérance 2072 dans la rainure secondaire 2042 de faible largeur (préférentiellement de 3,8 mm) et dont la profondeur (préférentiellement de 8mm) est plus grande que la hauteur de la protubérance 2072 (préférentiellement de 6 mm). Les ailettes 2073 de la protubérance 2072, étant en contact avec les parois de rainure secondaire 2042, permettent de maintenir en place le joint 207a dans la rainure 2042. La rainure secondaire 2942 de la surface de réception 294 de la demi-partie 29, en regard de la rainure 2042, est préférentiellement de profondeur moins grande que la rainure correspondante 2042 mais de largeur plus grande. La rainure 2942 a la forme de la rainure secondaire 2044 de la surface 204 de la demi-partie 20. Ainsi, la partie cylindrique 2070 du joint 207a qui dépasse de la rainure 2042 est écrasée dans la rainure 2942 lors de la mise en contact des surfaces 204 et 294. En s' écrasant, la partie cylindrique 2070 du joint 207a tend à épouser la forme de la rainure 2942 et à former ainsi une fermeture hermétique par rapport à l'extérieur comme expliqué précédemment. Préférentiellement les rainures secondaires 2044 et 2944 (appartenant respectivement aux surfaces de réception 204 et 294 et en regard l'une de l'autre) présentent la correspondance inverse des rainures 2042 et 2942 de sorte que le joint 207b est inséré dans la rainure 2944 au niveau de sa partie protubérante 2072 et sa partie cylindrique 2070 vient s'écraser contre la rainure secondaire 2044 de la surface de réception 204. La symétrie entre les blocs E et E' par rapport au plan de contact entre les surfaces de réception 204 et 294 ne concerne donc pas la forme des rainures secondaires en regard les unes des autres. Préférentiellement, les surfaces 201, 202 et 203 (ainsi que leur symétrique de la demi-partie 29) sont recouvertes d'une couche d'isolant 211. Cet isolant permet d'éviter la condensation sur les surfaces externes du dispositif, qui peut engendrer des gouttelettes d'eau. Il est généralement souhaité que l'engendrement de ces gouttelettes d'eau soit évité car ces gouttelettes peuvent entraîner des détériorations de matériels sur lesquels elles peuvent tomber, ou en cas de contact avec la fibre optique.
Préférentiellement également, les demi-canaux des surfaces de réception 204 et 294 sont recouverts d'une couche 2041 d'absorption du rayonnement permettant d'absorber le rayonnement émis par la fibre en sortie de four, par exemple par une anodisation de couleur noire. En absorbant le rayonnement sans le renvoyer sur la fibre, on améliore le refroidissement de la fibre. L'utilisation de blocs d'aluminium pour former le dispositif est particulièrement avantageuse, puisque cela permet de réaliser l'anodisation de couleur noire de façon simple, par exemple en trempant ces blocs dans des bains électrolytiques adaptés. Selon une caractéristique principale de la présente invention, le demi-canal principal 2040 du dispositif de refroidissement comprend une pluralité d'orifices 2046 répartis le long du demi-canal 2040. Le dispositif de refroidissement comprend en outre une entrée 208 de fluide caloporteur fluidiquement connecté à la pluralité d'orifices 2046.
Préférentiellement, les orifices 2046 sont espacés les uns des autres d'une distance allant de 5 mm à 200 mm. Les orifices 2046 ont un diamètre allant de 0.2 mm à 2 mm. Il est notamment prévu que les orifices soient espacés les uns des autres d'un même espacement ou au contraire que les orifices soient espacés avec un espacement variable. En référence aux figures 4 et 5, le bloc E formant la demi-partie 20 du dispositif comprend en outre un canal secondaire 209, parallèle au demi-canal principal 2040, les deux étant reliés par une pluralité de passages 2092, chacun connecté à un orifice 2046 du demi-canal principal 2040. Le canal secondaire 209 est situé de telle manière que son axe principale est confondu avec l'axe principale A du bloc E. Le canal secondaire 209 est de forme cylindrique de section circulaire d'un diamètre allant de 6 mm à 20 mm et préférentiellement de 13 mm. Les passages 2092 sont préférentiellement perpendiculaires à l'axe A et sont situés dans le plan médian du demi-canal principal 2040.
Le bloc E comprend également au moins une entrée 208 de fluide caloporteur, l'entrée 208 étant fluidiquement connecté au canal secondaire 209 par un passage 2094 perpendiculaire à l'axe A ; l'entrée 208 est donc fluidiquement connecté à la pluralité d'orifices 2046. L'entrée 208 peut être munie d'un élément de connexion pneumatique comme représenté à la figure 2a. Préférentiellement le bloc E comprend deux entrées 208a et 208b situés au niveau des deux extrémités du canal secondaire 209.
Ainsi, le canal secondaire 209 forme une chambre de distribution du fluide caloporteur pour la pluralité d'orifices 2046. En effet, le fait que le fluide soit d'abord injecté dans le canal secondaire 209 formant chambre de distribution permet que le fluide soit inj ecté en parallèle sur l'ensemble des orifices 2046. Ainsi le fluide rentre en contact avec la fibre sur toute la longueur du canal principal, ce qui augmente la surface d'échange entre le fluide et la fibre. Le rapport entre le diamètre du canal secondaire 209 et le diamètre des orifices 2046 permet de créer l'effet chambre de distribution. Ce rapport est préférentiellement compris entre 3 et 100. Le dimensionnement relatif du canal et des orifices secondaires permet donc d'avoir une chambre de distribution avec une répartition uniforme et continue de l'hélium sur la fibre optique, et un débit identique au niveau de chaque orifice secondaire. Ceci n'est en outre pas influencé par le débit d'alimentation en Hélium. Le bloc E comprend également des conduits 210a et 210b parallèles à l'axe A et situés de part et d'autre du canal secondaire 209 de sorte que les axes principaux du canal secondaire 209 et des conduits 210a et 210b sont compris dans un même plan, comprenant l'axe principal A et parallèle à la surface de réception 204. Les conduits 210a et 210b sont préférentiellement de même forme et diamètre que le canal secondaire 209. Même si un vocabulaire différent a été utilisé afin de mieux les distinguer, le « canal » et le « conduit » réfèrent à une réalité technique similaire.
Les conduits 210a et 210b servent de circuit de refroidissement du bloc E à l'aide d'un fluide caloporteur passant en son sein (par exemple de l'eau réfrigérée).
Avantageusement, les deux conduits sont reliés à une de leurs extrémités par un élément de canalisation de sorte que l'entrée et la sortie du fluide caloporteur puisse se faire sur la même surface du bloc E. Comme représenté à la figure 2a, les conduits 210a et 210b sont également munis d'un élément de connexion.
Préférentiellement, le bloc E' de la demi-partie 29 comprend un canal secondaire et des conduits de refroidissement en symétrique par rapport au plan de contact des surfaces de réception 204 et 294.
L'utilisation de blocs massifs pour la fabrication du dispositif permet de limiter les déformations dues aux différentes contraintes, notamment d'origine thermique. Une telle configuration est particulièrement avantageuse par rapport à des systèmes conçus à partir d'un ensemble de plaques agencées les unes par rapport aux autres pour former les canaux de circulation de fluide.
En référence à la figure 7, un procédé de fabrication d'un di spositif de refroidissement selon un mode de réalisation de la présente invention comprend les étapes suivantes : a. fournir un bloc E d'un matériau thermo-conducteur, préférentiellement de l'aluminium 7075, le bloc comprenant au moins une surface plane 204 (étape 701),
b. réaliser un demi-canal principal 2040 sur la surface plane 204 du bloc E (étape 702) par exemple à l'aide d'une fraise-boule,
c. percer/forer un canal secondaire 209 dans le bloc E (étape 703),
d. percer/forer une pluralité de passages 2092 entre le canal secondaire 209 et le demi-canal principal 2040 du bloc E (étape 704),
e. percer au moins une entrée 208 pour le canal interne 209 (étape 705), f. percer/forer deux conduits 210a et 210b de refroidissement dans le bloc E (étape 706),
g. réaliser des rainures secondaires 2042 et 2044 de part et d'autre de demi-canal principal 2040 sur la surface 204 (étape 707),
h. Fermer hermétiquement au niveau des extrémités le canal secondaire 209 pour former un circuit fluidiquement hermétique entre la au moins une entrée 208 et les orifices 2046 (étape 708),
i. agencer si nécessaire des éléments de connectique au niveau de l'entrée 208 et des conduire 210a et 210b de refroidissement (étape 709),
j. agencer une couche d'isolant sur au moins une surface du bloc E, autre que la surface de réception 204 qui accueille le demi-canal 2040 (étape 710), k. fournir un second bloc E' et réaliser au moins l'étape b et préférentiellement l'ensemble des étapes b à j sur le bloc E' (étape 711),
1. mettre en contact les deux blocs E et E' via leur surface de réception respective 204 et 294, de sorte que les deux demi-canaux (respectivement 2040 et 2940) forment un canal principal des deux blocs E et E' assemblés
(étape 712).
Les différents canaux, conduits, et orifices formés dans les blocs massifs sont de préférence réalisés par forage. Une telle technique de fabrication permet de former des canaux parfaitement circulaires, ne présentant pas de dissymétries qui concentreraient les contraintes et pourraient donc abîmer le dispositif. En outre, la technique de forage permet d'avoir un canal circulaire avec une surface interne présentant moins de défauts par rapport à canal formé par extrusion. Pour le canal secondaire d'alimentation d'hélium, cette caractéristique favorise la création d'un régime turbulent de l'hélium.
En référence aux figures 5a et 5b, la mise en contact des blocs E et E' (étape 1) est prévue de la manière suivante. Chaque bloc E et E' est agencé en regard l'un de l'autre au niveau de leur surface de réception 204 et 294, sur le bras d'un vérin, respectivement 3a et 3b, les deux vérins étant agencés sur un même châssis 3c de tel sorte que, lorsque les deux vérins 3a et 3b sont dans leur position sortie, les deux blocs E et E' sont mis en contact, par translation, via leur surface plane respective 204 et 294, de sorte que les deux demi-canaux (respectivement 2040 et 2940) forment un canal principal des deux blocs E et E' assemblés. Dans la position rentrée des vérins, les deux blocs sont séparés l'un de l'autre par translation, les deux surfaces de réception 204 et 294 restant parallèles. Les surfaces de réception 204 et 294 étant lisses, elles permettent un nettoyage de leur surface facilité.
Bien évidemment, tout autre procédé de mise en contact peut être appliqué, par exemple par rotation d'une surface de réception par rapport à l'autre, ou une combinaison d'une rotation et d'une translation. En référence à la figure 6, une tour T de fabrication d'une fibre optique 13 est prévue avec une zone de refroidissement Z en aval du four (non représenté) d'où sort la fibre optique, la zone de refroidissement Z comprenant par exemple trois dispositifs de refroidissement tels que celui décrit précédemment, respectivement 1, et 1 ", la fibre optique 13 circulant ainsi dans le canal principal de chacun des dispositifs 1, et 1 " pour y être alors refroidie. De retour à la figure 4, lorsque la fibre optique circule dans le canal principal par la flèche F, de l'hélium H (dont la trajectoire est représentée par les flèches noires) est injecté par les entrées 208 pour être distribué, via le canal secondaire 209 à l'ensemble des orifices 2049 du canal principal.
Comme les orifices 2049 sont espacés le long du canal principal, l'hélium H est immédiatement en régime turbulent et rentre en contact thermique avec la fibre optique en plusieurs endroits en même temps. Le régime turbulent de l'hélium, ainsi que le fait qu'il soit injecté par une pluralité d'orifices à la fois, permet d'augmenter la surface d'échange entre l'hélium froid et la fibre. Ainsi la fibre est refroidie de manière beaucoup plus efficace qu'avec les dispositifs connus de l'état de la technique.
De plus, le fait que les blocs E et E' soient en matériau thermo-conducteur et la fermeture hermétique du canal principal par les joints 207a et 207b permettent d'économiser de l'hélium, qui ne s'échappe que par les orifices 2049.
La couche d'absorption du rayonnement du canal principal permet d'absorber le rayonnement de la fibre en sortie du four, notamment avec une anodisation noire. De plus, l'énergie thermique récupérée par le matériau des blocs E et E' formant le dispositif permet d'être évacuée par les conduits de refroidissement, au sein desquels circule un fluide caloporteur, comme de l'eau réfrigérée.
Les études réalisées ont permis d'obtenir les données suivantes :
- Température de la fibre optique 13 en entrée de la zone de refroidissement:
1000°C
Température de la fibre optique 13 en sortie de la zone de refroidissement: 35-50°C
- Diamètre de la fibre : 125 μπι
- Température d'entrée de l'eau réfrigérée : 15-18°C
- Nombre de dispositifs dans la zone de refroidissement : 2 à 3 Longueur d'un bloc d'un dispositif de refroidissement : 2600 mm à 3000 mm
Bloc de refroidissement en aluminium 7075 anodisé noir.

Claims

REVENDICATIONS
Di spositif de refroidi ssement ( 1 , Γ , 1 " ) d'une fibre optique ( 13 ), comprenant deux parties (20, 29), chacune des parties (20,29) comprenant au moins une surface de réception (204, 294) sur laquelle est agencé un demi- canal (240, 2940) de sorte qu'une fois les deux parties (20,29) mises en contact au niveau de leur surface de réception (204, 294), les deux parties (20,29) forment un canal principal débouchant destiné à accueillir le passage de la fibre optique (13), caractérisé en ce que chacune des parties (20,29) est un bloc d'un matériau thermiquement conducteur et en ce qu'au moins l'une (20) des parties comprend un canal secondaire (209) cylindrique fluidiquement connecté à une pluralité d'orifices (2046) répartis le long du demi-canal (2040) de cette partie (20) pour former une chambre de distribution de fluide caloporteur pour la pluralité d'orifices (2046).
Dispositif selon la revendication 1, dans lequel le canal secondaire (209) est relié au canal principal par une pluralité de passages (2092), chacun connecté à un orifice (2046) du canal principal.
Dispositif selon la revendication 2, dans lequel le rapport entre le diamètre du canal secondaire (209) et le diamètre de la pluralité d'orifices (2046) est choisi de manière à ce que le canal secondaire (209) forme une chambre de de distribution permettant au fluide caloporteur d'être injecté en parallèle sur l'ensemble des orifices (2046).
Dispositif selon la revendication 2 ou 3, dans lequel le rapport entre le diamètre du canal secondaire (209) et le diamètre de la pluralité d'orifices (2046) est compris entre 3 et 100. Dispositif selon l'une quelconque des revendications 1 à 4, comprenant une entrée de fluide caloporteur (208) fluidiquement connecté au canal secondaire (209).
Dispositif selon l'une des revendications 1 à 5, dans lequel le matériau thermiquement conducteur comprend de l'aluminium.
Dispositif selon l'une des revendications 1 à 6, comprenant en outre un conduit de refroidissement (210a, 210b) du dispositif.
Dispositif selon l'une des revendications 1 à 7, dans lequel les orifices (2046) sont espacés les uns des autres d'une distance allant de 5 mm à 200 mm.
Dispositif selon l'une quelconque des revendications 1 à 8, comprenant au moins un joint (207a, 207b) permettant de fermer hermétiquement le pourtour du canal principal.
10. Dispositif selon l'une des revendications 1 à 9, dans lequel le canal principal est recouvert d'une couche d'absorption du rayonnement (2041).
11. Dispositif selon l'une quelconque des revendications 1 à 10, dans lequel le bloc formant l'autre (29) des parties comprend également un canal secondaire et des conduits de refroidissement en symétrie par rapport au plan de contact des surfaces de réception (204,294).
12. Tour de fabrication (T) d'une fibre optique (13), caractérisée en ce qu'elle comprend au moins un dispositif de refroidissement (1, , 1 ") selon l'une des revendications 1 à 11.
13. Procédé de fabrication d'un dispositif de refroidissement selon l'une des revendications 1 à 11, caractérisé en ce qu'il comprend les étapes suivantes : a) fournir (701) un premier bloc (E) d'un matériau thermo-conducteur, le premier bloc comprenant au moins une surface de réception (204), b) réaliser (702) un demi-canal principal (2040) sur la surface plane (204) du premier bloc (E),
c) réaliser (703) un canal secondaire (209) cylindrique dans le premier bloc (E),
d) réaliser (704) une pluralité de passages (2046, 2092) entre le canal secondaire (209) et le demi-canal principal (2040) du premier bloc (E), e) réaliser (705) au moins une entrée (208) pour le canal secondaire (209),
f) fournir (711) un second bloc (Ε') et réaliser au moins l'étape b sur le premier bloc (Ε'),
g) mettre en contact (712) les deux blocs (E, E') via leur surface de réception (204, 294), de sorte que les deux demi-canaux (2040, 2940) forment un canal principal des deux blocs (E, E') assemblés.
14. Procédé selon la revendication 13, dans lequel on réalise sur le second bloc (Ε') les étapes b à e. 15. Procédé selon la revendication 13 ou 14, comprenant en outre l ' étape suivante :
percer (706) deux conduits (210a, 210b) de refroidissement dans le premier bloc (E) et/ou dans le second bloc (Ε'). 16. Procédé selon l'une quelconque des revendications 13 à 15, dans lequel le canal secondaire (209) est foré dans le bloc (E).
17. Procédé selon l'une quelconque des revendications 13 à 16, comprenant en outre une étape d'anodisation de couleur noire pour former une couche d'absorption du rayonnement (2041).
PCT/EP2011/069585 2010-11-08 2011-11-08 Dispositif de refroidissement pour fibre optique ameliore WO2012062720A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020137014912A KR20140009242A (ko) 2010-11-08 2011-11-08 개선된 광섬유 냉각 장치
SG2013032750A SG189545A1 (en) 2010-11-08 2011-11-08 Improved optical fiber cooling device
CN2011800535595A CN103339073A (zh) 2010-11-08 2011-11-08 改进的光纤冷却装置
US13/825,000 US9322601B2 (en) 2010-11-08 2011-11-08 Optical fiber cooling device
BR112013011301A BR112013011301A2 (pt) 2010-11-08 2011-11-08 dispositivo de resfriamento de uma fibra ótica e torre de fabricação de uma fibra ótica
JP2013537163A JP2013542911A (ja) 2010-11-08 2011-11-08 改善された光ファイバ冷却装置
MX2013005121A MX2013005121A (es) 2010-11-08 2011-11-08 Dispositivo mejorado de enfriamiento de fibra optica.
EP11779409.9A EP2637979A1 (fr) 2010-11-08 2011-11-08 Dispositif de refroidissement pour fibre optique ameliore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1059213A FR2967154A1 (fr) 2010-11-08 2010-11-08 Dispositif de refroidissement pour fibre optique ameliore
FR1059213 2010-11-08

Publications (1)

Publication Number Publication Date
WO2012062720A1 true WO2012062720A1 (fr) 2012-05-18

Family

ID=43528356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/069585 WO2012062720A1 (fr) 2010-11-08 2011-11-08 Dispositif de refroidissement pour fibre optique ameliore

Country Status (10)

Country Link
US (1) US9322601B2 (fr)
EP (1) EP2637979A1 (fr)
JP (1) JP2013542911A (fr)
KR (1) KR20140009242A (fr)
CN (1) CN103339073A (fr)
BR (1) BR112013011301A2 (fr)
FR (1) FR2967154A1 (fr)
MX (1) MX2013005121A (fr)
SG (1) SG189545A1 (fr)
WO (1) WO2012062720A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064151A (zh) * 2012-12-05 2013-04-24 清华大学 一种具有流体冷却的光纤耦合器装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5817801B2 (ja) * 2013-10-10 2015-11-18 住友電気工業株式会社 光ファイバ冷却装置及び光ファイバ製造方法
JP6340941B2 (ja) * 2014-06-18 2018-06-13 住友電気工業株式会社 光ファイバ用冷却装置及び光ファイバの製造方法
CN104944761A (zh) * 2015-05-29 2015-09-30 成都亨通光通信有限公司 一种利于光缆制造质量的光纤制作方法
US10611669B2 (en) * 2016-01-29 2020-04-07 Corning Incorporated Thermal energy control system for an optical fiber
CN105859122B (zh) * 2016-03-31 2018-06-26 杭州富通通信技术股份有限公司 光纤拉丝工艺
CN109883330B (zh) * 2019-02-20 2020-10-30 江苏斯德雷特通光光纤有限公司 一种自动调整的氦管装置
CN113816598A (zh) * 2021-10-13 2021-12-21 成都中住光纤有限公司 一种降低氦气流量的冷却装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314515A (en) * 1992-07-14 1994-05-24 Corning Incorporated Method and apparatus for fiber cooling
US5418881A (en) 1992-08-03 1995-05-23 At&T Corp. Article comprising optical fiber having low polarization mode dispersion, due to permanent spin
DE4412563A1 (de) * 1994-04-12 1995-10-19 Siecor Fertigungsgesellschaft Einrichtung und Verfahren zum Kühlen einer zu fertigenden Lichtleitfaser
JPH10101360A (ja) * 1996-09-30 1998-04-21 Yazaki Corp 光ファイバの冷却方法および装置
EP1382581A1 (fr) * 2002-07-18 2004-01-21 Samsung Electronics Co., Ltd. Dispositif de refroidissment pour l'étirage rapide des fibres optiques
US6715323B1 (en) * 1997-11-21 2004-04-06 Pirelli Cavi E Sistemi S.P.A. Method and apparatus for cooling optical fibers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664689A (en) * 1986-02-27 1987-05-12 Union Carbide Corporation Method and apparatus for rapidly cooling optical fiber
US4761168A (en) * 1986-09-22 1988-08-02 American Telephone And Telegraph Company, At&T Bell Laboratories Optical fiber manufacturing technique
JPH01138148A (ja) * 1987-02-26 1989-05-31 Union Carbide Corp 光フアイバを冷却する方法及び冷却器
NZ504479A (en) * 1997-11-21 2003-04-29 Pirelli Cavi E Sistemi Spa Method and apparatus for cooling optical fibers
FR2838182B1 (fr) * 2002-04-08 2006-09-29 Cit Alcatel Tube de refroidissement de fibre optique
US8230704B2 (en) * 2009-10-28 2012-07-31 Corning Incorporated Systems and methods for cooling optical fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314515A (en) * 1992-07-14 1994-05-24 Corning Incorporated Method and apparatus for fiber cooling
US5418881A (en) 1992-08-03 1995-05-23 At&T Corp. Article comprising optical fiber having low polarization mode dispersion, due to permanent spin
DE4412563A1 (de) * 1994-04-12 1995-10-19 Siecor Fertigungsgesellschaft Einrichtung und Verfahren zum Kühlen einer zu fertigenden Lichtleitfaser
JPH10101360A (ja) * 1996-09-30 1998-04-21 Yazaki Corp 光ファイバの冷却方法および装置
US6715323B1 (en) * 1997-11-21 2004-04-06 Pirelli Cavi E Sistemi S.P.A. Method and apparatus for cooling optical fibers
EP1382581A1 (fr) * 2002-07-18 2004-01-21 Samsung Electronics Co., Ltd. Dispositif de refroidissment pour l'étirage rapide des fibres optiques

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064151A (zh) * 2012-12-05 2013-04-24 清华大学 一种具有流体冷却的光纤耦合器装置

Also Published As

Publication number Publication date
SG189545A1 (en) 2013-06-28
MX2013005121A (es) 2013-10-01
FR2967154A1 (fr) 2012-05-11
US20130277014A1 (en) 2013-10-24
KR20140009242A (ko) 2014-01-22
CN103339073A (zh) 2013-10-02
BR112013011301A2 (pt) 2016-08-09
EP2637979A1 (fr) 2013-09-18
US9322601B2 (en) 2016-04-26
JP2013542911A (ja) 2013-11-28

Similar Documents

Publication Publication Date Title
WO2012062720A1 (fr) Dispositif de refroidissement pour fibre optique ameliore
EP0932490B1 (fr) Procede et installation de fabrication de tubes en matiere plastique avec etirage bi-axial, et tube en matiere plastique ainsi obtenu
FR2739440A1 (fr) Echangeur de chaleur a plusieurs fluides comportant une structure a empilage de plaques
EP0694356B1 (fr) Procédé et dispositif de correction de l'ovalisation de cylindres de coulée continue de bande métallique
FR2928449A1 (fr) Dispositif d'echange de chaleur et procede de fabrication d'un element d'echange de chaleur pour un dispositif d'echange de chaleur
FR2945377A1 (fr) Pile a combustible a encombrement reduit.
EP3046178B1 (fr) Batterie dotee d'un dispositif de regulation thermique d elements electrochimiques, procede de fabrication associe
EP1762809A1 (fr) Echangeur de chaleur comprenant un circuit de dioxyde de carbone supercritique
WO2008015314A1 (fr) Echangeur thermique
EP3281769B1 (fr) Dispositif de moulage pour la mise en oeuvre de procedes de moulage a chaud et de moulage a froid
FR3052245B1 (fr) Dispositif cryogenique a echangeur compact
WO2018020139A1 (fr) Echangeur de chaleur, notamment pour la regulation thermique d'une unite de reserve d'energie, et ensemble forme dudit echangeur et de ladite unite
FR2929878A1 (fr) Moule de vulcanisation d'un pneumatique, installation et procede de regulation thermique du moule
EP2591513A1 (fr) Dispositif de génération de courant et/ou de tension à base de module thermoélectrique disposé dans un flux de fluide
EP3394552B1 (fr) Dispositif de mise en temperature d'un objet
FR2902181A1 (fr) Conducteur thermique pour capteur solaire a tubes sous vide
FR2977017A1 (fr) Regenerateur de chaleur
FR3121779A3 (fr) Elément dissipateur de chaleur pour un système de dissipation actif de chaleur.
FR3075684A1 (fr) Fond de moule monobloc a circulation fluidique optimisee
FR3130359A1 (fr) Dispositif d’échange thermique comprenant au moins un dispositif limiteur de débit, système de conditionnement d’air et véhicule
FR2867608A1 (fr) Refroidisseur pour composant electronique de puissance
FR2682747A1 (fr) Echangeur de chaleur favorisant les transferts thermiques par convection.
EP3878062A1 (fr) Tete amplificatrice laser de haute puissance
EP2484191B1 (fr) Bâtiment exothermique
FR3119446A1 (fr) Condenseur pour caloduc

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11779409

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537163

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/005121

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011779409

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011779409

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137014912

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13825000

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013011301

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013011301

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130508