WO2012060740A1 - Способ подготовки газового топлива - Google Patents

Способ подготовки газового топлива Download PDF

Info

Publication number
WO2012060740A1
WO2012060740A1 PCT/RU2011/000845 RU2011000845W WO2012060740A1 WO 2012060740 A1 WO2012060740 A1 WO 2012060740A1 RU 2011000845 W RU2011000845 W RU 2011000845W WO 2012060740 A1 WO2012060740 A1 WO 2012060740A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
water vapor
catalytic reactor
compression
drying
Prior art date
Application number
PCT/RU2011/000845
Other languages
English (en)
French (fr)
Original Assignee
Общество С Ограниченной Ответственностью "Центр Кортэс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Центр Кортэс" filed Critical Общество С Ограниченной Ответственностью "Центр Кортэс"
Publication of WO2012060740A1 publication Critical patent/WO2012060740A1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide

Definitions

  • the invention relates to systems and methods for supplying gas to vehicles and can be used as a method for preparing fuel in gas turbine drives of compressor stations, in transport, for generating electricity, in particular, can be used in automobile gas-filling compressor stations for refueling with compressed natural gas (methane).
  • compressed natural gas methane
  • Gas is sold - gas is dispensed into the consumer’s tanks at the first stage, as well as with the traditional technology - bypass due to the pressure difference in the gas accumulators and the consumer’s refueling tank, and at the second stage, when the pressure in the accumulators approaches the highest pressure in the refueling tank ( 20 MPa for automobiles), the working fluid is pumped into storage tanks connected to the system one by one, as a result of which the pressure rises in them and filling of consumer containers continues until fully th use of all stored gas in batteries. A cycle is being realized: accumulation - gas sales.
  • the described method has several disadvantages, which include functional and economic limitations of the application of the method associated with the need to supply the working fluid to the gas accumulators and the lack of opportunities to change the composition of the gas to increase its efficiency as a fuel in vehicles.
  • the main disadvantage of this method is the high cost of producing hydrogen at specialized plants, the need for its delivery to a gas station and the creation of a separate hydrogen gas treatment unit at the station.
  • the objective of the invention is to create a method for the preparation of gas fuel, which eliminated the above disadvantages, and create conditions for effectively improving the environmental characteristics of gas fuel with the possibility of increasing the efficiency of its use.
  • the problem is solved in that: in the method of preparation of gas fuel, which carry out preliminary cleaning, compression, cooling, drying of gas, gas storage and gas supply to the consumer through a system of gas columns, after gas compression, it is sequentially mixed with water vapor, heated by combustion products gas to a temperature in the range 350 ° C - 530 ° C, is passed through a catalytic reactor, heated in a second heat exchanger to a temperature in the range of 620-680 ° C, passed through a second catalytic reactor, conducting cooling by evaporation and superheating of water to produce water vapor admixed with the gas.
  • gas compression is carried out in the compressor due to the expansion of water vapor.
  • a working fluid is used that has undergone expansion in a heat engine, which can be used as a gas turbine or internal combustion engine.
  • the gas is purified from sulfur compounds. condensate formed during the drying of the gas is sent to produce water vapor. at least a portion of the gas is burned to heat the gas mixture with the steam supplied to the second catalytic reactor. > the reaction of a mixture of gas with water vapor in catalytic reactors is carried out without supplying thermal energy to a catalyst containing metals from the series nickel, iron, platinum, palladium, iridium or their compounds.
  • An example implementation of the invention is the method of preparation of gas fuel, described below.
  • the figure shows a schematic solution of the proposed method for the preparation of gas fuel.
  • the method is as follows.
  • Natural gas 1 with a pressure below 2.0 MPa is purified from sulfur compounds (if they are contained as impurities in natural gas) in a desulfurization apparatus 2, compressed in a compressor 3 to a pressure of 4.0 MPa, mixed with an overheated high-pressure steam stream 4 in the mixing unit 5 to a vapor / gas ratio of, for example, 4.0, and the resulting vapor-gas mixture is heated to a temperature of 450 ° C in a heat exchanger 6, and then sent to a catalytic reactor 7, in which the composition of the vapor-gas mixture is stabilized to obtain a methane-containing a steam-gas mixture with a hydrogen concentration of 1 to 5%, after which the resulting methane-containing vapor-gas mixture is heated to a temperature of 650 ° C in a second heat exchanger 8 and sent from a heat exchange unit 9, heated by the combustion products 10 coming from a heat engine 1 1 fed by fuel 12 in the second catalytic reactor 13, in which the hydrogen concentration is increased over 20% and the resulting methane
  • the gas After drying, the gas is compressed, if necessary, in an additional compressor 17 to a gas storage pressure of, for example, 20 MPa, and sent to storage tanks 18, from which gas is supplied to the consumer through the gas station 19.
  • Part high pressure steam 4 can be expanded in the steam drive 20 of compressor 3 to produce low pressure steam which is condensed in condenser 21 to produce condensate 22 directed by a pump (not shown in the figure) together with the feed noy water 23 into the steam generator 15.
  • a part obtained in the gas holding dorodso 24 can be recycled to desulfurization apparatus 2 for hydrogenation of sulfur compounds, for example, carried out in two steps: first, for example, hydrogenation of organic sulfur compounds, for example, mercaptans to hydrogen sulfide, is carried out on an aluminum-cobalt-molybdenum catalyst, and then the stream is sent to absorb the resulting hydrogen sulfide by activated zinc oxide in absorption reactors included in operation in series or in parallel.
  • Purification of natural gas from sulfur compounds is carried out not only to increase the efficiency of the catalyst containing metals from the series nickel, iron, platinum, palladium, iridium or their compounds, but also to improve the consumer qualities of gas fuel, in particular, to reduce the unpleasant odor accompanying the processes gas refueling and application.
  • the choice of heating temperature is determined by the need to avoid the formation of soot in catalytic reactors 7 and 13, which determines the preferred level of the upper possible temperature of 530 ° C in the first catalytic reactor 7 and 680 ° C in the second catalytic reactor 13.
  • the equilibrium conversion of methane is lower than 620 ° C even at relatively high ratios of water vapor / gas becomes almost unacceptable.
  • an additional stream of natural gas (not shown in the figure) may be supplied to the heat exchange unit 9 for combustion.
  • Resulting in dorodso containing gas 24 may then be used to produce hydrogen product or vodorodometanovoy mixture, which can remove from the stream of C0 2 absorption in cleaning, e.g., an aqueous solution of activated mono- and diethanolamine, and then completely release hydrogen in a membrane separator or by Swing adsorption on activated carbon or zeolite, in the process of which desorption products are obtained, which are directed partially to combustion and used as recirculated gas.
  • cleaning e.g., an aqueous solution of activated mono- and diethanolamine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к системам и способам газоснабжения транспортных средств и может быть использовано в качестве способа подготовки топлива в газотурбинных приводах компрессорных станций, на транспорте, для производства электроэнергии, в частности может быть использовано в автомобильных газонаполнительных компрессорных станциях для заправки сжатым природным газом (метаном). Согласно изобретению в способе подготовки газового топлива, в котором проводят предварительную очистку, сжатие, охлаждение, осушку газа, хранение газа и подачу газа потребителю через систему газозаправочных колонок, после сжатия газа его последовательно смешивают с водяным паром, нагревают продуктами сгорания газа до температуры в диапазоне 350 °С - 530 °С, пропускают через каталитический реактор, нагревают во втором теплообменнике до температуры в диапазоне 620-680 °С, пропускают через второй каталитический реактор, проводят охлаждение путем испарения и перегрева воды для получения водяного пара, смешиваемого с газом.

Description

СПОСОБ ПОДГОТОВКИ ГАЗОВОГО ТОПЛИВА
Изобретение относится к системам и способам газоснабжения транспортных средств и может быть использовано в качестве способа подготовки топлива в газотурбинных приводах компрессорных станций, на транспорте, для производства электроэнергии, в частности может быть использовано в автомобильных газонаполнительных компрессорных станциях для заправки сжатым природным газом (метаном).
Расширение сфер применения природного газа на автотранспорте требует совершенствования технологии его подготовки и реализации под избыточным давлением. Несовершенство применяемой технологии обусловило недостаточно высокую эффективность автомобильных газонаполнительных компрессорных станций. В результате этой и других причин сдерживается широкое использование экологически чистого газового топлива на транспорте, признанного весьма актуальным как в нашей стране, так и за рубежом. В целях повышения эффективности автомобильных газонаполнительных компрессорных станций предложен способ, описанный в заявке на изобретение РФ 93051892, дата публ. 10.05.1996, МПК F17C5/06, в котором способ предусматривает реализацию всего необходимого комплекса процессов подготовки топлива без использования традиционных компрессоров, систем охлаждения, осушки и полное использование аккумулирующей способности накопительных емкостей. Компримирование газа предлагается осуществлять путем передавливания газа из предварительно заполненной газом компримирующей емкости рабочей жидкостью, подаваемой в нее под давлением, в накопительные емкости - аккумуляторы газа, осушку - путем улавливания конденсируемой из газа воды при его сжатии с помощью слоя рабочей жидкости, налитой предварительно в аккумуляторы газа. Причем плотность жидкости ниже плотности воды, а вязкость поддерживается в заданных пределах независимо от температуры окружающей среды. Реализация газа - отпуск газа в емкости потребителей осуществляется на первом этапе также, как и при традиционной технологии - перепуском за счет перепада давлений в аккумуляторах газа и заправляемой емкости потребителя, а на втором этапе, когда давление в аккумуляторах приближается к наибольшему давлению в заправляемой емкости (20 МПа для автомобилей), в аккумулирующие емкости, связанные в систему, поочередно закачивается рабочая жидкость, в результате чего давление в них повышается и продолжается заправка емкостей потребителей до полного использования всего запасенного газа в аккумуляторах. Реализуется цикл: накопление - реализация газа.
Однако описанный способ обладает рядом недостатков, к которым можно отнести функциональные и экономические ограничения применения способа, связанные с необходимостью подачи рабочей жидкости в аккумуляторы газа и отсутствие возможностей изменения состава газа для повышения эффективности его использования в качестве топлива на автотранспорте.
Отчасти этот недостаток устраняется в способе подготовки газового топлива на автотранспорте, описанном в статье Malmo Hydrogen and hydrogen /CNG filling station, Bengt Ridell Carl Bro, Energikonsult AB. Paper presented at the Hydrogen and Fuel cells 2004 Conference and Trade show, Toronto, Canada, September 27, 2004, согласно которой в сжатый природный газ при заправке автотранспортного средства добавляют водород. Такой способ практически не меняет технологию подготовки сжатого природного газа и, в то же время, позволяет повысить экологические характеристики поставляемого топлива с возможностью повышения эффективности его применения.
Основным недостатком такого способа являются высокие затраты на получение водорода на специализированных производствах, необходимость его доставки на заправочную станцию и создание на станции отдельного водородного узла подготовки газа.
Задача изобретения - создать способ подготовки газового топлива, в котором устранены указанные выше недостатки, и создать условия эффективного повышения экологических характеристик газового топлива с возможностью повышения эффективности его применения.
Поставленная задача решается тем, что: в способе подготовки газового топлива, в котором проводят предварительную очистку, сжатие, охлаждение, осушку газа, хранение газа и подачу газа потребителю через систему газозаправочных колонок, после сжатия газа его последовательно смешивают с водяным паром, нагревают продуктами сгорания газа до температуры в диапазоне 350 °С - 530 °С, пропускают через каталитический реактор, нагревают во втором теплообменнике до температуры в диапазоне 620-680 °С, пропускают через второй каталитический реактор, проводят охлаждение путем испарения и перегрева воды для получения водяного пара, смешиваемого с газом.
Кроме того:
сжатие газа ведут в компрессоре за счет расширения водяного пара.
после охлаждения газа и его осушки проводят дополнительное сжатие газа до давления его хранения.
в качестве продуктов сгорания газа используют рабочее тело, прошедшее расширение в тепловом двигателе, в качестве которого могут использовать газовую турбину или двигатель внутреннего сгорания.
перед смешением газа с водяным паром проводят очистку газа от соединений серы. конденсат, образуемый при осушке газа, направляют на получение водяного пара. по крайней мере, часть газа сжигают для нагрева смеси газа с водяным паром, подаваемым во второй каталитический реактор. > реакцию смеси газа с водяным паром в каталитических реакторах ведут без подвода тепловой энергии на катализаторе, содержащем металлы из ряда никель, железо, платина, палладий, иридий или их соединения.
Примером реализации изобретения служит способ подготовки газового топлива, описанный ниже.
На фигуре дано схемное решение предложенного способа подготовки газового топлива.
Способ осуществляется следующим образом.
Природный газ 1 с давлением ниже 2.0 МПа подвергают очистке от соединений серы (если они содержатся в виде примесей в природном газее) в аппарате сероочистки 2, сжимают в компрессоре 3 до давления 4.0 МПа, смешивают с перегретым потоком водяного пара высокого давления 4 в узле смешения 5 до соотношения пар/газ, например, равного 4.0, и полученную парогазовую смесь нагревают до температуры 450 °С в теплообменнике 6, после чего направляют в каталитический реактор 7, в котором производят стабилизацию состава парогазовой смеси с получением метансодержащей парогазовой смеси с концентрацией водорода от 1 до 5%, после чего полученную метансодержащую парогазовую смесь нагревают до температуры 650 °С во втором теплообменнике 8 и направляют из теплообменного блока 9, обогреваемого продуктами сгорания 10, поступающими из теплового двигателя 1 1, питаемого топливом 12, во второй каталитический реактор 13, в котором концентрацию водорода повышают свыше 20% и полученную метансодержащую парогазовую смесь 14 направляют на охлаждение в парогенератор 15, после чего подают на осушку, которую проводят с конденсацией и сепарацией водяного пара в блоке осушки 16. После осушки газ при необходимости сжимают в дополнительном компрессоре 17 до давления хранения газа, например, 20 МПа, и направляют в емкости хранения 18, из которых ведут подачу газа потребителю через систему газозаправочных колонок 19. Часть водяного пара высокого давления 4 могут расширять в паровом приводе 20 компрессора 3 с получением водяного пара низкого давления, который конденсируют в конденсаторе 21 с получением конденсата 22, направляемого насосом (на фигуре не показан) вместе с питательной водой 23 в парогенератор 15. При необходимости часть полученного во дородсо держащего газа 24 могут направлять на рециркуляцию в аппарат сероочистки 2 для гидрирования сернистых соединений, например, проводимого в две ступени: сначала ведут, например, на алюмокобальтмолибденовом катализаторе гидрирование органических соединений серы, например, меркаптанов в сероводород, а затем поток направляют на поглощение образовавшегося сероводорода активированным оксидом цинка в реакторах поглощения, включенных в работу последовательно или параллельно.
Очистку природного газа от соединений серы ведут не только для повышения работоспособности катализатора, содержащего металлы из ряда никель, железо, платина, палладий, иридий или их соединения, но и для улучшения потребительских качеств газового топлива, в частности, для уменьшения неприятного запаха, сопровождающего процессы заправки и применения газа.
Выбор температуры нагрева определяется необходимостью избежать образования сажи в каталитических реакторах 7 и 13, что предопределяет предпочтительный уровень верхней возможной температуры 530 °С в первом каталитическом реакторе 7 и 680 °С во втором каталитическом реакторе 13. С другой стороны, равновесная степень превращения метана ниже 620 °С даже при относительно высоких соотношениях водяной пар/газ становится практически неприемлемой. Для коррекции температуры и состава газов в теплообменный блок 9 могут подавать для сжигания дополнительный поток природного газа (на фигуре не показан).
Полученный во дородсо держащий газ 24 могут затем использовать для производства товарного водорода или водородометановой смеси, для чего из потока могут удалять С02 в абсорбционной очистке, например, водным раствором активированного моно- и диэтаноламина, а затем окончательно выделять водород в мембранном отделителе или путем короткоцикловой адсорбции на активированном угле или цеолите, в процессе чего получают продукты десорбции, которые направляют частично на сжигание и используют качестве рециркулируемого газа.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ подготовки газового топлива, в котором проводят предварительную очистку, сжатие, охлаждение, осушку газа, хранение газа и подачу газа потребителю через систему газозаправочных колонок, отличающийся тем, что после сжатия газа его последовательно смешивают с водяным паром, нагревают продуктами сгорания газа до температуры в диапазоне 350 °С - 530 °С, пропускают через каталитический реактор, нагревают во втором теплообменнике до температуры в диапазоне 620-680 °С, пропускают через второй каталитический реактор, проводят охлаждение путем испарения и перегрева воды для получения водяного пара, смешиваемого с газом.
2. Способ по п.1, отличающийся тем, что сжатие газа ведут в компрессоре за счет расширения водяного пара.
3. Способ по п.1, отличающийся тем, что после охлаждения газа и его осушки проводят дополнительное сжатие газа до давления его хранения.
4. Способ по п.1, отличающийся тем, что в качестве продуктов сгорания газа используют рабочее тело, прошедшее расширение в тепловом двигателе, в качестве которого могут использовать газовую турбину или двигатель внутреннего сгорания.
5. Способ по п.1, отличающийся тем, что перед смешением газа с водяным паром проводят очистку газа от соединений серы.
6. Способ по п.1, отличающийся тем, что конденсат, образуемый при осушке газа, направляют на получение водяного пара.
7. Способ по п.1, отличающийся тем, что, по крайней мере, часть газа сжигают для нагрева смеси газа с водяным паром, подаваемым во второй каталитический реактор.
8. Способ по п.1, отличающийся тем, что реакцию смеси газа с водяным паром в каталитических реакторах ведут без подвода тепловой энергии на катализаторе, содержащем металлы из ряда никель, железо, платина, палладий, иридий или их соединения.
PCT/RU2011/000845 2010-11-03 2011-11-01 Способ подготовки газового топлива WO2012060740A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2010145021 2010-11-03
RU2010145021/05A RU2458105C2 (ru) 2010-11-03 2010-11-03 Способ подготовки газового топлива

Publications (1)

Publication Number Publication Date
WO2012060740A1 true WO2012060740A1 (ru) 2012-05-10

Family

ID=46024681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2011/000845 WO2012060740A1 (ru) 2010-11-03 2011-11-01 Способ подготовки газового топлива

Country Status (2)

Country Link
RU (1) RU2458105C2 (ru)
WO (1) WO2012060740A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2488428C1 (ru) * 2012-09-17 2013-07-27 Андрей Владиславович Курочкин Способ подготовки газа и газового конденсата к транспорту

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0105190A1 (en) * 1982-10-01 1984-04-11 Rockwell International Corporation Process for producing methane
RU2066018C1 (ru) * 1993-11-15 1996-08-27 Дмитрий Тимофеевич Аксенов Способ подготовки и реализации газа под избыточным давлением
RU2104990C1 (ru) * 1992-12-29 1998-02-20 Анатолий Данилович Зозуля Способ получения метана из метановоздушной смеси

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK142624B (da) * 1978-04-13 1980-12-01 Topsoe Haldor As Fremgangsmåde til fremstilling af en metanrig gas.
SU1736917A1 (ru) * 1989-06-20 1992-05-30 Пермское Производственное Объединение "Пермнефтеоргсинтез" Им.Хх111 Съезда Кпсс Способ паровой конверсии углеводородов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0105190A1 (en) * 1982-10-01 1984-04-11 Rockwell International Corporation Process for producing methane
RU2104990C1 (ru) * 1992-12-29 1998-02-20 Анатолий Данилович Зозуля Способ получения метана из метановоздушной смеси
RU2066018C1 (ru) * 1993-11-15 1996-08-27 Дмитрий Тимофеевич Аксенов Способ подготовки и реализации газа под избыточным давлением

Also Published As

Publication number Publication date
RU2458105C2 (ru) 2012-08-10
RU2010145021A (ru) 2012-05-10

Similar Documents

Publication Publication Date Title
Sinigaglia et al. Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review
CN111170273B (zh) 一种基于氨能源船舶的冷热电三联供复合系统及供电方法
US20030121481A1 (en) Fuel system
CN110606467B (zh) 一种甲醇重整制氢工艺及系统
RU2467187C2 (ru) Способ работы газотурбинной установки
CN212356521U (zh) 一种基于氨能源船舶的冷热电三联供复合系统
CN111137855B (zh) 一种基于液氨载氢-制氢的能量储存及转换系统
CN104119975A (zh) 焦化厂联产甲醇和液化天然气的方法
US20150110691A1 (en) Liquid fuel for isolating waste material and storing energy
EP3045425B1 (en) Manufacturing device and manufacturing method for hydrogen and synthetic natural gas
CN101747131B (zh) 利用膜分离与低温精馏从焦炉煤气中提取氢和甲烷的方法
CA2780306C (en) Systems for energy recovery and related methods
RU2458105C2 (ru) Способ подготовки газового топлива
CN110937572B (zh) 重整、分离一体式低压制氢系统及其制氢方法
JP4327469B2 (ja) 発電・水素生成組合せプラント
RU2388118C1 (ru) Установка для производства электроэнергии из углеводородного сырья
CN110817799B (zh) 重整、分离一体式超高压制氢系统及其制氢方法
CN112811389A (zh) 移动集约型船用即时制氢加氢一体化系统
RU2561345C1 (ru) Способ генерации энергии в анаэробной системе
CN110835093A (zh) 甲醇水蒸气重整与氢分离一体式中压制氢系统及其方法
US11795121B2 (en) Hydrocarbon generation system and hydrocarbon generation method
Khan et al. The Biogas Use
CN117228634A (zh) 基于湿垃圾沼气制取氢气并捕捉二氧化碳的方法和系统
CN116639707A (zh) 无碳新能源生态系统
CN111071989A (zh) 甲醇水蒸气与氢混合器一体式低压制氢系统及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/07/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11838310

Country of ref document: EP

Kind code of ref document: A1