WO2012060615A2 - 무선 통신 시스템에서 선택적으로 측정을 수행하는 방법 및 이를 지원하는 장치 - Google Patents

무선 통신 시스템에서 선택적으로 측정을 수행하는 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
WO2012060615A2
WO2012060615A2 PCT/KR2011/008260 KR2011008260W WO2012060615A2 WO 2012060615 A2 WO2012060615 A2 WO 2012060615A2 KR 2011008260 W KR2011008260 W KR 2011008260W WO 2012060615 A2 WO2012060615 A2 WO 2012060615A2
Authority
WO
WIPO (PCT)
Prior art keywords
cell
measurement
terminal
interference
setting
Prior art date
Application number
PCT/KR2011/008260
Other languages
English (en)
French (fr)
Other versions
WO2012060615A3 (ko
Inventor
정성훈
이승준
이영대
천성덕
박성준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/882,633 priority Critical patent/US9072001B2/en
Publication of WO2012060615A2 publication Critical patent/WO2012060615A2/ko
Publication of WO2012060615A3 publication Critical patent/WO2012060615A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/001Orthogonal indexing scheme relating to orthogonal multiplex systems using small cells within macro cells, e.g. femto, pico or microcells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for performing measurement by detecting interference caused by a serving cell and other cells in a wireless communication system and selectively applying a limited measurement setting according thereto, and supporting the same. Relates to a device.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • a UE may be affected by interference due to a radio signal transmitted from another cell while receiving a service in a specific cell.
  • the terminal periodically measures the cell and reports the measurement result.
  • the UE may measure the neighboring cell as well as the serving cell and report the result.
  • the terminal may measure the neighboring cell as well as the serving cell and report the result.
  • the service coverage, the frequency band of the channel used, and the radio access technology (RAT) serviced by the cell are different, such as when a macro cell, a pico cell, and a femto cell coexist.
  • RAT radio access technology
  • Inter-cell Interference Coordination is a task of operating a radio resource to maintain control of inter-cell interference.
  • the ICIC mechanism can be divided into frequency domain ICIC and time domain ICIC.
  • ICIC includes a multi-cell RRM (Radio Resource Management) function that needs to consider information from multiple cells.
  • Frequency domain ICIC coordinates the use of frequency domain resources (eg, resource blocks) between multiple cells
  • Time domain ICIC coordinates time domain resources (eg, subframes) between multiple cells.
  • an object causing interference i.e., an interference cell
  • an object suffering from interference i.e., an interference cell
  • the terminal When the terminal approaches the coverage of the neighbor cell that is not accessible, the terminal may be subjected to high interference.
  • the neighbor cell may transmit and receive a radio signal transmission signal by setting a measurement resource limit.
  • the terminal may apply a normal measurement configuration in a general environment and another measurement configuration suitable for this in an environment with high interference.
  • receiving a report from the UE whenever a high interference occurs and transmitting another measurement configuration may cause signaling overhead.
  • a method for the terminal to detect the situation to change the measurement settings, and correspondingly to operate by applying the changed measurement settings on their own.
  • the technical problem to be solved by the present invention is a method of avoiding interference caused by a serving cell and other cells in a wireless communication system, the terminal detects a situation where high interference occurs and correspondingly set the measurement resource limit setting
  • the present invention relates to a method for selectively performing measurements and a device supporting the measurement.
  • a measurement method performed by a terminal in a wireless communication system.
  • the method receives from a serving cell a first measurement setting that applies to the measurement during normal operation and an interfering cell with a second measurement setting that applies to the measurement in the event of high interference.
  • Receiving from the device determining whether or not the altitude interference has occurred, and performing a measurement based on the altitude interference occurrence detection result, the first measurement setting, and the second measurement setting.
  • Performing the measurement may include measuring neighboring cells including the serving cell and the interfering cell based on the second measurement setting when the high interference occurs.
  • the method may include measuring a neighboring cell including the serving cell and the interfering cell based on the first measurement setting.
  • the method further includes reporting the measurement result to the serving cell,
  • the measurement result may include information indicating that the measurement result is a result based on the second measurement setting.
  • the second measurement setting may include a measurement target cell list to which the second measurement setting is applied.
  • the performing of the measurement may include measuring the measurement target cell included in the cell list based on the second measurement setting and generating the measurement target cell not included in the cell list when the altitude interference occurs. It may include measuring the measurement set up.
  • the second measurement setting may include a frequency list of the measurement target cell to which the second measurement setting is applied.
  • the performing of the measurement may include measuring, based on the second measurement setting, a measurement target cell using a frequency included in the frequency list and using a frequency not included in the frequency list when the high-level interference occurs.
  • the measuring target cell may include measuring based on the first measurement setting.
  • the second measurement setting may include ABS (Almost Blank Subframe) pattern information which is a section in which radio signal transmission by the interference cell is minimized.
  • Determining whether or not the high interference occurs may include determining that the high interference has occurred when detecting a cell having the same identification information as that of the cell determined to be inaccessible.
  • Determining whether or not the altitude interference is generated may further include determining that the altitude interference has occurred when the location of the terminal and the current location of the terminal are located within a specific distance when the cell is determined to be inaccessible. Can be.
  • the determining of the occurrence of the high interference may further include determining that the high interference has occurred when the measured value of the neighbor cell measured by the terminal is greater than or equal to a first threshold value.
  • the determining of the occurrence of the high interference may further include determining that the high interference has occurred if the physical layer cell identifier of the neighboring cell is an identifier reserved for a closed subscriber group (CSG).
  • CSG closed subscriber group
  • the determining of the occurrence of the high interference may further include determining that the high interference occurs when a difference between the RSRP measurement value and the RSRQ measurement value of the serving cell is greater than or equal to a second threshold value.
  • Determining whether or not the high interference occurs may further include determining that the high interference occurs when the measured value of the serving cell is equal to or less than another specific third threshold.
  • an apparatus for performing measurements in a wireless communication system includes a radio frequency (RF) unit for transmitting and receiving radio signals and a processor coupled to the RF unit, wherein the processor is configured to provide a first measurement setting that applies to a measurement during normal operation. serving cell, and receiving a second measurement setting from an interfering cell applied to the measurement when a high interference occurs, determining whether or not the high interference occurs, and detecting the high interference, And to perform the measurement based on the first measurement setting and the second measurement setting.
  • RF radio frequency
  • the processor may be configured to measure the serving cell and a neighbor cell including the interference cell based on the second measurement setting when the high interference occurs.
  • the processor may be configured to measure the neighboring cell including the serving cell and the interfering cell based on the first measurement setting if the generated high interference does not exist.
  • the terminal recognizes the occurrence of the high-level interference and autonomously selects and applies the measurement setting or the measurement resource limit setting as necessary. Through this, the terminal may perform limited measurement through the low interference radio resource if necessary. Since the UE selectively uses the measurement configuration or the measurement resource limitation configuration without separate signaling by the serving cell, the terminal may perform limited measurement even when signaling of the serving cell is not possible due to high interference. In addition, since a procedure such as measurement setup request-measurement setup response of the base station is omitted in a situation where high interference of the terminal occurs, excessive radio resource occupancy can be prevented.
  • the UE can keep camping on the UE continuously in the serving cell without experiencing a connection failure even when the serving cell is experiencing interference from other cells through limited measurement.
  • the terminal may measure the neighboring cell more accurately through limited measurement in a form suitable for the operation purpose of the network. Through this, network efficiency can be improved in terms of mobility management and radio resource utilization of the terminal.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • 4 is an exemplary diagram illustrating radio link failure.
  • 5 is a flowchart illustrating the success of the connection reestablishment process.
  • FIG. 6 is a flowchart illustrating a failure of a connection reestablishment process.
  • FIG. 9 is a diagram illustrating a measurement method of a terminal according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a measurement method of a terminal according to another embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a measuring method of a terminal according to another embodiment of the present invention.
  • FIG. 12 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X 2 interface.
  • the base station 20 is connected to the Serving Gateway (S-GW) through the Mobility Management Entity (MME) and the S1-U through the Evolved Packet Core (EPC) 30, more specifically, through the S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the data plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the user plane includes the transfer of control plane data and encryption / integrity protection.
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers (RBs).
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • the RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN. If connected, the RRC connection state is called. Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE. On the other hand, the UE in the RRC idle state cannot be recognized by the E-UTRAN, and is managed by a core netwrok (CN) in units of a tracking area, which is a larger area unit than a cell. That is, the UE in the RRC idle state is identified only in a large area unit, and must move to the RRC connected state in order to receive a normal mobile communication service such as voice or data.
  • CN core netwrok
  • the terminal When the user first powers on the terminal, the terminal first searches for an appropriate cell and then stays in an RRC idle state in the cell.
  • the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through an RRC connection procedure and transitions to the RRC connected state.
  • RRC connection procedure There are several cases in which the UE in RRC idle state needs to establish an RRC connection. For example, an uplink data transmission is necessary due to a user's call attempt, or a paging message is sent from E-UTRAN. If received, a response message may be sent.
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • EMM-REGISTERED EPS Mobility Management-REGISTERED
  • EMM-DEREGISTERED EMM-DEREGISTERED
  • the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
  • an EPS Connection Management (ECM) -IDLE state In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME.
  • ECM EPS Connection Management
  • ECM-IDLE state When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state.
  • the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
  • the E-UTRAN does not have context information of the terminal.
  • the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
  • the terminal In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
  • the system information includes essential information that the terminal needs to know in order to access the base station. Therefore, the terminal must receive all system information before accessing the base station, and must always have the latest system information. In addition, since the system information is information that all terminals in a cell should know, the base station periodically transmits the system information.
  • the system information includes a master information block (MIB) and a scheduling block (SB). , SIB System Information Block).
  • MIB master information block
  • SB scheduling block
  • the MIB enables the UE to know the physical configuration of the cell, for example, bandwidth.
  • SB informs transmission information of SIBs, for example, a transmission period.
  • SIB is a collection of related system information. For example, some SIBs contain only information of neighboring cells, and some SIBs contain only information of an uplink radio channel used by the terminal.
  • services provided by a network to a terminal can be classified into three types as follows.
  • the terminal also recognizes the cell type differently according to which service can be provided. The following describes the service type first, followed by the cell type.
  • Limited service This service provides Emergency Call and Tsunami Warning System (ETWS) and can be provided in an acceptable cell.
  • ETWS Emergency Call and Tsunami Warning System
  • Normal service This service means a public use for general use, and can be provided in a suitable or normal cell.
  • This service means service for network operator. This cell can be used only by network operator and not by general users.
  • the cell types may be classified as follows.
  • Acceptable cell A cell in which the terminal can receive limited service. This cell is a cell that is not barred from the viewpoint of the terminal and satisfies the cell selection criteria of the terminal.
  • Suitable cell The cell that the terminal can receive a regular service. This cell satisfies the conditions of an acceptable cell and at the same time satisfies additional conditions. As an additional condition, this cell must belong to a Public Land Mobile Network (PLMN) to which the terminal can access, and must be a cell which is not prohibited from performing a tracking area update procedure of the terminal. If the cell is a CSG cell, the terminal should be a cell that can be connected to the cell as a CSG member.
  • PLMN Public Land Mobile Network
  • Barred cell A cell that broadcasts information that a cell is a prohibited cell through system information.
  • Reserved cell A cell that broadcasts information that a cell is a reserved cell through system information.
  • mobility support of a terminal is essential. Accordingly, the UE continuously measures the quality of the serving cell and the neighboring cell that provide the current service. The terminal reports the measurement result to the network at an appropriate time, and the network provides the terminal with optimal mobility through handover.
  • the terminal may perform measurement for a specific purpose set by the network and report the measurement result to the network in order to provide information that may help the operator operate the network in addition to the purpose of mobility support. For example, the terminal receives broadcast information of a specific cell determined by the network.
  • the terminal may include a cell identity (also referred to as a global cell identifier) of the specific cell, location identification information (eg, tracking area code) to which the specific cell belongs, and / or other cell information (eg, For example, whether a member of a closed subscriber group (CSG) cell is a member) may be reported to the serving cell.
  • a cell identity also referred to as a global cell identifier
  • location identification information eg, tracking area code
  • other cell information eg, For example, whether a member of a closed subscriber group (CSG) cell is a member
  • the mobile station may report location information and measurement results of poor quality cells to the network.
  • the network can optimize the network based on the report of the measurement results of the terminals helping the network operation.
  • the terminal In a mobile communication system with a frequency reuse factor of 1, mobility is mostly between different cells in the same frequency band. Therefore, in order to ensure the mobility of the terminal well, the terminal should be able to measure the quality and cell information of neighboring cells having the same center frequency as the center frequency of the serving cell. As such, the measurement of the cell having the same center frequency as that of the serving cell is called intra-frequency measurement. The terminal performs the intra-cell measurement and reports the measurement result to the network at an appropriate time, so that the purpose of the corresponding measurement result is achieved.
  • the mobile operator may operate the network using a plurality of frequency bands.
  • the terminal may measure quality and cell information of neighboring cells having a center frequency different from that of the serving cell. Should be As such, a measurement for a cell having a center frequency different from that of the serving cell is called inter-frequency measurement.
  • the terminal should be able to report the measurement results to the network at an appropriate time by performing inter-cell measurements.
  • the base station may be configured to measure the cell of the heterogeneous network.
  • This measurement for heterogeneous networks is called inter-RAT (Radio Access Technology) measurement.
  • the RAT may include a UMTS Terrestrial Radio Access Network (UTRAN) and a GSM EDGE Radio Access Network (GERAN) conforming to the 3GPP standard, and may also include a CDMA 2000 system conforming to the 3GPP2 standard.
  • UTRAN UMTS Terrestrial Radio Access Network
  • GERAN GSM EDGE Radio Access Network
  • the terminal After the terminal selects a cell through a cell selection process, the strength or quality of a signal between the terminal and the base station may change due to a change in mobility or a wireless environment of the terminal. Therefore, if the quality of the selected cell is degraded, the terminal may select another cell that provides better quality. When reselecting a cell in this way, a cell that generally provides better signal quality than the currently selected cell is selected. This process is called cell reselection.
  • the cell reselection process has a basic purpose in selecting a cell that generally provides the best quality to a terminal in view of the quality of a radio signal.
  • the network may determine the priority for each frequency and notify the terminal. Upon receiving this priority, the UE considers this priority prior to the radio signal quality criteria in the cell reselection process.
  • a method of selecting or reselecting a cell according to a signal characteristic of a wireless environment In selecting a cell for reselection when reselecting a cell, the following cell reselection is performed according to a cell's RAT and frequency characteristics There may be a method of selection.
  • Intra-frequency cell reselection Reselection of a cell having a center-frequency equal to the RAT, such as a cell where the UE is camping
  • Inter-frequency cell reselection Reselects a cell having a center frequency different from that of the same RAT as the cell camping
  • Inter-RAT cell reselection UE reselects a cell using a RAT different from the camping RAT
  • the cell reselection process is as follows:
  • the terminal receives a parameter for cell reselection from the base station.
  • the terminal measures the quality of a serving cell and a neighboring cell for cell reselection.
  • cell reselection is performed based on cell reselection criteria.
  • the cell reselection criteria have the following characteristics with respect to serving cell and neighbor cell measurements.
  • Intra-frequency cell reselection is basically based on ranking.
  • Ranking is an operation of defining index values for cell reselection evaluation and using the index values to order the cells in the order of the index values.
  • the cell with the best indicator is often called the best ranked cell.
  • the cell index value is a value obtained by applying a frequency offset or a cell offset as necessary based on the value measured by the terminal for the corresponding cell.
  • Inter-frequency cell reselection is based on the frequency priority provided by the network.
  • the terminal attempts to camp on the frequency with the highest frequency priority.
  • the network may provide the priorities to be commonly applied to the terminals in the cell or provide the frequency priority through broadcast signing, or may provide the priority for each frequency for each terminal through dedicated signaling.
  • the network may provide the UE with parameters (for example, frequency-specific offset) used for cell reselection for each frequency.
  • the network may provide the UE with a neighboring cell list (NCL) used for cell reselection.
  • NCL neighboring cell list
  • This NCL contains cell-specific parameters (eg cell-specific offsets) used for cell reselection.
  • the network may provide the UE with a cell reselection prohibition list (black list) used for cell reselection to the UE.
  • the UE does not perform cell reselection for a cell included in the prohibition list.
  • the ranking criterion used to prioritize the cells is defined as in Equation 1.
  • Rs is a ranking indicator of the serving cell
  • Rn is a ranking indicator of the neighboring cell
  • s is a quality value measured by the UE for the serving cell
  • n is a quality value measured by the UE for the neighboring cell
  • Qhyst is The hysteresis value, Qoffset, for the ranking is the offset between two cells.
  • the ranking index Rs of the serving cell and the ranking index Rn of the neighboring cell change in a state similar to each other, the ranking ranking is constantly changed as a result of the change, so that the terminal may alternately select two cells.
  • Qhyst is a parameter for giving hysteresis in cell reselection to prevent the UE from reselecting two cells alternately.
  • the UE measures the Rs of the serving cell and the Rn of the neighboring cell according to the above equation, regards the cell having the highest ranking indicator value as the best ranked cell, and reselects the cell.
  • the quality of the cell serves as the most important criterion in cell reselection. If the reselected cell is not a normal cell, the terminal excludes the frequency or the corresponding cell from the cell reselection target.
  • the serving cell may be divided into a primary cell and a secondary cell.
  • the primary cell is a cell that operates at the primary frequency and performs an initial connection establishment process, which is a terminal, initiates a connection reestablishment process, or is designated as a primary cell in a handover process.
  • the primary cell is also called a reference cell.
  • the secondary cell operates at the secondary frequency, can be established after the RRC connection is established, and can be used to provide additional radio resources. At least one primary cell is always configured, and the secondary cell may be added / modified / released by higher layer signaling (eg, RRC message).
  • the terminal continuously performs a measurement to maintain the quality of a radio link with a serving cell receiving a service.
  • the terminal determines whether the quality of the radio link with the serving cell is deteriorated and communication is impossible. If it is determined that the quality of the current serving cell is bad enough that communication is impossible, the terminal determines that the radio link has failed.
  • the UE gives up maintaining communication with the current serving cell, selects a new cell through a cell selection (or cell reselection) procedure, and establishes an RRC connection re-connection to the new cell. attempt establishment.
  • radio link failure 4 is an exemplary diagram illustrating radio link failure. The operation associated with radio link failure can be described in two phases.
  • the terminal In the first phase, the terminal is in normal operation and checks whether there is a problem in the current communication link. If a problem is detected, the terminal declares a radio link problem and waits for the radio link to recover during the first waiting time T1. If the radio link recovers before the first waiting time elapses, the terminal performs normal operation again. If the radio link does not recover until the first wait time expires, the terminal declares a radio link failure and enters the second phase.
  • the terminal In a second phase, again waiting for the radio link to recover for a second waiting time T2. If the radio link does not recover until the second waiting time expires, the terminal enters the RRC idle state. Alternatively, the terminal may perform an RRC reestablishment procedure.
  • the RRC connection reestablishment procedure is a procedure for reestablishing an RRC connection again in an RRC_CONNECTED state. Since the terminal remains in the RRC_CONNECTED state, that is, does not enter the RRC_IDLE state, the terminal does not initialize all of its radio settings (for example, radio bearer settings). Instead, the UE temporarily suspends use of all radio bearers except SRB0 when starting the RRC connection reconfiguration procedure. If the RRC connection reestablishment is successful, the terminal resumes the use of radio bearers that have temporarily suspended use.
  • 5 is a flowchart illustrating the success of the connection reestablishment process.
  • the terminal selects a cell by performing cell selection.
  • the terminal receives system information to receive basic parameters for cell access in the selected cell.
  • the terminal sends an RRC connection reestablishment request message to the base station (S510).
  • the base station accepts the RRC connection reestablishment request of the terminal and sends an RRC connection reestablishment message to the terminal (S520).
  • the terminal sends an RRC connection reestablishment complete message to the base station, so that the RRC connection reestablishment procedure may succeed (S530).
  • the terminal sends an RRC connection reestablishment request message to the base station (S510). If the selected cell is not a prepared cell, the base station sends an RRC connection reestablishment reject message in response to the RRC connection reestablishment request to the UE (S515).
  • ICIC is a task of operating radio resources to maintain control of inter-cell interference.
  • the ICIC mechanism can be divided into frequency domain ICIC and time domain ICIC.
  • ICIC includes a multi-cell RRM (Radio Resource Management) function that needs to consider information from multiple cells.
  • An interfering cell is a cell that provides interference.
  • An interfering cell is also called an attacker cell.
  • Interfered cells are cells affected by interference from interfering cells.
  • the interfering cell is also called the victim cell.
  • Frequency domain ICIC coordinates the use of frequency domain resources (eg, resource blocks) between multiple cells.
  • the time domain ICIC coordinates time domain resources (eg, subframes) between multiple cells.
  • time domain ICIC Operations, Administration and Maintenance (OAM) settings, called the Almost Blank Subframe (ABS) pattern
  • OAM Operations, Administration and Maintenance
  • ABS Almost Blank Subframe
  • ABS in interfering cells is used to protect resources in subframes in the interfering cells that receive strong intercell interference.
  • the ABS is operated in the interfering cell, and the interfering cell adjusts the interference from the interfering cell by utilizing the ABS for scheduling.
  • ABS is a subframe with reduced transmit power (or zero transmit power) on the physical channel or with reduced activity.
  • ABS pattern refers to information indicating which subframe is ABS in one or more radio frames.
  • Radio Resource Management RRM
  • Radio Link Monitoring RLM
  • Channel State Information CSI
  • ABS pattern 1' is used to limit the RRM / RLM measurement resource of the serving cell.
  • the information about the ABS pattern 1 may be notified by the base station to the terminal when the setting / modification / release of the RB or the MAC / card may be changed.
  • ABS pattern 2' is used to limit RRM measurement support of neighboring cells operating at the same frequency as the serving cell. Accordingly, in the ABS pattern 2, a list of neighbor cells to be measured may be provided to the terminal along with the pattern information. The ABS pattern 2 may be included in the measurement setting for the measurement object.
  • ABS pattern 3' is used for resource limitation for CSI measurement of the serving cell.
  • ABS pattern 3 may be included in the message for configuring the CSI report.
  • the CSG cell refers to a cell that only a specific subscriber can access.
  • the non-member terminal is a terminal that is not a member of the CSG cell and is not connected to the CSG cell.
  • the CSG cell to which the UE cannot connect is called a non-member CSG cell.
  • the macro cell refers to the serving cell of the non-member terminal. Coverage of the CSG cell and the macro cell is said to overlap some or all.
  • the main interference condition occurs when the non-member terminal is located in close proximity of the CSG cell. From the standpoint of the non-member terminal, the interfering cell becomes a CSG cell and the macro cell becomes an interfering cell. Time domain ICIC is used to allow non-member terminals to continue to be serviced in the macro cell.
  • the network may set the measurement resource limit.
  • the network may set RRM measurement resource limits for neighboring cells. If the UE no longer severely interferes with the CSG cell, the network may release the RRM / RLM / CSI measurement resource restriction.
  • the UE may use the measurement resource limit set for the RRM, RLM and CSI measurement. That is, resources for RLM can be used in ABS, and measurement for RLM and CSI measurement can be performed in ABS.
  • the network may configure the CSG cell not to use the low interference radio resource according to the set measurement resource limit. That is, the CSG cell may not transmit or receive data in the ABS.
  • a pico cell is a serving cell of a pico terminal.
  • a pico cell is a cell where some or all of the coverage overlaps with the macro cell.
  • Pico cells generally have a smaller coverage than macro cells, but are not necessarily limited thereto.
  • the main interference condition occurs when the pico terminal is located at the edge of the pico serving cell. From the point of view of the peak terminal, the interference cell becomes a macro cell and the pico cell becomes an interference cell.
  • the time domain ICIC is used to allow the pico terminal to continue to be serviced in the pico cell.
  • the picocell may set the measurement resource limit to the corresponding terminal.
  • the pico terminal may use a low interference radio resource based on the measurement resource limit set for RRM, RLM and CSI measurement. That is, resources for RLM can be used in ABS, and measurement for RLM and CSI measurement can be performed in ABS. When the pico cell is subjected to strong interference from the macro cell, the RRM / RLM / CSI measurement can be performed in the ABS for more accurate measurement.
  • the UE measures RRM such as RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality) and CQI (Channel Quality Indicator) for the serving cell or neighbor cell, and path-loss measurement. Do this.
  • the terminal may perform a measurement for the purpose of RLM (Radio Link Monitoring) for monitoring the connection with the serving cell.
  • RRM Radio Link Monitoring
  • the interfering cell causing interference and the cell affected by the interference are determined according to a target to be measured by the terminal.
  • an intra-frequency neighbor cell having a strong signal strength near the terminal may act as an interference in measuring the serving cell.
  • the terminal may experience high interference by the neighboring cell in serving cell measurement.
  • the serving cell and other intra-frequency neighbor cell signals may act as interference for intra-frequency neighbor cell measurement.
  • the UE may experience high interference by the serving cell and other neighbor cells of the serving frequency in measuring the neighbor cell.
  • another neighbor cell signal of a corresponding frequency may act as interference to the measurement.
  • the terminal may experience high interference by another neighboring cell of the corresponding frequency in measuring the neighboring cell.
  • the network may attempt to make a correct measurement by configuring a measurement setting suitable for the interference situation in the terminal.
  • the network wants the terminal to apply normal measurement settings in the situation where the measurement target does not experience high interference, and the terminal applies another measurement setting suitable for the situation where the measurement target of the terminal suffers from high interference, Whenever the terminal experiences high interference, it receives a report from the terminal and needs to change the measurement configuration. In this case, signaling overhead may be a problem.
  • the terminal may perform the measurement based on the second measurement configuration including the measurement resource limitation information considering the interference.
  • the second measurement setting may be expressed as a measurement resource limit setting.
  • the measurement can be performed based on the first measurement configuration that includes information for the measurement according to the normal operation. The terminal detects whether or not altitude interference is working, and can selectively use the measurement setting.
  • the second measurement setup is a radio capable of measuring more limited radio resources than measurement setup 1 for the measurement target to which the terminal will apply the second measurement setup. It may be for so-called restricted measurement, in which measurements are taken as resources.
  • the limited radio resource may be a low-interference radio resource in which a target to be measured by the terminal receives less interference when the measurement is performed using the limited radio resource. More specifically, the limited radio resource may be given in an ABS pattern set by the interfering cell as a time interval in which transmission from the cell causing the interference is minimized.
  • the measurement resource restriction information may include ABS pattern information.
  • the measurement target of applying the second measurement configuration may be given to the terminal in the form of a cell list or a frequency list by the network.
  • the terminal Before the measurement is performed on the basis of the second measurement configuration, the terminal determines that it exists in the region where the high interference works and determines whether to use the second measurement configuration. Conditions for determining that the terminal is in the region where the high interference operates may be as follows.
  • the terminal If the terminal receives system information from a cell previously camped and determines that the cell is inaccessible, the terminal stores identification information (e.g. physical layer cell identifier) of the corresponding cell. Thereafter, when the terminal detects a cell having the same information as the identification information stored in the terminal, the terminal determines that it is currently in the high interference region.
  • identification information e.g. physical layer cell identifier
  • the terminal If the terminal receives the system information from the cell previously attempted camping and determines that the cell is not accessible from the terminal, the terminal records the location of the terminal. Thereafter, when the terminal compares the current location with the stored location and determines that the terminal is near the location of the inaccessible cell, the terminal determines that the terminal is currently in the high interference region.
  • the terminal If the terminal has received the system information from the cell previously attempted camping and determined that the cell is inaccessible from the cell, and the terminal receives information about the specific time when the interference is low in the cell from the cell, the terminal This cell stores identification information (e.g., physical layer cell identifier) and 'information on a specific time when interference is low' broadcast by the cell. The terminal may store the location at this time. Thereafter, when the terminal detects a cell having the same identifier as the identification information of the stored cell, or determines that the terminal is in the stored location as described above, the terminal determines that the terminal is currently in the high interference region.
  • the “stored information about a specific time with low interference” stored by the terminal is used as information configuring the second measurement setting.
  • the 'information regarding a specific time with low interference' may be ABS of the femto cell.
  • the terminal When the terminal receives a threshold value for determining that the terminal is in an interfering cell region from the network, and the quality of the neighbor cell measured by the terminal is greater than or equal to the threshold value, the terminal determines that the terminal is in the high interference region.
  • the terminal determines that the terminal is currently in the high interference region.
  • the terminal determines that it is currently in the high interference region.
  • the terminal determines that it is currently in the high interference region.
  • the terminal When the terminal receives an indication from the network that high-frequency interference may occur for a specific frequency or a measurement setting for limited measurement to be applied to a specific frequency, the terminal receives a condition for measuring the specific frequency (eg, the quality of a serving cell). When the terminal needs to start the inter-frequency measurement by falling below this inter-frequency measurement threshold value, the terminal determines that it is currently in the high interference region for the measurement of the frequency.
  • a condition for measuring the specific frequency eg, the quality of a serving cell.
  • the terminal determines that it is currently in the interfering area.
  • the terminal may determine that the terminal is in the high interference region only when a plurality of conditions among the conditions for determining that the terminal is in the interfering cell region are simultaneously satisfied.
  • the cell to which the terminal is not accessible may be a non-member CSG cell, and as an example, may be a non-member femto cell.
  • a cell to which the terminal is inaccessible may cause interference to the terminal.
  • the cell causing the interference may be a pico cell or femto cell with a much smaller size coverage than the macro cell.
  • the above-described method for determining the high interference area of the terminal may be applied to the method for performing measurement by the following terminal.
  • the serving cell knows the measurement resource limitation information set by the interfering cell that may cause high interference.
  • the measurement resource restriction information includes ABS pattern information, and it is assumed that the measurement resource is included in the second measurement configuration transmitted by the serving cell.
  • 9 is a diagram illustrating a measurement method of a terminal according to an embodiment of the present invention. 9 corresponds to a measurement method that may be applied to intra-frequency measurement performed by a terminal. It is assumed that the UE operates in connection with one serving cell and measures two neighboring cells in addition to the serving cell.
  • the terminal 910 receives a first measurement setting and a second measurement setting used for measuring a serving cell and a neighbor cell from the serving cell 921 (S910).
  • the terminal 910 may receive the first measurement configuration and the second measurement configuration through broadcast information or dedicated transmission information of the serving cell 921.
  • the first measurement setting and the second measurement setting are simultaneously included in one broadcast information or dedicated transmission information transmitted from the serving cell 921 or are respectively included in different broadcast information or dedicated transmission information and transmitted at different time points. Can be.
  • the second measurement setting may be transmitted before the first measurement setting.
  • the terminal 910 measures signal for measurements of the serving cell 921 and the neighbor cells 922 and 923 based on the first measurement configuration in a communication environment in which there is no high interference (S920).
  • the terminal 910 detects a situation in which high interference occurs (S730). In this example, the terminal 910 may determine that high interference occurs with respect to the second neighbor cell 922.
  • the terminal 910 When the terminal 910 detects a situation in which the high interference occurs, the terminal 910 applies the second measurement setting to perform the measurement (S940).
  • the measurement of the neighbor cell performed by the terminal 910 by applying the second measurement configuration may include RSRP measurement, RSRQ measurement, and / or path-loss measurement.
  • the measurement performed by the terminal 910 by applying the second measurement includes measurement of the RLM purpose for monitoring connectivity with the serving cell.
  • the terminal 910 detects that the situation in which the interference that was operating has been solved has been resolved (S950).
  • the terminal 910 determines that there is no high interference, the terminal 910 performs the measurement by applying the first measurement configuration (S960).
  • the network may transmit a cell list together to define a target to which the second measurement setting is applied.
  • the terminal measures the cell based on the second measurement configuration for the cells included in the cell list, and measures the cell based on the first measurement configuration for other cells.
  • the terminal 910 may serve as the serving cell 921 and the like.
  • the embodiment shown in FIG. 9 may be appropriately applied when a terminal receiving a service from a macro cell is located near a coverage edge of a pico cell installed within the coverage of the macro cell.
  • a UE provided with a service from a macro cell which is a serving cell
  • a signal of the serving cell may cause high interference with respect to the measurement of the pico cell.
  • the serving cell serving as the interference cell supports the measurement resource limit setting
  • the serving cell may inform the UE of the second measurement setting including the measurement resource limit information.
  • the terminal may perform measurement on the pico cell based on the second measurement configuration, and may perform handover to the pico cell if necessary.
  • FIG. 10 is a diagram illustrating a measurement method of a terminal according to another embodiment of the present invention.
  • the embodiment of FIG. 10 corresponds to a measurement method that may be applied to inter-frequency measurement performed by a terminal. It is assumed that the UE operates in connection with one serving cell and measures two neighboring cells in addition to the serving cell. In addition, it is assumed that the serving cell and the first neighboring cell use a channel having the same center frequency F1, and the second neighboring cell uses a channel having a different center frequency F2.
  • the terminal 1010 receives a first measurement setting and a second measurement setting used to measure a serving cell and a neighbor cell from the serving cell 1021 (S1010).
  • the first measurement setting includes measurement setting information applicable to a cell using F1 and a cell using F2.
  • the second measurement configuration may include measurement configuration information to be applied when causing interference to inter-frequency measurement, that is, interference to a cell of the F2 frequency.
  • the second measurement setting may include information about a frequency list to which the corresponding measurement setting is applied.
  • the terminal 1010 may receive the first measurement setting and the second measurement setting through broadcast information or dedicated transmission information of the serving cell 1021.
  • the first measurement setting and the second measurement setting may be simultaneously included in one broadcast information or dedicated transmission information transmitted from the serving cell 921.
  • the first measurement setting and the second measurement setting may be included in different broadcast information or dedicated transmission information, respectively, and transmitted at different time points. In this case, the second measurement setting may be transmitted before the first measurement setting.
  • the terminal 1010 measures the serving cell 1021 and the neighbor cells 1022 and 1023 based on the first measurement configuration in a communication environment in which there is no high interference in operation S1020. Since the serving cell 1021 and the first neighbor cell 1022 are cells that use F1, and the second neighbor cell 1023 is a cell that uses F2, the terminal 1010 can measure based on the first measurement setting. have.
  • the terminal 1010 detects a situation in which high interference occurs (S1030).
  • the terminal 1010 may detect that high interference occurs with respect to the second neighboring cell 1022.
  • the terminal 1010 When the terminal 1010 detects a situation where high interference occurs in the second neighboring cell 1023, the terminal 1010 applies the first measurement setting to the measurement of the serving cell 1021 and the first neighboring cell 1022 at the F1 frequency ( S1041). On the other hand, the second measurement setting is applied to the measurement of the second neighbor cell 1023 at the F2 frequency (S1042).
  • the terminal 1010 detects that the situation in which the interference that was operating has been solved has been resolved (S1050). In this case, the terminal 1010 detects that interference with the second neighbor cell 1023 of the F2 frequency has been canceled.
  • the terminal 1010 When the terminal 1010 detects that the situation where the high interference occurs has been resolved, the terminal 1010 applies the first measurement setting to the measurement of the serving cell 1021, the first neighboring cell 1022, and the second neighboring cell 1023 (S1060). ).
  • the measurement of the neighbor cell performed by the terminal 1010 by applying the second measurement configuration may include RSRP measurement, RSRQ measurement, and / or path-loss measurement.
  • the measurement performed by the terminal 1010 by applying the second measurement includes measurement of an RLM purpose for monitoring connectivity with a serving cell.
  • the second measurement setting may be received from the neighbor cell.
  • a terminal receiving a service in a macro cell may be subjected to high interference from a non-accessible cell (e.g. non-member CSG, non-member femto cell) installed in the coverage of the macro cell.
  • a non-accessible cell e.g. non-member CSG, non-member femto cell
  • the interference causing cell is a femto cell
  • the macro BS may not acquire second measurement configuration information including the ABS configured by the femto cell.
  • a method may be proposed in which a first measurement setting for a neighboring cell accessible to a serving cell is obtained from a macro cell, and a second measurement setting for a non-accessible neighboring cell is directly obtained from an interference causing cell.
  • FIG. 11 is a diagram illustrating a measuring method of a terminal according to another embodiment of the present invention.
  • the embodiment of FIG. 11 corresponds to a measurement method that may be applied to intra-frequency measurement performed by a terminal. It is assumed that the terminal measures two neighboring cells besides the serving cell. It is assumed that the second neighbor cell is the interference causing cell.
  • the terminal 1110 receives a first measurement configuration used to measure a serving cell and a neighbor cell from the serving cell 1121 (S1110).
  • the terminal 1110 may receive the first measurement configuration through broadcast information or dedicated transmission information of the serving cell 1121.
  • the terminal 1110 measures the serving cell 1121 and the neighbor cells 1122 and 1123 based on the first measurement configuration in a communication environment in which there is no high interference in operation S1120.
  • the terminal 1110 detects a situation in which high interference occurs (S1130).
  • the terminal 1110 may detect that high interference occurs with respect to the second neighboring cell 1122.
  • the terminal 1110 obtains a second measurement configuration from the second neighboring cell 1123 that is the interference causing cell (S1140).
  • the second measurement setting may be included in system information broadcast by the second neighboring cell 1123 and transmitted.
  • the second measurement configuration may include measurement resource limit information set by the second neighbor cell.
  • the terminal 1110 measures the serving cell 1121, the first neighboring cell 1122, and the second neighboring cell 1123 by applying the second measurement setting (1150).
  • the measurement of the neighbor cell performed by the UE 1110 by applying the second measurement configuration may include RSRP measurement, RSRQ measurement, and / or path-loss measurement.
  • the measurement performed by the terminal 1110 by applying the second measurement includes measurement of an RLM purpose for monitoring connectivity with a serving cell.
  • the terminal 1110 detects that the situation in which the interference that had been operated has been solved has been resolved (S1160).
  • the UE measures the serving cell 1121, the first neighboring cell 1122, and the second neighboring cell 1123 by applying the first measurement setting ( S1170).
  • the UE may directly receive a second measurement setting to be applied when detecting another cell causing high interference to the measurement of another cell of the corresponding frequency from a cell that may interfere with the frequency.
  • the terminal may apply the second measurement configuration obtained to the measurement of another cell of the corresponding frequency.
  • the terminal may apply the first measurement setting again.
  • the UE when the UE autonomously performs the measurement by applying the second measurement setting and reports the measurement result accordingly to the network, the UE measures the measurement result based on the second measurement setting.
  • the information indicating the measurement result can be included in the measurement result report and transmitted.
  • the neighbor cell signal measured by the terminal may include a case in which the terminal receives a transmission signal of a communication device having a radio characteristic different from that of a serving cell, that is, a transmission signal of another RAT. .
  • an object regarded as a neighbor cell signal measured by the terminal is mounted in the terminal and has a radio characteristic different from that of the serving cell of the terminal. It may include a transmission signal.
  • a transmission signal For example, this may be the case when an LTE receiver in a mobile device measures a signal of a heterogeneous RAT such as a wireless local area network (WLAN) or a Bluetooth (Bluetooth) in the mobile device.
  • the limited radio resource used by the terminal to perform the limited measurement may be a pattern of a predetermined radio resource predetermined according to the RAT received from the serving cell or considered as a neighbor cell to the terminal.
  • the terminal recognizes whether or not high interference occurs and autonomously selects and applies a measurement setting as necessary. This allows the terminal to perform limited measurements. Since the UE selectively uses the measurement configuration without separate signaling by the serving cell, the UE may perform limited measurement even when signaling of the serving cell is not possible due to high interference. In addition, since a procedure such as measurement setup request-measurement setup response of the base station is omitted in a situation where high interference of the terminal occurs, excessive radio resource occupancy can be prevented.
  • the terminal may continuously camp on the serving cell without the connection failure even when the serving cell is experiencing interference from other cells through limited measurement.
  • the terminal may measure the neighboring cell more accurately through limited measurement in a form suitable for the operation purpose of the network. Through this, network efficiency can be improved in terms of mobility management and radio resource utilization of the terminal.
  • FIG. 12 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 50 includes a processor 51, a memory 52, and an RF unit 53.
  • the memory 52 is connected to the processor 51 and stores various information for driving the processor 51.
  • the RF unit 53 is connected to the processor 51 and transmits and / or receives a radio signal.
  • the processor 51 implements the proposed functions, processes and / or methods. 7 to 9, the operation of the base station 50 constituting the cell may be implemented by the processor 51.
  • the terminal 60 includes a processor 61, a memory 62, and an RF unit 63.
  • the memory 62 is connected to the processor 61 and stores various information for driving the processor 61.
  • the RF unit 63 is connected to the processor 61 and transmits and / or receives a radio signal.
  • the processor 61 implements the proposed functions, processes and / or methods. 9 to 11, the operation of the terminal 60 may be implemented by the processor 61.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

무선 통신 시스템에서 단말에 의해 수행되는 측정 방법이 제공된다. 상기 방법은 보통 운영(normal operation)시 측정에 적용하는 제1 측정 설정을 서빙 셀(serving cell)로부터 수신하고, 고도 간섭이 발생한 상황시 측정에 적용하는 제2 측정 설정을 간섭 셀(interfering cell)로부터 수신하고, 상기 고도 간섭의 발생 여부를 결정하고 및 상기 고도 간섭 발생 감지 결과, 상기 제1 측정 설정 및 제2 측정 설정을 기반으로 측정을 수행하는 것을 포함한다.

Description

무선 통신 시스템에서 선택적으로 측정을 수행하는 방법 및 이를 지원하는 장치
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는 무선 통신 시스템에서 서빙 셀(Serving Cell) 및 다른 셀로 인한 간섭을 감지하고 이에 따른 제한된 측정 설정을 선택적으로 적용하여 측정을 수행하는 방법 및 이를 지원하는 장치에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
단말(User Equipment; UE)은 특정 셀 내에서 서비스를 받는 중에 다른 셀로부터 전송되는 무선 신호로 인해 간섭 영향을 받을 수 있다. 단말은 주기적으로 셀을 측정하고 측정 결과를 보고한다. 단말이 다른 셀로 핸드 오버를 하게 될 경우 서빙셀 뿐 아닌 인접 셀도 측정하고 결과를 보고할 수 있다. 만약, 특정 셀을 측정함에 있어서, 다른 셀의 무선 신호가 간섭을 발생시킬 경우 단말은 특정 셀을 정상적으로 측정하기가 어려워 진다. 이는 무선 통신 시스템에서 단말의 이동성을 악화시키는 결과를 야기한다.
특히 매크로(macro cell), 피코 셀(pico cell) 및 펨토 셀(femto cell)이 공존하는 경우와 같이 서비스 커버리지, 사용하는 채널의 주파수 대역, 셀이 서비스하는 RAT(Radio Access Technology)가 상이한 경우에 상기 셀들이 야기하는 간섭을 회피할 수 있는 방법의 중요성은 보다 더 높아질 수 있다.
ICIC(Inter-cell Interference Coordination)는 셀간 간섭(Inter-cell Interference)의 제어가 유지될 수 있도록 무선 자원을 운영하는 작업이다. ICIC 메커니즘은 주파수 영역 ICIC와 시간 영역 ICIC로 나눌 수 있다. ICIC는 다중 셀로부터 정보를 고려하는 것이 필요한 다중 셀 RRM(Radio Resource Management) 기능을 포함한다.
주파수 영역 ICIC는 다중 셀간에 주파수 영역 자원(예, RB(resource block)의 사용을 조정한다(coordinate). 시간 영역 ICIC는 다중 셀간에 시간 영역 자원(예, 서브프레임)을 조정한다.
ICIC에 있어서, 단말이 측정을 수행하는 대상에 따라 간섭을 유발하는 대상(즉, 간섭셀)과 간섭으로 인해 피해를 받는 대상(즉, 간섭받는 셀)이 결정된다.
단말이 접속 불가능한 이웃 셀의 커버리지로 접근하면 단말은 고도(high) 간섭을 받을 수 있다. 이웃 셀에 접속할 수 없는 단말들이 이웃 셀에 의한 간섭으로 통신이 불가능한 상황을 방지하기 위해서 상기 이웃 셀은 측정 자원 제한을 설정하여 무선 신호 전송 신호를 송수신할 수 있다.
한편, 간섭이 심한 통신 환경에서 네트워크는 단말에게 최적의 측정 설정을 전달하기가 어려울 수 있다. 단말은 일반적인 환경에서는 보통의 측정 설정을 적용하고, 간섭이 심한 환경에서는 이에 적합한 또 다른 측정 설정을 적용할 수 있다. 다만, 고도 간섭이 발생하는 상황 마다 단말로부터 보고를 받고 또 다른 측정 설정을 전송해주는 것은 시그널링 오버헤드을 야기할 수 있다. 위와 같은 문제를 해결하기 위해, 단말이 측정 설정을 변경할 상황을 감지하고, 이에 대응하여 스스로 변경된 측정 설정을 적용하여 동작할 수 있도록 하는 방법이 요구된다.
본 발명이 해결하고자 하는 기술적인 과제는 무선 통신 시스템에서 서빙 셀(Serving Cell) 및 다른 셀로 인한 간섭을 회피하는 방법으로, 단말이 고도 간섭이 발생하는 상황을 감지하고 이에 대응하여 측정 자원 제한 설정을 선택적으로 적용하여 측정을 수행하는 방법 및 이를 지원하는 장치에 관한 것이다.
일 양태에 있어서, 무선 통신 시스템에서 단말에 의해 수행되는 측정 방법이 제공된다. 상기 방법은 보통 운영(normal operation)시 측정에 적용하는 제1 측정 설정을 서빙 셀(serving cell)로부터 수신하고, 고도 간섭이 발생한 상황시 측정에 적용하는 제2 측정 설정을 간섭 셀(interfering cell)로부터 수신하고, 상기 고도 간섭의 발생 여부를 결정하고 및 상기 고도 간섭 발생 감지 결과, 상기 제1 측정 설정 및 제2 측정 설정을 기반으로 측정을 수행하는 것을 포함한다.
상기 측정을 수행하는 것은, 상기 고도 간섭이 발생되면, 상기 제2 측정 설정을 기반으로 상기 서빙 셀 및 상기 간섭 셀을 포함하는 이웃 셀을 측정하는 것을 포함할 수 있다.
상기 발생된 고도 간섭이 존재하지 않으면, 상기 제1 측정 설정을 기반으로 상기 서빙 셀 및 상기 간섭 셀을 포함하는 이웃 셀을 측정하는 것을 포함할 수 있다.
상기 방법은 상기 측정 결과를 상기 서빙 셀에게 보고하는 것을 더 포함하되,
상기 측정이 상기 제2 측정 설정을 기반으로 수행되면, 상기 측정 결과는 상기 측정 결과가 상기 제2 측정 설정을 기반으로 한 결과임을 지시하는 정보를 포함할 수 있다.
상기 제2 측정 설정은 상기 제2 측정 설정이 적용되는 측정 대상 셀 리스트를 포함할 수 있다.
상기 측정을 수행하는 것은, 상기 고도 간섭의 발생되면, 상기 셀 리스트에 포함된 상기 측정 대상 셀을 상기 제2 측정 설정을 기반으로 측정하고 및 상기 셀 리스트에 포함되지 않은 측정 대상 셀은 상기 제1 측정 설정을 기바능로 측정하는 것을 포함할 수 있다.
상기 제2 측정 설정은 상기 제2 측정 설정이 적용되는 측정 대상 셀의 주파수 리스트를 포함할 수 있다.
상기 측정을 수행하는 것은, 상기 고도 간섭의 발생되면, 상기 주파수 리스트에 포함된 주파수를 사용하는 측정 대상 셀을 상기 제2 측정 설정을 기반으로 측정하고 및 상기 주파수 리스트에 포함되지 않은 주파수를 사용하는 측정 대상 셀을 상기 제1 측정 설정을 기반으로 측정하는 것을 포함할 수 있다.
상기 제2 측정 설정은 상기 간섭 셀에 의한 무선 신호 전송이 최소화 된 구간인 ABS(Almost Blank Subframe) 패턴 정보를 포함할 수 있다.
상기 고도 간섭 발생 여부를 결정하는 것은, 접속이 불가능하다고 판단한 셀의 식별 정보와 동일한 식별 정보를 가진 셀을 감지하면 상기 고도 간섭이 발생하였음을 결정하는 것을 포함할 수 있다.
상기 고도 간섭 발생 여부를 결정하는 것은, 상기 접속이 불가능하다고 판단한 셀을 발견시 상기 단말의 위치와 상기 단말의 현재 위치가 특정 거리 이내에 위치하면, 상기 고도 간섭이 발생하였음을 결정하는 것을 더 포함할 수 있다.
상기 고도 간섭 발생 여부를 결정하는 것은, 단말이 측정한 이웃 셀의 측정 값이 특정 제1 임계값 이상이면, 상기 고도 간섭이 발생하였음을 결정하는 것을 더 포함할 수 있다.
상기 고도 간섭 발생 여부를 결정하는 것은, 상기 이웃 셀의 물리계층 셀 식별자가 CSG(Closed Subscriber Group)용으로 예약된 식별자이면, 상기 고도 간섭이 발생하였음을 결정하는 것을 더 포함할 수 있다.
상기 고도 간섭 발생 여부를 결정하는 것은, 상기 서빙셀의 RSRP 측정치와 RSRQ 측정치의 차이가 특정 제2 임계값 이상이면, 상기 고도 간섭이 발생하였음을 결정하는 것을 더 포함할 수 있다.
상기 고도 간섭 발생 여부를 결정하는 것은, 상기 서빙셀의 측정값이 또 다른 특정 제3 임계값 이하가 되면, 상기 고도 간섭이 발생하였음을 결정하는 것을 더 포함할 수 있다.
다른 양태에 있어서, 무선 통신 시스템에서 측정을 수행하는 장치가 제공된다. 상기 장치는 무선 신호를 송신 및 수신하는 RF(radio frequency)부 및 상기 RF 부와 연결되는 프로세서를 포함하되, 상기 프로세서는 보통 운영(normal operation)시 측정에 적용하는 제1 측정 설정을 서빙 셀(serving cell)로부터 수신하고, 고도 간섭이 발생한 상황시 측정에 적용하는 제2 측정 설정을 간섭 셀(interfering cell)로부터 수신하고, 상기 고도 간섭의 발생 여부를 결정하고 및상기 고도 간섭 발생 감지 결과, 상기 제1 측정 설정 및 제2 측정 설정을 기반으로 측정을 수행하도록 설정된다.
상기 프로세서는, 상기 고도 간섭이 발생되면, 상기 제2 측정 설정을 기반으로 상기 서빙 셀, 상기 간섭 셀을 포함하는 이웃 셀을 측정하도록 설정될 수 있다.
상기 프로세서는, 상기 발생된 고도 간섭이 존재하지 않으면, 상기 제1 측정 설정을 기반으로 상기 서빙 셀 및 상기 간섭 셀을 포함하는 이웃 셀을 측정하도록 설정될 수 있다.
전술한 실시예와 같이 단말은 고도 간섭의 발생 여부를 인지하여 필요에 따라 자율적으로 측정 설정 또는 측정 자원 제한 설정을 선택하여 적용한다. 이를 통해 단말은 필요시 저간섭 무선 자원을 통한 제한된 측정을 수행할 수 있다. 서빙 셀에 의한 별도의 시그널링이 없이 단말은 스스로 측정 설정 또는 측정 자원 제한 설정을 선택적으로 사용하므로, 고도 간섭으로 인해 서빙 셀의 시그널링이 불가능한 경우에도 단말은 제한된 측정을 수행할 수 있다. 또한, 단말의 고도 간섭이 발생한 상황에서 측정 설정 요청 - 기지국의 측정 설정 응답과 같은 과정이 생략되므로 과도한 무선 자원 점유를 방지할 수 있다.
단말은 제한된 측정을 통하여 서빙 셀이 다른 셀로부터 간섭을 겪고 있는 중에도 단말은 연결 실패(connection failure)를 겪지 않고 단말이 서빙 셀에 지속적으로 캠핑 온(camping on) 상태를 유지할 수 있다.
이웃 셀이 다른 셀로부터 간섭을 겪고 있는 경우에도 단말은 네트워크의 운용 목적에 맞는 형태로 제한된 측정을 통해 이웃 셀을 보다 정확하게 측정할 수 있다. 이를 통하여 단말의 이동성 관리 및 무선 자원 활용 측면에서 네트워크의 효율이 향상될 수 있다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 무선 링크 실패(radio link failure)를 나타낸 예시도이다.
도 5는 연결 재확립 과정의 성공을 나타낸 흐름도이다.
도 6은 연결 재확립 과정의 실패를 나타낸 흐름도이다.
도 7은 CSG 시나리오를 예시한다.
도 8은 피코 시나리오를 예시한다.
도 9는 본 발명의 실시예에 따른 단말의 측정 방법을 나타내는 도면이다.
도 10은 본 발명의 다른 실시예에 따른 단말의 측정 방법을 나타내는 도면이다.
도 11은 본 발명의 또 다른 실시예에 따른 단말의 측정 방법을 나타내는 도면이다.
도 12는 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 데이터 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러(Radio Bearer; RB)들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 상술한다.
RRC 상태란 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태, 연결되어 있지 않은 경우는 RRC 아이들 상태라고 부른다. RRC 연결 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC 아이들 상태의 단말은 E-UTRAN이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트랙킹 구역(Tracking Area) 단위로 CN(core netwrok)이 관리한다. 즉, RRC 아이들 상태의 단말은 큰 지역 단위로 존재 여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 RRC 연결 상태로 이동해야 한다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 아이들 상태에 머무른다. RRC 아이들 상태의 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN과 RRC 연결을 확립하고, RRC 연결 상태로 천이한다. RRC 아이들 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 호출(paging) 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다. ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 배경(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트랙킹 구역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.
다음은, 시스템 정보(System Information)에 관한 설명이다.
시스템 정보는 단말이 기지국에 접속하기 위해서 알아야 하는 필수 정보를 포함한다. 따라서 단말은 기지국에 접속하기 전에 시스템 정보를 모두 수신하고 있어야 하고, 또한 항상 최신의 시스템 정보를 가지고 있어야 한다. 그리고 상기 시스템 정보는 한 셀 내의 모든 단말이 알고 있어야 하는 정보이므로, 기지국은 주기적으로 상기 시스템 정보를 전송한다.
3GPP TS 36.331 V8.7.0 (2009-09) "Radio Resource Control (RRC); Protocol specification (Release 8)"의 5.2.2절에 의하면, 상기 시스템 정보는 MIB(Master Information Block), SB(Scheduling Block), SIB System Information Block)로 나뉜다. MIB는 단말이 해당 셀의 물리적 구성, 예를 들어 대역폭(Bandwidth) 같은 것을 알 수 있도록 한다. SB은 SIB들의 전송정보, 예를 들어, 전송 주기 등을 알려준다. SIB은 서로 관련 있는 시스템 정보의 집합체이다. 예를 들어, 어떤 SIB는 주변의 셀의 정보만을 포함하고, 어떤 SIB는 단말이 사용하는 상향링크 무선 채널의 정보만을 포함한다.
일반적으로, 네트워크가 단말에게 제공하는 서비스는 아래와 같이 세가지 타입으로 구분할 수 있다. 또한, 어떤 서비스를 제공받을 수 있는지에 따라 단말은 셀의 타입 역시 다르게 인식한다. 아래에서 먼저 서비스 타입을 서술하고, 이어 셀의 타입을 서술한다.
1) 제한적 서비스(Limited service): 이 서비스는 응급 호(Emergency call) 및 재해 경보 시스템(Earthquake and Tsunami Warning System; ETWS)를 제공하며, 수용가능 셀(acceptable cell)에서 제공할 수 있다.
2) 정규 서비스(Normal service) : 이 서비스는 일반적 용도의 범용 서비스(public use)를 의미하여, 정규 셀(suitable or normal cell)에서 제공할 수 있다.
3) 사업자 서비스(Operator service) : 이 서비스는 통신망 사업자를 위한 서비스를 의미하며, 이 셀은 통신망 사업자만 사용할 수 있고 일반 사용자는 사용할 수 없다.
셀이 제공하는 서비스 타입과 관련하여, 셀의 타입은 아래와 같이 구분될 수 있다.
1) 수용가능 셀(Acceptable cell) : 단말이 제한된(Limited) 서비스를 제공받을 수 있는 셀. 이 셀은 해당 단말 입장에서, 금지(barred)되어 있지 않고, 단말의 셀 선택 기준을 만족시키는 셀이다.
2) 정규 셀(Suitable cell) : 단말이 정규 서비스를 제공받을 수 있는 셀. 이 셀은 수용가능 셀의 조건을 만족시키며, 동시에 추가 조건들을 만족시킨다. 추가적인 조건으로는, 이 셀이 해당 단말이 접속할 수 있는 PLMN(Public Land Mobile Network) 소속이어야 하고, 단말의 트랙킹 구역(Tracking Area) 갱신 절차의 수행이 금지되지 않은 셀이어야 한다. 해당 셀이 CSG 셀이라고 하면, 단말이 이 셀에 CSG 멤버로서 접속이 가능한 셀이어야 한다.
3) 금지된 (Barred cell) : 셀이 시스템 정보를 통해 금지된 셀이라는 정보를 브로드캐스트하는 셀이다.
4) 예약된 셀(Reserved cell) : 셀이 시스템 정보를 통해 예약된 셀이라는 정보를 브로드캐스트하는 셀이다.
이제 측정(measurement) 및 측정 보고(measurement report)에 대해 기술한다.
이동 통신 시스템에서 단말의 이동성(mobility) 지원은 필수적이다. 따라서, 단말은 현재 서비스를 제공하는 서빙 셀(serving cell)에 대한 품질 및 주변셀에 대한 품질을 지속적으로 측정한다. 단말은 측정 결과를 적절한 시간에 네트워크에게 보고하고, 네트워크는 핸드오버 등을 통해 단말에게 최적의 이동성을 제공한다.
단말은 이동성 지원의 목적 이외에 사업자가 네트워크를 운영하는데 도움이 될 수 있는 정보를 제공하기 위해, 네트워크가 설정하는 특정한 목적의 측정을 수행하고, 그 측정 결과를 네트워크에게 보고할 수 있다. 예를 들어, 단말이 네트워크가 정한 특정 셀의 브로드캐스트 정보를 수신한다. 단말은 상기 특정 셀의 셀 식별자(Cell Identity)(이를 광역(Global) 셀 식별자라고도 함), 상기 특정 셀이 속한 위치 식별 정보(예를 들어, Tracking Area Code) 및/또는 기타 셀 정보(예를 들어, CSG(Closed Subscriber Group) 셀의 멤버 여부)를 서빙 셀에게 보고할 수 있다.
이동 중의 단말은 특정 지역의 품질이 매우 나쁘다는 것을 측정을 통해 확인한 경우, 품질이 나쁜 셀들에 대한 위치 정보 및 측정 결과를 네트워크에 보고할 수 있다. 네트워크는 네크워크의 운영을 돕는 단말들의 측정 결과의 보고를 바탕으로 네트워크의 최적화를 꾀할 수 있다.
주파수 재사용(Frequency reuse factor)이 1인 이동 통신 시스템에서는, 이동성이 대부분 동일한 주파수 밴드에 있는 서로 다른 셀 간에 이루어진다. 따라서, 단말의 이동성을 잘 보장하기 위해서는, 단말은 서빙 셀의 중심 주파수와 동일한 중심 주파수를 갖는 주변 셀들의 품질 및 셀 정보를 잘 측정할 수 있어야 한다. 이와 같이 서빙 셀의 중심 주파수와 동일한 중심 주파수를 갖는 셀에 대한 측정을 셀내 측정(intra-frequency measurement)라고 부른다. 단말은 셀내 측정을 수행하여 측정 결과를 네트워크에게 적절한 시간에 보고하여, 해당되는 측정 결과의 목적이 달성되도록 한다.
이동 통신 사업자는 복수의 주파수 밴드를 사용하여 네트워크를 운용할 수도 있다. 복수의 주파수 밴드를 통해 통신 시스템의 서비스가 제공되는 경우, 단말에게 최적의 이동성을 보장하기 위해서는, 단말은 서빙 셀의 중심 주파수와 다른 중심 주파수를 갖는 주변 셀들의 품질 및 셀 정보를 잘 측정할 수 있어야 한다. 이와 같이, 서빙 셀의 중심 주파수와 다른 중심 주파수를 갖는 셀에 대한 측정을 셀간 측정(inter-frequency measurement)라고 부른다. 단말은 셀간 측정을 수행하여 측정 결과를 네트워크에게 적절한 시간에 보고할 수 있어야 한다.
단말이 이종(heterogeneous) 네트워크에 대한 측정을 지원할 경우,기지국 설정에 의해 이종 네크워크의 셀에 대한 측정을 할 수도 있다. 이러한, 이종(heterogeneous) 네트워크에 대한 측정을 inter-RAT(Radio Access Technology) 측정이라고 한다. 예를 들어, RAT는 3GPP 표준 규격을 따르는 UTRAN(UMTS Terrestrial Radio Access Network) 및 GERAN(GSM EDGE Radio Access Network)을 포함할 수 있으며, 3GPP2 표준 규격을 따르는 CDMA 2000 시스템 역시 포함할 수 있다.
이하에서는 3GPP TS 36.304 V8.8.0 (2009-12) "User Equipment (UE) procedures in idle mode (Release 8)"을 참조하여, 단말이 셀을 선택하는 절차에 대해서 자세히 설명한다.
단말이 일단 셀 선택 과정을 통해 어떤 셀을 선택한 이후, 단말의 이동성 또는 무선 환경의 변화 등으로 단말과 기지국간의 신호의 세기나 품질이 바뀔 수 있다. 따라서 만약 선택한 셀의 품질이 저하되는 경우, 단말은 더 좋은 품질을 제공하는 다른 셀을 선택할 수 있다. 이렇게 셀을 다시 선택하는 경우, 일반적으로 현재 선택된 셀보다 더 좋은 신호 품질을 제공하는 셀을 선택한다. 이런 과정을 셀 재선택(Cell Reselection)이라고 한다. 상기 셀 재선택 과정은, 무선 신호의 품질 관점에서, 일반적으로 단말에게 가장 좋은 품질을 제공하는 셀을 선택하는데 기본적인 목적이 있다.
무선 신호의 품질 관점 이외에, 네트워크는 주파수 별로 우선 순위를 결정하여 단말에게 알릴 수 있다. 이러한 우선 순위를 수신한 단말은, 셀 재선택 과정에서 이 우선 순위를 무선 신호 품질 기준보다 우선적으로 고려하게 된다.
위와 같이 무선 환경의 신호 특성에 따라 셀을 선택 또는 재선택하는 방법이 있으며, 셀 재선택시 재선택을 위한 셀을 선택하는데 있어서, 셀의 RAT와 주파수(frequency) 특성에 따라 다음과 같은 셀 재선택 방법이 있을 수 있다.
- Intra-frequency 셀 재선택 : 단말이 캠핑(camp) 중인 셀과 같은 RAT과 같은 중심 주파수(center-frequency)를 가지는 셀을 재선택
- Inter-frequency 셀 재선택 : 단말이 캠핑 중인 셀과 같은 RAT과 다른 중심 주파수를 가지는 셀을 재선택
- Inter-RAT 셀 재선택 : 단말이 캠핑 중인 RAT와 다른 RAT을 사용하는 셀을 재선택
셀 재선택 과정은 다음과 같다
첫째, 단말은 셀 재선택을 위한 파라미터를 기지국으로부터 수신한다.
둘째, 단말은 셀 재선택을 위하여 서빙 셀(serving cell) 및 주변 셀(neighboring cell)의 품질을 측정한다.
셋째, 셀 재선택은 셀 재선택 기준에 기반하여 수행된다. 셀 재선택 기준은 서빙 셀 및 주변 셀 측정에 관련하여 아래와 같은 특성을 가지고 있다.
Intra-frequency 셀 재선택은 기본적으로 랭킹(ranking)에 기반한다. 랭킹이라는 것은, 셀 재선택 평가를 위한 지표값을 정의하고, 이 지표값을 이용하여 셀들을 지표값의 크기 순으로 순서를 매기는 작업이다. 가장 좋은 지표를 가지는 셀을 흔히 best ranked cell이라고 부른다. 셀 지표값은 단말이 해당 셀에 대해 측정한 값을 기본으로, 필요에 따라 주파수 오프셋 또는 셀 오프셋을 적용한 값이다.
Inter-frequency 셀 재선택은 네트워크에 의해 제공된 주파수 우선순위에 기반한다. 단말은 가장 높은 주파수 우선순위를 가진 주파수에 머무를(camp on) 수 있도록 시도한다. 네트워크는 브로드캐스트 시그널링(broadcast signling)를 통해서 셀 내 단말들이 공통적으로 적용할 또는 주파수 우선순위를 제공하거나, 단말별 시그널링(dedicated signaling)을 통해 단말 별로 각각 주파수 별 우선순위를 제공할 수 있다.
Inter-frequency 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 파라미터(예를 들어 주파수별 오프셋(frequency-specific offset))를 주파수별로 제공할 수 있다.
Intra-frequency 셀 재선택 또는 inter-frequency 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 주변 셀 리스트(Neighbouring Cell List, NCL)를 단말에게 제공할 수 있다. 이 NCL은 셀 재선택에 사용되는 셀 별 파라미터(예를 들어 셀 별 오프셋(cell-specific offset))를 포함한다
Intra-frequency 또는 inter-frequency 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 셀 재선택 금지 리스트(black list)를 단말에게 제공할 수 있다. 금지 리스트에 포함된 셀에 대해 단말은 셀 재선택을 수행하지 않는다.
이어서, 셀 재선택 평가 과정에서 수행하는 랭킹에 관해 설명한다.
셀의 우선순위를 주는데 사용되는 랭킹 지표(ranking criterion)은 수학식 1와 같이 정의된다.
Figure PCTKR2011008260-appb-M000001
여기서, Rs는 서빙 셀의 랭킹 지표, Rn은 주변 셀의 랭킹 지표, Qmeas,s는 단말이 서빙 셀에 대해 측정한 품질값, Qmeas,n는 단말이 주변 셀에 대해 측정한 품질값, Qhyst는 랭킹을 위한 히스테리시스(hysteresis) 값, Qoffset은 두 셀간의 오프셋이다.
Intra-frequency에서, 단말이 서빙 셀과 주변 셀 간의 오프셋(Qoffsets,n)을 수신한 경우 Qffoset=Qoffsets,n 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우에는 Qoffset = 0 이다.
Inter-frequency에서, 단말이 해당 셀에 대한 오프셋(Qoffsets,n)을 수신한 경우 Qoffset = Qoffsets,n + Qfrequency 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우 Qoffset = Qfrequency 이다.
서빙 셀의 랭킹 지표(Rs)과 주변 셀의 랭킹 지표(Rn)이 서로 비슷한 상태에서 변동하면, 변동 결과 랭킹 순위가 자꾸 뒤바뀌어 단말이 두 셀을 번갈아가면서 재선택을 할 수 있다. Qhyst는 셀 재선택에서 히스테리시스를 주어, 단말이 두 셀을 번갈아가면서 재선택하는 것을 막기 위한 파라미터이다.
단말은 위 식에 따라 서빙 셀의 Rs 및 주변 셀의 Rn을 측정하고, 랭킹 지표 값이 가장 큰 값을 가진 셀을 best ranked 셀로 간주하고, 이 셀을 재선택한다.
상기 기준에 의하면, 셀의 품질이 셀 재선택에서 가장 주요한 기준으로 작용하는 것을 확인할 수 있다. 만약 재선택한 셀이 정규 셀(suitable cell)이 아니면 단말은 해당 주파수 또는 해당 셀을 셀 재선택 대상에서 제외한다.
서빙 셀은 1차 셀(primary cell)과 2차 셀(secondary cell)로 구분될 수 있다. 1차 셀은 1차 주파수에서 동작하고, 단말인 초기 연결 확립 과정을 수행하거나, 연결 재확립 과정을 개시하거나, 핸드오버 과정에서 1차셀로 지정된 셀이다. 1차 셀은 기준 셀(reference cell)이라고도 한다. 2차 셀은 2차 주파수에서 동작하고, RRC 연결이 확립된 후에 설정될 수 있으며, 추가적인 무선 자원을 제공하는데 사용될 수 있다. 항상 적어도 하나의 1차 셀이 설정되고, 2차 셀은 상위 계층 시그널링(예, RRC 메시지)에 의해 추가/수정/해제될 수 있다.
이제 무선 링크 실패(radio link failure)에 대해 기술한다.
단말은 서비스를 제공받고 있는 서빙 셀(serving cell)과의 무선 링크의 품질을 유지하기 위해 지속적으로 측정(measurement)을 수행한다. 단말은 서빙 셀과의 무선 링크의 품질이 악화되어, 통신이 불가능한 상황인지 아닌지를 판단한다. 만약 현재 서빙 셀의 품질이 통신이 불가능할 만큼 나쁜 경우라고 판단하면, 단말은 무선 링크 실패로 판단한다.
무선 링크 실패로 판단되면, 단말은 현재 서빙 셀과의 통신을 유지하는 것을 포기하고, 셀 선택(또는 셀 재선택) 절차를 통해 새로운 셀을 선택하고, 새로운 셀로의 RRC 연결 재확립(connection re-establishment)을 시도한다.
도 4는 무선 링크 실패(radio link failure)를 나타낸 예시도이다. 무선 링크 실패와 관련된 동작은 2가지 국면(phase)으로 기술될 수 있다.
첫번째 국면(first phase)에서, 단말은 정상 동작(normal operation) 중이고, 현재 통신 링크에 문제가 있는지 여부를 검사한다. 만약 문제가 검출되는 경우 단말은 무선 링크 문제(radio link problem)를 선언하고, 제1 대기 시간(T1) 동안, 무선 링크가 회복(recover)되기를 대기한다. 제1 대기시간이 경과하기 전에 무선 링크가 회복되면, 단말은 다시 정상 동작을 수행한다. 제1 대기시간이 만료될(expire) 때까지, 무선 링크가 회복되지 않으면, 단말은 무선 링크 실패를 선언하고, 두번째 국면으로 진입한다.
두번째 국면에서, 다시 제2 대기 시간(T2) 동안 무선 링크가 회복되기를 대기한다. 제2 대기시간이 만료될 때까지, 무선 링크가 회복되지 않으면, 단말은 RRC 아이들 상태로 진입한다. 또는, 단말은 RRC 재확립 절차를 수행할 수 있다.
RRC 연결 재확립 절차는 RRC_CONNECTED 상태에서 다시 RRC 연결을 재설정하는 절차이다. 단말이 RRC_CONNECTED 상태에 머무른 채로 남기 때문에, 즉 RRC_IDLE 상태로 진입하지 않기 때문에, 단말은 자신의 무선 설정(예를 들어 무선 베어러 설정)들을 모두 초기화하지는 않는다. 대신, 단말은 RRC 연결 재설정 절차를 시작할 때 SRB0를 제외한 모든 무선 베어러들의 사용을 일시적으로 중단(suspend)한다. 만약 RRC 연결 재설정이 성공하게 되면, 단말은 일시적으로 사용을 중단한 무선 베어러들의 사용을 재개(resume)한다.
도 5는 연결 재확립 과정의 성공을 나타낸 흐름도이다.
단말은 셀 선택(Cell selection)을 수행하여 셀을 선택한다. 단말은 선택된셀에서 셀 접속을 위한 기본 파라미터들을 수신하기 위해 시스템 정보를 수신한다. 그리고, 단말은 RRC 연결 재확립 요청 메시지를 기지국으로 보낸다(S510).
기지국은 선택된 셀이 단말의 컨텍스트(context)를 가지고 있는 셀, 즉 준비된 셀(preared cell)인 경우에는 단말의 RRC 연결 재확립 요청을 수락하고, RRC 연결 재확립 메시지를 단말에게 보낸다(S520). 단말은 RRC 연결 재확립 완료(connection re-establishment complete) 메시지를 기지국으로 보내, RRC 연결 재확립 절차가 성공할 수 있다(S530).
도 6은 연결 재확립 과정의 실패를 나타낸 흐름도이다. 단말은 RRC 연결 재확립 요청 메시지를 기지국으로 보낸다(S510). 만약 선택된 셀이 준비된 셀이 아니면, 기지국은 단말에게 RRC 연결 재확립 요청에 대한 응답으로 RRC 연결 재확립 거절(reject) 메시지를 보낸다(S515).
이제 ICIC(Inter-cell Interference Coordination)에 대해 기술한다.
ICIC는 셀간 간섭(Inter-cell Interference)의 제어가 유지될 수 있도록 무선 자원을 운영하는 작업이다. ICIC 메커니즘은 주파수 영역 ICIC와 시간 영역 ICIC로 나눌 수 있다. ICIC는 다중 셀로부터 정보를 고려하는 것이 필요한 다중 셀 RRM(Radio Resource Management) 기능을 포함한다.
간섭셀(interfering cell)은 간섭을 제공하는 셀이다. 간섭셀은 공격자셀(aggressor cell)이라고도 한다.
간섭받는 셀(interfered cell)은 간섭셀로부터 간섭의 영향을 받는 셀이다. 간섭받는 셀은 희생자 셀(victim cell)이라고도 한다.
주파수 영역 ICIC는 다중 셀간에 주파수 영역 자원(예, RB(resource block)의 사용을 조정한다(coordinate).
시간 영역 ICIC는 다중 셀간에 시간 영역 자원(예, 서브프레임)을 조정한다. 시간 영역 ICIC를 위해, ABS(Almost Blank Subframe) 패턴이라 불리는 OAM(Operations, Administration and Maintenance) 설정이 사용될 수 있다. 간섭셀에서의 ABS는 강한 셀간 간섭을 수신하는 간섭받는 셀에서의 서브프레임에서 자원을 보호하는 데 사용된다. ABS는 간섭 셀에서 운용되고, 간섭 받는 셀은 ABS를 스케쥴링에 활용하여 간섭셀로부터의 간섭을 조정한다. ABS는 물리채널 상의 감소된 전송파워(또는 제로 전송 파워)를 갖거나 감소된 활동성을 갖는 서브프레임이다.
ABS에 기반한 패턴이 단말에게 알려지고, 단말 측정을 제한한다. 이를 측정 자원 제한(measurement resource restriction)이라고 한다. ABS 패턴은 하나 또는 그 이상의 무선 프레임(radio frame) 내에서 어느 서브프레임이 ABS 인지를 가리키는 정보를 말한다.
측정되는 셀(예, 서빙 셀 또는 주변 셀(neighbour cell)) 및 측정 타입(예, RRM(Radio Resource Management), RLM(Radio Link Monitoring), CSI(Channel State Information))에 따라 3가지 측정 자원 제한 패턴이 있다.
'ABS 패턴 1'은 서빙 셀의 RRM/RLM 측정 자원 제한에 사용된다. ABS 패턴 1에 관한 정보는 RB의 설정/수정/해제, 또는 MAC/카드깡 PHY 설정이 수정될 때, 기지국이 단말에게 알려줄 수 있다.
'ABS 패턴 2'는 서빙 셀과 동일한 주파수에 동작하는 주변 셀의 RRM 측정 지원 제한에 사용된다. 따라서, ABS 패턴 2는 패턴 정보와 더불어 측정될 주변 셀의 리스트가 단말에게 제공될 수 있다. ABS 패턴 2은 측정 대상(measurement object)에 대한 측정 설정에 포함될 수 있다.
'ABS 패턴 3'는 서빙 셀의 CSI 측정에 대한 자원 제한에 사용된다. ABS 패턴 3는 CSI 보고를 설정하는 메시지에 포함될 수 있다.
ICIC를 위해 CSG 시나리오와 피코(pico) 시나리오라는 2가지 시나리오가 고려되고 있다.
도 7은 CSG 시나리오를 예시한다.
CSG 셀은 특정 가입자만 접속 가능한 셀을 말한다. 비-멤버 단말은 CSG 셀의 멤버가 아닌 단말로, CSG 셀로 접속이 되지 않는 단말이다. 단말이 접속을 할 수 없는 CSG 셀을 비 멤버 CSG 셀이라고 한다. 매크로 셀은 비-멤버 단말의 서빙 셀으로 말한다. CSG 셀과 매크로 셀의 커버리지는 일부 또는 전부가 중복된다고 한다.
주된 간섭 조건은 비-멤버 단말이 CSG 셀의 가까운 근처(close proximity)에 위치할 때 발생한다. 비-멤버 단말의 입장에서 간섭셀은 CSG 셀이 되고, 매크로 셀이 간섭받는 셀이 된다. 시간 영역 ICIC는 비-멤버 단말이 매크로 셀에서 계속 서비스를 제공받을 수 있도록 하기 위해 사용된다.
RRC 연결 상태에서, 네트워크는 비-멤버 단말이 CSG 셀로부터 강한 간섭에 속해있는 것을 발견하면, 측정 자원 제한을 설정할 수 있다. 또한, 매크로 셀로부터의 이동성을 용이하게 하기 위해, 네트워크는 주변 셀에 대한 RRM 측정 자원 제한을 설정할 수 있다. 단말이 CSG 셀로부터 더이상 간섭을 심하게 받지 않으면 네트워크는 RRM/RLM/CSI 측정 자원 제한을 해제할 수 있다.
단말은 RRM, RLM 및 CSI 측정을 위해 설정된 측정 자원 제한을 사용할 수 잇다. 즉, RLM을 위한 자원을 ABS에서 사용하고, RLM을 위한 측정과 CSI 측정을 ABS에서 수행할 수 있다.
네트워크는 CSG 셀이 설정된 측정 자원 제한에 따른 저간섭 무선 자원을 사용하지 않도록 설정할 수 있다. 즉, CSG 셀은 ABS에서 데이터를 전송하지 않거나 수신하지 않을 수 있다.
도 8은 피코 시나리오를 예시한다.
피코 셀은 피코 단말의 서빙 셀이다. 피코 셀은 매크로 셀과 커버리지가 일부 또는 전부가 중복되는 셀이다. 피코 셀은 일반적으로 매크로 셀보다 커버리지가 작을 수 있으나, 반드시 이에 한정되는 것은 아니다.
주된 간섭 조건은 피코 단말이 피코 서빙 셀의 경계(edge)에 위치할 때 발생한다. 피크 단말의 입장에서 간섭셀은 매크로 셀이 되고, 피코 셀이 간섭받는 셀이 된다. 시간 영역 ICIC는 피코 단말이 피코 셀에서 계속 서비스를 제공받을 수 있도록 하기 위해 사용된다.
피코셀은 피코 단말이 매크로 셀로부터 강한 간섭에 속해있는 것을 발견하면, 해당되는 단말에게 측정 자원 제한을 설정할 수 있다.
피코 단말은 RRM, RLM 및 CSI 측정을 위해 설정된 측정 자원 제한을 기반으로 한 저간섭 무선 자원을 사용할 수 잇다. 즉, RLM을 위한 자원을 ABS에서 사용하고, RLM을 위한 측정과 CSI 측정을 ABS에서 수행할 수 있다. 피코 셀이 매크로 셀로부터 강한 간섭을 박고 있을 때, RRM/RLM/CSI 측정을 ABS에서 수행하면 보다 정확한 측정이 가능하다.
또한, 매크로 셀을 서빙 셀로 하는 단말이 주변 셀 측정을 ABS에서 수행하면, 매크로 셀에서 피코 셀로의 단말 이동성을 용이하게 할 수 있다.
단말은 서빙 셀이나 이웃 셀에 대하여 RSRP(Reference Signal Received Power), RSRQ(Reference Signal Received Quality)와 같은 RRM 측정 및 CQI(Channel Quality Indicator)와 같은 품질의 측정, 그리고 경로 손실(path-loss) 측정을 수행한다. 또한 단말은 서빙셀과의 연결을 모니터링하기 위한 RLM(Radio Link Monitoring)이 목적인 측정을 수행할 수 있다.
단말이 측정을 하려고 하는 대상에 따라 간섭을 유발하는 셀(interfering cell)과 간섭으로 인해 피해를 받는 셀(victim cell)이 결정된다.
단말이 서빙셀을 측정하려는 경우, 단말 근처에 신호 강도가 강한 intra-frequency 이웃셀이 서빙셀 측정에 간섭으로 작용할 수 있다. 이 경우, 단말은 서빙셀 측정에 있어 이웃셀에 의한 고도 간섭을 겪을 수 있다.
단말이 intra-frequency 이웃셀을 측정하려는 경우, 서빙셀 및 다른 intra-frequency 이웃셀 신호가 intra-frequency 이웃셀 측정에 대한 간섭으로 작용할 수 있다. 이 경우, 단말은 상기 이웃셀 측정에 있어 서빙셀 및 서빙 주파수의 다른 이웃셀에 의한 고도 간섭을 겪을 수 있다.
단말이 inter-frequency 이웃셀을 측정하려는 경우, 해당 주파수의 다른 이웃셀 신호가 측정에 대한 간섭으로 작용할 수 있다. 이 경우, 단말은 상기 이웃셀 측정에 있어 해당 주파수의 다른 이웃셀에 의한 고도 간섭을 겪을 수 있다.
단말의 측정 대상이 고도 간섭 상황에 있으면 측정이 올바르게 이루어지지 않을 수 있다. 이러한 상황에서 네트워크는 단말에게 간섭 상황에 맞는 측정 설정을 구성하여 올바른 측정이 수행되도록 시도할 수 있다. 그런데, 단말의 서빙 셀이 고도 간섭을 겪는 상황에서는 간섭으로 인해 네트워크가 단말에게 최적의 측정 설정을 전송하는 것 자체가 어려울 수 있다. 만약 네트워크가 단말이 측정 대상이 고도 간섭을 겪지 않는 상황에서 보통(normal) 측정 설정을 적용하고, 단말의 측정 대상이 고도 간섭을 겪는 상황에서는 이에 적합한 또 다른 측정 설정을 단말이 적용하도록 원할 때에는, 단말이 고도 간섭을 겪는 상황을 겪을 때마다 단말로부터 보고를 받고, 이에 대해 측정 설정 변경을 해주어야 한다. 이 경우, 시그널링 오버헤드가 문제가 될 수 있다.
이 같은 문제를 해결하기 위해, 단말의 측정 대상이 심각한 간섭을 받는 상황을 단말이 감지하면, 네트워크의 명령 없이 단말이 측정 설정을 스스로 변경하는 기법이 필요하다. 이하에서 단말이 고도 간섭이 작용하는 영역에 존재함을 판단하고, 단말이 자율적으로 간섭을 회피할 수 있는 측정 설정을 사용하여 측정을 수행하는 방법을 제안한다.
단말은 고도 간섭이 작용하는 영역에 존재하는 경우, 해당 간섭을 고려한 측정 자원 제한 정보가 포함된 제2 측정 설정을 기반으로 측정을 수행할 수 있다. 제2 측정 설정은 측정 자원 제한 설정이라고 표현될 수 있다. 반면, 단말이 고도 간섭이 작용하지 않는 영역에 존재하는 경우, 보통 운영에 따른 측정을 위한 정보들이 포함된 제1 측정 설정을 기반으로 측정을 수행할 수 있다. 단말은, 고도 간섭이 작용하는지 여부를 감지하여, 측정 설정을 선택적으로 사용할 수 있다.
제1 측정 설정이 보통 운영 중인 단말이 측정 대상을 측정하기 위해 필요한 것이라면, 제2 측정 설정은 단말이 제2 측정 설정을 적용할 측정 대상에 대해 측정 설정 1에 비해 보다 제한된 무선 자원을 측정 가능한 무선 자원으로 고려하여 측정을 수행하는, 이른바 제한된 측정(restricted measurement)을 위한 것일 수 있다.
제한된 무선 자원이란, 제한된 무선 자원을 사용하여 측정을 하는 경우 단말이 측정하려고 하는 대상이 간섭을 적게 받는 저간섭 무선 자원일 수 있다. 보다 구체적으로, 제한된 무선 자원은 간섭을 야기하는 셀로부터의 전송이 최소화된 시간 구간으로써 간섭 셀이 설정한 ABS 패턴으로 주어질 수 있다. 측정 자원 제한 정보는 ABS 패턴 정보를 포함할 수 있다.
단말이 측정을 수행함에 있어서 제2 측정 설정을 적용의 측정 대상은 네트워크에 의해 셀 리스트(cell list) 또는 주파수 리스트(frequency list) 형태로 단말에게 주어질 수 있다.
단말은 제2 측정 설정을 기반으로 측정을 수행하기 이전에, 자신이 고도 간섭이 작용하는 영역에 존재함을 판단하고 제2 측정 설정을 사용할지 여부를 결정한다. 단말이 고도 간섭이 작용하는 영역에 있음을 판단하는 조건은 이하와 같을 수 있다.
단말이 이전에 캠핑(camping)을 시도한 셀로부터 시스템 정보를 수신하고 이로부터 접속 불가능한 셀이라는 사실을 판단하면, 단말은 해당 셀의 식별 정보(e.g. 물리계층 셀 식별자)를 저장한다. 이후 단말이 단말 내 저장된 식별정보와 동일한 정보를 가진 셀을 감지하면, 단말은 현재 고도 간섭 영역에 있다고 판단한다.
단말이 이전에 캠핑을 시도한 셀로부터 시스템 정보를 수신하고 이로부터 접속 불가한 셀이라는 사실을 판단하면, 단말은 단말의 위치를 기록해둔다. 이후 단말이 현재 위치와 상기 저장해둔 위치를 비교하여 상기 접속 불가한 셀의 위치 근처에 있다고 판단하면 단말은 현재 고도 간섭 영역에 있다고 판단한다.
단말이 이전에 캠핑을 시도한 셀로부터 시스템 정보를 수신하고 이로부터 접속 불가한 셀이라는 사실을 판단하였고, 단말이 상기 셀로부터 상기 셀에서 발생되는 간섭이 낮은 특정 시간에 관한 정보를 수신하면, 단말은 이 셀의 식별 정보(예, 물리계층 셀 식별자) 및 상기 셀이 방송하는 ‘간섭이 낮은 특정 시간에 관한 정보’를 저장해둔다. 단말은 이때의 위치를 저장해둘 수 있다. 이후 단말이 저장된 셀의 식별 정보와 동일한 식별자를 가진 셀을 감지하거나, 단말이 상기와 같이 저장한 위치에 있다고 판다하는 경우, 단말은 현재 고도 간섭 영역에 있다고 판단한다. 단말이 저장한 ‘간섭이 낮은 특정 시간에 관한 정보’는 제2 측정 설정을 구성하는 정보로 사용된다. 상기 ‘간섭이 낮은 특정 시간에 관한 정보’는 펨토 셀의 ABS일 수 있다.
단말이 네트워크로부터 간섭을 주는 셀 영역에 있다고 판단하기 위한 임계값을 수신하였고, 단말이 측정한 이웃셀의 품질이 상기 임계값 이상이 되면, 단말은 고도 간섭 영역에 있다고 판단한다.
단말이 감지한 이웃 셀의 물리계층 셀 식별자가 CSG용으로 예약된 물리계측 셀 식별자 범위 내에 있으면, 단말은 현재 고도 간섭 영역에 있다고 판단한다.
단말의 서빙셀의 RSRP 측정치와 RSRQ 측정치의 차이가 임계값 이상이 되는 경우, 단말은 현재 고도 간섭 영역에 있다고 판단한다.
단말의 서빙셀의 측정값이 임계값 이하가 되면 단말은 현재 고도 간섭 영역에 있다고 판단한다.
단말이 네트워크로부터 특정 주파수에 대해 고도 간섭이 발생할 수 있다는 지시자 또는 특정 주파수에 적용할 제한된 측정을 위한 측정 설정을 수신한 경우, 단말은 상기 특정 주파수를 측정할 조건이 되면 (예, 서빙 셀의 품질이 inter-frequency 측정 임계값 이하로 떨어져서 단말이 inter-frequency 측정을 시작해야 할 때), 단말은 상기 주파수의 측정에 대해 현재 고도 간섭 영역에 있다고 판단한다.
단말이 네트워크로부터 간섭일 일으키는 셀에 관한 위치/영역 정보를 수신하였고, 이후 단말의 현재 위치가 간섭을 일으키는 셀 영역 내에 있다고 판단하면, 단말은 현재 간섭 영역에 있다고 판단한다

단말이 수행하는 측정 방법에 따라, 단말은 상기 간섭을 주는 셀 영역에 있음을 판단하는 조건들 중 복수 개의 조건이 동시에 만족될 때에만 고도 간섭 영역에 있다고 판단하는 실시예도 가능하다.
단말이 접속 불가능한 셀은 비-멤버(non-member) CSG 셀일 수 있으며 그 일례로 비-멤버 펨토 셀일 수 있다. 위와 같이 단말이 접속 불가능한 셀은 단말에게 간섭을 야기할 수 있다. 간섭을 야기하는 셀은 매크로 셀보다 훨씬 작은 크기의 커버리지를 가지는 피코 셀이나 펨토 셀일 수 있다.
상술한 단말의 고도 간섭 영역 판단 방법은 이하의 단말에 의한 측정 수행 방법에 적용될 수 있다.
이하에서 단말이 간섭 상황을 판단하고 선택적으로 측정 자원 제한 설정을 기반으로 측정을 수행하는 방법에 대하여 설명한다. 고도 간섭을 야기할 수 있는 간섭 셀(interfering cell)이 설정한 측정 자원 제한 정보는 기지국간 통신을 통해 서빙 셀이 알고 있다고 가정한다. 측정 자원 제한 정보는 ABS 패턴 정보를 포함하며, 서빙 셀이 전송하는 제2 측정 설정에 포함되어 전송된다고 가정한다.
도 9는 본 발명의 실시예에 따른 단말의 측정 방법을 나타내는 도면이다. 도 9의 실시예는 단말에 의해 수행되는 Intra-frequency 측정에 적용될 수 있는 측정 방법에 해당된다. 단말은 하나의 서빙 셀과 연결되어 동작하며 서빙 셀 외 두 개의 이웃 셀을 측정하는 것으로 가정한다.
도 9를 참조하면, 단말(910)은 서빙 셀(921)로부터 서빙 셀 및 이웃 셀을 측정하기 위해 사용되는 제1 측정 설정 및 제2 측정 설정을 수신한다(S910). 단말(910)은 서빙 셀(921)의 브로드캐스트 정보 또는 전용 전송 정보(dedicated information)를 통해 제1 측정 설정 및 제2 측정 설정을 수신할 수 있다. 제1 측정 설정 및 제2 측정 설정은 서빙 셀(921)로부터 전송되는 하나의 브로드캐스트 정보 또는 전용 전송 정보에 포함되어 동시에 전송되거나 또는 각각 다른 브로드캐스트 정보 또는 전용 전송 정보에 포함되어 다른 시점에 전송될 수 있다. 이 경우 제2 측정 설정이 제1 측정 설정 보다 먼저 전송될 수도 있다.
단말(910)은 고도 간섭이 존재하지 않는 통신 환경에서는 제1 측정 설정을 기반으로 서빙 셀(921) 및 이웃 셀들(922, 923)의 측정 신호(signal for measurements)를 측정한다(S920).
단말(910)은 고도 간섭이 발생하는 상황을 감지한다(S730). 본 예시에서 단말(910)은 제2 이웃 셀(922)에 대하여 고도 간섭이 발생하는 것으로 결정할 수 있다.
단말(910)은 고도 간섭이 발생하는 상황을 감지하면, 제2 측정 설정을 적용하여 측정을 수행한다(S940). 단말(910)이 제2 측정 설정을 적용하여 수행하는 이웃 셀의 측정은 RSRP 측정, RSRQ 측정 및/또는 경로 손실(path-loss) 측정을 포함할 수 있다. 단말(910)이 제2 측정을 적용하여 수행하는 측정은 서빙셀과의 연결성(connectivity)를 모니터링하기 위한 RLM 목적의 측정을 포함한다.
단말(910)은 작용하던 간섭이 작용하는 상황이 해소되었음을 감지한다(S950).
단말은(910)은 고도 간섭이 존재하지 않다고 결정하면, 제1 측정 설정을 적용하여 측정을 수행한다(S960).
네트워크는 제2 측정 설정을 단말에게 전송함에 있어, 셀 리스트를 함께 전송하여 제2 측정 설정을 적용할 대상을 한정시킬 수 있다. 단말은 셀 리스트를 수신하면, 셀 리스트에 포함된 셀에 대하여 제2 측정 설정을 기반으로 셀을 측정하고, 이외의 셀에 대하여 제1 측정 설정을 기반으로 셀을 측정한다. 도 9와 같은 예시에서 제2 이웃 셀(923)에 고도 간섭이 작용하고, 네트워크가 전송한 셀 리스트에 제2 이웃 셀(923)이 포함되어 있으면, 단말(910)은 서빙 셀(921) 및 제1 이웃 셀(922)을 측정 시에는 제1 측정 설정을 적용하고, 제2 이웃 셀(923)을 측정 시에는 제2 측정 설정을 적용한다.
도 9에 도시된 실시예는 매크로 셀로부터 서비스를 제공 받는 단말이 매크로셀의 커버리지 내에 설치된 피코 셀의 커버리지 엣지 근처에 위치하는 경우에 적절히 적용될 수 있다. 서빙 셀인 매크로 셀로부터 서비스를 제공받는 단말은, 이웃 셀인 피코 셀의 커버리지 내에는 진입하지 않았지만 CRE(Cell Range Expansion)에 위치하면, 서빙 셀의 신호가 피코 셀에 대한 측정에 대해 고도 간섭을 야기할 가능성이 높다. 만약 간섭 셀인 서빙 셀이 측정 자원 제한 설정을 지원 하는 경우, 서빙 셀은 측정 자원 제한 정보를 포함하는 제2 측정 설정을 단말에게 알려줄 수 있다. 단말은 제2 측정 설정을 기반으로 피코 셀에 대한 측정을 수행할 수 있으며, 필요 시 피코 셀로 핸드오버를 수행할 수 있다.
도 10은 본 발명의 다른 실시예에 따른 단말의 측정 방법을 나타내는 도면이다. 도 10의 실시예는 단말에 의해 수행되는 Inter-frequency 측정에 적용될 수 있는 측정 방법에 해당된다. 단말은 하나의 서빙 셀과 연결되어 동작하며 서빙 셀 외 두 개의 이웃 셀을 측정하는 것으로 가정한다. 또한 서빙 셀과 제1 이웃 셀은 동일한 중심 주파수 F1의 채널을 사용하고, 제2 이웃 셀은 다른 중심 주파수 F2의 채널을 사용하는 것으로 가정한다.
도 10을 참조하면, 단말(1010)은 서빙 셀(1021)로부터 서빙 셀 및 이웃 셀을 측정하기 위해 사용되는 제1 측정 설정 및 제2 측정 설정을 수신한다(S1010). 제1 측정 설정은 F1을 사용하는 셀과 F2를 사용하는 셀에 적용될 수 있는 측정 설정 정보를 포함한다. 제2 측정 설정은 Inter-frequency 측정에 대한 간섭, 즉 F2 주파수의 셀에 간섭을 야기 하는 경우 적용되기 위한 측정 설정 정보를 포함할 수 있다. 이를 위하여 제2 측정 설정은 해당 측정 설정이 적용되는 주파수 리스트에 대한 정보를 포함할 수 있다.
단말(1010)은 서빙 셀(1021)의 브로드캐스트 정보 또는 전용 전송 정보(dedicated information)를 통해 제1 측정 설정 및 제2 측정 설정을 수신할 수 있다. 제1 측정 설정 및 제2 측정 설정은 서빙 셀(921)로부터 전송되는 하나의 브로드캐스트 정보 또는 전용 전송 정보에 포함되어 동시에 전송될 수 있다. 제1 측정 설정 및 제2 측정 설정은 각각 다른 브로드캐스트 정보 또는 전용 전송 정보에 포함되어 다른 시점에 전송될 수 있다. 이 경우 제2 측정 설정이 제1 측정 설정 보다 먼저 전송될 수도 있다.
단말(1010)은 고도 간섭이 존재하지 않는 통신 환경에서는 제1 측정 설정을 기반으로 서빙 셀(1021) 및 이웃 셀들(1022, 1023)을 측정한다(S1020). 서빙 셀(1021) 및 제1 이웃 셀(1022)은 F1을 사용하는 셀이고, 제2 이웃 셀(1023)은 F2를 사용하는 셀 이므로 단말(1010)은 제1 측정 설정을 기반으로 측정할 수 있다.
단말(1010)은 고도 간섭이 발생하는 상황을 감지한다(S1030). 본 예시에서 단말(1010)은 제2 이웃 셀(1022)에 대하여 고도 간섭이 발생하는 것으로 감지할 수 있다.
단말(1010)은 제2 이웃 셀(1023)에게 고도 간섭이 발생하는 상황을 감지하면, F1 주파수의 서빙 셀(1021) 및 제1 이웃 셀(1022)의 측정에는 제1 측정 설정을 적용한다(S1041). 반면, F2 주파수의 제2 이웃 셀(1023)의 측정에는 제2 측정 설정을 적용한다(S1042).
단말(1010)은 작용하던 간섭이 작용하는 상황이 해소되었음을 감지한다(S1050). 이 경우 단말(1010)은 F2 주파수의 제2 이웃 셀(1023)에 대한 간섭이 해소되었음을 감지한다.
단말은(1010)은 고도 간섭이 작용하는 상황이 해소되었음을 감지하면, 제1 측정 설정을 서빙 셀(1021), 제1 이웃 셀(1022) 및 제2 이웃 셀(1023) 측정에 적용한다(S1060). 단말(1010)이 제2 측정 설정을 적용하여 수행하는 이웃 셀의 측정은 RSRP 측정, RSRQ 측정 및/또는 경로 손실(path-loss) 측정을 포함할 수 있다. 단말(1010)이 제2 측정을 적용하여 수행하는 측정은 서빙셀과의 연결성(connectivity)를 모니터링하기 위한 RLM 목적의 측정을 포함한다.
한편, 제2 측정 설정은 이웃 셀로부터 수신할 수 있다. 예를 들어, 매크로 셀 내에서 서비스를 제공 받는 단말은 매크로 셀의 커버리지 내에 설치된 접속 불가능 셀(e.g. non-member CSG, non-member femto cell)로부터 고도 간섭을 받게 될 수 있다. 만약 간섭 야기 셀이 펨토 셀인 경우, 펨토 BS와 매크로 BS 간에는 X2 인터페이스가 설정되어 있지 않으므로, 매크로 BS는 펨토 셀이 설정한 ABS를 포함하는 제2 측정 설정 정보를 획득하지 못할 수 있다. 이와 같은 경우, 서빙 셀과 접속 가능한 이웃 셀에 대한 제1 측정 설정은 매크로 셀로부터 획득하고, 접속 불가능한 이웃 셀에 대한 제2 측정 설정은 간섭 야기 셀로부터 직접 획득하는 방법이 제안될 수 있다.
도 11은 본 발명의 또 다른 실시예에 따른 단말의 측정 방법을 나타내는 도면이다. 도 11의 실시예는 단말에 의해 수행되는 Intra-frequency 측정에 적용될 수 있는 측정 방법에 해당된다. 단말은 서빙 셀 외 두 개의 이웃 셀을 측정하는 것으로 가정한다. 제2 이웃 셀은 간섭 야기 셀로 가정한다.
도 11를 참조하면, 단말(1110)은 서빙 셀(1121)로부터 서빙 셀 및 이웃 셀을 측정하기 위해 사용되는 제1 측정 설정을 수신한다(S1110). 단말(1110)은 서빙 셀(1121)의 브로드캐스트 정보 또는 전용 전송 정보(dedicated information)를 통해 제1 측정 설정을 수신할 수 있다.
단말(1110)은 고도 간섭이 존재하지 않는 통신 환경에서는 제1 측정 설정을 기반으로 서빙 셀(1121) 및 이웃 셀들(1122, 1123)을 측정한다(S1120).
단말(1110)은 고도 간섭이 발생하는 상황을 감지한다(S1130). 본 예시에서 단말(1110)은 제2 이웃 셀(1122)에 대하여 고도 간섭이 발생하는 것으로 감지할 수 있다.
단말(1110)은 간섭 야기 셀인 제2 이웃 셀(1123)로부터 제2 측정 설정을 획득한다(S1140). 제2 측정 설정은 제2 이웃 셀(1123)이 브로드 캐스트하는 시스템 정보에 포함되어 전송될 수 있다. 제2 측정 설정은 제2 이웃 셀이 설정한 측정 자원 제한 정보를 포함할 수 있다.
단말(1110)은 제2 측정 설정을 적용하여 서빙 셀(1121), 제1 이웃 셀(1122) 및 제2 이웃 셀(1123)을 측정한다(1150). 단말(1110)이 제2 측정 설정을 적용하여 수행하는 이웃 셀의 측정은 RSRP 측정, RSRQ 측정 및/또는 경로 손실(path-loss) 측정을 포함할 수 있다. 단말(1110)이 제2 측정을 적용하여 수행하는 측정은 서빙셀과의 연결성(connectivity)를 모니터링하기 위한 RLM 목적의 측정을 포함한다.
단말(1110)은 작용하던 간섭이 작용하는 상황이 해소되었음을 감지한다(S1160).
단말은(1110)은 고도 간섭이 작용하는 상황이 해소되었음을 감지하면, 제1 측정 설정을 적용하여 서빙 셀(1121), 제1 이웃 셀(1122) 및 제2 이웃 셀(1123)을 측정한다(S1170).
단말은 Inter-frequency의 측정에 있어, 해당 주파수의 다른 셀의 측정에 고도 간섭을 일으키는 다른 셀을 감지하였을 때 적용할 제2 측정 설정을 상기 주파수에 간섭을 일으킬 수 있는 셀로부터 직접 수신할 수 있다. 단말은 해당 주파수에서 간섭을 야기하는 이웃 셀을 감지하고, 해당 이웃 셀로부터 제2 측정 설정 관련 정보를 획득하면, 단말은 해당 주파수의 다른 셀의 측정에 획득한 제2 측정 설정을 적용할 수 있다. 또한, 고도 간섭이 발생하는 상황이 해소되면 단말은 다시 제1 측정 설정을 적용할 수 있다.
도면을 참조하여 상술한 측정 방법과 같이, 단말이 자율적으로 제2 측정 설정을 적용하여 측정을 수행하고, 이에 따른 측정 결과를 네트워크로 보고하는 경우, 단말은 상기 측정 결과가 제2 측정 설정을 기반으로 한 측정 결과임을 지시하는 정보를 측정 결과 보고에 포함시켜 전송할 수 있다.
도면을 참조하여 상술한 측정 방법에 있어서, 단말이 측정하는 이웃셀 신호는 서빙 셀과 다른 무선 특성을 지닌 통신 장치의 전송 신호, 즉 다른 RAT의 전송 신호를 단말이 수신하는 경우를 포함할 수 있다.
도면을 참조하여 상술한 측정 방법에 있어서, 단말이 측정하는 이웃셀 신호로 간주되는 대상은, 단말 내 장착되어 있으며, 단말의 서빙 셀과 다른 무선 특성을 지닌 통신 장치(in-device other RAT)의 전송 신호를 포함할 수 있다. 예를 들어 모바일 장치 내에 무선 랜(Wireless Local Area Network) 또는 블루투스(Bluetooth)와 같은 이종 RAT의 신호를 모바일 장치 내의 LTE 수신기가 측정하는 경우가 해당될 수 있다. 이 경우, 단말이 제한된 측정을 수행하는데 사용하는 제한된 무선 자원은 서빙 셀로부터 수신하거나 단말에게 이웃셀로 간주되는 RAT에 따라 미리 정해진 특정 무선 자원의 패턴일 수 있다.
전술한 실시예와 같이 단말은 고도 간섭의 발생 여부를 인지하여 필요에 따라 자율적으로 측정 설정을 선택하여 적용한다. 이를 통해 단말은 제한된 측정을 수행할 수 있다. 서빙 셀에 의한 별도의 시그널링이 없이 단말은 스스로 측정 설정을 선택적으로 사용하므로, 고도 간섭으로 인해 서빙 셀의 시그널링이 불가능한 경우에도 단말은 제한된 측정을 수행할 수 있다. 또한, 단말의 고도 간섭이 발생한 상황에서 측정 설정 요청 - 기지국의 측정 설정 응답과 같은 과정이 생략되므로 과도한 무선 자원 점유를 방지할 수 있다.
또한, 단말은 제한된 측정을 통하여 서빙 셀이 다른 셀로부터 간섭을 겪고 있는 중에도 단말은 연결 실패(connection failure)를 겪지 않고 단말이 서빙 셀에 지속적으로 캠핑 온(camping on) 상태를 유지할 수 있다.
이웃 셀이 다른 셀로부터 간섭을 겪고 있는 경우에도 단말은 네트워크의 운용 목적에 맞는 형태로 제한된 측정을 통해 이웃 셀을 보다 정확하게 측정할 수 있다. 이를 통하여 단말의 이동성 관리 및 무선 자원 활용 측면에서 네트워크의 효율이 향상될 수 있다.
도 12는 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
기지국(50)은 프로세서(processor, 51), 메모리(memory, 52) 및 RF부(RF(radio frequency) unit, 53)을 포함한다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)를 구동하기 위한 다양한 정보를 저장한다. RF부(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 도 7 내지 9의 실시예에서 셀을 구성하는 기지국(50)의 동작은 프로세서(51)에 의해 구현될 수 있다.
단말(60)은 프로세서(61), 메모리(62) 및 RF부(63)을 포함한다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)를 구동하기 위한 다양한 정보를 저장한다. RF부(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현한다. 도 9 내지 11의 실시예에서 단말(60)의 동작은 프로세서(61)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (18)

  1. 무선 통신 시스템에서 단말에 의해 수행되는 측정 방법에 있어서,
    보통 운영(normal operation)시 측정에 적용하는 제1 측정 설정을 서빙 셀(serving cell)로부터 수신하고,
    고도 간섭이 발생한 상황시 측정에 적용하는 제2 측정 설정을 간섭 셀(interfering cell)로부터 수신하고,
    상기 고도 간섭의 발생 여부를 결정하고, 및,
    상기 고도 간섭 발생 감지 결과, 상기 제1 측정 설정 및 제2 측정 설정을 기반으로 측정을 수행하는 것을 포함하는 측정 방법.
  2. 제 1항에 있어서,
    상기 측정을 수행하는 것은,
    상기 고도 간섭이 발생되면, 상기 제2 측정 설정을 기반으로 상기 서빙 셀 및 상기 간섭 셀을 포함하는 이웃 셀을 측정하는 것을 포함함을 특징으로 하는 측정 방법.
  3. 제 2항에 있어서,
    상기 발생된 고도 간섭이 존재하지 않으면, 상기 제1 측정 설정을 기반으로 상기 서빙 셀 및 상기 간섭 셀을 포함하는 이웃 셀을 측정하는 것을 포함함을 특징으로 하는 측정 방법.
  4. 제 3항에 있어서,
    상기 측정 결과를 상기 서빙 셀에게 보고하는 것을 더 포함하되,
    상기 측정이 상기 제2 측정 설정을 기반으로 수행되면, 상기 측정 결과는 상기 측정 결과가 상기 제2 측정 설정을 기반으로 한 결과임을 지시하는 정보를 포함하는 것을 특징으로 하는 측정 방법.
  5. 제 1항에 있어서,
    상기 제2 측정 설정은 상기 제2 측정 설정이 적용되는 측정 대상 셀 리스트를 포함하는 것을 특징으로 하는 측정 방법.
  6. 제 5항에 있어서,
    상기 측정을 수행하는 것은, 상기 고도 간섭의 발생되면,
    상기 셀 리스트에 포함된 상기 측정 대상 셀을 상기 제2 측정 설정을 기반으로 측정하고 및,
    상기 셀 리스트에 포함되지 않은 측정 대상 셀은 상기 제1 측정 설정을 기바능로 측정하는 것을 포함함을 특징으로 하는 측정 방법.
  7. 제 1항에 있어서,
    상기 제2 측정 설정은 상기 제2 측정 설정이 적용되는 측정 대상 셀의 주파수 리스트를 포함하는 것을 특징으로 하는 측정 방법.
  8. 제 7항에 있어서,
    상기 측정을 수행하는 것은, 상기 고도 간섭의 발생되면,
    상기 주파수 리스트에 포함된 주파수를 사용하는 측정 대상 셀을 상기 제2 측정 설정을 기반으로 측정하고 및,
    상기 주파수 리스트에 포함되지 않은 주파수를 사용하는 측정 대상 셀을 상기 제1 측정 설정을 기반으로 측정하는 것을 포함함을 특징으로 하는 측정 방법.
  9. 제 1항에 있어서,
    상기 제2 측정 설정은 상기 간섭 셀에 의한 무선 신호 전송이 최소화 된 구간인 ABS(Almost Blank Subframe) 패턴 정보를 포함하는 것을 특징으로 하는 측정 방법.
  10. 제 1항에 있어서, 상기 고도 간섭 발생 여부를 결정하는 것은,
    접속이 불가능하다고 판단한 셀의 식별 정보와 동일한 식별 정보를 가진 셀을 감지하면 상기 고도 간섭이 발생하였음을 결정하는 것을 포함하는 측정 방법.
  11. 제 10항에 있어서, 상기 고도 간섭 발생 여부를 결정하는 것은,
    상기 접속이 불가능하다고 판단한 셀을 발견시 상기 단말의 위치와 상기 단말의 현재 위치가 특정 거리 이내에 위치하면, 상기 고도 간섭이 발생하였음을 결정하는 것을 더 포함하는 측정 방법.
  12. 제 11항에 있어서, 상기 고도 간섭 발생 여부를 결정하는 것은,
    단말이 측정한 이웃 셀의 측정 값이 특정 제1 임계값 이상이면, 상기 고도 간섭이 발생하였음을 결정하는 것을 더 포함하는 측정 방법.
  13. 제 12항에 있어서, 상기 고도 간섭 발생 여부를 결정하는 것은,
    상기 이웃 셀의 물리계층 셀 식별자가 CSG(Closed Subscriber Group)용으로 예약된 식별자이면, 상기 고도 간섭이 발생하였음을 결정하는 것을 더 포함하는 측정 방법.
  14. 제 13항에 있어서, 상기 고도 간섭 발생 여부를 결정하는 것은,
    상기 서빙셀의 RSRP 측정치와 RSRQ 측정치의 차이가 특정 제2 임계값 이상이면, 상기 고도 간섭이 발생하였음을 결정하는 것을 더 포함하는 측정 방법.
  15. 제 14항에 있어서, 상기 고도 간섭 발생 여부를 결정하는 것은,
    상기 서빙셀의 측정값이 또 다른 특정 제3 임계값 이하가 되면, 상기 고도 간섭이 발생하였음을 결정하는 것을 더 포함하는 측정 방법.
  16. 무선 통신 시스템에서 측정을 수행하는 장치에 있어서,
    무선 신호를 송신 및 수신하는 RF(radio frequency)부; 및
    상기 RF 부와 연결되는 프로세서를 포함하되, 상기 프로세서는
    보통 운영(normal operation)시 측정에 적용하는 제1 측정 설정을 서빙 셀(serving cell)로부터 수신하고,
    고도 간섭이 발생한 상황시 측정에 적용하는 제2 측정 설정을 간섭 셀(interfering cell)로부터 수신하고,
    상기 고도 간섭의 발생 여부를 결정하고, 및,
    상기 고도 간섭 발생 감지 결과, 상기 제1 측정 설정 및 제2 측정 설정을 기반으로 측정을 수행하도록 설정된 것을 특징으로 하는 장치.
  17. 제 16항에 있어서, 상기 프로세서는,
    상기 고도 간섭이 발생되면, 상기 제2 측정 설정을 기반으로 상기 서빙 셀, 상기 간섭 셀을 포함하는 이웃 셀을 측정하는 것을 특징으로 하는 장치.
  18. 제 17항에 있어서, 상기 프로세서는,
    상기 발생된 고도 간섭이 존재하지 않으면, 상기 제1 측정 설정을 기반으로 상기 서빙 셀 및 상기 간섭 셀을 포함하는 이웃 셀을 측정하는 것을 특징으로 하는 장치.
PCT/KR2011/008260 2010-11-01 2011-11-01 무선 통신 시스템에서 선택적으로 측정을 수행하는 방법 및 이를 지원하는 장치 WO2012060615A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/882,633 US9072001B2 (en) 2010-11-01 2011-11-01 Method for performing selective measurement in wireless communication system and device for supporting same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40907210P 2010-11-01 2010-11-01
US61/409,072 2010-11-01

Publications (2)

Publication Number Publication Date
WO2012060615A2 true WO2012060615A2 (ko) 2012-05-10
WO2012060615A3 WO2012060615A3 (ko) 2012-07-05

Family

ID=46024934

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/KR2011/008260 WO2012060615A2 (ko) 2010-11-01 2011-11-01 무선 통신 시스템에서 선택적으로 측정을 수행하는 방법 및 이를 지원하는 장치
PCT/KR2011/008258 WO2012060613A2 (ko) 2010-11-01 2011-11-01 무선 통신 시스템에서 제한된 측정을 수행하는 방법 및 이를 지원하는 장치
PCT/KR2011/008240 WO2012060602A2 (ko) 2010-11-01 2011-11-01 셀간 간섭 조정 방법 및 장치
PCT/KR2011/008259 WO2012060614A2 (ko) 2010-11-01 2011-11-01 무선 통신 시스템에서 측정 방법 및 이를 지원하는 장치
PCT/KR2011/008249 WO2012060608A2 (ko) 2010-11-01 2011-11-01 셀간 간섭 조정 방법 및 기지국

Family Applications After (4)

Application Number Title Priority Date Filing Date
PCT/KR2011/008258 WO2012060613A2 (ko) 2010-11-01 2011-11-01 무선 통신 시스템에서 제한된 측정을 수행하는 방법 및 이를 지원하는 장치
PCT/KR2011/008240 WO2012060602A2 (ko) 2010-11-01 2011-11-01 셀간 간섭 조정 방법 및 장치
PCT/KR2011/008259 WO2012060614A2 (ko) 2010-11-01 2011-11-01 무선 통신 시스템에서 측정 방법 및 이를 지원하는 장치
PCT/KR2011/008249 WO2012060608A2 (ko) 2010-11-01 2011-11-01 셀간 간섭 조정 방법 및 기지국

Country Status (2)

Country Link
US (5) US9042259B2 (ko)
WO (5) WO2012060615A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026720A1 (ko) * 2015-08-12 2017-02-16 엘지전자 주식회사 단말이 wlan 측정을 수행하는 방법 및 장치
EP3596976A4 (en) * 2017-03-14 2021-03-24 Nokia Technologies Oy MOBILE COMMUNICATIONS BASED ON AN ALTITUDE POSITION STATE

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469491B (zh) * 2010-11-05 2016-08-10 北京三星通信技术研究有限公司 一种在异构网场景下的无线资源测量方法
KR20120049449A (ko) * 2010-11-08 2012-05-17 삼성전자주식회사 무선 통신 시스템 및 그 시스템에서 간섭 조정을 위한 자원 관리 방법
JPWO2012063934A1 (ja) * 2010-11-12 2014-05-12 住友電気工業株式会社 基地局装置、通信システム、管理装置、及びそれらに関する方法
KR101857659B1 (ko) * 2010-11-22 2018-05-14 엘지전자 주식회사 무선 통신 시스템에서 하향링크 측정 방법 및 장치
CN103535083B (zh) * 2011-02-11 2017-05-31 黑莓有限公司 具有eicic的hethet部署中的用户设备电池节约
EP2673991B1 (en) * 2011-02-11 2015-05-20 BlackBerry Limited User equipment battery saving in a hetnet deployment with eicic
WO2012111260A1 (ja) * 2011-02-15 2012-08-23 パナソニック株式会社 無線通信端末、無線通信基地局及び無線通信システム、並びに、報告方法
WO2012115414A2 (en) * 2011-02-21 2012-08-30 Samsung Electronics Co., Ltd. Method and apparatus for saving power of user equipment in wireless communication system
KR101995293B1 (ko) * 2011-02-21 2019-07-02 삼성전자 주식회사 반송파 집적 기술을 사용하는 시분할 무선통신시스템에서 부차반송파의 활성화 또는 비활성화 방법 및 장치
EP2557889B1 (en) * 2011-08-12 2019-07-17 BlackBerry Limited Simplified ue + enb messaging
US20130039287A1 (en) 2011-08-12 2013-02-14 Venkata Ratnakar Rao Rayavarapu Simplified ue + enb messaging
KR101150846B1 (ko) 2011-09-05 2012-06-13 엘지전자 주식회사 셀 측정 방법 및 그를 위한 정보 전송 방법
US8942205B2 (en) * 2012-01-24 2015-01-27 Blackberry Limited Performing idle mode mobility measurements in a mobile communication network
WO2013112014A1 (ko) * 2012-01-27 2013-08-01 삼성전자 주식회사 무선통신시스템에서 휴면 모드 제어 방법 및 장치
US9247575B2 (en) 2012-03-27 2016-01-26 Blackberry Limited eNB storing RRC configuration information at another network component
US9155121B2 (en) 2012-03-27 2015-10-06 Blackberry Limited Re-establishment of suspended RRC connection at a different eNB
US9295095B2 (en) 2012-03-27 2016-03-22 Blackberry Limited UE preference indicator for suspension
US9426714B2 (en) * 2012-03-30 2016-08-23 Qualcomm Incorporated Wireless communication in view of time varying interference
KR102063080B1 (ko) * 2012-06-08 2020-01-07 엘지전자 주식회사 무선 통신 시스템에서 간섭 제어 방법 및 이를 위한 장치
US8737276B2 (en) * 2012-06-27 2014-05-27 Qualcomm Incorporated Method and apparatus using modified subframes
US8838125B2 (en) * 2012-06-29 2014-09-16 Nokia Corporation Interferer activity signaling for time domain (TDM) inter-cell interference coordination (ICIC)
US9232405B2 (en) * 2012-07-30 2016-01-05 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for inter-cell interference coordination in a wireless communication network
US20140036868A1 (en) * 2012-08-03 2014-02-06 Innovative Sonic Corporation Method and apparatus for prioritizing small cells in a wireless communication system
US9544082B2 (en) * 2012-08-03 2017-01-10 Qualcomm Incorporated Inter-UE interference cancellation
WO2014051285A1 (ko) * 2012-09-27 2014-04-03 엘지전자 주식회사 무선 통신 시스템에서 간섭 제어 방법 및 이를 위한 장치
US9985771B2 (en) 2012-11-27 2018-05-29 Qualcomm Incorporated Methods and apparatus for cooperating between wireless wide area network radios and wireless local area network radios
US20140146691A1 (en) * 2012-11-27 2014-05-29 Qualcomm Incorporated Cooperative measurments in wireless networks
WO2014123387A1 (ko) * 2013-02-08 2014-08-14 엘지전자 주식회사 단말의 간섭 제거를 위한 지원 정보 전송 방법 및 서빙셀 기지국
US9420476B2 (en) * 2013-02-20 2016-08-16 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods of triggering interference mitigation without resource partitioning
US9301281B2 (en) * 2013-02-22 2016-03-29 Blackberry Limited Mechanisms for timing and signaling coordination in multi-point connectivity
US10448351B2 (en) * 2013-04-02 2019-10-15 Qualcomm Incorporated Employing neighboring cell assistance information for interference mitigation
US9420605B2 (en) * 2013-05-10 2016-08-16 Blackberry Limited Method and apparatus for cell coordination in heterogeneous cellular networks
CN104244283B (zh) * 2013-06-06 2020-04-21 索尼公司 无线通信方法和无线通信设备
EP3454594B1 (en) * 2013-06-11 2020-11-04 Seven Networks, LLC Offloading application traffic to a shared communication channel for signal optimisation in a wireless network for traffic utilizing proprietary and non-proprietary protocols
KR102122814B1 (ko) 2013-07-10 2020-06-16 삼성전자 주식회사 이동 통신 시스템에서 다중 사용자 간섭 측정 방법 및 장치
US20160295597A1 (en) * 2013-07-26 2016-10-06 Intel IP Corporation Signaling interference information for user equipment assistance
WO2015026090A1 (ko) * 2013-08-22 2015-02-26 엘지전자 주식회사 측정 수행 방법
WO2015030845A1 (en) * 2013-08-30 2015-03-05 Intel IP Corporation Measurement triggers for customer care in a wireless network
US9445326B2 (en) * 2013-12-17 2016-09-13 Mbit Wireless, Inc. Method and apparatus for improved user experience in wireless communication terminals
WO2015113221A1 (en) * 2014-01-28 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for coordinating resources between different types of communications
KR20150089890A (ko) 2014-01-28 2015-08-05 삼성전자주식회사 무선 통신 시스템에서 채널 품질 정보 보정 및 자원 할당 방법 및 장치
US11277779B2 (en) * 2014-01-28 2022-03-15 Samsung Electronics Co., Ltd. Method and apparatus for applying resources in heterogeneous network system
US9635566B2 (en) 2014-04-25 2017-04-25 At&T Intellectual Property I, L.P. Enhancement of access points to support heterogeneous networks
US9516564B2 (en) 2014-04-25 2016-12-06 At&T Intellectual Property I, L.P. Enhancement of a cell reselection parameter in heterogeneous networks
US9621294B2 (en) 2014-10-02 2017-04-11 At&T Intellectual Property I, L.P. Enhancement of inter-cell interference coordination with adaptive reduced-power almost blank subframes based on neighbor cell profile data
CN107005975B (zh) * 2014-12-15 2021-02-02 瑞典爱立信有限公司 在网络节点中使用的方法和链路的接收和发送节点以及相关联设备
EP3244656B1 (en) * 2015-01-29 2019-03-20 Huawei Technologies Co. Ltd. Cell selection method and apparatus
WO2016163825A1 (ko) * 2015-04-08 2016-10-13 엘지전자 주식회사 무선 통신 시스템에서 단말의 사이드링크 단말 정보 전송 방법 및 상기 방법을 이용하는 단말
WO2016186409A1 (ko) * 2015-05-15 2016-11-24 엘지전자 주식회사 단말이 측정 보고 유발 조건에 오프셋을 적용하는 방법 및 장치
WO2016206104A1 (en) * 2015-06-26 2016-12-29 Telefonaktiebolaget Lm Ericsson (Publ) Methods used in control nodes, and associated control nodes
WO2016206092A1 (en) 2015-06-26 2016-12-29 Telefonaktiebolaget Lm Ericsson (Publ) Methods used in control node and radio node and associated devices
US10033496B2 (en) 2015-06-26 2018-07-24 Telefonaktiebolaget Lm Ericsson (Publ) Methods used in serving radio node and control node, and associated devices
US10555315B1 (en) * 2015-10-02 2020-02-04 Sprint Spectrum L.P. Interference mitigation in heterogeneous networks
KR102522985B1 (ko) * 2015-10-13 2023-04-18 삼성전자주식회사 무선 통신 시스템에서 간섭 제어 방법 및 장치
CN107770836B (zh) 2016-08-17 2020-04-28 华为技术有限公司 一种系统信息广播、系统信息接收方法及装置
US10397840B2 (en) * 2016-11-15 2019-08-27 At&T Intellectual Property I, L.P. Method and apparatus for communication device handover
CN108289334B (zh) 2017-01-10 2020-11-27 华为技术有限公司 一种信息接收、发送方法及设备
US10075885B2 (en) * 2017-01-20 2018-09-11 Qualcomm Incorporated Cell history utilization in a wireless communication system
US10278108B2 (en) 2017-07-17 2019-04-30 At&T Intellectual Property I, L.P. Method and apparatus for coordinating wireless resources in a communication network
JP7119215B2 (ja) 2018-08-23 2022-08-16 ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー セルラ電気通信ネットワーク
GB201815377D0 (en) 2018-09-21 2018-11-07 British Telecomm Cellular telecommunications network
JP7472110B2 (ja) 2018-09-21 2024-04-22 ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー セルラ電気通信ネットワーク

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070074708A (ko) * 2006-01-10 2007-07-18 삼성전자주식회사 무선 통신 시스템에서 채널 상태 추정 장치 및 방법
KR20080101185A (ko) * 2007-05-16 2008-11-21 삼성전자주식회사 슬립 모드 중 특정 조건 만족 시 이웃 셀로부터의 신호세기 측정 과정을 스킵하는 이동 단말 및 그 전력 관리방법
KR20090095437A (ko) * 2008-03-05 2009-09-09 엘지전자 주식회사 간섭 측정 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1786228A1 (en) 2005-11-10 2007-05-16 Alcatel Lucent Method and apparatus for uplink resource allocation in a cellular communication system
KR20070108426A (ko) * 2006-04-19 2007-11-12 삼성전자주식회사 다중 홉 중계방식의 광대역 무선 접속 통신시스템에서 중계서비스를 지원하기 위한 장치 및 방법
US8442572B2 (en) * 2006-09-08 2013-05-14 Qualcomm Incorporated Method and apparatus for adjustments for delta-based power control in wireless communication systems
JP5107069B2 (ja) * 2008-01-25 2012-12-26 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムで使用される基地局装置及び方法
US8594576B2 (en) * 2008-03-28 2013-11-26 Qualcomm Incorporated Short-term interference mitigation in an asynchronous wireless network
US8594049B2 (en) * 2008-03-31 2013-11-26 Nec Corporation Wireless communication system, base station, mobile station, and method for determining transmission parameter
US8879461B2 (en) * 2008-12-01 2014-11-04 Qualcomm Incorporated Blank subframe uplink design
WO2010104436A1 (en) * 2009-03-10 2010-09-16 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for dl-otdoa (downlink observed time difference of arrival) positioning in a lte (long term evolution) wireless communications system
US9392608B2 (en) * 2010-04-13 2016-07-12 Qualcomm Incorporated Resource partitioning information for enhanced interference coordination
US9014025B2 (en) * 2010-10-04 2015-04-21 Futurewei Technologies, Inc. System and method for coordinating different types of base stations in a heterogeneous communications system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070074708A (ko) * 2006-01-10 2007-07-18 삼성전자주식회사 무선 통신 시스템에서 채널 상태 추정 장치 및 방법
KR20080101185A (ko) * 2007-05-16 2008-11-21 삼성전자주식회사 슬립 모드 중 특정 조건 만족 시 이웃 셀로부터의 신호세기 측정 과정을 스킵하는 이동 단말 및 그 전력 관리방법
KR20090095437A (ko) * 2008-03-05 2009-09-09 엘지전자 주식회사 간섭 측정 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026720A1 (ko) * 2015-08-12 2017-02-16 엘지전자 주식회사 단말이 wlan 측정을 수행하는 방법 및 장치
US10511985B2 (en) 2015-08-12 2019-12-17 Lg Electronics Inc. Method and device for terminal performing WLAN measurement
US11032730B2 (en) 2015-08-12 2021-06-08 Lg Electronics Inc. Method and device for terminal performing WLAN measurement
EP3596976A4 (en) * 2017-03-14 2021-03-24 Nokia Technologies Oy MOBILE COMMUNICATIONS BASED ON AN ALTITUDE POSITION STATE

Also Published As

Publication number Publication date
WO2012060608A3 (ko) 2012-06-28
US9113369B2 (en) 2015-08-18
US20130215785A1 (en) 2013-08-22
WO2012060614A3 (ko) 2012-06-28
WO2012060615A3 (ko) 2012-07-05
US9042259B2 (en) 2015-05-26
US20130223267A1 (en) 2013-08-29
WO2012060602A3 (ko) 2012-06-28
WO2012060614A2 (ko) 2012-05-10
US20130223268A1 (en) 2013-08-29
WO2012060608A2 (ko) 2012-05-10
WO2012060613A2 (ko) 2012-05-10
WO2012060613A3 (ko) 2012-06-28
US20130229938A1 (en) 2013-09-05
US9072001B2 (en) 2015-06-30
US20130223393A1 (en) 2013-08-29
WO2012060602A2 (ko) 2012-05-10
US9066263B2 (en) 2015-06-23
US9042258B2 (en) 2015-05-26

Similar Documents

Publication Publication Date Title
WO2012060615A2 (ko) 무선 통신 시스템에서 선택적으로 측정을 수행하는 방법 및 이를 지원하는 장치
JP5809284B2 (ja) 無線通信システムにおけるハンドオーバ実行方法
US9392610B2 (en) Operating method for acquiring system information in wireless communication system, and apparatus for supporting same
US8929832B2 (en) Apparatus and method of reporting logged measurement in wireless communication system
KR101564856B1 (ko) 무선 통신 시스템에서 시스템 정보 보고 방법 및 이를 지원하는 장치
WO2012050323A2 (ko) 무선 통신 시스템에서 로그된 측정 수행 방법 및 장치
WO2012148203A2 (ko) 무선 통신 시스템에서 이종망 정보 로깅 및 보고하는 방법과 이를 지원하는장치
KR20100129691A (ko) 무선 통신 시스템에서 측정 결과 보고 방법 및 장치
US10425873B2 (en) Method and apparatus for performing cell reselection procedures for load distribution
US10917794B2 (en) Method and device for terminal calculating redistribution range in wireless communication system
KR20140019433A (ko) 무선 통신 시스템에서 이동성 평가를 기반으로 한 통신 방법 및 이를 지원하는 장치
WO2013191506A1 (ko) 무선 통신 시스템에서 자율 배제 패턴 설정을 기반으로한 운영 방법 및 이를 지원하는 장치
US10200930B2 (en) Method and device for reselecting cell having same priority

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838220

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13882633

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11838220

Country of ref document: EP

Kind code of ref document: A2