WO2012060562A2 - 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브 및 이를 이용한 온도 측정 시스템 - Google Patents

원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브 및 이를 이용한 온도 측정 시스템 Download PDF

Info

Publication number
WO2012060562A2
WO2012060562A2 PCT/KR2011/007804 KR2011007804W WO2012060562A2 WO 2012060562 A2 WO2012060562 A2 WO 2012060562A2 KR 2011007804 W KR2011007804 W KR 2011007804W WO 2012060562 A2 WO2012060562 A2 WO 2012060562A2
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
temperature
probe
optical fiber
cap
Prior art date
Application number
PCT/KR2011/007804
Other languages
English (en)
French (fr)
Other versions
WO2012060562A3 (ko
Inventor
박병기
이봉수
유욱재
Original Assignee
순천향대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천향대학교 산학협력단 filed Critical 순천향대학교 산학협력단
Publication of WO2012060562A2 publication Critical patent/WO2012060562A2/ko
Publication of WO2012060562A3 publication Critical patent/WO2012060562A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • G21C17/112Measuring temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to an insertion type infrared optical fiber probe for measuring the temperature of a nuclear power plant cooling system and a temperature measuring system using the same.
  • the probe is configured to transmit the infrared rays emitted through the optical fiber, and is directly inserted into the fluid channel of the cooling system to detect the infrared rays emitted from the inner circumferential surface of the cap, which is in thermal equilibrium with the fluid, and detect the infrared rays transmitted through the optical fiber to measure the temperature of the fluid.
  • the cooling system of a nuclear power plant is generally composed of a primary cooling system for removing heat generated from the core of the reactor, and a secondary cooling system that transfers the heat of the primary cooling system to the turbine through a steam generator.
  • the cooling system includes many high pressure and high temperature piping.
  • the coolant is contaminated by radiation because it is exposed to the environment in the reactor, and it can withstand high temperature and high pressure environment to measure the temperature distribution and change of the coolant flowing through the cooling system. And a measuring equipment with high durability is needed.
  • the conventional pressurized water reactor mainly measures the temperature of the coolant by using a resistance temperature detector (RTD) and a thermocouple (TC).
  • the step change of the primary coolant temperature is a cause of reactor emergency stop for safety, so real-time measurement and immediate response are required. There is a problem that can cause serious accidents such as.
  • TC is susceptible to contamination and easily corroded
  • temperature measurement is unstable due to the influence of electromagnetic waves, and measurement errors increase with increasing temperature above 300 ° C, and the accuracy of noise decreases due to noise output or saturation output. have.
  • the present invention in order to solve the problems of the prior art, by connecting the cap to one end of the optical fiber that transmits the infrared rays, and configures the probe to transmit the infrared rays emitted through the inner peripheral surface of the cap to the optical fiber, and cooling it Insertion into the system's fluid channel directly detects infrared rays emitted from the inner circumferential surface of the cap, which is in thermal equilibrium with the fluid, and measures the temperature of the fluid to corrode the probe in high temperature and high pressure environments, such as the cooling system of a nuclear power plant.
  • An object of the present invention is to provide an embedded infrared fiber probe for measuring the temperature of a cooling system of a nuclear power plant that can measure a more accurate temperature in real time without the influence of electromagnetic waves and a temperature measuring system using the same.
  • Insertion-type infrared optical fiber probe for measuring the temperature of the cooling system of the nuclear power plant consisting of an optical fiber for transmitting infrared rays;
  • a protective tube formed to surround an outer circumferential surface of the optical fiber;
  • a hollow body having an opening formed at one side thereof, connected to one end of the optical fiber surrounded by the protection tube through the opening, and having an infrared ray emitting in the inner wall of the body in response to a temperature of a fluid flowing outside the body.
  • the cap is coated with a material, it characterized in that configured to transmit the infrared rays emitted from the infrared emitting material through the optical fiber corresponding to the temperature of the fluid flowing outside the cap.
  • the infrared ray is composed of a signal probe and a reference probe which is inserted into the fluid channel and transmits the infrared rays emitted in response to the temperature of the fluid
  • An optical fiber probe An infrared detector connected to the signal probe and the reference probe and detecting an infrared ray transmitted through the signal probe and the reference probe, respectively, and outputting an electrical signal according to the detected infrared signal;
  • a microprocessor that receives the electrical signal output from the infrared detector and calculates a temperature of the fluid based on a difference between two input signal values.
  • the signal probe and the reference probe may be formed of a core and a cladding, respectively.
  • Optical fiber which consists of infrared rays;
  • a protective tube formed to surround an outer circumferential surface of the optical fiber;
  • a hollow body having an opening formed at one side thereof, connected to one end of the optical fiber surrounded by the protection tube through the opening, and having an infrared ray emitting in the inner wall of the body in response to a temperature of a fluid flowing outside the body.
  • the cap is coated with a material; and the inner wall of the cap of the signal probe and the reference probe, characterized in that the infrared emitting material having a different infrared emissivity is coated.
  • Insertion type infrared optical fiber probe for measuring the temperature of cooling system of nuclear power plant according to the present invention, infrared optical fiber which is stable and excellent in response to external pollution and electromagnetic wave, and connected to one end of the optical fiber to emit infrared rays corresponding to the temperature of the fluid
  • the simple configuration including the cap to make it possible to accurately and stably measure the fluid temperature in high temperature and high pressure environment, such as cooling system of nuclear power plants.
  • the temperature measurement system using the inserted infrared optical fiber probe for measuring the temperature of the cooling system of the nuclear power plant because the measurement of the fluid temperature using a pair of probes having different infrared emissivity, offset according to the external environment There is an effect that can accurately measure the temperature of the fluid in real time without being affected by changes in the reference voltage.
  • FIG. 1 is a perspective view showing the configuration of an insertable infrared optical fiber probe for measuring the temperature of the nuclear power plant cooling system according to the present invention.
  • FIG. 2 is a cross-sectional view showing an internal configuration of the infrared optical fiber probe shown in FIG.
  • FIG 3 is a view showing the configuration of a temperature measuring system using an embedded infrared fiber probe for measuring the temperature of the cooling system of the nuclear power plant.
  • Insertion type infrared optical fiber probe for measuring the temperature of cooling system of nuclear power plant is configured by connecting a cap for emitting infrared radiation to one end of the optical fiber for transmitting infrared rays, the probe formed in such a high temperature, high pressure fluid channel
  • the infrared rays generated inside the cap in response to the temperature of the fluid through the optical fiber to the infrared detector can detect the temperature of the fluid in accordance with the converted electrical signal.
  • Equation 1 the intensity (I) of the infrared radiation emitted from the heat source is proportional to the temperature (T) of the heat source, and the relationship is given by Equation 1 below.
  • Equation 1 it can be seen that the intensity I of the infrared rays emitted from the heat source is changed according to the emissivity ⁇ of the heat source when the temperature T of the heat source is the same.
  • Equation 2 the maximum emission wavelength ⁇ max of the infrared rays emitted from the heat source is related to the temperature T of the heat source, and the relationship is expressed by Equation 2 below.
  • the maximum emission wavelength ( ⁇ max ) of infrared rays emitted from a heat source at room temperature 27 ° C. is 9.66 ⁇ m
  • the maximum emission wavelength ( ⁇ max ) of infrared rays emitted from a heat source at 300 ° C. is 5.067 ⁇ m. Therefore, it can be seen that the maximum emission wavelength ( ⁇ max ) becomes shorter as the temperature of the heat source increases.
  • the present invention is applied to the above principle, by using the infrared optical fiber probe directly inserted into the high-temperature, high-pressure fluid channel, the infrared radiation emitted from the cap coupled to the probe in response to the temperature of the fluid is transmitted, It is characterized by accurate measurement of fluid temperature in real time through the measurement of the infrared intensity (wavelength).
  • FIG. 1 is a perspective view showing the configuration of an insertable infrared optical fiber probe for measuring the temperature of the nuclear power plant cooling system according to the present invention
  • Figure 2 is a cross-sectional view showing the internal configuration of the infrared optical fiber probe shown in FIG.
  • the infrared optical fiber probes 100 and 200 for measuring the temperature of the nuclear power plant cooling system include: an optical fiber 110 including a core 112 and a cladding 114; A protective tube 120 formed to surround an outer circumferential surface of the optical fiber 100; And a hollow body having an opening part 133 formed at one side thereof, and connected to one end of the optical fiber 110 surrounded by the protection tube 120 through the opening part 133. And a cap 130 coated with an infrared emitting material that emits infrared rays corresponding to the temperature of the flowing fluid.
  • the optical fiber 110 is an infrared optical fiber that transmits infrared rays, and is composed of a core 112 made of a material having a predetermined reflectance and a cladding 114 made of a material having a different reflectance from the core 112.
  • Infrared optical fibers include silver halide optical fibers, sapphire optical fibers, chalcogenide optical fibers or hollow optical fibers, as shown in Table 1 below. As a result, it is configured to withstand extreme environments of high temperature and high pressure, is not affected by external pollution and electromagnetic waves, and has a fast response speed. Since the present invention aims to measure a relatively wide range of temperature in a high temperature / high pressure environment of 300 ° C. or higher, the melting point is 412 ° C. to suit the temperature measurement environment, and the transmission wavelength range of transmitted infrared rays is 3 to 16 ⁇ m. A relatively wide silver halide optical fiber was used.
  • the outer peripheral surface of the cladding 114 is coated with a PEEK (polyetheretherketone) polymer having a relatively high melting point of 343 ° C and a melting point of 327 ° C.
  • Teflon poly tetrafluoroethylene, Teflon
  • the optical fiber 110 having the configuration as described above is inserted into the protection channel 120 is inserted into the fluid channel again, the protection tube 120 is formed of stainless steel or Inconel alloy, stainless steel or Inconel alloy As a material having excellent chemical resistance and heat resistance, the optical fiber 110 exposed to the fluid channel in a high temperature and high pressure environment can be effectively protected.
  • the protective tube 120 is formed in a hollow cylindrical shape so as to insert the optical fiber 110 therein, one end, that is, a screw thread for coupling with the cap 130 on the outer peripheral surface of the upper body to which the cap 130 is connected ( 122) is formed. At this time, the outer peripheral surface of the optical fiber 110 and the inner surface of the protective tube 120 is in close contact with each other to prevent the fluid from flowing into the protective tube 120 when the optical fiber 110 and the protective tube 120 is coupled. Good to do.
  • the cap 130 has a hollow portion 132 having an opening 133 formed at one side of the body so that the optical fiber 110 can be inserted therein, and an opening 133 coupled to the protection tube 120.
  • the inlet side of the inner peripheral surface is formed with a screw groove 134 for coupling with the thread 122 is formed in the protective tube (120).
  • Cap 130 is connected to one end of the protective tube 120 in the state of inserting the optical fiber 110 surrounded by the protective tube 120 through the opening 133 into the hollow portion 132, the protective tube when connected
  • the screw thread 124 formed on the outer circumferential surface of the 120 and the screw groove 134 formed on the inner circumferential surface of the cap 130 are connected to each other.
  • the end of the optical fiber 110 is positioned at the inlet side of the opening 133 of the cap 130 when the cap 130 and the protection tube 120 is connected, so that the end of the optical fiber 110 is hollow (
  • the infrared rays generated from the cap 130 may be sufficiently incident through the end of the optical fiber 110 by being configured to be spaced a predetermined distance from the inner wall of the 132.
  • the optical fiber 110 when the end of the optical fiber 110 is connected to the inner wall of the hollow portion 132, only the infrared rays emitted from the cap 130 portion in which the optical fiber 110 is in close contact are incident on the optical fiber 110, but the optical fiber ( When the end of the 110 is connected by a predetermined distance away from the inner wall of the hollow portion 132 of the cap 130, since the infrared rays emitted from the inner wall of the cap 130 can be efficiently incident to the optical fiber 110, the optical fiber There is an advantage that the dose of infrared rays incident to the 110 is increased, so that the infrared detector connected to the optical fiber 110 can detect the infrared rays more effectively.
  • the probe 100 Since the probe 100 is configured to be directly inserted into the high pressure fluid channel, fluid may flow through the connection portion between the protective tube 120 and the cap 130. Therefore, it is preferable to waterproof by using a sealing member (not shown) such as an O-ring or a separate sealant having heat resistance at the connection portion between the protective tube 120 and the cap 130.
  • a sealing member such as an O-ring or a separate sealant having heat resistance at the connection portion between the protective tube 120 and the cap 130.
  • Cap 130 of the above-described configuration may be formed of stainless steel or Inconel alloy similar to the protective tube (120).
  • Stainless steel or Inconel alloy emits infrared rays with a wavelength corresponding to the temperature of the fluid and has good chemical resistance and is not easily corroded by the fluid.
  • the infrared emissivity ( ⁇ ) is considerably low, such as 0.01, so that the infrared emitter 140 having a higher emissivity than these components on the inner wall of the cap 130.
  • the amount of infrared radiation emitted from the inner wall of the cap 130 may be increased to improve the infrared detection capability of the infrared detector connected to the optical fiber 110.
  • the infrared emitting material 140 formed on the inner wall of the cap 130 may be a material having excellent heat resistance and having an emissivity higher than that of the cap 130.
  • the infrared emitting material 140 is most ideal that a black body having an emissivity of 1 is used.
  • various materials having relatively excellent emissivity may be applied.
  • black paint having an emissivity close to 1, asbestos, bronze paint, brass, carbon, or the like may be used.
  • the infrared optical fiber probe 100 detects the infrared rays emitted from the cap 130 corresponding to the temperature of the fluid into which the probe is inserted, converts them into electrical signals, The temperature is measured.
  • the offset reference voltage may change according to the change of the external environment in which the measurement is performed, and it is difficult to have high accuracy and reproducibility in the fluid temperature measurement result at every measurement. There is this.
  • the device or program that compensates the offset voltage and relational expression according to the situation in order to correct the temperature measurement result of the measured fluid under the influence of a given external environment. This may require additional difficulties.
  • a pair of probes each having a cap coated with infrared emitters having different infrared emissivity are applied to each other and inserted into a temperature measuring position, and the infrared rays transmitted through the respective probes are detected.
  • a temperature measurement system configured to accurately measure the temperature of the fluid by comparing the difference in the electrical signal output according to the detected infrared rays.
  • the configuration of the optical fiber probe for measuring the fluid temperature is inserted into the fluid channel, inside the cap 130
  • the signal probe 100 coated with the infrared emitter 140 having a relatively high infrared emissivity and the infrared emitter 240 having a relatively low infrared emissivity compared to the signal probe 100 are coated inside the cap 130.
  • the infrared emitting material 240 coated inside the cap 130 of the reference probe 200 may be formed of silver (Ag), aluminum (Al), or the like having a lower emissivity than that of the stainless steel constituting the cap 130.
  • the cap 130 may be used as it is, without being separately coated with an infrared emitter.
  • an infrared emitting material having different emissivity is composed of a pair of optical fiber probes coated inside the cap, By detecting the infrared rays emitted at different intensities by the difference in the emissivity of the infrared emitting materials coated inside the cap of each probe, by measuring the temperature of the fluid through the difference in the signal value of the electrical signal according to the detected infrared signal It is possible to measure the fluid temperature accurately regardless of the variation of the offset reference voltage.
  • FIG 3 is a view showing the configuration of a temperature measurement system using an embedded infrared fiber probe for measuring the temperature of the cooling system of the nuclear power plant.
  • the temperature measuring system includes an infrared optical fiber probe including a signal probe 100 and a reference probe 200 which are inserted into a fluid channel and transmit infrared light emitted corresponding to the temperature of the fluid. ; Connected to the signal probe 100 and the reference probe 200, respectively, and detects infrared rays transmitted through the signal probe 100 and the reference probe 200, respectively, and outputs an electrical signal according to the detected infrared signal. Infrared detector 300; And a microprocessor 500 that receives the electrical signals output from the infrared detector 300 and calculates the temperature of the fluid based on the difference between the two input signal values.
  • Infrared emitters 140 and 240 having different emissivity are coated on the inside of the cap 130 of the signal probe 100 and the reference probe 200, respectively, to emit the cap 130 in response to the temperature of the fluid.
  • the infrared rays are emitted with different intensities according to the emissivity of each of the infrared emitters 140 and 240 to be transmitted to the infrared detector 300 through the optical fiber 110.
  • the infrared emitter 140 having a relatively high infrared emissivity is coated inside the cap 130 of the signal probe 100, and the inside of the cap 130 of the reference probe 200 includes the signal probe 100.
  • each probe 100 and 200 is coated because the infrared emitter 240 is coated with an infrared emissivity of a relatively small value compared to the infrared emissivity of the infrared emitter 140 coated inside the cap 130. A difference occurs in the intensity of the infrared rays emitted from 130.
  • the infrared detector 300 injects infrared rays transmitted through the optical fiber 110 to output electrical signals corresponding to the respective infrared rays.
  • the infrared detector 300 may use a thermopile, a Mercury Cadmium Telluride (MCT) sensor, a pyroelectric sensor, or a bolometer according to the infrared emission wavelength range of the measurement temperature.
  • MCT Mercury Cadmium Telluride
  • the infrared detector 300 Between the microprocessor 500 and the amplification means 400 for properly amplifying the electrical signal output from the infrared detector 300 to transfer to the microprocessor 500 is preferably provided.
  • the microprocessor 500 receives the electrical signals output from the infrared detector 300, calculates the temperature of the fluid using the difference between the two input signal values, and displays the display 600 connected to the microprocessor 500. Displays the temperature of the fluid calculated through. As described above, since the microprocessor 500 calculates the temperature of the fluid using the difference in the signal value input through the infrared detector 300, the temperature of the fluid may be adjusted without the need for correcting the offset reference voltage according to the external environment. Accurate measurement in real time
  • Insertion type infrared optical fiber probe for measuring temperature of nuclear power plant cooling system and temperature measuring system using same are more accurate temperature in real time without the effect of probe corrosion or electromagnetic waves in high temperature and high pressure environment like cooling system of nuclear power plant It can be measured.
  • the present invention is used to measure the temperature distribution and change of the coolant flowing in the cooling system under the high temperature and high pressure environment of the nuclear power plant in real time, and also has a similar environment as well as a special environment, such as a nuclear power plant, difficult to direct human access and electromagnetic waves It can also be widely used in industrial fields with severe interference.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

본 발명은 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브 및 이를 이용한 온도 측정 시스템에 관한 것으로서, 더욱 상세하게는 적외선을 투과시켜 전송하는 광섬유의 일측 단부에 캡을 연결하여, 캡의 내주면을 통해 방출되는 적외선을 광섬유로 전송하도록 프로브를 구성하고, 이를 냉각계통의 유체 채널에 직접 삽입하여 유체와 열평형이 이루어진 캡의 내주면에서 방출되어 광섬유를 통해 전송되는 적외선을 검출하여 유체의 온도를 측정함으로써 원자력 발전소의 냉각계통과 같이 고온·고압 환경에서 프로브의 부식이나 전자기파의 영향 없이 보다 정확한 온도를 실시간으로 측정할 수 있는 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브 및 이를 이용한 온도 측정 시스템에 관한 것이다. 본 발명에 따른 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브는, 코어와 클래딩으로 이루어져 적외선을 전송하는 광섬유와; 상기 광섬유의 외주면을 둘러싸도록 형성되는 보호튜브; 및 일측에 개방부가 형성된 중공형의 몸체로 형성되어, 상기 개방부를 통해 상기 보호튜브에 둘러싸인 광섬유의 일측 단부에 연결되며, 몸체 내벽에는 몸체 외부를 흐르는 유체의 온도에 대응하여 적외선을 방출시키는 적외선 방출물질이 코팅되어 있는 캡;을 포함하여 구성되어, 상기 캡의 외부를 흐르는 유체의 온도에 대응하여 상기 적외선 방출물질로부터 방출되는 적외선을 상기 광섬유를 통해 전송하도록 구성된 것을 특징으로 한다.

Description

원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브 및 이를 이용한 온도 측정 시스템
본 발명은 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브 및 이를 이용한 온도 측정 시스템에 관한 것으로서, 더욱 상세하게는 적외선을 투과시켜 전송하는 광섬유의 일측 단부에 캡을 연결하여, 캡의 내주면을 통해 방출되는 적외선을 광섬유로 전송하도록 프로브를 구성하고, 이를 냉각계통의 유체 채널에 직접 삽입하여 유체와 열평형이 이루어진 캡의 내주면에서 방출되어 광섬유를 통해 전송되는 적외선을 검출하여 유체의 온도를 측정함으로써 원자력 발전소의 냉각계통과 같이 고온·고압 환경에서 프로브의 부식이나 전자기파의 영향 없이 보다 정확한 온도를 실시간으로 측정할 수 있는 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브 및 이를 이용한 온도 측정 시스템에 관한 것이다.
일반적으로 원자력발전소의 냉각계통은 통상 원자로의 노심에서 발생하는 열을 제거하기 위한 1차 냉각계통과, 증기발생기를 통해 1차 냉각계통의 열을 터빈 측으로 전달하는 2차 냉각계통으로 구성되며, 각 냉각계통은 수많은 고압·고온의 배관을 포함하고 있다.
또한, 이러한 1차 냉각계통의 경우, 원자로 내 환경에 노출되기 때문에 냉각재가 방사선에 의해 오염되어 있어, 냉각계통을 흐르고 있는 냉각재의 온도 분포 및 변화를 측정하기 위해서는 고온·고압의 환경에서도 충분히 견딜 수 있고 내구성이 높은 계측설비가 필요하다.
이에 따라 종래의 가압경수로(Pressurized Water Reactor, PWR)에서는 주로 RTD(Resistance Temperature Detector)와 TC(ThermoCouple)를 이용하여 냉각재의 온도를 측정하고 있다.
그러나 RTD의 경우, 냉각재의 온도 측정에 있어서 비교적 양호한 측정 결과를 보이고 있으나, 그 설치되는 위치에 따라 1.0 ~ 8.0초 정도의 응답시간 지연이 발생하고, 전극으로 사용되는 백금선의 마모, 화학물질 침투에 따른 균열 및 지시 오류 등의 문제점이 발생하였다.
특히, 1차 냉각수 온도의 계단변화(step change)는 안전을 위한 원자로 비상정지(scram)의 원인이 되기 때문에 실시간 계측과 즉각적인 대응이 요구되는데, 이러한 응답시간의 지연 때문에 즉각적인 대응이 늦어져 노심용융 등과 같은 중대사고가 발생될 수 있는 문제점이 있다.
또한, TC의 경우, 오염에 취약하여 부식되기 쉽고, 전자기파에 의한 영향으로 온도 측정이 불안정하며, 300℃ 이상의 고온으로 갈수록 측정 오차가 증가하고 잡음 출력 또는 포화출력 등에 의해 그 정확도가 낮아지는 문제점이 있다.
따라서 고온·고압 환경 하의 냉각계통에서 흐르는 냉각재의 온도를 보다 정확하게 측정할 수 있는 동시에, 빠른 응답속도를 갖는 실시간 계측장치가 요구되어 왔다.
본 발명은 상기한 종래기술의 문제점을 해결하기 위하여, 적외선을 투과시켜 전송하는 광섬유의 일측 단부에 캡을 연결하여, 캡의 내주면을 통해 방출되는 적외선을 광섬유로 전송하도록 프로브를 구성하고, 이를 냉각계통의 유체 채널에 직접 삽입하여 유체와 열평형이 이루어진 캡의 내주면에서 방출되어 광섬유를 통해 전송되는 적외선을 검출하여 유체의 온도를 측정함으로써 원자력 발전소의 냉각계통과 같이 고온·고압 환경에서 프로브의 부식이나 전자기파의 영향 없이 보다 정확한 온도를 실시간으로 측정할 수 있는 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브 및 이를 이용한 온도 측정 시스템을 제공하는데 그 목적이 있다.
본 발명에 따른 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브는, 코어와 클래딩으로 이루어져 적외선을 전송하는 광섬유와; 상기 광섬유의 외주면을 둘러싸도록 형성되는 보호튜브; 및 일측에 개방부가 형성된 중공형의 몸체로 형성되어, 상기 개방부를 통해 상기 보호튜브에 둘러싸인 광섬유의 일측 단부에 연결되며, 몸체 내벽에는 몸체 외부를 흐르는 유체의 온도에 대응하여 적외선을 방출시키는 적외선 방출물질이 코팅되어 있는 캡;을 포함하여 구성되어, 상기 캡의 외부를 흐르는 유체의 온도에 대응하여 상기 적외선 방출물질로부터 방출되는 적외선을 상기 광섬유를 통해 전송하도록 구성된 것을 특징으로 한다.
본 발명에 따른 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브를 이용한 온도 측정 시스템은, 유체 채널에 삽입되어 유체의 온도에 대응하여 방출되는 적외선을 전송하는 신호 프로브 및 기준 프로브로 구성되는 적외선 광섬유 프로브와; 상기 신호 프로브 및 상기 기준 프로브에 연결되어, 상기 신호 프로브 및 기준 프로브를 통해 전송되는 적외선을 각각 검출하여 검출된 적외선 신호에 따른 전기신호를 각각 출력하는 적외선 검출기; 및 상기 적외선 검출기에서 출력된 전기신호를 입력받아 입력된 두 신호 값의 차이에 근거하여 유체의 온도를 산출하는 마이크로 프로세서;를 포함하여 구성되며, 상기 신호 프로브 및 기준 프로브는 각각, 코어와 클래딩으로 이루어져 적외선을 전송하는 광섬유와; 상기 광섬유의 외주면을 둘러싸도록 형성되는 보호튜브; 및 일측에 개방부가 형성된 중공형의 몸체로 형성되어, 상기 개방부를 통해 상기 보호튜브에 둘러싸인 광섬유의 일측 단부에 연결되며, 몸체 내벽에는 몸체 외부를 흐르는 유체의 온도에 대응하여 적외선을 방출시키는 적외선 방출물질이 코팅되어 있는 캡;을 포함하여 구성되되, 상기 신호 프로브와 기준 프로브의 캡 내벽에는 각각 적외선 방사율이 서로 다른 적외선 방출물질이 코팅되는 것을 특징으로 한다.
본 발명에 따른 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브는, 외부 오염 및 전자기파에 안정적이고 응답속도가 우수한 적외선 광섬유와, 광섬유의 일측 단부에 연결되어 유체의 온도에 대응하는 적외선을 방출시키는 캡을 포함하여 구성되는 간단한 구성으로 원자력 발전소 냉각계통과 같은 고온·고압 환경에서의 유체 온도를 정확하고 안정적으로 측정할 수 있는 효과가 있다.
또한, 본 발명에 따른 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브를 이용한 온도 측정 시스템은, 적외선 방사율이 서로 다른 한 쌍의 프로브를 이용하여 유체의 온도를 측정하기 때문에 외부환경에 따른 오프셋 기준전압의 변화에 영향을 받지 않고 유체의 온도를 실시간으로 정확하게 측정할 수 있는 효과가 있다.
도 1은 본 발명에 따른 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브의 구성을 보여주는 사시도.
도 2는 도 1에 도시된 적외선 광섬유 프로브의 내부 구성을 보여주는 단면도.
도 3은 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브를 이용한 온도 측정 시스템의 구성을 보여주는 도면.
이하, 본 발명의 실시예에 대하여 상세히 설명하지만, 본 발명은 그 요지를 이탈하지 않는 한 이하의 실시예에 한정되지 않는다.
본 발명에 따른 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브는, 적외선을 전송하는 광섬유의 일측 단부에 적외선을 방출시키는 캡을 연결하여 구성되고, 이렇게 형성된 프로브를 고온·고압의 유체 채널에 직접 삽입하여 유체의 온도에 대응하여 캡 내부에서 발생되는 적외선을 광섬유를 통해 적외선 검출기로 전송하여 변환된 전기신호에 따라 유체의 온도를 검출할 수 있다.
흑체 방출에서 스테판-볼츠만의 법칙(Stefan-Boltzmann's law)에 따르면, 열원에서 방출되는 적외선의 강도(Intensity, I)는 열원의 온도(T)에 비례하며, 그 관계는 아래의 [수학식 1]과 같다.
수학식 1
Figure PCTKR2011007804-appb-M000001
(I는 적외선의 강도(Intensity), ε는 방사율(emissivity), σ는 스테판-볼츠만 상수(σ=5.67×10-12[W/(㎠·K4)]), T는 열원의 온도)
상기 [수학식 1]에 따르면, 열원에서 방출되는 적외선의 강도(I)는 열원의 온도(T)가 동일한 경우, 열원이 갖는 방사율(ε)에 따라 변화됨을 알 수 있다.
또한, 빈의 변위법칙(Wien's displacement law)에 따르면 열원에서 방출되는 적외선의 최대방출파장(λmax)은 열원의 온도(T)와 관계되며, 그 관계는 하기의 [수학식 2]와 같다.
수학식 2
Figure PCTKR2011007804-appb-M000002
(단위 ㎛·K)
상기 [수학식 2]에 따르면, 실온 27℃의 열원에서 방출되는 적외선의 최대방출파장(λmax)은 9.66㎛이고, 300℃의 열원에서 방출되는 적외선의 최대방출파장(λmax)은 5.067㎛이므로, 열원의 온도가 높아질수록 최대방출파장(λmax)은 짧아지는 것을 알 수 있다.
즉, 본 발명은 상기와 같은 원리를 적용하여, 고온·고압의 유체 채널에 직접 삽입된 적외선 광섬유 프로브를 이용하여, 유체의 온도에 대응하여 프로브에 결합된 캡으로부터 방출되는 적외선을 전송받아, 전송된 적외선 강도(파장)의 측정을 통해 유체의 온도를 실시간으로 정확하게 측정하는데 그 특징이 있다.
도 1은 본 발명에 따른 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브의 구성을 보여주는 사시도이고, 도 2는 도 1에 도시된 적외선 광섬유 프로브의 내부 구성을 보여주는 단면도이다.
도 1 및 도 2를 참조하면, 본 발명에 따른 원자력 발전소 냉각계통의 온도 측정을 위한 적외선 광섬유 프로브(100, 200)는, 코어(112)와 클래딩(114)으로 이루어지는 광섬유(110)와; 상기 광섬유(100)의 외주면을 둘러싸도록 형성되는 보호튜브(120); 및 일측에 개방부(133)가 형성된 중공형의 몸체로 형성되어, 상기 개방부(133)를 통해 보호튜브(120)에 둘러싸인 광섬유(110)의 일측 단부에 연결되며, 몸체 내벽에는 몸체 외부를 흐르는 유체의 온도에 대응하여 적외선을 방출시키는 적외선 방출물질이 코팅되어 있는 캡(130);을 포함하여 구성된다.
광섬유(110)는 적외선을 투과시켜 전송하는 적외선 광섬유로서, 소정의 반사율을 갖는 물질로 이루어진 코어(112)와, 코어(112)와 반사율이 서로 다른 물질로 이루어진 클래딩(114)으로 구성된다.
적외선 광섬유는 하기의 [표 1]에 보여지는 바와 같이, 실버 할라이드(silver halide) 광섬유, 사파이어(sapphire) 광섬유, 캘커제나이드(chalcogenide) 광섬유 또는 중공(hollow) 광섬유 등이 있으며, 이러한 광섬유는 통상적으로 고온·고압의 극한 환경에서 견딜 수 있도록 구성되고, 외부 오염 및 전자기파에 의한 영향을 받지 않으며, 그 응답 속도도 빠르다는 이점이 있다. 본 발명에서는 300℃ 이상의 고온·고압 환경에서의 비교적 넓은 범위의 온도를 측정하는 것을 목적으로 하고 있으므로, 온도 측정 환경에 적합하도록 녹는점이 412℃이고, 전송되는 적외선의 전송파장 범위가 3 ~ 16㎛로 비교적 넓은 실버 할라이드 광섬유를 사용하였다.
표 1
녹는점(℃) 전송파장 범위(㎛)
실버 할라이드 광섬유 412 3 ~ 16
캘커제나이드 광섬유 245 4 ~ 11
사파이어 광섬유 2030 0.5 ~ 3.1
중공 광섬유 150 0.9 ~ 25
또한, 고온·고압 환경 하에서의 광섬유(110)의 열화를 방지하기 위해, 상기 클래딩(114)의 외주면에는 녹는점이 343℃로 비교적 높은 PEEK(polyetheretherketone) 폴리머를 코팅하고, 그 위에 녹는점이 327℃이며 강한 내화학성을 갖는 테프론(poly tetrafluoroethylene, Teflon) 테이프를 부착하였다.
상술한 바와 같은 구성을 갖는 광섬유(110)는 다시 보호튜브(120) 내에 삽입되어 유체 채널로 삽입되게 되는데, 보호튜브(120)는 스테인레스 스틸 또는 인코넬 합금으로 형성되고 있으며, 스테인레스 스틸이나 인코넬 합금은 내화학성 및 내열성이 우수한 재질로서, 고온·고압 환경의 유체 채널에 노출되는 광섬유(110)를 효과적으로 보호할 수 있다.
보호튜브(120)는 내부에 광섬유(110)를 삽입할 수 있도록 중공의 원통형으로 형성되고, 일측 단부, 즉 캡(130)이 연결되는 몸체 상부 외주면에는 캡(130)과의 결합을 위한 나사산(122)이 형성되어 있다. 이때, 광섬유(110)와 보호튜브(120)의 결합시 보호튜브(120) 내부로 유체가 유입되는 것을 방지하기 위하여 광섬유(110)의 외주면과 보호튜브(120)의 내부면이 상호 밀착되도록 구성하는 것이 좋다.
캡(130)은 광섬유(110)를 삽입시킬 수 있도록 내부에는 몸체 일측에 개방부(133)가 형성되어 있는 중공부(132)가 형성되고, 보호튜브(120)와 결합되는 개방부(133)의 입구측 내주면에는 보호튜브(120)에 형성되어 있는 나사산(122)과의 결합을 위한 나사홈(134)이 형성되어 있다.
캡(130)은 개방부(133)를 통해 보호튜브(120)에 둘러싸인 광섬유(110)를 중공부(132)로 삽입시킨 상태로 보호튜브(120)의 일측 단부에 연결되며, 연결시 보호튜브(120)의 외주면에 형성되어 있는 나사산(124)과 캡(130)의 내주면에 형성되어 있는 나사홈(134)의 나사결합을 통해 연결된다.
여기에서 캡(130)과 보호튜브(120)의 연결시 광섬유(110)의 단부가 캡(130)의 개방부(133)의 입구측에 위치하도록 하여, 광섬유(110)의 단부가 중공부(132)의 내벽으로부터 소정 거리 이격되도록 구성함으로써 캡(130)에서 발생하는 적외선이 광섬유(110)의 단부를 통해 충분하게 입사될 수 있도록 하는 것이 좋다. 다시 말해서, 광섬유(110)의 단부가 중공부(132)의 내벽에 연결되는 경우에는 광섬유(110)가 밀착된 캡(130) 부분에서 방출되는 적외선만이 광섬유(110)로 입사되지만, 광섬유(110)의 단부를 캡(130)의 중공부(132) 내벽으로부터 소정 거리 이격시켜 연결하게 되면, 캡(130)의 내벽으로부터 방출되는 적외선이 광섬유(110)로 효율적으로 입사될 수 있기 때문에, 광섬유(110)로 입사되는 적외선의 선량이 증가하여 광섬유(110)에 연결되는 적외선 검출기에서 보다 효과적으로 적외선을 검출할 수 있다는 이점이 있다.
이렇게 구성되는 프로브(100)는 고압의 유체 채널에 직접 삽입되기 때문에 보호튜브(120)와 캡(130)의 연결부위를 통해 유체가 유입되는 현상이 발생할 수 있다. 따라서 보호튜브(120)와 캡(130)의 연결부위에 내열성을 갖는 오링(O-ring)이나 별도의 실런트(sealant) 등의 밀폐부재(미도시)를 이용하여 방수처리하는 것이 바람직하다.
상술한 구성의 캡(130)은 보호튜브(120)와 마찬가지로 스테인레스 스틸이나 인코넬 합금으로 형성될 수 있다. 스테인레스 스틸이나 인코넬 합금은 유체의 온도에 대응하는 파장을 갖는 적외선을 방출하며, 내화학성이 좋아 유체에 의해 쉽게 부식되지 않는다. 그러나 캡(130)을 구성하는 스테인레스 스틸이나 인코넬 합금의 경우, 적외선 방사율(ε)이 0.01 정도로 상당히 낮은 편이어서, 캡(130)의 내벽에 이들 구성물질보다 방사율이 높은 적외선 방출물질(140)을 형성함으로써 캡(130)의 내벽으로부터 방출되는 적외선의 방사량을 증가시켜 광섬유(110)에 연결되는 적외선 검출기에서의 적외선 검출능을 향상시킬 수 있다.
캡(130)의 내벽에 형성되는 적외선 방출물질(140)은, 내열성이 우수하고, 캡(130)의 방사율보다 높은 방사율을 갖는 물질이 사용될 수 있다. 이때, 적외선 방출물질(140)은 방사율(ε)이 1인 흑체가 사용되는 것이 가장 이상적이나, 그 외에도 비교적 우수한 방사율(ε)을 갖는 다양한 물질이 적용될 수도 있다. 이러한 적외선 방출물질(140)로는 방사율이 1에 가까운 검정색 도료나, 석면(asbestos), 청동(bronze) 페인트, 황동(brass), 카본(carbon) 등이 사용될 수 있으며, 이와 같이 캡(130)의 내벽에 방사율이 높은 적외선 방출물질(140)을 형성함으로써 캡(130) 내부에서 발생되는 적외선의 강도를 높여 광섬유(110)에 연결되는 적외선 검출기를 통한 검출 효율을 높일 수 있다.
상술한 바와 같은 구성을 통해, 본원발명에 따른 적외선 광섬유 프로브(100)는, 프로브가 삽입된 유체의 온도에 대응하여 캡(130)으로부터 방출되는 적외선을 검출하고, 이를 전기신호로 변환하여 유체의 온도를 측정하게 된다.
다만, 이 경우 측정이 수행되는 외부환경의 변화에 따라 오프셋 기준전압(offset reference voltage) 등이 변동되는 경우가 발생할 수 있어, 매 측정시마다 유체 온도 측정 결과에 있어서의 높은 정확도와 재현성을 갖기 어렵다는 문제점이 있다.
따라서, 한 개의 적외선 광섬유 프로브만을 이용하여 유체의 온도를 측정하고자 하는 경우, 주어진 외부환경의 영향에 따라 측정된 유체의 온도 측정 결과를 보정하기 위해 오프셋 전압 및 관계식을 상황에 따라 보정해주는 장치나 프로그램이 필요하다는 부가적인 어려움이 따를 수 있다.
본 발명에서는, 이러한 문제점을 해결하기 위하여 서로 다른 적외선 방사율을 갖는 적외선 방출물질이 코팅된 캡이 각각 적용된 한 쌍의 프로브를 구성하여 온도 측정 위치에 삽입하고, 각각의 프로브를 통해 전달되는 적외선을 검출하여, 검출된 적외선에 따라 출력되는 전기신호의 차이를 비교함으로써 유체의 온도를 정확하게 측정할 수 있도록 구성된 온도 측정 시스템을 구현하였다.
즉, 본 발명에 따른 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브를 이용한 온도 측정 시스템에서는, 유체 채널에 삽입되어 유체 온도를 측정하기 위한 광섬유 프로브를 구성함에 있어서, 캡(130) 내부에 비교적 적외선 방사율이 높은 적외선 방출물질(140)이 코팅된 신호 프로브(100)와, 신호 프로브(100)에 비해 상대적으로 낮은 적외선 방사율을 갖는 적외선 방출물질(240)이 캡(130) 내부에 코팅된 기준 프로브(200)의 한 쌍으로 이루어진 광섬유 프로브를 구비하여, 각각의 프로브(100, 200)를 통해 전송되는 적외선을 검출하여 얻어진 전기신호의 신호 값 차이를 비교함으로써 유체의 정확한 온도를 검출할 수 있도록 구성하였다. 이때, 기준 프로브(200)의 캡(130) 내부에 코팅되는 적외선 방출물질(240)은 캡(130)을 구성하는 스테인레스 스틸보다 작은 값의 방사율을 갖는 은(Ag)이나 알루미늄(Al) 등이 사용될 수 있고, 경우에 따라 캡(130) 내부에 적외선 방출물질을 별도로 코팅하지 않은 상태 그대로 사용할 수도 있다.
이와 같이, 본 발명에 따른 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브를 이용한 온도 측정 시스템에서는, 서로 다른 방사율을 갖는 적외선 방출물질이 캡 내부에 코팅된 한 쌍의 광섬유 프로브를 구성하고, 각각의 프로브의 캡 내부에 코팅된 적외선 방출물질의 방사율 차이에 의해 서로 다른 강도로 방출되는 적외선을 검출하여, 검출된 적외선 신호에 따른 전기신호의 신호 값 차이를 통해 유체의 온도를 측정함으로써 외부환경에 따른 오프셋 기준전압의 변동에 관계없이 정확한 유체 온도의 측정이 가능하게 되었다.
이하에서는 상술한 바와 같이 구성된 프로브를 이용하여 구성된 원자력 발전소 냉각계통의 온도 측정을 위한 온도 측정 시스템에 대하여 설명한다.
도 3은 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브를 이용한 온도 측정 시스템의 구성을 보여주는 도면이다.
도 3을 참조하면, 본 발명에 따른 온도 측정 시스템은, 유체 채널에 삽입되어 유체의 온도에 대응하여 방출되는 적외선을 전송하는 신호 프로브(100) 및 기준 프로브(200)로 구성되는 적외선 광섬유 프로브와; 상기 신호 프로브(100) 및 기준 프로브(200)에 각각 연결되어, 상기 신호 프로브(100) 및 기준 프로브(200)를 통해 각각 전달되는 적외선을 검출하여 검출된 적외선 신호에 따른 전기신호를 각각 출력하는 적외선 검출기(300); 및 적외선 검출기(300)에서 출력된 전기신호를 각각 입력받아 입력된 두 신호 값의 차이에 근거하여 유체의 온도를 산출하는 마이크로 프로세서(500);를 포함하여 구성된다.
신호 프로브(100)와 기준 프로브(200)의 캡(130) 내부에는 서로 다른 방사율을 갖는 적외선 방출물질(140, 240)이 각각 코팅되어 있어, 유체의 온도에 대응하여 캡(130) 내부에서 방출되는 적외선은 각각의 적외선 방출물질(140, 240)의 방사율에 따라 서로 다른 강도를 가지며 방출되어 광섬유(110)를 통해 적외선 검출기(300)로 전송되게 된다. 전술한 바와 같이 신호 프로브(100)의 캡(130) 내부에는 비교적 적외선 방사율이 높은 적외선 방출물질(140)이 코팅되어 있고, 기준 프로브(200)의 캡(130) 내부에는 신호 프로브(100)의 캡(130) 내부에 코팅된 적외선 방출물질(140)의 적외선 방사율에 비해 상대적으로 작은 값의 적외선 방사율을 갖는 적외선 방출물질(240)이 코팅되어 있기 때문에, 각각의 프로브(100, 200)의 캡(130)에서 방출되는 적외선의 강도에 차이가 발생하게 된다.
적외선 검출기(300)는 광섬유(110)를 통해 전송되는 적외선을 각각 입사시켜 각각의 적외선에 대응하는 전기신호를 출력한다. 적외선 검출기(300)는 측정온도의 적외선 방출 파장 범위에 따라 열전쌍열(thermopile), HgCdTe(Mercury Cadmium Telluride, MCT) 센서, 초전형(Pyroelectric) 센서 또는 볼로미터(Bolometer) 등이 사용될 수 있다. 이때, 광섬유(110)를 통해 전송되는 적외선의 강도가 약한 경우, 적외선 검출기(300)에서 출력되는 전기신호의 변화가 미미하게 나타날 수 있기 때문에, 보다 정확한 온도변화를 측정하기 위해서는 적외선 검출기(300)와 마이크로 프로세서(500) 사이에 적외선 검출기(300)에서 출력되는 전기신호를 적절하게 증폭시켜 마이크로 프로세서(500)로 전달하기 위한 증폭수단(400)이 구비되는 것이 좋다.
마이크로 프로세서(500)는 적외선 검출기(300)에서 출력된 전기신호를 각각 입력받아 입력된 두 신호 값의 차이를 이용하여 유체의 온도를 산출하고, 마이크로 프로세서(500)에 연결되는 디스플레이(600)를 통해 산출된 유체의 온도를 표시한다. 이와 같이 마이크로 프로세서(500)에서는 적외선 검출기(300)를 통해 입력된 신호 값의 차이를 이용하여 유체의 온도를 산출하기 때문에 외부환경에 따른 오프셋 기준전압을 보정하는 등의 번거로움 없이 유체의 온도를 실시간으로 정확하게 측정할 수 있다.
이와 같이, 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였으나, 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다.
본 발명에 따른 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브 및 이를 이용한 온도 측정 시스템은 원자력 발전소의 냉각계통과 같이 고온·고압 환경에서 프로브의 부식이나 전자기파의 영향 없이 보다 정확한 온도를 실시간으로 측정할 수 있다.
이러한 본 발명은 원자력 발전소의 고온·고압 환경 하의 냉각계통에서 흐르는 냉각재의 온도 분포 및 변화를 실시간으로 계측하는데 이용되며, 또한 원자력 발전소와 같은 특별한 환경 뿐만이니라 유사한 환경을 가지며 인간의 직접적인 접근이 어렵고 전자기파의 간섭이 심한 산업분야에서도 널리 이용될 수 있다.

Claims (12)

  1. 코어와 클래딩으로 이루어져 적외선을 전송하는 광섬유와;
    상기 광섬유의 외주면을 둘러싸도록 형성되는 보호튜브; 및
    일측에 개방부가 형성된 중공형의 몸체로 형성되어, 상기 개방부를 통해 상기 보호튜브에 둘러싸인 광섬유의 일측 단부에 연결되며, 몸체 내벽에는 몸체 외부를 흐르는 유체의 온도에 대응하여 적외선을 방출시키는 적외선 방출물질이 코팅되어 있는 캡;
    을 포함하여 구성되어,
    상기 캡의 외부를 흐르는 유체의 온도에 대응하여 상기 적외선 방출물질로부터 방출되는 적외선을 상기 광섬유를 통해 전송하도록 구성된 것을 특징으로 하는 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브.
  2. 제 1 항에 있어서,
    상기 광섬유는,
    실버 할라이드(silver halide) 광섬유인 것을 특징으로 하는 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브.
  3. 제 1 항에 있어서,
    상기 클래딩의 외주면에는,
    PEEK(polyetheretherketone) 폴리머가 코팅되고, 상기 PEEK 폴리머 코팅 위에 테프론(poly tetrafluoroethylene, Teflon) 테이프를 부착한 후, 상기 보호튜브로 둘러싸는 것을 특징으로 하는 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브.
  4. 제 1 항에 있어서,
    상기 보호튜브는,
    스테인레스 스틸 또는 인코넬 합금으로 형성되는 것을 특징으로 하는 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브.
  5. 제 1 항에 있어서,
    상기 캡의 개방부 입구측 내주면에는 나사홈이 형성되고,
    상기 캡과 연결되는 상기 보호튜브의 단부 외주면에는 나사산이 형성되어,
    상기 캡에 형성된 나사홈과 상기 보호튜브에 형성된 나사산의 나사결합을 통해 상기 캡과 보호튜브가 서로 연결되는 것을 특징으로 하는 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브.
  6. 제 5 항에 있어서,
    상기 캡과 상기 보호튜브의 연결부위는,
    밀폐부재를 개재하여 방수처리되는 것을 특징으로 하는 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브.
  7. 제 1 항에 있어서,
    상기 캡은,
    스테인레스 스틸 또는 인코넬 합금으로 형성되는 것을 특징으로 하는 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브.
  8. 제 1 항에 있어서,
    상기 캡의 내벽에 코팅되는 적외선 방출물질은,
    검정색 도료, 석면, 청동, 황동, 카본, 은(silver) 및 알루미늄(Al)으로 이루어지는 군에서 선택되는 한 가지 물질을 사용하여 형성되는 것을 특징으로 하는 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브.
  9. 원자력 발전소 냉각계통의 온도 측정을 위한 온도 측정 시스템에 있어서,
    유체 채널에 삽입되어 유체의 온도에 대응하여 방출되는 적외선을 전송하는 신호 프로브 및 기준 프로브로 구성되는 적외선 광섬유 프로브와;
    상기 신호 프로브 및 상기 기준 프로브에 연결되어, 상기 신호 프로브 및 기준 프로브를 통해 전송되는 적외선을 각각 검출하여 검출된 적외선 신호에 따른 전기신호를 각각 출력하는 적외선 검출기; 및
    상기 적외선 검출기에서 출력된 전기신호를 입력받아 입력된 두 신호 값의 차이에 근거하여 유체의 온도를 산출하는 마이크로 프로세서;
    를 포함하여 구성되며,
    상기 신호 프로브 및 기준 프로브는 각각,
    코어와 클래딩으로 이루어져 적외선을 전송하는 광섬유와;
    상기 광섬유의 외주면을 둘러싸도록 형성되는 보호튜브; 및
    일측에 개방부가 형성된 중공형의 몸체로 형성되어, 상기 개방부를 통해 상기 보호튜브에 둘러싸인 광섬유의 일측 단부에 연결되며, 몸체 내벽에는 몸체 외부를 흐르는 유체의 온도에 대응하여 적외선을 방출시키는 적외선 방출물질이 코팅되어 있는 캡;
    을 포함하여 구성되되,
    상기 신호 프로브와 기준 프로브의 캡 내벽에는 각각 적외선 방사율이 서로 다른 적외선 방출물질이 코팅되는 것을 특징으로 하는 원자력 발전소 냉각계통의 온도 측정을 위한 적외선 광섬유 프로브를 이용한 온도 측정 시스템.
  10. 제 9 항에 있어서,
    상기 신호 프로브의 캡 내벽에 코팅되는 적외선 방출물질은,
    검정색 도료, 석면, 청동, 황동 및 카본으로 이루어지는 군에서 선택되는 한 가지 물질을 사용하여 형성되는 것을 특징으로 하는 원자력 발전소 냉각계통의 온도 측정을 위한 적외선 광섬유 프로브를 이용한 온도 측정 시스템.
  11. 제 9 항에 있어서,
    상기 기준 프로브의 캡 내벽에 코팅되는 적외선 방출물질은,
    은(Ag) 또는 알루미늄(Al)으로 형성되는 것을 특징으로 하는 원자력 발전소 냉각계통의 온도 측정을 위한 적외선 광섬유 프로브를 이용한 온도 측정 시스템.
  12. 제 9 항에 있어서,
    상기 적외선 검출기와 상기 마이크로 프로세서 사이에는,
    상기 적외선 검출기에서 출력된 전기신호를 증폭시켜 상기 마이크로 프로세서로 전달하기 위한 증폭기가 추가로 구비되는 것을 특징으로 하는 원자력 발전소 냉각계통의 온도 측정을 위한 적외선 광섬유 프로브를 이용한 온도 측정 시스템.
PCT/KR2011/007804 2010-11-03 2011-10-19 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브 및 이를 이용한 온도 측정 시스템 WO2012060562A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0108597 2010-11-03
KR1020100108597A KR101193492B1 (ko) 2010-11-03 2010-11-03 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브 및 이를 이용한 온도 측정 시스템

Publications (2)

Publication Number Publication Date
WO2012060562A2 true WO2012060562A2 (ko) 2012-05-10
WO2012060562A3 WO2012060562A3 (ko) 2012-06-28

Family

ID=46024907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007804 WO2012060562A2 (ko) 2010-11-03 2011-10-19 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브 및 이를 이용한 온도 측정 시스템

Country Status (2)

Country Link
KR (1) KR101193492B1 (ko)
WO (1) WO2012060562A2 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
WO2013188833A3 (en) * 2012-06-15 2015-05-28 C.R. Bard, Inc. Apparatus and methods for detection of a removable cap on an ultrasound probe
US9211107B2 (en) 2011-11-07 2015-12-15 C. R. Bard, Inc. Ruggedized ultrasound hydrogel insert
USD754357S1 (en) 2011-08-09 2016-04-19 C. R. Bard, Inc. Ultrasound probe head
US10639008B2 (en) 2009-10-08 2020-05-05 C. R. Bard, Inc. Support and cover structures for an ultrasound probe head
US11103213B2 (en) 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
CN114624483A (zh) * 2022-05-13 2022-06-14 苏州联讯仪器有限公司 一种伸缩式芯片探针及芯片测试系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101283095B1 (ko) 2012-06-28 2013-07-05 주식회사 아이스기술 보일러 튜브의 온도 측정장치
KR101984861B1 (ko) * 2015-12-28 2019-06-04 한국원자력연구원 다중점 적외선 온도계측기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560286A (en) * 1977-12-07 1985-12-24 Luxtron Corporation Optical temperature measurement techniques utilizing phosphors
US5277496A (en) * 1990-10-17 1994-01-11 Ametek, Inc. High temperature optical probe
JPH08148502A (ja) * 1994-11-21 1996-06-07 Hitachi Ltd 温度検出装置および半導体製造装置
US20030228083A1 (en) * 2002-06-10 2003-12-11 Yaosheng Chen Fiber optical probes for temperature measurement with high speed

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731084B2 (ja) 1984-12-21 1995-04-10 日本電信電話株式会社 温度計測装置
US20080069180A1 (en) 2006-09-19 2008-03-20 Derek Djeu Fiber optic temperature sensing system using a hemispherical phosphor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560286A (en) * 1977-12-07 1985-12-24 Luxtron Corporation Optical temperature measurement techniques utilizing phosphors
US5277496A (en) * 1990-10-17 1994-01-11 Ametek, Inc. High temperature optical probe
JPH08148502A (ja) * 1994-11-21 1996-06-07 Hitachi Ltd 温度検出装置および半導体製造装置
US20030228083A1 (en) * 2002-06-10 2003-12-11 Yaosheng Chen Fiber optical probes for temperature measurement with high speed

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11103213B2 (en) 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US10639008B2 (en) 2009-10-08 2020-05-05 C. R. Bard, Inc. Support and cover structures for an ultrasound probe head
USD754357S1 (en) 2011-08-09 2016-04-19 C. R. Bard, Inc. Ultrasound probe head
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
US9211107B2 (en) 2011-11-07 2015-12-15 C. R. Bard, Inc. Ruggedized ultrasound hydrogel insert
CN104837413B (zh) * 2012-06-15 2018-09-11 C·R·巴德股份有限公司 检测超声探测器上可移除帽的装置及方法
CN104837413A (zh) * 2012-06-15 2015-08-12 C·R·巴德股份有限公司 检测超声探测器上可移除帽的装置及方法
US10820885B2 (en) 2012-06-15 2020-11-03 C. R. Bard, Inc. Apparatus and methods for detection of a removable cap on an ultrasound probe
WO2013188833A3 (en) * 2012-06-15 2015-05-28 C.R. Bard, Inc. Apparatus and methods for detection of a removable cap on an ultrasound probe
CN114624483A (zh) * 2022-05-13 2022-06-14 苏州联讯仪器有限公司 一种伸缩式芯片探针及芯片测试系统
CN114624483B (zh) * 2022-05-13 2022-08-02 苏州联讯仪器有限公司 一种伸缩式芯片探针及芯片测试系统
CN115201532A (zh) * 2022-05-13 2022-10-18 苏州联讯仪器有限公司 一种芯片测试系统
CN115201532B (zh) * 2022-05-13 2024-03-08 苏州联讯仪器股份有限公司 一种芯片测试系统

Also Published As

Publication number Publication date
KR20120046992A (ko) 2012-05-11
WO2012060562A3 (ko) 2012-06-28
KR101193492B1 (ko) 2012-10-22

Similar Documents

Publication Publication Date Title
WO2012060562A2 (ko) 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브 및 이를 이용한 온도 측정 시스템
US5348396A (en) Method and apparatus for optical temperature measurement
US7422365B2 (en) Thermal imaging system and method
US9158007B2 (en) Scintillation detector
WO1988004415A1 (en) Improved optical fiber temperature sensor
CN100494922C (zh) 溯源于绝对低温辐射计的锥形腔水浴黑体源及其标定方法
CN106539567A (zh) 身体核心温度测量
WO2012060563A2 (ko) 원자력 발전소 냉각계통의 pH 측정을 위한 광섬유 프로브 및 이를 이용한 pH 측정 시스템
CN109599220A (zh) 一种绝缘自测温电缆
CN111141396A (zh) 一种可连续测温的黑体空腔传感器
CN103017936B (zh) 热致色变光纤温度传感器及其传感方法
CN206504806U (zh) 蓝宝石光纤黑体腔温度传感器
CN103162840A (zh) 金属管状黑体空腔高温温度传感器
CN115824406B (zh) 一种野外光谱测量设备及系数标定方法
CN216696126U (zh) 一种液态金属表面发射率的测量装置
Machin et al. High-quality blackbody sources for infrared thermometry and thermography between− 40 and 1000° C
KR101153872B1 (ko) 복사간섭 보정이 가능한 기체 온도 측정기
CN106539566A (zh) 身体核心温度测量
EP0438880A2 (en) Apparatus and method for monitoring temperature of a fluid flowing in a pipe
US4502792A (en) Apparatus for calibrating a pyrometer
CN207421796U (zh) 热力管道光纤在线检漏系统
CN105698940B (zh) 一种用于高温液态金属的测温枪以及测温系统
CN115128119B (zh) 一种液态金属表面发射率的测量装置及方法
CN205352553U (zh) 一种电热堆型太阳辐射测试仪
KR100191210B1 (ko) 광온도 검출 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838167

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11838167

Country of ref document: EP

Kind code of ref document: A2