WO2012060495A1 - Appareil de gestion électrique pour gérer la consommation électrique et procédé de fonctionnement - Google Patents

Appareil de gestion électrique pour gérer la consommation électrique et procédé de fonctionnement Download PDF

Info

Publication number
WO2012060495A1
WO2012060495A1 PCT/KR2010/007821 KR2010007821W WO2012060495A1 WO 2012060495 A1 WO2012060495 A1 WO 2012060495A1 KR 2010007821 W KR2010007821 W KR 2010007821W WO 2012060495 A1 WO2012060495 A1 WO 2012060495A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
electronic device
management system
energy management
dtv
Prior art date
Application number
PCT/KR2010/007821
Other languages
English (en)
Inventor
Sangwon Kim
Original Assignee
Lg Electronics Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Electronics Inc. filed Critical Lg Electronics Inc.
Priority to KR1020137011079A priority Critical patent/KR101732628B1/ko
Priority to PCT/KR2010/007821 priority patent/WO2012060495A1/fr
Publication of WO2012060495A1 publication Critical patent/WO2012060495A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present invention relates to a power management apparatus for controlling an electronic device so that the electronic device is operated within restricted power consumption by restricting the consumption power of the electronic device and a method of controlling the same.
  • a smart power grid that is, a smart grid
  • a flexible rate system in which electric rates is varied according to a power demand may be introduced.
  • a power management apparatus includes a communication unit communicating with a power management network and a control unit determining a restricted power amount, determining a restricted device power amount for an electronic device connected to the power management network, transmitting a power restriction request including the restricted device power amount, to the electronic device, receiving a response to the power restriction request, and controlling power consumed by the power management network on the basis of the received response.
  • a power management apparatus for controlling power consumption of a power management network comprising a plurality of electronic devices, including a display unit, a communication unit communicating with the power management network, and a control unit displaying operations performed in the plurality of electronic devices through the display unit and transmitting a control signal for degrading or stopping at least one operation, selected from among the operations, to an electronic device performing the selected at least one operation.
  • a power management apparatus for controlling power consumption of a power management network comprising a plurality of electronic devices, including a communication unit communicating with the power management network and a control unit receiving a power reassignment request from a first electronic device of the plurality of electronic device, selecting a second electronic device from among the plurality of electronic devices, on the basis of a required power and an assigned operating power for each of the plurality of electronic devices, and transmitting a power restriction request to the selected second electronic device.
  • the present invention has the following advantages.
  • power management may be easily performed by managing consumption power by using electronic devices connected to a network.
  • consumption power is assigned to each of electronic devices connected to a network on the basis of consumption power assigned to the network. Accordingly, power consumed by the entire network may be effectively controlled.
  • FIG. 1 is a diagram showing a schematic construction of a smart grid
  • FIG. 2 is a diagram illustrating a power management network according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing an energy management system connected to the power management network according to an embodiment of the present invention
  • FIG. 4 is a block diagram of DTV which is one of electronic devices connected to the power management network
  • FIG. 5 is a flowchart illustrating the operation of the energy management system according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a method of operating an electronic device according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a negotiation procedure performed according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing a user interface in which the energy management system queries a user about the order of priority
  • FIG. 9 is a diagram showing a user interface in which the energy management system queries a user about an electronic device to be stopped;
  • FIG. 10 is a flowchart illustrating a method of an electronic device performing a power restriction operation according to a first embodiment of the present invention
  • FIG. 11 is a flowchart illustrating a procedure of an electronic device requesting the reassignment of power according to an embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating a method of an energy management system checking power consumption of an electronic device connected to a power management network according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing a schematic construction of a smart grid.
  • the smart grid includes a power plant for generating power through thermal power generation, nuclear power generation, or waterpower generation and a solar lighting plant and a wind power plant for generating power by using solar lighting or wind power which is new and renewable energy.
  • the thermal power plant, the nuclear power plant, or the waterpower plant sends power to a power plant through power-transmission lines, and the power plant sends electricity to a substation so that the electricity may be assigned to consumers, such as homes or offices.
  • electricity generated by new and renewable energy is sent to a substation so that the electricity is assigned to each consumer.
  • the electricity transmitted by the substation is assigned to offices or homes via a power storage device.
  • a home using a Home Area Network may also generate electricity by using solar lighting or a fuel cell mounted in a Plug in Hybrid Electric Vehicle (PHEV) and supply the generated electricity. The remaining may be sold externally.
  • HAN Home Area Network
  • PHEV Hybrid Electric Vehicle
  • An office or a home equipped with a smart measuring device or a smart server or both may check power and electric rates, used by each consumer, in real time.
  • a user may check the power and electric rates being used on the basis of the checked power and electric rates and adopt proper means for reducing power consumption or electric rates according to circumstances.
  • the power plant, the power plant, the storage device, and the consumer may bi-directionally communicate with each other. Accordingly, not only electricity may be one-sidedly supplied to the consumer, but also electricity may be generated and assigned according to circumstances of the consumer by informing the storage device, the power plant, and the power plant of conditions of the consumer.
  • an energy management system being in change of real-time power management for the consumer and the real-time expectation of required power
  • an advanced metering infrastructure AMI
  • the advance metering infrastructure is a basic technology intended to integrate consumers on the basis of an open architecture.
  • the advance metering infrastructure (AMI) enables a consumer to efficiently use electricity and provides a power supplier with an ability to efficiently operate a system by detecting problems in the system.
  • the open architecture unlike in a common communication network, refers to a criterion in which all electric devices may be interconnected in the smart grid system irrespective of whether the electric devices are manufactured by which manufacturer.
  • the advance metering infrastructure (AMI) used in the smart grid enables a consumer-friendly efficiency concept, such as "rices to devices.”
  • EMS energy management system
  • the energy management system (EMS) controls the real-time price signal through communication with each electric device. Accordingly, a user may check power information about each electric device, while seeing the energy management system (EMS), and perform power information processing, such as power consumption or setting up an electric rate limit, on the basis of the power information, thereby being capable of reducing energy and costs.
  • the energy management system may include local energy management systems (EMS) used in offices or homes and a central energy management system (EMS) configured to process pieces of information, combined by the local energy management systems (EMS), through bidirectional communication with the local energy management systems (EMS).
  • EMS local energy management systems
  • EMS central energy management system
  • the term 'energy management system (EMS)' is used, but the energy management system (EMS) may also be referred to as another terminology, such as a smart server, a smart home server, a power management server, a home server, or a similar name.
  • FIG. 2 is a diagram illustrating a power management network 10 at a home which is a major consumer of the smart grid.
  • the power management network 10 includes an advance metering infrastructure (AMI) smart meter 20 or an energy management system (EMS) 30 which may in real time measure electric power, supplied to each home, and electric rates.
  • AMI advance metering infrastructure
  • EMS energy management system
  • the electric rates may be billed on the basis of an hourly rate system.
  • Hourly electric rates may be high in a time period in which power consumption is rapidly increased, and hourly electric rates may be low in a late-night time period in which power consumption is relatively small.
  • the energy management system (EMS) 30 may be provided in the form of a terminal, including a screen 31 that displays a current electricity consumption state and external environments (e.g., temperature and humidity) and input buttons 32 that may be manipulated by a user.
  • EMS energy management system
  • the energy management system (EMS) 30 or the advance metering infrastructure (AMI) 20 is connected to electronic devices, such as digital television (DTV) 100, a refrigerator, a washing machine, a drying machine, an air conditioner, an illumination device, a light shading control apparatus, a dish washer, cooking equipment, a home server, and a personal computer, over a network within a home, and it may bi-directionally communicate with the electronic devices. That is, the energy management system (EMS) 30 may manage electric power consumed by the electronic devices included in the power management network 10 and supply electric power to the electronic devices.
  • the energy management system (EMS) 30 may control the operations of the electronic devices according to circumstances. For example, the energy management system (EMS) 30 may control the on/off states of the electronic devices through the power management network 10. Meanwhile, in case where the electronic device is an air conditioner, the energy management system (EMS) 30 may control temperature, the amount of wind, the operating mode, etc. of the air conditioner.
  • Communication within a home may be performed in a wired or wireless way.
  • communication between the energy management system (EMS) 30 and the electronic device may be performed through wireless communication technology, such as zigbee, WiFi, or Bluetooth or may be performed through wired communication technology, such as power line communication (PLC).
  • the electronic devices may communicate with other electronic devices.
  • the power management network 10 includes an auxiliary power supply 50 (that is, a self-generation facility 51, such as a solar lighting generation apparatus, and a storage battery 52 for accumulating electricity generated by the self-generation facility) provided at a home.
  • a self-generation facility 51 such as a solar lighting generation apparatus
  • a storage battery 52 for accumulating electricity generated by the self-generation facility
  • a fuel cell 53 may also be connected to the power management network 10, thereby being capable of serving as the auxiliary power supply.
  • the auxiliary power supply 50 serves to supply electric power to a home in the state in which electric power is not supplied by an external power supply, such as a power company.
  • the amount of electric power supplied by the auxiliary power supply or the amount of electric power charged in the auxiliary power supply 50 may be displayed in the energy management system (EMS) 30 or the advance metering infrastructure (AMI) 20.
  • EMS energy management system
  • AMI advance metering infrastructure
  • FIG. 3 is a block diagram showing the energy management system (EMS) connected to the power management network.
  • EMS energy management system
  • the energy management system (EMS) 30 may include a communication unit 31, an input unit 32, an output unit 33, a memory unit 34, a power supply unit 35, and a control unit 36.
  • the output unit 33 may include a display unit 33a for outputting an image and a sound output unit 33b for outputting a sound.
  • the communication unit 31 may send and receive data to and from electronic devices inside the power management network 10 and external devices outside the power management network 10.
  • the energy management system (EMS) 30 may receive electric power information pertinent to a smart grid including an electric rate telegraph (hereinafter referred to as 'smart grid information') from a power supplier through the communication unit 31.
  • the communication unit 31 may include one or more modules enabling communication between the DTV 100 and the network (for example, the Internet).
  • the communication unit 31 may receive the smart grid information by using a wire method (for example, Ethernet and PLC) or a wireless method (for example, zigbee).
  • a wire method for example, Ethernet and PLC
  • a wireless method for example, zigbee
  • the communication unit 31 may receive the smart grid information by using various communication protocols, such as a wired Internet, a wireless Internet, a mobile Internet, and a mobile communication network.
  • various communication protocols such as a wired Internet, a wireless Internet, a mobile Internet, and a mobile communication network.
  • a source of the smart grid information including the electric rate information, and a method of transmitting and receiving the smart grid information may be very various.
  • the input unit 32 generates input data that a user controls the operation of the energy management system (EMS) 30 or data input by a user.
  • EMS energy management system
  • a method of implementing the input unit 32 is not specially limited.
  • a keypad method, a wheel key method, a touchpad method, a touch screen method, or a method of combining two or more of the above methods may be chiefly used as the method of implementing the input unit 32.
  • the touch screen method is chiefly used with consideration taken of increased space utilization, a need for an enlarged display screen, and a design.
  • the input unit 32 and the display unit 33a may be integrated into one.
  • the output unit 33 outputs various data.
  • the output unit 33 generates outputs pertinent to a visual sensation or an auditory sensation and may include the display unit 33a and the sound output unit 33b.
  • the output unit 33 may further include a haptic module (not shown) for generating outputs related to a tactile sensation (for example, vibration).
  • the memory unit 34 stores data necessary to operate the energy management system (EMS) 30.
  • the memory unit 34 may store data received through the communication unit 31 or data received through the input unit 32 or both.
  • the power supply unit 35 receives electric power from the external power supply or the auxiliary power supply or both and supplies power necessary for the operations of the components of the energy management system (EMS) 30.
  • the power supply unit 35 may further include a battery, disposed within the energy management system (EMS) 30, in addition to the external power supply or the auxiliary power supply or both.
  • the control unit 36 generally controls the operation of the energy management system (EMS) 30. Further, the control unit 36 controls the operations of the communication unit 31, the input unit 32, the output unit 33, the memory unit 34, and the power supply unit 35.
  • EMS energy management system
  • the energy management system (EMS) 30 described above with reference to FIG. 3 performs a series of operations for controlling a variety of electronic devices (for example, a refrigerator, a washing machine, a drying machine, an air conditioner, an illumination device, a light shading control apparatus, a dish washer, cooking equipment, a home server, or a personal computer), connected to the power management network 10, on the basis of the smart grid information so that the electronic devices may consume restricted power.
  • the energy management system (EMS) 30 may perform an operation of sending a power restriction request to the electronic devices and receiving a corresponding response. A detailed method of operating the energy management system (EMS) 30 is described later.
  • the electric power used in this specification refers to the amount of electric energy which is used per unit time, and it is assumed that the electric power includes a concept of the amount of instant electric power.
  • FIG. 4 is a block diagram of DTV which is one of the electronic devices connected to the power management network.
  • the DTV 100 is illustrated in FIG. 4 as an example, and the operation of the DTV 100 is chiefly described. It is, however, evident to those skilled in the art that the present invention may be applied to other electronic devices other than the DTV 100.
  • the DTV 100 may include a communication unit 101, an input unit 102, an output unit 103, a memory unit 104, a power supply unit 105, and a control unit 106.
  • the output unit 103 may include a display unit 103a for outputting an image and a sound output unit 103b for outputting a sound.
  • the communication unit 101 may send and receive data to and from the energy management system (EMS) 30 or other electronic devices, included in the power management network 10, or both over the power management network 10. Further, the communication unit 101 may communicate with external electronic devices over a network different from the power management network 10.
  • EMS energy management system
  • the communication unit 101 may receive smart grid information from the energy management system (EMS) 30 or the external electronic devices by using a wire method (for example, Ethernet or PLC) or a wireless method (for example, zigbee).
  • EMS energy management system
  • the communication unit 101 may receive the smart grid information by using various communication protocols, such as a wire Internet, a wireless Internet, a mobile Internet, or a mobile communication network.
  • the input unit 102 generates input data that a user controls the operation of the DTV 100 or data input by a user.
  • a method of implementing the input unit 102 is not specially limited.
  • a keypad method, a wheel key method, a touchpad method, a touch screen method, or a method of combining two or more of the above methods may be used as the method of implementing the input unit 102.
  • the DTV 100 may receive an input signal through a remote controller (not shown), such as a space remote controller or a keypad remote controller.
  • the output unit 103 outputs various data.
  • the output unit 103 generates outputs pertinent to a visual sensation or an auditory sensation and may include the display unit 103a and the sound output unit 103b.
  • the output unit 103 may further include a haptic module (not shown) for generating outputs related to a tactile sensation (for example, vibration).
  • the memory unit 104 stores data necessary to operate the DTV 100.
  • the memory unit 104 may store data received through the communication unit 101 or data received through the input unit 102 or both.
  • the power supply unit 105 receives electric power from the external power supply or the auxiliary power supply or both and supplies electric power necessary for the operations of the components of the DTV 100.
  • the power supply unit 105 may further include a battery, disposed within the DTV 100, in addition to the external power supply or the auxiliary power supply or both.
  • the control unit 106 generally controls the operation of the DTV 100. Further, the control unit 106 controls the operations of the communication unit 101, the input unit 102, the output unit 103, the memory unit 104, and the power supply unit 105.
  • the DTV 100 described above with reference to FIG. 4 performs a series of operations for receiving information about power restriction from the energy management system (EMS) 30 and controlling the operation of the DTV 100 within the range of restricted power determined on the basis of the received information, on the basis of the smart grid information.
  • EMS energy management system
  • the DTV 100 may receive a power restriction request from the energy management system (EMS) 30 and send a response to the request to the energy management system (EMS) 30 on the basis of the request and a current operation condition of the DTV 100. Further, the DTV 100 may control the operations of the components (or modules) included therein so that the components (or modules) may be properly operated within the range of operating power (i.e., restricted power) determined on the basis of the request or the current operation condition of the DTV 100 or both.
  • EMS energy management system
  • EMS energy management system
  • FIG. 5 is a flowchart illustrating the operation of an energy management system according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating the operation of an energy management system according to an embodiment of the present invention.
  • an implementation of the operation of the energy management system according to the embodiment of the present invention is described on the basis of the energy management system 30 described above with reference to FIG. 3, for convenience of description, a method of operating the energy management system according to according to the embodiment of the present invention is not limitedly applied to the energy management system 30.
  • the energy management system 30 selects the amount of restricted power that may be consumed in the power management network 10 at step S100. That is, the energy management system 30 may select a restricted power value for the total power which may be consumed by not only the energy management system 30, but also various electronic devices included in the power management network 10. For example, assuming that one power management network 10 is independently configured in each home, the amount of the restricted power may be a restriction value for the total power consumed by one home.
  • the energy management system 30 may automatically select the amount of the restricted power by taking various criteria and policies or user requirements or both into consideration or may select the amount of the restricted power by a user input. For example, the energy management system 30 may select the amount of the restricted power in order to reduce electric rates in a high billing period and restrict power consumption by considering smart grid information received through the communication unit 31. In some embodiments, the energy management system 30 may select the amount of the restricted power on the basis of data inputted by a user through the input unit 32. Criteria that the energy management system 30 selects the amount of the restricted power and a power restriction time are described in more detail below.
  • the energy management system 30 may select the amount of the restricted power inputted by a user. That is, the energy management system 30 may control the operations of electronic devices so that the amount of the restricted power inputted by the user is not exceeded.
  • the user may differently set up the amount of the restricted power according to a time zone.
  • a user may set up a great amount of restricted power in the morning time zone where power consumption is relatively great (e.g., a time zone for the preparation of breakfast and office attendance) and in the evening time zone where power consumption is relatively great (e.g., a time zone for the preparation of dinner and a time zone where TV viewing is much) and may set up a relatively small amount of restricted power in the afternoon time zone where power consumption is relatively small (e.g., members of a family have gone to work).
  • the energy management system 30 may check the amount of restricted power at a current time and control the operation of each of electronic devices on the basis of the checked amount.
  • the energy management system 30 may flexibly change the amount of restricted power every moment on the basis of predetermined electric charges for a predetermined period.
  • the amount of the restricted power may be changed or determined by taking electric charges (this value may be a value determined according to a flat sum system or a value requested by a user), electric charges to be paid so far, the predetermined period, and/or current electric charges into consideration.
  • the energy management system 30 may control the operations of electronic devices so that the electronic devices consume electric power within the electric charges inputted by the user. More particularly, in case where a user has inputted 5 U.S.
  • the energy management system 30 may determine the amount of restricted power less than that at normal times during the remaining days of August and control electronic devices on the basis of the determined amount of restricted power.
  • the energy management system 30 may determine the amount of restricted power greater than that at normal times during the remaining days of August and control electronic devices on the basis of the determined amount of restricted power.
  • the energy management system 30 acquires a restricted device power amount to be assigned to each of electronic devices included in the power management network 10 within the range of the selected amount of the restricted device power at step S110.
  • the energy management system 30 may automatically select the restricted device power amount for each electronic device with consideration taken of various criteria and policies or user requirements or both or may select restricted power inputted by a user.
  • the energy management system 30 may analyze the past power usage pattern of electronic devices connected to the power management network 10, when the amount of the restricted power is selected, and acquire a restricted power amount for each electronic device which will be assigned to the electronic device on the basis of the analysis result.
  • An algorithm in which the energy management system 30 acquires the restricted power amount for each electronic device by analyzing the power usage pattern of the electronic devices may be very various. For example, a mean power value used by an electronic device in the past may be determined as the restricted power amount for the electronic device. In some embodiments, a past mean power value corresponding to the period to which a current time belongs may be determined as the restricted power amount for the electronic device. In some embodiments, the energy management system 30 may check an operation being now performed in the electronic device and determine mean power consumption, used to perform the operation in the past, as the restricted power amount for the electronic device.
  • the energy management system 30 may further perform an operation of identifying electronic devices consuming electric power (for example, electronic devices that are being turned on), from among electronic devices connected to the power management network 10.
  • the energy management system 30 may further perform an operation of checking whether there is an electronic device that is now turned off, but has to perform a scheduled operation in the time period to which the amount of the restricted power is applied.
  • the energy management system 30 may acquire the restricted power amount for each electronic device with consideration taken of a restricted power amount to be assigned to an electronic device which must perform a scheduled operation.
  • the energy management system 30 sends a power restriction request, including the acquired restricted power amount, to a corresponding electronic device at step S120.
  • the power restriction request may be sent in the form of a message.
  • the power restriction request may be written in the XML-based text format.
  • the power restriction request is to request that the corresponding electronic device be operated under restricted power.
  • the electronic device which has received the power restriction request may determine operating power on which the electronic device will be operated with reference to the restricted power amount in the power restriction request. If the operating power is determined, the electronic device must be operated within the range of the determined operating power, unless special circumstances occur.
  • the electronic device In response to the power restriction request, the electronic device sends a response to the energy management system 30 by taking the restricted power amount, included in the power restriction request, into consideration. A detailed operation of the electronic device according to the reception of the power restriction request is described later.
  • the energy management system 30 receives the response from the electronic device which has received the power restriction request at step S130.
  • the response may include an acceptance response and a rejection response.
  • the acceptance response and the rejection response are described in detail later.
  • the energy management system 30 determines whether the response is the acceptance response or the rejection response at step S140.
  • the energy management system 30 terminates the restricted power assignment operation with the electronic device. It does not mean that all the operations of the energy management system 30 are terminated. In case where restricted power assignment operation with other electronic devices is not terminated, the energy management system 30 may continue to perform the restricted power assignment operation with other electronic devices.
  • the energy management system 30 performs a series of negotiation procedures for assigning restricted power to the electronic device at step S150.
  • the negotiation procedures performed by the energy management system 30 are described in detail later.
  • the energy management system 30 may send the power restriction request to a plurality of electronic devices connected to the power management network 10, as described above.
  • the transmission of the power restriction request from the energy management system 30 to the plurality of electronic devices may be performed in a bundle or sequentially.
  • the energy management system 30 may determine a restricted power amount for each electronic device with respect to a plurality of electronic devices and then send the power restriction request to the electronic devices at a time.
  • the energy management system 30 may first send a power restriction request to the one electronic device without waiting for the determination of a restricted power amount for each of other electronic devices.
  • FIG. 6 is a flowchart illustrating a method of operating an electronic device according to an embodiment of the present invention. Although an implementation of the operation of the electronic device according to the embodiment of the present invention is described below in connection with the DTV 100 with reference to FIG. 4, for convenience of description, the method of operating the electronic device according to the embodiment of the present invention is not limited to the DTV 100, but may be applied to other electronic devices.
  • the DTV 100 receives a power restriction request from the energy management system 30 according to the above-described step S120, at step S200.
  • the DTV 100 compares a restricted power amount, included in the power restriction request, and required power necessary for its current condition at step S210.
  • the restricted power amount for the DTV 100 is a restricted power amount assigned to the DTV 100, as described above.
  • the required power refers to power consumption necessary for the operation of the DTV 100. Meanwhile, the operation of comparing the restricted power amount and the required power corresponds to an operation performed by the DTV 100 in order to select an operating power . In this specification, the required power and the operating power have different concepts.
  • the required power may be determined by various criteria. The various criteria are described in more detail below.
  • the required power may be determined as electric power consumed to perform the requested operation.
  • the DTV 100 may determine the required power as X.
  • the required power may be determined as electric power consumed to perform an operating mode set up in the DTV 100 at the request of a user, the control unit 106, or the energy management system 30.
  • the DTV 100 may determine the required power as Z.
  • the required power is determined as Z. Accordingly, if an algorithm in which the DTV 100 determines required power is different from the above, the DTV 100 may determine the required power as Y.
  • step S210 If, as a result of the comparison at step S210, the restricted power amount is the required power or higher, the step S220 is performed. If, as a result of the comparison at step S210, the restricted power amount is less than the required power, step S250 is performed.
  • the DTV 100 determines its own operating power at step S220.
  • the operating power is determined on the basis of the restricted power amount and the required power.
  • the DTV 100 must be operated within the range of the determined operating power, unless special circumstances occur. In other words, the DTV 100 must control the operation of each of the components (or modules), constituting the DTV 100, so that electric power consumed by the components does not exceed the determined operating power.
  • the DTV 100 may determine the operating power on the basis of various criteria.
  • the DTV 100 may determine the operating power having the same value as the restricted power amount. In case where current required power is less than a restricted power amount, but electric power greater than the current required power is expected to be required in the future, the DTV 100 may make the decision. In some embodiments, in case where current required power is less than a restricted power amount, but an operation request made by a user is determined to be irregular or an operation execution request made by a user is determined to be frequent, the DTV 100 may make the decision in order to secure redundant power necessary to perform an additional operation requested by the user.
  • the DTV 100 may determine the operating power as A in order to secure electric power necessary to perform the scheduled operation.
  • the DTV 100 may determine the operating power to have the same value as the required power. In case where more electric power than current electric power is not expected to be consumed in the future, the DTV 100 may make such decision.
  • the DTV 100 may determine the operating power as one value between the required power and a restricted power amount assigned to the DTV 100. For example, in the above example, in case where the electric power C necessary to perform the scheduled operation is greater than the electric power B necessary for the current operation being executed, but less than the restricted power amount A, the DTV 100 may determine the required power as C (where C is less than the restricted power amount A, but greater than the current electric power B). In addition, the DTV 100 may determine the operating power as one value between the required power and the restricted power amount in various ways by taking some conditions and the past power consumption pattern into consideration.
  • the DTV 100 sends a response to the power restriction request at step S230.
  • the response sent by the DTV 100 is an acceptance response.
  • the acceptance response may perform a function of informing the energy management system 30 that the DTV 100 has determined operating power in response to the power restriction request.
  • the acceptance response may include required power or operating power determined by the DTV 100.
  • the energy management system 30 may use the required power and the operating power when subsequently performing a negotiation procedure with other electronic devices in a process of assigning a restricted power amount to each electronic device. This is described in detail later.
  • the DTV 100 performs a power restriction operation on the basis of the determined operating power so that electric power consumed by the operation of the DTV 100 does not exceed the determined operating power at step S240.
  • the DTV 100 sends a response to the power restriction request at step S250.
  • the response is a rejection response.
  • the rejection response may perform a function of informing the energy management system 30 that the DTV 100 has rejected the power restriction request.
  • the rejection response may include the required power determined by the DTV 100.
  • the rejection response may further include the order of priority given to an operation which is being performed by the DTV 100.
  • the energy management system 30 may use the required power or the order of priority when performing a series of processes for subsequently reassigning a restricted power amount to the DTV 100.
  • the DTV 100 temporarily performs a power restriction operation at step S260.
  • the DTV 100 may determine the determined required power as the operating power and control its own operation on the basis of the operating power.
  • the operation of the DTV 100 may be temporarily controlled so that the DTV 100 does not use electric power higher than current electric power that is now being used.
  • the DTV 100 may wait for until a re-power restriction request is received from the energy management system 30 at step S270.
  • the DTV 100 may return to the step S210 and perform a series of the operations again.
  • the operation of the energy management system 30 restricting electric power, consumed by each of electronic devices, by sending a power restriction request to each of the electronic devices has been described above. If all the electronic devices accept the power restriction request, the power assignment procedure may be smoothly completed, but some of the electronic devices may reject the power restriction request as described above.
  • a negotiation procedure for assigning electric power to some of electronic devices in case where some of the electronic devices reject a power restriction request is described below.
  • FIG. 7 is a diagram illustrating a negotiation procedure performed according to an embodiment of the present invention.
  • FIG. 7 shows a case where the energy management system (EMS) has selected 500 as the restricted power amount at step S100 and acquired 300 and 200 for a first electronic device DEVICE A and a second electronic device DEVICE B, respectively at step S110. Furthermore, FIG. 7 shows that the first electronic device DEVICE A has determined his own required power as 250 and the second electronic device DEVICE B has determined his own required power as 250, on the basis of the above-described predetermined criteria.
  • EMS energy management system
  • the energy management system may send a power restriction request, including 300 (i.e., a restriction value determined for the first electronic device DEVICE A), to the first electronic device DEVICE A.
  • the first electronic device DEVICE A may send an acceptance response to the energy management system (EMS) as described above. This is because the assignment value for the first electronic device DEVICE A is greater than the required power value 200 determined by the first electronic device DEVICE A.
  • the energy management system (EMS) may consider that the assignment of the restricted power amount to the first electronic device DEVICE A is successful.
  • the acceptance response may include the required power determined by the first electronic device DEVICE A.
  • the energy management system may send a power restriction request, including 200 (i.e., a restriction value determined for the second electronic device DEVICE B), to the second electronic device DEVICE B. It is not required that the energy management system ESM send a power restriction request to the second electronic device DEVICE B after receiving the response from the first electronic device DEVICE A. The transmission of the power restriction request to the first electronic device DEVICE A and the second electronic device DEVICE B and the reception of the responses therefrom may be performed in parallel. In response to the power restriction request, the second electronic device DEVICE B may send a rejection response to the energy management system (EMS), as described above.
  • EMS energy management system
  • the energy management system may consider that the assignment of the restricted power amount to the second electronic device DEVICE B is unsuccessful.
  • the rejection response may include the required power determined by the second electronic device DEVICE B.
  • the rejection response may further include the order of priority given to one or more of operations which are being performed in the second electronic device DEVICE B.
  • the energy management system may secure redundant power in order to further assign the shortage 50 to the second electronic device DEVICE B or, in case where the redundant power is not secured, may control the second electronic device DEVICE B so that the second electronic device DEVICE B is operated according to the restriction value for the second electronic device DEVICE B by stopping a current operation or degrading the quality of a current operation.
  • the energy management system (EMS) may check whether the redundant power to be assigned to the second electronic device DEVICE B may be secured. In order to check whether the redundant power may be secured, the energy management system (EMS) may refer to the required power included in the acceptance response. For example, the energy management system (EMS) may know that the redundant power 50 may be secured from the first electronic device DEVICE A with reference to the restriction value assigned to the first electronic device DEVICE A and the required power received from the first electronic device DEVICE A.
  • the energy management system (EMS) may send a power restriction request to the first electronic device DEVICE A again.
  • the restriction value for the first electronic device DEVICE A, included in the power restriction request may be 250.
  • the energy management system (EMS) may request the first electronic device DEVICE A to determine the required power, received from the first electronic device DEVICE A, as the restriction value for the first electronic device DEVICE A.
  • the energy management system (EMS) may receive an acceptance response from the first electronic device DEVICE A, unless special circumstances occur (for example, a case where required power has bee abruptly increased after a previous acceptance response). Accordingly, the energy management system (EMS) may secure the redundant power to be assigned to the second electronic device DEVICE B.
  • the energy management system may send a power restriction request to the second electronic device DEVICE B.
  • a restriction value for the second electronic device DEVICE B, included in the power restriction request may be 250 which has risen from the existing restriction value 200 and to which the redundant power 50 secured from the first electronic device DEVICE A during the above process has been added.
  • the energy management system (EMS) may receive an acceptance response from the second electronic device DEVICE B.
  • the energy management system (EMS) when the energy management system (EMS) first assigns the restriction value 300 for the first electronic device DEVICE A to the first electronic device DEVICE A, the first electronic device DEVICE A may determine operating power as 250 (i.e., the required power) and send the determined operating power, together with the acceptance response, as described above. In this case, if a rejection response is received from the second electronic device DEVICE B, the energy management system (EMS) may immediately perform a power re-assignment procedure for the second electronic device DEVICE B without performing a power re-assignment procedure for the first electronic device DEVICE A. This is because the energy management system (EMS) has already known that the redundant power 50 has been secured in virtue of the active operation of the first electronic device DEVICE A.
  • the energy management system uses required power for each electronic device, included in an acceptance response, in order to determine whether redundant power may be secured.
  • the energy management system (EMS) may send a message, requesting a plurality of electronic devices included in the power management network 10 to response to required power actually being used in the electronic device, to the electronic devices.
  • the message may be sent in a broadcasting manner.
  • the negotiation procedure according to the embodiment of the present invention has been described above with reference to FIG. 7 assuming that the number of electronic devices is 2, those skilled in the art will appreciate that redundant power may be secured by using a method similar to the above negotiation procedure in case where the number of electronic devices is three or more. Furthermore, the negotiation procedure according to the embodiment of the present invention, described above with reference to FIG. 7, may be performed in case where electric power that may be applied to one electronic device is insufficient. A trigger to perform the negotiation procedure is not limited thereto. That is, it is not required that the negotiation procedure be performed only in case where one electronic device sends a rejection response in response to a power restriction request.
  • the negotiation procedure may be performed in case where a new electronic device joins the power management network 10 and electric power has to be assigned to the new electronic device.
  • the energy management system EMS may perform the negotiation procedure in case where an electronic device to which electric power has already been assigned requests the assignment of more electric power because a special circumstance has occurred.
  • the energy management system 30 may perform the following forced assignment procedure.
  • the energy management system 30 may query a user about the order of priority of power assigned to each electronic device.
  • FIG. 8 is a diagram showing a user interface in which the energy management system queries a user about the order of priority.
  • the energy management system 30 displays a window W1 displaying a list of electronic devices now being operated or expected to be operated in the future, along with a sentence requesting a user to determine and input the order of priority, on the display unit 33a.
  • the window W1 matches a list of electronic devices with current operation kinds or scheduled operation kinds of the electronic devices and brief descriptions of the operations thereof. The user may select the importance of each operation with reference to the information about the electronic devices and operations thereof, while seeing the window W1.
  • the user interface of the energy management system 30, provided to the user so that the user may select the importance of an operation through the energy management system 30, may be very various.
  • the user interface may be provided to the user so that the user may sequentially select the order of priorities of the operations.
  • a user interface in which a user may input which priority order will be assigned to each operation, from among predetermined priority orders. That is, a user may input the order of priority per operation by inputting the order of priority so that each operation belongs to a specific priority order, from among the order of priorities classified into the first priority to the fourth priority. A description corresponding to each priority order may be provided to the corresponding priority order.
  • a description, such as 'an operation that must now be performed and not allowed for degradation of the quality' may be provided to the first priority
  • a description, such as 'an operation that must now be performed and allowed for degradation of the quality' may be provided to the second priority
  • a description, such as 'an operation that needs not to be performed now, but needs to be operated again subsequently' may be provided to the third priority
  • a description, such as 'an operation that needs not to be performed now, but also needs not to be operated again subsequently' may be provided to the fourth priority.
  • the classification of the priorities is not limited thereto, but may be changed in various ways.
  • the energy management system 30 may request degradation of the quality in an operation, the stop of the operation, or both from each of electronic devices in relation to some of operations being operated in the electronic device with consideration taken of selected or inputted importance (or the order of priority) through the window W1 or the user interface or both. Redundant power obtained because of degradation of the quality in the operation, the stop of the operation, or both may be used as a restricted power amount for each electronic device, requested in the above negotiation procedure.
  • An algorithm in which the energy management system 30 will degrade which operation (or an operation of which electronic device) and degrade the operation to what extent if the operation is degraded, or will stop which operation may be very various.
  • the energy management system 30 degrades the operation quality of each electronic device or stops the operation of its own accord even though it is operated on the basis of importance inputted or selected by a user, unexpected inconvenience may lead to the user. For example, there may be a case where, during the time for which a user watches a movie through the DTV 100, the screen size of the movie or the volume of the movie, displayed in the DTV 100, is greatly reduced in response to an operation degradation request made by the energy management system 30. In this case, the user may feel inconvenience.
  • the energy management system 30 allows the user to select an operation allowed to stop operating in each electronic device, rather than to select importance or the order of priority for an operation in each electronic device.
  • FIG. 9 is a diagram showing a user interface in which the energy management system queries a user about an electronic device to be stopped.
  • the energy management system 30 displays a window W2 displaying a list of electronic devices now being operated or expected to be operated in the future, along with a sentence requesting a user to input an operation to be stopped, on the display unit 33a. Furthermore, information about redundant power that must be secured now may be provided to a user.
  • the window W2 matches a list of electronic devices with current operation kinds or scheduled operation kinds of the electronic devices and brief descriptions of the operations thereof. The user may select the importance of each operation with reference to the information about the electronic devices and operations thereof, while seeing the window W1. Further, the window W2 may display electric power consumed by each operation.
  • a check box for receiving a choice about whether the stopped operation will be restarted when redundant power is subsequently secured may be further provided in the window W2.
  • a user may select an operation to be stopped in the window W2 with reference to various electronic devices, power consumption information about the electronic devices, and information about redundant power to be secured.
  • the user interface of the energy management system 30, provided to a user, so that the user may select the importance of an operation through the energy management system 30 may be very various.
  • the energy management system 30 is illustrated to display all pieces of information.
  • the present invention is not limited to the above embodiments in which all the pieces of information are displayed in the energy management system 30.
  • the pieces of information may be displayed through the DTV 100 connected to the power management network 10.
  • the pieces of information may be displayed through a general-purpose computer connected to the power management network 10. Accordingly, a user may receive and input information through a more convenient user interface with a larger screen.
  • the present invention is not limited to the display of the pieces of information, and the pieces of information may be output as a sound.
  • FIG. 10 is a flowchart illustrating a method of an electronic device performing the power restriction operation according to the first embodiment of the present invention.
  • An implementation of the power restriction operation according to an embodiment of the present invention is described in connection with the DTV 100 described with reference to FIG. 4, for convenience of description, but the method of an electronic device performing the power restriction operation according to the embodiment of the present invention is not limited to the DTV 100.
  • the DTV 100 controls its own operation so that the total operating power is not exceeded.
  • the DTV 100 continues to check power consumption. If the power consumption exceeds the operating power while checking, the DTV 100 may expect power for each component (or module) consumed to perform an operation, assign the expected electric power to the component, and degrade the performance of the operation of the component on the basis of the assigned electric power.
  • the DTV 100 determines operating power as described above at step S300.
  • the DTV 100 determines whether its own power consumption exceeds the determined operating power, while checking the power consumption, at step S310.
  • the checking operation of the DTV 100 may be performed in real time or may be performed periodically.
  • the DTV 100 analyzes an operation that is being performed or that has been requested to be performed at step S320. For example, the DTV 100 may determine whether the corresponding operation is to watch video contents such as a stored movie, to watch video contents such as TV broadcasting, to record video contents, to listen to sound contents such as music received through a broadcasting signal, or to perform Internet browsing.
  • the DTV 100 determines components (or modules) necessary for the operation on the basis of the analyzed result at step S330. For example, in case where the operation is to watch stored video contents, the DTV 100 may determine that the memory unit 104, the output unit 103, the input unit 102, and the control unit 106 are components necessary for the operation. For another example, in case where the operation is to output sound contents through a broadcasting signal, the DTV 100 may determine that the communication unit 101, the sound output unit 103b, the input unit 102 and the control unit 106 are components necessary for the operation.
  • the DTV 100 assigns electric power to the determined components per component at step S340.
  • the DTV 100 may assign electric power to each of components used to perform the analyzed operation by analyzing the past power consumption pattern of the component.
  • the DTV 100 may control the operating power so that the operating power is not assigned to the battery. That is, the DTV 100 may control the operating power so that the operating power is not consumed to charge the battery. If a requested operation is to charge the battery, the DTV 100 may control the operating power so that the operating power is consumed to only charge the battery.
  • the DTV 100 properly assigns the operating power to the components per component and controls the components so that each of the components is operated within the range of the power assigned thereto at step S350.
  • the DTV 100 may induce the performance of an operation of the corresponding component to be degraded.
  • the DTV 100 may assign electric power of 400 (i.e., power for each component) to the display unit 103a.
  • the display unit 103a may reduce electric power consumed by itself by reducing the brightness or size of the contents displayed in the display unit 103a.
  • the DTV 100 may check power consumed by itself in real time, while performing the above-described power restriction operation. That is, the DTV 100 may continue to perform the step 310. In other words, the DTV 100 continues to check power consumption in real time. If the power consumption exceeds operating power while checking, the DTV 100 analyzes an operation, determines electric power to be assigned to each component on the basis of the analyzed operation, and assigns the determined power to a corresponding component. As described above, the DTV 100 may control a requested operation so that the requested operation is performed within the range of the operating power assigned to the DTV 100. That is, the DTV 100 may dynamically control electric power assigned to each component according to circumstances in response to the requested operation.
  • the DTV 100 may first assign operating power, assigned thereto, to components (or modules) and then control the components so that each of the components is operated within the range of power assigned to a corresponding component.
  • the electronic device may request the reassignment of power from the energy management system (EMS) 30.
  • EMS energy management system
  • FIG. 11 is a flowchart illustrating a procedure of an electronic device requesting the reassignment of power according to an embodiment of the present invention.
  • the DTV 100 receives a predetermined operation requested by a user or an external device including the energy management system (EMS) 30 at step S400.
  • EMS energy management system
  • the DTV 100 may check whether it is operated within the range of determined operating power as described above at step S410. That is, the DTV 100 determines whether power consumed by the requested operation exceeds the operating power at step S410.
  • the DTV 100 may query the user about whether the requested operation must be performed at step S420 and receive a response thereto from the user.
  • the DTV 100 may output a message, informing that the requested operation maynot be performed because of a power restriction operation, through the output unit 103 at step S430. At the same time, the DTV 100 may disregard the requested operation and check the power restriction operation again.
  • the DTV 100 may query the user about whether the performance of the requested operation is allowed to be degraded at step S440 and receive a response thereto from the user.
  • the DTV 100 performs the requested operation on the basis of degraded performance at step S450. For example, in case where watching video contents has been requested through the DTV 100, the DTV 100 may output the video contents, but output the video contents with a reduced brightness, size, or sound volume.
  • the DTV 100 requests the energy management system (EMS) 30 to reassign power thereto at step S460. That is, the DTV 100 determines that the requested operation must be performed and requests the energy management system 30 to reassign power necessary to perform the requested operation.
  • EMS energy management system
  • the DTV 100 may send a power reassignment request to the energy management system 30.
  • the power reassignment request may include power necessary for the requested operation.
  • the power reassignment request may further include information about the order of priority given to the requested operation.
  • the energy management system 30 may secure redundant power by performing the above-described negotiation procedure on the basis of the power necessary to perform the requested operation or the information about the order of priority or both. Next, the energy management system 30 may send a power assignment request to the DTV 100 and reassign the secured redundant power to the DTV 100.
  • the DTV 100 is operated according to the power assignment operation and the power restriction operation of an electronic device.
  • FIG. 12 is a flowchart illustrating a method of an energy management system checking power consumption of an electronic device connected to a power management network according to an embodiment of the present invention. It is hereinafter assumed that the electronic device is the DTV 100, for convenience of description.
  • the energy management system (EMS) 30 acquires power consumed by the DTV 100 connected to the power management network 10 at step S500.
  • the power consumption of the DTV 100 may be measured by the DTV 100 and transmitted to the energy management system (EMS) 30.
  • the energy management system (EMS) 30 may directly measure or calculate or both the power consumed by the DTV 100.
  • the DTV 100 may be equipped with a measuring instrument (not shown) for measuring the power consumption.
  • a smart meter connected to the power source unit 105 of the DTV 100 may measure the power consumption.
  • a smart meter connected between an electric outlet for supplying power and the plug of the power source unit 105 may measure power consumed by the DTV 100.
  • the measured value may be transmitted to the energy management system (EMS) 30 over the power management network 10.
  • EMS energy management system
  • the energy management system (EMS) 30 monitors power consumed by the DTV 100 on the basis of the acquired power consumption. That is, the energy management system (EMS) 30 may determine whether the power consumption of the DTV 100 exceeds operating power assigned to the DTV 100 at step S510.
  • the operating power assigned to the DTV 100 may be acquired through the above-described response to a power restriction request. If operating power determined by the DTV 100 is not included in the response to the power restriction request, the energy management system (EMS) 30 may acquire the operating power, assigned to the DTV 100, through an additional request.
  • EMS energy management system
  • step S510 If, as a result of the determination at step S510, the consumption power exceeds the operating power during the monitoring operation, the process proceeds to step S520. However, if, as a result of the determination at step S510, the consumption power does not exceed the operating power, the process returns to the step S500 in which the energy management system (EMS) continues to monitor power consumed by the DTV 100 in real time.
  • EMS energy management system
  • the energy management system (EMS) 30 determines whether power needs to be reassigned to the DTV 100 at step S520. For example, in order to make the determination, the energy management system (EMS) 30 may acquire information about an operation now being performed in the DTV 100, output a screen, querying a user about whether the operation now being performed in the DTV 100 is necessarily required, through the display unit 33a, and receive a response to the query from the user. In some embodiments, the energy management system (EMS) 30 may check whether power needs to be assigned to the DTV 100 by outputting the above query screen to the DTV 100 through the display unit 103a of the DTV 100 and requesting the DTV 100 to receive the response to the query from the user and to send the response to the energy management system (EMS) 30. If the power reassignment request in the step S460 described with reference to FIG. 11 is received from the DTV 100 before performing the step S520, the energy management system (EMS) 30 may check whether power needs to be reassigned to the DTV 100.
  • the energy management system (EMS) 30 may perform a power reassignment procedure at step S530.
  • the power reassignment procedure may be performed by using the same or similar method as the power reassignment procedure described with reference to FIGS. 7 to 9.
  • the energy management system (EMS) 30 controls the operation of the DTV 100 at step S540.
  • the energy management system (EMS) 30 may request the DTV 100 to stop at least one of operations now being performed.
  • the energy management system (EMS) 30 may request the DTV 100 to perform the power restriction operation with reference to FIG. 10 again.
  • the energy management system (EMS) 30 may actively monitor power consumed in the power management network 10 and properly control the operations of electronic devices connected to the power management network 10.
  • the embodiments described in this document may be implemented by using at least one of Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPD), Programmable Logic Devices (PLDs), Field Programmable Gate Arrays (FPGAs), processors, controllers, microprocessors, and an electronic unit designed to perform a function.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPD Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • processors controllers, microprocessors, and an electronic unit designed to perform a function.
  • the embodiments such as procedures or functions, may be implemented along with a separate software module configured to perform at least one function or operation.
  • Software codes may be implemented by using a software application written in a proper program language. Further, the software codes may be stored in the memory unit and executed by the control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

Selon un aspect, l'invention concerne un appareil de gestion électrique qui comprend une unité de communication communiquant avec un réseau de gestion d'électricité, ainsi qu'une unité de commande qui détermine une quantité de puissance réduite, qui détermine une quantité de puissance de dispositif réduite pour un dispositif électronique connecté au réseau de gestion d'électricité, qui transmet une requête de réduction de consommation électrique comprenant la quantité de puissance réduite au dispositif électronique, qui reçoit une réponse à la requête de réduction de consommation électrique, et qui commande l'électricité consommée par le réseau de gestion d'électricité en fonction de la réponse reçue.
PCT/KR2010/007821 2010-11-05 2010-11-05 Appareil de gestion électrique pour gérer la consommation électrique et procédé de fonctionnement WO2012060495A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137011079A KR101732628B1 (ko) 2010-11-05 2010-11-05 소비 전력 제어를 위한 전력관리장치 및 그 동작 방법
PCT/KR2010/007821 WO2012060495A1 (fr) 2010-11-05 2010-11-05 Appareil de gestion électrique pour gérer la consommation électrique et procédé de fonctionnement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/007821 WO2012060495A1 (fr) 2010-11-05 2010-11-05 Appareil de gestion électrique pour gérer la consommation électrique et procédé de fonctionnement

Publications (1)

Publication Number Publication Date
WO2012060495A1 true WO2012060495A1 (fr) 2012-05-10

Family

ID=46024603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007821 WO2012060495A1 (fr) 2010-11-05 2010-11-05 Appareil de gestion électrique pour gérer la consommation électrique et procédé de fonctionnement

Country Status (2)

Country Link
KR (1) KR101732628B1 (fr)
WO (1) WO2012060495A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105404249A (zh) * 2014-09-16 2016-03-16 医扬科技股份有限公司 具备电源监控的移动护理设备及其电源监控系统与方法
GB2542868A (en) * 2015-10-01 2017-04-05 Hitachi Ltd Electric power demand adjustment program management apparatus and electric power demand adjustment program management method
US20210302198A1 (en) * 2020-03-25 2021-09-30 Melink Solar & Geo, Inc. Load monitoring and control by a building automation system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130204449A1 (en) 2010-06-26 2013-08-08 Lg Electronics Inc. Network system
KR101698264B1 (ko) * 2015-03-11 2017-01-19 엘지전자 주식회사 네트워크 시스템 및 그 제어방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099502A (ja) * 1995-06-23 1997-01-10 Mitsubishi Electric Corp デマンド制御装置
US6046513A (en) * 1995-12-20 2000-04-04 Primex Technologies, Inc. Load distribution and management system
JP2004104863A (ja) * 2002-09-05 2004-04-02 Funai Electric Co Ltd 電力供給制御システム
JP2009254219A (ja) * 2008-04-11 2009-10-29 Panasonic Corp 電力制御装置及びプログラム
US20100156178A1 (en) * 2008-12-19 2010-06-24 Abb Oy Method and arrangement for limiting electric power required by electric loads

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306835A (ja) * 2007-06-07 2008-12-18 Sharp Corp 電力制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099502A (ja) * 1995-06-23 1997-01-10 Mitsubishi Electric Corp デマンド制御装置
US6046513A (en) * 1995-12-20 2000-04-04 Primex Technologies, Inc. Load distribution and management system
JP2004104863A (ja) * 2002-09-05 2004-04-02 Funai Electric Co Ltd 電力供給制御システム
JP2009254219A (ja) * 2008-04-11 2009-10-29 Panasonic Corp 電力制御装置及びプログラム
US20100156178A1 (en) * 2008-12-19 2010-06-24 Abb Oy Method and arrangement for limiting electric power required by electric loads

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105404249A (zh) * 2014-09-16 2016-03-16 医扬科技股份有限公司 具备电源监控的移动护理设备及其电源监控系统与方法
GB2542868A (en) * 2015-10-01 2017-04-05 Hitachi Ltd Electric power demand adjustment program management apparatus and electric power demand adjustment program management method
ES2609516R1 (es) * 2015-10-01 2017-06-07 Hitachi, Ltd. Aparato de gestión de programa de ajuste de demanda de potencia eléctrica y método de gestión de programa de ajuste de demanda de potencia eléctrica
GB2542868B (en) * 2015-10-01 2020-04-01 Hitachi Ltd Electric power demand adjustment program management apparatus and electric power demand adjustment program management method
US10642236B2 (en) 2015-10-01 2020-05-05 Hitachi, Ltd. Electric power demand adjustment program management apparatus and electric power demand adjustment program management method
US20210302198A1 (en) * 2020-03-25 2021-09-30 Melink Solar & Geo, Inc. Load monitoring and control by a building automation system

Also Published As

Publication number Publication date
KR20130124499A (ko) 2013-11-14
KR101732628B1 (ko) 2017-05-04

Similar Documents

Publication Publication Date Title
WO2020122475A1 (fr) Système de stockage d'énergie et procédé de commande associé
WO2012108684A2 (fr) Dispositif électrique et appareil de gestion d'alimentation pour changer le niveau de consigne de gestion de la demande (dr)
WO2016111604A1 (fr) Système de gestion d'énergie et son procédé de commande
WO2012060495A1 (fr) Appareil de gestion électrique pour gérer la consommation électrique et procédé de fonctionnement
WO2019225834A1 (fr) Système et procédé de commande d'alimentation électrique utilisant un dispositif d'accumulation d'énergie et une génération d'énergie photovoltaïque
WO2011059253A2 (fr) Dispositif de commande de puissance et procédé de commande de puissance qui utilise celui-ci
US8674543B2 (en) Electronic device for controlling consumption power and method of operating the same
US8374728B2 (en) Power management apparatus for controlling consumption power and method of operating the same
US20120120306A1 (en) Techniques for network-centric scheduled power provisioning
WO2013039336A1 (fr) Appareil et procédé d'exécution d'un processus de réponse à une demande en énergie dans un réseau d'alimentation électrique
WO2013105754A1 (fr) Appareil de formation d'image, appareil hôte, système de formation d'image ayant ceux-ci, et leur procédé de commande de puissance
WO2011083967A2 (fr) Système de réseau
WO2017206883A1 (fr) Procédé et appareil de traitement d'applications, support de stockage, et dispositif électronique
WO2011055975A2 (fr) Système de réseau et son procédé de commande
WO2011162551A2 (fr) Procédé de commande d'un composant pour système réseau
WO2011162586A2 (fr) Système réseau
WO2011065775A2 (fr) Système de réseau et procédé de commande d'un système de réseau
WO2018139797A1 (fr) Dispositif de gestion d'énergie et son procédé de fonctionnement
WO2022119308A1 (fr) Réseau de capteurs sans fil à consommation ultra-faible qui peut être sélectivement connecté à divers capteurs
WO2019107806A1 (fr) Système de commande d'alimentation hiérarchique
WO2011162584A2 (fr) Système réseau
WO2011162580A2 (fr) Procédé de commande d'un composant pour système réseau
WO2013032147A1 (fr) Procédé de transmission de données, appareil de transmission de données et système de stockage d'énergie comprenant celui-ci
WO2011162556A2 (fr) Système réseau
WO2012060494A1 (fr) Dispositif électronique pour commander la consommation électrique, et procédé de fonctionnement de celui-ci

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137011079

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859298

Country of ref document: EP

Kind code of ref document: A1