WO2012060342A1 - Method for producing wafer lens - Google Patents

Method for producing wafer lens Download PDF

Info

Publication number
WO2012060342A1
WO2012060342A1 PCT/JP2011/075111 JP2011075111W WO2012060342A1 WO 2012060342 A1 WO2012060342 A1 WO 2012060342A1 JP 2011075111 W JP2011075111 W JP 2011075111W WO 2012060342 A1 WO2012060342 A1 WO 2012060342A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mold
sub
photopolymerization initiator
photocurable resin
Prior art date
Application number
PCT/JP2011/075111
Other languages
French (fr)
Japanese (ja)
Inventor
原明子
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2012060342A1 publication Critical patent/WO2012060342A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • B29D11/00307Producing lens wafers

Definitions

  • the present invention relates to a method for manufacturing a wafer lens, and more particularly to a method for manufacturing a wafer lens for use in an imaging lens or the like.
  • a curable resin composition is injected between a glass flat plate and a mold to mold a lens portion (for example, see Patent Document 1).
  • a resin-made sub master mold is formed from the master mold, and the lens portion is molded using the sub master mold.
  • a resin sub-sub master mold is formed using the sub master mold as a mold, and the lens portion is molded from the sub-sub master mold.
  • a resin transfer mold such as a sub-submaster mold
  • a resin that transmits light in a wavelength region necessary for curing the resin composition for forming the lens section it is necessary to configure a resin transfer mold such as a sub-submaster mold with a resin that transmits light in a wavelength region necessary for curing the resin composition for forming the lens section.
  • the resin transfer mold may absorb light necessary for curing the lens portion, and the light intensity may vary depending on the thickness of the resin transfer mold. . That is, for example, when a convex lens part is molded using a sub-submaster mold, the optical part corresponding to the thin part is ahead of the flange part corresponding to the thick part of the sub-submaster mold in the lens part. Curing starts.
  • the present invention provides a method for producing a wafer lens that can accurately mold a lens portion from a resin transfer mold even if a photo-curable resin is used to form a resin transfer mold such as a sub-submaster mold or a lens portion.
  • the purpose is to do.
  • a first wafer lens manufacturing method includes a substrate and a resin layer having a molding surface formed on one substrate surface of the substrate and including an optical surface.
  • the method includes the step of forming a resin layer having a molding surface using a resin transfer mold having an optical transfer surface having a shape obtained by inverting the optical surface, and the resin layer is formed of a first photocurable resin.
  • the first photocurable resin is obtained by curing the first photocurable resin composition containing the first photopolymerization initiator, and the absorbance of the first photopolymerization initiator is changed to the first photocurable resin.
  • the thickness light transmittance is 7% as a resin transfer mold.
  • the first photopolymerization curing agent has an absorbance of 1.0 or more
  • a resin transfer mold having a thickness light transmittance of 1% or more and less than 7% is used.
  • the first photopolymerization initiator of the first photocurable resin forming the resin layer has low sensitivity, specifically, the absorbance is less than 0.25
  • molding is performed.
  • the thick light transmittance of the thickest part of the resin transfer mold for transferring the surface is made relatively high at 60% or more.
  • the first photopolymerization initiator of the first photocurable resin has a medium sensitivity, specifically, when the absorbance is 0.25 or more and less than 1.0, the resin-transfer-type thick light transmittance is 7 % Or more and less than 60%.
  • the resin light transfer type wall thickness light transmittance is compared with 1% or more and less than 7%. Lower.
  • the optimal quantity of light can be permeate
  • the optical surface can be transferred with high accuracy.
  • the first photocurable resin is not irradiated with light more than necessary, adverse effects on durability such as yellowing of the resin and environmental tests can be prevented.
  • a second wafer lens manufacturing method includes a substrate and a resin layer having a molding surface formed on one substrate surface of the substrate and having a molding surface including an optical surface.
  • the method includes the step of forming a resin layer having a molding surface using a resin transfer mold having an optical transfer surface having a shape obtained by inverting the optical surface, and the resin layer is formed of a first photocurable resin.
  • the resin transfer mold is formed of the second photocurable resin, and the first photocurable resin is obtained by curing the first photocurable resin composition containing the first photopolymerization initiator.
  • the resin layer of the resin transfer mold for transferring the molding surface satisfies the conditional expression (1), so that the resin layer can be cured with respect to the photocurable resin. Effective light can be delivered more efficiently. Thereby, an optical surface can be accurately transferred.
  • the first photocurable resin is not irradiated with light more than necessary, adverse effects on durability such as yellowing of the resin and environmental tests can be prevented.
  • a third wafer lens manufacturing method includes a substrate and a resin layer having a molding surface molded on one substrate surface of the substrate and including an optical surface.
  • the method includes the step of forming a resin layer having a molding surface using a resin transfer mold having an optical transfer surface having a shape obtained by inverting the optical surface, and the resin layer is formed of a first photocurable resin.
  • the resin transfer mold is formed of the second photocurable resin, and the first photocurable resin is obtained by curing the first photocurable resin composition containing the first photopolymerization initiator.
  • the resin transfer mold At the longest wavelength at which the absorbance of the first photopolymerization initiator measured in a state where the first photopolymerization initiator is dissolved in acetonitrile at a concentration of 0.01% by mass is 0.3 or more, the resin transfer mold The light transmittance of the thickest part is 30%. Those of 10% is used as the resin transfer mold.
  • the thickness light transmittance of the resin transfer mold for transferring the molding surface is the longest wavelength at which the absorbance of the first photopolymerization initiator is 0.3 or more. By making it into the range, light effective for curing can be more efficiently delivered to the photocurable resin of the resin layer. Thereby, an optical surface can be accurately transferred.
  • the first photocurable resin is not irradiated with light more than necessary, adverse effects on durability such as yellowing of the resin and environmental tests can be prevented.
  • the resin portion constituting the optical transfer surface of the resin transfer mold includes a second photopolymerization initiator. It is formed with the 2nd photocurable resin which hardened 2 photocurable resin compositions.
  • the transfer surface can be accurately formed by configuring the resin transfer mold with a photocurable resin.
  • the first photocurable resin is an acrylic resin, an allyl ester resin, a vinyl resin, or an epoxy resin.
  • the first photocurable resin is an ultraviolet curable resin.
  • the resin transfer mold is a sub-sub-master mold formed by transferring twice from a master mold having a transfer surface corresponding to the molding surface.
  • a master mold having a concave optical transfer surface may be manufactured, and the master mold can be easily manufactured.
  • the resin transfer mold is a sub-master mold formed by a single transfer from a master mold having a transfer surface corresponding to the molding surface.
  • a master mold having a concave optical transfer surface may be manufactured, and the master mold can be easily manufactured.
  • the substrate is made of glass. In this case, the strength of the substrate can be maintained even when the substrate is relatively thin.
  • the resin transfer mold includes a light-transmitting substrate and a resin portion having a mold surface formed on one substrate surface of the substrate and including a plurality of optical transfer surfaces.
  • the resin transfer mold has a two-layer structure of the substrate and the resin portion, and the resin transfer mold can be made more stable in strength.
  • the first photocurable resin and the second photocurable resin are cured at different wavelengths.
  • the resin layer is cured, absorption of the curing wavelength by the resin transfer mold can be suppressed.
  • the photocurable resin composition for obtaining the first photocurable resin has a longer wavelength side than the photocurable resin composition for obtaining the second photocurable resin. Easy to cure. In this case, by setting the curing wavelength of the photocurable resin forming the resin layer to the long wavelength side, the conditions for the thickness light transmittance of the resin transfer mold are changed, so that the photocurable resin of the resin layer is changed. Thus, light that is effective for curing can be delivered more efficiently.
  • (A) is a plan view of the wafer lens
  • (B) is a cross-sectional view taken along the line AA of the wafer lens shown in (A)
  • (C) is a perspective view of the wafer lens shown in (A).
  • (A) to (E) are diagrams for explaining the absorbance
  • (F) is a diagram for explaining the light transmittance. It is sectional drawing of the imaging lens cut out by laminating
  • (A) is a perspective view explaining the master type
  • (B) is a perspective view of a submaster type
  • (C) is a subsubmaster type
  • FIG. It is a figure for demonstrating the relationship between a light absorbency and thickness light transmittance.
  • (A) to (F) are diagrams for explaining a manufacturing process of a wafer lens.
  • the wafer lens 100 has a disk shape and includes a substrate 101, a first resin layer 102, and a second resin layer 103.
  • the substrate 101 of the wafer lens 100 is a circular flat plate and is made of glass.
  • the outer diameter of the substrate 101 is substantially the same as the outer diameter of the first and second resin layers 102 and 103.
  • the thickness of the substrate 101 is basically determined by optical specifications, but is such a thickness that the wafer lens 100 is not damaged when the wafer lens 100 is released.
  • the first resin layer 102 is made of resin, and is formed on one surface 101 a of the substrate 101.
  • the first resin layer 102 has a circular outer shape in plan view.
  • a large number of first lens elements 11 each having the first lens body 11a and the first flange portion 11b as a set are two-dimensionally arranged in the XY plane. These first lens elements 11 are integrally formed through a flat connecting portion 11c.
  • the combined surface of each first lens element 11 and connecting portion 11c is a first molding surface 102a that is collectively molded by transfer.
  • the first lens body 11a is, for example, a convex aspherical lens part, and has a first optical surface 11d.
  • the surrounding first flange portion 11b has a flat first flange surface 11g extending around the first optical surface 11d, and the outer periphery of the first flange portion 11b is also a connecting portion 11c.
  • the first flange surface 11g is disposed in parallel to the XY plane perpendicular to the optical axis OA.
  • the first resin layer 102 is formed of a photocurable resin (first photocurable resin).
  • a photopolymerization initiator for initiating polymerization of the photocurable resin composition.
  • Photopolymerization initiator As the photocurable resin, an acrylic resin, an allyl ester resin, an epoxy resin, a vinyl resin, or the like can be used.
  • a radical photopolymerization initiator is included in the resin composition, and the resin composition can be cured by radical polymerization of the photopolymerization initiator.
  • a cationic photopolymerization initiator may be included in the resin composition, and the resin composition may be reacted and cured by cationic polymerization of the photopolymerization initiator.
  • the second resin layer 103 is made of resin, like the first resin layer 102, and is formed on the other surface 101b of the substrate 101.
  • the second resin layer 103 has a circular outer shape in plan view.
  • a large number of second lens elements 12 each including the second lens body 12a and the second flange portion 12b are arranged two-dimensionally in the XY plane. These second lens elements 12 are integrally molded through a flat connecting portion 12c.
  • the combined surface of each second lens element 12 and connecting portion 12c is a second molding surface 103a that is collectively molded by transfer.
  • the second lens body 12a is, for example, a concave aspherical lens part, and has a second optical surface 12d.
  • the surrounding second flange portion 12b has a flat second flange surface 12g extending around the second optical surface 12d, and the outer periphery of the second flange portion 12b is also a connecting portion 12c.
  • the second flange surface 12g is disposed in parallel to the XY plane perpendicular to the optical axis OA.
  • the photocurable resin used for the second resin layer 103 is the same as the photocurable resin of the first resin layer 102. However, both the resin layers 102 and 103 do not need to be formed of the same photocurable resin, and can be formed of different photocurable resins.
  • a diaphragm may be provided between the substrate 101 and the first or second resin layer 102, 103. Further, a resin layer may be provided only on one surface 101a or the other surface 101b of the substrate 101.
  • the photocurable resin is obtained by irradiating and curing a photocurable resin composition containing at least a substrate such as monomers and a photopolymerization initiator.
  • the resin composition before curing may be referred to as a photocurable resin.
  • This photocurable resin can also be used for a submaster type and a subsubmaster type described later.
  • Acrylic resin There is no restriction
  • (meth) acrylate having an alicyclic structure is preferable, and an alicyclic structure containing an oxygen atom or a nitrogen atom may be used.
  • 2-alkyl-2-adamantyl (meth) acrylate see Japanese Patent Laid-Open No. 2002-193883
  • adamantyl di (meth) acrylate Japanese Patent Laid-Open No. 57-5000785
  • diallyl adamantyl dicarboxylate Japanese Patent Laid-Open No.
  • (meth) acrylate for example, methyl acrylate, methyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate Tert-butyl methacrylate, phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate and the like.
  • polyfunctional (meth) acrylate examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) ) Acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, tripentaerythritol octa (meth) acrylate, tripentaerythritol septa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripenta Erythritol penta (meth) acrylate, tripentaerythritol tetra (meth) acrylate, tripent
  • Allyl ester resin An allyl ester resin is a resin having an allyl group and cured by radical polymerization. Examples thereof include the following, but are not particularly limited to the following.
  • Epoxy resin is not particularly limited as long as it has an epoxy group and is polymerized and cured by light or light and heat, and an acid anhydride, a cation generator or the like is used as a curing initiator. Can do. Epoxy resins are preferred in that they can be made into lenses with excellent molding accuracy because of their low cure shrinkage.
  • Examples of the epoxy resin include novolak phenol type epoxy resin, biphenyl type epoxy resin, and dicyclopentadiene type epoxy resin.
  • Examples include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, vinyl Cyclohexene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2 -A polymer obtained by polymerizing bisglycidyl ester of cyclopropanedicarboxylic acid.
  • the vinyl-based resin is not particularly limited as long as it is a material that forms a transparent resin by being cured, and a vinyl-based resin manufactured by a general manufacturing method can be used.
  • Any vinyl-based resin may be used as long as the vinyl group (CH 2 ⁇ CH—) contributes to the crosslinking reaction.
  • the monomer of the polyvinyl resin is represented by the general formula CH 2 ⁇ CH—R.
  • the polyvinyl resin include polyvinyl chloride, polystyrene and the like, and an aromatic vinyl resin containing an aromatic in R is particularly preferable.
  • a divinyl resin having two or more vinyl groups in one molecule is more preferable.
  • These vinyl resins can be used alone or in combination of two or more by using two or more monomers.
  • photoinitiators details of the photopolymerization initiator is described for use in the photocurable resin composition for forming the first and second resin layers 102 and 103.
  • the photopolymerization initiator is basically selected in combination with a photocurable resin. Furthermore, in selecting the photopolymerization initiator, consideration is given so as not to lower the transmittance of the wafer lens 100 in the use wavelength region, and consideration is given so that the absorbance to the curing light becomes appropriate. More specifically, a photopolymerization initiator that is activated by irradiation with ultraviolet rays (UV) is used. As the photopolymerization initiator, a photopolymerization initiator that is sensitive to the wavelength of UV light irradiated from a light source and generates active species such as radicals by irradiation with UV light having the wavelength is used.
  • UV ultraviolet rays
  • a photopolymerization initiator having sensitivity at least in the wavelength range of 250 nm to 340 nm can be used.
  • radical photopolymerization initiators include ⁇ -hydroxyalkylphenone (manufactured by Ciba Japan, DAROCUR1173, IRGACURE184, etc.).
  • the addition amount of the photopolymerization initiator is 0.001 to 5% by mass, preferably 0.01 to 3% by mass, and more preferably 0.05 to 1% by mass with respect to the photocurable resin.
  • produces a cation is used as a photoinitiator which has the same optical characteristic as the above, for example.
  • the cationic photopolymerization initiator include iodonium-based cationic polymerization initiators (manufactured by Ciba Japan, IRGACURE250, etc.).
  • FIG. 2A is a diagram showing the absorbance of DAROCUR 1173
  • FIG. 2B is a diagram showing the absorbance of IRGACURE184
  • FIG. 2C is a diagram showing the absorbance characteristics of IRUGACURE250.
  • the absorbance of the photopolymerization initiator is measured in a state where it is dissolved in a 0.01% by mass acetonitrile solution.
  • the imaging lens 200 shown in FIG. 3 includes a first compound lens 10 and a second compound lens 20.
  • the first compound lens 10 includes the first lens element 11, the second lens element 12, and the flat plate portion 13 sandwiched between them.
  • the flat plate portion 13 is a portion obtained by cutting out the substrate 101.
  • the shapes of the first and second lens elements 11, 12 may be the same or different.
  • the second compound lens 20 includes a first lens element 21, a second lens element 22, and a flat plate portion 23 sandwiched therebetween.
  • the imaging lens 200 shown in FIG. 3 In order to produce the imaging lens 200 shown in FIG. 3, two wafer lenses 100 are used. The two wafer lenses 100 are fixed with an adhesive or the like in a stacked state. The two stacked wafer lenses 100 are finally cut out by dicing to form the imaging lens 200 shown in FIG.
  • the imaging lens 200 is a member having a rectangular outline when viewed from the optical axis OA direction.
  • the imaging lens 200 is housed in, for example, a separately prepared holder, and is bonded to the imaging circuit board as an imaging lens.
  • Molding Mold An example of a molding mold for manufacturing the wafer lens 100 shown in FIG. 1 (A) will be described below with reference to FIGS. 4 (A) to 4 (C).
  • a master mold 30, a sub master mold 40, and a sub sub master mold 50 are used as molds.
  • the master mold 30 has a first transfer surface 31 for forming a second transfer surface 43 of a sub-master mold 40 to be described later on its end surface 30a.
  • the first transfer surface 31 corresponds to the first molding surface 102a of the first resin layer 102 of the wafer lens 100 finally obtained.
  • the first transfer surface 31 includes a first optical transfer surface 31a for forming the first optical surface 11d of the first molding surface 102a and a first flange transfer surface 31b for forming the first flange surface 11g.
  • a plurality of first optical transfer surfaces 31a are arranged in an array and are formed in a substantially hemispherical concave shape.
  • the master mold 30 is generally formed of a metal material.
  • the metal material include iron-based materials, iron-based alloys, and non-ferrous alloys.
  • iron-based materials include hot dies, cold dies, plastic dies, high-speed tool steel, general structural rolled steel, carbon steel for mechanical structures, chrome / molybdenum steel, and stainless steel.
  • examples of the plastic mold include pre-hardened steel, quenched and tempered steel, and aging treated steel.
  • Examples of the pre-hardened steel include SC, SCM, and SUS.
  • An example of the SC system is PXZ.
  • Examples of the SCM system include HPM2, HPM7, PX5, and IMPAX.
  • Examples of the SUS system include HPM38, HPM77, S-STAR, G-STAR, STAVAX, RAMAX-S, and PSL.
  • Examples of the iron-based alloy include alloys disclosed in JP-A-2005-113161 and JP-A-2005-206913.
  • As the non-ferrous alloys copper alloys, aluminum alloys, and zinc alloys are well known, and examples include alloys disclosed in JP-A-10-219373 and JP-A-2000-176970.
  • the master mold 30 may be made of metal glass or amorphous alloy.
  • Examples of the metallic glass include PdCuSi and PdCuSiNi.
  • Metallic glass has high machinability in diamond cutting and less tool wear.
  • amorphous alloy examples include electroless or electrolytic nickel phosphorous plating, and have good machinability in diamond cutting. These highly machinable materials may constitute the entire master mold 30 or may cover only the surface of the optical transfer surface, in particular, by a method such as plating or sputtering.
  • the sub-master mold 40 has a sub-master molding part 41 that is a resin part and a light-transmissive sub-master substrate 42.
  • the sub master molding part 41 and the sub master substrate 42 have a laminated structure.
  • the sub master molding part 41 has a second transfer surface 43 that forms a third transfer surface 53 of a sub sub master mold 50 to be described later on its end surface 41a.
  • the second transfer surface 43 corresponds to the positive mold of the first molding surface 102a of the first resin layer 102 of the wafer lens 100 finally obtained, and forms the first optical surface 11d of the first molding surface 102a.
  • the second optical transfer surface 43a is transferred by the first optical transfer surface 31a, and a plurality of second optical transfer surfaces 43a are arranged in an array, and are formed in a substantially hemispherical convex shape.
  • the sub master molding part 41 is made of resin. Any resin can be used as the resin, such as a photo-curing resin, a thermosetting resin, and a thermoplastic resin, as long as it can mold the first lens element 11 and the sub-sub master mold 50 described later. However, a photocurable resin (second photocurable resin) is particularly preferable. As the photocurable resin, the same acrylic resin, allyl ester resin, epoxy resin, vinyl resin, or the like as the first resin layer 102 of the wafer lens 100 can be used. Moreover, as said resin, resin with favorable mold release property, especially transparent resin are preferable, and resin which can be released without applying a mold release agent is good.
  • a photocurable resin second photocurable resin
  • the photocurable resin the same acrylic resin, allyl ester resin, epoxy resin, vinyl resin, or the like as the first resin layer 102 of the wafer lens 100 can be used.
  • resin with favorable mold release property, especially transparent resin are preferable, and resin which can be released without applying a mold release agent
  • the sub-master substrate 42 is formed of a smooth material such as quartz, glass, silicon wafer, metal, or resin. In consideration of transparency or light transmission (the point that light can be irradiated from above or from below), the sub master substrate 42 is preferably made of quartz, glass, or the like.
  • the sub-sub master mold 50 includes a sub-sub master molding portion 51 that is a resin portion and a light-transmitting sub-sub master substrate 52.
  • the sub-sub master molding part 51 and the sub-sub master substrate 52 have a laminated structure.
  • the sub-sub master molding unit 51 has a third transfer surface 53 that forms the first molding surface 102a of the wafer lens 100 on the end surface 51a.
  • the third transfer surface 53 corresponds to the first molding surface 102a of the first resin layer 102 of the wafer lens 100, and the third optical transfer surface 53a for forming the first optical surface 11d of the first molding surface 102a.
  • a third flange transfer surface 53b for forming the first flange surface 11g.
  • the sub-submaster mold 50 functions as a resin transfer mold for forming the first molding surface 102 a of the first resin layer 102.
  • the third optical transfer surface 53a is transferred by the second optical transfer surface 43a as described above, and a plurality of the third optical transfer surfaces 53a are arranged in an array, and are formed in a substantially hemispherical concave shape.
  • the sub-sub master molding part 51 is made of resin.
  • the same resin as the first resin layer 102 can be used, and the resin may be formed of the same material as the first resin layer 102 of the wafer lens 100.
  • the sub-submaster substrate 52 is formed of the same material as the sub-master substrate 42. Note that the sub master molding part 41 and the sub sub master molding part 51 are not necessarily formed of the same material. Further, the sub-master substrate 42 and the sub-sub-master substrate 52 are not necessarily formed of the same material, and may be formed of different materials.
  • the thick light transmittance which is the light transmittance of the thickest part, is 60% or more at a wavelength of 340 nm.
  • the thickness light transmittance of the resin transfer mold is represented by a value at 340 nm in order to cure the photocurable resin composition for forming the first resin layer 102 in the vicinity of and around 340 nm.
  • the photopolymerization initiator contained in the photocurable resin composition for forming the first resin layer 102 has a predetermined light transmission at the longest wavelength at which the photopolymerization initiator exhibits a predetermined absorbance or more.
  • a wavelength in the vicinity of rising on the longest wavelength side for example, the absorbance is A resin transfer mold having a thick light transmittance of about 30% at the longest wavelength when 0.3 is used.
  • the thick light transmittance is preferably 30% ⁇ 10%.
  • the absorption maximum of the photopolymerization initiator of the photocurable resin that forms the sub-submaster molding part 51 has a short wavelength (specifically, a wavelength of 250 nm or less). It is preferable to use it. For example, if the reaction wavelength of the photopolymerization initiator of the sub-submaster molding part 51 is shorter than the reaction wavelength of the photopolymerization initiator of the first and second resin layers 102 and 103, the meat of the sub-submaster molding part 51 This is advantageous for increasing the light transmittance.
  • the sub-master molding portion 51 has a desired thickness light transmittance with respect to the absorbance at the wavelength of the irradiation light for curing the photocurable resin of the first resin layer 102. As such, it is adjusted by changing the type of the photopolymerization initiator or changing the thickness of the resin transfer mold. Further, the sub-sub master molding portion 51 may be made thin as long as there is no hindrance to molding or mold release. In the case of the present embodiment, the absorbance of the photocurable resin of the first resin layer 102 at a wavelength of 340 nm of irradiation light is less than 0.25, so that the curing of the photocurable resin of the first resin layer 102 is optimized. In addition, a photopolymerization initiator is used such that the thickness light transmittance of the sub-submaster molding part 51 is 60% in order not to absorb much irradiation light.
  • FIG. 5 shows a photopolymerization initiator (first photocurable resin composition) for forming the first resin layer 102 in the present embodiment and each embodiment to be described later.
  • the resin composition used for the first resin layer 102 and the sub-submaster mold 50 is variously changed to obtain good characteristics for the absorbance of the first photopolymerization initiator) and the thick light transmittance of the sub-submaster mold 50. A combination of the two is selected, and the relationship between the two calculated experimentally based on them is shown.
  • the thickness light transmittance of the sub-submaster mold 50 at a wavelength of 340 nm is T%
  • the photopolymerization initiator contained in the photocurable resin composition for forming the first resin layer 102 is 0.01.
  • FIG. 2 (F) is a diagram showing the light transmittance of the sub-sub master molding part 51.
  • L3 is the photocurable resin of this embodiment.
  • the absorbance at a wavelength of 340 nm is, for example, less than 0.25 in a 0.01% by mass solution of acetonitrile.
  • the master mold 30, the sub master mold 40, and the sub sub master mold 50 used for molding the first resin layer 102 of the wafer lens 100 have been described above. The same applies to the molding of the second resin layer 103.
  • Use a mold In this case, for example, a master die 30 having a concave first transfer surface 31 is used, and a sub master die 40 having a convex second transfer surface 43 is used.
  • the sub master mold 40 corresponds to a resin transfer mold and has the same light transmittance as the sub sub master mold 50 described above.
  • the second molding surface 103 a of the second resin layer 103 is formed by the sub master mold 40.
  • the second resin layer 103 may be formed by the sub-submaster mold 50.
  • the master mold 30 corresponding to the final shape of the first resin layer 102 is produced by grinding or the like.
  • the resin composition 41 b is disposed on the master mold 30, and ultraviolet rays are irradiated from a UV generator (not shown) while pressing the sub-master substrate 42 from above the master mold 30.
  • the resin composition 41b sandwiched therebetween is cured.
  • the first transfer surface 31 of the master mold 30 is transferred to the cured resin and has a second transfer surface 43 (second optical transfer surface 43a and second flange transfer surface 43b shown in FIG. 4B).
  • a sub master molding part 41 is formed.
  • Examples of the light source used in the UV generator include xenon arc lamps, high-pressure mercury lamps, metal halide lamps, UV lasers, xenon flash lamps, LEDs, G-lamps, black lights, and the like that generate light in the ultraviolet region. .
  • xenon flash lamp having a wide emission wavelength region in an ultraviolet region including 365 nm and 340 nm.
  • the sub-master mold 40 is fabricated by releasing the sub-master molding part 41 and the sub-master substrate 42 as a single unit from the master mold 30.
  • the resin composition 51b is arranged on the sub master mold 40, and a UV generator (not shown) is used while pressing the sub sub master substrate 52 from above the sub master mold 40.
  • the resin composition 51b sandwiched therebetween is cured by irradiating with ultraviolet rays.
  • the second transfer surface 43 of the sub-master mold 40 is transferred to the cured resin, and the third transfer surface 53 (the third optical transfer surface 53a and the third flange transfer surface 53b shown in FIG. 4C) is transferred.
  • the sub-sub-master molding part 51 is formed.
  • the exposure apparatus equipped with the UV generator the same exposure apparatus as that used when forming the sub-master mold 40 can be used.
  • the sub-sub master mold part 51 and the sub-sub master substrate 52 are integrally released from the sub-master mold 40, and the sub-sub master mold 50 is completed.
  • a resin composition 102b (a photocurable resin composition for forming the first resin layer 102) is disposed on the sub-submaster mold 50, and a substrate is formed from above the sub-submaster mold 50. While pressing 101, ultraviolet rays are irradiated by a UV generator (not shown) to cure the resin composition 102b sandwiched therebetween. At this time, the third transfer surface 53 of the sub-submaster mold 50 is transferred to the cured resin, and the first molding surface 102a (the first optical surface 11d and the first flange surface 11g shown in FIG. 1B) is provided. One resin layer 102 is formed.
  • the second resin layer 103 may be formed on the other surface 101b of the substrate 101 in the same process as described above.
  • the same exposure apparatus used when forming the sub master mold 40 and the sub sub master mold 50 can be used.
  • the lens elements 11 and 12 of the resin layers 102 and 103 can exhibit the intended optical performance. Therefore, it is preferable to set the exposure conditions appropriately so as not to cause yellowing of the resin and deterioration of durability after molding. Moreover, after exposure or in parallel with exposure, heating may be performed to promote curing.
  • the first resin layer 102 and the substrate 101 are integrally released from the sub-submaster mold 50.
  • the wafer lens 100 is completed.
  • the second resin layer 103 is formed by performing the same process, and the wafer lens 100 is completed by releasing the sub-sub master mold 50.
  • the wafer lens 100 manufactured by the above method is laminated and cut out by dicing so that the outer shape becomes a square shape with the first lens body 11a and the like as the center, thereby forming the compound lens 10 shown in FIG.
  • a diaphragm may be provided between the wafer lenses 100.
  • the aperture of the stop is arranged in alignment with each first lens body 11a and the like.
  • the photopolymerization initiator of the photocurable resin forming the first and second resin layers 102 and 103 has low sensitivity, the first and second molding surfaces 102a,
  • the light transmittance of the photocurable resin in the thickest part of the sub-submaster mold 50, which is a resin transfer mold for transferring 103a, is relatively high, and the photocurable resin for forming the first and second resin layers 102 and 103 is used.
  • the photopolymerization initiator has high sensitivity, the light transmittance of the photocurable resin in the thickest portion of the sub-submaster mold 50 that transfers the first and second molding surfaces 102a and 103a is relatively low, so that the first In addition, an optimal amount of light can be transmitted to cure the photocurable resin of the second resin layers 102 and 103. Thereby, light efficiently reaches the photocurable resins of the first and second resin layers 102 and 103, and the first and second optical surfaces 11d and 12d can be accurately transferred. In addition, since unnecessary light is not irradiated, adverse effects such as yellowing of the resin and environmental tests can be prevented.
  • Example 1 An ultraviolet curable resin composition is arranged on an 8-inch diameter glass substrate, and a spherical recess having a diameter of 3 mm and a depth of 0.5 mm corresponding to the first lens element 11 shown in FIG. 1 is an 8 ⁇ 8 matrix.
  • the procedure of releasing the mold after pressing with a metal master mold arranged in a shape and irradiating ultraviolet rays with a xenon flash lamp through the glass substrate to cure the resin composition is repeated while changing the position on the glass substrate.
  • a submaster mold having transfer portions corresponding to about 1000 first lens elements 11 on a glass substrate was produced.
  • An ultraviolet curable resin composition obtained by adding 0.5% by mass of a photopolymerization initiator to an acrylic resin monomer as a resin composition for a sub-submaster molded part was disposed on the submaster mold thus obtained. Then, the resin composition was pressed with a glass substrate, irradiated with ultraviolet rays with a xenon flash lamp to cure the resin composition, and then released to form a sub-submaster molding part made of resin and having a transfer surface. In this way, a sub-submaster type was produced.
  • the sub-sub master type three types satisfying the following conditions (i) to (iii) were produced for comparison. Conditions (i) to (iii) correspond to L1, L2, and L3 of the photocurable resin shown in FIG. 2 (F), respectively.
  • the thick light transmittance of the sub-submaster molded part was changed mainly by changing the type of photopolymerization initiator added to the resin composition. Specifically, IRGACURE907 was used in (i), IRGACURE2959 was used in (ii), and IRGACURE184 was used in (iii) (both manufactured by Ciba Japan).
  • I At a wavelength of 340 nm, the thickest part has a thick light transmittance of 6%.
  • the thickest part has a thick light transmittance of 40%.
  • the light transmittance of the thickest part is 70% at a wavelength of 340 nm.
  • a resin composition for forming the first resin layer 102 shown in FIG. 1 was disposed on the thus obtained sub-submaster mold.
  • the cationic photoinitiator IRGACURE250 (made by Ciba Japan) was used for hydrogenated bisphenol A type epoxy resin as a photoinitiator.
  • This cationic photopolymerization initiator has an absorbance at a wavelength of 340 nm of about 0.05 when dissolved in an acetonitrile solution so as to be 0.01% by mass.
  • a glass substrate was pressed against the resin composition on the sub-submaster mold, and the resin composition was cured by irradiating ultraviolet rays with a xenon flash lamp so that the integrated exposure amount at 365 nm was 6000 mJ / cm 2 .
  • the second resin layer 103 has substantially the same procedure, and a resin composition similar to L1 to L3 is arranged on an 8-inch diameter glass substrate, and the diameter corresponds to the second lens element 12 shown in FIG. 3mm and 0.5mm deep spherical concave parts are pressed with a metal master mold arranged in an 8x8 matrix, and the resin composition is cured by irradiating ultraviolet rays with a xenon flash lamp through a glass substrate. Then, by repeating the mold release procedure, three types of sub-master molds having transfer portions corresponding to about 1000 lens elements on a glass substrate were produced.
  • a resin composition similar to the resin composition for forming the first resin layer is disposed on each of the submaster molds thus obtained, and the back surface of the glass substrate on which the first resin layer 102 is formed is opposed to the submaster mold.
  • Table 1 shows the performance test results of the wafer lens 100 under the above conditions.
  • the item of optical surface shape indicates the measurement result of the surface shape of the first and second lens elements 11 and 12 of the wafer lens 100.
  • the surface shape was measured using a contact-type ultra-high precision three-dimensional measuring machine.
  • the accuracy of the surface shape was evaluated by the difference (hereinafter referred to as the PV value) between the portion having the largest shape error (Peak) and the portion having the smallest shape (Valley) from the lens design value of the first optical transfer surface 31a.
  • the coloring item indicates the measurement result of the total light transmittance with respect to the incident light amount of the visible light of the first and second lens elements 11 and 12 of the wafer lens 100.
  • the total light transmittance was measured using a spectrophotometer. When the absolute value of the total light transmittance was 88% or more, it was rated as ⁇ , when it was 80% or more and less than 88%, it was marked as ⁇ , and when it was less than 80%, it was marked as x.
  • the item of the environmental test indicates a durability test result of the imaging lens 200 obtained by dicing the wafer lens 100 into pieces.
  • the environmental test was performed by subjecting the imaging lens 200 to reflow treatment three times and then applying a thermal shock. Specifically, after 30 minutes in an environment of ⁇ 40 ° C., 30 minutes in an environment of 85 ° C. was defined as one cycle, and this was performed for 50 cycles.
  • the environmental test was performed on 100 imaging lenses 200. In the imaging lens 200, the number of peeled from the glass / resin interface was 0 when it was 0, ⁇ when it was 1 or more and less than 10, and x when it was 10 or more.
  • the photocurable resin composition for forming the first and second resin layers was uncured.
  • the photocurable resin for forming the first and second resin layers was partially uncured.
  • Example 2 As the resin composition for forming the first resin layer 102, except that 2-alkyl-2-adamantyl- (meth) acrylate was added with a radical photopolymerization initiator IRGACURE184 as a photopolymerization initiator.
  • a wafer lens was produced in the same procedure as in Example 1.
  • the radical photopolymerization initiator used in this example has an absorbance at a wavelength of 340 nm of about 0.05 when dissolved in an acetonitrile solution so as to be 0.01% by mass.
  • the resin composition for forming the sub-sub master mold 50 for forming the first resin layer and the resin composition for forming the sub-master mold for forming the second resin layer are the same as those in Example 1. Same as conditions (i) to (iii). Conditions (i) and (ii) are comparative examples. In this Example 2, the result of the performance test was the same as that of Example 1.
  • the wafer lens manufacturing method according to the second embodiment is a modification of the wafer lens manufacturing method according to the first embodiment, and parts not specifically described are the same as those in the first embodiment.
  • the photopolymerization initiator contained in the photocurable resin composition for forming the first and second resin layers 102 and 103 has an absorbance of 0.25 or more in a 0.01 mass% acetonitrile solution at a wavelength of 340 nm. Use less than 1.0.
  • This photopolymerization initiator is a UV polymerization initiator that has a sensitivity on the short wavelength side, for example, a wavelength of 300 nm to 380 nm and generates radicals at a short wavelength. Specific examples include ⁇ -aminoalkylphenone (manufactured by Ciba Japan, IRGACURE907, etc.).
  • FIG. 2D is a graph showing the absorbance of IRGACURE907.
  • the light absorbency of a photoinitiator is measured in the state melt
  • the thick light transmittance which is the light transmittance of the thickest part, is 7% or more and less than 60% at a wavelength of 340 nm.
  • the absorption maximum of the photopolymerization initiator of the photocurable resin forming the sub-submaster molded part 51 has a short wavelength (specifically, a wavelength of 300 nm or less). Use one. That is, the reaction wavelength of the photopolymerization initiator of the sub-submaster molding part 51 is shorter than the reaction wavelength of the photopolymerization initiator of the first and second resin layers 102 and 103.
  • L2 is the photocurable resin of this embodiment.
  • the absorbance of the photocurable resin of the first resin layer 102 at a wavelength of 340 nm of irradiation light for curing the photocurable resin composition for forming the first resin layer 102 is 0.25.
  • the sub-master molding portion 51 has a thick light transmittance of 7%.
  • An appropriate photopolymerization initiator is selected so as to be less than 60% and the thickness of the sub-submaster molding part 51 is adjusted.
  • the thickness light transmittance of the sub-submaster molding part 51 is the absorbance of the photopolymerization initiator contained in the photocurable resin composition for forming the first resin layer 102.
  • the longest wavelength when the absorbance is 0.3, which is 30% ⁇ 10%.
  • Example 3 As in Example 1, except that a radical polymerization initiator IRGACURE907 (manufactured by Ciba Japan) was used as a photopolymerization initiator used in the resin composition for forming the first resin layer 102 and the second resin layer 103.
  • a wafer lens was prepared according to the procedure described above. This polymerization initiator has an absorbance at a wavelength of 340 nm of about 0.25 when dissolved in an acetonitrile solution so as to be 0.01% by mass.
  • the resin composition for forming the sub-master mold for forming the first resin layer and the resin composition for forming the sub-master mold for forming the second resin layer are the same as those in Example 1. Same as (i) to (iii). Conditions (i) and (iii) are comparative examples.
  • the photocurable resin composition for forming the first and second resin layers was uncured.
  • the resin for forming the sub-submaster is in the condition (iii)
  • the photocurable resin for forming the first and second resin layers is cured, coloring occurs, and the durability in the environmental test is also adversely affected. Occurred.
  • the wafer lens manufacturing method according to the third embodiment is a modification of the wafer lens manufacturing method according to the first embodiment, and parts not specifically described are the same as those in the first embodiment.
  • the photopolymerization initiator contained in the photocurable resin composition for forming the first and second resin layers 102 and 103 has an absorbance of 1.0 or more in a 0.01 mass% acetonitrile solution at a wavelength of 340 nm. Use one.
  • This photopolymerization initiator is a UV polymerization initiator that has a sensitivity on the short wavelength side, for example, a wavelength of 320 nm to 430 nm, and generates radicals at a short wavelength.
  • ⁇ -aminoalkylphenone manufactured by Ciba Japan, IRGACURE 369, etc.
  • FIG. 2 (E) is a graph showing the absorbance of IRGACURE369.
  • the light absorbency of a photoinitiator is measured in the state melt
  • the thick light transmittance which is the light transmittance of the thickest part, is less than 7% at a wavelength of 340 nm.
  • the absorption maximum of the photopolymerization initiator of the photocurable resin forming the sub-submaster molded portion 51 is a short wavelength (specifically, a wavelength of 320 nm or less).
  • the reaction wavelength of the photopolymerization initiator of the sub-submaster molding part 51 is shorter than the reaction wavelength of the photopolymerization initiator of the first and second resin layers 102 and 103.
  • the thick light transmittance can be reduced to less than 7% by making the sub-submaster molding portion 51 relatively thick.
  • L1 is the photocurable resin of the present embodiment.
  • the absorbance of the photocurable resin of the first resin layer 102 at a wavelength of 340 nm of the irradiation light for curing the photocurable resin of the first resin layer 102 is 1.0 or more, and the first
  • the thickness light transmittance of the sub-submaster molding part 51 is the absorbance of the photopolymerization initiator contained in the photocurable resin composition for forming the first resin layer 102.
  • the longest wavelength when the absorbance is 0.3, which is 30% ⁇ 10%.
  • Example 4 Example 1 except that a radical photopolymerization initiator IRGACURE369 (manufactured by Ciba Japan) was used as the photopolymerization initiator used in the resin composition for forming the first resin layer 102 and the second resin layer 103. A wafer lens was produced in the same procedure. This polymerization initiator has an absorbance at a wavelength of 340 nm of about 2.5 when dissolved in an acetonitrile solution so as to be 0.01% by mass.
  • a radical photopolymerization initiator IRGACURE369 manufactured by Ciba Japan
  • the resin composition for forming the sub-master mold for forming the first resin layer and the resin composition for forming the sub-master mold for forming the second resin layer are the same as those in Example 1. Same as (i) to (iii). Conditions (ii) and (iii) are comparative examples.
  • the wafer lens manufacturing method according to the present embodiment has been described above, but the wafer lens manufacturing method according to the present invention is not limited to the above.
  • the shapes and sizes of the first and second optical surfaces 11d and 12d can be changed as appropriate according to the application and function.
  • the wafer lens 100 does not have to be disk-shaped and can have various contours such as an ellipse.
  • the dicing process can be simplified by forming the wafer lens 100 into a square plate shape from the beginning.
  • the number of the first and second lens elements 11 and 12 formed in the wafer lens 100 is not limited to four as illustrated, and may be two or more.
  • the arrangement of the first and second lens elements 11 and 12 is preferably on a lattice point for convenience of dicing.
  • the interval between the adjacent lens elements 11 and 12 is not limited to the illustrated one, and can be set as appropriate in consideration of workability and the like.
  • the resin is disposed on the sub-submaster mold 50 third transfer surface 53, but the resin may be disposed on one surface 101a and the other surface 101b of the substrate 101.
  • a coupling agent may be applied in advance to the one surface 101a and the other surface 101b of the substrate 101. Further, a release agent may be applied in advance to each transfer surface 31, 43, 53 of each mold 30, 40, 50.

Abstract

The objective of the present invention is to provide a method that is for producing a wafer lens and that can precisely form a lens unit from a resin transfer mold, even if a photocurable resin is used for forming the lens unit or the resin transfer mold that is a sub-sub-master mold or the like. If the photoinitiator of the photocurable resin of a first and second resin layer (102, 103) has a low sensitivity, the light transmittance of the thickness of the sub-sub-master mold (50) is made relatively higher, and if the photoinitiator of the photocurable resin of the first and second resin layer (102, 103) has a high sensitivity, the light transmittance of the thickness of the sub-sub-master mold (50) is made relatively lower, and so the appropriate amount of light is transmitted for curing the photocurable resin of the first and second resin layers (102, 103). As a result, a first and second optical surface (11d, 12d) can be precisely transferred. Also, since more light than needed is not radiated, it is possible to prevent yellowing of the resin and a deleterious effect on durability in environmental tests and the like.

Description

ウェハーレンズの製造方法Wafer lens manufacturing method
 本発明は、ウェハーレンズの製造方法に関し、特に撮像レンズ等に用いるためのウェハーレンズの製造方法に関する。 The present invention relates to a method for manufacturing a wafer lens, and more particularly to a method for manufacturing a wafer lens for use in an imaging lens or the like.
 ウェハーレンズの製造方法として、ガラス平板と成形型との間に硬化性樹脂組成物を注入して、レンズ部を成形するものがある(例えば、特許文献1参照)。この際、マスター型から樹脂製のサブマスター型を形成し、このサブマスター型を用いてレンズ部を成形する。或いは、サブマスター型を成形型として樹脂製のサブサブマスター型を形成し、このサブサブマスター型からレンズ部を成形する。 As a method for producing a wafer lens, there is a method in which a curable resin composition is injected between a glass flat plate and a mold to mold a lens portion (for example, see Patent Document 1). At this time, a resin-made sub master mold is formed from the master mold, and the lens portion is molded using the sub master mold. Alternatively, a resin sub-sub master mold is formed using the sub master mold as a mold, and the lens portion is molded from the sub-sub master mold.
 ここで、レンズ部を形成するためには、レンズ部を形成するための樹脂組成物の硬化に必要な波長域の光を透過する樹脂でサブサブマスター型等の樹脂転写型を構成する必要がある。しかしながら、樹脂転写型の光学的な特性によっては、レンズ部の硬化に必要な光を樹脂転写型が吸収してしまい、樹脂転写型の厚さにより光の強さにばらつきが生じうる場合がある。つまり、例えば凸形状のレンズ部を、サブサブマスター型を用いて成形する場合、レンズ部のうちサブサブマスター型の厚い部分に対応するフランジ部よりも、薄い部分に対応する光学部の方から先に硬化が始まってしまう。そのため、先行する光学部の硬化収縮により光学部とフランジ部との間で応力が発生し、光学面形状が歪むおそれがある。この現象は、例えば凹形状のレンズ部をサブサブマスター型を用いて成形する場合、すなわち光学部がサブサブマスター型の厚い部分に対応し、フランジ部がサブサブマスター型の薄い部分に対応する場合にも起こりうる。この場合、先行するフランジ部の硬化収縮により光学部とフランジ部との間で応力が発生し、光学面形状が歪むおそれがある。このような問題が生じないように、レンズ部を形成するための樹脂組成物の硬化に必要な波長域の光を透過しやすい樹脂からなる樹脂転写型を用いると、レンズ部に短波長の光が必要以上に照射される結果、レンズ部を形成する樹脂の薄い部分が黄変したり、環境試験等において耐久性に悪影響が生じたりするおそれがある。 Here, in order to form the lens portion, it is necessary to configure a resin transfer mold such as a sub-submaster mold with a resin that transmits light in a wavelength region necessary for curing the resin composition for forming the lens section. . However, depending on the optical characteristics of the resin transfer mold, the resin transfer mold may absorb light necessary for curing the lens portion, and the light intensity may vary depending on the thickness of the resin transfer mold. . That is, for example, when a convex lens part is molded using a sub-submaster mold, the optical part corresponding to the thin part is ahead of the flange part corresponding to the thick part of the sub-submaster mold in the lens part. Curing starts. Therefore, there is a possibility that stress is generated between the optical part and the flange part due to curing shrinkage of the preceding optical part, and the optical surface shape is distorted. This phenomenon can also occur when, for example, a concave lens part is molded using a sub-submaster mold, that is, the optical part corresponds to the thick part of the sub-submaster mold and the flange part corresponds to the thin part of the sub-submaster mold. It can happen. In this case, stress is generated between the optical part and the flange part due to curing shrinkage of the preceding flange part, and the optical surface shape may be distorted. In order to prevent such problems from occurring, if a resin transfer mold made of a resin that easily transmits light in the wavelength region necessary for curing the resin composition for forming the lens portion is used, a short wavelength light is applied to the lens portion. As a result of irradiating more than necessary, there is a possibility that the thin part of the resin forming the lens part may turn yellow, or the durability may be adversely affected in an environmental test or the like.
特開2009-226638号公報JP 2009-226638 A
 本発明は、サブサブマスター型等の樹脂転写型やレンズ部を形成するために光硬化性樹脂を用いても、樹脂転写型からレンズ部を精度良く成形することができるウェハーレンズの製造方法を提供することを目的とする。 The present invention provides a method for producing a wafer lens that can accurately mold a lens portion from a resin transfer mold even if a photo-curable resin is used to form a resin transfer mold such as a sub-submaster mold or a lens portion. The purpose is to do.
 上記課題を解決するため、本発明に係る第1のウェハーレンズの製造方法は、基板と、基板の一方の基板面上に成形され光学面を含む成形面を有する樹脂層と、を備えるウェハーレンズの製造方法であって、光学面を反転した形状の光学転写面を有する樹脂転写型を用いて成形面を有する樹脂層を成形する工程を備え、樹脂層は第1の光硬化性樹脂で形成され、第1の光硬化性樹脂は、第1の光重合開始剤を含む第1の光硬化性樹脂組成物を硬化させたものであり、第1の光重合開始剤の吸光度を、第1の光重合開始剤をアセトニトリルに0.01質量%の濃度で溶解した状態で測定した値で表すとき、波長340nmにおいて、第1の光重合開始剤の吸光度が0.25未満の場合、樹脂転写型として、樹脂転写型の最も厚い部分の光透過率である肉厚光透過率が60%以上のものを用い、第1の光重合開始剤の吸光度が0.25以上1.0未満の場合、樹脂転写型として、肉厚光透過率が7%以上60%未満のものを用い、第1の光重合硬化剤の吸光度が1.0以上の場合、樹脂転写型として、肉厚光透過率が1%以上7%未満であるものを用いる。 In order to solve the above-mentioned problems, a first wafer lens manufacturing method according to the present invention includes a substrate and a resin layer having a molding surface formed on one substrate surface of the substrate and including an optical surface. The method includes the step of forming a resin layer having a molding surface using a resin transfer mold having an optical transfer surface having a shape obtained by inverting the optical surface, and the resin layer is formed of a first photocurable resin. The first photocurable resin is obtained by curing the first photocurable resin composition containing the first photopolymerization initiator, and the absorbance of the first photopolymerization initiator is changed to the first photocurable resin. When the absorbance of the first photopolymerization initiator is less than 0.25 at a wavelength of 340 nm when the photopolymerization initiator is dissolved in acetonitrile at a concentration of 0.01% by mass, the resin transfer Light transmission through the thickest part of the resin transfer mold as a mold When the light transmittance of the first photopolymerization initiator is 0.25 or more and less than 1.0, the thickness light transmittance is 7% as a resin transfer mold. When the first photopolymerization curing agent has an absorbance of 1.0 or more, a resin transfer mold having a thickness light transmittance of 1% or more and less than 7% is used.
 上記第1のウェハーレンズの製造方法によれば、樹脂層を形成する第1の光硬化性樹脂の第1の光重合開始剤が低感度、具体的には吸光度0.25未満の場合、成形面を転写する樹脂転写型の最も厚い部分の肉厚光透過率を60%以上と比較的高くする。また、第1の光硬化性樹脂の第1の光重合開始剤が中程度の感度、具体的には吸光度0.25以上1.0未満の場合、樹脂転写型の肉厚光透過率を7%以上60%未満と中程度にする。また、第1の光硬化性樹脂の第1の光重合開始剤が高感度、具体的には1.0以上の場合、樹脂転写型の肉厚光透過率を1%以上7%未満と比較的低くする。これにより、第1の光重合開始剤の感度に応じて、第1の光硬化性樹脂を硬化させるのに最適な量の光を透過させることができる。結果的に、第1の光硬化性樹脂に効率良く光が届き、光学面を精度良く転写することができる。また、第1の光硬化性樹脂に必要以上の光を照射しないため、樹脂の黄変や環境試験等の耐久性への悪影響を防ぐことができる。 According to the first wafer lens manufacturing method, when the first photopolymerization initiator of the first photocurable resin forming the resin layer has low sensitivity, specifically, the absorbance is less than 0.25, molding is performed. The thick light transmittance of the thickest part of the resin transfer mold for transferring the surface is made relatively high at 60% or more. Further, when the first photopolymerization initiator of the first photocurable resin has a medium sensitivity, specifically, when the absorbance is 0.25 or more and less than 1.0, the resin-transfer-type thick light transmittance is 7 % Or more and less than 60%. Further, when the first photopolymerization initiator of the first photocurable resin has high sensitivity, specifically, 1.0 or more, the resin light transfer type wall thickness light transmittance is compared with 1% or more and less than 7%. Lower. Thereby, according to the sensitivity of a 1st photoinitiator, the optimal quantity of light can be permeate | transmitted in order to harden 1st photocurable resin. As a result, light efficiently reaches the first photocurable resin, and the optical surface can be transferred with high accuracy. In addition, since the first photocurable resin is not irradiated with light more than necessary, adverse effects on durability such as yellowing of the resin and environmental tests can be prevented.
 上記課題を解決するため、本発明に係る第2のウェハーレンズの製造方法は、基板と、基板の一方の基板面上に成形され光学面を含む成形面を有する樹脂層と、を備えるウェハーレンズの製造方法であって、光学面を反転した形状の光学転写面を有する樹脂転写型を用いて成形面を有する樹脂層を成形する工程を備え、樹脂層は第1の光硬化性樹脂で形成され、樹脂転写型は第2の光硬化性樹脂で形成され、第1の光硬化性樹脂は、第1の光重合開始剤を含む第1の光硬化性樹脂組成物を硬化させたものであり、第1の光重合開始剤の吸光度Aを、第1の光重合開始剤をアセトニトリルに0.01質量%の濃度で溶解した状態で測定した値で表すとき、波長340nmにおいて、樹脂転写型の最も厚い部分の光透過率である肉厚光透過率T(%)が以下の条件式(1)を満たすものを樹脂転写型として用いる。
 T=±30+100×exp(-2.3026A)  (1)
In order to solve the above-mentioned problems, a second wafer lens manufacturing method according to the present invention includes a substrate and a resin layer having a molding surface formed on one substrate surface of the substrate and having a molding surface including an optical surface. The method includes the step of forming a resin layer having a molding surface using a resin transfer mold having an optical transfer surface having a shape obtained by inverting the optical surface, and the resin layer is formed of a first photocurable resin. The resin transfer mold is formed of the second photocurable resin, and the first photocurable resin is obtained by curing the first photocurable resin composition containing the first photopolymerization initiator. Yes, when the absorbance A of the first photopolymerization initiator is represented by a value measured with the first photopolymerization initiator dissolved in acetonitrile at a concentration of 0.01% by mass, at a wavelength of 340 nm, the resin transfer mold The light transmittance T ( ) Is used to satisfy the following conditional expression (1) as a resin transfer mold.
T = ± 30 + 100 × exp (−2.3026A) (1)
 上記第2のウェハーレンズの製造方法によれば、成形面を転写する樹脂転写型の肉厚光透過率が条件式(1)を満たすことにより、樹脂層の光硬化性樹脂に対して硬化に有効な光をより効率良く届けることができる。これにより、光学面を精度良く転写することができる。また、第1の光硬化性樹脂に必要以上の光を照射しないため、樹脂の黄変や環境試験等の耐久性への悪影響を防ぐことができる。 According to the second method for producing a wafer lens, the resin layer of the resin transfer mold for transferring the molding surface satisfies the conditional expression (1), so that the resin layer can be cured with respect to the photocurable resin. Effective light can be delivered more efficiently. Thereby, an optical surface can be accurately transferred. In addition, since the first photocurable resin is not irradiated with light more than necessary, adverse effects on durability such as yellowing of the resin and environmental tests can be prevented.
 上記課題を解決するため、本発明に係る第3のウェハーレンズの製造方法は、基板と、基板の一方の基板面上に成形され光学面を含む成形面を有する樹脂層と、を備えるウェハーレンズの製造方法であって、光学面を反転した形状の光学転写面を有する樹脂転写型を用いて成形面を有する樹脂層を成形する工程を備え、樹脂層は第1の光硬化性樹脂で形成され、樹脂転写型は第2の光硬化性樹脂で形成され、第1の光硬化性樹脂は、第1の光重合開始剤を含む第1の光硬化性樹脂組成物を硬化させたものであり、第1の光重合開始剤をアセトニトリルに0.01質量%の濃度で溶解した状態で測定した第1の光重合開始剤の吸光度が0.3以上となる最長の波長において、樹脂転写型の最も厚い部分の光透過率である肉厚光透過率が30%±10%となるものを樹脂転写型として用いる。 In order to solve the above-mentioned problems, a third wafer lens manufacturing method according to the present invention includes a substrate and a resin layer having a molding surface molded on one substrate surface of the substrate and including an optical surface. The method includes the step of forming a resin layer having a molding surface using a resin transfer mold having an optical transfer surface having a shape obtained by inverting the optical surface, and the resin layer is formed of a first photocurable resin. The resin transfer mold is formed of the second photocurable resin, and the first photocurable resin is obtained by curing the first photocurable resin composition containing the first photopolymerization initiator. Yes, at the longest wavelength at which the absorbance of the first photopolymerization initiator measured in a state where the first photopolymerization initiator is dissolved in acetonitrile at a concentration of 0.01% by mass is 0.3 or more, the resin transfer mold The light transmittance of the thickest part is 30%. Those of 10% is used as the resin transfer mold.
 上記第3のウェハーレンズの製造方法によれば、第1の光重合開始剤の吸光度が0.3以上となる最長の波長において、成形面を転写する樹脂転写型の肉厚光透過率を上記範囲にすることにより、樹脂層の光硬化性樹脂に対して硬化に有効な光をより効率良く届けることができる。これにより、光学面を精度良く転写することができる。また、第1の光硬化性樹脂に必要以上の光を照射しないため、樹脂の黄変や環境試験等の耐久性への悪影響を防ぐことができる。 According to the third wafer lens manufacturing method, the thickness light transmittance of the resin transfer mold for transferring the molding surface is the longest wavelength at which the absorbance of the first photopolymerization initiator is 0.3 or more. By making it into the range, light effective for curing can be more efficiently delivered to the photocurable resin of the resin layer. Thereby, an optical surface can be accurately transferred. In addition, since the first photocurable resin is not irradiated with light more than necessary, adverse effects on durability such as yellowing of the resin and environmental tests can be prevented.
 本発明の具体的な態様又は観点では、上記第1~第3のウェハーレンズの製造方法において、上記樹脂転写型の光学転写面を構成する樹脂部は、第2の光重合開始剤を含む第2の光硬化性樹脂組成物を硬化させた第2の光硬化性樹脂で形成される。この場合、樹脂転写型を光硬化性樹脂で構成することにより、転写面を精度よく成形することができる。 In a specific aspect or aspect of the present invention, in the first to third methods for manufacturing a wafer lens, the resin portion constituting the optical transfer surface of the resin transfer mold includes a second photopolymerization initiator. It is formed with the 2nd photocurable resin which hardened 2 photocurable resin compositions. In this case, the transfer surface can be accurately formed by configuring the resin transfer mold with a photocurable resin.
 本発明の別の観点では、第1の光硬化性樹脂は、アクリル樹脂、アリルエステル樹脂、ビニル系樹脂、及びエポキシ系樹脂のいずれかを用いる。 In another aspect of the present invention, the first photocurable resin is an acrylic resin, an allyl ester resin, a vinyl resin, or an epoxy resin.
 本発明のさらに別の観点では、上記第1の光硬化性樹脂は紫外線硬化性樹脂である。 In still another aspect of the present invention, the first photocurable resin is an ultraviolet curable resin.
 本発明のさらに別の観点では、樹脂転写型は、成形面に対応する転写面を有するマスター型から2回の転写によって形成されるサブサブマスター型である。この場合、凸形状の光学面を転写するために、凹形状の光学転写面を有するマスター型を作製すればよく、マスター型の作製を簡易なものとすることができる。 In yet another aspect of the present invention, the resin transfer mold is a sub-sub-master mold formed by transferring twice from a master mold having a transfer surface corresponding to the molding surface. In this case, in order to transfer the convex optical surface, a master mold having a concave optical transfer surface may be manufactured, and the master mold can be easily manufactured.
 本発明のさらに別の観点では、樹脂転写型は、成形面に対応する転写面を有するマスター型から1回の転写によって形成されるサブマスター型である。この場合、凹形状の光学面を転写するために、凹形状の光学転写面を有するマスター型を作製すればよく、マスター型の作製を簡易なものとすることができる。 In yet another aspect of the present invention, the resin transfer mold is a sub-master mold formed by a single transfer from a master mold having a transfer surface corresponding to the molding surface. In this case, in order to transfer the concave optical surface, a master mold having a concave optical transfer surface may be manufactured, and the master mold can be easily manufactured.
 本発明のさらに別の観点では、基板は、ガラスで形成される。この場合、基板が比較的薄い場合でも基板の強度を保つことができる。 In yet another aspect of the present invention, the substrate is made of glass. In this case, the strength of the substrate can be maintained even when the substrate is relatively thin.
 本発明のさらに別の観点では、樹脂転写型は、光透過性の基板と、基板の一方の基板面上に形成され光学転写面を複数含む型面を有する樹脂部とを有する。この場合、樹脂転写型は、基板と樹脂部との2層構造となり、樹脂転写型をより強度的に安定したものとすることができる。 In still another aspect of the present invention, the resin transfer mold includes a light-transmitting substrate and a resin portion having a mold surface formed on one substrate surface of the substrate and including a plurality of optical transfer surfaces. In this case, the resin transfer mold has a two-layer structure of the substrate and the resin portion, and the resin transfer mold can be made more stable in strength.
 本発明のさらに別の観点では、第1の光硬化性樹脂と、第2の光硬化性樹脂とは、異なる波長で硬化する。この場合、樹脂層を硬化させる際に、樹脂転写型による硬化波長の吸収を抑制することができる。 In still another aspect of the present invention, the first photocurable resin and the second photocurable resin are cured at different wavelengths. In this case, when the resin layer is cured, absorption of the curing wavelength by the resin transfer mold can be suppressed.
 本発明のさらに別の観点では、第1の光硬化性樹脂を得るための光硬化性樹脂組成物は、第2の光硬化性樹脂を得るための光硬化性樹脂組成物よりも長波長側で硬化しやすい。この場合、樹脂層を形成する光硬化性樹脂の硬化波長を長波長側とすることにより、樹脂転写型の肉厚光透過率の条件を変更することで、樹脂層の光硬化性樹脂に対して硬化に有効な光をより効率良く届けることができる。 In still another aspect of the present invention, the photocurable resin composition for obtaining the first photocurable resin has a longer wavelength side than the photocurable resin composition for obtaining the second photocurable resin. Easy to cure. In this case, by setting the curing wavelength of the photocurable resin forming the resin layer to the long wavelength side, the conditions for the thickness light transmittance of the resin transfer mold are changed, so that the photocurable resin of the resin layer is changed. Thus, light that is effective for curing can be delivered more efficiently.
(A)は、ウェハーレンズの平面図であり、(B)は、(A)に示すウェハーレンズのAA矢視断面図であり、(C)は、(A)に示すウェハーレンズの斜視図である。(A) is a plan view of the wafer lens, (B) is a cross-sectional view taken along the line AA of the wafer lens shown in (A), and (C) is a perspective view of the wafer lens shown in (A). is there. (A)~(E)は、吸光度を説明するための図であり、(F)は、光透過率を説明するための図である。(A) to (E) are diagrams for explaining the absorbance, and (F) is a diagram for explaining the light transmittance. 図1に示すウェハーレンズを積層して切り出した撮像レンズの断面図である。It is sectional drawing of the imaging lens cut out by laminating | stacking the wafer lens shown in FIG. (A)は、第1実施形態のウェハーレンズの製造のために用いるマスター型を説明する斜視図であり、(B)は、サブマスター型の斜視図であり、(C)は、サブサブマスター型の斜視図である。(A) is a perspective view explaining the master type | mold used for manufacture of the wafer lens of 1st Embodiment, (B) is a perspective view of a submaster type | mold, (C) is a subsubmaster type | mold. FIG. 吸光度と肉厚光透過率との関係を説明するための図である。It is a figure for demonstrating the relationship between a light absorbency and thickness light transmittance. (A)~(F)は、ウェハーレンズの製造工程を説明するための図である。(A) to (F) are diagrams for explaining a manufacturing process of a wafer lens.
〔第1実施形態〕
ウェハーレンズの構造
 図面を参照して、本発明の第1実施形態に係るウェハーレンズについて説明する。
 図1(A)~1(C)に示すように、ウェハーレンズ100は、円盤状であり、基板101と、第1樹脂層102と、第2樹脂層103とを有する。
[First Embodiment]
The wafer lens according to the first embodiment of the present invention will be described with reference to the structural drawing of the wafer lens.
As shown in FIGS. 1A to 1C, the wafer lens 100 has a disk shape and includes a substrate 101, a first resin layer 102, and a second resin layer 103.
 ウェハーレンズ100のうち基板101は、円形の平板であり、ガラスで形成されている。基板101の外径は、第1及び第2樹脂層102,103の外径と略同じである。基板101の厚さは、基本的には光学的仕様によって決定されるが、ウェハーレンズ100の離型時において破損しない程度の厚さとなっている。 The substrate 101 of the wafer lens 100 is a circular flat plate and is made of glass. The outer diameter of the substrate 101 is substantially the same as the outer diameter of the first and second resin layers 102 and 103. The thickness of the substrate 101 is basically determined by optical specifications, but is such a thickness that the wafer lens 100 is not damaged when the wafer lens 100 is released.
 第1樹脂層102は、樹脂製であり、基板101の一方の面101a上に形成されている。第1樹脂層102は、平面視において円形の外形を有する。具体的には、第1樹脂層102は、第1レンズ本体11aと第1フランジ部11bとを一組とする多数の第1レンズ要素11をXY面内で2次元的に配列している。これらの第1レンズ要素11は、平坦な連結部11cを介して一体に成形されている。各第1レンズ要素11と連結部11cとを合わせた表面は、転写によって一括成形される第1成形面102aとなっている。第1レンズ本体11aは、例えば凸形状の非球面型のレンズ部であり、第1光学面11dを有している。周囲の第1フランジ部11bは、第1光学面11dの周囲に広がる平坦な第1フランジ面11gを有し、第1フランジ部11bの外周は、連結部11cともなっている。第1フランジ面11gは、光軸OAに垂直なXY面に対して平行に配置されている。 The first resin layer 102 is made of resin, and is formed on one surface 101 a of the substrate 101. The first resin layer 102 has a circular outer shape in plan view. Specifically, in the first resin layer 102, a large number of first lens elements 11 each having the first lens body 11a and the first flange portion 11b as a set are two-dimensionally arranged in the XY plane. These first lens elements 11 are integrally formed through a flat connecting portion 11c. The combined surface of each first lens element 11 and connecting portion 11c is a first molding surface 102a that is collectively molded by transfer. The first lens body 11a is, for example, a convex aspherical lens part, and has a first optical surface 11d. The surrounding first flange portion 11b has a flat first flange surface 11g extending around the first optical surface 11d, and the outer periphery of the first flange portion 11b is also a connecting portion 11c. The first flange surface 11g is disposed in parallel to the XY plane perpendicular to the optical axis OA.
 第1樹脂層102は、光硬化性樹脂(第1の光硬化性樹脂)で形成されている。第1の光硬化性樹脂を得るための光硬化性樹脂組成物(第1の光硬化性樹脂組成物)には、光硬化性樹脂組成物の重合を開始させる光重合開始剤(第1の光重合開始剤)が含まれている。光硬化性樹脂としては、アクリル樹脂、アリルエステル樹脂、エポキシ系樹脂、又はビニル系樹脂等を使用することができる。アクリル樹脂、アリルエステル樹脂、又はビニル系樹脂を使用する場合、樹脂組成物に例えばラジカル系の光重合開始剤を含ませ、この光重合開始剤のラジカル重合により反応硬化させることができる。エポキシ系樹脂を使用する場合、樹脂組成物に例えばカチオン系の光重合開始剤を含ませ、この光重合開始剤のカチオン重合により反応硬化させることができる。 The first resin layer 102 is formed of a photocurable resin (first photocurable resin). In the photocurable resin composition (first photocurable resin composition) for obtaining the first photocurable resin, a photopolymerization initiator (first photopolymerization initiator) for initiating polymerization of the photocurable resin composition is used. Photopolymerization initiator). As the photocurable resin, an acrylic resin, an allyl ester resin, an epoxy resin, a vinyl resin, or the like can be used. When an acrylic resin, an allyl ester resin, or a vinyl resin is used, for example, a radical photopolymerization initiator is included in the resin composition, and the resin composition can be cured by radical polymerization of the photopolymerization initiator. In the case of using an epoxy resin, for example, a cationic photopolymerization initiator may be included in the resin composition, and the resin composition may be reacted and cured by cationic polymerization of the photopolymerization initiator.
 第2樹脂層103は、第1樹脂層102と同様に、樹脂製であり、基板101の他方の面101b上に形成されている。第2樹脂層103は、平面視において円形の外形を有する。具体的には、第2樹脂層103は、第2レンズ本体12aと第2フランジ部12bとを一組とする多数の第2レンズ要素12をXY面内で2次元的に配列している。これらの第2レンズ要素12は、平坦な連結部12cを介して一体に成形されている。各第2レンズ要素12と連結部12cとを合わせた表面は、転写によって一括成形される第2成形面103aとなっている。第2レンズ本体12aは、例えば凹形状の非球面型のレンズ部であり、第2光学面12dを有している。周囲の第2フランジ部12bは、第2光学面12dの周囲に広がる平坦な第2フランジ面12gを有し、第2フランジ部12bの外周は、連結部12cともなっている。第2フランジ面12gは、光軸OAに垂直なXY面に対して平行に配置されている。 The second resin layer 103 is made of resin, like the first resin layer 102, and is formed on the other surface 101b of the substrate 101. The second resin layer 103 has a circular outer shape in plan view. Specifically, in the second resin layer 103, a large number of second lens elements 12 each including the second lens body 12a and the second flange portion 12b are arranged two-dimensionally in the XY plane. These second lens elements 12 are integrally molded through a flat connecting portion 12c. The combined surface of each second lens element 12 and connecting portion 12c is a second molding surface 103a that is collectively molded by transfer. The second lens body 12a is, for example, a concave aspherical lens part, and has a second optical surface 12d. The surrounding second flange portion 12b has a flat second flange surface 12g extending around the second optical surface 12d, and the outer periphery of the second flange portion 12b is also a connecting portion 12c. The second flange surface 12g is disposed in parallel to the XY plane perpendicular to the optical axis OA.
 第2樹脂層103に用いられる光硬化性樹脂は、第1樹脂層102の光硬化性樹脂と同様のものである。ただし、両樹脂層102,103を同一の光硬化性樹脂で形成する必要はなく、別の光硬化性樹脂で形成することができる。 The photocurable resin used for the second resin layer 103 is the same as the photocurable resin of the first resin layer 102. However, both the resin layers 102 and 103 do not need to be formed of the same photocurable resin, and can be formed of different photocurable resins.
 なお、ウェハーレンズ100において、基板101と第1又は第2樹脂層102,103との間に絞りを設けてもよい。また、基板101の一方の面101a又は他方の面101bにのみ樹脂層を設けてもよい。 In the wafer lens 100, a diaphragm may be provided between the substrate 101 and the first or second resin layer 102, 103. Further, a resin layer may be provided only on one surface 101a or the other surface 101b of the substrate 101.
光硬化性樹脂
 以下、第1及び第2樹脂層102,103として用いられる光硬化性樹脂の詳細について説明する。光硬化性樹脂は、少なくともモノマー類等の基材と光重合開始剤とを含む光硬化性樹脂組成物に光を照射して硬化させることにより得られる。硬化前の樹脂組成物を光硬化性樹脂と呼ぶこともある。この光硬化性樹脂は、後述するサブマスター型やサブサブマスター型にも用いることができる。
The following photo-curable resin will be described in detail photocurable resin used as the first and second resin layers 102 and 103. The photocurable resin is obtained by irradiating and curing a photocurable resin composition containing at least a substrate such as monomers and a photopolymerization initiator. The resin composition before curing may be referred to as a photocurable resin. This photocurable resin can also be used for a submaster type and a subsubmaster type described later.
(1)アクリル樹脂
 アクリル樹脂の重合反応に用いられる(メタ)アクリレートは特に制限はなく、一般的な製造方法により製造された下記(メタ)アクリレートを使用することができる。エステル(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、エーテル(メタ)アクリレート、アルキル(メタ)アクリレート、アルキレン(メタ)アクリレート、芳香環を有する(メタ)アクリレート、多官能(メタ)アクリレート、脂環式構造を有する(メタ)アクリレートが挙げられる。これらを1種類又は2種類以上を用いることができる。
(1) Acrylic resin There is no restriction | limiting in particular in the (meth) acrylate used for the polymerization reaction of an acrylic resin, The following (meth) acrylate manufactured by the general manufacturing method can be used. Ester (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, ether (meth) acrylate, alkyl (meth) acrylate, alkylene (meth) acrylate, (meth) acrylate having an aromatic ring, polyfunctional (meth) Examples include acrylate and (meth) acrylate having an alicyclic structure. One or more of these can be used.
 特に、脂環式構造を持つ(メタ)アクリレートが好ましく、酸素原子や窒素原子を含む脂環構造であってもよい。例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘプチル(メタ)アクリレート、ビシクロヘプチル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレートや、イソボロニル(メタ)アクリレート、水添ビスフェノール類のジ(メタ)アクリレート等が挙げられる。また、特にアダマンタン骨格を持つと好ましい。例えば、2-アルキル-2-アダマンチル(メタ)アクリレート(特開2002-193883号公報参照)、アダマンチルジ(メタ)アクリレート(特開昭57-500785)、アダマンチルジカルボン酸ジアリル(特開昭60―100537)、パーフルオロアダマンチルアクリル酸エステル(特開2004-123687)、2-メチル-2-アダマンチルメタクリレート(新中村化学製)、1,3-アダマンタンジオールジアクリレート、1,3,5-アダマンタントリオールトリアクリレート、不飽和カルボン酸アダマンチルエステル(特開2000-119220)、3,3'-ジアルコキシカルボニル-1,1'ビアダマンタン(特開2001-253835号公報参照)、1,1'-ビアダマンタン化合物(米国特許第3342880号明細書参照)、テトラアダマンタン(特開2006-169177号公報参照)、2-アルキル-2-ヒドロキシアダマンタン、2-アルキレンアダマンタン、1,3-アダマンタンジカルボン酸ジ-tert-ブチル等の芳香環を有しないアダマンタン骨格を有する硬化性樹脂(特開2001-322950号公報参照)、ビス(ヒドロキシフェニル)アダマンタン類やビス(グリシジルオキシフェニル)アダマンタン(特開平11-35522号公報、特開平10-130371号公報参照)等が挙げられる。 Particularly, (meth) acrylate having an alicyclic structure is preferable, and an alicyclic structure containing an oxygen atom or a nitrogen atom may be used. For example, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, cycloheptyl (meth) acrylate, bicycloheptyl (meth) acrylate, tricyclodecyl (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, isoboronyl (meth) ) Acrylate, di (meth) acrylate of hydrogenated bisphenols, and the like. In particular, it preferably has an adamantane skeleton. For example, 2-alkyl-2-adamantyl (meth) acrylate (see Japanese Patent Laid-Open No. 2002-193883), adamantyl di (meth) acrylate (Japanese Patent Laid-Open No. 57-5000785), diallyl adamantyl dicarboxylate (Japanese Patent Laid-Open No. 60-100537) ), Perfluoroadamantyl acrylate (JP 2004-123687), 2-methyl-2-adamantyl methacrylate (manufactured by Shin-Nakamura Chemical), 1,3-adamantanediol diacrylate, 1,3,5-adamantanetriol triacrylate An unsaturated carboxylic acid adamantyl ester (Japanese Patent Laid-Open No. 2000-119220), 3,3′-dialkoxycarbonyl-1,1 ′ biadamantane (see Japanese Patent Laid-Open No. 2001-253835), 1,1′-biadamantane compound ( US Pat. No. 334 880), tetraadamantane (see JP 2006-169177), 2-alkyl-2-hydroxyadamantane, 2-alkyleneadamantane, 1,3-adamantane dicarboxylate di-tert-butyl and the like Curable resins having an adamantane skeleton (see JP-A-2001-322950), bis (hydroxyphenyl) adamantanes and bis (glycidyloxyphenyl) adamantane (JP-A-11-35522, JP-A-10-130371) For example).
 また、その他反応性単量体を含有することも可能である。(メタ)アクリレートであれば、例えば、メチルアクリレート、メチルメタアクリレート、n-ブチルアクリレート、n-ブチルメタアクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタアクリレート、イソブチルアクリレート、イソブチルメタアクリレート、tert-ブチルアクリレート、tert-ブチルメタアクリレート、フェニルアクリレート、フェニルメタアクリレート、ベンジルアクリレート、ベンジルメタアクリレート、シクロヘキシルアクリレート、シクロヘキシルメタアクリレート等が挙げられる。 It is also possible to contain other reactive monomers. In the case of (meth) acrylate, for example, methyl acrylate, methyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate Tert-butyl methacrylate, phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate and the like.
 多官能(メタ)アクリレートとして、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリペンタエリスリトールセプタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールテトラ(メタ)アクリレート、トリペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。 Examples of the polyfunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) ) Acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, tripentaerythritol octa (meth) acrylate, tripentaerythritol septa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripenta Erythritol penta (meth) acrylate, tripentaerythritol tetra (meth) acrylate, tripentaerythritol Tri (meth) acrylate.
(2)アリルエステル樹脂
 アリルエステル樹脂は、アリル基を持ちラジカル重合によって硬化する樹脂で、例えば次のものが挙げられるが、特に以下のものに限定されるわけではない。
(2) Allyl ester resin An allyl ester resin is a resin having an allyl group and cured by radical polymerization. Examples thereof include the following, but are not particularly limited to the following.
 芳香環を含まない臭素含有(メタ)アリルエステル樹脂(特開2003-66201号公報参照)、アリル(メタ)アクリレート樹脂(特開平5-286896号公報参照)、アリルエステル樹脂(特開平5-286896号公報、特開2003-66201号公報参照)等が挙げられる。 Bromine-containing (meth) allyl ester resin containing no aromatic ring (see JP-A-2003-66201), allyl (meth) acrylate resin (see JP-A-5-286896), allyl ester resin (JP-A-5-286896). For example, Japanese Patent Laid-Open No. 2003-66201).
(3)エポキシ系樹脂
 エポキシ系樹脂としては、エポキシ基を持ち光又は光及び熱により重合硬化するものであれば特に限定されず、硬化開始剤としても酸無水物やカチオン発生剤等を用いることができる。エポキシ系樹脂は、硬化収縮率が低いため、成形精度の優れたレンズとすることができる点で好ましい。
(3) Epoxy resin The epoxy resin is not particularly limited as long as it has an epoxy group and is polymerized and cured by light or light and heat, and an acid anhydride, a cation generator or the like is used as a curing initiator. Can do. Epoxy resins are preferred in that they can be made into lenses with excellent molding accuracy because of their low cure shrinkage.
 エポキシ系樹脂の種類としては、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が挙げられる。その一例として、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2'-ビス(4-グリシジルオキシシクロヘキシル)プロパン、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキシド、2-(3,4-エポキシシクロヘキシル)-5,5-スピロ-(3,4-エポキシシクロヘキサン)-1,3-ジオキサン、ビス(3,4-エポキシシクロヘキシル)アジペート、1,2-シクロプロパンジカルボン酸ビスグリシジルエステル等を重合したものを挙げることができる。 Examples of the epoxy resin include novolak phenol type epoxy resin, biphenyl type epoxy resin, and dicyclopentadiene type epoxy resin. Examples include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, vinyl Cyclohexene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2 -A polymer obtained by polymerizing bisglycidyl ester of cyclopropanedicarboxylic acid.
(4)ビニル系樹脂
 ビニル系樹脂は、硬化させることによって透明な樹脂を形成する物であれば特に制限はなく、一般的な製造方法により製造されたビニル系樹脂を使用することができる。
(4) Vinyl-based resin The vinyl-based resin is not particularly limited as long as it is a material that forms a transparent resin by being cured, and a vinyl-based resin manufactured by a general manufacturing method can be used.
 ビニル系樹脂は、ビニル基(CH=CH-)が架橋反応に寄与するものであればいずれでも良い。 Any vinyl-based resin may be used as long as the vinyl group (CH 2 ═CH—) contributes to the crosslinking reaction.
 ポリビニル系樹脂のモノマーは、一般式CH=CH-Rで表される。ポリビニル系樹脂の例として、ポリ塩化ビニル、ポリスチレン等が挙げられ、特にRに芳香族を含む芳香族系ビニル樹脂が好ましい。特に1分子中に2つ以上ビニル基をもつ、ジビニル系樹脂がより好ましい。これらのビニル系樹脂は、1種を単独で用いたり、或いは、2種類以上のモノマーを用いることにより2種以上を併用したりすることもできる。 The monomer of the polyvinyl resin is represented by the general formula CH 2 ═CH—R. Examples of the polyvinyl resin include polyvinyl chloride, polystyrene and the like, and an aromatic vinyl resin containing an aromatic in R is particularly preferable. In particular, a divinyl resin having two or more vinyl groups in one molecule is more preferable. These vinyl resins can be used alone or in combination of two or more by using two or more monomers.
光重合開始剤
 以下、第1及び第2樹脂層102,103を形成するための光硬化性樹脂組成物に用いられる光重合開始剤の詳細について説明する。
The following photoinitiators, details of the photopolymerization initiator is described for use in the photocurable resin composition for forming the first and second resin layers 102 and 103.
 光重合開始剤は、基本的には光硬化性樹脂との組み合わせで選択する。さらに、光重合開始剤の選択にあたっては、ウェハーレンズ100の使用波長域での透過率を低下させないように配慮し、硬化光に対する吸光度が適度となるように考慮する。より詳しくは、紫外線(UV)の照射により活性化する光重合開始剤を用いる。光重合開始剤としては、光源から照射されるUV光の波長に感度を有し、当該波長のUV光の照射によってラジカル等の活性種を発生するものを用いる。例えば、少なくとも波長250nm~340nmの波長域に感度を有する光重合開始剤を用いることができる。具体的なラジカル系の光重合開始剤としては、例えばα-ヒドロキシアルキルフェノン(チバジャパン社製、DAROCUR1173、IRGACURE184等)等が挙げられる。光重合開始剤の添加量は、光硬化性樹脂に対して、0.001~5質量%、好ましくは0.01~3質量%、さらに好ましくは0.05~1質量%である。なお、エポキシ系樹脂を用いる場合、上記と同様の光学特性を有する光重合開始剤として、例えばカチオン発生する光重合開始剤を用いる。カチオン系の光重合開始剤としては、例えばヨードニウム系カチオン重合開始剤(チバジャパン社製、IRGACURE250等)等が挙げられる。 The photopolymerization initiator is basically selected in combination with a photocurable resin. Furthermore, in selecting the photopolymerization initiator, consideration is given so as not to lower the transmittance of the wafer lens 100 in the use wavelength region, and consideration is given so that the absorbance to the curing light becomes appropriate. More specifically, a photopolymerization initiator that is activated by irradiation with ultraviolet rays (UV) is used. As the photopolymerization initiator, a photopolymerization initiator that is sensitive to the wavelength of UV light irradiated from a light source and generates active species such as radicals by irradiation with UV light having the wavelength is used. For example, a photopolymerization initiator having sensitivity at least in the wavelength range of 250 nm to 340 nm can be used. Specific examples of radical photopolymerization initiators include α-hydroxyalkylphenone (manufactured by Ciba Japan, DAROCUR1173, IRGACURE184, etc.). The addition amount of the photopolymerization initiator is 0.001 to 5% by mass, preferably 0.01 to 3% by mass, and more preferably 0.05 to 1% by mass with respect to the photocurable resin. In addition, when using an epoxy-type resin, the photoinitiator which generate | occur | produces a cation is used as a photoinitiator which has the same optical characteristic as the above, for example. Examples of the cationic photopolymerization initiator include iodonium-based cationic polymerization initiators (manufactured by Ciba Japan, IRGACURE250, etc.).
 図2(A)は、DAROCUR1173の吸光度を示す図であり、図2(B)は、IRGACURE184の吸光度を示す図であり、図2(C)は、IRUGACURE250の吸光度特性を示す図である。なお、光重合開始剤の吸光度は、いずれも0.01質量%アセトニトリル溶液中に溶解した状態で測定している。 2A is a diagram showing the absorbance of DAROCUR 1173, FIG. 2B is a diagram showing the absorbance of IRGACURE184, and FIG. 2C is a diagram showing the absorbance characteristics of IRUGACURE250. The absorbance of the photopolymerization initiator is measured in a state where it is dissolved in a 0.01% by mass acetonitrile solution.
撮像レンズ及び複合レンズ
 図3に示す撮像レンズ200は、第1複合レンズ10と第2複合レンズ20とを備える。
 第1複合レンズ10は、既に説明した第1レンズ要素11と、第2レンズ要素12と、これらの間に挟まれた平板部13とを備える。平板部13は、基板101を切り出した部分である。第1複合レンズ10において、第1及び第2レンズ要素11,12の形状は同一でも異なる形状であってもよい。
Imaging Lens and Compound Lens The imaging lens 200 shown in FIG. 3 includes a first compound lens 10 and a second compound lens 20.
The first compound lens 10 includes the first lens element 11, the second lens element 12, and the flat plate portion 13 sandwiched between them. The flat plate portion 13 is a portion obtained by cutting out the substrate 101. In the first compound lens 10, the shapes of the first and second lens elements 11, 12 may be the same or different.
 第2複合レンズ20は、第1複合レンズ10と同様に、第1レンズ要素21と、第2レンズ要素22と、これらの間に挟まれた平板部23とを備える。 Similarly to the first compound lens 10, the second compound lens 20 includes a first lens element 21, a second lens element 22, and a flat plate portion 23 sandwiched therebetween.
 図3に示す撮像レンズ200を作製するために、2枚のウェハーレンズ100が用いられる。2枚のウェハーレンズ100は、積層された状態で接着剤等によって固定されている。積層された2枚のウェハーレンズ100は、最終的にダイシングによって切り出され、図3に示す撮像レンズ200となる。撮像レンズ200は、光軸OA方向から見て四角形の輪郭を有する部材である。なお、撮像レンズ200は、例えば別途準備したホルダーに収納され、撮像レンズとして撮像回路基板に接着される。 In order to produce the imaging lens 200 shown in FIG. 3, two wafer lenses 100 are used. The two wafer lenses 100 are fixed with an adhesive or the like in a stacked state. The two stacked wafer lenses 100 are finally cut out by dicing to form the imaging lens 200 shown in FIG. The imaging lens 200 is a member having a rectangular outline when viewed from the optical axis OA direction. The imaging lens 200 is housed in, for example, a separately prepared holder, and is bonded to the imaging circuit board as an imaging lens.
成形型
 以下、図4(A)~4(C)を参照しつつ、図1(A)等に示すウェハーレンズ100を製造するための成形型の一例について説明する。
Molding Mold An example of a molding mold for manufacturing the wafer lens 100 shown in FIG. 1 (A) will be described below with reference to FIGS. 4 (A) to 4 (C).
 ウェハーレンズ100の成形には、成形型として、マスター型30と、サブマスター型40と、サブサブマスター型50とが用いられる。 For molding the wafer lens 100, a master mold 30, a sub master mold 40, and a sub sub master mold 50 are used as molds.
 図4(A)に示すように、マスター型30は、その端面30a上に、後述するサブマスター型40の第2転写面43を形成するための第1転写面31を有する。この第1転写面31は、最終的に得られるウェハーレンズ100の第1樹脂層102の第1成形面102aに対応する。第1転写面31は、第1成形面102aのうち第1光学面11dを形成するための第1光学転写面31aと、第1フランジ面11gを形成するための第1フランジ転写面31bとを含む。第1光学転写面31aは、アレイ状に複数個配置されており、略半球の凹形状に形成されている。 As shown in FIG. 4A, the master mold 30 has a first transfer surface 31 for forming a second transfer surface 43 of a sub-master mold 40 to be described later on its end surface 30a. The first transfer surface 31 corresponds to the first molding surface 102a of the first resin layer 102 of the wafer lens 100 finally obtained. The first transfer surface 31 includes a first optical transfer surface 31a for forming the first optical surface 11d of the first molding surface 102a and a first flange transfer surface 31b for forming the first flange surface 11g. Including. A plurality of first optical transfer surfaces 31a are arranged in an array and are formed in a substantially hemispherical concave shape.
 マスター型30は、一般に金属材料で形成されている。金属材料としては、例えば鉄系材料や鉄系合金、非鉄系合金等が挙げられる。鉄系材料としては、例えば熱間金型、冷間金型、プラスチック金型、高速度工具鋼、一般構造用圧延鋼材、機械構造用炭素鋼、クロム・モリブデン鋼、ステンレス鋼が挙げられる。そのうち、プラスチック金型としては、例えばプリハードン鋼、焼入れ焼戻し鋼、時効処理鋼がある。プリハードン鋼としては、例えばSC系、SCM系、SUS系が挙げられる。SC系には例えばPXZが挙げられる。SCM系としては例えばHPM2、HPM7、PX5、IMPAXが挙げられる。SUS系としては、例えばHPM38、HPM77、S-STAR、G-STAR、STAVAX、RAMAX-S、PSLが挙げられる。鉄系合金としては、例えば特開2005-113161や特開2005-206913に示されている合金が挙げられる。非鉄系合金としては主に、銅合金、アルミ合金、亜鉛合金がよく知られており、例えば特開平10-219373、特開2000-176970に示されている合金が挙げられる。なお、マスター型30は金属ガラスやアモルファス合金から構成されてもよい。金属ガラスとしては、例えばPdCuSiやPdCuSiNi等が挙げられる。金属ガラスはダイヤモンド切削における被削性が高く、工具の磨耗が少ない。アモルファス合金としては、例えば無電解又は電解のニッケルリンメッキ等があり、ダイヤモンド切削における被削性がよい。これらの高被削性材料は、マスター型30全体を構成してもよいし、メッキやスパッタ等の方法によって特に光学転写面の表面だけを覆ってもよい。 The master mold 30 is generally formed of a metal material. Examples of the metal material include iron-based materials, iron-based alloys, and non-ferrous alloys. Examples of iron-based materials include hot dies, cold dies, plastic dies, high-speed tool steel, general structural rolled steel, carbon steel for mechanical structures, chrome / molybdenum steel, and stainless steel. Among these, examples of the plastic mold include pre-hardened steel, quenched and tempered steel, and aging treated steel. Examples of the pre-hardened steel include SC, SCM, and SUS. An example of the SC system is PXZ. Examples of the SCM system include HPM2, HPM7, PX5, and IMPAX. Examples of the SUS system include HPM38, HPM77, S-STAR, G-STAR, STAVAX, RAMAX-S, and PSL. Examples of the iron-based alloy include alloys disclosed in JP-A-2005-113161 and JP-A-2005-206913. As the non-ferrous alloys, copper alloys, aluminum alloys, and zinc alloys are well known, and examples include alloys disclosed in JP-A-10-219373 and JP-A-2000-176970. The master mold 30 may be made of metal glass or amorphous alloy. Examples of the metallic glass include PdCuSi and PdCuSiNi. Metallic glass has high machinability in diamond cutting and less tool wear. Examples of the amorphous alloy include electroless or electrolytic nickel phosphorous plating, and have good machinability in diamond cutting. These highly machinable materials may constitute the entire master mold 30 or may cover only the surface of the optical transfer surface, in particular, by a method such as plating or sputtering.
 図4(B)に示すように、サブマスター型40は、樹脂部であるサブマスター成形部41と光透過性のサブマスター基板42とを有する。サブマスター成形部41とサブマスター基板42とは、積層構造となっている。サブマスター成形部41は、その端面41a上に、後述するサブサブマスター型50の第3転写面53を形成する第2転写面43を有する。この第2転写面43は、最終的に得られるウェハーレンズ100の第1樹脂層102の第1成形面102aのポジ型に対応し、第1成形面102aのうち第1光学面11dを形成するための第2光学転写面43aと、第1フランジ面11gを形成するための第2フランジ転写面43bとを含む。第2光学転写面43aは、第1光学転写面31aによって転写され、アレイ状に複数個配置されており、略半球の凸形状に形成されている。 As shown in FIG. 4B, the sub-master mold 40 has a sub-master molding part 41 that is a resin part and a light-transmissive sub-master substrate 42. The sub master molding part 41 and the sub master substrate 42 have a laminated structure. The sub master molding part 41 has a second transfer surface 43 that forms a third transfer surface 53 of a sub sub master mold 50 to be described later on its end surface 41a. The second transfer surface 43 corresponds to the positive mold of the first molding surface 102a of the first resin layer 102 of the wafer lens 100 finally obtained, and forms the first optical surface 11d of the first molding surface 102a. A second optical transfer surface 43a for forming the first flange surface 11g, and a second flange transfer surface 43b for forming the first flange surface 11g. The second optical transfer surface 43a is transferred by the first optical transfer surface 31a, and a plurality of second optical transfer surfaces 43a are arranged in an array, and are formed in a substantially hemispherical convex shape.
 サブマスター成形部41は、樹脂によって形成されている。この樹脂としては、第1レンズ要素11や後述するサブサブマスター型50を成形できるものであれば特に種類を問わず、光硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂など様々なものを用いることができるが、特に好ましいものとしては、光硬化性樹脂(第2の光硬化性樹脂)が挙げられる。光硬化性樹脂としては、上記ウェハーレンズ100の第1樹脂層102と同様のアクリル樹脂、アリルエステル樹脂、エポキシ系樹脂、又はビニル系樹脂等が使用可能である。また、上記樹脂としては、離型性の良好な樹脂、特に透明樹脂が好ましく、離型剤を塗布しなくても離型できる樹脂がよい。 The sub master molding part 41 is made of resin. Any resin can be used as the resin, such as a photo-curing resin, a thermosetting resin, and a thermoplastic resin, as long as it can mold the first lens element 11 and the sub-sub master mold 50 described later. However, a photocurable resin (second photocurable resin) is particularly preferable. As the photocurable resin, the same acrylic resin, allyl ester resin, epoxy resin, vinyl resin, or the like as the first resin layer 102 of the wafer lens 100 can be used. Moreover, as said resin, resin with favorable mold release property, especially transparent resin are preferable, and resin which can be released without applying a mold release agent is good.
 サブマスター基板42は例えば石英、ガラス、シリコンウェハー、金属、樹脂等の平滑性を有する材料で形成されている。透明性又は光透過性の観点(サブマスター型40の上からでも下からでも光照射できるという点)を考慮すると、サブマスター基板42は、好ましくは石英やガラス等から構成される。 The sub-master substrate 42 is formed of a smooth material such as quartz, glass, silicon wafer, metal, or resin. In consideration of transparency or light transmission (the point that light can be irradiated from above or from below), the sub master substrate 42 is preferably made of quartz, glass, or the like.
 図4(C)に示すように、サブサブマスター型50は、樹脂部であるサブサブマスター成形部51と光透過性のサブサブマスター基板52とを有する。サブサブマスター成形部51とサブサブマスター基板52とは、積層構造となっている。サブサブマスター成形部51は、端面51a上に、ウェハーレンズ100の第1成形面102aを形成する第3転写面53を有する。この第3転写面53は、ウェハーレンズ100の第1樹脂層102の第1成形面102aに対応し、第1成形面102aのうち第1光学面11dを形成するための第3光学転写面53aと、第1フランジ面11gを形成するための第3フランジ転写面53bとを含む。すなわち、サブサブマスター型50は、第1樹脂層102の第1成形面102aを形成するための樹脂転写型として機能する。第3光学転写面53aは、上述のように第2光学転写面43aによって転写され、アレイ状に複数個配置されており、略半球の凹形状に形成されている。 As shown in FIG. 4C, the sub-sub master mold 50 includes a sub-sub master molding portion 51 that is a resin portion and a light-transmitting sub-sub master substrate 52. The sub-sub master molding part 51 and the sub-sub master substrate 52 have a laminated structure. The sub-sub master molding unit 51 has a third transfer surface 53 that forms the first molding surface 102a of the wafer lens 100 on the end surface 51a. The third transfer surface 53 corresponds to the first molding surface 102a of the first resin layer 102 of the wafer lens 100, and the third optical transfer surface 53a for forming the first optical surface 11d of the first molding surface 102a. And a third flange transfer surface 53b for forming the first flange surface 11g. That is, the sub-submaster mold 50 functions as a resin transfer mold for forming the first molding surface 102 a of the first resin layer 102. The third optical transfer surface 53a is transferred by the second optical transfer surface 43a as described above, and a plurality of the third optical transfer surfaces 53a are arranged in an array, and are formed in a substantially hemispherical concave shape.
 サブサブマスター成形部51は樹脂によって形成される。この樹脂としては、上記第1樹脂層102と同様の樹脂を用いることができ、上記ウェハーレンズ100の第1樹脂層102と同様の材料で形成されていてもよい。サブサブマスター基板52は、サブマスター基板42と同様の材料で形成される。なお、サブマスター成形部41とサブサブマスター成形部51とを必ずしも同一の材料で形成する必要はない。また、サブマスター基板42とサブサブマスター基板52とも必ずしも同一の材料で形成する必要はなく、異なる材料で形成されてもよい。 The sub-sub master molding part 51 is made of resin. As this resin, the same resin as the first resin layer 102 can be used, and the resin may be formed of the same material as the first resin layer 102 of the wafer lens 100. The sub-submaster substrate 52 is formed of the same material as the sub-master substrate 42. Note that the sub master molding part 41 and the sub sub master molding part 51 are not necessarily formed of the same material. Further, the sub-master substrate 42 and the sub-sub-master substrate 52 are not necessarily formed of the same material, and may be formed of different materials.
 サブサブマスター成形部51において、最も厚い部分の光透過率である肉厚光透過率は、波長340nmにおいて、60%以上となっている。ここで、樹脂転写型の肉厚光透過率を340nmにおける値で表しているのは、第1樹脂層102を形成するための光硬化性樹脂組成物を硬化させるために、340nm付近及びその周囲の波長域の光を照射するUV光源が多く用いられること、一般的なUV重合開始剤は少なくとも340nm付近に感度を有すること、樹脂転写型を光硬化性樹脂組成物で形成する場合、その光硬化性樹脂組成物は、所定の波長を境に、短波長側では光透過率が低く、長波長側では光透過率が高いという性質を持つものが多いことなどから、340nmにおける光重合開始剤の吸光特性と樹脂転写型の光透過性とを規定することで両者の適切な組み合わせを規定できるからである。このことは、別の観点からみると、第1樹脂層102を形成するための光硬化性樹脂組成物に含まれる光重合開始剤が所定以上の吸光度を示す最長の波長において、所定の光透過率を示す樹脂を樹脂転写型に用いることに相当する。より具体的には、第1樹脂層102を形成するための光硬化性樹脂組成物に含まれる光重合開始剤の吸光度特性において、最も長波長側で立ち上がりを示す付近の波長(例えば、吸光度が0.3となるときの最長の波長)で、肉厚光透過率が30%程度である樹脂転写型を用いる。実際には、樹脂転写型の光透過率は紫外線領域に立ち上がりを有するものであることが多いので、肉厚光透過率は30%±10%とすることが好ましい。肉厚光透過率を60%とするためには、サブサブマスター成形部51を形成する光硬化性樹脂の光重合開始剤の吸収極大が短波長(具体的には、波長250nm以下)のものを用いることが好ましい。例えば、サブサブマスター成形部51の光重合開始剤の反応波長を、第1及び第2樹脂層102,103の光重合開始剤の反応波長よりも短波長とすれば、サブサブマスター成形部51の肉厚光透過率の増大に有利である。このように、肉厚光透過率は、第1樹脂層102の光硬化性樹脂を硬化させるための照射光の波長における吸光度に対して、サブサブマスター成形部51が所望の肉厚光透過率になるように、光重合開始剤の種類を変えたり、樹脂転写型の厚さを変えたりすることにより調整する。また、成形や離型に支障のない範囲でサブサブマスター成形部51を薄くするようにしてもよい。本実施形態の場合、照射光の波長340nmにおける第1樹脂層102の光硬化性樹脂の吸光度は、0.25未満であり、第1樹脂層102の光硬化性樹脂の硬化を最適にするために、照射光をあまり吸収させないためにサブサブマスター成形部51の肉厚光透過率が60%になるような光重合開始剤を用いる。 In the sub-submaster molding part 51, the thick light transmittance, which is the light transmittance of the thickest part, is 60% or more at a wavelength of 340 nm. Here, the thickness light transmittance of the resin transfer mold is represented by a value at 340 nm in order to cure the photocurable resin composition for forming the first resin layer 102 in the vicinity of and around 340 nm. A UV light source that irradiates light in the wavelength range of a large number of times, a general UV polymerization initiator has sensitivity at least in the vicinity of 340 nm, and when a resin transfer mold is formed of a photocurable resin composition, the light Photopolymerization initiators at 340 nm include many curable resin compositions having a property that the light transmittance is low on the short wavelength side and the light transmittance is high on the long wavelength side at a predetermined wavelength. This is because an appropriate combination of the two can be defined by defining the light absorption characteristics of the resin and the light transmittance of the resin transfer mold. From another point of view, this means that the photopolymerization initiator contained in the photocurable resin composition for forming the first resin layer 102 has a predetermined light transmission at the longest wavelength at which the photopolymerization initiator exhibits a predetermined absorbance or more. This corresponds to the use of a resin showing the rate for the resin transfer mold. More specifically, in the absorbance characteristics of the photopolymerization initiator contained in the photocurable resin composition for forming the first resin layer 102, a wavelength in the vicinity of rising on the longest wavelength side (for example, the absorbance is A resin transfer mold having a thick light transmittance of about 30% at the longest wavelength when 0.3) is used. Actually, since the light transmittance of the resin transfer type often has a rise in the ultraviolet region, the thick light transmittance is preferably 30% ± 10%. In order to set the light transmittance to 60%, the absorption maximum of the photopolymerization initiator of the photocurable resin that forms the sub-submaster molding part 51 has a short wavelength (specifically, a wavelength of 250 nm or less). It is preferable to use it. For example, if the reaction wavelength of the photopolymerization initiator of the sub-submaster molding part 51 is shorter than the reaction wavelength of the photopolymerization initiator of the first and second resin layers 102 and 103, the meat of the sub-submaster molding part 51 This is advantageous for increasing the light transmittance. As described above, the sub-master molding portion 51 has a desired thickness light transmittance with respect to the absorbance at the wavelength of the irradiation light for curing the photocurable resin of the first resin layer 102. As such, it is adjusted by changing the type of the photopolymerization initiator or changing the thickness of the resin transfer mold. Further, the sub-sub master molding portion 51 may be made thin as long as there is no hindrance to molding or mold release. In the case of the present embodiment, the absorbance of the photocurable resin of the first resin layer 102 at a wavelength of 340 nm of irradiation light is less than 0.25, so that the curing of the photocurable resin of the first resin layer 102 is optimized. In addition, a photopolymerization initiator is used such that the thickness light transmittance of the sub-submaster molding part 51 is 60% in order not to absorb much irradiation light.
 図5は、本実施形態及び後述する各実施形態において、第1樹脂層102を形成するための光硬化性樹脂組成物(第1の光硬化性樹脂組成物)に含まれる光重合開始剤(第1の光重合開始剤)の吸光度と、サブサブマスター型50の肉厚光透過率とについて、第1樹脂層102とサブサブマスター型50に用いられる、樹脂組成物を種々変更し、良好な特性を示す組み合わせを選び、それらに基づいて実験的に算出した両者の関係を示すものである。図5に示すように、サブサブマスター型50の波長340nmにおける肉厚光透過率をT%とし、第1樹脂層102形成用の光硬化性樹脂組成物に含まれる光重合開始剤を0.01質量%アセトニトリル溶液に溶解した際の波長340nmにおける吸光度をAとした場合、肉厚光透過率Tと吸光度Aとは以下の条件式(1)を満たす。つまり、肉厚光透過率Tは、吸光度Aにおける条件式(1)を満たす範囲内で決定される。
 T=±30+100×exp(-2.3026A)  (1)
FIG. 5 shows a photopolymerization initiator (first photocurable resin composition) for forming the first resin layer 102 in the present embodiment and each embodiment to be described later. The resin composition used for the first resin layer 102 and the sub-submaster mold 50 is variously changed to obtain good characteristics for the absorbance of the first photopolymerization initiator) and the thick light transmittance of the sub-submaster mold 50. A combination of the two is selected, and the relationship between the two calculated experimentally based on them is shown. As shown in FIG. 5, the thickness light transmittance of the sub-submaster mold 50 at a wavelength of 340 nm is T%, and the photopolymerization initiator contained in the photocurable resin composition for forming the first resin layer 102 is 0.01. When the absorbance at a wavelength of 340 nm when dissolved in a mass% acetonitrile solution is A, the thick light transmittance T and the absorbance A satisfy the following conditional expression (1). That is, the thick light transmittance T is determined within a range satisfying the conditional expression (1) in the absorbance A.
T = ± 30 + 100 × exp (−2.3026A) (1)
 なお、図2(F)は、サブサブマスター成形部51の肉厚光透過率を示す図である。図2(F)のうち、L3が本実施形態の光硬化性樹脂である。これに対応して、第1樹脂層102を形成するための光重合開始剤については、例えばアセトニトリルの0.01質量%の溶液中で波長340nmにおける吸光度が0.25未満となっている。 FIG. 2 (F) is a diagram showing the light transmittance of the sub-sub master molding part 51. In FIG. 2 (F), L3 is the photocurable resin of this embodiment. Correspondingly, for the photopolymerization initiator for forming the first resin layer 102, the absorbance at a wavelength of 340 nm is, for example, less than 0.25 in a 0.01% by mass solution of acetonitrile.
 以上、ウェハーレンズ100のうち第1樹脂層102を成形するために用いるマスター型30、サブマスター型40、及びサブサブマスター型50について説明したが、第2樹脂層103を成形する際にも同様の成形型を用いる。この場合、例えばマスター型30については凹形状の第1転写面31を有するものを用い、サブマスター型40については凸形状の第2転写面43を有するものを用いる。この際、サブマスター型40が樹脂転写型に相当し、上述のサブサブマスター型50と同様の肉厚光透過率を有する。これにより、第2樹脂層103の第2成形面103aは、サブマスター型40によって形成される。第2樹脂層103をサブサブマスター型50で形成してもよい。 The master mold 30, the sub master mold 40, and the sub sub master mold 50 used for molding the first resin layer 102 of the wafer lens 100 have been described above. The same applies to the molding of the second resin layer 103. Use a mold. In this case, for example, a master die 30 having a concave first transfer surface 31 is used, and a sub master die 40 having a convex second transfer surface 43 is used. At this time, the sub master mold 40 corresponds to a resin transfer mold and has the same light transmittance as the sub sub master mold 50 described above. Thereby, the second molding surface 103 a of the second resin layer 103 is formed by the sub master mold 40. The second resin layer 103 may be formed by the sub-submaster mold 50.
ウェハーレンズの製造方法
 図6(A)~6(F)を参照しつつ、上述のマスター型30、サブマスター型40、サブサブマスター型50を使用して行われるウェハーレンズ100の製造工程について説明する。なお、以下では第1樹脂層102の成形について説明するが、第2樹脂層103の成形についても同様の工程を行う。
Manufacturing Method of Wafer Lens With reference to FIGS. 6A to 6F, a manufacturing process of the wafer lens 100 performed using the master mold 30, the sub master mold 40, and the sub sub master mold 50 described above will be described. . Hereinafter, the molding of the first resin layer 102 will be described, but the same process is performed for the molding of the second resin layer 103.
 まず、研削加工等によって第1樹脂層102の最終形状に対応するマスター型30を作製する。次に、図6(A)に示すように、マスター型30上に樹脂組成物41bを配置し、マスター型30の上方からサブマスター基板42を押圧しながら不図示のUV発生装置により紫外線を照射させ、間に挟まれた樹脂組成物41bを硬化させる。この際、硬化後の樹脂にマスター型30の第1転写面31が転写され、第2転写面43(図4(B)に示す第2光学転写面43a及び第2フランジ転写面43b)を有するサブマスター成形部41が形成される。UV発生装置で用いる光源の例としては、キセノンアークランプ、高圧水銀ランプ、メタルハライドランプ、UVレーザー、キセノンフラッシュランプ、LED、G-ランプ、ブラックライト等の紫外線領域の光を発生するものが挙げられる。特に、365nmや340nmを含む紫外線領域に広い発光波長域を有するキセノンフラッシュランプを用いることが好ましい。 First, the master mold 30 corresponding to the final shape of the first resin layer 102 is produced by grinding or the like. Next, as shown in FIG. 6A, the resin composition 41 b is disposed on the master mold 30, and ultraviolet rays are irradiated from a UV generator (not shown) while pressing the sub-master substrate 42 from above the master mold 30. The resin composition 41b sandwiched therebetween is cured. At this time, the first transfer surface 31 of the master mold 30 is transferred to the cured resin and has a second transfer surface 43 (second optical transfer surface 43a and second flange transfer surface 43b shown in FIG. 4B). A sub master molding part 41 is formed. Examples of the light source used in the UV generator include xenon arc lamps, high-pressure mercury lamps, metal halide lamps, UV lasers, xenon flash lamps, LEDs, G-lamps, black lights, and the like that generate light in the ultraviolet region. . In particular, it is preferable to use a xenon flash lamp having a wide emission wavelength region in an ultraviolet region including 365 nm and 340 nm.
 次に、図6(B)に示すように、マスター型30からサブマスター成形部41とサブマスター基板42とを一体として離型し、サブマスター型40が作製される。 Next, as shown in FIG. 6 (B), the sub-master mold 40 is fabricated by releasing the sub-master molding part 41 and the sub-master substrate 42 as a single unit from the master mold 30.
 次に、マスター図6(C)に示すように、サブマスター型40上に樹脂組成物51bを配置し、サブマスター型40の上方からサブサブマスター基板52を押圧しながら不図示のUV発生装置により紫外線を照射させ、間に挟まれた樹脂組成物51bを硬化させる。この際、硬化後の樹脂にサブマスター型40の第2転写面43が転写され、第3転写面53(図4(C)に示す第3光学転写面53a及び第3フランジ転写面53b)を有するサブサブマスター成形部51が形成される。UV発生装置を搭載する露光装置は、サブマスター型40を形成する際に用いた露光装置と同様のものを用いることができる。 Next, as shown in the master FIG. 6C, the resin composition 51b is arranged on the sub master mold 40, and a UV generator (not shown) is used while pressing the sub sub master substrate 52 from above the sub master mold 40. The resin composition 51b sandwiched therebetween is cured by irradiating with ultraviolet rays. At this time, the second transfer surface 43 of the sub-master mold 40 is transferred to the cured resin, and the third transfer surface 53 (the third optical transfer surface 53a and the third flange transfer surface 53b shown in FIG. 4C) is transferred. The sub-sub-master molding part 51 is formed. As the exposure apparatus equipped with the UV generator, the same exposure apparatus as that used when forming the sub-master mold 40 can be used.
 次に、図6(D)に示すように、サブマスター型40からサブサブマスター成形部51とサブサブマスター基板52とを一体として離型し、サブサブマスター型50が完成する。 Next, as shown in FIG. 6 (D), the sub-sub master mold part 51 and the sub-sub master substrate 52 are integrally released from the sub-master mold 40, and the sub-sub master mold 50 is completed.
 次に、ウェハーレンズ100を作製する。図6(E)に示すように、サブサブマスター型50上に樹脂組成物102b(第1樹脂層102を形成するための光硬化性樹脂組成物)を配置し、サブサブマスター型50の上方から基板101を押圧しながら不図示のUV発生装置により紫外線を照射させ、間に挟まれた樹脂組成物102bを硬化させる。この際、硬化後の樹脂にサブサブマスター型50の第3転写面53が転写され、第1成形面102a(図1(B)に示す第1光学面11d及び第1フランジ面11g)を有する第1樹脂層102が形成される。なお、続けて上述と同様の工程で基板101の他方の面101bに第2樹脂層103を形成してもよい。UV発生装置を搭載する露光装置は、サブマスター型40、サブサブマスター型50を形成する際に用いた露光装置と同様のものを用いることができる。なお、第1樹脂層102や第2樹脂層103を形成するために樹脂組成物を硬化させるに当たっては、各樹脂層102,103のレンズ要素11,12が、意図した光学性能を発揮できるようにするために、樹脂の黄変や成形後の耐久性低下が生じない適度な露光条件とすることが好ましい。また、露光後あるいは露光と並行して、加熱を行って硬化を促進させるようにしても構わない。 Next, the wafer lens 100 is manufactured. As shown in FIG. 6E, a resin composition 102b (a photocurable resin composition for forming the first resin layer 102) is disposed on the sub-submaster mold 50, and a substrate is formed from above the sub-submaster mold 50. While pressing 101, ultraviolet rays are irradiated by a UV generator (not shown) to cure the resin composition 102b sandwiched therebetween. At this time, the third transfer surface 53 of the sub-submaster mold 50 is transferred to the cured resin, and the first molding surface 102a (the first optical surface 11d and the first flange surface 11g shown in FIG. 1B) is provided. One resin layer 102 is formed. Note that the second resin layer 103 may be formed on the other surface 101b of the substrate 101 in the same process as described above. As the exposure apparatus on which the UV generator is mounted, the same exposure apparatus used when forming the sub master mold 40 and the sub sub master mold 50 can be used. In curing the resin composition to form the first resin layer 102 and the second resin layer 103, the lens elements 11 and 12 of the resin layers 102 and 103 can exhibit the intended optical performance. Therefore, it is preferable to set the exposure conditions appropriately so as not to cause yellowing of the resin and deterioration of durability after molding. Moreover, after exposure or in parallel with exposure, heating may be performed to promote curing.
 その後、図6(F)に示すように、サブサブマスター型50から第1樹脂層102と基板101とを一体として離型する。既に第2樹脂層103が形成されている場合、ウェハーレンズ100が完成する。第2樹脂層103が形成されていない場合、同様の工程を行うことで第2樹脂層103が形成され、サブサブマスター型50の離型によってウェハーレンズ100が完成する。 Thereafter, as shown in FIG. 6 (F), the first resin layer 102 and the substrate 101 are integrally released from the sub-submaster mold 50. When the second resin layer 103 has already been formed, the wafer lens 100 is completed. When the second resin layer 103 is not formed, the second resin layer 103 is formed by performing the same process, and the wafer lens 100 is completed by releasing the sub-sub master mold 50.
 なお、上記方法によって製造されたウェハーレンズ100は、積層され、第1レンズ本体11a等を中心として外形が四角状になるようにダイシングによって切り出され、図3に示す複合レンズ10となる。複数のウェハーレンズ100を積層する場合、ウェハーレンズ100間に絞りを設けてもよい。この場合、絞りの開口部が各第1レンズ本体11a等にアライメントして配置される。 Note that the wafer lens 100 manufactured by the above method is laminated and cut out by dicing so that the outer shape becomes a square shape with the first lens body 11a and the like as the center, thereby forming the compound lens 10 shown in FIG. When stacking a plurality of wafer lenses 100, a diaphragm may be provided between the wafer lenses 100. In this case, the aperture of the stop is arranged in alignment with each first lens body 11a and the like.
 以上説明したウェハーレンズ100の製造方法によれば、第1及び第2樹脂層102,103を形成する光硬化性樹脂の光重合開始剤が低感度の場合、第1及び第2成形面102a,103aを転写する樹脂転写型であるサブサブマスター型50の最も厚い部分の光硬化性樹脂の光透過率を比較的高くし、第1及び第2樹脂層102,103を形成する光硬化性樹脂の光重合開始剤が高感度の場合、第1及び第2成形面102a,103aを転写するサブサブマスター型50の最も厚い部分の光硬化性樹脂の光透過率を比較的低くすることで、第1及び第2樹脂層102,103の光硬化性樹脂を硬化させるのに最適な量の光を透過させることができる。これにより、第1及び第2樹脂層102,103の光硬化性樹脂に効率良く光が届き、第1及び第2光学面11d,12dを精度良く転写することができる。また、必要以上の光を照射しないため、樹脂の黄変や環境試験等の耐久性の悪影響を防ぐことができる。 According to the manufacturing method of the wafer lens 100 described above, when the photopolymerization initiator of the photocurable resin forming the first and second resin layers 102 and 103 has low sensitivity, the first and second molding surfaces 102a, The light transmittance of the photocurable resin in the thickest part of the sub-submaster mold 50, which is a resin transfer mold for transferring 103a, is relatively high, and the photocurable resin for forming the first and second resin layers 102 and 103 is used. When the photopolymerization initiator has high sensitivity, the light transmittance of the photocurable resin in the thickest portion of the sub-submaster mold 50 that transfers the first and second molding surfaces 102a and 103a is relatively low, so that the first In addition, an optimal amount of light can be transmitted to cure the photocurable resin of the second resin layers 102 and 103. Thereby, light efficiently reaches the photocurable resins of the first and second resin layers 102 and 103, and the first and second optical surfaces 11d and 12d can be accurately transferred. In addition, since unnecessary light is not irradiated, adverse effects such as yellowing of the resin and environmental tests can be prevented.
〔実施例1〕
 8インチ径のガラス基板上に紫外線硬化性樹脂組成物を配し、図1に示す第1レンズ要素11に対応する、径3mm、深さ0.5mmの球面状の凹部が8×8のマトリクス状に配された金属製マスター型で押圧し、ガラス基板を介してキセノンフラッシュランプで紫外線を照射して樹脂組成物を硬化させた後に離型する手順を、ガラス基板上における位置を変えて繰り返すことにより、ガラス基板上に約1000個の第1レンズ要素11に対応する転写部を有するサブマスター型を作製した。こうして得られたサブマスター型に、サブサブマスター成形部用の樹脂組成物として、アクリル系樹脂単量体に光重合開始剤を0.5質量%添加してなる紫外線硬化性樹脂組成物を配した。そして、樹脂組成物をガラス基板で押圧し、キセノンフラッシュランプで紫外線を照射して樹脂組成物を硬化させた後に離型することで、樹脂からなり転写面を有するサブサブマスター成形部を形成した。こうして、サブサブマスター型を作製した。
[Example 1]
An ultraviolet curable resin composition is arranged on an 8-inch diameter glass substrate, and a spherical recess having a diameter of 3 mm and a depth of 0.5 mm corresponding to the first lens element 11 shown in FIG. 1 is an 8 × 8 matrix. The procedure of releasing the mold after pressing with a metal master mold arranged in a shape and irradiating ultraviolet rays with a xenon flash lamp through the glass substrate to cure the resin composition is repeated while changing the position on the glass substrate. As a result, a submaster mold having transfer portions corresponding to about 1000 first lens elements 11 on a glass substrate was produced. An ultraviolet curable resin composition obtained by adding 0.5% by mass of a photopolymerization initiator to an acrylic resin monomer as a resin composition for a sub-submaster molded part was disposed on the submaster mold thus obtained. . Then, the resin composition was pressed with a glass substrate, irradiated with ultraviolet rays with a xenon flash lamp to cure the resin composition, and then released to form a sub-submaster molding part made of resin and having a transfer surface. In this way, a sub-submaster type was produced.
 サブサブマスター型としては、比較のため、以下の条件(i)~(iii)を充たす3種類のものを作製した。なお、条件(i)~(iii)は、図2(F)に示す光硬化性樹脂のL1、L2、L3にそれぞれ相当する。なお、サブサブマスター成形部の肉厚光透過率は、主として、樹脂組成物に添加する光重合開始剤の種類を変えることによって変化させた。具体的には、(i)でIRGACURE907、(ii)でIRGACURE2959、(iii)でIRGACURE184を用いた(いずれも、チバジャパン社製)。
 (i)波長340nmにおいて、最も厚い部分の肉厚光透過率が6%
 (ii)波長340nmにおいて、最も厚い部分の肉厚光透過率が40%
 (iii)波長340nmにおいて、最も厚い部分の肉厚光透過率が70%
As the sub-sub master type, three types satisfying the following conditions (i) to (iii) were produced for comparison. Conditions (i) to (iii) correspond to L1, L2, and L3 of the photocurable resin shown in FIG. 2 (F), respectively. The thick light transmittance of the sub-submaster molded part was changed mainly by changing the type of photopolymerization initiator added to the resin composition. Specifically, IRGACURE907 was used in (i), IRGACURE2959 was used in (ii), and IRGACURE184 was used in (iii) (both manufactured by Ciba Japan).
(I) At a wavelength of 340 nm, the thickest part has a thick light transmittance of 6%.
(Ii) At the wavelength of 340 nm, the thickest part has a thick light transmittance of 40%.
(Iii) The light transmittance of the thickest part is 70% at a wavelength of 340 nm.
 こうして得られたサブサブマスター型に、図1に示す第1樹脂層102を形成するための樹脂組成物を配した。第1樹脂層102を形成するための樹脂組成物としては、水添ビスフェノールA型エポキシ樹脂に、光重合開始剤としてカチオン系光重合開始剤IRGACURE250(チバジャパン社製)を用いた。このカチオン系光重合開始剤は、アセトニトリル溶液に0.01質量%となるように溶解した状態で、波長340nmにおける吸光度が約0.05である。サブサブマスター型上の樹脂組成物にガラス基板を押圧し、365nmでの積算露光量が6000mJ/cmになるようにキセノンフラッシュランプで紫外線を照射して樹脂組成物を硬化させた。 A resin composition for forming the first resin layer 102 shown in FIG. 1 was disposed on the thus obtained sub-submaster mold. As a resin composition for forming the 1st resin layer 102, the cationic photoinitiator IRGACURE250 (made by Ciba Japan) was used for hydrogenated bisphenol A type epoxy resin as a photoinitiator. This cationic photopolymerization initiator has an absorbance at a wavelength of 340 nm of about 0.05 when dissolved in an acetonitrile solution so as to be 0.01% by mass. A glass substrate was pressed against the resin composition on the sub-submaster mold, and the resin composition was cured by irradiating ultraviolet rays with a xenon flash lamp so that the integrated exposure amount at 365 nm was 6000 mJ / cm 2 .
 第2樹脂層103もほぼ同様の手順であり、8インチ径のガラス基板上に、上記L1~L3と同様の樹脂組成物を配し、図1に示す第2レンズ要素12に対応する、径3mm、深さ0.5mmの球面状の凹部が8×8のマトリクス状に配された金属製マスター型で押圧し、ガラス基板を介してキセノンフラッシュランプで紫外線を照射して樹脂組成物を硬化させた後に離型する手順を繰り返すことにより、ガラス基板上に約1000個のレンズ要素に対応する転写部を有する3種類のサブマスター型を作製した。こうして得られた各サブマスター型に、上記第1樹脂層を形成するための樹脂組成物と同様の樹脂組成物を配し、第1樹脂層102が形成されたガラス基板の裏面を対向させてレンズ要素の光軸が、サブマスター型の各転写部の中心と一致するように位置合わせした後、ガラス基板の裏面とサブマスター型とで押圧し、キセノンフラッシュランプで紫外線を照射して樹脂組成物を硬化させて第2樹脂層103を形成した。この後に離型することにより、ウェハーレンズを作製した。 The second resin layer 103 has substantially the same procedure, and a resin composition similar to L1 to L3 is arranged on an 8-inch diameter glass substrate, and the diameter corresponds to the second lens element 12 shown in FIG. 3mm and 0.5mm deep spherical concave parts are pressed with a metal master mold arranged in an 8x8 matrix, and the resin composition is cured by irradiating ultraviolet rays with a xenon flash lamp through a glass substrate. Then, by repeating the mold release procedure, three types of sub-master molds having transfer portions corresponding to about 1000 lens elements on a glass substrate were produced. A resin composition similar to the resin composition for forming the first resin layer is disposed on each of the submaster molds thus obtained, and the back surface of the glass substrate on which the first resin layer 102 is formed is opposed to the submaster mold. After aligning the optical axis of the lens element with the center of each transfer part of the sub-master type, press the back of the glass substrate and the sub-master type, and irradiate ultraviolet rays with a xenon flash lamp to resin composition The product was cured to form a second resin layer 103. Thereafter, the wafer lens was produced by releasing the mold.
 以下、表1に上記条件のウェハーレンズ100の性能試験結果を示す。
 表1のうち光学面形状の項目は、ウェハーレンズ100の第1及び第2レンズ要素11,12の面形状の測定結果を示す。面形状の測定は、接触式超高精度3次元測定機を用いて行った。面形状の精度は、第1光学転写面31aのレンズ設計値からの形状誤差の最も大きい部分(Peak)と最も小さい部分(Valley)との差(以下、PV値と呼ぶ)で評価した。PV値が、500nm未満の場合に◎とし、500nm以上1μm未満の場合に○とし、1μm以上3μm未満の場合に△とし、3μm以上の場合に×とした。
Table 1 shows the performance test results of the wafer lens 100 under the above conditions.
In Table 1, the item of optical surface shape indicates the measurement result of the surface shape of the first and second lens elements 11 and 12 of the wafer lens 100. The surface shape was measured using a contact-type ultra-high precision three-dimensional measuring machine. The accuracy of the surface shape was evaluated by the difference (hereinafter referred to as the PV value) between the portion having the largest shape error (Peak) and the portion having the smallest shape (Valley) from the lens design value of the first optical transfer surface 31a. When the PV value was less than 500 nm, ◎, when the PV value was 500 nm or more and less than 1 μm, ◯, when the PV value was 1 μm or more and less than 3 μm, Δ, when it was 3 μm or more, ×.
 着色の項目は、ウェハーレンズ100の第1及び第2レンズ要素11,12の可視光線の入射光量に対する全光線透過率の測定結果を示す。全光線透過率の測定は、分光光度計を用いて行った。全光線透過率の絶対値が、88%以上の場合に○とし、80%以上88%未満の場合に△とし、80%未満の場合に×とした。 The coloring item indicates the measurement result of the total light transmittance with respect to the incident light amount of the visible light of the first and second lens elements 11 and 12 of the wafer lens 100. The total light transmittance was measured using a spectrophotometer. When the absolute value of the total light transmittance was 88% or more, it was rated as ◯, when it was 80% or more and less than 88%, it was marked as Δ, and when it was less than 80%, it was marked as x.
 環境試験の項目は、ウェハーレンズ100をダイシングして個片化することにより得られた撮像レンズ200の耐久性の試験結果を示す。環境試験は、撮像レンズ200にリフロー処理を3回実施した後、冷熱衝撃にかけることで行った。具体的には、-40℃の環境下に30分置いた後、85℃の環境下に30分置くことを1サイクルとし、これを50サイクル実施した。環境試験は100個の撮像レンズ200に対して行った。撮像レンズ200において、ガラス/樹脂界面から剥離してしまう個数が、0個の場合に○とし、1個以上10個未満の場合に△とし、10個以上の場合に×とした。
Figure JPOXMLDOC01-appb-T000001
The item of the environmental test indicates a durability test result of the imaging lens 200 obtained by dicing the wafer lens 100 into pieces. The environmental test was performed by subjecting the imaging lens 200 to reflow treatment three times and then applying a thermal shock. Specifically, after 30 minutes in an environment of −40 ° C., 30 minutes in an environment of 85 ° C. was defined as one cycle, and this was performed for 50 cycles. The environmental test was performed on 100 imaging lenses 200. In the imaging lens 200, the number of peeled from the glass / resin interface was 0 when it was 0, Δ when it was 1 or more and less than 10, and x when it was 10 or more.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本実施例においては、サブサブマスター型用の樹脂が条件(iii)の場合に良好なレンズ要素の面形状を得ることができた。また、この場合の第1及び第2樹脂層の各レンズ要素は、着色もなく、環境試験にも耐えた。 As shown in Table 1, in this example, a good lens element surface shape could be obtained when the resin for the sub-submaster type was in condition (iii). In this case, the lens elements of the first and second resin layers were not colored and withstood environmental tests.
 一方、サブサブマスター成形用の樹脂が条件(i)の場合、第1及び第2樹脂層を形成するための光硬化性樹脂組成物が未硬化となった。また、サブサブマスター成形用の樹脂が条件(ii)の場合、第1及び第2樹脂層を形成するための光硬化性樹脂が一部未硬化となった。 On the other hand, when the resin for molding the sub-submaster was in the condition (i), the photocurable resin composition for forming the first and second resin layers was uncured. In addition, when the resin for molding the sub-submaster was in the condition (ii), the photocurable resin for forming the first and second resin layers was partially uncured.
〔実施例2〕
 第1樹脂層102を形成するための樹脂組成物として、2-アルキル-2-アダマンチル-(メタ)アクリレートに、光重合開始剤としてラジカル系光重合開始剤IRGACURE184を添加したものを用いた以外は、実施例1と同様の手順でウェハーレンズを作製した。なお、本実施例で用いたラジカル系光重合開始剤は、アセトニトリル溶液に0.01質量%となるように溶解した状態で、波長340nmにおける吸光度が約0.05である。
[Example 2]
As the resin composition for forming the first resin layer 102, except that 2-alkyl-2-adamantyl- (meth) acrylate was added with a radical photopolymerization initiator IRGACURE184 as a photopolymerization initiator. A wafer lens was produced in the same procedure as in Example 1. The radical photopolymerization initiator used in this example has an absorbance at a wavelength of 340 nm of about 0.05 when dissolved in an acetonitrile solution so as to be 0.01% by mass.
 第1樹脂層を形成するためのサブサブマスター型50を形成するための樹脂組成物、及び、第2樹脂層を形成するためのサブマスター型を形成するための樹脂組成物は、実施例1の条件(i)~(iii)と同様とした。なお、条件(i)及び(ii)は比較例である。
 本実施例2において、性能試験の結果は実施例1と同様となった。
The resin composition for forming the sub-sub master mold 50 for forming the first resin layer and the resin composition for forming the sub-master mold for forming the second resin layer are the same as those in Example 1. Same as conditions (i) to (iii). Conditions (i) and (ii) are comparative examples.
In this Example 2, the result of the performance test was the same as that of Example 1.
〔第2実施形態〕
 以下、第2実施形態に係るウェハーレンズの製造方法について説明する。なお、第2実施形態のウェハーレンズの製造方法は第1実施形態のウェハーレンズの製造方法を変形したものであり、特に説明しない部分は第1実施形態と同様であるものとする。
[Second Embodiment]
Hereinafter, a method for manufacturing a wafer lens according to the second embodiment will be described. The wafer lens manufacturing method according to the second embodiment is a modification of the wafer lens manufacturing method according to the first embodiment, and parts not specifically described are the same as those in the first embodiment.
 第1及び第2樹脂層102,103を形成するための光硬化性樹脂組成物に含まれる光重合開始剤としては、波長340nmにおいて、0.01質量%アセトニトリル溶液中で吸光度が0.25以上1.0未満のものを用いる。この光重合開始剤は、短波長側、例えば波長300nm~380nmに感度を持ち短波長でラジカル発生するUV重合開始剤である。具体的には、α-アミノアルキルフェノン(チバジャパン社製、IRGACURE907等)等が挙げられる。 The photopolymerization initiator contained in the photocurable resin composition for forming the first and second resin layers 102 and 103 has an absorbance of 0.25 or more in a 0.01 mass% acetonitrile solution at a wavelength of 340 nm. Use less than 1.0. This photopolymerization initiator is a UV polymerization initiator that has a sensitivity on the short wavelength side, for example, a wavelength of 300 nm to 380 nm and generates radicals at a short wavelength. Specific examples include α-aminoalkylphenone (manufactured by Ciba Japan, IRGACURE907, etc.).
 図2(D)は、IRGACURE907の吸光度を示す図である。なお、光重合開始剤の吸光度は、0.01質量%アセトニトリル溶液中に溶解した状態で測定している。 FIG. 2D is a graph showing the absorbance of IRGACURE907. In addition, the light absorbency of a photoinitiator is measured in the state melt | dissolved in the 0.01 mass% acetonitrile solution.
 サブサブマスター成形部51において、最も厚い部分の光透過率である肉厚光透過率は、波長340nmにおいて、7%以上60%未満となっている。肉厚光透過率を7%以上60%未満とするために、サブサブマスター成形部51を形成する光硬化性樹脂の光重合開始剤の吸収極大が短波長(具体的には、波長300nm以下)のものを用いる。すなわち、サブサブマスター成形部51の光重合開始剤の反応波長は、第1及び第2樹脂層102,103の光重合開始剤の反応波長よりも短波長のものを用いる。 In the sub-submaster molding part 51, the thick light transmittance, which is the light transmittance of the thickest part, is 7% or more and less than 60% at a wavelength of 340 nm. In order to make the wall thickness light transmittance 7% or more and less than 60%, the absorption maximum of the photopolymerization initiator of the photocurable resin forming the sub-submaster molded part 51 has a short wavelength (specifically, a wavelength of 300 nm or less). Use one. That is, the reaction wavelength of the photopolymerization initiator of the sub-submaster molding part 51 is shorter than the reaction wavelength of the photopolymerization initiator of the first and second resin layers 102 and 103.
 なお、図2(F)のうち、L2が本実施形態の光硬化性樹脂である。本実施形態の場合、第1樹脂層102を形成するための光硬化性樹脂組成物を硬化させるための照射光の波長340nmにおける第1樹脂層102の光硬化性樹脂の吸光度は、0.25以上1.0未満であり、第1樹脂層102の光硬化性樹脂の硬化を最適にするために、照射光を適度に吸収させるためにサブサブマスター成形部51の肉厚光透過率が7%以上60%未満になるように適切な光重合開始剤を選択し、サブサブマスター成形部51の厚さが調整されている。なお、上述した第1実施形態と同様に、サブサブマスター成形部51の肉厚光透過率は、第1樹脂層102を形成するための光硬化性樹脂組成物に含まれる光重合開始剤の吸光度特性において吸光度が0.3となるときの最長の波長で、30%±10%となるものを用いることが好ましい。また、上述した条件式(1)を満たすようなものを用いることが好ましい。 In FIG. 2 (F), L2 is the photocurable resin of this embodiment. In the case of the present embodiment, the absorbance of the photocurable resin of the first resin layer 102 at a wavelength of 340 nm of irradiation light for curing the photocurable resin composition for forming the first resin layer 102 is 0.25. In order to optimize the curing of the photocurable resin of the first resin layer 102 in order to optimally absorb the irradiation light, the sub-master molding portion 51 has a thick light transmittance of 7%. An appropriate photopolymerization initiator is selected so as to be less than 60% and the thickness of the sub-submaster molding part 51 is adjusted. As in the first embodiment described above, the thickness light transmittance of the sub-submaster molding part 51 is the absorbance of the photopolymerization initiator contained in the photocurable resin composition for forming the first resin layer 102. In the characteristics, it is preferable to use the longest wavelength when the absorbance is 0.3, which is 30% ± 10%. In addition, it is preferable to use one that satisfies the conditional expression (1) described above.
〔実施例3〕
 第1樹脂層102及び第2樹脂層103を形成するための樹脂組成物に用いる光重合開始剤として、ラジカル系重合開始剤IRGACURE907(チバジャパン社製)を用いたこと以外は実施例1と同様の手順でウェハーレンズを作製した。この重合開始剤は、アセトニトリル溶液に0.01質量%となるように溶解した状態で、波長340nmにおける吸光度が約0.25である。
Example 3
As in Example 1, except that a radical polymerization initiator IRGACURE907 (manufactured by Ciba Japan) was used as a photopolymerization initiator used in the resin composition for forming the first resin layer 102 and the second resin layer 103. A wafer lens was prepared according to the procedure described above. This polymerization initiator has an absorbance at a wavelength of 340 nm of about 0.25 when dissolved in an acetonitrile solution so as to be 0.01% by mass.
 第1樹脂層を形成するためのサブサブマスター型を形成するための樹脂組成物、及び、第2樹脂層を形成するためのサブマスター型を形成するための樹脂組成物は、実施例1の条件(i)~(iii)と同様とした。なお、条件(i)及び(iii)は比較例である。
Figure JPOXMLDOC01-appb-T000002
The resin composition for forming the sub-master mold for forming the first resin layer and the resin composition for forming the sub-master mold for forming the second resin layer are the same as those in Example 1. Same as (i) to (iii). Conditions (i) and (iii) are comparative examples.
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本実施例においては、サブサブマスター型用の樹脂が条件(ii)の場合に良好な第1及び第2レンズ要素の面形状を得ることができた。また、この場合の第1及び第2樹脂層の各レンズ要素は、着色もなく、環境試験にも耐えた。 As shown in Table 2, in this example, when the resin for the sub-sub master mold is in the condition (ii), a good surface shape of the first and second lens elements can be obtained. In this case, the lens elements of the first and second resin layers were not colored and withstood environmental tests.
 一方、サブサブマスター成形用の樹脂が条件(i)の場合、第1及び第2樹脂層を形成するための光硬化性樹脂組成物が未硬化となった。また、サブサブマスター成形用の樹脂が条件(iii)の場合、第1及び第2樹脂層を形成するための光硬化性樹脂が硬化したものの、着色が起こり、環境試験での耐久性にも悪影響が生じた。 On the other hand, when the resin for molding the sub-submaster was in the condition (i), the photocurable resin composition for forming the first and second resin layers was uncured. In addition, when the resin for forming the sub-submaster is in the condition (iii), although the photocurable resin for forming the first and second resin layers is cured, coloring occurs, and the durability in the environmental test is also adversely affected. Occurred.
〔第3実施形態〕
 以下、第3実施形態に係るウェハーレンズの製造方法について説明する。なお、第3実施形態のウェハーレンズの製造方法は第1実施形態のウェハーレンズの製造方法を変形したものであり、特に説明しない部分は第1実施形態と同様であるものとする。
[Third Embodiment]
Hereinafter, a method for manufacturing a wafer lens according to the third embodiment will be described. The wafer lens manufacturing method according to the third embodiment is a modification of the wafer lens manufacturing method according to the first embodiment, and parts not specifically described are the same as those in the first embodiment.
 第1及び第2樹脂層102,103を形成するための光硬化性樹脂組成物に含まれる光重合開始剤としては、波長340nmにおいて、0.01質量%アセトニトリル溶液中で吸光度が1.0以上のものを用いる。この光重合開始剤は、短波長側、例えば波長320nm~430nmに感度を持ち短波長でラジカル発生するUV重合開始剤である。具体的には、α-アミノアルキルフェノン(チバジャパン社製、IRGACURE369等)等が挙げられる。 The photopolymerization initiator contained in the photocurable resin composition for forming the first and second resin layers 102 and 103 has an absorbance of 1.0 or more in a 0.01 mass% acetonitrile solution at a wavelength of 340 nm. Use one. This photopolymerization initiator is a UV polymerization initiator that has a sensitivity on the short wavelength side, for example, a wavelength of 320 nm to 430 nm, and generates radicals at a short wavelength. Specifically, α-aminoalkylphenone (manufactured by Ciba Japan, IRGACURE 369, etc.) and the like can be mentioned.
 図2(E)は、IRGACURE369の吸光度を示す図である。なお、光重合開始剤の吸光度は、0.01質量%アセトニトリル溶液中に溶解した状態で測定している。 FIG. 2 (E) is a graph showing the absorbance of IRGACURE369. In addition, the light absorbency of a photoinitiator is measured in the state melt | dissolved in the 0.01 mass% acetonitrile solution.
 サブサブマスター成形部51において、最も厚い部分の光透過率である肉厚光透過率は、波長340nmにおいて、7%未満となっている。肉厚光透過率を7%未満とするために、サブサブマスター成形部51を形成する光硬化性樹脂の光重合開始剤の吸収極大が短波長(具体的には、波長320nm以下)のものを用いる。すなわち、サブサブマスター成形部51の光重合開始剤の反応波長は、第1及び第2樹脂層102,103の光重合開始剤の反応波長よりも短波長のものを用いる。なお、サブサブマスター成形部51を比較的厚くすることでも肉厚光透過率を7%未満とすることができる。 In the sub-submaster molding part 51, the thick light transmittance, which is the light transmittance of the thickest part, is less than 7% at a wavelength of 340 nm. In order to make the wall thickness light transmittance less than 7%, the absorption maximum of the photopolymerization initiator of the photocurable resin forming the sub-submaster molded portion 51 is a short wavelength (specifically, a wavelength of 320 nm or less). Use. That is, the reaction wavelength of the photopolymerization initiator of the sub-submaster molding part 51 is shorter than the reaction wavelength of the photopolymerization initiator of the first and second resin layers 102 and 103. The thick light transmittance can be reduced to less than 7% by making the sub-submaster molding portion 51 relatively thick.
 図2(F)のうち、L1が本実施形態の光硬化性樹脂である。本実施形態の場合、第1樹脂層102の光硬化性樹脂を硬化させるための照射光の波長340nmにおける第1樹脂層102の光硬化性樹脂の吸光度は、1.0以上であり、第1樹脂層102の光硬化性樹脂の硬化を最適にするために、照射光を比較的多く吸収させるためにサブサブマスター成形部51の肉厚光透過率が7%未満になるような光重合開始剤を用いる。なお、上述した第1実施形態と同様に、サブサブマスター成形部51の肉厚光透過率は、第1樹脂層102を形成するための光硬化性樹脂組成物に含まれる光重合開始剤の吸光度特性において吸光度が0.3となるときの最長の波長で、30%±10%となるものを用いることが好ましい。また、上述した条件式(1)をみたすようなものを用いることが好ましい。 In FIG. 2 (F), L1 is the photocurable resin of the present embodiment. In the case of this embodiment, the absorbance of the photocurable resin of the first resin layer 102 at a wavelength of 340 nm of the irradiation light for curing the photocurable resin of the first resin layer 102 is 1.0 or more, and the first In order to optimize the curing of the photo-curing resin of the resin layer 102, a photopolymerization initiator in which the thickness light transmittance of the sub-submaster molding part 51 is less than 7% in order to absorb a relatively large amount of irradiation light. Is used. As in the first embodiment described above, the thickness light transmittance of the sub-submaster molding part 51 is the absorbance of the photopolymerization initiator contained in the photocurable resin composition for forming the first resin layer 102. In the characteristics, it is preferable to use the longest wavelength when the absorbance is 0.3, which is 30% ± 10%. In addition, it is preferable to use one that satisfies the conditional expression (1) described above.
〔実施例4〕
 第1樹脂層102及び第2樹脂層103を形成するための樹脂組成物に用いる光重合開始剤として、ラジカル系光重合開始剤IRGACURE369(チバジャパン社製)を用いたこと以外は実施例1と同様の手順でウェハーレンズを作製した。この重合開始剤は、アセトニトリル溶液に0.01質量%となるように溶解した状態で、波長340nmにおける吸光度が約2.5である。
Example 4
Example 1 except that a radical photopolymerization initiator IRGACURE369 (manufactured by Ciba Japan) was used as the photopolymerization initiator used in the resin composition for forming the first resin layer 102 and the second resin layer 103. A wafer lens was produced in the same procedure. This polymerization initiator has an absorbance at a wavelength of 340 nm of about 2.5 when dissolved in an acetonitrile solution so as to be 0.01% by mass.
 第1樹脂層を形成するためのサブサブマスター型を形成するための樹脂組成物、及び、第2樹脂層を形成するためのサブマスター型を形成するための樹脂組成物は、実施例1の条件(i)~(iii)と同様とした。なお、条件(ii)及び(iii)は比較例である。
Figure JPOXMLDOC01-appb-T000003
The resin composition for forming the sub-master mold for forming the first resin layer and the resin composition for forming the sub-master mold for forming the second resin layer are the same as those in Example 1. Same as (i) to (iii). Conditions (ii) and (iii) are comparative examples.
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本実施例においては、サブサブマスター型用の樹脂が条件(i)の場合に良好な第1及び第2レンズ要素の面形状を得ることができた。また、この場合の第1及び第2樹脂層の各レンズ要素は、着色もなく、環境試験にも耐えた。 As shown in Table 3, in the present example, when the resin for the sub-sub master mold was in the condition (i), good surface shapes of the first and second lens elements could be obtained. In this case, the lens elements of the first and second resin layers were not colored and withstood environmental tests.
 一方、サブサブマスター成形用の樹脂が条件(ii)及び(iii)の場合、光硬化性樹脂組成物が硬化したものの、着色が起こり、環境試験での耐久性にも悪影響が生じた。 On the other hand, when the resin for molding the sub-submaster was in the conditions (ii) and (iii), although the photocurable resin composition was cured, coloring occurred, and the durability in the environmental test was also adversely affected.
 以上、本実施形態に係るウェハーレンズの製造方法等について説明したが、本発明に係るウェハーレンズの製造方法は上記のものには限られない。例えば、上記実施形態において、第1及び第2光学面11d,12dの形状、大きさは、用途や機能に応じて適宜変更することができる。 The wafer lens manufacturing method according to the present embodiment has been described above, but the wafer lens manufacturing method according to the present invention is not limited to the above. For example, in the above embodiment, the shapes and sizes of the first and second optical surfaces 11d and 12d can be changed as appropriate according to the application and function.
 また、上記実施形態において、ウェハーレンズ100は、円盤状である必要はなく、楕円形等の各種輪郭を有するものとできる。例えばウェハーレンズ100を当初から四角板状に成形することで、ダイシング工程を簡略化することができる。 In the above embodiment, the wafer lens 100 does not have to be disk-shaped and can have various contours such as an ellipse. For example, the dicing process can be simplified by forming the wafer lens 100 into a square plate shape from the beginning.
 また、上記実施形態において、ウェハーレンズ100内に形成される第1及び第2レンズ要素11,12の数も、図示の4つに限らず、2つ以上の複数とすることができる。この際、第1及び第2レンズ要素11,12の配置は、ダイシングの都合から格子点上が望ましい。さらに、隣接するレンズ要素11,12の間隔も、図示のものに限らず、加工性等を考慮して適宜設定することができる。 Further, in the above embodiment, the number of the first and second lens elements 11 and 12 formed in the wafer lens 100 is not limited to four as illustrated, and may be two or more. At this time, the arrangement of the first and second lens elements 11 and 12 is preferably on a lattice point for convenience of dicing. Further, the interval between the adjacent lens elements 11 and 12 is not limited to the illustrated one, and can be set as appropriate in consideration of workability and the like.
 また、上記実施形態において、サブサブマスター型50第3転写面53に樹脂を配置したが、基板101の一方の面101a及び他方の面101bに樹脂を配置してもよい。 In the above-described embodiment, the resin is disposed on the sub-submaster mold 50 third transfer surface 53, but the resin may be disposed on one surface 101a and the other surface 101b of the substrate 101.
 また、上記実施形態において、基板101の一方の面101a及び他方の面101bに予めカップリング剤を塗布してもよい。また、各型30,40,50の各転写面31,43,53に予め離型剤を塗布してもよい。 In the above embodiment, a coupling agent may be applied in advance to the one surface 101a and the other surface 101b of the substrate 101. Further, a release agent may be applied in advance to each transfer surface 31, 43, 53 of each mold 30, 40, 50.

Claims (11)

  1.  基板と、前記基板の一方の基板面上に成形され光学面を含む成形面を有する樹脂層と、を備えるウェハーレンズの製造方法であって、
     前記光学面を反転した形状の光学転写面を有する樹脂転写型を用いて前記成形面を有する前記樹脂層を成形する工程を備え、
     前記樹脂層は第1の光硬化性樹脂で形成され、
     前記第1の光硬化性樹脂は、第1の光重合開始剤を含む第1の光硬化性樹脂組成物を硬化させたものであり、
     前記第1の光重合開始剤の吸光度を、前記第1の光重合開始剤をアセトニトリルに0.01質量%の濃度で溶解した状態で測定した値で表すとき、波長340nmにおいて、前記第1の光重合開始剤の吸光度が0.25未満の場合、前記樹脂転写型として、前記樹脂転写型の最も厚い部分の光透過率である肉厚光透過率が60%以上のものを用い、前記第1の光重合開始剤の吸光度が0.25以上1.0未満の場合、前記樹脂転写型として、肉厚光透過率が7%以上60%未満のものを用い、前記第1の光重合開始剤の吸光度が1.0以上の場合、前記樹脂転写型として、肉厚光透過率が1%以上7%未満であるものを用いることを特徴とするウェハーレンズの製造方法。
    A wafer lens manufacturing method comprising a substrate and a resin layer formed on one substrate surface of the substrate and having a molding surface including an optical surface,
    The step of molding the resin layer having the molding surface using a resin transfer mold having an optical transfer surface having a shape obtained by inverting the optical surface,
    The resin layer is formed of a first photocurable resin,
    The first photocurable resin is obtained by curing the first photocurable resin composition containing the first photopolymerization initiator,
    When the absorbance of the first photopolymerization initiator is represented by a value measured in a state where the first photopolymerization initiator is dissolved in acetonitrile at a concentration of 0.01% by mass, the first photopolymerization initiator has a wavelength of 340 nm. When the absorbance of the photopolymerization initiator is less than 0.25, the resin transfer mold having a thickness light transmittance of 60% or more, which is the light transmittance of the thickest part of the resin transfer mold, is used. When the absorbance of the photopolymerization initiator 1 is 0.25 or more and less than 1.0, the resin transfer mold having a thickness light transmittance of 7% or more and less than 60% is used, and the first photopolymerization start is started. When the absorbance of the agent is 1.0 or more, a method for producing a wafer lens, wherein the resin transfer mold has a thickness light transmittance of 1% or more and less than 7%.
  2.  基板と、前記基板の一方の基板面上に成形され光学面を含む成形面を有する樹脂層と、を備えるウェハーレンズの製造方法であって、
     前記光学面を反転した形状の光学転写面を有する樹脂転写型を用いて前記成形面を有する前記樹脂層を成形する工程を備え、
     前記樹脂層は第1の光硬化性樹脂で形成され、前記樹脂転写型は第2の光硬化性樹脂で形成され、
     前記第1の光硬化性樹脂は、第1の光重合開始剤を含む第1の光硬化性樹脂組成物を硬化させたものであり、
     前記第1の光重合開始剤をアセトニトリルに0.01質量%の濃度で溶解した状態で測定した前記第1の光重合開始剤の吸光度が0.3以上となる最長の波長において、前記樹脂転写型の最も厚い部分の光透過率である肉厚光透過率が30%±10%となるものを前記樹脂転写型として用いることを特徴とするウェハーレンズの製造方法。
    A wafer lens manufacturing method comprising a substrate and a resin layer formed on one substrate surface of the substrate and having a molding surface including an optical surface,
    The step of molding the resin layer having the molding surface using a resin transfer mold having an optical transfer surface having a shape obtained by inverting the optical surface,
    The resin layer is formed of a first photocurable resin, the resin transfer mold is formed of a second photocurable resin,
    The first photocurable resin is obtained by curing the first photocurable resin composition containing the first photopolymerization initiator,
    The resin transfer at the longest wavelength at which the absorbance of the first photopolymerization initiator is 0.3 or more measured in a state where the first photopolymerization initiator is dissolved in acetonitrile at a concentration of 0.01% by mass. What is claimed is: 1. A wafer lens manufacturing method comprising using a resin transfer mold having a thickness light transmittance of 30% ± 10%, which is a light transmittance of a thickest part of a mold.
  3.  前記樹脂転写型の前記光学転写面を構成する樹脂部は、第2の光重合開始剤を含む第2の光硬化性樹脂組成物を硬化させた第2の光硬化性樹脂で形成される請求項1及び請求項2のいずれか一項に記載のウェハーレンズの製造方法。 The resin portion constituting the optical transfer surface of the resin transfer mold is formed of a second photocurable resin obtained by curing a second photocurable resin composition containing a second photopolymerization initiator. The manufacturing method of the wafer lens as described in any one of Claim 1 and Claim 2.
  4.  前記第1の光硬化性樹脂は、アクリル樹脂、アリルエステル樹脂、ビニル系樹脂、及びエポキシ系樹脂のいずれかを用いることを特徴とする請求項1から請求項3までのいずれか一項に記載のウェハーレンズの製造方法。 The said 1st photocurable resin uses any one of an acrylic resin, an allyl ester resin, a vinyl-type resin, and an epoxy-type resin, It is any one of Claim 1 to 3 characterized by the above-mentioned. Wafer lens manufacturing method.
  5.  前記第1の光硬化性樹脂は、紫外線硬化性樹脂である請求項1から請求項4までのいずれか一項に記載のウェハーレンズの製造方法。 The method for producing a wafer lens according to any one of claims 1 to 4, wherein the first photocurable resin is an ultraviolet curable resin.
  6.  前記樹脂転写型は、前記成形面に対応する転写面を有するマスター型から2回の転写によって形成されるサブサブマスター型であることを特徴とする請求項1から請求項5までのいずれか一項に記載のウェハーレンズの製造方法。 6. The resin transfer mold according to claim 1, wherein the resin transfer mold is a sub-sub-master mold formed by transferring twice from a master mold having a transfer surface corresponding to the molding surface. The manufacturing method of the wafer lens as described in any one of Claims 1-3.
  7.  前記樹脂転写型は、前記成形面に対応する転写面を有するマスター型から1回の転写によって形成されるサブマスター型であることを特徴とする請求項1から請求項5までのいずれか一項に記載のウェハーレンズの製造方法。 6. The resin transfer mold according to claim 1, wherein the resin transfer mold is a sub-master mold formed by one transfer from a master mold having a transfer surface corresponding to the molding surface. The manufacturing method of the wafer lens as described in any one of Claims 1-3.
  8.  前記基板は、ガラスで形成されることを特徴とする請求項1から請求項7までのいずれか一項に記載のウェハーレンズの製造方法。 The method for manufacturing a wafer lens according to any one of claims 1 to 7, wherein the substrate is made of glass.
  9.  前記樹脂転写型は、光透過性の基板と、前記基板の一方の基板面上に形成され前記光学転写面を複数含む型面を有する樹脂部とを有することを特徴とする請求項1から請求項8までのいずれか一項に記載のウェハーレンズの製造方法。 The resin transfer mold includes a light-transmitting substrate and a resin portion having a mold surface formed on one substrate surface of the substrate and including a plurality of the optical transfer surfaces. Item 9. The method for producing a wafer lens according to any one of Items 8 to 8.
  10.  前記第1の光硬化性樹脂と、前記第2の光硬化性樹脂とは、異なる波長で硬化することを特徴とする請求項3から請求項9までのいずれか一項に記載のウェハーレンズの製造方法。 The wafer lens according to any one of claims 3 to 9, wherein the first photocurable resin and the second photocurable resin are cured at different wavelengths. Production method.
  11.  前記第1の光硬化性樹脂を得るための光硬化性樹脂組成物は、前記第2の光硬化性樹脂を得るための光硬化性樹脂組成物よりも長波長側で硬化しやすいことを特徴とする請求項3から請求項10までのいずれか一項に記載のウェハーレンズの製造方法。 The photocurable resin composition for obtaining the first photocurable resin is more easily cured on the longer wavelength side than the photocurable resin composition for obtaining the second photocurable resin. The method for producing a wafer lens according to any one of claims 3 to 10.
PCT/JP2011/075111 2010-11-02 2011-10-31 Method for producing wafer lens WO2012060342A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-246699 2010-11-02
JP2010246699 2010-11-02

Publications (1)

Publication Number Publication Date
WO2012060342A1 true WO2012060342A1 (en) 2012-05-10

Family

ID=46024456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075111 WO2012060342A1 (en) 2010-11-02 2011-10-31 Method for producing wafer lens

Country Status (1)

Country Link
WO (1) WO2012060342A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163027A (en) * 1987-12-21 1989-06-27 Matsushita Electric Ind Co Ltd Method and device for molding optical element
JP2001194521A (en) * 2000-01-12 2001-07-19 Hitachi Ltd Method of manufacturing for color filter and liquid crystal display device using the color filter
JP2010105357A (en) * 2008-10-31 2010-05-13 Konica Minolta Opto Inc Molding device, molding die member, wafer lens, and method of manufacturing wafer lens molding die

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163027A (en) * 1987-12-21 1989-06-27 Matsushita Electric Ind Co Ltd Method and device for molding optical element
JP2001194521A (en) * 2000-01-12 2001-07-19 Hitachi Ltd Method of manufacturing for color filter and liquid crystal display device using the color filter
JP2010105357A (en) * 2008-10-31 2010-05-13 Konica Minolta Opto Inc Molding device, molding die member, wafer lens, and method of manufacturing wafer lens molding die

Similar Documents

Publication Publication Date Title
JP2013001091A (en) Method of manufacturing optical element
US9969135B2 (en) Additive manufacturing for transparent ophthalmic lens
JP5678958B2 (en) Wafer lens manufacturing method
JPWO2009038134A1 (en) Resin composite type optical element and method for manufacturing the same
US9238313B2 (en) Apparatus, mold and method for producing shaped articles from a UV-curable composition
JP5247117B2 (en) Molded body and manufacturing method thereof
JP2013125059A (en) Lens unit and method of manufacturing the same, and lens unit complex and method of manufacturing the same
KR101245953B1 (en) Molded product and production method thereof
JP2012252113A (en) Method for manufacturing wafer lens
WO2012060342A1 (en) Method for producing wafer lens
JP2010105357A (en) Molding device, molding die member, wafer lens, and method of manufacturing wafer lens molding die
WO2009122934A1 (en) Optical element assembly, and method for production of optical unit
KR20110020839A (en) Fabrication of microscale tooling
JP2007030373A (en) Method for manufacturing molded body
EP3187907B1 (en) Resin precursor composition for optical materials, optical element obtained from said composition, and diffractive optical element configured using said optical element
CN111971590B (en) Resin laminated optical body and method for producing same
WO2010119725A1 (en) Method for manufacturing wafer lens and method for manufacturing wafer lens laminated body
JP5371194B2 (en) Molded body and method for producing the same
KR20060058123A (en) Methacrylic resin cast plate having surface micro structure and method of manufacturing the same
WO2012160769A1 (en) Method for manufacturing resin molded article
JP2007230076A (en) Method for producing hybrid lens and mold used for the method
JP2013003541A (en) Compound lens manufacturing method
JP2004346125A (en) Optical curing type resin composition and light-resistant optical part
WO2017195879A1 (en) Molded resin article molding method and molded resin article
JP2011240651A (en) Molding die for wafer lens and method for manufacturing the molding die for wafer lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP