WO2012060302A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2012060302A1
WO2012060302A1 PCT/JP2011/074979 JP2011074979W WO2012060302A1 WO 2012060302 A1 WO2012060302 A1 WO 2012060302A1 JP 2011074979 W JP2011074979 W JP 2011074979W WO 2012060302 A1 WO2012060302 A1 WO 2012060302A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
cell thickness
region
display device
cell
Prior art date
Application number
PCT/JP2011/074979
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 昌稔
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012060302A1 publication Critical patent/WO2012060302A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133371Cells with varying thickness of the liquid crystal layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133388Constructional arrangements; Manufacturing methods with constructional differences between the display region and the peripheral region

Definitions

  • the present invention relates to a liquid crystal display device, and more specifically, to a liquid crystal display device using PSA technology.
  • Liquid crystal display devices are becoming more sophisticated as their applications expand.
  • display modes such as MVA (Multi-domain Vertical Alignment) and IPS (In-Plane-Switching) having a wide viewing angle characteristic have been developed, and further improvements are in progress.
  • MVA Multi-domain Vertical Alignment
  • IPS In-Plane-Switching
  • the cell gap is controlled by, for example, a spacer disposed between a pair of substrates facing each other with a liquid crystal layer interposed therebetween.
  • a spacer disposed between a pair of substrates facing each other with a liquid crystal layer interposed therebetween.
  • a method of forming columnar spacers on a substrate by a photolithography process using a photosensitive material has been adopted.
  • the spacer formed in this way is called a columnar spacer or a photo spacer (PS).
  • a photo spacer may be arranged not only in a display area (effective display area) for displaying an image or the like but also in a frame area (peripheral area) outside the photo spacer.
  • the structure of the frame area is significantly different from the structure of the display area. For this reason, if the photo spacers are similarly formed in the frame region and the display region in the same manner, the spacers may not perform a desired function in the frame region, and the cell gap may become non-uniform.
  • Japanese Patent Application Laid-Open No. 2004-228561 has a mode in which the cell thickness is non-uniform because the insulating film provided between the active element and the pixel electrode is formed in a tapered shape in the frame region where the photo spacer is provided. It is shown.
  • the display quality is lowered. For this reason, in the display device described in Patent Document 1, by defining a lower limit of the width of the frame area, an area where the cell thickness is not uniform is not included in the display area.
  • the liquid crystal display device when the liquid crystal display device is designed so as to define the lower limit of the width of the frame area as described above, it cannot meet the demand for reducing the width of the frame area.
  • it is desired to reduce the area that does not contribute to display as much as possible, and the frame area is becoming narrower year by year.
  • Patent Document 2 describes a technique for narrowing the frame area.
  • a drive circuit may be provided in the seal region as the frame is narrowed.
  • the cell thickness in the vicinity of the seal region may be different on each side.
  • a uniform cell thickness is realized by providing a spacer during sealing without adding a spacer to the sealing material.
  • Patent Document 2 also describes a technique for suppressing variation in the cell thickness in the peripheral portion by using a spacer (for example, a wall-like spacer) having a different form from the display area in the frame area.
  • JP 2006-58329 A Japanese Patent Laid-Open No. 10-153797
  • the cell thickness in the frame area can change due to various factors.
  • the shape (height and film thickness) of the spacer and the underlying film is not appropriate.
  • the allowable cell thickness variation may vary depending on the operation mode and configuration of the liquid crystal display device. For this reason, the display quality in this region may be deteriorated. Therefore, there has been a problem of improving the display quality particularly at the end of the display area (boundary with the frame area) while realizing a narrow frame area.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a liquid crystal display device capable of improving the display quality even when the frame area is narrow.
  • the liquid crystal display device of the present invention includes a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, a sealing material provided so as to surround the liquid crystal layer, and the pair of substrates.
  • a plurality of spacers provided so as to define the distance between the substrates, an alignment film provided on the liquid crystal layer side of at least one of the pair of substrates, and provided on the liquid crystal layer side of the alignment film
  • a liquid crystal display device comprising an alignment maintaining layer and an alignment maintaining layer containing a polymer formed by polymerizing a polymerizable compound, wherein the sealing material is provided in the vicinity of the sealing material
  • a cell thickness variation portion in which a distance between the pair of substrates decreases toward the substrate, and a ratio of a cell thickness decrease ⁇ h in the substrate vertical direction of the cell thickness variation portion to a width W in the substrate in-plane direction.
  • Cell thickness fluctuation rate ⁇ h / W is 0.01% or less.
  • a display area for displaying and a peripheral area located outside the display area are defined, and the cell thickness variation portion is in the vicinity of a boundary between the display area and the peripheral area. Is formed.
  • the spacer is formed in both the display region and the peripheral region, and the spacer formed in the peripheral region is lower than the spacer formed in the display region, and
  • the cell thickness decrease ⁇ h is determined according to the difference between the height of the spacer formed in the region and the height of the spacer formed in the display region.
  • the spacer formed in the peripheral region is formed in a central portion of the peripheral region.
  • one of the pair of substrates includes a planarization film provided on the liquid crystal layer side, and the planarization film has different thicknesses in the display region and the peripheral region.
  • the cell thickness decrease ⁇ h is determined according to the difference in thickness of the planarization film.
  • the liquid crystal layer is a vertical alignment type liquid crystal layer
  • the alignment film is a vertical alignment type alignment film
  • the cell thickness in the peripheral region is the cell thickness in the display region. Smaller than.
  • a liquid crystal display device that regulates the alignment state of liquid crystal molecules by a polymer obtained by polymerizing a polymerizable compound mixed in a liquid crystal material, narrowing of the frame is achieved, particularly in the vicinity of the frame region. A decrease in display quality can be suppressed.
  • FIG. 7 is a schematic diagram showing a process for manufacturing a liquid crystal cell by an ODF method, and (a) to (d) show different processes.
  • 1 is a diagram illustrating a cross section of a liquid crystal display device according to Embodiment 1.
  • FIG. FIG. 6 is a diagram illustrating a cross section of a liquid crystal display device according to a second embodiment. It is sectional drawing which shows the structure in the frame area
  • 3 shows a liquid crystal display device according to FIG. (A) And (b) is a top view which shows arrangement
  • PSA technology Polymer Sustained Alignment Technology
  • PSA technology typically irradiates a liquid crystal layer mixed with a small amount of a photopolymerizable compound with ultraviolet light while applying a predetermined voltage, and the orientation of liquid crystal molecules is controlled by the photopolymer produced.
  • a layer formed from a photopolymer is referred to as an alignment sustaining layer.
  • the PSA technique When the PSA technique is used, the alignment state of the liquid crystal molecules when the photopolymer is generated is maintained (stored) even in the state where no voltage is applied. Therefore, the PSA technique has an advantage that the alignment state of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer.
  • the PSA technique is suitable for forming a vertical alignment type liquid crystal layer in which the pretilt direction is difficult to control by rubbing the alignment film.
  • the PSA technique is described in, for example, Japanese Patent Application Laid-Open No. 2002-357830.
  • FIGS. 1A to 1D schematically show an example of a process for manufacturing a liquid crystal panel using the PSA technique by an ODF (One Drop Fill) method.
  • an ultraviolet curable sealing material 12 is applied to the peripheral portion of the counter substrate 10 provided with a color filter and an alignment film.
  • the sealing material 12 is applied on the counter substrate 10 so as to have a width of 200 ⁇ m to 400 ⁇ m using, for example, a dispenser device.
  • a liquid crystal material LC containing a photopolymerizable compound is dropped into a region surrounded by the sealing material 12.
  • another substrate 20 (here, the TFT substrate 20) is bonded to the counter substrate 10 onto which the liquid crystal material LC has been dropped.
  • the liquid crystal material LC sandwiched between the substrates flows while concentrically spreading toward the peripheral portion of the substrate (the portion provided with the sealing material 12) unless there is a particular feature on the substrate surface shape.
  • This bonding step is performed in a vacuum atmosphere (pressure P 0 ).
  • the sealing material 12 is cured by selectively irradiating the sealing material 12 with ultraviolet rays 30 at atmospheric pressure (pressure P 1 ). Furthermore, if necessary, a heat treatment for promoting the curing of the sealing material 12 is performed.
  • the sealing material 12 is hardened by being stretched so that the width thereof becomes, for example, about 1 mm through the bonding step and the curing step. In this way, the liquid crystal material LC is sealed between the pair of substrates, and a liquid crystal layer is formed.
  • the alignment state of the liquid crystal molecules is regulated by the alignment film provided on the substrates 10 and 20.
  • the liquid crystal material LC is applied between the substrates immediately before the substrate bonding step (FIG. 1B) and the sealing material curing step (FIG. 1C) (hereinafter referred to as these The process may be referred to as a liquid crystal cell formation process). For this reason, in the liquid crystal cell forming step, the liquid crystal material LC flows between the substrates.
  • the sealing material curing step (FIG. 1C), ideally, only the sealing material 12 is irradiated with the ultraviolet rays 30.
  • the liquid crystal material LC There is a possibility that a part of ultraviolet rays is irradiated.
  • the polymerizable compound (monomer and / or oligomer) contained in the liquid crystal material LC may be polymerized.
  • the sealing material 12 is cured by heat treatment as described above, the polymerizable compound in the liquid crystal layer may be polymerized with a slight amount. Thereby, a polymer is formed at the alignment film interface.
  • a BM black matrix
  • the sealing material 12 may be provided between the sealing material 12 and the counter substrate 10 (immediately below the sealing material), but in order to realize a narrow frame, a frame formed on the TFT substrate 20
  • a sealing material 12 is disposed on the wiring in the region.
  • a part of the irradiation light in the vicinity of the sealing material 12 may be blocked by the wiring, it is necessary to irradiate a higher dose of ultraviolet rays in order to sufficiently cure the sealing material 12.
  • the polymerizable compound contained in the liquid crystal material in the vicinity of the sealing material 12 becomes more easily polymerized.
  • Unevenness (hereinafter sometimes referred to as PSA unevenness) 40 caused by unintended polymerization and corresponding to a change in the flow rate of the liquid crystal material is significantly observed in the frame region R1 around the display region R2. This seems to be partly due to the fact that the liquidity of the liquid crystal material is greatly reduced (varied) in the frame region R1. That is, in the liquid crystal cell forming process, the cell gap in the vicinity of the sealing material, which will be described later, or the pressure in the void portion in the cell not filled with liquid crystal (initially P 0 ) gradually increases in the sealing material curing process. It is considered that the flow (spreading) speed of the liquid crystal in the frame region R1 decreases due to a decrease in the difference between this pressure and the atmospheric pressure P 1 received by the substrate surface.
  • the present inventor considered to suppress a decrease in the liquid crystal flow rate in the frame region R1.
  • the cell thickness In the frame region R1, the cell thickness often decreases toward the portion where the sealing material 12 is provided. For example, such a change in cell thickness occurs because the photo spacer provided in the frame region R1 is formed lower than the photo spacer in the display region R2. In particular, in the vicinity of the sealing material 12, the cell thickness may decrease rapidly. In the region where the cell thickness is decreasing, the fluidity of the liquid crystal material is decreased. When the fluidity of the liquid crystal material is drastically lowered, when the photopolymerizable compound contained in the liquid crystal material LC is polymerized, PSA unevenness (disturbance in the orientation of the liquid crystal molecules, For example, it is considered that the orientation azimuth, the orientation axis center disturbance, and the tilt angle variation 40) occur.
  • the orientation direction refers to a component in the liquid crystal layer plane (in the substrate plane) among vectors indicating the alignment direction of liquid crystal molecules.
  • the flow trajectory is particularly easily observed in the region (frame region) R1 in the vicinity of the sealing material 12, in the liquid crystal display device using the PSA technology, it is possible to suppress the decrease in the cell thickness in the region R1 to a predetermined level. It seems to be effective to suppress the occurrence of the trajectory. More specifically, in a region where the cell thickness decreases toward the outside of the substrate (referred to as a cell thickness variation portion in this specification), the cell thickness variation (cell thickness difference) in the substrate vertical direction is the substrate surface. It has been found that when the cell thickness variation is 0.01% or less with respect to the width of the cell thickness variation portion in the inward direction, it is possible to suppress a rapid drop in liquid crystal fluidity and to reduce the occurrence of a flow locus.
  • the alignment maintaining layer is formed on the alignment film by irradiating the photopolymerizable compound in the liquid crystal layer with ultraviolet rays by the PSA technique, Regulates the pretilt angle of liquid crystal molecules. Even after such a PSA process, the display quality in the vicinity of the frame region R1 is prevented from being lowered. Therefore, even when the PSA technology is used, it is possible to manufacture a narrow frame liquid crystal display device with improved display quality.
  • FIG. 2 shows an end cross-section of the liquid crystal display device 100 of the first embodiment.
  • the liquid crystal display device 100 includes a TFT substrate 110, a counter substrate 120, and a vertical alignment type liquid crystal layer 140 sandwiched therebetween, and operates in a VA (Vertical Alignment) mode.
  • VA Vertical Alignment
  • the liquid crystal display device 100 is provided with matrix-like pixels along a plurality of rows and a plurality of columns.
  • the TFT substrate 110 has a transparent substrate 112 and a vertical alignment film 114. On the vertical alignment film 114, an alignment maintaining layer 116 formed by polymerizing a photopolymerizable compound (for example, a photopolymerizable monomer) is provided.
  • the TFT substrate 110 has at least one thin film transistor and a pixel electrode (both not shown here) provided for each pixel.
  • the counter substrate 120 includes a transparent substrate, a counter electrode formed on the transparent substrate, a vertical alignment film, and the like (not shown).
  • an alignment maintaining layer (not shown) is formed on the liquid crystal layer 140 side of the vertical alignment film.
  • the counter substrate 120 is provided with a color filter (not shown).
  • polarizing plates are provided on the outer surfaces of the TFT substrate 110 and the counter substrate 120 so that their polarization axes are substantially orthogonal to each other.
  • the liquid crystal layer 140 contains a nematic liquid crystal material having negative dielectric anisotropy.
  • the surface on the liquid crystal layer side of the alignment film is subjected to an alignment treatment so that the pretilt angle of the liquid crystal molecules is substantially vertical.
  • the pretilt angle of the liquid crystal molecules is an angle formed between the main surface (or substrate surface) of the alignment film and the major axis of the liquid crystal molecules.
  • the pretilt angle of the liquid crystal molecules is typically regulated by the alignment maintaining layer 116 so as to be slightly tilted from the substrate vertical direction.
  • the photopolymerizable compound is dissolved in the liquid crystal compound, and a mixture of the photopolymerizable compound and the liquid crystal compound is used as the liquid crystal material.
  • An alignment maintaining layer is formed by polymerizing the photopolymerizable compound in the liquid crystal material, and a liquid crystal layer is formed from the mixture.
  • the liquid crystal layer may contain a photopolymerizable compound that has not been polymerized.
  • the photopolymerizable compound a polymerizable monomer having at least one ring structure or condensed ring structure and two functional groups directly bonded to the ring structure or condensed ring structure is used.
  • the photopolymerizable monomer is selected from those represented by the following general formula (1). P 1 -A 1- (Z 1 -A 2 ) n -P 2 (1)
  • P 1 and P 2 are functional groups, each independently being an acrylate group, a methacrylate group, a vinyl group, a vinyloxy group or an epoxy group, and A 1 and A 2 are ring structures.
  • P 1 and P 2 are preferably acrylate groups, Z 1 is preferably a single bond, and n is preferably 0 or 1.
  • a preferable monomer is, for example, a compound represented by the following formula.
  • P 1 and P 2 are as described in the general formula (1), and particularly preferable P 1 and P 2 are acrylate groups. Further, among the above compounds, the compounds represented by Structural Formula (1a) and Structural Formula (1b) are very preferable, and the compound of Structural Formula (1a) is particularly preferable.
  • the liquid crystal display device 100 is divided into a display area R2 for displaying images, videos, and the like, and a frame area (or a peripheral area) R1 on the outside thereof.
  • a sealing material 130 for sealing the liquid crystal layer 140 is provided between the substrates 110 and 120 so as to surround the liquid crystal layer 140.
  • the sealing material 130 is an ODF sealing material (after curing) used in the steps shown in FIGS.
  • the sealing material 130 is formed by a photocuring process and a heat curing process.
  • the sealing material 130 is not limited to this, and may be of an ultraviolet curing type, a thermosetting type, or a combination type.
  • the width of the sealing material 130 is set to 1000 ⁇ m (1 mm), for example.
  • a photo spacer (PS) 132 is provided in both the frame region R1 and the display region R2.
  • the photo spacer 132 defines an interval (cell gap d) between the TFT substrate 110 and the counter substrate 120.
  • the photo spacer 132 is produced, for example, by patterning a photosensitive resin layer (resist material) formed on the counter substrate 120 by a spin coating method or the like by a photolithography method or the like. By appropriately performing patterning, a desired number of photo spacers 132 can be formed at a desired position on the substrate. Further, the height of the photo spacer 132 to be formed can be controlled by changing the thickness of the photosensitive resin layer. In this embodiment, using the photo spacer 132, the cell gap d in the display region R2 is set to about 3.0 ⁇ m.
  • the cell thickness d decreases in the vicinity of the area where the sealing material 130 is provided.
  • this portion is called a cell thickness variation portion.
  • the cell thickness varying portion 50 the cell thickness is reduced because the photo spacer 132a is formed relatively low.
  • the reason why the photo spacer 132a is formed low in this way is considered that the film thickness of the photosensitive resin layer described above decreases toward the outside of the liquid crystal cell in the frame region R1.
  • the TFT substrate 110 and the counter substrate 120 are shown as being cut at the end of the sealing material 130, but in an actual manufacturing process, a plurality of large substrates are formed on a large mother substrate. In many cases, a structure corresponding to the liquid crystal panel is provided and then divided into each liquid crystal panel. In this case, in the manufacturing process of the TFT substrate 110 and the counter substrate 120, there are continuous portions (portions not shown in FIG. 2) of the TFT substrate 110 and the counter substrate 120 in the region outside the sealing material 130. is doing. In this specification, this portion is called the outside of the liquid crystal cell.
  • the density inside the liquid crystal cell is in a high state.
  • the terminal part etc. for connecting with a drive circuit are provided in the liquid crystal cell outer side, there are almost no other structures and its density is low.
  • the thickness of the photosensitive resin layer varies due to the difference in structure between the liquid crystal cell inner side and the liquid crystal cell outer side. For example, when there is no dense base film outside the liquid crystal cell, the photosensitive resin after coating is caused by a difference in the film thickness of the base film or liquid leakage during coating (for example, spin coating) (concave portion on the coating surface). It seems that the thickness of the layer varies. In particular, when a liquid crystal display device is manufactured so that the frame region R1 becomes narrow, the thickness of the resin layer often decreases rapidly in the vicinity of the sealing material 130.
  • the height of the photo spacer 132a in the frame region R1 becomes lower than the height of the photo spacer 132 in the display region R2.
  • the frame region R1 is narrow, the height of the photo spacer 132a formed in the vicinity of the sealing material 130 tends to be lower than that of the photo spacer 132 formed in the display region R2.
  • the cell thickness variation is the ratio between the cell thickness decrease ⁇ h in the substrate vertical direction in the cell thickness variation portion 50 and the width (width of the cell thickness variation portion 50) W of the portion where the cell thickness is decreased in the in-plane direction of the substrate. It is specified as a rate (%).
  • the cell thickness variation portion 50 corresponds to a portion where the photo spacer 132 is formed low.
  • the cell thickness decrease ⁇ h corresponds to a difference in height (height variation) of the photo spacer. In FIG. 2, only one photo spacer 132a formed low is shown, but a plurality of photo spacers may be formed low. In this case, the cell thickness decrease ⁇ h is defined as the difference in height between the photo spacer formed in the uniform cell thickness region and the lowest photo spacer in the peripheral region.
  • the cell thickness decrease is the difference between the height of the photo spacer 132 in the region where the cell thickness is constant and the height of the photo spacer 132a in the region where the cell thickness decreases.
  • Table 1 below shows ⁇ h, the cell thickness fluctuation rate, and the occurrence of PSA unevenness (liquid crystal flow unevenness).
  • the case where PSA unevenness is confirmed is indicated by x, and the case where no PSA unevenness is confirmed is indicated by ⁇ .
  • the cell thickness fluctuation rate is 0.01% or less, liquid crystal flow unevenness does not occur, and the display quality of the liquid crystal display device can be improved.
  • the cell thickness fluctuation rate is preferably 0.005% or less.
  • the display quality is greatly lowered when the outer cell thickness is increased.
  • the liquid crystal display device In the VA mode, the liquid crystal display device is generally displayed in normally black (black state when no voltage is applied), but when the outer cell thickness is larger, the display is whiter (brighter) than the color that should be originally displayed. White unevenness occurs.
  • the outer cell thickness is smaller, it is displayed darker (darker) than the color that should originally be displayed, but the luminance is lower and less noticeable than white unevenness. Therefore, in order to perform display with higher quality, it is necessary to avoid that the cell thickness on the peripheral region side becomes larger than the cell thickness on the display region side.
  • the cell thickness in the frame region is less than or equal to the cell thickness in the display region.
  • the cell thickness variation rate is set to 0.002% or more, for example. In this way, it is possible to prevent the outer liquid crystal layer from becoming thicker due to various factors, thereby improving the display quality in the VA mode.
  • a photosensitive resin layer for forming the photo spacer 132 may be provided in the frame region R1 in the same thickness as the display region R2.
  • the photosensitive resin layer for forming the photo spacer can be provided with a uniform thickness if the underlying surface is relatively flat before the photo spacer is formed.
  • the height of the photo spacer can be made uniform.
  • the distance between the apex portion of the photospacer and the substrate surface (the sum of the height of the photospacer and the height of the structure disposed thereunder) is uniform. Therefore, when a structure is provided outside the liquid crystal cell, the distance from the substrate to the top of the photospacer should be uniform, including not only the height of the photospacer itself but also the underlying film provided below it. Therefore, it is desirable to control the height of the photo spacer, the thickness of the base film, and the like.
  • a wall-like structure may be provided outside the liquid crystal cell.
  • This wall-shaped structure prevents a decrease in thickness outside the liquid crystal cell (a decrease in local leveling on the coating surface) when a photosensitive resin layer for a photospacer is provided by a spin coating method or the like. It is provided as follows. Also, when forming the underlayer of the photo spacer, the underlayer can be formed with a more uniform thickness inside and outside the cell. In this way, it is possible to make the distance from the substrate to the top of the photo spacer relatively uniform.
  • the cell thickness variation rate is suppressed to 0.01% or less by appropriately adjusting the height of the photo spacer. It is desirable.
  • the cell thickness variation rate is set to 0.01% or less, even if a polymer is generated in the liquid crystal layer in the vicinity of the sealing material in the sealing material curing step, unevenness that shows a trace of the flow of the liquid crystal material is exhibited. Does not occur. As a result, even when the frame area is set narrow and the display area is provided at a position relatively close to the sealing material, high-quality display can be performed.
  • the present invention is not limited to this. Even when a horizontal alignment type liquid crystal layer such as an ECB liquid crystal or a TN liquid crystal is used, the unevenness of liquid crystal flow caused by the polymer by the PSA technology is achieved by suppressing the cell thickness fluctuation rate to 0.01% or less. Can be suppressed.
  • a horizontal alignment type liquid crystal layer such as an ECB liquid crystal or a TN liquid crystal
  • FIG. 3 shows an end cross section of the liquid crystal display device 200 of the second embodiment. Similar to the liquid crystal display device 100 of the first embodiment, the liquid crystal display device 200 seals the TFT substrate 110, the counter substrate 220, the vertically aligned liquid crystal layer 140 sandwiched therebetween, and the liquid crystal layer 140 between the substrates. It has a sealing material 130 for stopping.
  • the same components as those in the first embodiment are denoted by the same reference numerals.
  • the counter substrate 220 has an organic planarization film 222.
  • the organic planarization film 222 functions as a base film in the liquid crystal cell, and a photo spacer 132 is formed on the organic planarization film 222.
  • the film thickness tends to decrease in the portion corresponding to the frame region R1 of the counter substrate 220 as in the photo spacer forming process described in the first embodiment.
  • the film thickness of the organic planarizing film 222 decreases rapidly.
  • the cell thickness decreases in the frame region R1, and the liquid crystal flow slows down.
  • the cell thickness variation portion 50 is a portion formed near the outer periphery of the liquid crystal cell, and may be a portion where the cell thickness is reduced, and does not necessarily require deformation of the counter substrate or the TFT substrate. Further, the cell thickness variation portion may be formed with the deformation of both the substrates.
  • the cell thickness variation is the ratio between the cell thickness decrease ⁇ h in the substrate vertical direction in the cell thickness variation portion 50 and the width (width of the cell thickness variation portion 50) W of the portion where the cell thickness is decreased in the in-plane direction of the substrate. It is specified as a rate (%).
  • the cell thickness decrease ⁇ h is the maximum difference in film thickness of the organic planarization film 222 between the display region R2 and the frame region R1.
  • the cell thickness variation portion 50 When the width W of the cell thickness variation portion 50 is 2000 ⁇ m, the cell thickness decrease ⁇ h, which is the difference in the thickness of the organic planarization film 222 in the display region R2 and the frame region R1, the cell thickness variation rate, and the PSA unevenness
  • ⁇ h the difference in the thickness of the organic planarization film 222 in the display region R2 and the frame region R1
  • the cell thickness variation rate the cell thickness variation rate
  • the occurrence of (liquid crystal flow unevenness) is shown in Table 2 below. In Table 2 below, the case where PSA unevenness is confirmed is indicated by x, and the case where no PSA unevenness is confirmed is indicated by ⁇ .
  • the cell thickness fluctuation rate is 0.01% or less
  • liquid crystal flow unevenness does not occur, and the display quality of the liquid crystal display device can be improved.
  • the outside of the liquid crystal cell in order to suppress the cell thickness variation rate to 0.01% or less, for example, in the same process as that described in the first embodiment, the outside of the liquid crystal cell.
  • a structure similar to that inside the liquid crystal cell may be provided.
  • a wall-like structure may be provided outside the liquid crystal cell to suppress a decrease in film thickness in this region when the organic planarizing film 222 is formed.
  • the cell thickness variation rate is set to 0.01% or less by appropriately arranging the photo spacers 132 in the frame region R1.
  • FIG. 4A shows a change in cell thickness that may occur when no photo spacer is provided in the frame region R1. As shown in FIG. 4A, in the frame region R1, the cell thickness is reduced because there is no support by the photo spacer.
  • FIG. 4A shows a form in which the sealing material 130 has a height substantially the same as the cell thickness in the display region R2.
  • the sealing material 130 it is difficult to suppress the cell thickness variation in the frame region only by adjusting the height of the sealing material 130. If there is such a portion where the cell thickness varies, the flow rate of the liquid crystal material may be reduced. In order to prevent deterioration in display quality due to PSA unevenness, it is necessary to suppress this decrease in flow rate. For this purpose, it is important to keep the cell thickness fluctuation rate within a predetermined range. It is.
  • FIGS. 5A and 5B show the arrangement of the photo spacers 132a in the frame region R1. As shown in FIG. 5A, the photo spacer 132a is provided along the line 11 at the substantially center of the frame region R1 having the width D.
  • the density is lower than that of the photo spacers 132 provided in the display region R2, and the gaps are further spaced. This is advantageous for suppressing a decrease in the fluidity of the liquid crystal material in the frame region R1. Furthermore, by setting the size (diameter) of the photo spacer 132a to be relatively large, it is possible to prevent deformation due to external pressure or the like, and to prevent its height from fluctuating. Therefore, there is an advantage that the cell gap can be easily maintained at a desired interval.
  • more photo spacers 132a may be provided. Also in this case, it is desirable to position the center portion of the photo spacer formation region along the center line l1 of the frame region R1. Further, the interval between the photo spacers 132a in the width direction of the frame region R1 may be smaller than the interval between the photo spacers 132 in the display region R2. This provides the advantage that the cell gap can be easily maintained at a desired interval in the frame region. However, it is better not to reduce the distance between the photo spacers 132a in the direction perpendicular to the width direction because the liquid crystal fluidity may be hindered.
  • the height of the sealing material is substantially the same as the cell thickness of the display area. In that case, it is desirable to provide a photo spacer at a position having a cell thickness obtained by averaging the height of the sealing material and the cell thickness in the display region.
  • the present invention is widely used in various liquid crystal display devices such as liquid crystal televisions.
  • Cell thickness variation portion 100 Liquid crystal display device 110 TFT substrate 112 Transparent substrate 114 Vertical alignment film 116 Orientation maintaining layer 120 Counter substrate 130 Sealing material 132, 132a Photo spacer 140 Liquid crystal layer R1 Frame region (peripheral region) R2 display area d Cell gap

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

A liquid crystal display device (100) comprises: a pair of substrates (110, 120); a liquid crystal layer (140) sandwiched between the pair of substrates; a seal material (130) provided so as to surround the liquid crystal layer (140); a plurality of spacers (132) provided so as to define the spacing between the pair of substrates; an alignment film (114) provided on the liquid crystal layer side of at least one of the pair of substrates; and an alignment maintaining layer (116) including a polymer formed by polymerizing a polymerizable compound, the alignment maintaining layer (116) being provided to the liquid crystal layer side of the alignment film (114). A cell-thickness varying part (50) in which the spacing between the pair of substrates decreases in the direction of the seal material (130) is formed in the vicinity of the seal material (130); and the cell-thickness variance (∆h/W) of the cell-thickness varying part (50) is 0.01% or less, where ∆h is the reduction in cell thickness in the direction perpendicular to the substrate, and W is the width of the cell-thickness varying part in the in-plane direction of the substrate.

Description

液晶表示装置Liquid crystal display
 本発明は、液晶表示装置に関し、より具体的には、PSA技術を利用する液晶表示装置に関する。 The present invention relates to a liquid crystal display device, and more specifically, to a liquid crystal display device using PSA technology.
 液晶表示装置は用途の拡大とともに、高性能化が進んでいる。特に、広視野角特性を有するMVA(Multi-domain Vertical Alignment)やIPS(In-Plane-Switching)などの表示モードが開発され、更なる改良が進んでいる。 ・ ・ ・ Liquid crystal display devices are becoming more sophisticated as their applications expand. In particular, display modes such as MVA (Multi-domain Vertical Alignment) and IPS (In-Plane-Switching) having a wide viewing angle characteristic have been developed, and further improvements are in progress.
 液晶表示装置の表示品位の向上のためには、どの表示モードを採用する場合にも、液晶層の厚さ(「セル厚」または「セルギャップ」ということもある)を精密に制御することが必要である。特に、大型の液晶表示装置においては、大面積に亘りセルギャップを均一に制御する必要がある。 In order to improve the display quality of a liquid crystal display device, it is necessary to precisely control the thickness of the liquid crystal layer (sometimes called "cell thickness" or "cell gap") in any display mode. is necessary. In particular, in a large liquid crystal display device, it is necessary to uniformly control the cell gap over a large area.
 セルギャップは、例えば、液晶層を間に介して互いに対向する一対の基板間に配置されるスペーサによって制御されている。近年では、感光性材料を用いたフォトリソグラフィプロセスで基板に柱状のスペーサを形成する方法が採用されるようになっている。このようにして形成されるスペーサは、柱状スペーサあるいはフォトスペーサ(PS)などと呼ばれる。 The cell gap is controlled by, for example, a spacer disposed between a pair of substrates facing each other with a liquid crystal layer interposed therebetween. In recent years, a method of forming columnar spacers on a substrate by a photolithography process using a photosensitive material has been adopted. The spacer formed in this way is called a columnar spacer or a photo spacer (PS).
 フォトスペーサは、画像等の表示を行う表示領域(有効表示領域)だけでなく、その外側の額縁領域(周辺領域)にも配置されることがある。しかし、額縁領域の構造は、表示領域の構造と大きく異なる。このために、額縁領域と表示領域とで同様にフォトスペーサを形成するだけでは、額縁領域でスペーサが所望の機能を果たさず、セルギャップが不均一になることがあった。 A photo spacer may be arranged not only in a display area (effective display area) for displaying an image or the like but also in a frame area (peripheral area) outside the photo spacer. However, the structure of the frame area is significantly different from the structure of the display area. For this reason, if the photo spacers are similarly formed in the frame region and the display region in the same manner, the spacers may not perform a desired function in the frame region, and the cell gap may become non-uniform.
 特許文献1には、フォトスペーサが設けられた額縁領域において、アクティブ素子と画素電極との間に設けられた絶縁膜がテーパ状に形成されてしまうことで、セル厚が不均一になる形態が示されている。セル厚が一定でない領域を表示に用いると、表示品位が低下する。このため、特許文献1に記載されている表示装置では、額縁領域の幅の下限を規定することで、セル厚が不均一な領域を表示領域内に含めないようにしている。 Japanese Patent Application Laid-Open No. 2004-228561 has a mode in which the cell thickness is non-uniform because the insulating film provided between the active element and the pixel electrode is formed in a tapered shape in the frame region where the photo spacer is provided. It is shown. When an area where the cell thickness is not constant is used for display, the display quality is lowered. For this reason, in the display device described in Patent Document 1, by defining a lower limit of the width of the frame area, an area where the cell thickness is not uniform is not included in the display area.
 ただし、上述のように額縁領域の幅の下限を規定するように液晶表示装置を設計する場合には、額縁領域の幅を狭くするという要求に対応できない。液晶表示装置において、表示に寄与しない領域をできるだけ少なくすることが望まれており、額縁領域の狭小化は年々進んでいる。特許文献1に記載されている周辺領域の幅の下限に従うと、額縁領域を狭く設定することが困難な場合があった。 However, when the liquid crystal display device is designed so as to define the lower limit of the width of the frame area as described above, it cannot meet the demand for reducing the width of the frame area. In a liquid crystal display device, it is desired to reduce the area that does not contribute to display as much as possible, and the frame area is becoming narrower year by year. According to the lower limit of the width of the peripheral area described in Patent Document 1, it may be difficult to set the frame area narrow.
 特許文献2には、額縁領域を狭小化するための技術が記載されている。狭額縁化に伴い、シール領域に駆動回路が設けられることがあるが、液晶パネルの各辺で配線の仕様が異なるため、各辺でシール領域近傍でのセル厚が異なり得る。また、スペーサとしてのガラスファイバーをシール材に混入させると、加重時に下地のTFT素子などを破壊する可能性がある。これらの点を考慮して、特許文献2では、シール材にスペーサを添加せずに、シール際にスペーサを設けることで均一なセル厚を実現するようにしている。また、特許文献2には、額縁領域において表示領域とは異なる形態のスペーサ(例えば壁状のスペーサ等)を用いることで周辺部のセル厚の変動を抑制する技術も記載されている。 Patent Document 2 describes a technique for narrowing the frame area. A drive circuit may be provided in the seal region as the frame is narrowed. However, since the wiring specifications are different on each side of the liquid crystal panel, the cell thickness in the vicinity of the seal region may be different on each side. Further, when glass fibers as spacers are mixed in the sealing material, there is a possibility that the underlying TFT element or the like may be destroyed under load. In consideration of these points, in Patent Document 2, a uniform cell thickness is realized by providing a spacer during sealing without adding a spacer to the sealing material. Patent Document 2 also describes a technique for suppressing variation in the cell thickness in the peripheral portion by using a spacer (for example, a wall-like spacer) having a different form from the display area in the frame area.
特開2006-58329号公報JP 2006-58329 A 特開平10-153797号公報Japanese Patent Laid-Open No. 10-153797
 額縁領域におけるセル厚は様々な要因で変化し得る。特に、額縁領域を狭く設定する場合には、フォトスペーサなどを配置しても、スペーサやその下地となる膜の形状(高さ、膜厚)が適切でないために、所望の厚さにセル厚を制御することができないことがあった。したがって、実際にセル厚を一定にすることは容易ではなかった。また、液晶表示装置の動作モードや構成などによって、許容されるセル厚変動の大きさは異なり得る。このため、この領域での表示品位の低下が生じることもあった。したがって、狭い額縁領域を実現しつつ、特に表示領域の端部(額縁領域との境界部)における表示品位を向上させるという課題があった。 The cell thickness in the frame area can change due to various factors. In particular, when the frame region is set to be narrow, even if a photo spacer is arranged, the shape (height and film thickness) of the spacer and the underlying film is not appropriate. Could not be controlled. Therefore, it is not easy to actually make the cell thickness constant. The allowable cell thickness variation may vary depending on the operation mode and configuration of the liquid crystal display device. For this reason, the display quality in this region may be deteriorated. Therefore, there has been a problem of improving the display quality particularly at the end of the display area (boundary with the frame area) while realizing a narrow frame area.
 本発明は、上記課題を解決するためになされたものであり、額縁領域が狭い場合にも表示品位を向上させることができる液晶表示装置を提供することをその目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a liquid crystal display device capable of improving the display quality even when the frame area is narrow.
 本発明の液晶表示装置は、一対の基板と、前記一対の基板間に挟持された液晶層と、前記液晶層を囲むように設けられたシール材と、前記一対の基板間において、前記一対の基板の間隔を規定するように設けられた複数のスペーサと、前記一対の基板のうちの少なくとも一方の前記液晶層側に設けられた配向膜と、前記配向膜の前記液晶層側に設けられた配向維持層であって、重合性化合物を重合させることによって形成された重合体を含む配向維持層とを備える液晶表示装置であって、前記シール材の近傍において、前記シール材が設けられた部分に向かって前記一対の基板の間隔が減少するセル厚変動部が形成され、前記セル厚変動部の、基板垂直方向におけるセル厚減少分Δhと、基板面内方向の幅Wとの比であるセル厚変動率Δh/Wが0.01%以下である。 The liquid crystal display device of the present invention includes a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, a sealing material provided so as to surround the liquid crystal layer, and the pair of substrates. A plurality of spacers provided so as to define the distance between the substrates, an alignment film provided on the liquid crystal layer side of at least one of the pair of substrates, and provided on the liquid crystal layer side of the alignment film A liquid crystal display device comprising an alignment maintaining layer and an alignment maintaining layer containing a polymer formed by polymerizing a polymerizable compound, wherein the sealing material is provided in the vicinity of the sealing material A cell thickness variation portion in which a distance between the pair of substrates decreases toward the substrate, and a ratio of a cell thickness decrease Δh in the substrate vertical direction of the cell thickness variation portion to a width W in the substrate in-plane direction. Cell thickness fluctuation rate Δh / W is 0.01% or less.
 ある好ましい実施形態において、表示を行う表示領域と、前記表示領域の外側に位置する周辺領域とが規定されており、前記セル厚変動部は、前記表示領域と前記周辺領域との境界の近傍に形成されている。 In a preferred embodiment, a display area for displaying and a peripheral area located outside the display area are defined, and the cell thickness variation portion is in the vicinity of a boundary between the display area and the peripheral area. Is formed.
 ある好ましい実施形態において、前記スペーサは、前記表示領域と前記周辺領域との両方において形成されており、前記周辺領域に形成されたスペーサは、前記表示領域に形成されたスペーサよりも低く、前記周辺領域に形成されたスペーサの高さと、前記表示領域に形成されたスペーサの高さとの差に応じて、前記セル厚減少分Δhが決定される。 In a preferred embodiment, the spacer is formed in both the display region and the peripheral region, and the spacer formed in the peripheral region is lower than the spacer formed in the display region, and The cell thickness decrease Δh is determined according to the difference between the height of the spacer formed in the region and the height of the spacer formed in the display region.
 ある好ましい実施形態において、前記周辺領域に形成されたスペーサは、前記周辺領域の中央部に形成されている。 In a preferred embodiment, the spacer formed in the peripheral region is formed in a central portion of the peripheral region.
 ある好ましい実施形態において、前記一対の基板のうちの一方は、前記液晶層側に設けられた平坦化膜を備え、前記表示領域と前記周辺領域とにおいて前記平坦化膜は異なる厚さを有し、前記平坦化膜の厚さの差に応じて、前記セル厚減少分Δhが決定される。 In a preferred embodiment, one of the pair of substrates includes a planarization film provided on the liquid crystal layer side, and the planarization film has different thicknesses in the display region and the peripheral region. The cell thickness decrease Δh is determined according to the difference in thickness of the planarization film.
 ある好ましい実施形態において、前記液晶層は、垂直配向型の液晶層であり、かつ、前記配向膜は、垂直配向型の配向膜であり、前記周辺領域におけるセル厚が、前記表示領域におけるセル厚よりも小さい。 In a preferred embodiment, the liquid crystal layer is a vertical alignment type liquid crystal layer, and the alignment film is a vertical alignment type alignment film, and the cell thickness in the peripheral region is the cell thickness in the display region. Smaller than.
 本発明によれば、液晶材料に混合された重合性化合物を重合して得られる重合体によって液晶分子の配向状態を規制する液晶表示装置において、狭額縁化を実現し、特に額縁領域近傍での表示品位の低下を抑制することができる。 According to the present invention, in a liquid crystal display device that regulates the alignment state of liquid crystal molecules by a polymer obtained by polymerizing a polymerizable compound mixed in a liquid crystal material, narrowing of the frame is achieved, particularly in the vicinity of the frame region. A decrease in display quality can be suppressed.
ODF法により液晶セルを作製する工程を示す模式図であり、(a)~(d)はそれぞれ別の工程を示す。FIG. 7 is a schematic diagram showing a process for manufacturing a liquid crystal cell by an ODF method, and (a) to (d) show different processes. 実施形態1に係る液晶表示装置の断面を示す図である。1 is a diagram illustrating a cross section of a liquid crystal display device according to Embodiment 1. FIG. 実施形態2に係る液晶表示装置の断面を示す図である。FIG. 6 is a diagram illustrating a cross section of a liquid crystal display device according to a second embodiment. 液晶表示装置の額縁領域における構造を示す断面図であり、(a)は額縁領域にフォトスペーサが設けられていない場合を示し、(b)は、額縁領域にフォトスペーサが設けられている実施形態3に係る液晶表示装置を示す。It is sectional drawing which shows the structure in the frame area | region of a liquid crystal display device, (a) shows the case where the photo spacer is not provided in the frame area, (b) is an embodiment in which the photo spacer is provided in the frame area. 3 shows a liquid crystal display device according to FIG. (a)および(b)は、実施形態3に係る液晶表示装置の額縁領域におけるフォトスペーサの配置を示す上面図である。(A) And (b) is a top view which shows arrangement | positioning of the photo spacer in the frame area | region of the liquid crystal display device which concerns on Embodiment 3. FIG.
 液晶分子のプレチルト方向を制御する技術として、Polymer Sustained Alignment Technology(以下、「PSA技術」という)が開発された。PSA技術は、典型的には、少量の光重合性化合物を混入させた液晶層に所定の電圧を印加した状態で紫外線を照射し、生成される光重合体によって、液晶分子の配向方向を制御する技術である。本明細書では、光重合体から形成される層を配向維持層(Alignment Sustaining Layer)と呼ぶ。 Polymer Sustained Alignment Technology (hereinafter referred to as “PSA technology”) has been developed as a technology for controlling the pretilt direction of liquid crystal molecules. PSA technology typically irradiates a liquid crystal layer mixed with a small amount of a photopolymerizable compound with ultraviolet light while applying a predetermined voltage, and the orientation of liquid crystal molecules is controlled by the photopolymer produced. Technology. In the present specification, a layer formed from a photopolymer is referred to as an alignment sustaining layer.
 PSA技術を用いると、光重合体が生成されるときの液晶分子の配向状態が、電圧を印加しない状態においても維持(記憶)される。従って、PSA技術は、液晶層に形成される電界等を制御することによって、液晶分子の配向状態を調整することができるという利点を有している。また、PSA技術は、配向膜のラビング処理によってプレチルト方向を制御することが難しい垂直配向型の液晶層を形成するのに適している。PSA技術は、例えば、特開2002-357830号公報に記載されている。 When the PSA technique is used, the alignment state of the liquid crystal molecules when the photopolymer is generated is maintained (stored) even in the state where no voltage is applied. Therefore, the PSA technique has an advantage that the alignment state of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer. The PSA technique is suitable for forming a vertical alignment type liquid crystal layer in which the pretilt direction is difficult to control by rubbing the alignment film. The PSA technique is described in, for example, Japanese Patent Application Laid-Open No. 2002-357830.
 しかし、PSA技術を利用して作製される液晶表示装置において、狭額縁化を実現しようとすると、特に額縁領域の近傍で表示品位の低下が生じることがあった。その理由について、本願発明者による考察を以下に説明する。 However, in a liquid crystal display device manufactured using the PSA technology, when trying to realize a narrow frame, the display quality may be deteriorated particularly in the vicinity of the frame region. The reason for this will be described below by the inventors.
 図1(a)~(d)は、ODF(One Drop Fill)法によって、PSA技術を用いる液晶パネルを作製する工程の一例を模式的に示す。 FIGS. 1A to 1D schematically show an example of a process for manufacturing a liquid crystal panel using the PSA technique by an ODF (One Drop Fill) method.
 まず、図1(a)に示すように、例えば、カラーフィルタや配向膜が設けられた対向基板10の周辺部に、紫外線硬化性のシール材12が付与される。シール材12は、例えば、ディスペンサー装置などを用いて200μm~400μmの幅を有するように対向基板10上に付与される。また、シール材12によって囲まれる領域に、光重合性化合物を含む液晶材料LCが滴下される。 First, as shown in FIG. 1A, for example, an ultraviolet curable sealing material 12 is applied to the peripheral portion of the counter substrate 10 provided with a color filter and an alignment film. The sealing material 12 is applied on the counter substrate 10 so as to have a width of 200 μm to 400 μm using, for example, a dispenser device. In addition, a liquid crystal material LC containing a photopolymerizable compound is dropped into a region surrounded by the sealing material 12.
 次に、図1(b)に示すように、液晶材料LCが滴下された対向基板10に、他の基板20(ここではTFT基板20)を貼り合わせる。この直後から、基板間に挟まれた液晶材料LCは、特に基板表面形状に特徴が無い限り、基板の周辺部(シール材12が付与された部分)に向かって同心円状に広がりながら流動する。この貼り合わせ工程は、真空雰囲気(圧力P0)中で行われる。 Next, as shown in FIG. 1B, another substrate 20 (here, the TFT substrate 20) is bonded to the counter substrate 10 onto which the liquid crystal material LC has been dropped. Immediately after this, the liquid crystal material LC sandwiched between the substrates flows while concentrically spreading toward the peripheral portion of the substrate (the portion provided with the sealing material 12) unless there is a particular feature on the substrate surface shape. This bonding step is performed in a vacuum atmosphere (pressure P 0 ).
 その後、図1(c)に示すように、大気圧(圧力P1)中で、シール材12に対して紫外線30を選択的に照射することにより、シール材12を硬化させる処理が行われる。さらに、必要であれば、シール材12の硬化を促進させるための熱処理が行われる。シール材12は、上記貼り合わせ工程および硬化工程を経て、その幅が例えば1mm程度になるように押し延ばされて硬化される。このようにして、一対の基板間に液晶材料LCが封止され、液晶層が形成される。液晶分子の配向状態は、基板10および20上に設けられた配向膜によって規制される。 Thereafter, as shown in FIG. 1C, the sealing material 12 is cured by selectively irradiating the sealing material 12 with ultraviolet rays 30 at atmospheric pressure (pressure P 1 ). Furthermore, if necessary, a heat treatment for promoting the curing of the sealing material 12 is performed. The sealing material 12 is hardened by being stretched so that the width thereof becomes, for example, about 1 mm through the bonding step and the curing step. In this way, the liquid crystal material LC is sealed between the pair of substrates, and a liquid crystal layer is formed. The alignment state of the liquid crystal molecules is regulated by the alignment film provided on the substrates 10 and 20.
 その後、必要に応じて電極間に電圧を印加し、液晶材料を所定の配向状態にした上で、光重合プロセスにより液晶層中の重合性化合物が重合される(図示せず)。このようにして得られる重合体により、液晶分子の配向を制御する配向維持層が形成される。 Thereafter, a voltage is applied between the electrodes as necessary to bring the liquid crystal material into a predetermined alignment state, and then the polymerizable compound in the liquid crystal layer is polymerized by a photopolymerization process (not shown). The polymer obtained in this manner forms an alignment maintaining layer that controls the alignment of liquid crystal molecules.
 このように、ODF法では、基板貼り合わせ工程(図1(b))およびシール材硬化工程(図1(c))の直前に、液晶材料LCが基板間に付与される(以下、これらの工程を液晶セル形成工程と呼ぶ場合がある)。このため、液晶セル形成工程において、液晶材料LCは基板間で流動している。 As described above, in the ODF method, the liquid crystal material LC is applied between the substrates immediately before the substrate bonding step (FIG. 1B) and the sealing material curing step (FIG. 1C) (hereinafter referred to as these The process may be referred to as a liquid crystal cell formation process). For this reason, in the liquid crystal cell forming step, the liquid crystal material LC flows between the substrates.
 シール材硬化工程(図1(c))において、理想的にはシール材12のみに紫外線30が照射される。しかし、例えばマスク等を設けてシール材12に選択的に紫外線30を照射する場合であっても、特に、額物スペースが狭く、シール材と表示領域が近接している場合、液晶材料LCに紫外線の一部が照射される可能性がある。このとき、液晶材料LCに含まれる重合性化合物(モノマーおよび/またはオリゴマー)が重合することがある。また、上述のようにシール材12を熱処理によって硬化させる際にも、液晶層中の重合性化合物は微量ながら重合することがある。これにより、配向膜界面に重合体が形成される。 In the sealing material curing step (FIG. 1C), ideally, only the sealing material 12 is irradiated with the ultraviolet rays 30. However, even when, for example, a mask or the like is provided to selectively irradiate the sealing material 12 with the ultraviolet rays 30, particularly when the frame space is narrow and the sealing material and the display area are close to each other, the liquid crystal material LC There is a possibility that a part of ultraviolet rays is irradiated. At this time, the polymerizable compound (monomer and / or oligomer) contained in the liquid crystal material LC may be polymerized. Further, when the sealing material 12 is cured by heat treatment as described above, the polymerizable compound in the liquid crystal layer may be polymerized with a slight amount. Thereby, a polymer is formed at the alignment film interface.
 例えば、シール材12と対向基板10との間(シール材の直下)にBM(ブラックマトリクス)を設ける場合があるが、狭額縁化を実現するために、TFT基板20上に形成されている額縁領域の配線上にシール材12が配置される。シール材12を硬化させるためには、BMが設けられていないTFT基板20側から、配線越しに紫外線を照射する必要がある。このとき、シール材12近傍の照射光の一部が配線により遮られることがあるため、シール材12を十分に硬化させるためには、より高い照射量の紫外線を照射することが必要になる。このことによって、シール材12近傍の液晶材料に含まれる重合性化合物は、より重合しやすくなる。 For example, a BM (black matrix) may be provided between the sealing material 12 and the counter substrate 10 (immediately below the sealing material), but in order to realize a narrow frame, a frame formed on the TFT substrate 20 A sealing material 12 is disposed on the wiring in the region. In order to cure the sealing material 12, it is necessary to irradiate ultraviolet rays through the wiring from the TFT substrate 20 side where the BM is not provided. At this time, since a part of the irradiation light in the vicinity of the sealing material 12 may be blocked by the wiring, it is necessary to irradiate a higher dose of ultraviolet rays in order to sufficiently cure the sealing material 12. As a result, the polymerizable compound contained in the liquid crystal material in the vicinity of the sealing material 12 becomes more easily polymerized.
 重合性化合物の重合により重合体(ポリマー)が形成されると、図1(d)に示すように、作製された液晶セルにおいて、液晶材料の流動速度(流速)の変化に応じたムラ(流動の軌跡)40が観察されることがある。このようなムラ40の発生は、液晶材料に重合性化合物が含まれている場合において、シール材12の硬化処理を行う際に生じる特有の問題である。液晶材料が重合性化合物を含まない場合には、液晶材料を液晶セル内に封入した後に、熱処理等で液晶分子の配向方向の乱れを正常化することができる。しかし、PSA技術による液晶表示装置では、UV(紫外線)照射および熱処理によってモノマーの重合が引き起こされ、その結果、液晶材料の流動に起因する液晶分子の配向の乱れが残ることになる。 When a polymer (polymer) is formed by polymerization of the polymerizable compound, as shown in FIG. 1 (d), in the manufactured liquid crystal cell, unevenness (flow) according to the change in the flow rate (flow velocity) of the liquid crystal material. ) 40 may be observed. The occurrence of such unevenness 40 is a specific problem that occurs when the sealing material 12 is cured when the liquid crystal material contains a polymerizable compound. When the liquid crystal material does not contain a polymerizable compound, after the liquid crystal material is sealed in the liquid crystal cell, the disorder of the alignment direction of the liquid crystal molecules can be normalized by heat treatment or the like. However, in a liquid crystal display device using the PSA technology, polymerization of monomers is caused by UV (ultraviolet) irradiation and heat treatment, and as a result, disorder of alignment of liquid crystal molecules due to flow of the liquid crystal material remains.
 意図しない重合によって生じる、液晶材料の流動速度の変化に応じたムラ(以下、PSAムラという場合がある)40は、表示領域R2周辺の額縁領域R1において顕著に観察される。これは、額縁領域R1では、液晶材料の流動性が大きく低下(変動)することも一因であると思われる。すなわち、液晶セル形成工程において、後述するようなシール材近傍におけるセルギャップの減少や、液晶が充填されていないセル内の空隙部分の圧力(最初はP0)がシール材硬化工程で次第に上昇し、この圧力と基板面が受ける大気圧P1との差が減少することなどによって、額縁領域R1での液晶の流動(広がり)速度は減少していくと考えられる。 Unevenness (hereinafter sometimes referred to as PSA unevenness) 40 caused by unintended polymerization and corresponding to a change in the flow rate of the liquid crystal material is significantly observed in the frame region R1 around the display region R2. This seems to be partly due to the fact that the liquidity of the liquid crystal material is greatly reduced (varied) in the frame region R1. That is, in the liquid crystal cell forming process, the cell gap in the vicinity of the sealing material, which will be described later, or the pressure in the void portion in the cell not filled with liquid crystal (initially P 0 ) gradually increases in the sealing material curing process. It is considered that the flow (spreading) speed of the liquid crystal in the frame region R1 decreases due to a decrease in the difference between this pressure and the atmospheric pressure P 1 received by the substrate surface.
 そこで、本発明者は、額縁領域R1における液晶流動速度の低下を抑制することを考えた。 Therefore, the present inventor considered to suppress a decrease in the liquid crystal flow rate in the frame region R1.
 額縁領域R1では、シール材12が設けられている部分に向かって、セル厚が減少していることが多い。例えば、額縁領域R1に設けられたフォトスペーサが、表示領域R2におけるフォトスペーサよりも低く形成されていることで、このようなセル厚の変化が生じる。特に、シール材12の近傍では、セル厚が急激に減少することがある。セル厚が減少している領域では、液晶材料の流動性が低下する。液晶材料の流動性の急激な低下が生じている場合、液晶材料LCに含まれている光重合性化合物が重合するときに、流動性の低下を反映したPSAムラ(液晶分子の配向の乱れ、例えば、配向方位や配向軸中心の乱れやチルト角のバラツキ)40が生じるものと思われる。なお、配向方位は、液晶分子の配向方向を示すベクトルの内、液晶層面内(基板面内)における成分を指す。 In the frame region R1, the cell thickness often decreases toward the portion where the sealing material 12 is provided. For example, such a change in cell thickness occurs because the photo spacer provided in the frame region R1 is formed lower than the photo spacer in the display region R2. In particular, in the vicinity of the sealing material 12, the cell thickness may decrease rapidly. In the region where the cell thickness is decreasing, the fluidity of the liquid crystal material is decreased. When the fluidity of the liquid crystal material is drastically lowered, when the photopolymerizable compound contained in the liquid crystal material LC is polymerized, PSA unevenness (disturbance in the orientation of the liquid crystal molecules, For example, it is considered that the orientation azimuth, the orientation axis center disturbance, and the tilt angle variation 40) occur. The orientation direction refers to a component in the liquid crystal layer plane (in the substrate plane) among vectors indicating the alignment direction of liquid crystal molecules.
 シール材12近傍の領域(額縁領域)R1で流動の軌跡が特に観察されやすいことから、PSA技術を用いる液晶表示装置では、この領域R1でのセル厚の減少を所定の程度に抑えることが流動軌跡の発生を抑えるために有効であると思われる。より具体的には、基板外側に向かってセル厚が減少する領域(本明細書では、セル厚変動部と呼ぶ)において、基板垂直方向におけるセル厚変動分(セル厚の差)が、基板面内方向におけるセル厚変動部の幅に対して0.01パーセント以下である場合に、液晶流動性の急激な低下を抑え、流動軌跡の発生を低減することが可能であることが分かった。 Since the flow trajectory is particularly easily observed in the region (frame region) R1 in the vicinity of the sealing material 12, in the liquid crystal display device using the PSA technology, it is possible to suppress the decrease in the cell thickness in the region R1 to a predetermined level. It seems to be effective to suppress the occurrence of the trajectory. More specifically, in a region where the cell thickness decreases toward the outside of the substrate (referred to as a cell thickness variation portion in this specification), the cell thickness variation (cell thickness difference) in the substrate vertical direction is the substrate surface. It has been found that when the cell thickness variation is 0.01% or less with respect to the width of the cell thickness variation portion in the inward direction, it is possible to suppress a rapid drop in liquid crystal fluidity and to reduce the occurrence of a flow locus.
 以上のように、セル厚の減少を制限するように液晶セルを形成した後、PSA技術により液晶層内の光重合性化合物に紫外線を照射することによって配向膜上に配向維持層を形成し、液晶分子のプレチルト角等を規制する。このようなPSA処理を行った後にも、額縁領域R1近傍での表示品位の低下は防止された。したがって、PSA技術を用いる場合にも、表示品位が向上した狭額縁の液晶表示装置を作製することが可能になった。 As described above, after forming the liquid crystal cell to limit the cell thickness reduction, the alignment maintaining layer is formed on the alignment film by irradiating the photopolymerizable compound in the liquid crystal layer with ultraviolet rays by the PSA technique, Regulates the pretilt angle of liquid crystal molecules. Even after such a PSA process, the display quality in the vicinity of the frame region R1 is prevented from being lowered. Therefore, even when the PSA technology is used, it is possible to manufacture a narrow frame liquid crystal display device with improved display quality.
 以下、本発明の実施形態を説明するが、本発明はこれに限られない。 Hereinafter, although an embodiment of the present invention is described, the present invention is not limited to this.
(実施形態1)
 図2は、実施形態1の液晶表示装置100の端部断面を示す。液晶表示装置100は、TFT基板110、対向基板120、および、これらの間に挟持される垂直配向型の液晶層140を備え、VA(Vertical Alignment)モードで動作する。液晶表示装置100には、複数の行および複数の列に沿ったマトリクス状の画素が設けられている。
(Embodiment 1)
FIG. 2 shows an end cross-section of the liquid crystal display device 100 of the first embodiment. The liquid crystal display device 100 includes a TFT substrate 110, a counter substrate 120, and a vertical alignment type liquid crystal layer 140 sandwiched therebetween, and operates in a VA (Vertical Alignment) mode. The liquid crystal display device 100 is provided with matrix-like pixels along a plurality of rows and a plurality of columns.
 TFT基板110は、透明基板112と、垂直配向膜114とを有している。垂直配向膜114上には、光重合性化合物(例えば光重合性モノマー)を重合することによって形成される配向維持層116が設けられている。また、TFT基板110は、各画素に対して設けられた少なくとも1つの薄膜トランジスタおよび画素電極(ここでは共に図示せず)を有している。 The TFT substrate 110 has a transparent substrate 112 and a vertical alignment film 114. On the vertical alignment film 114, an alignment maintaining layer 116 formed by polymerizing a photopolymerizable compound (for example, a photopolymerizable monomer) is provided. The TFT substrate 110 has at least one thin film transistor and a pixel electrode (both not shown here) provided for each pixel.
 対向基板120は、透明基板および透明基板上に形成された対向電極、垂直配向膜など(図示せず)を備える。また、垂直配向膜の液晶層140側には配向維持層(図示せず)が形成されている。さらに、本実施形態では、対向基板120に、カラーフィルタ(図示せず)が設けられている。 The counter substrate 120 includes a transparent substrate, a counter electrode formed on the transparent substrate, a vertical alignment film, and the like (not shown). In addition, an alignment maintaining layer (not shown) is formed on the liquid crystal layer 140 side of the vertical alignment film. Furthermore, in the present embodiment, the counter substrate 120 is provided with a color filter (not shown).
 また、TFT基板110および対向基板120のそれぞれの外側表面には、互いの偏光軸が略直交するように配置された偏光板(図示せず)が設けられている。 Further, polarizing plates (not shown) are provided on the outer surfaces of the TFT substrate 110 and the counter substrate 120 so that their polarization axes are substantially orthogonal to each other.
 液晶層140は、負の誘電率異方性を有するネマティック液晶材料を含有している。配向膜の液晶層側の表面は、液晶分子のプレチルト角が略垂直になるように配向処理されている。液晶分子のプレチルト角とは、配向膜の主面(あるいは基板面)と液晶分子の長軸とのなす角度である。また、液晶分子のプレチルト角は、典型的には、配向維持層116によって基板垂直方向から僅かに傾くように規制される。 The liquid crystal layer 140 contains a nematic liquid crystal material having negative dielectric anisotropy. The surface on the liquid crystal layer side of the alignment film is subjected to an alignment treatment so that the pretilt angle of the liquid crystal molecules is substantially vertical. The pretilt angle of the liquid crystal molecules is an angle formed between the main surface (or substrate surface) of the alignment film and the major axis of the liquid crystal molecules. The pretilt angle of the liquid crystal molecules is typically regulated by the alignment maintaining layer 116 so as to be slightly tilted from the substrate vertical direction.
 ここで、液晶材料LCに含まれる光重合性化合物について詳細に説明する。 Here, the photopolymerizable compound contained in the liquid crystal material LC will be described in detail.
 光重合性化合物は液晶化合物に溶解し、光重合性化合物および液晶化合物の混合物が液晶材料として用いられる。液晶材料中の光重合性化合物を重合化することによって配向維持層が形成され、混合物から液晶層が形成される。なお、液晶層は重合されなかった光重合性化合物を含んでいてもよい。 The photopolymerizable compound is dissolved in the liquid crystal compound, and a mixture of the photopolymerizable compound and the liquid crystal compound is used as the liquid crystal material. An alignment maintaining layer is formed by polymerizing the photopolymerizable compound in the liquid crystal material, and a liquid crystal layer is formed from the mixture. The liquid crystal layer may contain a photopolymerizable compound that has not been polymerized.
 光重合性化合物として、1個以上の環構造または縮環構造と、上記環構造または縮環構造と直接結合する2つの官能基とを有する重合可能なモノマーが用いられる。例えば、光重合性モノマーは、下記一般式(1)で表されるものから選ばれる。
        P1-A1-(Z1-A2n-P2 (1)
As the photopolymerizable compound, a polymerizable monomer having at least one ring structure or condensed ring structure and two functional groups directly bonded to the ring structure or condensed ring structure is used. For example, the photopolymerizable monomer is selected from those represented by the following general formula (1).
P 1 -A 1- (Z 1 -A 2 ) n -P 2 (1)
 一般式(1)において、P1及びP2は官能基であって、それぞれ独立に、アクリレート基、メタクリレート基、ビニル基、ビニロキシ基又はエポキシ基であり、A1及びA2は環構造であって、それぞれ独立に、1,4-フェニレン又はナフタレン-2,6-ジイル基を表し、Z1は-COO-もしくは-OCO-基又は単結合であり、nは0、1又は2である。 In the general formula (1), P 1 and P 2 are functional groups, each independently being an acrylate group, a methacrylate group, a vinyl group, a vinyloxy group or an epoxy group, and A 1 and A 2 are ring structures. Each independently represents a 1,4-phenylene or naphthalene-2,6-diyl group, Z 1 represents a —COO— or —OCO— group or a single bond, and n represents 0, 1, or 2.
 一般式(1)において、P1及びP2は好ましくはアクリレート基であり、Z1は好ましくは単結合であり、nは好ましくは0又は1である。好ましいモノマーは、例えば、以下の式で表される化合物である。
Figure JPOXMLDOC01-appb-C000001
In the general formula (1), P 1 and P 2 are preferably acrylate groups, Z 1 is preferably a single bond, and n is preferably 0 or 1. A preferable monomer is, for example, a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000001
 構造式(1a)~(1c)において、P1及びP2は一般式(1)において述べたとおりであり、特に好ましいP1及びP2はアクリレート基である。また、上記の化合物のうちで非常に好ましいのは構造式(1a)及び構造式(1b)に示す化合物であり、構造式(1a)の化合物が特に好ましい。 In the structural formulas (1a) to (1c), P 1 and P 2 are as described in the general formula (1), and particularly preferable P 1 and P 2 are acrylate groups. Further, among the above compounds, the compounds represented by Structural Formula (1a) and Structural Formula (1b) are very preferable, and the compound of Structural Formula (1a) is particularly preferable.
 以下、液晶表示装置100の周辺部の構成をより詳細に説明する。 Hereinafter, the configuration of the peripheral part of the liquid crystal display device 100 will be described in more detail.
 液晶表示装置100は、画像や映像等を表示する表示領域R2と、その外側の額縁領域(あるいは周辺領域)R1とに区別される。額縁領域R1において、基板110、120間に液晶層140を封止するためのシール材130が、液晶層140を囲むように設けられている。 The liquid crystal display device 100 is divided into a display area R2 for displaying images, videos, and the like, and a frame area (or a peripheral area) R1 on the outside thereof. In the frame region R <b> 1, a sealing material 130 for sealing the liquid crystal layer 140 is provided between the substrates 110 and 120 so as to surround the liquid crystal layer 140.
 本実施形態において、シール材130は、図1(a)~(d)に示した工程で用いられるODF用のシール材(硬化後)である。シール材130は、光硬化プロセスおよび熱硬化プロセスによって形成される。ただし、シール材130は、これに限られず、紫外線硬化型、あるいは熱硬化型もしくは併用タイプのものであってもよい。シール材130の幅は、例えば1000μm(1mm)に設定される。 In this embodiment, the sealing material 130 is an ODF sealing material (after curing) used in the steps shown in FIGS. The sealing material 130 is formed by a photocuring process and a heat curing process. However, the sealing material 130 is not limited to this, and may be of an ultraviolet curing type, a thermosetting type, or a combination type. The width of the sealing material 130 is set to 1000 μm (1 mm), for example.
 また、TFT基板110と対向基板120との間に、フォトスペーサ(PS)132が額縁領域R1および表示領域R2の両方において設けられている。フォトスペーサ132は、TFT基板110と対向基板120との間隔(セルギャップd)を規定する。フォトスペーサ132は、例えば、スピンコート法などによって対向基板120上に形成した感光性樹脂層(レジスト材)をフォトリソグラフィ法などでパターニングすることによって作製される。パターニングを適切に行うことで、基板上の所望の位置に所望の数のフォトスペーサ132を形成することが可能である。また、上記感光性樹脂層の厚さを変えることで、形成されるフォトスペーサ132の高さを制御することができる。本実施形態では、フォトスペーサ132を用いて、表示領域R2におけるセルギャップdを約3.0μmに設定している。 Further, between the TFT substrate 110 and the counter substrate 120, a photo spacer (PS) 132 is provided in both the frame region R1 and the display region R2. The photo spacer 132 defines an interval (cell gap d) between the TFT substrate 110 and the counter substrate 120. The photo spacer 132 is produced, for example, by patterning a photosensitive resin layer (resist material) formed on the counter substrate 120 by a spin coating method or the like by a photolithography method or the like. By appropriately performing patterning, a desired number of photo spacers 132 can be formed at a desired position on the substrate. Further, the height of the photo spacer 132 to be formed can be controlled by changing the thickness of the photosensitive resin layer. In this embodiment, using the photo spacer 132, the cell gap d in the display region R2 is set to about 3.0 μm.
 本実施形態の液晶表示装置100において、シール材130が設けられている近傍の領域で、セル厚dが減少する部分50がある。本明細書では、この部分をセル厚変動部と呼ぶ。 In the liquid crystal display device 100 of the present embodiment, there is a portion 50 where the cell thickness d decreases in the vicinity of the area where the sealing material 130 is provided. In this specification, this portion is called a cell thickness variation portion.
 このセル厚変動部50では、フォトスペーサ132aが比較的低く形成されていることによってセル厚が減少している。このようにフォトスペーサ132aが低く形成される理由として、上述の感光性樹脂層の膜厚が、額縁領域R1で液晶セル外側に向かって減少していることが考えられる。 In the cell thickness varying portion 50, the cell thickness is reduced because the photo spacer 132a is formed relatively low. The reason why the photo spacer 132a is formed low in this way is considered that the film thickness of the photosensitive resin layer described above decreases toward the outside of the liquid crystal cell in the frame region R1.
 これは、額縁領域R1において、液晶セル内側の構造と、液晶セル外側(ここではシール材130の外側の部分を意味する)の構造とが大きく異なることによって生じるものと思われる。なお、図2では、TFT基板110および対向基板120は、シール材130の端部で切断されているように示されているが、実際の製造プロセスにおいては、大型のマザー基板上に、複数の液晶パネルに対応する構造を設け、その後、それぞれの液晶パネルに分断されることが多い。この場合、TFT基板110および対向基板120の作製工程においては、シール材130外側の領域に、TFT基板110および対向基板120のそれぞれに連続する部分(図2には示されていない部分)が存在している。本明細書では、この部分を液晶セル外側と呼んでいる。 This is considered to be caused in the frame region R1 because the structure inside the liquid crystal cell and the structure outside the liquid crystal cell (here, meaning the part outside the sealing material 130) are greatly different. In FIG. 2, the TFT substrate 110 and the counter substrate 120 are shown as being cut at the end of the sealing material 130, but in an actual manufacturing process, a plurality of large substrates are formed on a large mother substrate. In many cases, a structure corresponding to the liquid crystal panel is provided and then divided into each liquid crystal panel. In this case, in the manufacturing process of the TFT substrate 110 and the counter substrate 120, there are continuous portions (portions not shown in FIG. 2) of the TFT substrate 110 and the counter substrate 120 in the region outside the sealing material 130. is doing. In this specification, this portion is called the outside of the liquid crystal cell.
 液晶セル内側では、TFT基板110および対向基板120上に、素子や電極、さらに配向膜、カラーフィルタなどが設けられている。したがって、液晶セル内側の密度は高い状態となっている。これに対して、液晶セル外側には、駆動回路と接続するための端子部などが設けられてはいるが、その他の構造物がほとんどなく、その密度が低い。 Inside the liquid crystal cell, elements and electrodes, an alignment film, a color filter, and the like are provided on the TFT substrate 110 and the counter substrate 120. Therefore, the density inside the liquid crystal cell is in a high state. On the other hand, although the terminal part etc. for connecting with a drive circuit are provided in the liquid crystal cell outer side, there are almost no other structures and its density is low.
 このような液晶セル内側と液晶セル外側とでの構造の違いによって、感光性樹脂層の厚さにばらつきが生じるものと思われる。例えば、液晶セル外側で密な下地膜がない場合、下地膜の膜厚差や、塗布(例えばスピン塗布)時の液抜け(塗布表面における凹部)などに起因して、塗布後の感光性樹脂層の厚さにばらつきが生じるものと思われる。特に、額縁領域R1が狭くなるように液晶表示装置を作製する場合に、樹脂層の厚さがシール材130の近傍で急激に減少することが多い。 It seems that the thickness of the photosensitive resin layer varies due to the difference in structure between the liquid crystal cell inner side and the liquid crystal cell outer side. For example, when there is no dense base film outside the liquid crystal cell, the photosensitive resin after coating is caused by a difference in the film thickness of the base film or liquid leakage during coating (for example, spin coating) (concave portion on the coating surface). It seems that the thickness of the layer varies. In particular, when a liquid crystal display device is manufactured so that the frame region R1 becomes narrow, the thickness of the resin layer often decreases rapidly in the vicinity of the sealing material 130.
 樹脂層の厚さが一定でない場合、フォトリソグラフィ法によってフォトスペーサ132を形成すると、額縁領域R1でのフォトスペーサ132aの高さは、表示領域R2でのフォトスペーサ132の高さよりも低くなる。特に、額縁領域R1が狭い場合には、シール材130の近傍に形成されるフォトスペーサ132aの高さが、表示領域R2に形成されるフォトスペーサ132と比べて低くなる傾向がある。 When the thickness of the resin layer is not constant and the photo spacer 132 is formed by photolithography, the height of the photo spacer 132a in the frame region R1 becomes lower than the height of the photo spacer 132 in the display region R2. In particular, when the frame region R1 is narrow, the height of the photo spacer 132a formed in the vicinity of the sealing material 130 tends to be lower than that of the photo spacer 132 formed in the display region R2.
 セル厚変動部50における、基板垂直方向のセル厚減少分Δhと、基板面内方向におけるセル厚が減少している部分の幅(セル厚変動部50の幅)Wとの比率をセル厚変動率(%)として規定する。本実施形態において、セル厚変動部50は、フォトスペーサ132が低く形成されている部分に対応する。また、セル厚減少分Δhは、フォトスペーサの高さの差(高さばらつき)に対応する。なお、図2では、低く形成されたフォトスペーサ132aが一つだけ示されているが、複数のフォトスペーサが低く形成されることもある。この場合、セル厚減少分Δhは、セル厚均一の領域に形成されているフォトスペーサと、周辺領域における最も低いフォトスペーサとの高さの差として規定される。 The cell thickness variation is the ratio between the cell thickness decrease Δh in the substrate vertical direction in the cell thickness variation portion 50 and the width (width of the cell thickness variation portion 50) W of the portion where the cell thickness is decreased in the in-plane direction of the substrate. It is specified as a rate (%). In the present embodiment, the cell thickness variation portion 50 corresponds to a portion where the photo spacer 132 is formed low. The cell thickness decrease Δh corresponds to a difference in height (height variation) of the photo spacer. In FIG. 2, only one photo spacer 132a formed low is shown, but a plurality of photo spacers may be formed low. In this case, the cell thickness decrease Δh is defined as the difference in height between the photo spacer formed in the uniform cell thickness region and the lowest photo spacer in the peripheral region.
 セル厚変動部50の幅Wが2000μmであるときの、セル厚が一定の領域におけるフォトスペーサ132の高さと、セル厚が減少する領域におけるフォトスペーサ132aの高さとの差であるセル厚減少分Δhおよびセル厚変動率と、PSAムラ(液晶流動ムラ)の発生状況とを下記表1に示す。なお、下記表1では、PSAムラが確認された場合を×とし、PSAムラが確認されなかった場合を○としている。 When the width W of the cell thickness variation portion 50 is 2000 μm, the cell thickness decrease is the difference between the height of the photo spacer 132 in the region where the cell thickness is constant and the height of the photo spacer 132a in the region where the cell thickness decreases. Table 1 below shows Δh, the cell thickness fluctuation rate, and the occurrence of PSA unevenness (liquid crystal flow unevenness). In Table 1 below, the case where PSA unevenness is confirmed is indicated by x, and the case where no PSA unevenness is confirmed is indicated by ◯.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1からわかるように、セル厚変動率が0.01%以下の場合に、液晶流動ムラが発生せず、液晶表示装置の表示品位を向上させることが可能である。また、より確実にPSAムラの発生を防止するためには、セル厚変動率が0.005%以下であることが好ましい。 As can be seen from Table 1, when the cell thickness fluctuation rate is 0.01% or less, liquid crystal flow unevenness does not occur, and the display quality of the liquid crystal display device can be improved. In order to more reliably prevent the occurrence of PSA unevenness, the cell thickness fluctuation rate is preferably 0.005% or less.
 ただし、VAモードで動作する液晶表示装置の場合、外側のセル厚の方が大きくなると、表示品位は大きく低下する。VAモードでは、一般的に、液晶表示装置をノーマリーブラック(電圧無印加時に黒状態)で表示させるが、外側のセル厚の方が大きいと、本来表示すべき色よりも白く(明るく)表示される白ムラが発生する。外側のセル厚の方が小さい場合には、本来表示すべき色よりも黒く(暗く)表示されるが、白ムラに比べれば、輝度も低く、目立たない。したがって、より品位の高い表示を行うためには、周辺領域側のセル厚の方が表示領域側のセル厚よりも大きくなることを避けなければならない。 However, in the case of a liquid crystal display device operating in the VA mode, the display quality is greatly lowered when the outer cell thickness is increased. In the VA mode, the liquid crystal display device is generally displayed in normally black (black state when no voltage is applied), but when the outer cell thickness is larger, the display is whiter (brighter) than the color that should be originally displayed. White unevenness occurs. When the outer cell thickness is smaller, it is displayed darker (darker) than the color that should originally be displayed, but the luminance is lower and less noticeable than white unevenness. Therefore, in order to perform display with higher quality, it is necessary to avoid that the cell thickness on the peripheral region side becomes larger than the cell thickness on the display region side.
 このような理由から、上述のようにセル厚が変動する場合において、その変動率を0.01%以下に抑制するとともに、額縁領域におけるセル厚が、表示領域のセル厚以下であることが望ましい。また、実際には、製造のプロセスマージンが設定されていることや、液晶層の熱膨張が生じ得ることなどによって、セル厚変動率を0%にすることは極めて困難である。このため、額縁領域でのセル厚を表示領域のセル厚よりも小さく設定することが実用上は好ましい。したがって、セル厚変動率は、例えば0.002%以上に設定される。このようにすれば、様々な要因によって外側の液晶層の厚さの方が大きくなることが防止され、これによって、VAモードでの表示の品位を向上させることができる。 For this reason, when the cell thickness fluctuates as described above, it is desirable that the variation rate is suppressed to 0.01% or less, and the cell thickness in the frame region is less than or equal to the cell thickness in the display region. . In practice, it is extremely difficult to reduce the cell thickness variation rate to 0% due to the fact that a manufacturing process margin is set and thermal expansion of the liquid crystal layer may occur. For this reason, it is practically preferable to set the cell thickness in the frame region to be smaller than the cell thickness in the display region. Therefore, the cell thickness variation rate is set to 0.002% or more, for example. In this way, it is possible to prevent the outer liquid crystal layer from becoming thicker due to various factors, thereby improving the display quality in the VA mode.
 次に、セル厚変動率を制御するための具体的な方法を説明する。 Next, a specific method for controlling the cell thickness variation rate will be described.
 セル厚変動率を0.01%以下にするために、フォトスペーサ132の額縁領域での高さの減少を抑えることが考えられる。このためには、フォトスペーサ132を形成するための感光性樹脂層を、額縁領域R1においても、表示領域R2と同様の厚さに設ければよい。 In order to make the cell thickness fluctuation rate 0.01% or less, it is conceivable to suppress a decrease in the height of the photo spacer 132 in the frame area. For this purpose, a photosensitive resin layer for forming the photo spacer 132 may be provided in the frame region R1 in the same thickness as the display region R2.
 フォトスペーサの高さのばらつきを抑える方法として、液晶セル外にも液晶セル内と同様の構造物を設けることが考えられる。上述したように、マザー基板上において、図2には示されていないシール材130外側の領域に、対向基板120と連続する部分が存在している。したがって、各パネルに分断する前の状態において、シール材130の外側に、例えば液晶セル内に設けられたカラーフィルタや、絶縁膜(フォトスペーサの下地層)などを、液晶セル内と同様に設けることが可能である。 As a method for suppressing variation in the height of the photo spacer, it is conceivable to provide a structure similar to that in the liquid crystal cell outside the liquid crystal cell. As described above, on the mother substrate, there is a portion continuous with the counter substrate 120 in a region outside the sealing material 130 that is not shown in FIG. Therefore, in the state before dividing into each panel, for example, a color filter provided in the liquid crystal cell, an insulating film (underlayer of the photo spacer), and the like are provided outside the sealing material 130 in the same manner as in the liquid crystal cell. It is possible.
 このようにして、フォトスペーサを形成する前に、その下地となる面が比較的平坦にされていれば、フォトスペーサを形成するための感光性樹脂層を均一な厚さで設けることができるため、フォトスペーサの高さを揃えることができる。 In this manner, the photosensitive resin layer for forming the photo spacer can be provided with a uniform thickness if the underlying surface is relatively flat before the photo spacer is formed. The height of the photo spacer can be made uniform.
 また、セル厚を均一にするためには、フォトスペーサ自体の高さだけではなく、その下に配置される下地となる層などの厚さも重要となる。すなわち、フォトスペーサの頂点部と基板表面との距離(フォトスペーサの高さと、その下に配置される構造物の高さとの合計)が均一であることが重要である。したがって、液晶セル外側に構造物を設ける場合には、フォトスペーサ自体の高さだけではなく、その下に設けられる下地膜なども含めて、基板からフォトスペーサ頂上部までの距離を均一にすることができるように、フォトスペーサの高さや、下地膜の膜厚などを制御することが望ましい。 In addition, in order to make the cell thickness uniform, not only the height of the photo spacer itself but also the thickness of the underlying layer disposed below it is important. That is, it is important that the distance between the apex portion of the photospacer and the substrate surface (the sum of the height of the photospacer and the height of the structure disposed thereunder) is uniform. Therefore, when a structure is provided outside the liquid crystal cell, the distance from the substrate to the top of the photospacer should be uniform, including not only the height of the photospacer itself but also the underlying film provided below it. Therefore, it is desirable to control the height of the photo spacer, the thickness of the base film, and the like.
 液晶セル外側には、例えば、壁状の構造体を設けてもよい。この壁状の構造体は、スピン塗布法などでフォトスペーサ用の感光性樹脂層を設ける際に、液晶セル外側での厚さの低下(塗布表面における局所的なレベリング性の低下)を防止するように設けられる。また、フォトスペーサの下地層を形成する場合にも、下地層をセル内外でより均一な厚さに形成することができる。このようにすれば、基板からフォトスペーサ頂上部までの距離を比較的容易に均一にすることが可能である。 For example, a wall-like structure may be provided outside the liquid crystal cell. This wall-shaped structure prevents a decrease in thickness outside the liquid crystal cell (a decrease in local leveling on the coating surface) when a photosensitive resin layer for a photospacer is provided by a spin coating method or the like. It is provided as follows. Also, when forming the underlayer of the photo spacer, the underlayer can be formed with a more uniform thickness inside and outside the cell. In this way, it is possible to make the distance from the substrate to the top of the photo spacer relatively uniform.
 以上に説明したように、PSA技術により液晶材料に光重合性化合物が含まれている場合、フォトスペーサの高さを適切に調節することで、セル厚変動率を0.01%以下に抑制することが望まれる。セル厚変動率を0.01%以下に設定した場合には、シール材硬化工程においてシール材近傍で液晶層中に重合物が生成されたとしても、液晶材料の流動の跡を示すようなムラが発生しない。これにより、額縁領域を狭く設定し、シール材から比較的近い位置に表示領域を設ける場合にも、高品位の表示を行うことが可能になった。 As described above, when the liquid crystal material contains a photopolymerizable compound by the PSA technique, the cell thickness variation rate is suppressed to 0.01% or less by appropriately adjusting the height of the photo spacer. It is desirable. When the cell thickness variation rate is set to 0.01% or less, even if a polymer is generated in the liquid crystal layer in the vicinity of the sealing material in the sealing material curing step, unevenness that shows a trace of the flow of the liquid crystal material is exhibited. Does not occur. As a result, even when the frame area is set narrow and the display area is provided at a position relatively close to the sealing material, high-quality display can be performed.
 なお、以上には、垂直配向型の液晶層を用いる例を示したが、本発明はこれに限られない。ECB液晶、TN液晶などの水平配向型の液晶層を用いる場合にも、上記セル厚変動率を0.01%以下に抑えることで、PSA技術による重合体がもたらす、液晶流動の軌跡を示すムラの発生を抑制することができる。 Although an example using a vertical alignment type liquid crystal layer has been described above, the present invention is not limited to this. Even when a horizontal alignment type liquid crystal layer such as an ECB liquid crystal or a TN liquid crystal is used, the unevenness of liquid crystal flow caused by the polymer by the PSA technology is achieved by suppressing the cell thickness fluctuation rate to 0.01% or less. Can be suppressed.
(実施形態2)
 図3は、実施形態2の液晶表示装置200の端部断面を示す。液晶表示装置200は、実施形態1の液晶表示装置100と同様に、TFT基板110、対向基板220、これらの間に挟持される垂直配向型の液晶層140、および液晶層140を基板間に封止するためのシール材130を有している。なお、実施形態1と同様の構成要素には同一の参照符号を付している。
(Embodiment 2)
FIG. 3 shows an end cross section of the liquid crystal display device 200 of the second embodiment. Similar to the liquid crystal display device 100 of the first embodiment, the liquid crystal display device 200 seals the TFT substrate 110, the counter substrate 220, the vertically aligned liquid crystal layer 140 sandwiched therebetween, and the liquid crystal layer 140 between the substrates. It has a sealing material 130 for stopping. The same components as those in the first embodiment are denoted by the same reference numerals.
 液晶表示装置200において、対向基板220は、有機平坦化膜222を有している。この有機平坦化膜222は、液晶セル内の下地膜として機能し、この有機平坦化膜222上にフォトスペーサ132が形成されている。 In the liquid crystal display device 200, the counter substrate 220 has an organic planarization film 222. The organic planarization film 222 functions as a base film in the liquid crystal cell, and a photo spacer 132 is formed on the organic planarization film 222.
 この有機平坦化膜222を形成する場合にも、実施形態1で説明したフォトスペーサ形成工程時と同様に、対向基板220の額縁領域R1に対応する部分において膜厚が減少する傾向がある。特に、シール材130付近で、有機平坦化膜222の膜厚が急激に減少する。この有機平坦化膜222の膜厚減少に伴い、額縁領域R1ではセル厚が減少し、液晶流動の減速が生じる。 Also in the case of forming the organic planarizing film 222, the film thickness tends to decrease in the portion corresponding to the frame region R1 of the counter substrate 220 as in the photo spacer forming process described in the first embodiment. In particular, in the vicinity of the sealing material 130, the film thickness of the organic planarizing film 222 decreases rapidly. As the thickness of the organic planarizing film 222 decreases, the cell thickness decreases in the frame region R1, and the liquid crystal flow slows down.
 なお、図3では、実施形態1とは異なり、対向基板220ではなくTFT基板110が曲折する様子が示されている。セル厚変動部50は、液晶セルの外周付近に形成される部分であり、セル厚が減少している部分であれば良く、対向基板あるいはTFT基板の変形を必須とするものではない。また、両方の基板の変形を伴って、セル厚変動部が形成されることもあり得る。 In FIG. 3, unlike the first embodiment, not the counter substrate 220 but the TFT substrate 110 is bent. The cell thickness variation portion 50 is a portion formed near the outer periphery of the liquid crystal cell, and may be a portion where the cell thickness is reduced, and does not necessarily require deformation of the counter substrate or the TFT substrate. Further, the cell thickness variation portion may be formed with the deformation of both the substrates.
 セル厚変動部50における、基板垂直方向のセル厚減少分Δhと、基板面内方向におけるセル厚が減少している部分の幅(セル厚変動部50の幅)Wとの比率をセル厚変動率(%)として規定する。ここでは、セル厚減少分Δhは、表示領域R2と額縁領域R1とにおける有機平坦化膜222の膜厚の差の最大である。 The cell thickness variation is the ratio between the cell thickness decrease Δh in the substrate vertical direction in the cell thickness variation portion 50 and the width (width of the cell thickness variation portion 50) W of the portion where the cell thickness is decreased in the in-plane direction of the substrate. It is specified as a rate (%). Here, the cell thickness decrease Δh is the maximum difference in film thickness of the organic planarization film 222 between the display region R2 and the frame region R1.
 セル厚変動部50の幅Wが2000μmであるときの、表示領域R2と額縁領域R1とにおける有機平坦化膜222の膜厚の差であるセル厚減少分Δhおよびセル厚変動率と、PSAムラ(液晶流動ムラ)の発生状況とを下記表2に示す。なお、下記表2では、PSAムラが確認された場合を×とし、PSAムラが確認されなかった場合を○としている。 When the width W of the cell thickness variation portion 50 is 2000 μm, the cell thickness decrease Δh, which is the difference in the thickness of the organic planarization film 222 in the display region R2 and the frame region R1, the cell thickness variation rate, and the PSA unevenness The occurrence of (liquid crystal flow unevenness) is shown in Table 2 below. In Table 2 below, the case where PSA unevenness is confirmed is indicated by x, and the case where no PSA unevenness is confirmed is indicated by ◯.
 表2からわかるように、セル厚変動率が0.01%以下の場合に、液晶流動ムラが発生せず、液晶表示装置の表示品位を向上させることが可能である。このように、セル厚変動率を0.01%以下に抑えるためには、例えば、上記実施形態1で説明した方法と同様に、有機平坦化膜222を形成する前の工程において、液晶セル外側に液晶セル内側と同様の構造を設けるようにすればよい。また、液晶セル外側に壁状の構造体を設けて、有機平坦化膜222形成時に、この領域での膜厚の低下を抑制すればよい。 As can be seen from Table 2, when the cell thickness fluctuation rate is 0.01% or less, liquid crystal flow unevenness does not occur, and the display quality of the liquid crystal display device can be improved. As described above, in order to suppress the cell thickness variation rate to 0.01% or less, for example, in the same process as that described in the first embodiment, in the step before the organic planarization film 222 is formed, the outside of the liquid crystal cell. A structure similar to that inside the liquid crystal cell may be provided. In addition, a wall-like structure may be provided outside the liquid crystal cell to suppress a decrease in film thickness in this region when the organic planarizing film 222 is formed.
(実施形態3)
 実施形態3の液晶表示装置では、額縁領域R1におけるフォトスペーサ132の配置を適切に行うことで、セル厚変動率が0.01%以下に設定される。本実施形態の液晶表示装置を説明する前に、まず、額縁領域R1にフォトスペーサが設けられていない場合に生じる問題を説明する。
(Embodiment 3)
In the liquid crystal display device of Embodiment 3, the cell thickness variation rate is set to 0.01% or less by appropriately arranging the photo spacers 132 in the frame region R1. Before describing the liquid crystal display device of this embodiment, first, problems that occur when no photo spacer is provided in the frame region R1 will be described.
 図4(a)は、額縁領域R1にフォトスペーサを設けない場合に生じ得るセル厚の変動の様子を示す。図4(a)に示すように、額縁領域R1において、フォトスペーサによる支持がないために、セル厚が減少している。 FIG. 4A shows a change in cell thickness that may occur when no photo spacer is provided in the frame region R1. As shown in FIG. 4A, in the frame region R1, the cell thickness is reduced because there is no support by the photo spacer.
 また、図4(a)ではシール材130が表示領域R2におけるセル厚と略同一の高さを有している形態が示されている。しかし、図からわかるように、シール材130の高さを調節するだけでは、額縁領域におけるセル厚の変動を抑制することは困難である。このようにセル厚が変動する部分が存在すると、液晶材料の流動速度が低下する可能性がある。PSAムラに起因する表示品位の低下が生じないようにするためには、この流動速度の低下を抑制する必要があり、このためには、セル厚変動率を所定の範囲内に収めることが重要である。 FIG. 4A shows a form in which the sealing material 130 has a height substantially the same as the cell thickness in the display region R2. However, as can be seen from the figure, it is difficult to suppress the cell thickness variation in the frame region only by adjusting the height of the sealing material 130. If there is such a portion where the cell thickness varies, the flow rate of the liquid crystal material may be reduced. In order to prevent deterioration in display quality due to PSA unevenness, it is necessary to suppress this decrease in flow rate. For this purpose, it is important to keep the cell thickness fluctuation rate within a predetermined range. It is.
 したがって、図4(b)に示すように、額縁領域R1の中央部にフォトスペーサ132aを設け、このフォトスペーサによって基板の間隔を維持することで、セル厚変動率を低減することが望ましい。ただし、この額縁領域R1においては、液晶の流動性を低下させないようにフォトスペーサ132aを配置することが望ましい。 Therefore, as shown in FIG. 4B, it is desirable to reduce the cell thickness variation rate by providing a photo spacer 132a at the center of the frame region R1 and maintaining the distance between the substrates by this photo spacer. However, in the frame region R1, it is desirable to dispose the photo spacer 132a so as not to reduce the fluidity of the liquid crystal.
 図5(a)および(b)は、額縁領域R1におけるフォトスペーサ132aの配置の形態を示している。図5(a)に示すように、フォトスペーサ132aは、幅Dを有する額縁領域R1の略中央の線l1に沿って設けられている。 FIGS. 5A and 5B show the arrangement of the photo spacers 132a in the frame region R1. As shown in FIG. 5A, the photo spacer 132a is provided along the line 11 at the substantially center of the frame region R1 having the width D.
 また、図5(a)では、表示領域R2に設けられたフォトスペーサ132よりも密度が低い状態で、より間隔を空けて設けられている。このようにすれば、額縁領域R1における液晶材料の流動性の低下を抑制するために有利である。さらに、フォトスペーサ132aの大きさ(直径)を比較的大きく設定することで、外部からの圧力などによって変形が生じ、その高さが変動することが防止される。したがって、セルギャップを所望の間隔に維持しやすいという利点が得られる。 In FIG. 5A, the density is lower than that of the photo spacers 132 provided in the display region R2, and the gaps are further spaced. This is advantageous for suppressing a decrease in the fluidity of the liquid crystal material in the frame region R1. Furthermore, by setting the size (diameter) of the photo spacer 132a to be relatively large, it is possible to prevent deformation due to external pressure or the like, and to prevent its height from fluctuating. Therefore, there is an advantage that the cell gap can be easily maintained at a desired interval.
 また、図5(b)に示すように、より多くのフォトスペーサ132aを設けても良い。この場合にも、フォトスペーサ形成領域の中央部を、額縁領域R1の中央線l1に沿うように位置させることが望ましい。また、額縁領域R1の幅方向におけるフォトスペーサ132aの間隔を、表示領域R2におけるフォトスペーサ132の間隔よりも小さくしてもよい。これによって、額縁領域において、セルギャップを所望の間隔に維持しやすいという利点が得られる。ただし、上記幅方向に直交する方向のフォトスペーサ132aの間隔を狭くすると液晶流動性を阻害し得るため、狭くしない方がよい。 Further, as shown in FIG. 5B, more photo spacers 132a may be provided. Also in this case, it is desirable to position the center portion of the photo spacer formation region along the center line l1 of the frame region R1. Further, the interval between the photo spacers 132a in the width direction of the frame region R1 may be smaller than the interval between the photo spacers 132 in the display region R2. This provides the advantage that the cell gap can be easily maintained at a desired interval in the frame region. However, it is better not to reduce the distance between the photo spacers 132a in the direction perpendicular to the width direction because the liquid crystal fluidity may be hindered.
 図5(a)および(b)に示すようにフォトスペーサを配置することで、液晶材料の流動性を比較的高く保ったままで、セル厚の減少を効果的に抑制することができる。このように、フォトスペーサの配置を適切に行うことで、セル厚変動率を0.01%以下に設定することが容易になる。フォトスペーサの高さにばらつきが生じる場合にも、セル厚の減少を効果的に抑えるとともに、液晶材料の流動性をこの領域において大きく阻害することなく、PSAムラの発生を抑えることができる。 As shown in FIGS. 5 (a) and 5 (b), by arranging the photo spacer, it is possible to effectively suppress the reduction in the cell thickness while keeping the liquidity of the liquid crystal material relatively high. As described above, by appropriately arranging the photo spacers, it becomes easy to set the cell thickness variation rate to 0.01% or less. Even when the height of the photo spacer varies, it is possible to effectively suppress the reduction of the cell thickness and to suppress the occurrence of PSA unevenness without significantly impeding the fluidity of the liquid crystal material in this region.
 また、以上には、シール材の高さが、表示領域のセル厚と略同一の場合について説明したが、これらが異なる場合もある。その場合には、シール材の高さと表示領域でのセル厚とを平均したセル厚を有する位置にフォトスペーサを設けることが望ましい。 In the above description, the case where the height of the sealing material is substantially the same as the cell thickness of the display area has been described. In that case, it is desirable to provide a photo spacer at a position having a cell thickness obtained by averaging the height of the sealing material and the cell thickness in the display region.
 本発明は、液晶テレビ等の種々の液晶表示装置に広く用いられる。 The present invention is widely used in various liquid crystal display devices such as liquid crystal televisions.
 50 セル厚変動部
 100 液晶表示装置
 110 TFT基板
 112 透明基板
 114 垂直配向膜
 116 配向維持層
 120 対向基板
 130 シール材
 132、132a フォトスペーサ
 140 液晶層
 R1 額縁領域(周辺領域)
 R2 表示領域
 d セルギャップ
50 Cell thickness variation portion 100 Liquid crystal display device 110 TFT substrate 112 Transparent substrate 114 Vertical alignment film 116 Orientation maintaining layer 120 Counter substrate 130 Sealing material 132, 132a Photo spacer 140 Liquid crystal layer R1 Frame region (peripheral region)
R2 display area d Cell gap

Claims (6)

  1.  一対の基板と、
     前記一対の基板間に挟持された液晶層と、
     前記液晶層を囲むように設けられたシール材と、
     前記一対の基板間において、前記一対の基板の間隔を規定するように設けられた複数のスペーサと、
     前記一対の基板のうちの少なくとも一方の前記液晶層側に設けられた配向膜と、
     前記配向膜の前記液晶層側に設けられた配向維持層であって、重合性化合物を重合させることによって形成された重合体を含む配向維持層と
     を備える液晶表示装置であって、
     前記シール材の近傍において、前記シール材が設けられた部分に向かって前記一対の基板の間隔が減少するセル厚変動部が形成され、
     前記セル厚変動部の、基板垂直方向におけるセル厚減少分Δhと、基板面内方向の幅Wとの比であるセル厚変動率Δh/Wが0.01%以下である液晶表示装置。
    A pair of substrates;
    A liquid crystal layer sandwiched between the pair of substrates;
    A sealing material provided so as to surround the liquid crystal layer;
    Between the pair of substrates, a plurality of spacers provided so as to define an interval between the pair of substrates;
    An alignment film provided on the liquid crystal layer side of at least one of the pair of substrates;
    An alignment maintaining layer provided on the liquid crystal layer side of the alignment film, the alignment maintaining layer including a polymer formed by polymerizing a polymerizable compound, and a liquid crystal display device comprising:
    In the vicinity of the sealing material, a cell thickness variation portion is formed in which the distance between the pair of substrates decreases toward the portion where the sealing material is provided,
    A liquid crystal display device having a cell thickness variation rate Δh / W of 0.01% or less, which is a ratio of a cell thickness decrease Δh in the substrate vertical direction and a width W in the substrate in-plane direction of the cell thickness variation portion.
  2.  表示を行う表示領域と、前記表示領域の外側に位置する周辺領域とが規定されており、前記セル厚変動部は、前記表示領域と前記周辺領域との境界の近傍に形成されている請求項1に記載の液晶表示装置。 A display area for displaying and a peripheral area located outside the display area are defined, and the cell thickness variation portion is formed in the vicinity of a boundary between the display area and the peripheral area. 2. A liquid crystal display device according to 1.
  3.  前記スペーサは、前記表示領域と前記周辺領域との両方において形成されており、
     前記周辺領域に形成されたスペーサは、前記表示領域に形成されたスペーサよりも低く、
     前記周辺領域に形成されたスペーサの高さと、前記表示領域に形成されたスペーサの高さとの差に応じて、前記セル厚減少分Δhが決定される請求項2に記載の液晶表示装置。
    The spacer is formed in both the display area and the peripheral area,
    The spacer formed in the peripheral region is lower than the spacer formed in the display region,
    The liquid crystal display device according to claim 2, wherein the cell thickness decrease Δh is determined according to a difference between a height of the spacer formed in the peripheral region and a height of the spacer formed in the display region.
  4.  前記周辺領域に形成されたスペーサは、前記周辺領域の中央部に形成されている請求項3に記載の液晶表示装置。 4. The liquid crystal display device according to claim 3, wherein the spacer formed in the peripheral region is formed in a central portion of the peripheral region.
  5.  前記一対の基板のうちの一方は、前記液晶層側に設けられた平坦化膜を備え、
     前記表示領域と前記周辺領域とにおいて前記平坦化膜は異なる厚さを有し、
     前記平坦化膜の厚さの差に応じて、前記セル厚減少分Δhが決定される請求項2に記載の液晶表示装置。
    One of the pair of substrates includes a planarization film provided on the liquid crystal layer side,
    The planarizing film has different thicknesses in the display region and the peripheral region,
    The liquid crystal display device according to claim 2, wherein the cell thickness decrease Δh is determined according to a difference in thickness of the planarizing film.
  6.  前記液晶層は、垂直配向型の液晶層であり、かつ、前記配向膜は、垂直配向型の配向膜であり、
     前記周辺領域におけるセル厚が、前記表示領域におけるセル厚よりも小さい請求項2から5のいずれかに記載の液晶表示装置。
    The liquid crystal layer is a vertical alignment type liquid crystal layer, and the alignment film is a vertical alignment type alignment film,
    The liquid crystal display device according to claim 2, wherein a cell thickness in the peripheral region is smaller than a cell thickness in the display region.
PCT/JP2011/074979 2010-11-02 2011-10-28 Liquid crystal display device WO2012060302A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010245856 2010-11-02
JP2010-245856 2010-11-02

Publications (1)

Publication Number Publication Date
WO2012060302A1 true WO2012060302A1 (en) 2012-05-10

Family

ID=46024415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074979 WO2012060302A1 (en) 2010-11-02 2011-10-28 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2012060302A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041282A (en) * 2012-08-23 2014-03-06 Japan Display Inc Liquid crystal display device
EP2896990A1 (en) * 2014-01-15 2015-07-22 InnoLux Corporation Display panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05241153A (en) * 1992-02-27 1993-09-21 Canon Inc Liquid crystal display device
JP2003279946A (en) * 2002-03-19 2003-10-02 Fujitsu Display Technologies Corp Method for manufacturing liquid crystal display device
JP2007206280A (en) * 2006-01-31 2007-08-16 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display device
JP2009186822A (en) * 2008-02-07 2009-08-20 Toshiba Mobile Display Co Ltd Liquid crystal display panel and manufacturing method of liquid crystal display panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05241153A (en) * 1992-02-27 1993-09-21 Canon Inc Liquid crystal display device
JP2003279946A (en) * 2002-03-19 2003-10-02 Fujitsu Display Technologies Corp Method for manufacturing liquid crystal display device
JP2007206280A (en) * 2006-01-31 2007-08-16 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display device
JP2009186822A (en) * 2008-02-07 2009-08-20 Toshiba Mobile Display Co Ltd Liquid crystal display panel and manufacturing method of liquid crystal display panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041282A (en) * 2012-08-23 2014-03-06 Japan Display Inc Liquid crystal display device
US9442326B2 (en) 2012-08-23 2016-09-13 Japan Display Inc. Liquid crystal display device
EP2896990A1 (en) * 2014-01-15 2015-07-22 InnoLux Corporation Display panel

Similar Documents

Publication Publication Date Title
US8514358B2 (en) Liquid crystal display device and manufacturing method thereof
JP4477421B2 (en) Liquid crystal display device and manufacturing method thereof
JP4076362B2 (en) Liquid crystal display
US8202748B2 (en) Liquid crystal display apparatus and manufacturing method therefor
JP5759565B2 (en) Liquid crystal display
US8920884B2 (en) Method for fabricating polymer stabilized alignment liquid crystal display panel
JP2004318077A (en) Liquid crystal display device and manufacturing method therefor
JP2003149647A (en) Liquid crystal display device and manufacturing method therefor
JP2006091545A (en) Liquid crystal display device
JP2010033093A (en) Liquid crystal display and method for manufacturing the same
WO2012014803A1 (en) Liquid crystal display device and method for producing same
WO2010023880A1 (en) Liquid crystal display device
KR20080044187A (en) Liquid crystal display and manufacturing method thereof
JP4549819B2 (en) Liquid crystal display device and manufacturing method thereof
WO2010109804A1 (en) Liquid crystal display apparatus
WO2012060302A1 (en) Liquid crystal display device
JP4903280B2 (en) Liquid crystal display
WO2021039219A1 (en) Liquid crystal display device
JP2007232848A (en) Liquid crystal display and manufacturing method therefor
WO2010098059A1 (en) Liquid crystal display device and manufacturing method therefor
JP6127156B2 (en) Manufacturing method of liquid crystal panel
TWI407215B (en) Liquid crystal display panel and method of fabricating liquid crystal display panel
JP4068484B2 (en) Liquid crystal display device and driving method thereof
WO2012063936A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
JP2009258425A (en) Method for manufacturing liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP