WO2012060157A1 - Vertical kiln - Google Patents

Vertical kiln Download PDF

Info

Publication number
WO2012060157A1
WO2012060157A1 PCT/JP2011/070906 JP2011070906W WO2012060157A1 WO 2012060157 A1 WO2012060157 A1 WO 2012060157A1 JP 2011070906 W JP2011070906 W JP 2011070906W WO 2012060157 A1 WO2012060157 A1 WO 2012060157A1
Authority
WO
WIPO (PCT)
Prior art keywords
fired product
amount
air
raw material
cooling
Prior art date
Application number
PCT/JP2011/070906
Other languages
French (fr)
Japanese (ja)
Inventor
博 増田
功 藤井
勝幸 近藤
Original Assignee
宇部興産機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産機械株式会社 filed Critical 宇部興産機械株式会社
Priority to CN201180051860.2A priority Critical patent/CN103189703B/en
Priority to KR1020137012754A priority patent/KR101789642B1/en
Publication of WO2012060157A1 publication Critical patent/WO2012060157A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/10Preheating, burning calcining or cooling
    • C04B2/12Preheating, burning calcining or cooling in shaft or vertical furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/08Shaft or like vertical or substantially vertical furnaces heated otherwise than by solid fuel mixed with charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/21Arrangements of devices for discharging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/24Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat

Definitions

  • This invention relates to a vertical firing furnace for firing massive raw materials such as limestone and dolomite.
  • FIG. 4 is a view showing a conventional vertical firing furnace having a double cylindrical structure.
  • the vertical firing furnace 100 includes a cylindrical outer cylinder 101 and an inner cylinder 102 disposed concentrically on the inner side.
  • a feeding device 103 for supplying raw material supplied from the transfer device is provided at the upper end of the outer cylinder 101, and the upper end of the outer cylinder 101 is connected to an exhaust gas suction fan (not shown) via a pipe 104. Is done. And the exhaust gas from the outer cylinder 101 is discharged
  • a cooling air passage 105 for the inner cylinder 102 is formed, and cooling air is supplied to the passage 105 from a fan 107 via a pipe 106.
  • the air cooled in the inner cylinder 102 is collected in the pipe 108a and used as combustion air.
  • the upper end portion of the inner cylinder 102 is connected to the upper end portion of the operating air heat exchanger 110 via a pipe 109, and the lower end portion of the operating air heat exchanger 110 is connected to the exhaust gas suction fan via the pipe 111. Connected to.
  • outside air is introduced from the blower 112, and heat is exchanged with the exhaust gas in the operating air heat exchanger 110.
  • the outside air heated by this heat exchange is supplied to the upper burner 114a of the upper combustion chamber 114, the lower burner 115a of the lower combustion chamber 115, and the upper end of the suction device 116, which are provided in the outer cylinder 101 via the pipe 113. Used as combustion air and air for operating the suction device 116.
  • the cooled air that has cooled the inner cylinder 102 is supplied to the upper and lower burners 114a and 115a through the pipes 108 and 108a and used as combustion air.
  • Combustion gas from each combustion chamber 114, 115 provided with each burner 114a, 115a is filled with a raw material formed in a raw material passage 117 formed between the outer cylinder 101 and the inner cylinder 102 as indicated by solid arrows in the figure.
  • the gas flows upward in the bed, and a part of the combustion gas from the lower combustion chamber 115 flows downward as indicated by solid arrows in the figure.
  • a suction device 116 is provided on the side surface of the outer cylinder 101.
  • This suction device 116 includes an injector mechanism, and is a raw material decomposition gas (from a raw material fired by cooling air rising from the lower portion of the outer cylinder 101, downward combustion gas from the lower combustion chamber 115, and downward combustion gas ( For example, CO 2 gas) is sucked into the inner cylinder 102 side.
  • the mixed gas of the cooling air, the combustion gas, and the gas generated by the decomposition of the raw material passes through the inner cylinder 102 and is guided to the pipe 118.
  • the pipe 118 is connected to the upper end of the suction device 116, the upper end of the suction device 116 is further connected to a pipe 113 that supplies combustion air, and the lower end is connected to the lower combustion chamber 115.
  • a fired product discharge device 119 for discharging the fired product is provided at the lower end portion of the outer cylinder 101, and a fired product cooling for cooling the fired product between the lower end portion of the inner tube 102 and the fired product discharge device 119.
  • a band CZ is formed. Outside air is introduced into the fired product discharger 119 from the cooling air fan 119a, and cooling air flows upward in the fired product filled in the fired product cooling zone CZ as indicated by solid arrows in the figure. The fired product flows below the fired product discharge device 119 and is discharged to the outside, as indicated by broken line arrows in the figure.
  • a countercurrent zone is formed in which the hot gas and the raw material flow in opposite directions from the lower combustion chamber 115 and the lower gas chamber and the raw material flow in the same direction from the lower combustion chamber 115.
  • a co-current calcination zone PFZ is formed between the lower combustion chamber 115 and the lower end portion of the inner cylinder 102, and a lower calcination zone DFZ and an upper combustion chamber 114 are formed between the lower combustion chamber 115 and the upper combustion chamber 114, respectively.
  • the pre-tropical zone PZ is formed within the upper firing zone UFZ.
  • the temperature of the cocurrent gas is, for example, as high as about 900 ° C. or more at the lower end of the cocurrent firing zone PFZ, and the cooling air after cooling the fired product is also about 500 ° C. to 890 ° C. For this reason, it is difficult to employ mechanical fans or the like as the mechanism of the suction device 116, and an injector mechanism is mainly used.
  • the suction device 116 is a device for operating air (or operating gas) such as pressurized air (for example, pressure of 30 to 70 kPa, temperature of 400 ° C. to 500 ° C.) for operation.
  • the suction pressure is generated by supplying a high-speed jet to the injector nozzle and forming a high-speed jet in the injector mechanism.
  • FIG. 5 is a diagram showing the relationship between the amount of mixed gas sucked by the suction device 116 and the suction pressure.
  • the amount of mixed gas In the operation of a vertical firing furnace, the amount of mixed gas generally balances when the flow path resistance and suction pressure of the system become the same, so increasing the amount of operating air increases the amount of mixed gas. If the amount of working air is reduced, the amount of mixed gas can be reduced.
  • the amount of fuel supplied to the upper combustion chamber 114 and the lower combustion chamber 115 is optimal at a substantially constant ratio in order to enable the necessary heat distribution in the furnace. It is set to be a total amount.
  • the combustion temperature in each of the combustion chambers 114 and 115 is selected as the highest temperature within the allowable temperature optimum for the refractory and the firing raw material, and aims at efficient operation (that is, heat consumption is minimized). It will be. Therefore, it is required that good combustion is performed with as little air (or gas) as possible.
  • the amount of air for combustion is generally expressed by the following equation.
  • Va m ⁇ Ao ⁇ Fw Va: Total amount of air supplied to the furnace for combustion (Nm 3 / hr)
  • Fw Amount of fuel supplied to the furnace (kg / hr)
  • Ao Theoretical combustion air amount (Nm 3 / kg fuel): Theoretical air amount necessary for complete combustion of 1 kg of fuel m: Air coefficient
  • the air coefficient m in the above equation is set to 1.1 to 1.37. That is, an air amount 1.1 to 1.37 times the theoretically required air amount is supplied.
  • the optimum value of the air coefficient m differs depending on the type of fuel used, generally, minimizing the air coefficient m is required as one factor for minimizing heat consumption.
  • the operating air for the injector mechanism flows into the lower combustion chamber 115, it also affects the fuel combustion conditions in the lower combustion chamber 115. Furthermore, the mixed gas sucked similarly affects the temperature conditions in the combustion chamber and the state of the combustion flame. Specifically, in addition to the combustion air supplied to the burner, the air that flows into the lower combustion chamber 115 includes working air and cooling air for the fired product. These airs are directly related to the air coefficient m.
  • the amount of the cocurrent gas affects the firing of the raw material and consequently the quality of the baked product. It is. For this reason, it is essential to secure a certain amount.
  • the outlet temperature of the fired product cooling zone CZ is lowered, and the heat lost from the fired product to the outside of the furnace (heat retained in the fired product) is reduced. It is necessary to increase the amount of heat recovery. For this purpose, it is necessary to secure a certain amount of cooling air.
  • the suction pressure in the characteristics of the suction device 116 of (1) described above is an element that determines the amount of cocurrent gas in the cocurrent firing zone. Since the co-current calcination zone is the final stage of the calcination process, the entire furnace is controlled so that the gas reaches a predetermined temperature at the downstream end thereof. Also from this fact, securing a certain amount of co-current gas is an extremely important factor in operating the firing furnace. In order to secure a certain amount of co-current gas, it is necessary to secure a suction pressure, and the amount of air for operation to the injector mechanism is increased due to the characteristics of the suction device 116 having the injector mechanism (1) described above. Or it is necessary to reduce the amount of mixed gas.
  • the present invention makes it possible to reduce the amount of air for operating the injector mechanism of the suction device and secure the amount of co-current gas while ensuring the amount of air for cooling the fired product, thereby discharging
  • An object of the present invention is to provide a vertical firing furnace capable of effectively recovering the retained heat of the fired product and improving the degree of freedom of operation control.
  • the vertical firing furnace includes an outer cylinder arranged with the axial direction set as the vertical direction, and a coaxial arrangement inside the outer cylinder together with the outer cylinder.
  • An inner cylinder that forms a double cylindrical structure and forms a raw material passage between the outer cylinder and a raw material filling layer that is installed at the upper end of the outer cylinder and that feeds the raw material into the raw material passage to form the raw material passage
  • a charging device that is connected to the raw material passage and introduces combustion air to generate hot gas by a burner; and a part of the hot gas generated in the combustion chamber is passed through the raw material passage.
  • a co-current firing zone in which the raw material and hot gas in the raw material packed bed on the lower side are fired while moving downward from the combustion chamber by suctioning to the outside of the outer tube via the lower end and the inner tube.
  • a suction device that forms a front end of the co-current firing zone;
  • a fired product cooling mechanism configured to house a fired product continuous in the fired product filled layer and to cool the housed fired product by introducing cooling air from the outside, and the fired product filled layer includes the cooling It has a resistance function to reduce the upward flow of working air.
  • the cooling air is used as a part of the combustion air in the combustion chamber after, for example, passing through a fired product inside the fired product cooling mechanism and exchanging heat.
  • the fired product cooling mechanism accommodates, for example, a fired product continuous in the fired product packed layer, and cools the stored fired product.
  • the fired product discharge mechanism is provided at, for example, a lower end portion of the outer cylinder, and a bottom plate in which a chute including a hole having a diameter smaller than the outer diameter of the inner cylinder is formed concentrically with the center line of the inner cylinder; A plurality of pushers arranged on the circumference of the outer cylinder in the vicinity of the lower end of the co-current firing zone and capable of reciprocating on the floor surface of the bottom plate toward the center of the chute, A surface connecting the peripheral edge of the lower end of the tube and the hole of the bottom plate is configured to form a free angle of repose of the fired product.
  • the present invention it is possible to secure the amount of air for cooling the fired product while reducing the amount of air for operation of the injector mechanism of the suction device to ensure the amount of cocurrent gas, and the heat retained in the fired product discharged thereby Can be collected effectively and the degree of freedom of operation control can be improved.
  • FIG. 1 is a view showing a vertical firing furnace according to an embodiment of the present invention.
  • the vertical firing furnace 1 according to the present embodiment includes a cylindrical outer cylinder 2 and an inner cylinder 3 that is concentrically suspended inside the cylindrical outer cylinder 2.
  • a feeding device 4 for a raw material supplied from the conveying device is provided at the upper end of the outer cylinder 2, and the upper end of the outer cylinder 2 is connected to an exhaust gas suction fan (not shown) via a pipe 5. .
  • the exhaust gas from the outer cylinder 2 sucked by the exhaust gas suction fan is discharged into the atmosphere after dust is removed via a dust collector (not shown).
  • a cooling air passage 6 for the inner cylinder 3 is formed, and cooling air is supplied to the passage from a cooling air fan 8 through a pipe 7.
  • the cooled air that has cooled the inside of the inner cylinder 3 is collected in the pipe 9 and supplied to the combustion air heat exchanger 10 to be used as combustion air.
  • the upper end portion of the inner cylinder 3 is connected to the upper end portions of the combustion air heat exchanger 10 and the operating air heat exchanger 12 via the pipe 11.
  • the lower ends of these heat exchangers 10 and 12 are connected to an exhaust gas suction fan via a pipe 13. Outside the operating air heat exchanger 12, outside air is introduced from the blower 14, and heat is exchanged with the exhaust gas in the operating air heat exchanger 12. The outside air heated by this heat exchange is supplied to the upper burner 16 a of the upper combustion chamber 16, the lower burner 17 a of the lower combustion chamber 17, and the upper end of the suction device 18 provided in the outer cylinder 2 through the pipe 15. The air for combustion and the air for operating the suction device 18 are used.
  • the air that has cooled the inner cylinder 3 and heat-exchanged by the combustion air heat exchanger 10 is supplied to the upper and lower burners 16a and 17a through the pipe 19 and used as combustion air.
  • Combustion gas from each combustion chamber 16, 17 provided with each burner 16 a, 17 a is a raw material formed in a raw material passage 20 formed between the outer cylinder 2 and the inner cylinder 3 as indicated by solid arrows in the figure.
  • the gas flows upward in the packed bed, and a part of the combustion gas from the lower combustion chamber 17 flows downward as indicated by solid arrows in the figure.
  • a suction device 18 is provided on the side surface of the outer cylinder 2.
  • the suction device 18 includes an injector mechanism, and cooling air and a lower portion slightly raised from the fired product cooling device 21 provided below the inner cylinder 3 through the fired product packed layer 23 in the fired product introduction pipe 22.
  • a raw material decomposition gas (for example, CO 2 gas) generated from the raw material fired by the downward combustion gas and the downward combustion gas from the combustion chamber 17 is sucked through the inner cylinder 3 and the pipe 24.
  • the piping 24 is connected to the upper end portion of the suction device 18, the upper end portion of the suction device 18 is further connected to the piping 15 for supplying operating air, and the lower end portion is connected to the lower combustion chamber 17.
  • a fired product discharge mechanism for discharging the fired product from the furnace is provided at the lower end of the outer cylinder 2. Further, a fired product cooling mechanism is provided below the fired product discharge mechanism to cool the fired product by introducing cooling air from the outside by the cooling air fan 25.
  • the fired product discharge mechanism is configured as follows, for example.
  • the fired product discharge mechanism includes a metal bottom plate 26 that covers the lower end side of the outer cylinder 2, a plurality of disposed on the circumference of the outer cylinder 2, on the floor surface of the bottom plate 26, and a packed bed A heat-resistant metal pusher 27 for moving the fired product at the lower end is provided.
  • the bottom plate 26 has a structure in which a chute 26 b having a hole portion 26 a having a diameter smaller than the outer diameter of the inner cylinder 3 is formed concentrically with the center line of the inner cylinder 3.
  • the bottom plate 26 is lined with a refractory material and is configured to sufficiently withstand the temperature of a fired product or combustion gas.
  • the pusher 27 has a structure capable of reciprocating as indicated by a solid line arrow in the figure toward the center of the chute 26b by a stroke variable piston 27a driven by a hydraulic cylinder.
  • shoot 26b of the baseplate 26 forms the free repose angle surface 31 of a baked product.
  • the fired product cooling mechanism specifically includes a fired product introduction pipe 22 disposed in an airtight state at the lower end portion of the chute 26 b via the expansion joint 28, and a lower end portion of the fired product introduction pipe 22.
  • the fired product cooling device 21 is provided.
  • the cooling air introduced by the cooling air fan 25 and having the air volume adjusted by the air volume adjusting damper 25 a is shown in FIG. Umbrella-shaped slits 21a that supply and distribute to 21b are provided.
  • the cooling air heat-exchanged with the fired product through the fired product packed layer 21b is adjusted in the air volume by the damper 30a for adjusting the air flow through the duct 30 connected to the upper space portion 21c of the fired product filled layer 21b. After that, it is supplied to the lower combustion chamber 17 to which the duct 30 is connected.
  • a space between the lower end portion of the slit 21a of the fired product cooling device 21 and the lower end portion of the fired product introduction tube 22 is a fired product cooling zone CZ for cooling the fired product.
  • a counter current zone in which the hot gas and the raw material flow in opposite directions from the lower combustion chamber 17 is formed, and the hot gas and the raw material flow in the same direction from the lower combustion chamber 17 in the lower portion.
  • a flow zone is formed, and a co-current firing zone PFZ is formed between the lower combustion chamber 17 and the lower end portion of the inner cylinder 3, and a lower firing zone DFZ and an upper combustion chamber 16 are provided between the lower combustion chamber 17 and the upper combustion chamber 16, respectively.
  • the pre-tropical zone PZ is formed within the upper firing zone UFZ.
  • the raw material charged into the raw material passage 20 from the charging device 4 forms a packed bed from the bottom plate 26 to above the uppermost end of the pre-tropical PZ.
  • the raw material is fired through the pre-tropical PZ and the firing zones UFZ, DFZ, and PFZ, and reaches the floor surface of the bottom plate 26 as a fired product.
  • the reached fired product is discharged into the fired product introduction pipe 22 by the pusher 27 through the chute 26b and the expansion joint 28 with a preset discharge amount.
  • the fired product that has passed through the fired product introduction tube 22 is filled into the fired product cooling device 21, and the fired product filling layer 23 that continues from the fired product filled layer 21b is introduced into the fired product introduction tube 22 from the introduction tube height H1. Is formed with a lower filling layer height H2. Note that the lower end of the fired product introduction tube 22 is disposed so as to be in contact with the fired product filled layer 21b.
  • the fired product cooled in the fired product cooling device 21 is controlled to maintain the required height H2 of the fired product filling layer 23 and is discharged from the discharge unit 21d to the outside. Since the fired product packed layer 23 that continues from the fired product filled layer 21b is formed with a predetermined packed layer height H2, the cooling air that has passed through the fired product filled layer 21b is located above the fired product filled layer 23. It will be hardly guided.
  • the fired product filling layer 23 exhibits an air sealing effect that seals the cooling air to some extent.
  • the diameter and the packed bed height H2 of the fired product introduction pipe 22 are configured so that the air sealing effect by the fired product is maximized, the gas flows through the fired product filled layer 23 and merges with the cocurrent gas. The amount of cooling air is small.
  • the vertical firing furnace 1 reduces the amount of mixed gas due to the above-described configuration, so that the amount of air for operating the injector mechanism in the suction device 18 can be reduced.
  • the temperature of the working air is 450 ° C. to 480 ° C., and the amount of heat supplied to the furnace by the working air decreases in proportion to the amount of reduction of the working air.
  • a part of the combustion gas in the furnace passes through the piping 11 through the introduction path 3 a provided in the inner cylinder 3 at the upper end position of the upper firing zone UFZ, and the combustion air heat exchanger. 10 and the operating air heat exchanger 12 respectively. Therefore, even if the working air heat exchanger 12 is downsized, the working air can be sufficiently heated.
  • the amount of combustion gas introduced into the miniaturized operating air heat exchanger 12 can be reduced, surplus combustion gas generated thereby is introduced into the combustion air heat exchanger 10, and each burner 16a. , 17a used as combustion air, the cooled air in the inner cylinder 3 (for example, having a temperature of 190 ° C. to 210 ° C.) is heated in the heat exchanger 10 to have a temperature of 390 ° C. to 430 ° C. It becomes possible to supply working air.
  • the vertical firing furnace 1 configured as described above, first, the reduction of the amount of air for operation of the suction device 18 provided with an injector mechanism will be described.
  • the vertical firing furnace 1 having a firing capacity of 300 t / day is producing a fired product of 300 t / day will be described as an example.
  • the importance of cocurrent gas in a vertical firing furnace will be briefly described.
  • the co-current firing zone has a function of firing the raw material by flowing the combustion gas along the descending direction of the raw material in the raw material passage 20 and is in the final stage of the firing step. Therefore, when a certain amount of co-current gas flows, the temperature of the co-current gas, which is a mixed gas of the combustion gas at the lower end of the co-current calcining zone and the raw material decomposition gas generated from the calcined raw material, is monitored. If the entire furnace is adjusted so that the temperature becomes a predetermined temperature, the final result is expressed as the temperature at the lower end of the co-current firing zone.
  • the cocurrent gas plays an important role in the operation of the furnace, it is desired to ensure a stable amount of the cocurrent gas in the actual operation.
  • FIG. 2 shows the relationship between the cocurrent gas amount and pressure loss in the cocurrent calcination zone, the relationship between the cocurrent gas amount and the mixed gas amount of cooling air and cocurrent gas that has passed through the baked product cooling zone, and the suction device. It is a figure which shows collectively the relationship between the suction pressure and the amount of mixed gas which generate
  • the line ⁇ in the graph B shows the relationship between the cocurrent gas amount and the mixed gas amount when the cooling air amount is 8,000 Nm 3 / hr and the constant amount flows, and the line ⁇ is the cooling air amount. Shows the relationship between the amount of co-current gas and the amount of mixed gas when is 0, and the line ⁇ shows the amount of co-current gas and the amount of mixed gas when the amount of cooling air is 600 Nm 3 / hr and a constant amount flows. Showing the relationship.
  • This line ⁇ corresponds to the vertical firing furnace 1 according to the present embodiment, and the cooling air amount of 600 Nm 3 / hr indicates the amount of leakage from the fired product packed layer 23.
  • Graph C also shows the suction pressure at the lower end of the co-current firing zone along with the suction pressure generated by the suction device.
  • Lines A1, A2, and A3 show the suction pressure generated by the suction device, and the lines B1, B2 and B3 respectively show the suction pressure at the lower end of the co-current firing zone.
  • the suction pressure at the lower end of the co-current firing zone is obtained by subtracting the pressure loss between the lower end and the suction device from the suction pressure generated by the suction device. It can be seen that these suction pressures increase as the amount of mixed gas decreases.
  • line A1 shows an example of the suction pressure generated by the suction device in the conventional furnace
  • line B1 shows an example of the suction pressure at the lower end of the co-current firing zone in this conventional furnace, and the amount of operating air is It is a constant amount of 4,900 Nm 3 / hr.
  • line A3 shows the suction pressure when the operating air amount is reduced in the conventional furnace
  • line B3 shows an example of the suction pressure at the lower end of the co-current firing zone in this case. in which was reduced to 3,000 nm 3 / hr from 900 nm 3 / hr.
  • the lines A2 and B2 are suctions generated by the newly designed suction device 18 corresponding to the small mixed gas amount and the working air amount applied in the vertical firing furnace 1 according to the present embodiment.
  • the pressure and the suction pressure at the lower end of the co-current calcination zone PFZ are shown, respectively, and the working air amount is 2,500 Nm 3 / hr and a constant amount.
  • the ones indicated by the broken-line arrows in the figure indicate the amount of co-current gas in the case of the line ⁇ where the cooling air amount is 600 Nm 3 / hr (actually equivalent to the leak amount) in the graph B. It shows the suction pressure at the lower end of the co-current firing zone.
  • the pressure loss in the graph A is not affected by the cooling air, and is caused only by the cocurrent gas unless the raw material properties are changed. Therefore, if the suction pressure at the lower end of the co-current firing zone is determined, the co-current gas amount can be read from this graph A. Further, the pressure loss in the mixed gas passage from the lower end to the suction device is caused by the mixed gas of the cocurrent gas and the cooling air.
  • the suction pressure at the lower end of the co-current firing zone shown in graph C is calculated by subtracting the pressure loss in the passage from this pressure, and the amount of co-current gas is grasped. It becomes possible to do.
  • the suction pressure of the suction device increases as the mixed gas amount decreases.
  • the amount of mixed gas is reduced by reducing the amount of cooling air, and the suction pressure of the suction device is kept high (as a result, the suction pressure at the lower end of the co-current firing zone is kept high), thereby forming a cocurrent gas.
  • the amount can be increased.
  • the lines A1 and B1 of the graph C shown in FIG. 2 indicate the respective suction pressures in the conventional furnace, and therefore, based on these lines A1 and B1, for example, the graphs A to B shown in FIG. from C, it is possible to obtain co-current gas amount of about 11,000Nm 3 / hr, a gas mixture of about 19,400Nm 3 / hr, and the specific numerical values of the cooling air quantity of about 8,400Nm 3 / hr .
  • the vertical firing furnace 1 has a structure in which the co-current firing zone PFZ and the fired product cooling device 21 are separately arranged, and in the fired product introduction pipe 22 disposed at an intermediate position between them.
  • the fired product filling layer 23 having a desired filling layer height H2
  • each suction pressure in the vertical firing furnace 1 according to the present embodiment designed on the condition that the amount of cocurrent gas is the same as that of the conventional furnace is shown in the graph C of FIG. As shown by lines A2 and B2. Then, based on these lines A2, B2, from each of the graphs A ⁇ C, co-current gas amount of about 11,000Nm 3 / hr, a gas mixture of about 11,600Nm 3 / hr, and about 600 Nm 3 / hr It becomes possible to obtain a specific numerical value of the cooling air amount.
  • the total amount of air introduced into the lower combustion chamber 17 is constant (that is, the air coefficient m in the lower combustion chamber 17 is not changed), it is about 2,400 Nm 3 / hr (that is, suction) compared to the conventional furnace. It is possible to introduce a large amount of cooling air into the fired product cooling device 21 up to a reduction in the amount of operating air of the device 18.
  • FIG. 3 is a diagram showing the relationship among the amount of air for cooling the fired product, the temperature of the fired product, and the heat retained in the fired product.
  • a curve M is a related curve between the cooling air amount and the calcined product temperature
  • a curve N is a related curve between the cooling air amount and the calcined product retained heat.
  • the calcined product holding heat is calculated on the basis of 20 ° C.
  • the calcined product temperature is 150 ° C. from curve M, and the calcined product holding heat is 25 kcal / kg from curve N.
  • the amount of cooling air is reduced to 6,140 Nm 3 / hr, the calcined product temperature becomes 200 ° C. from curve M, and the calcined product holding heat rises from curve N to 35 kcal / kg. That is, when the amount of cooling air increases by 560 Nm 3 / hr, the fired product holding heat decreases by 10 kcal / kg.
  • Vc represents the amount of cooling air in the conventional furnace
  • V and Vc + 2,400 represent the target cooling air amount and the maximum cooling air amount in the vertical firing furnace 1 according to the present embodiment, respectively.
  • the calcined product possessed heat 35 kcal / kg in the case of the cooling air amount Vc and the calcined product retained heat 9.5 kcal / kg in the case of the maximum cooling air amount Vc + 2,400 The difference is 25.5 kcal / kg. Further, the difference between the calcined product retained heat in the case of the cooling air amount Vc and the calcined product retained heat in the case of the target cooling air amount V of 25 kcal / kg is 10 kcal / kg. The difference between the calcined product retained heat in the case of the target cooling air amount V and the calcined product retained heat in the case of the maximum cooling air amount Vc + 2,400 is 15.5 kcal / kg.
  • the vertical firing furnace 1 it is possible to recover heat of a maximum of 25.5 kcal / kg fired product (amount of heat per 1 kg of the fired product) and a minimum of 10 kcal / kg fired product. . Further, when the furnace is operated at the maximum capacity, the cooling air amount may be insufficient with respect to the production amount of the baked product.
  • the vertical firing furnace 1 increases the cooling air amount V of the fired product by about 2,400 Nm 3 / hr as compared with the cooling air amount Vc of the conventional furnace as described above. Therefore, it is possible to provide a sufficient cooling capacity.
  • the heat recovery amount is larger than the heat recovery amount (25.5 kcal / kg calcined product to 10 kcal / kg calcined product) described above.
  • the reduction amount of the working air amount in the vertical firing furnace 1 according to the present embodiment is 2,400 Nm 3 / hr and the temperature of the working air is 480 ° C.
  • the amount of decrease in heat brought into the furnace means 355,488 kcal / hr, and the amount of decrease in carry heat per kg of the calcined product becomes 28.4 kcal / kg calcined product.
  • the amount of cooled air is 5,500 Nm 3 / hr, and the average supply temperature to the burner is 200 ° C.
  • the retained heat amount of the cooled air is 309,870 kcal / hr.
  • the excess heat amount due to the decrease in the amount of operating air is effectively used in the heat exchanger 10, and the cooled air in the inner cylinder 3 is heated to generate combustion heat having a retained heat of 665,358 kcal / hr and a temperature of about 400 ° C. If it supplies to the burners 16a and 17a, it will become possible to compensate the reduction
  • the vertical firing furnace 1 having a firing capacity of 300 t / day has been described.
  • the present invention can be similarly applied to other furnaces.
  • the heat recovery amount of 25.5 kcal / kg calcined product (amount of heat per 1 kg of calcined product) and the minimum 10 kcal / kg calcined product was explained.
  • the heat consumption in the vertical firing furnace 1 is 1.0 to It can be reduced by about 2.6%.
  • the vertical firing furnace 1 According to the vertical firing furnace 1 according to the present embodiment as described above, the following effects can be obtained. (1) The overall heat consumption of the vertical firing furnace 1 can be reduced by 1.0 to 2.6% for improvement. (2) The degree of freedom of operation control during operation of the vertical firing furnace 1 can be improved. (3) Since the combustion air supplied to each burner 16a, 17a of the vertical firing furnace 1 can be heated, the combustion state of the fuel can be improved satisfactorily. (4) Since the fired product can be sufficiently cooled by the fired product cooling device 21 of the vertical firing furnace 1, a heat-resistant belt conveyor is used as a transport conveyor for transporting the fired product discharged from the discharge unit 21d. It can be adopted with heart.
  • the fired product cooling device 21 of the vertical firing furnace 1 is separated from the furnace, an ideal cooling device can be designed, and the cooling device can be downsized. Therefore, the amount of air for operating the injector mechanism of the suction device 18 of the vertical firing furnace 1 can be reduced to ensure the amount of co-current gas while ensuring the amount of air for cooling the fired product, and firing discharged from the furnace. The retained heat of the product can be effectively recovered by the fired product cooling device 21 to improve the degree of freedom of operation control of the operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

This vertical kiln (1) is provided with an outer tube (2) and an inner tube (3), and is provided with a starting material pathway (20) therebetween. A fired article discharge mechanism that discharges fired articles from the kiln is provided to the bottom end of the outer tube (2), below which a fired article cooling mechanism that cools the fired articles by introducing cooling air is provided. The fired article cooling mechanism is configured from a fired article introduction tube (22) and a fired article cooling device (21), and a fired article packed bed (23) following on from a fired article packed bed (21b) is formed in the fired article introduction tube (22). Most of the cooling air introduced to the fired article cooling device (21) does not flow upwards from the fired article packing layer (23), instead passing through a duct (30) connected to an upper space section, (21c) and being used as combustion air in a lower combustion chamber (17).

Description

竪型焼成炉Vertical firing furnace
 この発明は、石灰石やドロマイト等の塊状原料を焼成するための竪型焼成炉に関する。 This invention relates to a vertical firing furnace for firing massive raw materials such as limestone and dolomite.
 従来より、石灰石やドロマイト等の塊状原料を焼成するための二重円筒構造の竪型焼成炉が知られている(例えば、下記特許文献1参照)。図4は、従来の二重円筒構造の竪型焼成炉を示す図である。図4に示すように、竪型焼成炉100は、円筒状の外筒101及びその内側に同心状に配置された内筒102を備える。 Conventionally, a double-cylindrical vertical firing furnace for firing bulk materials such as limestone and dolomite is known (for example, see Patent Document 1 below). FIG. 4 is a view showing a conventional vertical firing furnace having a double cylindrical structure. As shown in FIG. 4, the vertical firing furnace 100 includes a cylindrical outer cylinder 101 and an inner cylinder 102 disposed concentrically on the inner side.
 また、外筒101の上端部には、搬送装置から供給される原料の投入装置103が設けられ、更にこの外筒101の上端部は配管104を介して排ガス吸引ファン(図示せず)に接続される。そして、外筒101からの排ガスは、図示しない集塵装置を介して大気中に排出される。 A feeding device 103 for supplying raw material supplied from the transfer device is provided at the upper end of the outer cylinder 101, and the upper end of the outer cylinder 101 is connected to an exhaust gas suction fan (not shown) via a pipe 104. Is done. And the exhaust gas from the outer cylinder 101 is discharged | emitted in air | atmosphere through the dust collector which is not shown in figure.
 内筒102内には、内筒102の冷却用空気の通路105が形成されており、この通路105には配管106を介してファン107から冷却用空気が供給される。内筒102内を冷却した空気は、配管108aに集合されて燃焼用空気として用いられる。また、内筒102の上端部は、配管109を介して作動用空気熱交換器110の上端部に接続され、この作動用空気熱交換器110の下端部は、配管111を介して排ガス吸引ファンに接続される。 In the inner cylinder 102, a cooling air passage 105 for the inner cylinder 102 is formed, and cooling air is supplied to the passage 105 from a fan 107 via a pipe 106. The air cooled in the inner cylinder 102 is collected in the pipe 108a and used as combustion air. The upper end portion of the inner cylinder 102 is connected to the upper end portion of the operating air heat exchanger 110 via a pipe 109, and the lower end portion of the operating air heat exchanger 110 is connected to the exhaust gas suction fan via the pipe 111. Connected to.
 作動用空気熱交換器110の下方には、ブロワ112から外気が導入され、作動用空気熱交換器110内にて排ガスとの間で熱交換が行われる。この熱交換により加熱された外気は、配管113を介して外筒101に設けられた上部燃焼室114の上部バーナ114a、下部燃焼室115の下部バーナ115a、及び吸引装置116の上端部に供給され、燃焼用空気及び吸引装置116の作動用空気として用いられる。 Outside the operating air heat exchanger 110, outside air is introduced from the blower 112, and heat is exchanged with the exhaust gas in the operating air heat exchanger 110. The outside air heated by this heat exchange is supplied to the upper burner 114a of the upper combustion chamber 114, the lower burner 115a of the lower combustion chamber 115, and the upper end of the suction device 116, which are provided in the outer cylinder 101 via the pipe 113. Used as combustion air and air for operating the suction device 116.
 なお、内筒102を冷却した冷却済空気は、配管108,108aを通って上部及び下部バーナ114a,115aに供給され、燃焼用空気として用いられる。各バーナ114a,115aを備える各燃焼室114,115からの燃焼ガスは、図中実線矢印で示すように外筒101及び内筒102の間に形成された原料通路117内に形成された原料充填層中を上向きに流れ、下部燃焼室115からの燃焼ガスの一部は、図中実線矢印で示すように下向きに流れる。 The cooled air that has cooled the inner cylinder 102 is supplied to the upper and lower burners 114a and 115a through the pipes 108 and 108a and used as combustion air. Combustion gas from each combustion chamber 114, 115 provided with each burner 114a, 115a is filled with a raw material formed in a raw material passage 117 formed between the outer cylinder 101 and the inner cylinder 102 as indicated by solid arrows in the figure. The gas flows upward in the bed, and a part of the combustion gas from the lower combustion chamber 115 flows downward as indicated by solid arrows in the figure.
 外筒101の側面には、吸引装置116が設けられている。この吸引装置116は、インジェクタ機構を備え、外筒101の下部より上昇した冷却用空気と下部燃焼室115からの下向きの燃焼ガスと下向きの燃焼ガスにより焼成された原料より発生する原料分解ガス(例えば、COガス)を内筒102側に吸引させる。これら冷却用空気と燃焼ガスと原料が分解して発生するガスとの混合ガスは、内筒102内を通って配管118に導かれる。この配管118は、吸引装置116の上端部に接続され、この吸引装置116の上端部は、更に燃焼用空気を供給する配管113に接続され、下端部は下部燃焼室115に連結されている。 A suction device 116 is provided on the side surface of the outer cylinder 101. This suction device 116 includes an injector mechanism, and is a raw material decomposition gas (from a raw material fired by cooling air rising from the lower portion of the outer cylinder 101, downward combustion gas from the lower combustion chamber 115, and downward combustion gas ( For example, CO 2 gas) is sucked into the inner cylinder 102 side. The mixed gas of the cooling air, the combustion gas, and the gas generated by the decomposition of the raw material passes through the inner cylinder 102 and is guided to the pipe 118. The pipe 118 is connected to the upper end of the suction device 116, the upper end of the suction device 116 is further connected to a pipe 113 that supplies combustion air, and the lower end is connected to the lower combustion chamber 115.
 また、外筒101の下端部には、焼成品を排出する焼成品排出装置119が設けられ、内筒102の下端部とこの焼成品排出装置119との間に焼成品を冷却する焼成品冷却帯CZが形成される。焼成品排出装置119には、冷却空気ファン119aから外気が導入され、図中実線矢印で示すように焼成品冷却帯CZに充填されている焼成品中を上向きに冷却用空気が流れる。焼成品は、図中破線矢印で示すように、焼成品排出装置119の下方に流れ、外部に排出される。 Further, a fired product discharge device 119 for discharging the fired product is provided at the lower end portion of the outer cylinder 101, and a fired product cooling for cooling the fired product between the lower end portion of the inner tube 102 and the fired product discharge device 119. A band CZ is formed. Outside air is introduced into the fired product discharger 119 from the cooling air fan 119a, and cooling air flows upward in the fired product filled in the fired product cooling zone CZ as indicated by solid arrows in the figure. The fired product flows below the fired product discharge device 119 and is discharged to the outside, as indicated by broken line arrows in the figure.
 なお、原料通路117においては、下部燃焼室115から上部が熱ガスと原料とが逆方向に流れる向流帯を形成し、下部燃焼室115から下部が熱ガスと原料とが同方向に流れる並流帯を形成し、それぞれ下部燃焼室115から内筒102の下端部までの間に並流焼成帯PFZ、下部燃焼室115から上部燃焼室114までの間に下部焼成帯DFZ、上部燃焼室114から上方の所定範囲までの間に上部焼成帯UFZ、及び上部焼成帯UFZの上方所定範囲内に予熱帯PZが形成される。 In the raw material passage 117, a countercurrent zone is formed in which the hot gas and the raw material flow in opposite directions from the lower combustion chamber 115 and the lower gas chamber and the raw material flow in the same direction from the lower combustion chamber 115. A co-current calcination zone PFZ is formed between the lower combustion chamber 115 and the lower end portion of the inner cylinder 102, and a lower calcination zone DFZ and an upper combustion chamber 114 are formed between the lower combustion chamber 115 and the upper combustion chamber 114, respectively. Between the upper firing zone UFZ and the upper firing zone UFZ, the pre-tropical zone PZ is formed within the upper firing zone UFZ.
 このように構成された竪型焼成炉の並流焼成帯PFZにおいては、燃焼ガスが原料中を並列に流れて焼成が行われ、原料が分解してガス(CO)が発生する。この燃焼ガスと原料が分解して発生するガス(燃焼ガスと原料が分解して発生するガスの混合ガスを並流ガスと称する。)が冷却用空気と混合されて吸引装置116に吸引される構造となっている。そして、上述したように吸引された混合ガスは、燃焼用空気として用いられると共に、燃料の燃焼熱により加熱されて再度炉内の原料通路117の原料充填層に導入され、焼成熱源として用いられる。 In the co-firing zone PFZ of the vertical firing furnace configured as described above, the combustion gas flows in parallel in the raw material and firing is performed, and the raw material is decomposed to generate gas (CO 2 ). A gas generated by the decomposition of the combustion gas and the raw material (a mixed gas of the gas generated by the decomposition of the combustion gas and the raw material is referred to as a cocurrent gas) is mixed with cooling air and sucked into the suction device 116. It has a structure. The mixed gas sucked as described above is used as combustion air, heated by the combustion heat of the fuel, introduced again into the raw material packed layer of the raw material passage 117 in the furnace, and used as a firing heat source.
 なお、並流ガスの温度は、例えば並流焼成帯PFZの下端部において約900℃以上と高温であり、焼成品を冷却した後の冷却用空気も約500℃~890℃程度となる。このため、吸引装置116の機構として機械的なファン類等を採用することは難しく、主としてインジェクタ機構が用いられている。 Note that the temperature of the cocurrent gas is, for example, as high as about 900 ° C. or more at the lower end of the cocurrent firing zone PFZ, and the cooling air after cooling the fired product is also about 500 ° C. to 890 ° C. For this reason, it is difficult to employ mechanical fans or the like as the mechanism of the suction device 116, and an injector mechanism is mainly used.
 このインジェクタ機構を採用した場合の吸引装置116は、作動のために有圧空気(例えば、30~70kPaの圧力、400℃~500℃の温度)等の作動用空気(又は作動用ガス)を装置内のインジェクタノズルに供給して、高速の噴流をインジェクタ機構内で形成することで吸引圧力を発生させている。 When this injector mechanism is adopted, the suction device 116 is a device for operating air (or operating gas) such as pressurized air (for example, pressure of 30 to 70 kPa, temperature of 400 ° C. to 500 ° C.) for operation. The suction pressure is generated by supplying a high-speed jet to the injector nozzle and forming a high-speed jet in the injector mechanism.
(1)吸引装置116の特性
 このような吸引装置116は、基本的に耐火物で構成されているので、炉の操業中に吸引装置116の寸法等を可変にすることはできず、寸法が固定されることで次のような特性を備えることとなる。図5は、吸引装置116に吸引される混合ガス量と吸引圧力との関係を示す図である。
(1) Characteristics of the suction device 116 Since such a suction device 116 is basically composed of a refractory material, the dimensions of the suction device 116 cannot be varied during the operation of the furnace, and the dimensions are By being fixed, the following characteristics are provided. FIG. 5 is a diagram showing the relationship between the amount of mixed gas sucked by the suction device 116 and the suction pressure.
 図5からも明らかなように、作動用空気量V1,V2,V3(V1<V2<V3)がそれぞれ一定の場合、混合ガス量が多くなるほど吸引圧力は低下する。また、作動用空気量をV1→V2→V3のように増加させると吸引圧力は大きくなり、逆に作動用空気量をV3→V2→V1のように減少させると吸引圧力は小さくなる。 As is clear from FIG. 5, when the operating air amounts V1, V2, and V3 (V1 <V2 <V3) are constant, the suction pressure decreases as the mixed gas amount increases. Further, when the operating air amount is increased as V1 → V2 → V3, the suction pressure increases. Conversely, when the operating air amount is decreased as V3 → V2 → V1, the suction pressure decreases.
 竪型焼成炉の操業においては、一般的に混合ガス量は系の流路抵抗と吸引圧力とが同一となった時点でバランスするので、作動用空気量を増やせば混合ガス量を増加させることができ、作動用空気量を減らせば混合ガス量を減少させることができる。 In the operation of a vertical firing furnace, the amount of mixed gas generally balances when the flow path resistance and suction pressure of the system become the same, so increasing the amount of operating air increases the amount of mixed gas. If the amount of working air is reduced, the amount of mixed gas can be reduced.
(2)供給空気量の適正化
 また、上部燃焼室114と下部燃焼室115とに供給される燃料の量は、炉内で必要な熱量の分配を可能にするため、ほぼ一定の比率で最適な合計量となるように設定される。各燃焼室114,115での燃焼温度は、耐火物や焼成原料に最適な許容温度内で最高の温度を選定し、効率的な(すなわち、熱消費量が最少になるような)操業を目指すことになる。従って、可能な限り少ない空気量(又はガス量)で良好な燃焼が行われることが要求される。ここで、燃焼用の空気量は一般的に次式で表される。
(2) Optimization of the amount of supplied air The amount of fuel supplied to the upper combustion chamber 114 and the lower combustion chamber 115 is optimal at a substantially constant ratio in order to enable the necessary heat distribution in the furnace. It is set to be a total amount. The combustion temperature in each of the combustion chambers 114 and 115 is selected as the highest temperature within the allowable temperature optimum for the refractory and the firing raw material, and aims at efficient operation (that is, heat consumption is minimized). It will be. Therefore, it is required that good combustion is performed with as little air (or gas) as possible. Here, the amount of air for combustion is generally expressed by the following equation.
 [数1]
 Va=m・Ao・Fw
  Va:燃焼用として炉に供給する全空気量(Nm/hr)
  Fw:炉に供給する燃料量(kg/hr)
  Ao:理論燃焼空気量(Nm/kg燃料)…燃料1kgを完全燃焼させるために必要な理論的空気量
   m:空気係数
[Equation 1]
Va = m · Ao · Fw
Va: Total amount of air supplied to the furnace for combustion (Nm 3 / hr)
Fw: Amount of fuel supplied to the furnace (kg / hr)
Ao: Theoretical combustion air amount (Nm 3 / kg fuel): Theoretical air amount necessary for complete combustion of 1 kg of fuel m: Air coefficient
 通常、竪型燃焼炉では、例えば上記式における空気係数mは1.1~1.37とされる。すなわち、理論的に必要な空気量の1.1~1.37倍の空気量が供給されている。なお、使用する燃料の種類により空気係数mの最適値は異なるが、一般的には空気係数mを最小限にすることが熱消費量を最少にするための1つの要素として求められる。 Usually, in a vertical combustion furnace, for example, the air coefficient m in the above equation is set to 1.1 to 1.37. That is, an air amount 1.1 to 1.37 times the theoretically required air amount is supplied. Although the optimum value of the air coefficient m differs depending on the type of fuel used, generally, minimizing the air coefficient m is required as one factor for minimizing heat consumption.
 また、インジェクタ機構の作動用空気は、下部燃焼室115に流入するため、下部燃焼室115の燃料の燃焼条件にも影響を及ぼすこととなる。更に、吸引される混合ガスも同様に燃焼室内の温度条件や燃焼炎の状態に影響する。具体的には、バーナに供給される燃焼用空気以外に下部燃焼室115に流入する空気としては、作動用空気と焼成品の冷却用空気とがある。これらの空気は上記空気係数mに直接関連することとなる。 Also, since the operating air for the injector mechanism flows into the lower combustion chamber 115, it also affects the fuel combustion conditions in the lower combustion chamber 115. Furthermore, the mixed gas sucked similarly affects the temperature conditions in the combustion chamber and the state of the combustion flame. Specifically, in addition to the combustion air supplied to the burner, the air that flows into the lower combustion chamber 115 includes working air and cooling air for the fired product. These airs are directly related to the air coefficient m.
(3)品質確保・熱消費量低減からの要求事項
 更に、焼成品の品質確保の観点から、上記並流ガス量は、原料の焼成に影響して結果的に焼成品の品質に影響するものである。このため、一定量の確保が必要不可欠である。また、熱消費量(燃料消費量)の低減を図るためには、焼成品冷却帯CZの出口温度を低下させ、焼成品が炉外に持ち出す損失熱(焼成品の保有熱)を低減し、熱回収量を増加させる必要がある。このためには、一定の冷却用空気量も確保する必要がある。
(3) Requirements from ensuring quality and reducing heat consumption Furthermore, from the viewpoint of ensuring the quality of the baked product, the amount of the cocurrent gas affects the firing of the raw material and consequently the quality of the baked product. It is. For this reason, it is essential to secure a certain amount. In addition, in order to reduce the heat consumption (fuel consumption), the outlet temperature of the fired product cooling zone CZ is lowered, and the heat lost from the fired product to the outside of the furnace (heat retained in the fired product) is reduced. It is necessary to increase the amount of heat recovery. For this purpose, it is necessary to secure a certain amount of cooling air.
 ところで、上述した(1)の吸引装置116の特性における吸引圧力は、並流焼成帯での並流ガス量を決定付ける要素となる。並流焼成帯は、焼成工程の最終段階であるため、その下流端でガスが所定の温度となるように炉全体の制御がなされる。このことからも、一定量の並流ガスを確保することは、焼成炉を操業する上で極めて重要な要素である。
 並流ガスを一定量確保するためには、吸引圧力を確保することが必要であり、上述した(1)のインジェクタ機構を備える吸引装置116の特性からインジェクタ機構への作動用空気量を多くするか、混合ガス量を少なくする必要がある。しかし、作動用空気量を多くすることは上記(2)の供給空気量の適正化に反し、混合ガス量を低減することは、焼成品の冷却空気量を低減することになるため、(3)の要求事項に反することになる。このため、多くの場合には、(3)の要求事項を犠牲にし、作動用空気量を一定とした上で、焼成品の冷却用空気量を少なくすることにより、混合ガス量を減少させるようにした操業が行われている。この結果、吸引圧力を上昇させて並流ガス量を多く確保する操作方針が採用される。
By the way, the suction pressure in the characteristics of the suction device 116 of (1) described above is an element that determines the amount of cocurrent gas in the cocurrent firing zone. Since the co-current calcination zone is the final stage of the calcination process, the entire furnace is controlled so that the gas reaches a predetermined temperature at the downstream end thereof. Also from this fact, securing a certain amount of co-current gas is an extremely important factor in operating the firing furnace.
In order to secure a certain amount of co-current gas, it is necessary to secure a suction pressure, and the amount of air for operation to the injector mechanism is increased due to the characteristics of the suction device 116 having the injector mechanism (1) described above. Or it is necessary to reduce the amount of mixed gas. However, increasing the amount of operating air is contrary to the optimization of the amount of supplied air in (2) above, and reducing the amount of mixed gas will reduce the amount of cooling air in the fired product. ) Would be contrary to the requirements. For this reason, in many cases, the amount of mixed gas is reduced by reducing the amount of air for cooling the fired product while maintaining the amount of air for operation at the expense of the requirement (3). The operation that was made is carried out. As a result, an operation policy is adopted in which the suction pressure is increased to ensure a large amount of cocurrent gas.
特開昭57-122279号公報Japanese Patent Laid-Open No. 57-122279
 しかしながら、上述したように焼成品の冷却用空気量を減ずることで、焼成品の排出温度が高くなり損失熱が大きくなる。上記のような焼成品冷却帯CZの冷却容量は十分確保されているが、冷却用空気量の絶対的な不足により備えられた冷却機能を十分発揮できていないという場合がある。このため、インジェクタ機構による吸引装置を用いた並流焼成帯を備える竪型焼成炉においては、操業時の操作制御の自由度が制限される場合が生じ得る。 However, by reducing the amount of air for cooling the fired product as described above, the discharge temperature of the fired product is increased and the heat loss is increased. Although the cooling capacity of the fired product cooling zone CZ as described above is sufficiently secured, the cooling function provided due to the absolute shortage of the cooling air amount may not be sufficiently exhibited. For this reason, in a vertical firing furnace provided with a co-current firing zone using a suction device with an injector mechanism, the degree of freedom of operation control during operation may be limited.
 この発明は、上述した問題点を解消するため、吸引装置のインジェクタ機構の作動用空気量を低減して並流ガス量を確保しつつ焼成品の冷却用空気量を確保可能にし、これにより排出される焼成品の保有熱を有効に回収すると共に、操作制御の自由度を向上させることができる竪型焼成炉を提供することを目的とする。 In order to solve the above-mentioned problems, the present invention makes it possible to reduce the amount of air for operating the injector mechanism of the suction device and secure the amount of co-current gas while ensuring the amount of air for cooling the fired product, thereby discharging An object of the present invention is to provide a vertical firing furnace capable of effectively recovering the retained heat of the fired product and improving the degree of freedom of operation control.
 上述した課題を解決し、目的を達成するため、本発明に係る竪型焼成炉は、軸方向を上下方向として配置された外筒と、この外筒の内部に同軸配置されて前記外筒と共に二重筒状構造をなし前記外筒との間に原料通路を形成する内筒と、前記外筒の上端に設置されて原料を前記原料通路に投入して前記原料通路に原料充填層を形成する投入装置と、前記原料通路に接続して形成されて燃焼用空気を導入してバーナによる熱ガスを発生させる燃焼室と、前記燃焼室で発生された熱ガスの一部を前記原料通路の下端部及び内筒を経由して前記外筒の外部に吸引することにより、前記燃焼室から下側の前記原料充填層の原料と熱ガスが共に下方に移動しながら焼成される並流焼成帯を形成する吸引装置と、前記並流焼成帯の下端部に設けられ、前記原料通路から焼成品を排出する焼成品排出機構と、前記焼成品排出機構の下方に接続されて内部に焼成品充填層を形成する焼成品導入管を有し、この焼成品導入管の下方に前記焼成品充填層に連続する焼成品を収容し、この収容された焼成品を外部からの冷却用空気を導入して冷却する焼成品冷却機構とを備え、前記焼成品充填層は、前記冷却用空気の上方への流れを低減する抵抗機能を有することを特徴とする。 In order to solve the above-described problems and achieve the object, the vertical firing furnace according to the present invention includes an outer cylinder arranged with the axial direction set as the vertical direction, and a coaxial arrangement inside the outer cylinder together with the outer cylinder. An inner cylinder that forms a double cylindrical structure and forms a raw material passage between the outer cylinder and a raw material filling layer that is installed at the upper end of the outer cylinder and that feeds the raw material into the raw material passage to form the raw material passage A charging device that is connected to the raw material passage and introduces combustion air to generate hot gas by a burner; and a part of the hot gas generated in the combustion chamber is passed through the raw material passage. A co-current firing zone in which the raw material and hot gas in the raw material packed bed on the lower side are fired while moving downward from the combustion chamber by suctioning to the outside of the outer tube via the lower end and the inner tube. A suction device that forms a front end of the co-current firing zone; There is a fired product discharge mechanism for discharging the fired product from the raw material passage, and a fired product introduction tube connected to the lower side of the fired product discharge mechanism to form a fired product filled layer inside, and below the fired product introduction tube A fired product cooling mechanism configured to house a fired product continuous in the fired product filled layer and to cool the housed fired product by introducing cooling air from the outside, and the fired product filled layer includes the cooling It has a resistance function to reduce the upward flow of working air.
 前記冷却用空気は、例えば前記焼成品冷却機構の内部の焼成品を通過して熱交換された後に、前記燃焼室における燃焼用空気の一部として用いられる。また、前記焼成品冷却機構は、例えば前記焼成品充填層に連続する焼成品を収容し、この収容された焼成品を冷却する。 The cooling air is used as a part of the combustion air in the combustion chamber after, for example, passing through a fired product inside the fired product cooling mechanism and exchanging heat. Further, the fired product cooling mechanism accommodates, for example, a fired product continuous in the fired product packed layer, and cools the stored fired product.
 前記焼成品排出機構は、例えば前記外筒の下端部に設けられ、前記内筒の外径よりも小さな径の孔部を備えるシュートが前記内筒の中心線と同心に形成された底板と、前記並流焼成帯の下端部近傍にて前記外筒の円周上に複数配置され、前記底板の床面上を前記シュートの中心方向に向かって往復動可能なプッシャーとを有し、前記内筒の下端部周縁と前記底板の孔部とを結ぶ面が、前記焼成品の自由安息角面を形成するように構成されている。 The fired product discharge mechanism is provided at, for example, a lower end portion of the outer cylinder, and a bottom plate in which a chute including a hole having a diameter smaller than the outer diameter of the inner cylinder is formed concentrically with the center line of the inner cylinder; A plurality of pushers arranged on the circumference of the outer cylinder in the vicinity of the lower end of the co-current firing zone and capable of reciprocating on the floor surface of the bottom plate toward the center of the chute, A surface connecting the peripheral edge of the lower end of the tube and the hole of the bottom plate is configured to form a free angle of repose of the fired product.
 本発明によれば、吸引装置のインジェクタ機構の作動用空気量を低減して並流ガス量を確保しつつ焼成品の冷却用空気量を確保可能にし、これにより排出される焼成品の保有熱を有効に回収すると共に、操作制御の自由度を向上させることができる。 According to the present invention, it is possible to secure the amount of air for cooling the fired product while reducing the amount of air for operation of the injector mechanism of the suction device to ensure the amount of cocurrent gas, and the heat retained in the fired product discharged thereby Can be collected effectively and the degree of freedom of operation control can be improved.
本発明の一実施形態に係る竪型焼成炉を示す図である。It is a figure which shows the vertical type baking furnace which concerns on one Embodiment of this invention. 並流焼成帯PFZにおける並流ガス量と圧力損失との関係、並流ガス量と焼成品冷却帯CZを通過した冷却用空気及び並流ガスの混合ガス量との関係、及び吸引装置にて発生する吸引圧力と混合ガス量との関係をまとめて示す図である。In the co-current firing zone PFZ, the relationship between the co-current gas amount and the pressure loss, the relationship between the co-current gas amount and the mixed gas amount of the cooling air and co-current gas that has passed through the fired product cooling zone CZ, and the suction device It is a figure which shows collectively the relationship between the suction pressure to generate | occur | produce and the amount of mixed gas. 焼成品の冷却用空気量と焼成品温度と焼成品保有熱との関係を示す図である。It is a figure which shows the relationship between the air quantity for cooling of a baked product, a baked product temperature, and a baked product holding heat. 従来の二重円筒構造の竪型焼成炉を示す図である。It is a figure which shows the conventional vertical firing furnace of a double cylinder structure. 吸引装置に吸引される混合ガス量と吸引圧力との関係を示す図である。It is a figure which shows the relationship between the amount of mixed gas attracted | sucked by the suction device, and suction pressure.
 以下に、添付の図面を参照して、この発明に係る竪型焼成炉の実施の形態を詳細に説明する。図1は、本発明の一実施形態に係る竪型焼成炉を示す図である。図1に示すように、本実施形態に係る竪型焼成炉1は、円筒状の外筒2及びその内側に同心状に懸垂配置された内筒3を備えて構成されている。 Hereinafter, an embodiment of a vertical firing furnace according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a view showing a vertical firing furnace according to an embodiment of the present invention. As shown in FIG. 1, the vertical firing furnace 1 according to the present embodiment includes a cylindrical outer cylinder 2 and an inner cylinder 3 that is concentrically suspended inside the cylindrical outer cylinder 2.
 また、外筒2の上端部には、搬送装置から供給される原料の投入装置4が設けられ、更にこの外筒2の上端部は配管5を介して図示しない排ガス吸引ファンに接続されている。排ガス吸引ファンにより吸引された外筒2からの排ガスは、図示しない集塵装置を介してダスト除去された後に、大気中に排出される。 A feeding device 4 for a raw material supplied from the conveying device is provided at the upper end of the outer cylinder 2, and the upper end of the outer cylinder 2 is connected to an exhaust gas suction fan (not shown) via a pipe 5. . The exhaust gas from the outer cylinder 2 sucked by the exhaust gas suction fan is discharged into the atmosphere after dust is removed via a dust collector (not shown).
 内筒3内には、内筒3の冷却用空気の通路6が形成されており、この通路には配管7を介して冷却空気ファン8から冷却用空気が供給される。内筒3内を冷却した冷却済空気は、配管9に集合されて燃焼用空気熱交換器10に供給され、燃焼用空気として用いられる。また、内筒3の上端部は、配管11を介して燃焼用空気熱交換器10及び作動用空気熱交換器12のそれぞれの上端部に接続されている。 In the inner cylinder 3, a cooling air passage 6 for the inner cylinder 3 is formed, and cooling air is supplied to the passage from a cooling air fan 8 through a pipe 7. The cooled air that has cooled the inside of the inner cylinder 3 is collected in the pipe 9 and supplied to the combustion air heat exchanger 10 to be used as combustion air. The upper end portion of the inner cylinder 3 is connected to the upper end portions of the combustion air heat exchanger 10 and the operating air heat exchanger 12 via the pipe 11.
 これら各熱交換器10,12の下端部は、配管13を介して排ガス吸引ファンに接続される。作動用空気熱交換器12の下方には、ブロワ14から外気が導入され、作動用空気熱交換器12内にて排ガスとの間で熱交換が行われる。この熱交換により加熱された外気は、配管15を介して外筒2に設けられた上部燃焼室16の上部バーナ16a、下部燃焼室17の下部バーナ17a、及び吸引装置18の上端部に供給され、燃焼用空気及び吸引装置18の作動用空気として用いられる。 The lower ends of these heat exchangers 10 and 12 are connected to an exhaust gas suction fan via a pipe 13. Outside the operating air heat exchanger 12, outside air is introduced from the blower 14, and heat is exchanged with the exhaust gas in the operating air heat exchanger 12. The outside air heated by this heat exchange is supplied to the upper burner 16 a of the upper combustion chamber 16, the lower burner 17 a of the lower combustion chamber 17, and the upper end of the suction device 18 provided in the outer cylinder 2 through the pipe 15. The air for combustion and the air for operating the suction device 18 are used.
 内筒3を冷却し燃焼用空気熱交換器10で熱交換された空気は、配管19を通って上部及び下部バーナ16a,17aに供給されて燃焼用空気として用いられる。各バーナ16a,17aを備える各燃焼室16,17からの燃焼ガスは、図中実線矢印で示すように、外筒2及び内筒3の間に形成された原料通路20内に形成された原料充填層中を上向きに流れ、下部燃焼室17からの燃焼ガスの一部は、図中実線矢印で示すように下向きに流れる。 The air that has cooled the inner cylinder 3 and heat-exchanged by the combustion air heat exchanger 10 is supplied to the upper and lower burners 16a and 17a through the pipe 19 and used as combustion air. Combustion gas from each combustion chamber 16, 17 provided with each burner 16 a, 17 a is a raw material formed in a raw material passage 20 formed between the outer cylinder 2 and the inner cylinder 3 as indicated by solid arrows in the figure. The gas flows upward in the packed bed, and a part of the combustion gas from the lower combustion chamber 17 flows downward as indicated by solid arrows in the figure.
 外筒2の側面には、吸引装置18が設けられている。この吸引装置18は、インジェクタ機構を備え、内筒3の下方に設けられた焼成品冷却装置21から焼成品導入管22内の焼成品充填層23を通って僅かに上昇した冷却用空気と下部燃焼室17からの下向きの燃焼ガスと下向きの燃焼ガスにより焼成された原料より発生する原料分解ガス(例えば、COガス)を内筒3及び配管24を介して吸引する。 A suction device 18 is provided on the side surface of the outer cylinder 2. The suction device 18 includes an injector mechanism, and cooling air and a lower portion slightly raised from the fired product cooling device 21 provided below the inner cylinder 3 through the fired product packed layer 23 in the fired product introduction pipe 22. A raw material decomposition gas (for example, CO 2 gas) generated from the raw material fired by the downward combustion gas and the downward combustion gas from the combustion chamber 17 is sucked through the inner cylinder 3 and the pipe 24.
 配管24は、吸引装置18の上端部に接続され、この吸引装置18の上端部は、更に作動用空気を供給する配管15に接続され、下端部は下部燃焼室17に連結されている。 The piping 24 is connected to the upper end portion of the suction device 18, the upper end portion of the suction device 18 is further connected to the piping 15 for supplying operating air, and the lower end portion is connected to the lower combustion chamber 17.
 また、外筒2の下端部には、焼成品を炉から排出する焼成品排出機構が設けられている。更に、焼成品排出機構の下方には、冷却空気ファン25により外部からの冷却用空気を導入して焼成品の冷却を行う焼成品冷却機構が設けられている。焼成品排出機構は、例えば次のように構成されている。 Also, a fired product discharge mechanism for discharging the fired product from the furnace is provided at the lower end of the outer cylinder 2. Further, a fired product cooling mechanism is provided below the fired product discharge mechanism to cool the fired product by introducing cooling air from the outside by the cooling air fan 25. The fired product discharge mechanism is configured as follows, for example.
 具体的には、焼成品排出機構は、外筒2の下端部側を覆う金属製の底板26と、外筒2の円周上に複数配置され、底板26の床面上にあり、充填層下端部の焼成品を移動させる耐熱金属製のプッシャー27とを備えて構成されている。底板26は、内筒3の外周径よりも小さな径の孔部26aを備えるシュート26bが内筒3の中心線と同心に形成された構造を備える。 Specifically, the fired product discharge mechanism includes a metal bottom plate 26 that covers the lower end side of the outer cylinder 2, a plurality of disposed on the circumference of the outer cylinder 2, on the floor surface of the bottom plate 26, and a packed bed A heat-resistant metal pusher 27 for moving the fired product at the lower end is provided. The bottom plate 26 has a structure in which a chute 26 b having a hole portion 26 a having a diameter smaller than the outer diameter of the inner cylinder 3 is formed concentrically with the center line of the inner cylinder 3.
 この底板26は、耐火物でライニングされ、焼成品や燃焼ガス等の温度に十分耐えることができるように構成されている。プッシャー27は、油圧シリンダで駆動されるストローク可変ピストン27aによりシュート26bの中心方向に向かって図中実線矢印で示すように往復動可能な構造を備える。 The bottom plate 26 is lined with a refractory material and is configured to sufficiently withstand the temperature of a fired product or combustion gas. The pusher 27 has a structure capable of reciprocating as indicated by a solid line arrow in the figure toward the center of the chute 26b by a stroke variable piston 27a driven by a hydraulic cylinder.
 なお、内筒3の下端外周端点と底板26のシュート26bの上端内周端点とを結ぶ破線で示す面は、焼成品の自由安息角面31を形成する。これにより、原料通路20内に形成される原料充填層の原料の降下を、円環状面において均一にすることが可能となる。 In addition, the surface shown with the broken line which connects the lower end outer periphery end point of the inner cylinder 3 and the upper end inner periphery end point of the chute | shoot 26b of the baseplate 26 forms the free repose angle surface 31 of a baked product. As a result, the lowering of the raw material of the raw material packed layer formed in the raw material passage 20 can be made uniform on the annular surface.
 また、焼成品冷却機構は、具体的には、シュート26bの下端部に伸縮継手28を介して外部と気密状態で配置された焼成品導入管22と、この焼成品導入管22の下端部に設けられた焼成品冷却装置21とで構成されている。なお、焼成品冷却装置21内には、冷却空気ファン25により導入され風量調整用のダンパ25aにより風量が調整された冷却用空気を、図中実線矢印で示すように装置内の焼成品充填層21bに分散供給する傘状のスリット21aが設けられている。 Further, the fired product cooling mechanism specifically includes a fired product introduction pipe 22 disposed in an airtight state at the lower end portion of the chute 26 b via the expansion joint 28, and a lower end portion of the fired product introduction pipe 22. The fired product cooling device 21 is provided. In the fired product cooling device 21, the cooling air introduced by the cooling air fan 25 and having the air volume adjusted by the air volume adjusting damper 25 a is shown in FIG. Umbrella-shaped slits 21a that supply and distribute to 21b are provided.
 焼成品充填層21bを通って焼成品と熱交換された冷却用空気は、焼成品充填層21bの上方空間部21cに接続されたダクト30を通って風量調整用のダンパ30aにより風量が調整された上で、ダクト30が接続された下部燃焼室17に供給される。なお、焼成品冷却装置21のスリット21aの下端部から焼成品導入管22の下端部までの間が焼成品を冷却する焼成品冷却帯CZとなっている。 The cooling air heat-exchanged with the fired product through the fired product packed layer 21b is adjusted in the air volume by the damper 30a for adjusting the air flow through the duct 30 connected to the upper space portion 21c of the fired product filled layer 21b. After that, it is supplied to the lower combustion chamber 17 to which the duct 30 is connected. A space between the lower end portion of the slit 21a of the fired product cooling device 21 and the lower end portion of the fired product introduction tube 22 is a fired product cooling zone CZ for cooling the fired product.
 また、原料通路20においては、下部燃焼室17から上部が熱ガスと原料とが逆方向に流れる向流帯を形成し、下部燃焼室17から下部が熱ガスと原料とが同方向に流れる並流帯を形成し、それぞれ下部燃焼室17から内筒3の下端部までの間に並流焼成帯PFZ、下部燃焼室17から上部燃焼室16までの間に下部焼成帯DFZ、上部燃焼室16から上方の所定範囲までの間に上部焼成帯UFZ、及び上部焼成帯UFZの上方所定範囲内に予熱帯PZがそれぞれ形成されている。 Further, in the raw material passage 20, a counter current zone in which the hot gas and the raw material flow in opposite directions from the lower combustion chamber 17 is formed, and the hot gas and the raw material flow in the same direction from the lower combustion chamber 17 in the lower portion. A flow zone is formed, and a co-current firing zone PFZ is formed between the lower combustion chamber 17 and the lower end portion of the inner cylinder 3, and a lower firing zone DFZ and an upper combustion chamber 16 are provided between the lower combustion chamber 17 and the upper combustion chamber 16, respectively. Between the upper firing zone UFZ and the upper firing zone UFZ, the pre-tropical zone PZ is formed within the upper firing zone UFZ.
 このように構成された竪型焼成炉1においては、投入装置4から原料通路20内に投入された原料が、底板26から予熱帯PZの最上端より上方まで充填層を形成している。原料は、予熱帯PZ及び各焼成帯UFZ,DFZ,PFZを通って焼成され、焼成品となって底板26の床面上に到達する。到達した焼成品は、予め設定された排出量でプッシャー27によりシュート26b及び伸縮継手28を介して焼成品導入管22内に排出される。 In the vertical firing furnace 1 configured as described above, the raw material charged into the raw material passage 20 from the charging device 4 forms a packed bed from the bottom plate 26 to above the uppermost end of the pre-tropical PZ. The raw material is fired through the pre-tropical PZ and the firing zones UFZ, DFZ, and PFZ, and reaches the floor surface of the bottom plate 26 as a fired product. The reached fired product is discharged into the fired product introduction pipe 22 by the pusher 27 through the chute 26b and the expansion joint 28 with a preset discharge amount.
 焼成品導入管22内を通った焼成品は、焼成品冷却装置21内に充填され、この焼成品充填層21bから続く焼成品充填層23が焼成品導入管22内に導入管高さH1よりも低い充填層高さH2を持って形成される。なお、焼成品導入管22の下端は、焼成品充填層21bに接するように配置される。 The fired product that has passed through the fired product introduction tube 22 is filled into the fired product cooling device 21, and the fired product filling layer 23 that continues from the fired product filled layer 21b is introduced into the fired product introduction tube 22 from the introduction tube height H1. Is formed with a lower filling layer height H2. Note that the lower end of the fired product introduction tube 22 is disposed so as to be in contact with the fired product filled layer 21b.
 焼成品冷却装置21内で冷却された焼成品は、焼成品充填層23の充填層高さH2が必要な高さを維持するように制御されて排出部21dから外部に排出される。焼成品充填層21bから続く焼成品充填層23が所定の充填層高さH2を持って形成されるため、焼成品充填層21bを通った冷却用空気は、焼成品充填層23の上方にはほとんど導かれないこととなる。 The fired product cooled in the fired product cooling device 21 is controlled to maintain the required height H2 of the fired product filling layer 23 and is discharged from the discharge unit 21d to the outside. Since the fired product packed layer 23 that continues from the fired product filled layer 21b is formed with a predetermined packed layer height H2, the cooling air that has passed through the fired product filled layer 21b is located above the fired product filled layer 23. It will be hardly guided.
 すなわち、焼成品充填層23によって、冷却用空気をある程度シールする空気シール効果が発揮される。なお、焼成品導入管22の径及び充填層高さH2は、焼成品による空気シール効果が最大限発揮されるように構成されるので、焼成品充填層23を通って並流ガスと合流する冷却用空気量は少量となる。 That is, the fired product filling layer 23 exhibits an air sealing effect that seals the cooling air to some extent. In addition, since the diameter and the packed bed height H2 of the fired product introduction pipe 22 are configured so that the air sealing effect by the fired product is maximized, the gas flows through the fired product filled layer 23 and merges with the cocurrent gas. The amount of cooling air is small.
 従って、本実施形態に係る竪型焼成炉1は、上記のような構成によって、混合ガス量が少なくなるため、吸引装置18におけるインジェクタ機構の作動用空気量を低減することが可能となる。通常、作動用空気の温度は450℃~480℃となっており、作動用空気の低減量に比例して作動用空気による炉への熱供給量が減少する。 Therefore, the vertical firing furnace 1 according to the present embodiment reduces the amount of mixed gas due to the above-described configuration, so that the amount of air for operating the injector mechanism in the suction device 18 can be reduced. Usually, the temperature of the working air is 450 ° C. to 480 ° C., and the amount of heat supplied to the furnace by the working air decreases in proportion to the amount of reduction of the working air.
 この竪型焼成炉1では、上部焼成帯UFZの上端部位置において内筒3に設けられた導入路3aを経由し配管11を通って炉内の燃焼ガスの一部が燃焼用空気熱交換器10及び作動用空気熱交換器12にそれぞれ導入されている。従って、作動用空気熱交換器12を小型化しても作動用空気を十分に加熱することができる。 In the vertical firing furnace 1, a part of the combustion gas in the furnace passes through the piping 11 through the introduction path 3 a provided in the inner cylinder 3 at the upper end position of the upper firing zone UFZ, and the combustion air heat exchanger. 10 and the operating air heat exchanger 12 respectively. Therefore, even if the working air heat exchanger 12 is downsized, the working air can be sufficiently heated.
 この場合、小型化した作動用空気熱交換器12への燃焼ガスの導入量を減少させることができるので、これにより生じる余剰の燃焼ガスを燃焼用空気熱交換器10に導入し、各バーナ16a,17aの燃焼用空気として用いる内筒3の冷却済空気(例えば、190℃~210℃の温度を有する)をこの熱交換器10内で加熱して、390℃~430℃の温度を有する燃焼用空気を供給することが可能となる。 In this case, since the amount of combustion gas introduced into the miniaturized operating air heat exchanger 12 can be reduced, surplus combustion gas generated thereby is introduced into the combustion air heat exchanger 10, and each burner 16a. , 17a used as combustion air, the cooled air in the inner cylinder 3 (for example, having a temperature of 190 ° C. to 210 ° C.) is heated in the heat exchanger 10 to have a temperature of 390 ° C. to 430 ° C. It becomes possible to supply working air.
 ここで、竪型焼成炉1を上記のような構成にした説明として、まず、インジェクタ機構を備えた吸引装置18の作動用空気量の低減について説明する。以下においては、具体例として焼成能力300t/dayの竪型焼成炉1が300t/dayの焼成品を生産している場合を例に挙げて説明する。前提として、竪型焼成炉における並流ガスの重要性について簡単に説明する。 Here, as an explanation of the vertical firing furnace 1 configured as described above, first, the reduction of the amount of air for operation of the suction device 18 provided with an injector mechanism will be described. In the following, as a specific example, a case where the vertical firing furnace 1 having a firing capacity of 300 t / day is producing a fired product of 300 t / day will be described as an example. As a premise, the importance of cocurrent gas in a vertical firing furnace will be briefly described.
 すなわち、並流焼成帯は、燃焼ガスを原料通路20内の原料の降下方向に沿って流すことにより原料の焼成を行う機能を有すると共に、焼成工程の最終段階にあるものである。従って、一定量の並流ガスを流した場合、並流焼成帯の下端部における燃焼ガスと焼成された原料より発生する原料分解ガスの混合ガスである並流ガスの温度を監視して、この温度が所定の温度となるように炉全体の調整を行えば、その最終結果が並流焼成帯の下端部の温度となって表現されることとなる。 That is, the co-current firing zone has a function of firing the raw material by flowing the combustion gas along the descending direction of the raw material in the raw material passage 20 and is in the final stage of the firing step. Therefore, when a certain amount of co-current gas flows, the temperature of the co-current gas, which is a mixed gas of the combustion gas at the lower end of the co-current calcining zone and the raw material decomposition gas generated from the calcined raw material, is monitored. If the entire furnace is adjusted so that the temperature becomes a predetermined temperature, the final result is expressed as the temperature at the lower end of the co-current firing zone.
 つまり、並流ガスの温度が所定の温度に一致した場合には、最終的に得られる焼成品が所定の品質となることが経験的に判明しているといえる。このように、並流ガスは炉の操業において重要な役割を果たしているので、実際の操業においては、並流ガス量の安定した確保が望まれるのである。 That is, it can be said that it is empirically found that when the temperature of the co-current gas coincides with a predetermined temperature, the finally obtained fired product has a predetermined quality. As described above, since the cocurrent gas plays an important role in the operation of the furnace, it is desired to ensure a stable amount of the cocurrent gas in the actual operation.
 このような前提の下、作動用空気量の低減について説明する。図2は、並流焼成帯における並流ガス量と圧力損失の関係、並流ガス量と焼成品冷却帯を通過した冷却用空気及び並流ガスの混合ガス量との関係、及び吸引装置にて発生する吸引圧力と混合ガス量との関係をまとめて示す図である。 Under this assumption, the reduction of the working air volume will be explained. FIG. 2 shows the relationship between the cocurrent gas amount and pressure loss in the cocurrent calcination zone, the relationship between the cocurrent gas amount and the mixed gas amount of cooling air and cocurrent gas that has passed through the baked product cooling zone, and the suction device. It is a figure which shows collectively the relationship between the suction pressure and the amount of mixed gas which generate | occur | produce.
 なお、図2のグラフAにおいては、並流ガス量(Nm/hr)が増加すると共に圧力損失も増加することが分かる。また、グラフBにおける線αは、冷却用空気量が8,000Nm/hrで一定量が流入する場合の並流ガス量と混合ガス量との関係を示し、線βは、冷却用空気量が0の場合の並流ガス量と混合ガス量との関係を示し、線γは、冷却用空気量が600Nm/hrで一定量が流入する場合の並流ガス量と混合ガス量との関係を示している。この線γは、本実施形態に係る竪型焼成炉1の場合に相当し、600Nm/hrの冷却用空気量は焼成品充填層23からのリーク量を示している。 In addition, in the graph A of FIG. 2, it turns out that a cocurrent gas amount (Nm < 3 > / hr) increases and a pressure loss also increases. Further, the line α in the graph B shows the relationship between the cocurrent gas amount and the mixed gas amount when the cooling air amount is 8,000 Nm 3 / hr and the constant amount flows, and the line β is the cooling air amount. Shows the relationship between the amount of co-current gas and the amount of mixed gas when is 0, and the line γ shows the amount of co-current gas and the amount of mixed gas when the amount of cooling air is 600 Nm 3 / hr and a constant amount flows. Showing the relationship. This line γ corresponds to the vertical firing furnace 1 according to the present embodiment, and the cooling air amount of 600 Nm 3 / hr indicates the amount of leakage from the fired product packed layer 23.
 また、グラフCは、吸引装置にて発生する吸引圧力と共に並流焼成帯の下端部における吸引圧力も示すものであり、線A1,A2,A3は吸引装置で発生する吸引圧力を、線B1,B2,B3は並流焼成帯の下端部での吸引圧力をそれぞれ示している。上記並流焼成帯の下端部での吸引圧力は、この下端部と吸引装置との間の圧力損失を、吸引装置で発生する吸引圧力から差し引くことで求められる。これら吸引圧力は、混合ガス量が減少すると上昇することが分かる。 Graph C also shows the suction pressure at the lower end of the co-current firing zone along with the suction pressure generated by the suction device. Lines A1, A2, and A3 show the suction pressure generated by the suction device, and the lines B1, B2 and B3 respectively show the suction pressure at the lower end of the co-current firing zone. The suction pressure at the lower end of the co-current firing zone is obtained by subtracting the pressure loss between the lower end and the suction device from the suction pressure generated by the suction device. It can be seen that these suction pressures increase as the amount of mixed gas decreases.
 なお、グラフCにおいて、線A1は従来炉における吸引装置にて発生する吸引圧力及び線B1はこの従来炉での並流焼成帯の下端部での吸引圧力の例を示し、作動用空気量が4,900Nm/hrで一定量としたものである。線A3は同じく従来炉において作動用空気量を減少させた場合の吸引圧力及び線B3はこの場合の並流焼成帯の下端部での吸引圧力の例を示し、作動用空気量を上記4,900Nm/hrから3,000Nm/hrに減らしたものである。 In graph C, line A1 shows an example of the suction pressure generated by the suction device in the conventional furnace, and line B1 shows an example of the suction pressure at the lower end of the co-current firing zone in this conventional furnace, and the amount of operating air is It is a constant amount of 4,900 Nm 3 / hr. Similarly, line A3 shows the suction pressure when the operating air amount is reduced in the conventional furnace, and line B3 shows an example of the suction pressure at the lower end of the co-current firing zone in this case. in which was reduced to 3,000 nm 3 / hr from 900 nm 3 / hr.
 また、線A2及び線B2は、本実施形態に係る竪型焼成炉1において適用される少ない混合ガス量と作動用空気量とに対応して、新規設計された吸引装置18にて発生する吸引圧力及び並流焼成帯PFZの下端部での吸引圧力をそれぞれ示し、作動用空気量が2,500Nm/hrで一定量としたものである。 Further, the lines A2 and B2 are suctions generated by the newly designed suction device 18 corresponding to the small mixed gas amount and the working air amount applied in the vertical firing furnace 1 according to the present embodiment. The pressure and the suction pressure at the lower end of the co-current calcination zone PFZ are shown, respectively, and the working air amount is 2,500 Nm 3 / hr and a constant amount.
 実際の竪型焼成炉では、グラフCに示した並流焼成帯の下端部での吸引圧力とグラフAに示した並流焼成帯での圧力損失とが、横線D1で示すように一致した点でバランスする。そして、グラフAにおける一致圧力点D2から横軸に図中実線矢印で示すように垂直に引いた線D3と横軸との交点が並流ガス量となる。 In an actual vertical firing furnace, the suction pressure at the lower end of the co-current calcining zone shown in graph C and the pressure loss in the co-current calcining zone shown in graph A coincided as shown by the horizontal line D1. Balance with. And the intersection of the line D3 drawn perpendicularly | vertically as shown by the solid line arrow in a figure from the coincidence pressure point D2 in the graph A, and a horizontal axis becomes cocurrent gas amount.
 グラフB,Cにおいて、図中破線矢印で示したものは、グラフBにて冷却用空気量を600Nm/hr(実際には、リーク量相当)とした線γの場合の並流ガス量と並流焼成帯の下端部での吸引圧力とを示したものである。これらのことから、混合ガス量を減少させることにより、少ない量の作動用空気量で混合ガス量を減少させない場合と同一の並流焼成帯の下端部での吸引圧力を発生させることができるといえる。従って、並流ガス量を確保しながら、作動用空気量を減らすことが可能である。 In the graphs B and C, the ones indicated by the broken-line arrows in the figure indicate the amount of co-current gas in the case of the line γ where the cooling air amount is 600 Nm 3 / hr (actually equivalent to the leak amount) in the graph B. It shows the suction pressure at the lower end of the co-current firing zone. From these facts, by reducing the amount of mixed gas, it is possible to generate suction pressure at the lower end of the same co-current firing zone as in the case where the amount of mixed gas is not reduced with a small amount of working air. I can say that. Therefore, it is possible to reduce the amount of working air while ensuring the amount of cocurrent gas.
 なお、グラフAにおける圧力損失は、冷却用空気の影響を受けないので原料性状が変化しない限り、並流ガスのみに起因して生じる。従って、並流焼成帯の下端部での吸引圧力が決まれば、並流ガス量をこのグラフAから読み取ることができる。また、この下端部から吸引装置までの混合ガスの通路における圧力損失は、並流ガスと冷却用空気との混合ガスに起因して発生する。 Note that the pressure loss in the graph A is not affected by the cooling air, and is caused only by the cocurrent gas unless the raw material properties are changed. Therefore, if the suction pressure at the lower end of the co-current firing zone is determined, the co-current gas amount can be read from this graph A. Further, the pressure loss in the mixed gas passage from the lower end to the suction device is caused by the mixed gas of the cocurrent gas and the cooling air.
 このため、吸引装置における吸引圧力が決まれば、この圧力から上記通路における圧力損失を差し引くことで、グラフCに示す並流焼成帯の下端部での吸引圧力が算出され、並流ガス量を把握することが可能となる。このグラフCに示す通り、作動用空気量が一定の場合は、混合ガス量が減少すれば吸引装置の吸引圧力は高くなる。 Therefore, once the suction pressure in the suction device is determined, the suction pressure at the lower end of the co-current firing zone shown in graph C is calculated by subtracting the pressure loss in the passage from this pressure, and the amount of co-current gas is grasped. It becomes possible to do. As shown in this graph C, when the working air amount is constant, the suction pressure of the suction device increases as the mixed gas amount decreases.
 並流ガスの重要性は上述した通りであるので、並流ガスと冷却用空気とを比較した場合は、並流ガス量の確保の方が優先されることとなる。つまり、冷却用空気量を減らすことによって混合ガス量を減らし、吸引装置の吸引圧力を高く維持する(結果として並流焼成帯の下端部での吸引圧力が高く維持される)ことによって並流ガス量を多くすることができる。 Since the importance of the cocurrent gas is as described above, when the cocurrent gas and the cooling air are compared, priority is given to securing the cocurrent gas amount. That is, the amount of mixed gas is reduced by reducing the amount of cooling air, and the suction pressure of the suction device is kept high (as a result, the suction pressure at the lower end of the co-current firing zone is kept high), thereby forming a cocurrent gas. The amount can be increased.
 上述したように、図2に示したグラフCの線A1,B1は従来炉における各吸引圧力を示しているので、これらの線A1,B1に基づけば、例えば、図2に示したグラフA~Cから、約11,000Nm/hrの並流ガス量、約19,400Nm/hrの混合ガス量、及び約8,400Nm/hrの冷却用空気量の具体的数値を得ることができる。 As described above, the lines A1 and B1 of the graph C shown in FIG. 2 indicate the respective suction pressures in the conventional furnace, and therefore, based on these lines A1 and B1, for example, the graphs A to B shown in FIG. from C, it is possible to obtain co-current gas amount of about 11,000Nm 3 / hr, a gas mixture of about 19,400Nm 3 / hr, and the specific numerical values of the cooling air quantity of about 8,400Nm 3 / hr .
 なお、本実施形態に係る竪型焼成炉1においては、並流焼成帯PFZと焼成品冷却装置21とを分離配置した構造を備え、これらの中間位置に配置された焼成品導入管22内において所望の充填層高さH2を有する焼成品充填層23を形成することによって、上述したような空気シール効果を得るようにしている。 Note that the vertical firing furnace 1 according to the present embodiment has a structure in which the co-current firing zone PFZ and the fired product cooling device 21 are separately arranged, and in the fired product introduction pipe 22 disposed at an intermediate position between them. By forming the fired product filling layer 23 having a desired filling layer height H2, the air sealing effect as described above is obtained.
 このため、理想的な状態としては、吸引装置18には並流ガスのみが吸引されることになるが、実際には冷却用空気を完全にシールすることはできないので、焼成品充填層21bを通過した冷却用空気が並流ガスに混入することを念頭に置いて設計する必要が生じる。 For this reason, in an ideal state, only the cocurrent gas is sucked into the suction device 18, but in reality, the cooling air cannot be completely sealed. It is necessary to design with the cooling air that has passed into the co-current gas in mind.
 以上の事情を考慮して、並流ガス量が従来炉と同一程度となることを条件として設計した本実施形態に係る竪型焼成炉1における各吸引圧力は、図2に示したグラフCの線A2,B2に示すようになる。そして、これらの線A2,B2に基づけば、各グラフA~Cから、約11,000Nm/hrの並流ガス量、約11,600Nm/hrの混合ガス量、及び約600Nm/hrの冷却用空気量の具体的数値を得ることができるようになる。 In consideration of the above circumstances, each suction pressure in the vertical firing furnace 1 according to the present embodiment designed on the condition that the amount of cocurrent gas is the same as that of the conventional furnace is shown in the graph C of FIG. As shown by lines A2 and B2. Then, based on these lines A2, B2, from each of the graphs A ~ C, co-current gas amount of about 11,000Nm 3 / hr, a gas mixture of about 11,600Nm 3 / hr, and about 600 Nm 3 / hr It becomes possible to obtain a specific numerical value of the cooling air amount.
 その結果、吸引装置の作動空気量は、竪型焼成炉1の場合に2,500Nm/hrとなり、従来炉の場合に4,900Nm/hrとなるので、従来炉に比べてその差異を-2,400Nm/hrとすることができる。そして、冷却用空気量の自由度は、実操業において従来炉における冷却用空気量がVc(Nm/hr)である場合、竪型焼成炉1のものが(4,900-2,500)+Vc(Nm/hr)となるので、従来炉に比べてその差異が+2,400Nm/hrの範囲で得ることが可能となる。 As a result, working airflow of the suction device, 2,500 nm 3 / hr next if the vertical firing furnace 1, since the 4,900Nm 3 / hr in the case of conventional furnaces, the difference as compared with the conventional furnace -2,400 Nm 3 / hr. The degree of freedom of the cooling air amount is that of the vertical firing furnace 1 (4,900-2,500) when the cooling air amount in the conventional furnace is Vc (Nm 3 / hr) in actual operation. since + a Vc (Nm 3 / hr), it is possible that differences in comparison with the conventional furnace to obtain a range of + 2,400Nm 3 / hr.
 従って、例えば下部燃焼室17へ導入する総空気量を一定(すなわち、下部燃焼室17での空気係数mを不変)とすれば、従来炉に比べて2,400Nm/hr程度(すなわち、吸引装置18の作動用空気量の減少分程度)まで多くの冷却用空気を焼成品冷却装置21内に導入することが可能となる。 Therefore, for example, if the total amount of air introduced into the lower combustion chamber 17 is constant (that is, the air coefficient m in the lower combustion chamber 17 is not changed), it is about 2,400 Nm 3 / hr (that is, suction) compared to the conventional furnace. It is possible to introduce a large amount of cooling air into the fired product cooling device 21 up to a reduction in the amount of operating air of the device 18.
 次に、焼成品からの熱回収について説明する。図3は、焼成品の冷却用空気量と焼成品温度と焼成品保有熱との関係を示す図である。図3において、曲線Mは冷却用空気量と焼成品温度との関連曲線であり、曲線Nは冷却用空気量と焼成品保有熱との関連曲線である。なお、焼成品保有熱は20℃基準として計算している。 Next, heat recovery from the fired product will be described. FIG. 3 is a diagram showing the relationship among the amount of air for cooling the fired product, the temperature of the fired product, and the heat retained in the fired product. In FIG. 3, a curve M is a related curve between the cooling air amount and the calcined product temperature, and a curve N is a related curve between the cooling air amount and the calcined product retained heat. The calcined product holding heat is calculated on the basis of 20 ° C.
 図3に示すように、例えば冷却用空気量を6,700Nm/hrとした場合、曲線Mより焼成品温度は150℃となり、曲線Nより焼成品保有熱は25kcal/kgとなる。ここで、冷却用空気量を6,140Nm/hrに減少させた場合は、曲線Mより焼成品温度は200℃となり、曲線Nより焼成品保有熱は35kcal/kgと上昇することとなる。すなわち、冷却用空気量が560Nm/hr増加すると、焼成品保有熱は10kcal/kg低下することとなる。これらの関係を以下の表1に表す。 As shown in FIG. 3, for example, when the cooling air amount is 6,700 Nm 3 / hr, the calcined product temperature is 150 ° C. from curve M, and the calcined product holding heat is 25 kcal / kg from curve N. Here, when the amount of cooling air is reduced to 6,140 Nm 3 / hr, the calcined product temperature becomes 200 ° C. from curve M, and the calcined product holding heat rises from curve N to 35 kcal / kg. That is, when the amount of cooling air increases by 560 Nm 3 / hr, the fired product holding heat decreases by 10 kcal / kg. These relationships are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 なお、Vcは従来炉における冷却用空気量を示し、V及びVc+2,400は本実施形態に係る竪型焼成炉1における目標冷却用空気量及び最大冷却用空気量をそれぞれ示している。
Figure JPOXMLDOC01-appb-T000001
Vc represents the amount of cooling air in the conventional furnace, and V and Vc + 2,400 represent the target cooling air amount and the maximum cooling air amount in the vertical firing furnace 1 according to the present embodiment, respectively.
 この表1及び図3からも明らかなように、冷却用空気量Vcの場合の焼成品保有熱35kcal/kgと最大冷却用空気量Vc+2,400の場合の焼成品保有熱9.5kcal/kgとの差異は、25.5kcal/kgとなる。また、上記冷却用空気量Vcの場合の焼成品保有熱と目標冷却用空気量Vの場合の焼成品保有熱25kcal/kgとの差異は、10kcal/kgとなる。そして、目標冷却用空気量Vの場合の焼成品保有熱と最大冷却用空気量Vc+2,400の場合の焼成品保有熱との差異は、15.5kcal/kgとなる。 As apparent from Table 1 and FIG. 3, the calcined product possessed heat 35 kcal / kg in the case of the cooling air amount Vc and the calcined product retained heat 9.5 kcal / kg in the case of the maximum cooling air amount Vc + 2,400 The difference is 25.5 kcal / kg. Further, the difference between the calcined product retained heat in the case of the cooling air amount Vc and the calcined product retained heat in the case of the target cooling air amount V of 25 kcal / kg is 10 kcal / kg. The difference between the calcined product retained heat in the case of the target cooling air amount V and the calcined product retained heat in the case of the maximum cooling air amount Vc + 2,400 is 15.5 kcal / kg.
 従って、本実施形態に係る竪型焼成炉1においては、最大で25.5kcal/kg焼成品(焼成品1kg当たりの熱量)、最小で10kcal/kg焼成品の熱回収を行うことが可能となる。また、炉を最大能力で運転する際には、焼成品の生産量に対して冷却用空気量が不足気味にならざるを得ない場合がある。 Therefore, in the vertical firing furnace 1 according to the present embodiment, it is possible to recover heat of a maximum of 25.5 kcal / kg fired product (amount of heat per 1 kg of the fired product) and a minimum of 10 kcal / kg fired product. . Further, when the furnace is operated at the maximum capacity, the cooling air amount may be insufficient with respect to the production amount of the baked product.
 このような場合に対しても、竪型焼成炉1では、上述したように焼成品の冷却用空気量Vを従来炉の冷却用空気量Vcに比べて2,400Nm/hr程度増加することができるので、冷却能力に余裕を持たせることが可能となる。なお、冷却能力に余裕を持たせた場合は、上述した熱回収量(25.5kcal/kg焼成品~10kcal/kg焼成品)よりも熱回収量を多くすることが期待できる。 Even in such a case, the vertical firing furnace 1 increases the cooling air amount V of the fired product by about 2,400 Nm 3 / hr as compared with the cooling air amount Vc of the conventional furnace as described above. Therefore, it is possible to provide a sufficient cooling capacity. In addition, when the cooling capacity is provided, it can be expected that the heat recovery amount is larger than the heat recovery amount (25.5 kcal / kg calcined product to 10 kcal / kg calcined product) described above.
 このように、焼成品の熱回収量を増加させることで熱消費量が低減され、種々の効果を得ることができる。また、吸引装置18の作動用空気量が低減されることで、上述したように従来炉における作動用空気が保有していた熱量に相当する熱量を有する余剰の燃焼ガスが生じることとなる。 Thus, by increasing the heat recovery amount of the baked product, the heat consumption is reduced, and various effects can be obtained. Further, by reducing the operating air amount of the suction device 18, as described above, surplus combustion gas having a heat amount corresponding to the heat amount held by the operating air in the conventional furnace is generated.
 例えば、本実施形態に係る竪型焼成炉1での作動用空気量の減少量を2,400Nm/hrとし、作動用空気の温度を480℃とした場合、20℃基準で計算した余剰熱量を意味する炉への持ち込み熱減少量は355,488kcal/hrとなり、焼成品1kg当たりの持ち込み熱減少量は28.4kcal/kg焼成品となる。 For example, when the reduction amount of the working air amount in the vertical firing furnace 1 according to the present embodiment is 2,400 Nm 3 / hr and the temperature of the working air is 480 ° C., the excess heat amount calculated on the basis of 20 ° C. The amount of decrease in heat brought into the furnace means 355,488 kcal / hr, and the amount of decrease in carry heat per kg of the calcined product becomes 28.4 kcal / kg calcined product.
 従来炉において内筒3を冷却し温度上昇した冷却済空気はバーナでの燃焼用空気として用いられるので、冷却済空気量を5,500Nm/hrとし、バーナへの平均供給温度を200℃とした場合、この冷却済空気の保有熱量は309,870kcal/hrとなる。 Since the cooled air whose temperature has been increased by cooling the inner cylinder 3 in the conventional furnace is used as combustion air in the burner, the amount of cooled air is 5,500 Nm 3 / hr, and the average supply temperature to the burner is 200 ° C. In this case, the retained heat amount of the cooled air is 309,870 kcal / hr.
 従って、作動用空気量の減少による余剰熱量を熱交換器10にて有効利用し、内筒3の冷却済空気を加熱して保有熱665,358kcal/hr及び温度400℃程度の燃焼用空気をバーナ16a,17aに供給すれば、作動用空気の持ち込み熱の減少分を補填することが可能となる。すなわち、上述した焼成品から回収された回収熱は、すべて炉の熱消費量の低減に寄与することとなる。 Therefore, the excess heat amount due to the decrease in the amount of operating air is effectively used in the heat exchanger 10, and the cooled air in the inner cylinder 3 is heated to generate combustion heat having a retained heat of 665,358 kcal / hr and a temperature of about 400 ° C. If it supplies to the burners 16a and 17a, it will become possible to compensate the reduction | decrease of the carrying-in heat of working air. That is, all the recovered heat recovered from the fired product described above contributes to a reduction in the heat consumption of the furnace.
 なお、上述した実施形態においては、焼成能力300t/dayの竪型焼成炉1について説明したが、他の炉においても同様に本発明を適用することができる。また、最大で25.5kcal/kg焼成品(焼成品1kg当たりの熱量)、最小で10kcal/kg焼成品の熱回収量として説明したが、従来炉の焼成品1kg当たりの熱消費量は原料性状や要求品質により変化もあるが、930~980kcal/kg焼成品であることを前提とし、例えば955kcal/kg焼成品を基準にすれば、竪型焼成炉1での熱消費量を1.0~2.6%程度低減して改善することが可能となる。 In the above-described embodiment, the vertical firing furnace 1 having a firing capacity of 300 t / day has been described. However, the present invention can be similarly applied to other furnaces. In addition, the heat recovery amount of 25.5 kcal / kg calcined product (amount of heat per 1 kg of calcined product) and the minimum 10 kcal / kg calcined product was explained. Depending on the required quality, there is a change, but on the premise that it is a 930 to 980 kcal / kg calcined product, for example, based on the 955 kcal / kg calcined product, the heat consumption in the vertical firing furnace 1 is 1.0 to It can be reduced by about 2.6%.
 以上のような本実施形態に係る竪型焼成炉1によれば、次のような効果を奏することができる。
 (1)竪型焼成炉1の全体の熱消費量を1.0~2.6%低減して改善することができる。
 (2)竪型焼成炉1の操業時の運転制御の自由度を向上させることができる。
 (3)竪型焼成炉1の各バーナ16a,17aへ供給する燃焼用空気を高温化することができるので、燃料の燃焼状態を良好に改善することができる。
 (4)竪型焼成炉1の焼成品冷却装置21にて焼成品を十分に冷却することができるので、排出部21dから排出される焼成品を搬送する搬送コンベヤとして、耐熱性ベルトコンベヤを安心して採用することができる。
 (5)竪型焼成炉1の焼成品冷却装置21を炉と分離配置したことで、理想的な冷却装置の設計が可能となり、冷却装置を小型化することができる。
 従って、竪型焼成炉1の吸引装置18のインジェクタ機構の作動用空気量を低減して並流ガス量を確保しつつ焼成品の冷却用空気量を確保可能にし、且つ炉から排出される焼成品の保有熱を焼成品冷却装置21にて有効に回収して操業の操作制御の自由度を向上させることが可能となる。
According to the vertical firing furnace 1 according to the present embodiment as described above, the following effects can be obtained.
(1) The overall heat consumption of the vertical firing furnace 1 can be reduced by 1.0 to 2.6% for improvement.
(2) The degree of freedom of operation control during operation of the vertical firing furnace 1 can be improved.
(3) Since the combustion air supplied to each burner 16a, 17a of the vertical firing furnace 1 can be heated, the combustion state of the fuel can be improved satisfactorily.
(4) Since the fired product can be sufficiently cooled by the fired product cooling device 21 of the vertical firing furnace 1, a heat-resistant belt conveyor is used as a transport conveyor for transporting the fired product discharged from the discharge unit 21d. It can be adopted with heart.
(5) Since the fired product cooling device 21 of the vertical firing furnace 1 is separated from the furnace, an ideal cooling device can be designed, and the cooling device can be downsized.
Therefore, the amount of air for operating the injector mechanism of the suction device 18 of the vertical firing furnace 1 can be reduced to ensure the amount of co-current gas while ensuring the amount of air for cooling the fired product, and firing discharged from the furnace. The retained heat of the product can be effectively recovered by the fired product cooling device 21 to improve the degree of freedom of operation control of the operation.
 1     竪型焼成炉
 2     外筒
 3     内筒
 4     投入装置
 10    燃焼用空気熱交換器
 12    作動用空気熱交換器
 16    上部燃焼室
 16a   上部バーナ
 17    下部燃焼室
 17a   下部バーナ
 18    吸引装置
 20    原料通路
 21    焼成品冷却装置
 21b   焼成品充填層
 22    焼成品導入管
 23    焼成品充填層
 26    底板
 27    プッシャー
 28    伸縮継手
 30    ダクト
DESCRIPTION OF SYMBOLS 1 Vertical firing furnace 2 Outer cylinder 3 Inner cylinder 4 Charging device 10 Combustion air heat exchanger 12 Actuation air heat exchanger 16 Upper combustion chamber 16a Upper burner 17 Lower combustion chamber 17a Lower burner 18 Suction device 20 Raw material passage 21 Firing Product cooling device 21b Firing product filling layer 22 Firing product introduction tube 23 Firing product filling layer 26 Bottom plate 27 Pusher 28 Expansion joint 30 Duct

Claims (4)

  1.  軸方向を上下方向として配置された外筒と、
     この外筒の内部に同軸配置されて前記外筒と共に二重筒状構造をなし前記外筒との間に原料通路を形成する内筒と、
     前記外筒の上端に設置されて原料を前記原料通路に投入して前記原料通路に原料充填層を形成する投入装置と、
     前記原料通路に接続して形成されて燃焼用空気を導入してバーナによる熱ガスを発生させる燃焼室と、
     前記燃焼室で発生された熱ガスの一部を前記原料通路の下端部及び内筒を経由して前記外筒の外部に吸引することにより、前記燃焼室から下側の前記原料充填層の原料と熱ガスが共に下方に移動しながら焼成される並流焼成帯を形成する吸引装置と、
     前記並流焼成帯の下端部に設けられ、前記原料通路から焼成品を排出する焼成品排出機構と、
     前記焼成品排出機構の下方に接続されて内部に焼成品充填層を形成する焼成品導入管を有し、この焼成品導入管の下方に外部から冷却用空気を導入して焼成品を冷却する焼成品冷却機構とを備え、
     前記焼成品充填層は、前記冷却用空気の上方への流れを低減する抵抗機能を有する
     ことを特徴とする竪型焼成炉。
    An outer cylinder arranged with the axial direction as the vertical direction;
    An inner cylinder that is coaxially arranged inside the outer cylinder and forms a double cylindrical structure with the outer cylinder to form a raw material passage between the outer cylinder,
    A charging device installed at the upper end of the outer cylinder and charging a raw material into the raw material passage to form a raw material packed layer in the raw material passage;
    A combustion chamber that is formed in connection with the raw material passage and introduces combustion air to generate a hot gas by a burner;
    A part of the hot gas generated in the combustion chamber is sucked to the outside of the outer cylinder through the lower end portion of the raw material passage and the inner cylinder, so that the raw material of the raw material packed bed below the combustion chamber And a suction device that forms a co-current firing zone in which the hot gas is fired while moving downwards,
    A fired product discharge mechanism that is provided at a lower end of the co-current firing zone and discharges the fired product from the raw material passage;
    It has a fired product introduction pipe connected to the lower side of the fired product discharge mechanism to form a fired product filled layer inside, and cooling air is introduced from the outside below the fired product introduction pipe to cool the fired product. A fired product cooling mechanism,
    The fired product packed layer has a resistance function of reducing the upward flow of the cooling air.
  2.  前記冷却用空気は、前記焼成品冷却機構の内部の焼成品を通過して熱交換された後に、前記燃焼室における燃焼用空気の一部として用いられる
     ことを特徴とする請求項1記載の竪型焼成炉。
    2. The soot according to claim 1, wherein the cooling air is used as a part of combustion air in the combustion chamber after passing through a fired product inside the fired product cooling mechanism and exchanging heat. Mold firing furnace.
  3.  前記焼成品冷却機構は、前記焼成品充填層に連続する焼成品を収容し、この収容された焼成品を冷却する
     ことを特徴とする請求項1又は2記載の竪型焼成炉。
    3. The vertical firing furnace according to claim 1, wherein the fired product cooling mechanism houses a fired product continuous in the fired product packed layer and cools the fired product contained therein. 4.
  4.  前記焼成品排出機構は、
     前記外筒の下端部に設けられ、前記内筒の外径よりも小さな径の孔部を備えるシュートが前記内筒の中心線と同心に形成された底板と、
     前記並流焼成帯の下端部近傍にて前記外筒の円周上に複数配置され、前記底板の床面上を前記シュートの中心方向に向かって往復動可能なプッシャーとを有し、
     前記内筒の下端外周縁と前記底板の孔部とを結ぶ面が、前記焼成品の自由安息角面を形成するように構成されている
     ことを特徴とする請求項1~3のいずれか1項記載の竪型焼成炉。
    The fired product discharge mechanism is:
    A bottom plate provided at a lower end portion of the outer cylinder, and a chute provided with a hole having a diameter smaller than the outer diameter of the inner cylinder, concentrically with the center line of the inner cylinder;
    A plurality of pushers arranged on the circumference of the outer cylinder in the vicinity of the lower end portion of the co-current firing zone, and capable of reciprocating on the floor surface of the bottom plate toward the center of the chute,
    The surface connecting the outer peripheral edge of the lower end of the inner cylinder and the hole of the bottom plate is configured to form a free angle of repose of the fired product. The vertical firing furnace according to item.
PCT/JP2011/070906 2010-11-01 2011-09-13 Vertical kiln WO2012060157A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180051860.2A CN103189703B (en) 2010-11-01 2011-09-13 Vertical kiln
KR1020137012754A KR101789642B1 (en) 2010-11-01 2011-09-13 Vertical kiln

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-244997 2010-11-01
JP2010244997A JP5636881B2 (en) 2010-11-01 2010-11-01 Vertical firing furnace

Publications (1)

Publication Number Publication Date
WO2012060157A1 true WO2012060157A1 (en) 2012-05-10

Family

ID=46024278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070906 WO2012060157A1 (en) 2010-11-01 2011-09-13 Vertical kiln

Country Status (4)

Country Link
JP (1) JP5636881B2 (en)
KR (1) KR101789642B1 (en)
CN (1) CN103189703B (en)
WO (1) WO2012060157A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022037796A1 (en) * 2020-08-21 2022-02-24 Binder + Co Ag Device for producing expanded granulated material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101914212B1 (en) * 2016-04-12 2018-11-01 라이트쎄라믹스 주식회사 Apparatus for Manufacturing Artificial Lightweight Aggregate Using Coal Ash with Unburned Carbon

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4731519B1 (en) * 1968-12-05 1972-08-14
JPS4942590B1 (en) * 1967-02-07 1974-11-15
JPS60233490A (en) * 1984-05-04 1985-11-20 宇部興産株式会社 Vertical type calciner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3836131A (en) * 1973-12-26 1974-09-17 Mildrex Corp Apparatus for cooling a moving bed of solid, gas permeable particles
JPS582356B2 (en) * 1977-10-21 1983-01-17 地崎 達 Top-shaped lime kiln
JPS57122279A (en) * 1981-01-23 1982-07-30 Ube Industries Waste heat recovery of vertical kiln
DE4335030A1 (en) * 1993-10-14 1995-04-20 Willi Dipl Ing Hoeltje Lime shaft kiln
EP1669709A1 (en) * 2004-12-13 2006-06-14 Terruzzi Fercalx S.p.A. Beams for kilns processing lumpy materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942590B1 (en) * 1967-02-07 1974-11-15
JPS4731519B1 (en) * 1968-12-05 1972-08-14
JPS60233490A (en) * 1984-05-04 1985-11-20 宇部興産株式会社 Vertical type calciner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022037796A1 (en) * 2020-08-21 2022-02-24 Binder + Co Ag Device for producing expanded granulated material
AU2020464317B2 (en) * 2020-08-21 2023-03-30 Omya International Ag Device for producing expanded granulated material
CN116171266A (en) * 2020-08-21 2023-05-26 宾德科股份公司 Apparatus for producing expanded particles
AU2020464317C1 (en) * 2020-08-21 2023-09-07 Omya International Ag Device for producing expanded granulated material
US11859905B2 (en) 2020-08-21 2024-01-02 Omya International Ag Device for producing expanded granulated material

Also Published As

Publication number Publication date
CN103189703B (en) 2015-06-10
KR20130140734A (en) 2013-12-24
JP2012097943A (en) 2012-05-24
JP5636881B2 (en) 2014-12-10
KR101789642B1 (en) 2017-10-25
CN103189703A (en) 2013-07-03

Similar Documents

Publication Publication Date Title
CN106892578B (en) A kind of full recycling CO2Lime kiln device
CN201245560Y (en) Cocurrent heat storing type dual-chamber limekiln capable of realizing two-stage calcination
US11905181B2 (en) Method for preparing calcium oxide using a multistage suspension preheater kiln
CN111322879B (en) Method for quickly igniting and baking furnace in Maerz kiln
CN106986561B (en) Annular lime shaft kiln
CN207079173U (en) A kind of full recovery CO2 lime kiln device
CN108088236A (en) Industry calcining shaft kiln
CN102992661B (en) Beam type heat storage lime kiln
JP5636881B2 (en) Vertical firing furnace
CN102288022B (en) Sleeve-type gas-burning shaft kiln
CN102374769B (en) Calcinating shaft kiln comprehensively utilizing heat energy unit temperature field
CN105330179B (en) Box burner shaft furnace
RU2294896C1 (en) Method, the reactor and the installation for thermal treatment of the powdery material
CN202193734U (en) Sleeve type lime kiln
CN108168292B (en) Multifunctional environment-friendly BSK sintering technology shaft kiln and use method thereof
CN102557491A (en) Compound combustion beam for lime kiln
CN105565687B (en) A kind of limekiln breeze blowing induction system
WO2013099231A1 (en) Cooling unit, and cooler provided with same
CN2813606Y (en) Energy-saving profile steel structural mechanical shaft kiln
CN207894220U (en) Industry calcining shaft kiln
CN108726549B (en) Crystal form conversion energy-saving device, aluminum oxide roasting system and production method thereof
CN107062902A (en) A kind of calcination of minerals apparatus and method
CN102519242A (en) Vertical kiln and calcination technological process
CN202482229U (en) Compound combustion beam for limekiln
CN111288804A (en) Suspension kiln roasting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137012754

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11837810

Country of ref document: EP

Kind code of ref document: A1