WO2012060089A1 - Relay - Google Patents

Relay Download PDF

Info

Publication number
WO2012060089A1
WO2012060089A1 PCT/JP2011/006098 JP2011006098W WO2012060089A1 WO 2012060089 A1 WO2012060089 A1 WO 2012060089A1 JP 2011006098 W JP2011006098 W JP 2011006098W WO 2012060089 A1 WO2012060089 A1 WO 2012060089A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable contact
relay
contact
pair
movable
Prior art date
Application number
PCT/JP2011/006098
Other languages
French (fr)
Japanese (ja)
Inventor
伸介 伊藤
服部 洋一
灘浪 紀彦
井上 隆治
光岡 健
小島 多喜男
平野 卓
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to KR1020137011305A priority Critical patent/KR20130124503A/en
Priority to JP2012541742A priority patent/JP5829617B2/en
Priority to US13/882,640 priority patent/US8754728B2/en
Priority to CN2011800523564A priority patent/CN103201816A/en
Priority to EP11837743.1A priority patent/EP2637192A4/en
Publication of WO2012060089A1 publication Critical patent/WO2012060089A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/546Contact arrangements for contactors having bridging contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/20Bridging contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/18Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H45/00Details of relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/02Bases; Casings; Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/02Bases; Casings; Covers
    • H01H50/023Details concerning sealing, e.g. sealing casing with resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • H01H50/38Part of main magnetic circuit shaped to suppress arcing between the contacts of the relay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/44Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/44Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet
    • H01H9/443Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet using permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/02Bases; Casings; Covers
    • H01H50/023Details concerning sealing, e.g. sealing casing with resin
    • H01H2050/025Details concerning sealing, e.g. sealing casing with resin containing inert or dielectric gasses, e.g. SF6, for arc prevention or arc extinction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/02Bases; Casings; Covers
    • H01H2050/028Means to improve the overall withstanding voltage, e.g. creepage distances

Definitions

  • the present invention relates to a relay.
  • an electromagnetic repulsive force may be generated by a magnetic field generated by a current flowing through the relay.
  • the electromagnetic repulsive force is a Lorentz force acting in a direction in which the movable contact is pulled away from the fixed contact with respect to the current in the predetermined direction flowing through the movable contact.
  • an object of the present invention is to provide a technology capable of reducing the electromagnetic repulsive force in a relay.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following modes or application examples.
  • Application Example 1 A pair of fixed terminals each having a fixed contact on one end surface, A movable contact having a pair of movable contacts respectively facing the fixed contacts; A drive mechanism for moving the movable contact to bring the movable contact into contact with the opposing fixed contact; In the movement direction of the movable contact, the side on which the fixed contact is positioned is the first side, and the side on which the movable contact is positioned is the second side.
  • the movable contact is A central portion positioned between the pair of movable contacts in a path connecting the pair of movable contacts on the movable contact, and positioned on a second side of the movable contacts; And a pair of extending portions positioned between the central portion and the pair of movable contacts in the path and extending in a direction including the movement direction component, At least one of the pair of extending portions is A relay according to claim 1, wherein when said relay is vertically projected onto a predetermined plane perpendicular to said moving direction, at least a part thereof overlaps with said one end surface located on the same side with respect to said central portion.
  • the extension portion has a relation at least partially overlapping with the one end surface having the fixed contact. Also, the extension portion extends in the direction including the movement direction component. Therefore, the current density of the orthogonal direction component of the current flowing in the vicinity of the contact portion of the movable contact can be reduced. Thereby, the electromagnetic repulsive force can be reduced as compared with the case where the movable contact has a flat plate shape extending in the orthogonal direction or the case where the extension portion does not overlap with the one end surface. The details of the electromagnetic repulsive force will be described later.
  • the extension portion having the relationship is Having the movable contact on a first end face located on the first side;
  • the relay according to claim 1 wherein the first end face of the extension portion having the relationship has a curved surface shape convex to the first side.
  • the first end face since the first end face has a curved surface shape that is convex toward the first side, it flows in the vicinity of the contact portion compared to the case where the first end face has a planar shape.
  • the current density of the orthogonal direction component of the current can be further reduced. Thereby, the electromagnetic repulsive force can be further reduced.
  • the movable contact is further It has a pair of opposing parts which respectively extend from the pair of extending parts in a direction intersecting the moving direction and which respectively oppose the pair of fixed contacts,
  • the volume of the movable contact in the vicinity of the contact portion can be increased by having the facing portion as compared with the case where the facing portion is not provided.
  • the temperature in the vicinity of the contact portion of the movable contact heated by the occurrence of the arc can be rapidly reduced.
  • a first surface located on the fixed contact side has a connecting surface connecting the extending portion having the relationship and the opposing portion extending from the extending portion having the relationship.
  • a relay according to claim 1 wherein when said relay is vertically projected on said predetermined plane, at least a part of said connection surface is in a relation overlapping with said one end surface.
  • the orthogonal direction component of the current flowing in the vicinity of the contact portion is compared with the case where the connection surface does not overlap with the one end surface.
  • the current density can be reduced.
  • the relay of the application example 5 can reduce an electromagnetic repulsive force more effectively using a connection surface.
  • Application Example 6 In the relay according to any one of Application Examples 1 to 5, The relay according to claim 1, wherein the extension portion having the relationship extends along the moving direction. According to the relay described in Application Example 6, since the extension portion extends in the moving direction, more current flowing in the vicinity of the contact portion flows in the moving direction. Thereby, the current density of the orthogonal direction component of the current flowing in the vicinity of the contact portion can be further reduced. Therefore, the relay of application example 7 can further reduce the electromagnetic repulsive force.
  • a direction in which the extension portion having the relationship extends includes a facing direction component which is orthogonal to the moving direction and in which the pair of fixed terminals face each other,
  • the extending portion having the relationship is the movable contact positioned on the opposite side with respect to the central portion as going from the movable contact side located on the same side with respect to the central portion in the opposing direction from the movable contact side to the central portion
  • a relay characterized in that it is directed to the side.
  • the extending portion extends in the direction including the opposing direction component in which the pair of fixed terminals face each other, and the movable contact located on the opposite side from the movable contact side located on the same side with respect to the central portion. Extend to the side. Thereby, the length of the movable contact connecting the pair of movable contacts can be shortened. Thus, the electrical resistance of the movable contact can be reduced. In addition, since the length of the movable contact can be shortened, the weight of the movable contact can be reduced. Thereby, even when the movable contact collides with another component of the relay due to an external impact or the like, the possibility that the contact between the movable contact and the fixed contact opens (is separated) can be reduced. .
  • Application Example 8 In the relay according to any one of Application Examples 1 to 7, The relay according to claim 1, wherein the one end surface located on the same side as the extension portion having the relation with respect to the central portion is a curved surface shape convex to the second side.
  • one end surface having the fixed contact has a curved surface shape convex to the second side.
  • Application Example 9 In the relay according to any one of Application Examples 1 to 8, The relay according to claim 1, wherein the movable contact is formed by a single member. According to the relay described in Application Example 9, the movable contact can be easily manufactured by forming the movable contact with a single member. Thereby, the manufacturing cost of the relay can be reduced.
  • the present invention can be realized in various forms, and can be realized, for example, in the form of a relay, a method of manufacturing a relay, or a mobile body such as a vehicle equipped with a relay, a ship, or the like.
  • FIG. 6 is a first external view of the relay 5;
  • FIG. 5 is a second external view of the relay 5;
  • FIG. 7 is a third external view of the relay 5;
  • It is a figure for demonstrating the force which acts on a movable contact.
  • It is 4-4 sectional drawing of the relay main body 6 of a present Example.
  • It is a perspective view of the relay main body 6 shown in FIG.
  • It is a figure for demonstrating the relationship between the one end surface 16 and the 2nd member 54.
  • FIG. It is a figure for demonstrating the relay 5a of 2nd Example.
  • the one end face 16 and the extending part 54 a in the case of vertical projection are shown.
  • the one end face 16 and the curved surface R1 in the case of vertical projection are shown. It is a figure for demonstrating the relay 5b of 3rd Example. It is a figure for demonstrating the relay 5c of 4th Example. It is a figure for demonstrating the 1st aspect of a 1st modification. It is a figure for demonstrating the 2nd aspect of a 1st modification. It is a figure for demonstrating a 2nd modification. It is a figure for demonstrating movable contact 50d.
  • FIG. 1 is an explanatory view of an electric circuit (system) 1 provided with a relay 5 according to the first embodiment.
  • the electric circuit 1 is mounted on, for example, a vehicle.
  • the electric circuit 1 includes a DC power supply 2, a relay 5, an inverter 3, and a motor 4.
  • the inverter 3 converts the direct current of the direct current power supply 2 into an alternating current.
  • the alternating current converted by the inverter 3 is supplied to the motor 4 to drive the motor 4.
  • the vehicle travels by driving the motor 4.
  • the relay 5 is provided between the DC power supply 2 and the inverter 3 to open and close the electric circuit 1. That is, the electric circuit 1 is opened and closed by switching the ON state and the OFF state of the relay 5. For example, when an abnormality occurs in the vehicle, the relay 5 cuts off the electrical connection between the DC power supply 2 and the inverter 3.
  • FIG. 2 is a first external view of the relay 5.
  • FIG. 3 is a second external view of the relay 5.
  • FIG. 4 is a third external view of the relay 5.
  • FIG. 2 also shows the internal configuration of the outer case 8 in solid lines for easy understanding. 3 and 4 omit illustration of the outer case 8 illustrated in FIG.
  • the XYZ axes are shown in FIGS. 2 to 4 to identify the direction. Note that XYZ axes are illustrated as necessary in other drawings.
  • the relay 5 is installed in a plane parallel to the X axis and the Y axis.
  • the Z-axis direction is the vertical direction (height direction)
  • the Z-axis positive direction is the vertically upward direction
  • the Z-axis negative direction is the vertically downward direction.
  • the Z-axis positive direction side is also referred to as the upper side (first side)
  • the Z-axis negative direction side is also referred to as the lower side (second side).
  • the relay 5 includes a relay body 6 and an outer case 8 for protecting the relay body 6.
  • the relay body 6 is provided with two fixed terminals 10.
  • the two fixed terminals 10 are joined to the first container 20.
  • the fixed terminal 10 is formed with a connection port 12 for connecting the wiring of the electric circuit 1.
  • the outer case 8 has an upper case 7 and a lower case 9.
  • the upper case 7 and the lower case 9 form a space for accommodating the relay body 6 inside.
  • the upper case 7 and the lower case 9 are both molded of a resin material.
  • the outer case 8 is provided with a permanent magnet 800 described later.
  • the arc is subjected to Lorentz force and stretched by the magnetic field of the permanent magnet 800, thereby promoting arc extinction.
  • the permanent magnet 800 exerts Lorentz force on the pair of arcs so as to separate the pair of arcs generated inside the relay 5 from each other.
  • FIG. 5 is a figure for demonstrating the force which acts on a movable contact.
  • FIG. 5 is a schematic view in the vicinity of the contact portion S1 where the fixed contact and the movable contact are in contact in the 4-4 cross section of FIG.
  • the movable contact 50z is moved along the Z-axis direction (vertical direction) by a drive mechanism described later.
  • the direction of the magnetic field Ma in the region on the right side of the current Ia is the direction from the X-axis negative direction side to the X-axis positive direction side.
  • the direction of the magnetic field Ma in the region on the left side of the current Ia is the direction from the positive side of the X-axis to the negative side of the X-axis.
  • the magnetic field by the current Ia is fixed with respect to the currents Id and Ie in the direction (also referred to as “horizontal direction”) orthogonal to the moving direction D1 of the movable contact 50z.
  • Lorentz forces Fd and Fe are applied in a direction (Z-axis negative direction, downward) in which the movable contact is pulled away from the contact 18z.
  • downward Lorentz forces Fe and Fd act on the current of the horizontal direction component of the current flowing through the movable contact 50z.
  • Lorentz force acts on the currents of components parallel and opposite to each other by the magnetic field generated by one of the currents in the direction of separating the other from the other current.
  • the magnetic field generated by the current Ib causes the current Id to move the movable contact 50z away from the fixed contact 18z (in the negative direction of Z axis, downward) Lorentz Force Fp acts.
  • the downward Lorentz force Fp acts on the current Ie.
  • the downward Lorentz force Fp acts on the current of the horizontal direction component of the current flowing through the movable contact 50z.
  • FIG. 6 is a 4-4 cross-sectional view of the relay body 6 of the present embodiment.
  • FIG. 7 is a perspective view of the relay main body 6 shown in FIG.
  • the relay body 6 includes a pair of fixed terminals 10, a movable contact 50, and a drive mechanism 90.
  • the relay body 6 includes a first container 20 and a second container 92.
  • An airtight space 100 is formed inside the relay main body 6 by the first container 20 and the second container 92.
  • the fixed terminal 10 is a member having conductivity.
  • the fixed terminal 10 is formed of, for example, a metal material containing copper.
  • the fixed terminal 10 is cylindrical with a bottom.
  • the fixed terminal 10 has a terminal contact portion 19 at the bottom located at one end side (the negative side in the Z-axis).
  • the terminal contact portion 19 may be formed of a metal material containing copper like the other portions of the fixed terminal 10, or a material having a higher heat resistance (for example, tungsten) to suppress damage by the arc 200. You may form.
  • One end surface 16 formed by the terminal contact portion 19 of the fixed terminal 10 faces the movable contact 58 of the movable contact 50.
  • the end face 16 has a circular shape when vertically projected on a predetermined plane (horizontal plane in the present embodiment) perpendicular to the moving direction D1 of the movable contact 50.
  • One end face 16 has a fixed contact 18 in contact with the movable contact 50.
  • the fixed contact 18 is located inside the airtight space 100, and a part of the fixed terminal 10 is inserted into the first container 20 so that the flange portion 13 is located outside the airtight space 100.
  • the first container 20 is a member having an insulating property.
  • the first container 20 is formed of, for example, a ceramic such as alumina or zirconia, and is excellent in heat resistance. In the present embodiment, alumina is used for the first container.
  • the first container 20 has a side portion 22 forming a side surface, and a bottom portion 24 from which a part of the fixed terminal 10 protrudes. One end of the first container 20 facing the bottom 24 (in other words, the side on which the second container 92 is disposed) is open.
  • the bottom portion 24 is formed with two through holes 26 through which the pair of fixed terminals 10 pass.
  • each fixed terminal 10 is airtightly joined to the outer surface (a surface exposed to the outside) of the bottom portion 24 of the first container 20.
  • the fixed terminal 10 is joined to the first container 20 by the following configuration.
  • a diaphragm portion 17 for suppressing breakage of a joint portion between the fixed terminal 10 and the first container 20 is formed on a surface of the outer surface of the flange portion 13 facing the bottom portion 24 of the first container 20. ing.
  • the diaphragm portion 17 is formed in order to relieve the generated stress of the joint portion caused by the thermal expansion difference between the fixed terminal 10 and the first container 20 which are different in material.
  • the diaphragm portion 17 has a cylindrical shape having a larger inside diameter than the through hole 26.
  • the diaphragm portion 17 is formed of an alloy such as Kovar, for example, and is joined to the outer surface of the bottom portion 24 of the first container 20 by brazing. For brazing, for example, silver solder is used.
  • brazing for example, silver solder is used.
  • the second container 92 includes a cylindrical iron core container 80 having a bottom, a rectangular base 32, and a substantially rectangular joint member 30.
  • the bonding member 30 is formed of, for example, a low thermal expansion metal material relatively close to the thermal expansion coefficient of the first container 20.
  • the bonding member 30 is formed of a magnetic body (for example, 42 alloy or Kovar) or a nonmagnetic body (for example, Ni-28Mo-2Fe).
  • the bonding member 30 of the present embodiment is a magnetic body.
  • the bonding member 30 is airtightly bonded to the first container 20 and the base portion 32, respectively.
  • the joining member 30 and the first container 20 are joined by brazing.
  • the bonding member 30 and the base portion 32 are bonded by laser welding, resistance welding, electron beam welding or the like.
  • the bonding member 30 may be formed by a single member or may be formed by combining a plurality of members having different characteristics.
  • the base portion 32 is a magnetic body, and is formed of, for example, a metal magnetic material such as iron or stainless steel 430. In the vicinity of the center of the base portion 32, a through hole for inserting a fixed iron core 70 described later is formed.
  • the core container 80 is a nonmagnetic material.
  • the iron core container 80 is open at the upper side facing the bottom.
  • the iron core case 80 is airtightly joined to the base portion 32 using laser welding or the like.
  • the airtight space 100 is formed inside the relay 5 by airtightly joining each member 10, 20, 30, 32, 80 as mentioned above.
  • hydrogen or a gas mainly composed of hydrogen is sealed in the hermetic space 100 at atmospheric pressure or higher (for example, 2 atmospheric pressure).
  • the airtight space 100 is disposed via the ventilation pipe 69 arranged to connect the inside and the outside of the airtight space 100 shown in FIG. Vacuum inside.
  • a gas such as hydrogen is sealed in the air-tight space 100 to a predetermined pressure via the ventilation pipe 69.
  • the aeration pipe 69 is crimped so that the gas such as hydrogen does not leak from the hermetic space 100 to the outside.
  • the movable contact 50 is located in the airtight space 100.
  • the movable contact 50 moves so as to contact and separate (contact and separate) the fixed contact 18 by the operation of the drive mechanism 90.
  • the movable contact 50 moves in a direction (vertical direction, Z-axis direction) in which the fixed contact 18 and the movable contact 58 face each other.
  • the movable contact 50 contacts the pair of fixed terminals 10, the pair of fixed terminals 10 are electrically connected.
  • the movable contact 50 is disposed to face the two fixed terminals 10.
  • the movable contact 50 is a member having conductivity, and is formed of, for example, a metal material containing copper.
  • the movable contact 50 has a first member 55 and a pair of second members 54.
  • the first member 55 is in the form of a horizontal flat plate.
  • the second member 54 is rod-shaped. In the present embodiment, the second member 54 corresponds to the “stretching portion” described in the means for solving the problem.
  • the first member 55 is located on the lower side (second side) of the movable contact 58 of the second member 54.
  • the second member 54 is provided corresponding to the pair of fixed terminals 10.
  • the first member 55 has a central portion 52 located between the pair of movable contacts 58.
  • the central portion 52 is positioned between the pair of movable contacts 58 in a direction orthogonal to the moving direction D1 and in the opposing direction (Y-axis direction) in which the pair of fixed terminals 10 is opposed.
  • the central portion 52 is located below (the second side) the pair of movable contacts 58.
  • the central portion 52 is a portion located at the center of the first member 55.
  • a member constituting a drive mechanism 90 described later is inserted. Specifically, the rod 60 is inserted into the through hole 53 formed in the central portion 52.
  • the above path can also be said to be the path of the current flowing through the movable contact 50.
  • the second member 54 is fixed to the first member 55.
  • the second member 54 extends from the first member 55 towards the corresponding fixed contact 18.
  • the second member 54 has a length equal to or greater than the thickness of the first member 55 in the moving direction D1.
  • the second member 54 has a substantially circular cross section orthogonal to the moving direction D1. In the present embodiment, the second member 54 extends along the moving direction D1 of the movable contact 50.
  • An upper end surface 51 (also referred to as a “first end surface 51”) of each second member 54 faces the one end surface 16.
  • the first end face 51 has a movable contact 58 in contact with the fixed contact 18.
  • each second member 54 is positioned between the central portion 52 and each movable contact 58.
  • the diameter of the end surface portion 57 a including the first end surface 51 located on the upper side of the second member 54 does not matter.
  • the diameter of the end face portion 57 a is preferably larger than that of the other portion 57 b directly fixed to the first member 55. By doing this, the volume of the end surface portion 57a can be increased as compared with the case where the end surface portion 57a has the same diameter as that of the other portion 57b.
  • FIG. 6 shows the outline Ya in a dotted line when the outer edge of the end face 16 is virtually moved in the movement direction D1.
  • FIG. 8 is a view for explaining the relationship between the end face 16 and the second member 54.
  • FIG. 8 shows one end face 16 and the second member 54 when the relay 5 is vertically projected on a predetermined plane perpendicular to the moving direction D1.
  • the second member 54 is in a relation at least partially overlapping with the one end surface 16 located on the same side with respect to the central portion 52.
  • the other portion 57 b of the extending portion 54 is positioned inside the contour of the end face 16.
  • the relay 5 further includes a third container 34.
  • the third container 34 is housed in the airtight space 100. Also, the third container 34 has a concave shape and is disposed on the base portion 32.
  • the third container 34 is formed of, for example, a synthetic resin or ceramic insulator.
  • the third container 34 prevents, for example, the arc 200 generated between the fixed contact 18 and the movable contact 58 from impinging on a conductive member (for example, a bonding member 30 described later).
  • the third container 34 prevents, for example, the arc 200 from hitting the joint portion between the members.
  • rotation of the movable contact 50 can be prevented.
  • the drive mechanism 90 includes a rod 60, a base portion 32, a fixed core 70, a movable core 72, a container 80 for an iron core, a coil 44, a coil bobbin 42, a container 40 for a coil, and a first elastic member. And a second spring 64 as an elastic member.
  • the driving mechanism 90 moves the movable contact 50 in a direction (vertical direction, Z-axis direction) in which the movable contact 58 and the fixed contact 18 face each other, in order to bring each movable contact 58 into contact with each fixed contact 18.
  • the drive mechanism 90 moves the movable contacts 50 to bring the movable contacts 58 into contact with the fixed contacts 18 and to pull the movable contacts 58 away from the fixed contacts 18.
  • the coil 44 is wound around a hollow cylindrical resin coil bobbin 42.
  • the coil container 40 is a magnetic body, and is formed of, for example, a metal magnetic material such as iron.
  • the coil container 40 has a concave shape. Specifically, the coil container 40 is formed of a bottom surface and a pair of side surfaces extending in the vertical direction (moving direction D1) from the bottom surface. Moreover, the through-hole for accommodating the container 80 for iron cores inside is formed.
  • the coil case 40 encloses the coil 44 to pass a magnetic flux, and forms a magnetic circuit together with a base portion 32, a fixed iron core 70 and a movable iron core 72 which will be described later.
  • a rubber 86 for easing the impact of the movable iron core 72 on the relay 5 is disposed.
  • the iron core case 80 is disposed in a through hole inside the coil bobbin 42.
  • the stationary core 70 is substantially cylindrical.
  • a through hole 70 h is formed in the fixed core 70 from the upper end to the lower end.
  • the fixed core 70 is mostly accommodated in the core container 80.
  • the movable core 72 is substantially cylindrical. In the movable core 72, a through hole 72h is formed from the upper end to the lower end. By energizing the coil 44, the movable core 72 is attracted to the fixed core 70 and moves upward.
  • the rod 60 is nonmagnetic.
  • the rod 60 has a cylindrical shaft portion 60a, an arc-shaped one end 60c provided at one end of the shaft portion 60a, and the other end 60b provided at the other end of the shaft portion 60a.
  • One end 60 c is fixed to the movable core 72.
  • the other end 60 b is disposed on the opposite side of the central portion 52 from the side where the one end 60 c is disposed.
  • the other end 60 b restricts the movement of the movable contact 50 toward the fixed terminal 10 by the second spring 64 when the drive mechanism 90 is not driven (the coil 44 is not energized).
  • One end portion 60 c is used to interlock the rod 60 with the movement of the movable core 72 when the drive mechanism 90 is driven.
  • a mounting member 67 for arranging the first spring 62 is arranged on the shaft portion 60a.
  • the attachment member 67 includes a C ring 67g fixed to the shaft 60a and a pedestal 67f disposed on the C ring 67g.
  • the first spring 62 is a coil spring. One end of the first spring 62 abuts on the pedestal 67 f and the other end abuts on the movable contact 50. The first spring 62 urges the movable contact 50 in a direction (Z-axis positive direction, upward direction) in which the movable contact 58 and the fixed contact 18 approach.
  • the second spring 64 is a coil spring. One end of the second spring 64 abuts on the movable core 72, and the other end abuts on the stationary core 70. The second spring 64 biases the movable core 72 in the direction (the Z-axis negative direction, downward direction) in which the movable core 72 is separated from the fixed core 70.
  • the operation of the relay 5 will be described.
  • the movable core 72 is attracted to the fixed core 70. That is, the movable core 72 approaches the fixed core 70 against the biasing force of the second spring 64 and abuts on the fixed core 70.
  • the rod 60 and the movable contact 50 move upward.
  • the fixed contacts 18 and the corresponding movable contacts 58 come into contact with each other.
  • the first spring 62 biases the movable contact 50 toward the fixed contact 18 side, whereby the contact between the fixed contact 18 and the movable contact 58 is stably maintained.
  • the arc 200 generated when the fixed contact 18 and the movable contact 58 are opened and closed is stretched outward of the hermetic space 100 by the magnetic field formed by the permanent magnet 800 (FIG. 4).
  • the pair of arcs 200 are drawn apart by permanent magnets 800.
  • the relay 5 of the first embodiment has the second member 54 in which the movable contact 50 extends in the direction including the moving direction D1 (FIG. 6).
  • the second members 54 respectively located between the movable contacts 58 and the central portion 52 have at least a part at one end face 16 There is an overlapping relationship (FIG. 8).
  • the current density of the orthogonal direction component of the current flowing in the vicinity of the contact portion S1 (movable contact 58) of the movable contact 50 can be reduced.
  • the electromagnetic repulsive force Fe, Fd (FIG. 5) can be reduced.
  • the second member 54 also has a first end face 51 having a movable contact 58 on the first side (upper side). That is, since the member forming the movable contact 58 is the second member 54, most of the current flowing in the vicinity of the contact portion S1 can be made to flow in the moving direction D1. Thereby, the current density of the orthogonal direction component of the current flowing in the vicinity of the contact portion S1 of the movable contact 50 can be further reduced. Thus, the electromagnetic repulsive forces Fe and Fd (FIG. 5) can be further reduced.
  • the second member 54 of the present embodiment extends along the movement direction D1. Thereby, more of the current flowing in the vicinity of the contact portion S1 can be made to flow in the moving direction D1. Therefore, the current density of the component in the orthogonal direction of the current flowing in the vicinity of the contact portion S1 can be further reduced, and therefore, the electromagnetic repulsive forces Fe and Fd (FIG. 5) can be further reduced.
  • FIG. 9 is a diagram for explaining the relay 5a of the second embodiment.
  • FIG. 9 is a cross-sectional view corresponding to the 4-4 cross section of FIG.
  • FIG. 9 illustrates the vicinity of the movable contact 50a disposed inside the relay main body 6a.
  • FIG. 9 also shows an enlarged view of a circled part.
  • the difference between the relay 5a of the second embodiment and the relay 5 of the first embodiment (FIG. 6) is the configuration of the movable contact 50a.
  • the other configuration (for example, the drive mechanism 90) is the same as that of the relay 5 of the first embodiment, so the same reference numerals are given to the same configurations and the description will be omitted.
  • the movable contact 50a is formed of a single member.
  • the movable contact 50a is manufactured by pressing a single metal plate.
  • the movable contact 50a includes a central portion 52a, a pair of extending portions 54a, and a pair of opposing portions 56.
  • the facing portion 56 faces the fixed contact 18 located on the same side with respect to the central portion 52a.
  • the facing portion 56 has a movable contact 58 on the facing surface 51 a facing the fixed contact 18.
  • the end surface of the extending portion 54a and the facing surface 51a are compared with each other.
  • the movable contact 58 can be formed with less man-hours.
  • the "single member” includes the aspect which has arrange
  • the separate member can be formed of a material having higher heat resistance than the other portion (e.g., the extending portion 54a) of the movable contact 50a.
  • the central portion 52 a is located below the pair of movable contacts 58. Further, in the path connecting the pair of movable contacts 58 on the movable contact 50 a, the central portion 52 a is located between the pair of movable contacts 58. The central portion 52 a is located between the pair of movable contacts 58 in the opposing direction (Y-axis direction).
  • the rod 60 which is a member which comprises the drive mechanism 90 is penetrated by the center part 52a.
  • the extension portion 54a extends along the moving direction D1 from the central portion 52a toward the upper side (the side on which the fixed contact 18 is located).
  • Each opposing portion 56 extends from each extending portion 54a. Each opposing portion 56 extends in a direction intersecting the movement direction D1. Specifically, the facing portion 56 extends in a direction (Y-axis direction) in which the pair of fixed terminals 10 face each other in the direction perpendicular to the moving direction D1. Further, the facing portion 56 extends outward of the airtight space 100 from the extending portion 54 a. Further, the end surface (tip surface) 56 p of the facing portion 56 faces the one end surface 16 and faces in the direction orthogonal to the moving direction D 1. Specifically, the end face 56p of the facing portion 56 faces in the facing direction (Y-axis direction).
  • FIG. 9 shows the outline Ya in the case of virtually moving the outer edge of the end face 16 along the movement direction D1 by a dotted line.
  • the first surface Fa located on the fixed contact 18 side has a curved surface R1 connecting the extending portion 54a and the facing portion 56 extending from the extending portion 54a.
  • the curved surface R1 is arc-shaped.
  • a portion of the curved surface R1 connected to the facing portion 56 is referred to as one end R1a, and a portion connected to the extension 54a is referred to as the other end R1b (see the enlarged view).
  • at least a part of the curved surface R1 is located inside the contour Ya.
  • the curved surface R 1 corresponds to the "connection surface" described in the means for solving the problem.
  • FIG. 10 shows one end surface 16 and an extending portion 54a in the case where the relay 5a is vertically projected on a predetermined plane perpendicular to the moving direction D1.
  • FIG. 11 shows one end surface 16 and a curved surface R1 when the relay 5a is vertically projected onto a predetermined plane perpendicular to the moving direction D1.
  • the curved surface R1 is in a relation of at least partially overlapping with the one end surface 16 located on the same side with respect to the central portion 52a.
  • the relay 5a of the second embodiment has the facing portion 56 extending in the direction intersecting the moving direction D1 from the extending portion 54a (FIG. 9). Also, the facing portion 56 has a movable contact 58 (FIG. 9).
  • the volume of movable contact 50a near contact part S1 which movable contact 58 and fixed contact 18 contact can be enlarged. Therefore, the temperature in the vicinity of the contact portion S1 of the movable contact 50a heated by the arc generated between the contact points 18 and 58 can be rapidly reduced.
  • the movable contact 50a also has a curved surface R1 connecting the facing portion 56 and the extending portion 54a (FIG. 9).
  • R1 connecting the facing portion 56 and the extending portion 54a
  • most of the current flowing in the vicinity of the movable contact 58 can be made to flow in the moving direction D1.
  • the extending portion 54a it is possible to reduce the current density of the component in the orthogonal direction of the current flowing in the vicinity of the contact portion S1 where the movable contact 58 and the fixed contact 18 contact. Therefore, compared with the case where it does not have a connection surface, electromagnetic repulsive force Fe and Fd (FIG.
  • the relay 5a of the second embodiment when the relay 5a is vertically projected onto a predetermined plane perpendicular to the moving direction D1, a part of the curved surface R1 overlaps the one end surface 16. Thereby, more of the current flowing in the vicinity of the contact portion S1 (the movable contact 58) of the movable contact 50a can be made to flow in the moving direction D1. Therefore, the current density of the orthogonal direction component of the current flowing in the vicinity of the contact portion S1 can be further reduced. That is, the electromagnetic repulsive forces Fe and Fd (FIG. 5) can be further reduced.
  • the relay 5a of the second embodiment is, like the relay 5 of the first embodiment, an extension 54a extending in the moving direction D1 when the relay 5a is vertically projected onto a predetermined plane perpendicular to the moving direction D1.
  • One part is in the overlapping relation with the end face 16 (FIG. 10).
  • the current density of the component in the orthogonal direction of the current flowing in the vicinity of the contact portion S1 (the movable contact 58) of the movable contact 50a can be reduced. That is, in the relay 5a of the second embodiment, the electromagnetic repulsive force Fe, Fd (FIG. 5) can be reduced by the extending portion 54a, similarly to the relay 5 of the first embodiment.
  • the movable contact 50a is formed of a single member. Thereby, the movable contact 50a can be easily manufactured. Thereby, the manufacturing cost of the relay 5a can be reduced.
  • FIG. 12 is a diagram for explaining the relay 5b of the third embodiment.
  • FIG. 12 is a cross-sectional view corresponding to the 4-4 cross section of FIG. Similarly to FIG. 9, FIG. 12 illustrates the vicinity of the movable contact 50b disposed inside the relay body 6b.
  • FIG. 12 also shows an enlarged view of a circled part.
  • the difference between the relay 5b of the third embodiment and the relay 5a of the second embodiment is the direction in which the facing portion 56b of the movable contact 50b extends.
  • the other configuration (for example, the drive mechanism 90) is the same as that of the relay 5a of the second embodiment. Therefore, the same components are denoted by the same reference numerals and the description thereof will be omitted.
  • the pair of facing portions 56 extend in the direction approaching each other from the extending portion 54a.
  • the positional relationship between the curved surface R1 and the one end surface 16 and the positional relationship between the extending portion 54a and the one end surface 16 have the same relationship as the relay 5a of the second embodiment.
  • the relay 5b of the third embodiment has the same effect as that of the second embodiment.
  • the movable contact 50a has a curved surface R1 connecting the facing portion 56b and the extending portion 54a (FIG. 12).
  • the connecting portion between the facing portion 56b and the extending portion 54a does not have a connecting surface, it is possible to make most of the current flowing in the vicinity of the movable contact 58 flow in the moving direction D1.
  • FIG. 13 is a view for explaining the relay 5 c of the fourth embodiment.
  • FIG. 13 is a cross-sectional view corresponding to the 4-4 cross section of FIG.
  • FIG. 13 illustrates the vicinity of the movable contact 50c disposed inside the relay main body 6c.
  • the difference between the relay 5c of the fourth embodiment and the relay 5 (FIG. 6) of the first embodiment is the shape of the first end face 51c of the second member 54c and the vicinity thereof.
  • the other configuration (for example, the drive mechanism 90) is the same as that of the relay 5 of the first embodiment, so the same reference numerals are given to the same configurations and the description will be omitted.
  • the second member 54c as the extending portion extends along the moving direction D1. Further, the second member 54c does not have the end surface portion 57a (FIG. 6) whose diameter is larger than that of the other portions.
  • a first end face 51c opposite to the end face 16 has a curved surface shape convex on the first side (upper side).
  • a movable contact 58 is provided at the top of the first end face 51c. The relationship between the second member 54c and the end face 16 is the same as that of the relay 5 of the first embodiment.
  • the second member 54c when the relay 5c is vertically projected on a predetermined plane perpendicular to the moving direction D1, the second member 54c is in a relation of at least partially overlapping the one end face 16. In the present embodiment, all of the second members 54 c are in a relation of overlapping the one end face 16.
  • the first end face 51c has a curved surface shape that is convex on the first side.
  • the first end face 51c is flat, it is possible to cause most of the current flowing in the vicinity of the contact portion S1 (movable contact 58) to flow in the moving direction D1. That is, the current density of the component in the orthogonal direction (horizontal component) orthogonal to the moving direction D1 of the current flowing in the vicinity of the contact portion S1 (movable contact 58) of the movable contact 50c can be further reduced. Therefore, the electromagnetic repulsive forces Fe and Fd (FIG. 5) can be further reduced.
  • the extending portions 54, 54a, 54c extend along the moving direction D1, but the extending portions 54, 54a, 54c may extend in the direction having the moving direction D1 component.
  • the movable contacts 50, 50a, 50b, 50c are disposed between the pair of movable contacts 58 and the pair of movable contacts 58, and move in the moving direction D1 of the pair of movable contacts 58 (Z-axis direction, height And the central portions 52 and 52a at different positions with respect to the direction).
  • the relays 5, 5a, 5b, 5c connect the pair of movable contacts 58 on the first surface Fa located on the fixed contact 18 side among the surfaces of the movable contacts 50, 50a, 50b, 50c.
  • the shortest path on the movable contacts 50, 50a, 50b, and 50c may have a portion having the movement direction D1 component. That is, the first surface Fa of the extending portions 54, 54a, 54c may have the moving direction D1 component.
  • at least a part of the connection portion (extension portions 54, 54a, 54c) connecting the central portions 52, 52a and the movable contact 58 has the following relationship with the one end surface 16: You just have to.
  • the relays 5, 5a, 5b, 5c are vertically projected on a predetermined plane perpendicular to the moving direction D1, at least a part of the connection portion may be in a relation overlapping with the one end face 16.
  • the current density of the orthogonal direction component of the current flowing in the vicinity of the contact portion S1 (the movable contact 58) of the movable contacts 50, 50a, 50b, 50c It can be reduced. Specific examples will be described below.
  • FIG. 14 is a diagram for explaining a first aspect of the first modification.
  • the movable contact 50a1 of the first aspect is an aspect in which a part of the configuration of the movable contact 50a (FIG. 9) of the second embodiment is changed.
  • the extending portion 54 a 1 may extend obliquely from the central portion 52 a toward the facing portion 56.
  • the extension portion 54a1 of the first aspect extends in a straight line.
  • the extending portion 54a1 extends in a direction having an opposing direction (Y-axis direction) component which is orthogonal to the moving direction D1 and in which the pair of fixed terminals 10 face each other, in addition to the moving direction D1 component.
  • FIG. 15 is a diagram for describing a second aspect of the first modified example.
  • the movable contact 50a2 of the second aspect is an aspect in which a part of the configuration of the movable contact 50a of the second embodiment is changed.
  • the extending portion 54a2 may extend obliquely from the central portion 52a toward the opposing portion 56.
  • the extension portion 54a2 of the first aspect has a bent shape.
  • the extending portions 54a1 and 54a2 extend in the direction including the opposing direction (Y-axis direction) component. Further, the extending portions 54a1 and 54a2 are movable contact points 58 positioned on the opposite side with respect to the central portion 52a as they move from the movable contact point 58 positioned on the same side with respect to the central portion 52a in the opposing direction. Head to the side.
  • the lengths of the movable contacts 50a1 and 50a2 connecting the pair of movable contacts 58 can be shortened. Thereby, the electrical resistance of movable contact 50a1, 50a2 can be reduced. Therefore, the voltage drop in the relay at the time of current supply can be suppressed.
  • the weight of the movable contacts 50a1 and 50a2 can be reduced. This can reduce the possibility of the contact between the movable contact 58 and the fixed contact 18 being open (detached) due to external impact or the like.
  • the pair of extension portions 54a1 and 54a1 are inclined with respect to the movement direction D1 so that they approach each other as they approach the central portion 52a.
  • the lengths of the movable contacts 50a1 and 50a2 connecting the pair of movable contacts 58 can be further shortened.
  • FIG. 16 is a diagram for explaining a second modification.
  • FIG. 16 is a view showing a fixed terminal 10d of a second modification.
  • the one end surface 16a having the fixed contact 18 may have a curved surface shape which is convex downward (second side).
  • the present invention is not limited to this, and another mechanism for moving the movable contact 50 may be used.
  • another mechanism for moving the movable contact 50 may be used on the surface of the central portion 52 (FIG. 6) of the movable contact 50 on the side opposite to the side where the fixed terminal 10 is located.
  • a mechanism for moving the movable contact 50 may be employed.
  • the configuration of the first spring 62 is not limited to the above embodiment, and a configuration not to be displaced according to the movement of the rod 60 or another configuration may be adopted.
  • the pair of extending portions 54, 54a, 54c both extend in the direction including the moving direction D1 component, and have a relationship in which at least a part thereof overlaps with the one end surface 16 when projected perpendicularly onto a predetermined plane.
  • one of the pair of extending portions 54, 54a, 54c vertically projects relays 5, 5a, 5b, 5c on a predetermined plane perpendicular to movement direction D1
  • at least a portion overlaps with one end face 16 It suffices to have a relationship (also referred to as a "first relationship").
  • FIG. 17 is a diagram for explaining the movable contact 50d.
  • the movable contact 50d differs from the first embodiment in that the movable contact 50 (FIG. 6) of the first embodiment is formed by a single member.
  • the movable contacts 50, 50c of the first and fourth embodiments are formed by using a plurality of different members, but may be formed by a single member as shown in FIG. By doing this, as in the second and third embodiments, the movable contact 50d can be easily manufactured, so that the manufacturing cost of the relay can be reduced.
  • the connecting surface connecting the extension portion 54a and the facing portions 56 and 56b is the curved surface R1 (FIGS. 8 and 12), but the shape of the connecting surface is limited to the curved surface. It is not a thing.
  • the connection surface may be inclined so as to be positioned on the lower side (second side) as it goes from the facing portions 56, 56b to the extending portion 54a.
  • the connection surface may be a flat surface (inclined surface) connecting the extension portion 54a and the facing portions 56 and 56b. The inclined surface is inclined with respect to the direction (horizontal direction) orthogonal to the moving direction D1.
  • the current density of the component in the orthogonal direction of the current flowing in the vicinity of the contact portion S1 where the movable contact 58 and the fixed contact 18 contact can be reduced.
  • the relay when the relay is vertically projected on a predetermined plane perpendicular to the moving direction D1, at least a portion including the one end portion R1a which is a portion connected to the facing portions 56 and 56b. Preferably overlap with the end face 16.

Abstract

A relay is provided with a pair of fixed terminals which each have a fixed contact point on one end surface, a movable contact having a pair of movable contact points which each face a fixed contact point, and a driving mechanism for moving the movable contact. The movable contact is provided with a center section located between the pair of movable contact points and more towards a second side than the movable contact points, and a pair of extended sections located between the center section and the pair of movable contact points and extending in a direction containing the movement direction component, wherein the second side represents the side in which the movable contact points are located and a first side represents the side in which the fixed contact points are located in relation to the movement direction of the movable contact. At least one of the pair of extended sections at least partially overlaps with the end surface located on the same side as the center section when the relay is vertically projected on a predetermined plane that is perpendicular to the movement direction.

Description

継電器relay
 本発明は、継電器に関する。 The present invention relates to a relay.
 従来、一対の固定接点と、一対の可動接点を有する可動接触子と、可動接触子を移動させるための可動鉄心及びコイルと、を備える継電器が知られている(例えば、特許文献1)。 BACKGROUND ART Conventionally, there is known a relay provided with a pair of fixed contacts, a movable contact having a pair of movable contacts, and a movable iron core and a coil for moving the movable contact (for example, Patent Document 1).
特開平9-320437号公報Unexamined-Japanese-Patent No. 9-320437 gazette 特開2002-42628号公報JP 2002-42628 A 特開2004-355847号公報JP 2004-355847 A
 この種の継電器は、コイルに通電した状態(継電器のON状態)において、継電器を流れる電流により生じる磁界によって、電磁反発力が生じる場合がある。電磁反発力は、可動接触子を流れる所定方向の電流に対して固定接点から可動接触子を引き離す方向に作用するローレンツ力である。 In this type of relay, in a state where the coil is energized (ON state of the relay), an electromagnetic repulsive force may be generated by a magnetic field generated by a current flowing through the relay. The electromagnetic repulsive force is a Lorentz force acting in a direction in which the movable contact is pulled away from the fixed contact with respect to the current in the predetermined direction flowing through the movable contact.
 電磁反発力が生じることで、固定接点と可動接点との接触が安定に維持できないおそれがあった。特に、継電器が配置されたシステムにおいて、継電器に大きな電流(例えば、5000A以上)が流れた場合、大きな電磁反発力が可動接触子に作用する。これにより、継電器のON状態のときに、固定接点と可動接点との接触を安定に維持できないおそれがあった。また、継電器に大きな電流が流れることで生じる大きな電磁反発力によって固定接点と可動接点とが離れると、接点間に大電流のアーク放電(以下、単に「アーク」ともいう。)が生じるおそれがある。大電流のアーク放電が生じると、継電器が損傷する場合がある。 There is a possibility that the contact between the fixed contact and the movable contact can not be stably maintained due to the generation of the electromagnetic repulsive force. In particular, in a system in which a relay is arranged, when a large current (eg, 5000 A or more) flows in the relay, a large electromagnetic repulsive force acts on the movable contact. As a result, when the relay is in the ON state, the contact between the fixed contact and the movable contact may not be stably maintained. In addition, when the fixed contact and the movable contact are separated due to a large electromagnetic repulsive force generated by the flow of a large current in the relay, a large current arc discharge (hereinafter, also simply referred to as "arc") may occur between the contacts. . If a large current arc occurs, the relay may be damaged.
 従って本発明は、継電器において電磁反発力を低減できる技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technology capable of reducing the electromagnetic repulsive force in a relay.
 なお、特願2010-245522、特願2011-6553の開示内容は、参考のためにこの明細書に組み込まれる。 The disclosures of Japanese Patent Application No. 2010-245522 and Japanese Patent Application No. 2011-6553 are incorporated herein by reference.
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。 The present invention has been made to solve at least a part of the above-described problems, and can be realized as the following modes or application examples.
[適用例1]一端面に固定接点をそれぞれ有する一対の固定端子と、
 前記各固定接点にそれぞれ対向する一対の可動接点を有する可動接触子と、
 前記可動接点を対向する前記固定接点に接触させるために前記可動接触子を移動させる駆動機構と、を備える継電器において、
 前記可動接触子の移動方向のうち、前記固定接点が位置する側を第1の側とし、前記可動接点が位置する側を第2の側とした場合に、
 前記可動接触子は、
  前記一対の可動接点を前記可動接触子上で結ぶ経路において前記一対の可動接点の間に位置し、前記可動接点よりも第2の側に位置する中央部と、
  前記経路において前記中央部と前記一対の可動接点との間に位置し、前記移動方向成分を含む方向に延びる一対の延伸部と、を有し、
 前記一対の延伸部の少なくとも一方は、
  前記継電器を前記移動方向に垂直な所定平面に垂直投影した場合に、前記中央部に対して同じ側に位置する前記一端面と少なくとも一部が重なる関係にある、ことを特徴とする継電器。
Application Example 1 A pair of fixed terminals each having a fixed contact on one end surface,
A movable contact having a pair of movable contacts respectively facing the fixed contacts;
A drive mechanism for moving the movable contact to bring the movable contact into contact with the opposing fixed contact;
In the movement direction of the movable contact, the side on which the fixed contact is positioned is the first side, and the side on which the movable contact is positioned is the second side.
The movable contact is
A central portion positioned between the pair of movable contacts in a path connecting the pair of movable contacts on the movable contact, and positioned on a second side of the movable contacts;
And a pair of extending portions positioned between the central portion and the pair of movable contacts in the path and extending in a direction including the movement direction component,
At least one of the pair of extending portions is
A relay according to claim 1, wherein when said relay is vertically projected onto a predetermined plane perpendicular to said moving direction, at least a part thereof overlaps with said one end surface located on the same side with respect to said central portion.
 適用例1に記載の継電器によれば、延伸部は固定接点を有する一端面と少なくとも一部が重なる関係を有する。また、延伸部は、移動方向成分を含む方向に延びる。よって、可動接触子のうち接触部近傍を流れる電流の直交方向成分の電流密度を低減できる。これにより、可動接触子が直交方向に延びる平板形状の場合や延伸部が一端面と重なっていない場合に比べ、電磁反発力を低減できる。なお、電磁反発力の詳細に関しては、後述する。 According to the relay described in Application Example 1, the extension portion has a relation at least partially overlapping with the one end surface having the fixed contact. Also, the extension portion extends in the direction including the movement direction component. Therefore, the current density of the orthogonal direction component of the current flowing in the vicinity of the contact portion of the movable contact can be reduced. Thereby, the electromagnetic repulsive force can be reduced as compared with the case where the movable contact has a flat plate shape extending in the orthogonal direction or the case where the extension portion does not overlap with the one end surface. The details of the electromagnetic repulsive force will be described later.
[適用例2]適用例1に記載の継電器において、
 前記関係を有する前記延伸部は、
  前記第1の側に位置する第1の端面に前記可動接点を有し、
 前記関係を有する前記延伸部の前記第1の端面は、前記第1の側に凸の曲面形状である、ことを特徴とする継電器。
 適用例2に記載の継電器によれば、さらに、第1の端面が第1の側に凸の曲面形状であることから、第1の端面が平面形状である場合に比べ、接触部近傍を流れる電流の直交方向成分の電流密度をより低減できる。これにより、電磁反発力をより低減できる。
Application Example 2 In the relay according to Application Example 1,
The extension portion having the relationship is
Having the movable contact on a first end face located on the first side;
The relay according to claim 1, wherein the first end face of the extension portion having the relationship has a curved surface shape convex to the first side.
According to the relay described in Application Example 2, since the first end face has a curved surface shape that is convex toward the first side, it flows in the vicinity of the contact portion compared to the case where the first end face has a planar shape. The current density of the orthogonal direction component of the current can be further reduced. Thereby, the electromagnetic repulsive force can be further reduced.
[適用例3]適用例1に記載の継電器において、
 前記可動接触子は、さらに、
  前記移動方向と交差する方向に前記一対の延伸部からそれぞれ延び、前記一対の固定接点とそれぞれ対向する一対の対向部を有し、
 前記一対の対向部は、前記固定接点と対向する対向面に前記可動接点を有する、ことを特徴とする継電器。
 適用例3に記載の継電器によれば、対向部を有することで、対向部を有さない場合に比べ、接触部近傍の可動接触子の体積を大きくできる。よって、アーク発生により加熱された可動接触子の接点部近傍の温度を迅速に低下させることができる。
Application Example 3 In the relay according to Application Example 1,
The movable contact is further
It has a pair of opposing parts which respectively extend from the pair of extending parts in a direction intersecting the moving direction and which respectively oppose the pair of fixed contacts,
The relay according to claim 1, wherein the pair of opposing portions have the movable contact on an opposing surface that faces the fixed contact.
According to the relay described in Application Example 3, the volume of the movable contact in the vicinity of the contact portion can be increased by having the facing portion as compared with the case where the facing portion is not provided. Thus, the temperature in the vicinity of the contact portion of the movable contact heated by the occurrence of the arc can be rapidly reduced.
[適用例4]適用例3に記載の継電器において、
 前記可動接触子の面のうち、前記固定接点側に位置する第1の面は、前記関係を有する延伸部と前記関係を有する延伸部から延びる前記対向部とを接続する接続面を有する、ことを特徴とする継電器。
 適用例4に記載の継電器によれば、延伸部と対向部を接続する接続面を有することで、可動接触子が対向部を有する場合でも、接続面を用いて接触部近傍を流れる電流の直交方向成分の電流密度を低減できる。これにより、適用例4の継電器は、接続面を有さない場合に比べて電磁反発力を低減できる。
Application Example 4 In the relay according to Application Example 3,
Among the surfaces of the movable contact, a first surface located on the fixed contact side has a connecting surface connecting the extending portion having the relationship and the opposing portion extending from the extending portion having the relationship. A relay characterized by
According to the relay described in Application Example 4, the connection surface connecting the extension portion and the opposite portion allows the orthogonality of the current flowing in the vicinity of the contact portion using the connection surface even when the movable contact has the opposite portion. The current density of the directional component can be reduced. Thereby, the relay of the application example 4 can reduce electromagnetic repulsion compared with the case where it does not have a connection surface.
[適用例5]適用例4に記載の継電器において、
 前記継電器を前記所定平面に垂直投影した場合に、前記接続面の少なくとも一部が前記一端面と重なる関係にある、ことを特徴とする継電器。
 適用例5に記載の継電器によれば、接続面が一端面と重なる関係にあることから、接続面が一端面と重ならない関係である場合に比べ、接触部近傍を流れる電流の直交方向成分の電流密度を低減できる。これにより、適用例5の継電器は、接続面をより有効に利用して電磁反発力を低減できる。
Application Example 5 In the relay according to Application Example 4,
A relay according to claim 1, wherein when said relay is vertically projected on said predetermined plane, at least a part of said connection surface is in a relation overlapping with said one end surface.
According to the relay described in Application Example 5, since the connection surface overlaps with the one end surface, the orthogonal direction component of the current flowing in the vicinity of the contact portion is compared with the case where the connection surface does not overlap with the one end surface. The current density can be reduced. Thereby, the relay of the application example 5 can reduce an electromagnetic repulsive force more effectively using a connection surface.
[適用例6]適用例1乃至適用例5のいずれか一つに記載の継電器において、
 前記関係を有する前記延伸部は、前記移動方向に沿って延びる、ことを特徴とする継電器。
 適用例6に記載の継電器によれば、延伸部が移動方向に沿って延びることから、接触部近傍を流れる電流のより多くが移動方向に流れる。これにより、接触部近傍を流れる電流の直交方向成分の電流密度をより一層低減できる。よって、適用例7の継電器は、電磁反発力をより一層低減できる。
Application Example 6 In the relay according to any one of Application Examples 1 to 5,
The relay according to claim 1, wherein the extension portion having the relationship extends along the moving direction.
According to the relay described in Application Example 6, since the extension portion extends in the moving direction, more current flowing in the vicinity of the contact portion flows in the moving direction. Thereby, the current density of the orthogonal direction component of the current flowing in the vicinity of the contact portion can be further reduced. Therefore, the relay of application example 7 can further reduce the electromagnetic repulsive force.
[適用例7]適用例1乃至適用例5のいずれか一つに記載の継電器において、
 前記関係を有する前記延伸部が延びる方向は、前記移動方向と直交し、かつ、前記一対の固定端子が対向する対向方向成分を含み、
 前記関係を有する前記延伸部は、前記対向方向について、前記中央部に対して同じ側に位置する前記可動接点側から前記中央部に向かうに従って前記中央部に対して反対側に位置する前記可動接点側に向かう、ことを特徴とする継電器。
 適用例7に記載の継電器によれば、延伸部は一対の固定端子が向かい合う対向方向成分を含む方向に延び、中央部に対して同じ側に位置する可動接点側から反対側に位置する可動接点側に延びる。これにより、一対の可動接点を繋ぐ可動接触子の長さを短くできる。よって、可動接触子の電気抵抗を低減できる。また、可動接触子の長さを短くできることから可動接触子の重量を低減できる。これにより、外部からの衝撃等が原因で可動接触子が継電器の他の構成部材に衝突した場合でも、可動接点と固定接点との接点間が開いてしまう(離れてしまう)可能性を低減できる。
Application Example 7 In the relay according to any one of Application Examples 1 to 5,
A direction in which the extension portion having the relationship extends includes a facing direction component which is orthogonal to the moving direction and in which the pair of fixed terminals face each other,
The extending portion having the relationship is the movable contact positioned on the opposite side with respect to the central portion as going from the movable contact side located on the same side with respect to the central portion in the opposing direction from the movable contact side to the central portion A relay, characterized in that it is directed to the side.
According to the relay described in Application Example 7, the extending portion extends in the direction including the opposing direction component in which the pair of fixed terminals face each other, and the movable contact located on the opposite side from the movable contact side located on the same side with respect to the central portion. Extend to the side. Thereby, the length of the movable contact connecting the pair of movable contacts can be shortened. Thus, the electrical resistance of the movable contact can be reduced. In addition, since the length of the movable contact can be shortened, the weight of the movable contact can be reduced. Thereby, even when the movable contact collides with another component of the relay due to an external impact or the like, the possibility that the contact between the movable contact and the fixed contact opens (is separated) can be reduced. .
[適用例8]適用例1乃至適用例7のいずれか一つに記載の継電器において、
 前記中央部に対して前記関係を有する延伸部と同じ側に位置する前記一端面は、前記第2の側に凸の曲面形状である、ことを特徴とする継電器。
 適用例8に記載の継電器によれば、固定接点を有する一端面が第2の側に凸の曲面形状である。これにより、一端面が平面形状である場合に比べ、可動接点と固定接点とが接触する接触部近傍の領域において、可動接触子と固定端子とのそれぞれに流れる電流における互いに平行かつ逆向きの成分を有する電流密度を低減できる。よって、継電器のON状態のときに、固定接点と可動接点とが離れる可能性を低減できる。
Application Example 8 In the relay according to any one of Application Examples 1 to 7,
The relay according to claim 1, wherein the one end surface located on the same side as the extension portion having the relation with respect to the central portion is a curved surface shape convex to the second side.
According to the relay described in Application Example 8, one end surface having the fixed contact has a curved surface shape convex to the second side. Thereby, compared with the case where the one end surface is a planar shape, parallel and opposite components of the current flowing in the movable contact and the fixed terminal in the region near the contact portion where the movable contact and the fixed contact contact each other Current density can be reduced. Therefore, when the relay is in the ON state, the possibility of separation of the fixed contact and the movable contact can be reduced.
[適用例9]適用例1乃至適用例8のいずれか一つに記載の継電器において、
 前記可動接触子は、単一の部材により形成されている、ことを特徴とする継電器。
 適用例9に記載の継電器によれば、可動接触子を単一の部材により形成することで、可動接触子を容易に製造できる。これにより、継電器の製造コストを低減できる。
Application Example 9 In the relay according to any one of Application Examples 1 to 8,
The relay according to claim 1, wherein the movable contact is formed by a single member.
According to the relay described in Application Example 9, the movable contact can be easily manufactured by forming the movable contact with a single member. Thereby, the manufacturing cost of the relay can be reduced.
 なお、本発明は、種々の形態で実現することが可能であり、例えば、継電器、継電器の製造方法、継電器を装備した車両や船舶等の移動体等の態様で実現することができる。 The present invention can be realized in various forms, and can be realized, for example, in the form of a relay, a method of manufacturing a relay, or a mobile body such as a vehicle equipped with a relay, a ship, or the like.
第1実施例に係る継電器5を備えた電気回路1の説明図である。It is explanatory drawing of the electric circuit 1 provided with the relay 5 which concerns on 1st Example. 継電器5の第1の外観図である。FIG. 6 is a first external view of the relay 5; 継電器5の第2の外観図である。FIG. 5 is a second external view of the relay 5; 継電器5の第3の外観図である。FIG. 7 is a third external view of the relay 5; 可動接触子に作用する力について説明するための図である。It is a figure for demonstrating the force which acts on a movable contact. 本実施例の継電器本体6の4-4断面図である。It is 4-4 sectional drawing of the relay main body 6 of a present Example. 図6に示す継電器本体6の斜視図である。It is a perspective view of the relay main body 6 shown in FIG. 一端面16と第2の部材54との関係を説明するための図である。It is a figure for demonstrating the relationship between the one end surface 16 and the 2nd member 54. FIG. 第2実施例の継電器5aを説明するための図である。It is a figure for demonstrating the relay 5a of 2nd Example. 垂直投影した場合の一端面16と延伸部54aを示している。The one end face 16 and the extending part 54 a in the case of vertical projection are shown. 垂直投影した場合の一端面16と曲面R1を示している。The one end face 16 and the curved surface R1 in the case of vertical projection are shown. 第3実施例の継電器5bを説明するための図である。It is a figure for demonstrating the relay 5b of 3rd Example. 第4実施例の継電器5cを説明するための図である。It is a figure for demonstrating the relay 5c of 4th Example. 第1変形例の第1の態様を説明するための図である。It is a figure for demonstrating the 1st aspect of a 1st modification. 第1変形例の第2の態様を説明するための図である。It is a figure for demonstrating the 2nd aspect of a 1st modification. 第2変形例を説明するための図である。It is a figure for demonstrating a 2nd modification. 可動接触子50dを説明するための図である。It is a figure for demonstrating movable contact 50d.
 次に、本発明の実施の形態を以下の順序で説明する。
A~D.各実施例:
E.変形例:
Next, embodiments of the present invention will be described in the following order.
A to D. Each example:
E. Modification:
A.第1実施例:
A-1.継電器の概略構成:
 図1は、第1実施例に係る継電器5を備えた電気回路(システム)1の説明図である。電気回路1は、例えば車両に搭載される。電気回路1は、直流電源2と、継電器5と、インバータ3と、モータ4とを備える。インバータ3は、直流電源2の直流電流を交流電流に変換する。インバータ3により変換された交流電流がモータ4に供給されることでモータ4が駆動する。モータ4の駆動により車両が走行する。継電器5は、直流電源2とインバータ3との間に設けられ、電気回路1の開閉を行う。すなわち、継電器5のON状態とOFF状態とを切り換えることで、電気回路1の開閉を行う。例えば、車両に異常が発生した場合に、継電器5によって直流電源2とインバータ3との電気的接続を遮断する。
A. First embodiment:
A-1. Schematic configuration of relay:
FIG. 1 is an explanatory view of an electric circuit (system) 1 provided with a relay 5 according to the first embodiment. The electric circuit 1 is mounted on, for example, a vehicle. The electric circuit 1 includes a DC power supply 2, a relay 5, an inverter 3, and a motor 4. The inverter 3 converts the direct current of the direct current power supply 2 into an alternating current. The alternating current converted by the inverter 3 is supplied to the motor 4 to drive the motor 4. The vehicle travels by driving the motor 4. The relay 5 is provided between the DC power supply 2 and the inverter 3 to open and close the electric circuit 1. That is, the electric circuit 1 is opened and closed by switching the ON state and the OFF state of the relay 5. For example, when an abnormality occurs in the vehicle, the relay 5 cuts off the electrical connection between the DC power supply 2 and the inverter 3.
 図2は、継電器5の第1の外観図である。図3は、継電器5の第2の外観図である。図4は、継電器5の第3の外観図である。図2は、理解の容易のために、外側ケース8内部の構成も実線で示している。また、図3及び図4は、図2で図示した外側ケース8の図示を省略している。図2~図4には、方向を特定するためにXYZ軸が図示されている。なお、他の図においても必要に応じてXYZ軸が図示されている。なお、本実施例では、継電器5はX軸とY軸に平行な平面に設置される。また、継電器5が平面に設置された場合、Z軸方向が鉛直方向(高さ方向)、Z軸正方向が鉛直上方向、Z軸負方向が鉛直下方向となる。なお、Z軸正方向側を上側(第1の側)とも呼び、Z軸負方向側を下側(第2の側)とも呼ぶ。 FIG. 2 is a first external view of the relay 5. FIG. 3 is a second external view of the relay 5. FIG. 4 is a third external view of the relay 5. FIG. 2 also shows the internal configuration of the outer case 8 in solid lines for easy understanding. 3 and 4 omit illustration of the outer case 8 illustrated in FIG. The XYZ axes are shown in FIGS. 2 to 4 to identify the direction. Note that XYZ axes are illustrated as necessary in other drawings. In the present embodiment, the relay 5 is installed in a plane parallel to the X axis and the Y axis. When the relay 5 is installed on a flat surface, the Z-axis direction is the vertical direction (height direction), the Z-axis positive direction is the vertically upward direction, and the Z-axis negative direction is the vertically downward direction. The Z-axis positive direction side is also referred to as the upper side (first side), and the Z-axis negative direction side is also referred to as the lower side (second side).
 図2に示すように、継電器5は、継電器本体6と、継電器本体6を保護するための外側ケース8とを備える。継電器本体6は、2つの固定端子10を備える。2つの固定端子10は、第1の容器20に接合されている。図3に示すように固定端子10は、電気回路1の配線を接続するための接続口12が形成されている。図2に示すように、外側ケース8は、上側ケース7と下側ケース9とを有する。上側ケース7と下側ケース9によって内側に継電器本体6を収容するための空間が形成されている。上側ケース7と下側ケース9は共に樹脂製の材料により成形されている。外側ケース8は後述する永久磁石800を備える。永久磁石800の磁界によりアークがローレンツ力を受けて引き伸ばされることで、アークの消弧が促進される。本実施例では、永久磁石800は、継電器5の内部で発生する一対のアークを互いに引き離すようにローレンツ力を一対のアークに対して作用させる。 As shown in FIG. 2, the relay 5 includes a relay body 6 and an outer case 8 for protecting the relay body 6. The relay body 6 is provided with two fixed terminals 10. The two fixed terminals 10 are joined to the first container 20. As shown in FIG. 3, the fixed terminal 10 is formed with a connection port 12 for connecting the wiring of the electric circuit 1. As shown in FIG. 2, the outer case 8 has an upper case 7 and a lower case 9. The upper case 7 and the lower case 9 form a space for accommodating the relay body 6 inside. The upper case 7 and the lower case 9 are both molded of a resin material. The outer case 8 is provided with a permanent magnet 800 described later. The arc is subjected to Lorentz force and stretched by the magnetic field of the permanent magnet 800, thereby promoting arc extinction. In this embodiment, the permanent magnet 800 exerts Lorentz force on the pair of arcs so as to separate the pair of arcs generated inside the relay 5 from each other.
A-2.可動接触子に作用する力について:
 継電器5の詳細構成を説明する前に、可動接触子に作用する力について図5を用いて説明する。図5は、可動接触子に作用する力について説明するための図である。図5は、図4の4-4断面のうち固定接点と可動接点とが接触する接触部S1近傍の模式図である。なお、可動接触子50zは後述する駆動機構によってZ軸方向(鉛直方向)に沿って移動する。
A-2. About the force acting on the movable contact:
Before describing the detailed configuration of the relay 5, the force acting on the movable contact will be described with reference to FIG. FIG. 5 is a figure for demonstrating the force which acts on a movable contact. FIG. 5 is a schematic view in the vicinity of the contact portion S1 where the fixed contact and the movable contact are in contact in the 4-4 cross section of FIG. The movable contact 50z is moved along the Z-axis direction (vertical direction) by a drive mechanism described later.
 継電器がON状態のときに、継電器に電流Iが流れた場合、様々な力Fe,Fd、Fpが可動接触子50zに作用する。例えば、固定端子10zから可動接触子50zに向かって流れる電流Iのうち、接触部S1を通り可動接触子50zの移動方向(鉛直方向、Z軸方向)に流れる電流Iaは、接触部S1近傍の領域に電流Iaを軸に所定の回転方向の磁界Maを生じさせる。所定の回転方向とは、図5をZ軸負方向側から見た場合に、反時計回りの方向である。すなわち、図5に示す平面において、電流Iaよりも右側の領域における磁界Maの向きは、X軸負方向側からX軸正方向側に向かう向きである。また、図5に示す平面において、電流Iaよりも左側の領域における磁界Maの向きは、X軸正方向側からX軸負方向側に向かう向きである。 When the current I flows in the relay when the relay is in the ON state, various forces Fe, Fd, Fp act on the movable contact 50z. For example, among the current I flowing from the fixed terminal 10z toward the movable contact 50z, the current Ia flowing in the moving direction (vertical direction, Z-axis direction) of the movable contact 50z through the contact portion S1 is in the vicinity of the contact portion S1. A magnetic field Ma in a predetermined rotational direction is generated in the region about the current Ia. The predetermined rotation direction is a counterclockwise direction when FIG. 5 is viewed from the Z-axis negative direction side. That is, in the plane shown in FIG. 5, the direction of the magnetic field Ma in the region on the right side of the current Ia is the direction from the X-axis negative direction side to the X-axis positive direction side. In the plane shown in FIG. 5, the direction of the magnetic field Ma in the region on the left side of the current Ia is the direction from the positive side of the X-axis to the negative side of the X-axis.
 ここで、可動接触子50zを流れる電流のうち、可動接触子50zの移動方向D1に直交する方向(「水平方向」ともいう。)成分の電流Id,Ieに対して、電流Iaによる磁界は固定接点18zから可動接触子を引き離す方向(Z軸負方向、下向き)にローレンツ力Fd,Feを作用させる。また、可動接触子50zから固定端子10zに電流が流れる場合も同様に、可動接触子50zを流れる電流のうち、水平方向成分の電流に対して下向きのローレンツ力Fe,Fdが作用する。 Here, of the current flowing through the movable contact 50z, the magnetic field by the current Ia is fixed with respect to the currents Id and Ie in the direction (also referred to as “horizontal direction”) orthogonal to the moving direction D1 of the movable contact 50z. Lorentz forces Fd and Fe are applied in a direction (Z-axis negative direction, downward) in which the movable contact is pulled away from the contact 18z. Similarly, when current flows from the movable contact 50z to the fixed terminal 10z, downward Lorentz forces Fe and Fd act on the current of the horizontal direction component of the current flowing through the movable contact 50z.
 また、接触部S1近傍を流れる電流のうち、互いに平行かつ逆向きの成分の電流に対しては、一方の電流により生じる磁界により他方の電流に対して一方の電流から引き離す方向にローレンツ力が作用する。例えば、平行かつ逆向きの成分の電流である電流Ibと電流Idに関して、電流Ibにより生じる磁界によって電流Idには可動接触子50zを固定接点18zから引き離す方向(Z軸負方向、下向き)にローレンツ力Fpが作用する。また、電流Icと電流Ieに関しても、電流Ieに対して下向きのローレンツ力Fpが作用する。また、同様に、可動接触子50zから固定端子10zに電流が流れる場合も同様に、可動接触子50zを流れる電流のうち、水平方向成分の電流に対して下向きのローレンツ力Fpが作用する。 In addition, of currents flowing in the vicinity of the contact portion S1, Lorentz force acts on the currents of components parallel and opposite to each other by the magnetic field generated by one of the currents in the direction of separating the other from the other current. Do. For example, with respect to the current Ib and the current Id which are parallel and reverse components, the magnetic field generated by the current Ib causes the current Id to move the movable contact 50z away from the fixed contact 18z (in the negative direction of Z axis, downward) Lorentz Force Fp acts. Further, also with respect to the current Ic and the current Ie, the downward Lorentz force Fp acts on the current Ie. Similarly, also when a current flows from the movable contact 50z to the fixed terminal 10z, the downward Lorentz force Fp acts on the current of the horizontal direction component of the current flowing through the movable contact 50z.
 上記のように、固定接点18zと可動接点58zとが接触し、継電器に電流が流れた場合に、可動接触子50zを固定接点18zから引き離す方向に可動接触子に対して力Fd,Fe,Fpが作用する。この力Fd,Fe,Fpを総称して「電磁反発力」ともいう。 As described above, when the fixed contact 18z contacts the movable contact 58z and a current flows in the relay, the force Fd, Fe, Fp on the movable contact in the direction of moving the movable contact 50z away from the fixed contact 18z. Works. The forces Fd, Fe, Fp are collectively referred to as "electromagnetic repulsive force".
A-3.継電器の詳細構成:
 図6は、本実施例の継電器本体6の4-4断面図である。図7は、図6に示す継電器本体6の斜視図である。図6及び図7に示すように、継電器本体6は、一対の固定端子10と、可動接触子50と、駆動機構90と、を備える。さらに、継電器本体6は、第1の容器20と、第2の容器92とを備える。第1の容器20と第2の容器92とにより継電器本体6の内側に気密空間100が形成されている。なお、直流電源2からモータ4に電流が供給される場合において、一対の固定端子10のうち、電流が流入する側をプラス固定端子10Wとも呼び、電流が流出する側をマイナス固定端子10Xとも呼ぶ。また以下では、直流電源2からモータ4に電流が供給される場合の継電器5について説明する。なお、図7には、一対の固定端子10と可動接触子50とが接触した場合に、継電器5に流れる電流Iを概念的に示している。
A-3. Detailed configuration of relay:
FIG. 6 is a 4-4 cross-sectional view of the relay body 6 of the present embodiment. FIG. 7 is a perspective view of the relay main body 6 shown in FIG. As shown in FIGS. 6 and 7, the relay body 6 includes a pair of fixed terminals 10, a movable contact 50, and a drive mechanism 90. Furthermore, the relay body 6 includes a first container 20 and a second container 92. An airtight space 100 is formed inside the relay main body 6 by the first container 20 and the second container 92. In the case where current is supplied from the DC power supply 2 to the motor 4, of the pair of fixed terminals 10, the side to which current flows is also referred to as positive fixed terminal 10W, and the side from which current flows is also referred to as negative fixed terminal 10X. . Moreover, below, the relay 5 in case an electric current is supplied to the motor 4 from DC power supply 2 is demonstrated. In addition, in FIG. 7, when a pair of fixed terminal 10 and the movable contact 50 contact, the electric current I which flows into the relay 5 is shown notionally.
 固定端子10は、導電性を有する部材である。固定端子10は、例えば銅を含む金属材料により形成されている。固定端子10は、底部を有する円筒状である。固定端子10は、一端側(Z軸負方向側)に位置する底部に端子接触部19を有する。端子接触部19は、固定端子10の他の部分と同様に銅を含む金属材料で形成しても良いし、アーク200による損傷を抑制するために耐熱性のより高い材料(例えば、タングステン)で形成しても良い。固定端子10のうち端子接触部19によって形成された一端面16は、可動接触子50の可動接点58と対向する。また、一端面16は、可動接触子50の移動方向D1に垂直な所定平面(本実施例では水平面)に垂直投影した場合に、円形状となる。一端面16は、可動接触子50と接触する固定接点18を有する。固定端子10の他端側(Z軸正方向側)には、径方向外側に広がるフランジ部13が形成されている。固定接点18は気密空間100の内側に位置し、フランジ部13は気密空間100の外側に位置するように、固定端子10の一部が第1の容器20に挿通されている。 The fixed terminal 10 is a member having conductivity. The fixed terminal 10 is formed of, for example, a metal material containing copper. The fixed terminal 10 is cylindrical with a bottom. The fixed terminal 10 has a terminal contact portion 19 at the bottom located at one end side (the negative side in the Z-axis). The terminal contact portion 19 may be formed of a metal material containing copper like the other portions of the fixed terminal 10, or a material having a higher heat resistance (for example, tungsten) to suppress damage by the arc 200. You may form. One end surface 16 formed by the terminal contact portion 19 of the fixed terminal 10 faces the movable contact 58 of the movable contact 50. Further, the end face 16 has a circular shape when vertically projected on a predetermined plane (horizontal plane in the present embodiment) perpendicular to the moving direction D1 of the movable contact 50. One end face 16 has a fixed contact 18 in contact with the movable contact 50. On the other end side (the Z-axis positive direction side) of the fixed terminal 10, a flange portion 13 which extends outward in the radial direction is formed. The fixed contact 18 is located inside the airtight space 100, and a part of the fixed terminal 10 is inserted into the first container 20 so that the flange portion 13 is located outside the airtight space 100.
 第1の容器20は、絶縁性を有する部材である。第1の容器20は、例えば、アルミナやジルコニア等のセラミックにより形成され、耐熱性に優れる。本実施例では、第1の容器にはアルミナを用いている。第1の容器20は、側面を形成する側面部22と、固定端子10の一部が突出する底部24と、を有する。第1の容器20のうち底部24と対向する一端側(言い換えれば、第2の容器92が配置された側)は開口している。底部24には、一対の固定端子10が通るための2つの貫通孔26が形成されている。 The first container 20 is a member having an insulating property. The first container 20 is formed of, for example, a ceramic such as alumina or zirconia, and is excellent in heat resistance. In the present embodiment, alumina is used for the first container. The first container 20 has a side portion 22 forming a side surface, and a bottom portion 24 from which a part of the fixed terminal 10 protrudes. One end of the first container 20 facing the bottom 24 (in other words, the side on which the second container 92 is disposed) is open. The bottom portion 24 is formed with two through holes 26 through which the pair of fixed terminals 10 pass.
 各固定端子10のフランジ部13は、第1の容器20の底部24の外表面(外側に露出した面)に気密に接合されている。詳細には、以下の構成により固定端子10が第1の容器20に接合されている。フランジ部13の外表面のうち、第1の容器20の底部24と対向する面には、固定端子10と第1の容器20との接合部分の破損を抑制するためのダイヤフラム部17が形成されている。ダイヤフラム部17は、材質が異なる固定端子10と第1の容器20との熱膨張差によって生じる接合部分の発生応力を緩和するために形成されている。ダイヤフラム部17は、貫通孔26よりも内径が大きい円筒状である。ダイヤフラム部17は、例えばコバール等の合金により形成され、第1の容器20の底部24外表面にろう付けにより接合されている。ろう付けには、例えば銀ろう等を用いる。固定端子10とダイヤフラム部17とが別体である場合には、固定端子10のフランジ部13とダイヤフラム部17をろう付けする。なお、ダイヤフラム部17と固定端子10とは一体としても構わない。 The flange portion 13 of each fixed terminal 10 is airtightly joined to the outer surface (a surface exposed to the outside) of the bottom portion 24 of the first container 20. Specifically, the fixed terminal 10 is joined to the first container 20 by the following configuration. A diaphragm portion 17 for suppressing breakage of a joint portion between the fixed terminal 10 and the first container 20 is formed on a surface of the outer surface of the flange portion 13 facing the bottom portion 24 of the first container 20. ing. The diaphragm portion 17 is formed in order to relieve the generated stress of the joint portion caused by the thermal expansion difference between the fixed terminal 10 and the first container 20 which are different in material. The diaphragm portion 17 has a cylindrical shape having a larger inside diameter than the through hole 26. The diaphragm portion 17 is formed of an alloy such as Kovar, for example, and is joined to the outer surface of the bottom portion 24 of the first container 20 by brazing. For brazing, for example, silver solder is used. When the fixed terminal 10 and the diaphragm part 17 are separate bodies, the flange part 13 of the fixed terminal 10 and the diaphragm part 17 are brazed. The diaphragm portion 17 and the fixed terminal 10 may be integrated.
 第2の容器92は、底部を有する円筒状の鉄心用容器80と、矩形状のベース部32と、略直方体形状の接合部材30とを備える。 The second container 92 includes a cylindrical iron core container 80 having a bottom, a rectangular base 32, and a substantially rectangular joint member 30.
 接合部材30は、例えば第1の容器20の熱膨張率と比較的近い低熱膨張の金属材料などで形成される。接合部材30は、磁性体(例えば、42アロイやコバール)や非磁性体(例えば、Ni-28Mo-2Fe)で形成されている。本実施例の接合部材30は磁性体である。接合部材30は、第1の容器20とベース部32にそれぞれ気密に接合されている。例えば、接合部材30と第1の容器20とはろう付けにより接合される。また、接合部材30とベース部32とは、レーザ溶接、抵抗溶接、電子ビーム溶接等により接合される。接合部材30は単一の部材により形成しても、特性の異なる複数の部材を組み合わせて形成しても良い。 The bonding member 30 is formed of, for example, a low thermal expansion metal material relatively close to the thermal expansion coefficient of the first container 20. The bonding member 30 is formed of a magnetic body (for example, 42 alloy or Kovar) or a nonmagnetic body (for example, Ni-28Mo-2Fe). The bonding member 30 of the present embodiment is a magnetic body. The bonding member 30 is airtightly bonded to the first container 20 and the base portion 32, respectively. For example, the joining member 30 and the first container 20 are joined by brazing. Further, the bonding member 30 and the base portion 32 are bonded by laser welding, resistance welding, electron beam welding or the like. The bonding member 30 may be formed by a single member or may be formed by combining a plurality of members having different characteristics.
 ベース部32は、磁性体であり、例えば鉄、ステンレス430等の金属磁性材料により形成されている。ベース部32の中央付近には後述する固定鉄心70を挿通させるための貫通孔が形成されている。 The base portion 32 is a magnetic body, and is formed of, for example, a metal magnetic material such as iron or stainless steel 430. In the vicinity of the center of the base portion 32, a through hole for inserting a fixed iron core 70 described later is formed.
 鉄心用容器80は、非磁性体である。鉄心用容器80は底部と対向する上側が開口している。鉄心用容器80は、レーザ溶接等を用いてベース部32に気密に接合されている。 The core container 80 is a nonmagnetic material. The iron core container 80 is open at the upper side facing the bottom. The iron core case 80 is airtightly joined to the base portion 32 using laser welding or the like.
 上記のように各部材10、20、30、32、80が気密に接合されることで、継電器5の内側に気密空間100が形成されている。気密空間100には、アーク200発生よって生じる固定接点18や可動接点58の発熱を抑制するために、水素又は水素を主体とするガスが大気圧以上(例えば、2気圧)で封入されている。具体的には、各部材10、20、30、32、80を接合した後に、図6に示す気密空間100の内側と外側とを連通するように配置された通気パイプ69を介して気密空間100内を真空引きする。そして、真空引きの後に通気パイプ69を介して気密空間100内に水素等のガスを所定圧になるまで封入する。水素等のガスを所定圧封入した後に、通気パイプ69を加締めて水素等のガスが気密空間100から外側に漏れ出さないようにする。 The airtight space 100 is formed inside the relay 5 by airtightly joining each member 10, 20, 30, 32, 80 as mentioned above. In order to suppress heat generation of the fixed contact 18 and the movable contact 58 caused by the generation of the arc 200, hydrogen or a gas mainly composed of hydrogen is sealed in the hermetic space 100 at atmospheric pressure or higher (for example, 2 atmospheric pressure). Specifically, after joining the respective members 10, 20, 30, 32, 80, the airtight space 100 is disposed via the ventilation pipe 69 arranged to connect the inside and the outside of the airtight space 100 shown in FIG. Vacuum inside. Then, after evacuation, a gas such as hydrogen is sealed in the air-tight space 100 to a predetermined pressure via the ventilation pipe 69. After sealing a gas such as hydrogen at a predetermined pressure, the aeration pipe 69 is crimped so that the gas such as hydrogen does not leak from the hermetic space 100 to the outside.
 可動接触子50は、気密空間100内に位置している。可動接触子50は、駆動機構90の動作により固定接点18に接離(接触及び引き離し)するように移動する。詳細には、可動接触子50は、固定接点18と可動接点58とが対向する方向(鉛直方向、Z軸方向)に移動する。可動接触子50が一対の固定端子10に接触することで一対の固定端子10を電気的に接続させる。可動接触子50は、2つの固定端子10に対向して配置されている。可動接触子50は、導電性を有する部材であり、例えば銅を含む金属材料により形成されている。 The movable contact 50 is located in the airtight space 100. The movable contact 50 moves so as to contact and separate (contact and separate) the fixed contact 18 by the operation of the drive mechanism 90. In detail, the movable contact 50 moves in a direction (vertical direction, Z-axis direction) in which the fixed contact 18 and the movable contact 58 face each other. When the movable contact 50 contacts the pair of fixed terminals 10, the pair of fixed terminals 10 are electrically connected. The movable contact 50 is disposed to face the two fixed terminals 10. The movable contact 50 is a member having conductivity, and is formed of, for example, a metal material containing copper.
 可動接触子50は、第1の部材55と、一対の第2の部材54とを有する。第1の部材55は水平な平板状である。第2の部材54は棒状である。本実施例では、第2の部材54が課題を解決するための手段に記載の「延伸部」に相当する。 The movable contact 50 has a first member 55 and a pair of second members 54. The first member 55 is in the form of a horizontal flat plate. The second member 54 is rod-shaped. In the present embodiment, the second member 54 corresponds to the “stretching portion” described in the means for solving the problem.
 第1の部材55は、第2の部材54が有する可動接点58よりも下側(第2の側)に位置する。第2の部材54は、一対の固定端子10に対応して設けられている。 The first member 55 is located on the lower side (second side) of the movable contact 58 of the second member 54. The second member 54 is provided corresponding to the pair of fixed terminals 10.
 一対の可動接点58を可動接触子50上で結ぶ経路(最短経路)において、第1の部材55は一対の可動接点58の間に位置する中央部52を有する。また、中央部52は、移動方向D1と直交する方向であって一対の固定端子10が対向する対向方向(Y軸方向)について、一対の可動接点58の間に位置する。中央部52は、一対の可動接点58よりも下側(第2の側)に位置する。中央部52は、第1の部材55の中央に位置する部分である。中央部52には、後述する駆動機構90を構成する部材が挿通される。詳細には、中央部52に形成された貫通孔53にロッド60が挿通される。なお、上記経路は、可動接触子50を流れる電流の経路とも言える。 In a path (shortest path) connecting the pair of movable contacts 58 on the movable contact 50, the first member 55 has a central portion 52 located between the pair of movable contacts 58. The central portion 52 is positioned between the pair of movable contacts 58 in a direction orthogonal to the moving direction D1 and in the opposing direction (Y-axis direction) in which the pair of fixed terminals 10 is opposed. The central portion 52 is located below (the second side) the pair of movable contacts 58. The central portion 52 is a portion located at the center of the first member 55. In the central portion 52, a member constituting a drive mechanism 90 described later is inserted. Specifically, the rod 60 is inserted into the through hole 53 formed in the central portion 52. The above path can also be said to be the path of the current flowing through the movable contact 50.
 第2の部材54は、第1の部材55に固定されている。第2の部材54は、第1の部材55から対応する固定接点18に向かって延びる。移動方向D1について、第2の部材54は第1の部材55の厚み以上の長さを有する。第2の部材54は、移動方向D1に直交する断面が略円形である。本実施例では、第2の部材54は、可動接触子50の移動方向D1に沿って延びる。各第2の部材54の上側の端面51(「第1の端面51」ともいう。)は、一端面16と対向する。第1の端面51は固定接点18と接触する可動接点58を有する。すなわち、一対の可動接点58を結ぶ可動接触子50の経路において、各第2の部材54は中央部52と各可動接点58の間にそれぞれ位置する。また、第2の部材54のうち上側に位置する、第1の端面51を含む端面部57aの径は問わない。なお、端面部57aの径は、第1の部材55に直接に固定される他の部分57bよりも径が大きいことが好ましい。こうすることで、端面部57aが他の部分57bと同様の径である場合に比べ、端面部57aの体積を大きくできる。これにより、接点18,58の開閉時のアーク200発生時、または連続通電時に、端面部57aが加熱された場合でも端面部57aの熱の拡散を促進できる。よって、端面部57aの温度を迅速に低下させることができる。 The second member 54 is fixed to the first member 55. The second member 54 extends from the first member 55 towards the corresponding fixed contact 18. The second member 54 has a length equal to or greater than the thickness of the first member 55 in the moving direction D1. The second member 54 has a substantially circular cross section orthogonal to the moving direction D1. In the present embodiment, the second member 54 extends along the moving direction D1 of the movable contact 50. An upper end surface 51 (also referred to as a “first end surface 51”) of each second member 54 faces the one end surface 16. The first end face 51 has a movable contact 58 in contact with the fixed contact 18. That is, in the path of the movable contact 50 connecting the pair of movable contacts 58, each second member 54 is positioned between the central portion 52 and each movable contact 58. Further, the diameter of the end surface portion 57 a including the first end surface 51 located on the upper side of the second member 54 does not matter. The diameter of the end face portion 57 a is preferably larger than that of the other portion 57 b directly fixed to the first member 55. By doing this, the volume of the end surface portion 57a can be increased as compared with the case where the end surface portion 57a has the same diameter as that of the other portion 57b. Thereby, even when the end face portion 57a is heated when the arc 200 is generated at the time of opening and closing of the contact points 18 and 58, or at the time of continuous energization, heat diffusion of the end face portion 57a can be promoted. Therefore, the temperature of the end face portion 57a can be rapidly reduced.
 ここで、一端面16の外縁を移動方向D1に沿って仮想的に移動させた場合に、第2の部材54の少なくとも一部が、Y軸方向について中央部52に対して同じ側に位置する一端面16の外縁の内側に位置する。本実施例では、第2の部材54のうち第1の端面51から中央部52に至る部分に亘って、第2の部材54の少なくとも一部が一端面16の外縁の内側に位置する。理解の容易のために、図6には、一端面16の外縁を移動方向D1に仮想的に移動させた場合の輪郭Yaを点線で示している。 Here, when the outer edge of the one end face 16 is virtually moved along the movement direction D1, at least a part of the second member 54 is located on the same side with respect to the central portion 52 in the Y-axis direction. It is located inside the outer edge of one end face 16. In the present embodiment, at least a portion of the second member 54 is positioned inside the outer edge of the one end surface 16 across the portion of the second member 54 from the first end face 51 to the central portion 52. For ease of understanding, FIG. 6 shows the outline Ya in a dotted line when the outer edge of the end face 16 is virtually moved in the movement direction D1.
 継電器5の他の構成について説明する前に、図8を用いて一端面16と第2の部材54との関係について別の視点で説明する。図8は、一端面16と第2の部材54との関係を説明するための図である。詳細には、図8は、継電器5を移動方向D1に垂直な所定平面に垂直投影した場合の一端面16と第2の部材54を示している。図8に示すように、継電器5を垂直投影した場合に、第2の部材54は、中央部52に対して同じ側に位置する一端面16と少なくとも一部が重なる関係にある。本実施例では、一端面16の輪郭の内側に延伸部54の他の部分57bが位置する関係にある。 Before describing another configuration of the relay 5, the relationship between the end face 16 and the second member 54 will be described from another viewpoint using FIG. FIG. 8 is a view for explaining the relationship between the end face 16 and the second member 54. As shown in FIG. In detail, FIG. 8 shows one end face 16 and the second member 54 when the relay 5 is vertically projected on a predetermined plane perpendicular to the moving direction D1. As shown in FIG. 8, when the relay 5 is vertically projected, the second member 54 is in a relation at least partially overlapping with the one end surface 16 located on the same side with respect to the central portion 52. In the present embodiment, the other portion 57 b of the extending portion 54 is positioned inside the contour of the end face 16.
 図6及び図7に戻って継電器5の他の構成について説明する。継電器5は、さらに、第3の容器34を備える。第3の容器34は、気密空間100内に収容されている。また、第3の容器34は、凹状形状でありベース部32上に配置されている。第3の容器34は、例えば合成樹脂やセラミックの絶縁体により形成されている。第3の容器34は、例えば、固定接点18と可動接点58との間で発生したアーク200が導電性の部材(例えば、後述する接合部材30等)に当たることを防止している。また、第3の容器34は、例えば、部材同士の接合部分にアーク200が当たることを防止している。以上のように、第3の容器34を備えることで、アーク200発生により継電器5が破損する可能性を低減できる。さらに、第3の容器34を備えることで、可動接触子50の回転を防止することができる。 Referring back to FIGS. 6 and 7, another configuration of the relay 5 will be described. The relay 5 further includes a third container 34. The third container 34 is housed in the airtight space 100. Also, the third container 34 has a concave shape and is disposed on the base portion 32. The third container 34 is formed of, for example, a synthetic resin or ceramic insulator. The third container 34 prevents, for example, the arc 200 generated between the fixed contact 18 and the movable contact 58 from impinging on a conductive member (for example, a bonding member 30 described later). In addition, the third container 34 prevents, for example, the arc 200 from hitting the joint portion between the members. As described above, by providing the third container 34, it is possible to reduce the possibility that the relay 5 may be broken due to the occurrence of the arc 200. Furthermore, by providing the third container 34, rotation of the movable contact 50 can be prevented.
 駆動機構90は、ロッド60と、ベース部32と、固定鉄心70と、可動鉄心72と、鉄心用容器80と、コイル44と、コイルボビン42と、コイル用容器40と、弾性部材としての第1のばね62と、弾性部材としての第2のばね64と、を有する。駆動機構90は、各可動接点58を各固定接点18に接触させるために可動接触子50を可動接点58と固定接点18とが対向する方向(鉛直方向、Z軸方向)に移動させる。詳細には、駆動機構90は、各可動接点58を各固定接点18に接触させたり、各可動接点58を各固定接点18から引き離させたりするために可動接触子50を移動させる。コイル44は、中空円筒状の樹脂製のコイルボビン42に巻き付けられている。 The drive mechanism 90 includes a rod 60, a base portion 32, a fixed core 70, a movable core 72, a container 80 for an iron core, a coil 44, a coil bobbin 42, a container 40 for a coil, and a first elastic member. And a second spring 64 as an elastic member. The driving mechanism 90 moves the movable contact 50 in a direction (vertical direction, Z-axis direction) in which the movable contact 58 and the fixed contact 18 face each other, in order to bring each movable contact 58 into contact with each fixed contact 18. Specifically, the drive mechanism 90 moves the movable contacts 50 to bring the movable contacts 58 into contact with the fixed contacts 18 and to pull the movable contacts 58 away from the fixed contacts 18. The coil 44 is wound around a hollow cylindrical resin coil bobbin 42.
 コイル用容器40は、磁性体であり、例えば鉄等の金属磁性材料により形成されている。コイル用容器40は凹状形状である。詳細には、コイル用容器40は底面と底面から鉛直方向(移動方向D1)に延びる一対の側面によって形成されている。また、鉄心用容器80を内側に収容するための貫通孔が形成されている。コイル用容器40は、コイル44を囲って磁束を通し、後述するベース部32と固定鉄心70と可動鉄心72と共に磁気回路を形成する。 The coil container 40 is a magnetic body, and is formed of, for example, a metal magnetic material such as iron. The coil container 40 has a concave shape. Specifically, the coil container 40 is formed of a bottom surface and a pair of side surfaces extending in the vertical direction (moving direction D1) from the bottom surface. Moreover, the through-hole for accommodating the container 80 for iron cores inside is formed. The coil case 40 encloses the coil 44 to pass a magnetic flux, and forms a magnetic circuit together with a base portion 32, a fixed iron core 70 and a movable iron core 72 which will be described later.
 有底筒状の鉄心用容器80の底部には、可動鉄心72が継電器5に加える衝撃を緩和するためのゴム86が配置されている。鉄心用容器80は、コイルボビン42の内側の貫通孔に配置されている。 At the bottom of the bottomed cylindrical iron core container 80, a rubber 86 for easing the impact of the movable iron core 72 on the relay 5 is disposed. The iron core case 80 is disposed in a through hole inside the coil bobbin 42.
 固定鉄心70は、略円柱状である。固定鉄心70には、上端から下端に亘って貫通孔70hが形成されている。固定鉄心70は、大部分が鉄心用容器80に収容されている。 The stationary core 70 is substantially cylindrical. A through hole 70 h is formed in the fixed core 70 from the upper end to the lower end. The fixed core 70 is mostly accommodated in the core container 80.
 可動鉄心72は、略円柱状である。可動鉄心72には、上端から下端に亘って貫通孔72hが形成されている。コイル44に通電することで、可動鉄心72は固定鉄心70に吸引されて上方向に移動する。 The movable core 72 is substantially cylindrical. In the movable core 72, a through hole 72h is formed from the upper end to the lower end. By energizing the coil 44, the movable core 72 is attracted to the fixed core 70 and moves upward.
 ロッド60は、非磁性体である。ロッド60は円柱状の軸部60aと、軸部60aの一端に設けられた円弧状の一端部60cと、軸部60aの他端に設けられた他端部60bとを有する。一端部60cは可動鉄心72に固定されている。他端部60bは、中央部52に対して一端部60cが配置された側とは反対側に配置されている。他端部60bは、駆動機構90が駆動していない状態(コイル44が非通電状態)において、第2のばね64によって可動接触子50が固定端子10に向かって移動することを規制する。一端部60cは、駆動機構90を駆動させたときに、可動鉄心72の動きにロッド60を連動させるために用いる。 The rod 60 is nonmagnetic. The rod 60 has a cylindrical shaft portion 60a, an arc-shaped one end 60c provided at one end of the shaft portion 60a, and the other end 60b provided at the other end of the shaft portion 60a. One end 60 c is fixed to the movable core 72. The other end 60 b is disposed on the opposite side of the central portion 52 from the side where the one end 60 c is disposed. The other end 60 b restricts the movement of the movable contact 50 toward the fixed terminal 10 by the second spring 64 when the drive mechanism 90 is not driven (the coil 44 is not energized). One end portion 60 c is used to interlock the rod 60 with the movement of the movable core 72 when the drive mechanism 90 is driven.
 軸部60aには、第1のばね62を配置するための取付部材67が配置されている。取付部材67は、軸部60aに固定されたCリング67gと、Cリング67g上に配置された台座部67fとを備える。 A mounting member 67 for arranging the first spring 62 is arranged on the shaft portion 60a. The attachment member 67 includes a C ring 67g fixed to the shaft 60a and a pedestal 67f disposed on the C ring 67g.
 第1のばね62はコイルばねである。第1のばね62は、一端が台座部67fに当接し、他端が可動接触子50に当接している。第1のばね62は、可動接点58と固定接点18とが近づく方向(Z軸正方向、上方向)に可動接触子50を付勢する。 The first spring 62 is a coil spring. One end of the first spring 62 abuts on the pedestal 67 f and the other end abuts on the movable contact 50. The first spring 62 urges the movable contact 50 in a direction (Z-axis positive direction, upward direction) in which the movable contact 58 and the fixed contact 18 approach.
 第2のばね64は、コイルばねである。第2のばね64は、一端が可動鉄心72に当接するし、他端が固定鉄心70に当接している。第2のばね64は、可動鉄心72が固定鉄心70から離れる方向(Z軸負方向、下方向)に可動鉄心72を付勢する。 The second spring 64 is a coil spring. One end of the second spring 64 abuts on the movable core 72, and the other end abuts on the stationary core 70. The second spring 64 biases the movable core 72 in the direction (the Z-axis negative direction, downward direction) in which the movable core 72 is separated from the fixed core 70.
 次に、継電器5の動作について説明する。コイル44に通電すると、可動鉄心72が固定鉄心70に吸引される。すなわち、可動鉄心72が第2のばね64の付勢力に抗して固定鉄心70に近づき、固定鉄心70に当接する。可動鉄心72が上方向に移動すると、ロッド60及び可動接触子50が上方向に移動する。これにより、各固定接点18と対応する各可動接点58とが接触する。また、固定接点18と可動接点58の接触状態において、第1のばね62が可動接触子50を固定接点18側に付勢することにより、固定接点18と可動接点58の接触が安定に維持される。 Next, the operation of the relay 5 will be described. When the coil 44 is energized, the movable core 72 is attracted to the fixed core 70. That is, the movable core 72 approaches the fixed core 70 against the biasing force of the second spring 64 and abuts on the fixed core 70. When the movable core 72 moves upward, the rod 60 and the movable contact 50 move upward. Thereby, the fixed contacts 18 and the corresponding movable contacts 58 come into contact with each other. Further, in the contact state of the fixed contact 18 and the movable contact 58, the first spring 62 biases the movable contact 50 toward the fixed contact 18 side, whereby the contact between the fixed contact 18 and the movable contact 58 is stably maintained. Ru.
 一方、コイル44への通電が遮断されると、主に第2のばね64の付勢力により可動鉄心72が固定鉄心70から離れるように下方向に移動する。これにより、ロッド60の他端部60bに押されて可動接触子50も下方向(固定接点18から離れる方向)に移動する。よって、各可動接点58が各固定接点18から引き離され、2つの固定端子10間の導通が遮断される。 On the other hand, when the coil 44 is de-energized, the movable iron core 72 moves downward so as to be separated from the fixed iron core 70 mainly by the biasing force of the second spring 64. Thereby, the movable contact 50 is also moved downward (in a direction away from the fixed contact 18) by being pushed by the other end 60b of the rod 60. Therefore, each movable contact 58 is pulled away from each fixed contact 18, and the conduction between the two fixed terminals 10 is interrupted.
 図6に示すように、固定接点18と可動接点58の開閉時に発生するアーク200は、永久磁石800(図4)が形成する磁界によって、気密空間100の外方に向かって引き伸ばされる。詳細には、一対のアーク200は、永久磁石800によって互いに引き離されるように引き伸ばされる。 As shown in FIG. 6, the arc 200 generated when the fixed contact 18 and the movable contact 58 are opened and closed is stretched outward of the hermetic space 100 by the magnetic field formed by the permanent magnet 800 (FIG. 4). In particular, the pair of arcs 200 are drawn apart by permanent magnets 800.
 上記のように、第1実施例の継電器5は、可動接触子50が移動方向D1を含む方向に延びる第2の部材54を有する(図6)。そして、各可動接点58と中央部52との間にそれぞれ位置する第2の部材54は、継電器5を移動方向D1に垂直な所定平面に垂直投影した場合に、一端面16と少なくとも一部が重なる関係にある(図8)。これにより、継電器5がON状態のときに、可動接触子50のうち可動接点58と固定接点18とが接触する接触部S1近傍を流れる電流の一部を移動方向D1の流れにできる。すなわち、可動接触子50のうち接触部S1(可動接点58)近傍を流れる電流の直交方向成分の電流密度を低減できる。これにより、可動接触子50が直交方向のみに延びる平板形状の場合や第2の部材54が一端面16と重なっていない場合に比べ、電磁反発力Fe,Fd(図5)を低減できる。 As described above, the relay 5 of the first embodiment has the second member 54 in which the movable contact 50 extends in the direction including the moving direction D1 (FIG. 6). When the relay 5 is vertically projected on a predetermined plane perpendicular to the moving direction D1, the second members 54 respectively located between the movable contacts 58 and the central portion 52 have at least a part at one end face 16 There is an overlapping relationship (FIG. 8). Thereby, when the relay 5 is in the ON state, a part of the current flowing in the vicinity of the contact portion S1 of the movable contact 50 where the movable contact 58 and the fixed contact 18 contact can be made to flow in the moving direction D1. That is, the current density of the orthogonal direction component of the current flowing in the vicinity of the contact portion S1 (movable contact 58) of the movable contact 50 can be reduced. Thereby, compared with the case where the movable contact 50 has a flat plate shape extending only in the orthogonal direction or the case where the second member 54 does not overlap the end face 16, the electromagnetic repulsive force Fe, Fd (FIG. 5) can be reduced.
 また、第2の部材54は、第1の側(上側)に可動接点58を有する第1の端面51を備える。すなわち、可動接点58を形成する部材が第2の部材54であることから、接触部S1近傍を流れる電流の多くを移動方向D1の流れにできる。これにより、可動接触子50のうち接触部S1近傍を流れる電流の直交方向成分の電流密度をさらに低減できる。よって、電磁反発力Fe,Fd(図5)をさらに低減できる。 The second member 54 also has a first end face 51 having a movable contact 58 on the first side (upper side). That is, since the member forming the movable contact 58 is the second member 54, most of the current flowing in the vicinity of the contact portion S1 can be made to flow in the moving direction D1. Thereby, the current density of the orthogonal direction component of the current flowing in the vicinity of the contact portion S1 of the movable contact 50 can be further reduced. Thus, the electromagnetic repulsive forces Fe and Fd (FIG. 5) can be further reduced.
 また、本実施例の第2の部材54は移動方向D1に沿って延びる。これにより、接触部S1近傍を流れる電流のより多くを移動方向D1の流れにできる。よって、接触部S1近傍を流れる電流の直交方向成分の電流密度をより一層低減できるため、電磁反発力Fe,Fd(図5)をより一層低減できる。 In addition, the second member 54 of the present embodiment extends along the movement direction D1. Thereby, more of the current flowing in the vicinity of the contact portion S1 can be made to flow in the moving direction D1. Therefore, the current density of the component in the orthogonal direction of the current flowing in the vicinity of the contact portion S1 can be further reduced, and therefore, the electromagnetic repulsive forces Fe and Fd (FIG. 5) can be further reduced.
B.第2実施例:
 図9は、第2実施例の継電器5aを説明するための図である。図9は、図4の4-4断面に相当する断面図である。図9には、継電器本体6aの内側に配置されている可動接触子50a近傍を図示している。また図9には、丸で囲んだ部分の拡大図も示している。第2実施例の継電器5aと第1実施例の継電器5(図6)とで異なる点は、可動接触子50aの構成である。その他の構成(例えば、駆動機構90)については、第1実施例の継電器5と同様の構成であるため、同様の構成については同一符号を付すと共に説明を省略する。
B. Second embodiment:
FIG. 9 is a diagram for explaining the relay 5a of the second embodiment. FIG. 9 is a cross-sectional view corresponding to the 4-4 cross section of FIG. FIG. 9 illustrates the vicinity of the movable contact 50a disposed inside the relay main body 6a. FIG. 9 also shows an enlarged view of a circled part. The difference between the relay 5a of the second embodiment and the relay 5 of the first embodiment (FIG. 6) is the configuration of the movable contact 50a. The other configuration (for example, the drive mechanism 90) is the same as that of the relay 5 of the first embodiment, so the same reference numerals are given to the same configurations and the description will be omitted.
 可動接触子50aは、単一の部材により形成されている。例えば、可動接触子50aは、一枚の金属板をプレス加工して作製される。可動接触子50aは、中央部52aと、一対の延伸部54aと、一対の対向部56とを備える。対向部56は、中央部52aに対して同じ側に位置する固定接点18と対向する。対向部56は、固定接点18と対向する対向面51aに可動接点58を有する。このように、一枚の金属板をプレス加工して可動接触子50aを作製した場合、延伸部54aの端面と対向面51aとを比較すると、対向面51aの表面状態は良好であるため、より少ない工数で可動接点58を形成することができる。なお、「単一の部材」とは、可動接触子50aの対向部56上に可動接点58を形成するために別部材を配置した態様も含む。例えば、別部材は、可動接触子50aの他の部分(例えば、延伸部54a)よりも耐熱性の高い材料で形成できる。 The movable contact 50a is formed of a single member. For example, the movable contact 50a is manufactured by pressing a single metal plate. The movable contact 50a includes a central portion 52a, a pair of extending portions 54a, and a pair of opposing portions 56. The facing portion 56 faces the fixed contact 18 located on the same side with respect to the central portion 52a. The facing portion 56 has a movable contact 58 on the facing surface 51 a facing the fixed contact 18. As described above, when the movable contact 50a is manufactured by pressing one metal plate, the end surface of the extending portion 54a and the facing surface 51a are compared with each other. The movable contact 58 can be formed with less man-hours. In addition, the "single member" includes the aspect which has arrange | positioned another member, in order to form the movable contact 58 on the opposing part 56 of the movable contact 50a. For example, the separate member can be formed of a material having higher heat resistance than the other portion (e.g., the extending portion 54a) of the movable contact 50a.
 中央部52aは、一対の可動接点58よりも下側に位置する。また、一対の可動接点58を可動接触子50a上で結ぶ経路において、中央部52aは一対の可動接点58の間に位置する。また、対向方向(Y軸方向)について、中央部52aは一対の可動接点58の間に位置する。中央部52aには、駆動機構90を構成する部材であるロッド60が挿通されている。 The central portion 52 a is located below the pair of movable contacts 58. Further, in the path connecting the pair of movable contacts 58 on the movable contact 50 a, the central portion 52 a is located between the pair of movable contacts 58. The central portion 52 a is located between the pair of movable contacts 58 in the opposing direction (Y-axis direction). The rod 60 which is a member which comprises the drive mechanism 90 is penetrated by the center part 52a.
 延伸部54aは、中央部52aから上側(固定接点18が位置する側)に向かって移動方向D1に沿って延びる。 The extension portion 54a extends along the moving direction D1 from the central portion 52a toward the upper side (the side on which the fixed contact 18 is located).
 各対向部56は、各延伸部54aからそれぞれ延びる。各対向部56は、移動方向D1と交差する方向にそれぞれ延びる。詳細には、対向部56は移動方向D1に直交する方向であって、一対の固定端子10が対向する対向方向(Y軸方向)に延びる。また、対向部56は、延伸部54aから気密空間100の外方に向かって延びる。また、対向部56の端面(先端面)56pは、一端面16と対向することなく、移動方向D1と直交する方向を向いている。詳細には、対向部56の端面56pは、対向方向(Y軸方向)を向いている。 Each opposing portion 56 extends from each extending portion 54a. Each opposing portion 56 extends in a direction intersecting the movement direction D1. Specifically, the facing portion 56 extends in a direction (Y-axis direction) in which the pair of fixed terminals 10 face each other in the direction perpendicular to the moving direction D1. Further, the facing portion 56 extends outward of the airtight space 100 from the extending portion 54 a. Further, the end surface (tip surface) 56 p of the facing portion 56 faces the one end surface 16 and faces in the direction orthogonal to the moving direction D 1. Specifically, the end face 56p of the facing portion 56 faces in the facing direction (Y-axis direction).
 第1実施例と同様に、一端面16の外縁を移動方向D1に沿って仮想的に移動させた場合に、延伸部54aの少なくとも一部が、中央部52aに対して同じ側に位置する一端面16の外縁の内側に位置する。本実施例では、延伸部54aの対向部56から中央部52aに至る部分に亘って、延伸部54aの少なくとも一部が一端面16の外縁の内側に位置する。理解の容易のために、図9には、一端面16の外縁を移動方向D1に沿って仮想的に移動させた場合の輪郭Yaを点線で示している。 As in the first embodiment, when the outer edge of the end face 16 is virtually moved along the moving direction D1, at least a portion of the extending portion 54a is located on the same side with respect to the central portion 52a. It is located inside the outer edge of the end face 16. In the present embodiment, at least a portion of the extending portion 54a is located inside the outer edge of the one end surface 16 over the portion from the facing portion 56 of the extending portion 54a to the central portion 52a. For ease of understanding, FIG. 9 shows the outline Ya in the case of virtually moving the outer edge of the end face 16 along the movement direction D1 by a dotted line.
 また、可動接触子50aの面のうち、固定接点18側(上側)に位置する第1の面Faは、延伸部54aと延伸部54aから延びる対向部56とを接続する曲面R1を有する。本実施例では、曲面R1は円弧状である。理解の容易のために、曲面R1のうち、対向部56に接続される部分を一端部R1aとし、延伸部54aに接続される部分を他端部R1bとする(拡大図参照)。ここで、曲面R1の少なくとも一部は、輪郭Yaの内側に位置する。すなわち、継電器5aを移動方向D1に垂直な平面に垂直投影した場合に、曲面R1の少なくとも一部は、一端面16と重なる関係にある。なお、本実施例では、曲面R1が課題を解決するための手段に記載の「接続面」に相当する。 Further, among the surfaces of the movable contact 50a, the first surface Fa located on the fixed contact 18 side (upper side) has a curved surface R1 connecting the extending portion 54a and the facing portion 56 extending from the extending portion 54a. In the present embodiment, the curved surface R1 is arc-shaped. For easy understanding, a portion of the curved surface R1 connected to the facing portion 56 is referred to as one end R1a, and a portion connected to the extension 54a is referred to as the other end R1b (see the enlarged view). Here, at least a part of the curved surface R1 is located inside the contour Ya. That is, when the relay 5 a is vertically projected on a plane perpendicular to the moving direction D 1, at least a part of the curved surface R 1 is in a relation overlapping with the one end surface 16. In the present embodiment, the curved surface R1 corresponds to the "connection surface" described in the means for solving the problem.
 図10及び図11を用いて、一端面16と可動接触子50aの関係について別の視点で説明する。図10は、継電器5aを移動方向D1に垂直な所定平面に垂直投影した場合の一端面16と延伸部54aを示している。図11は、継電器5aを移動方向D1に垂直な所定平面に垂直投影した場合の一端面16と曲面R1を示している。 The relationship between the one end surface 16 and the movable contact 50a will be described from another viewpoint using FIG. 10 and FIG. FIG. 10 shows one end surface 16 and an extending portion 54a in the case where the relay 5a is vertically projected on a predetermined plane perpendicular to the moving direction D1. FIG. 11 shows one end surface 16 and a curved surface R1 when the relay 5a is vertically projected onto a predetermined plane perpendicular to the moving direction D1.
 図10に示すように、継電器5aを垂直投影した場合に、延伸部54aは、中央部52aに対して同じ側に位置する一端面16と少なくとも一部が重なる関係にある。また、図11に示すように、継電器5aを垂直投影した場合に、曲面R1は、中央部52aに対して同じ側に位置する一端面16と少なくとも一部が重なる関係にある。ここで、曲面R1のうち一端部R1aを含む少なくとも一部が一端面16と重なる関係にあることが好ましい。 As shown in FIG. 10, when the relay 5a is vertically projected, at least a portion of the extension portion 54a overlaps with the one end surface 16 located on the same side with respect to the central portion 52a. Further, as shown in FIG. 11, when the relay 5a is vertically projected, the curved surface R1 is in a relation of at least partially overlapping with the one end surface 16 located on the same side with respect to the central portion 52a. Here, it is preferable that at least a part of the curved surface R1 including the one end portion R1a be in a relation of overlapping with the one end surface 16.
 上記のように、第2実施例の継電器5aは、延伸部54aから移動方向D1に交差する方向に延びる対向部56を有する(図9)。また、対向部56は可動接点58を有する(図9)。これにより、対向部56を有さない場合に比べ、可動接点58と固定接点18とが接触する接触部S1近傍の可動接触子50aの体積を大きくできる。よって、接点間18,58間に発生するアークによって加熱された可動接触子50aの接触部S1近傍の温度を迅速に低下させることができる。 As described above, the relay 5a of the second embodiment has the facing portion 56 extending in the direction intersecting the moving direction D1 from the extending portion 54a (FIG. 9). Also, the facing portion 56 has a movable contact 58 (FIG. 9). Thereby, compared with the case where it does not have opposing part 56, the volume of movable contact 50a near contact part S1 which movable contact 58 and fixed contact 18 contact can be enlarged. Therefore, the temperature in the vicinity of the contact portion S1 of the movable contact 50a heated by the arc generated between the contact points 18 and 58 can be rapidly reduced.
 また、可動接触子50aは対向部56と延伸部54aとを接続する曲面R1を有する(図9)。これにより、対向部56と延伸部54aとの接続部分に接続面を有さない場合に比べ、可動接点58近傍を流れる電流の多くを移動方向D1の流れにできる。これにより、延伸部54aを有する場合でも、可動接点58と固定接点18とが接触する接触部S1近傍を流れる電流の直交方向成分の電流密度を低減できる。よって、接続面を有さない場合に比べ、電磁反発力Fe,Fd(図5)を低減できる。特に本実施例のように、曲面R1のうち一端部R1aを含む少なくとも一部が一端面16と重なる関係にあることで、可動接点58近傍を流れる電流のより多くを移動方向D1の流れにできる。これにより、接触部S1近傍を流れる電流の直交方向成分の電流密度をより低減できる。 The movable contact 50a also has a curved surface R1 connecting the facing portion 56 and the extending portion 54a (FIG. 9). As a result, compared to the case where the connecting portion between the facing portion 56 and the extending portion 54a does not have a connecting surface, most of the current flowing in the vicinity of the movable contact 58 can be made to flow in the moving direction D1. Thus, even in the case where the extending portion 54a is provided, it is possible to reduce the current density of the component in the orthogonal direction of the current flowing in the vicinity of the contact portion S1 where the movable contact 58 and the fixed contact 18 contact. Therefore, compared with the case where it does not have a connection surface, electromagnetic repulsive force Fe and Fd (FIG. 5) can be reduced. In particular, as in the present embodiment, when at least a part including the one end R1a of the curved surface R1 overlaps the one end surface 16, more of the current flowing in the vicinity of the movable contact 58 can be made to flow in the moving direction D1. . Thereby, the current density of the orthogonal direction component of the current flowing in the vicinity of the contact portion S1 can be further reduced.
 さらに、第2実施例の継電器5aは、継電器5aを移動方向D1に垂直な所定平面に垂直投影した場合に、曲面R1の一部が一端面16と重なる関係にある。これにより、可動接触子50aのうち接触部S1(可動接点58)近傍を流れる電流のより多くを移動方向D1の流れにできる。よって、接触部S1近傍を流れる電流の直交方向成分の電流密度をより低減できる。すなわち、電磁反発力Fe,Fd(図5)をより低減できる。 Furthermore, in the relay 5a of the second embodiment, when the relay 5a is vertically projected onto a predetermined plane perpendicular to the moving direction D1, a part of the curved surface R1 overlaps the one end surface 16. Thereby, more of the current flowing in the vicinity of the contact portion S1 (the movable contact 58) of the movable contact 50a can be made to flow in the moving direction D1. Therefore, the current density of the orthogonal direction component of the current flowing in the vicinity of the contact portion S1 can be further reduced. That is, the electromagnetic repulsive forces Fe and Fd (FIG. 5) can be further reduced.
 また、第2実施例の継電器5aは、上記第1実施例の継電器5と同様に、継電器5aを移動方向D1に垂直な所定平面に垂直投影した場合に、移動方向D1に延びる延伸部54aの一部が、一端面16と重なる関係にある(図10)。これにより、第1実施例と同様に、可動接触子50aのうち接触部S1(可動接点58)近傍を流れる電流の直交方向成分の電流密度を低減できる。すなわち、第2実施例の継電器5aは、第1実施例の継電器5と同様に、延伸部54aによって電磁反発力Fe,Fd(図5)を低減できる。 Further, the relay 5a of the second embodiment is, like the relay 5 of the first embodiment, an extension 54a extending in the moving direction D1 when the relay 5a is vertically projected onto a predetermined plane perpendicular to the moving direction D1. One part is in the overlapping relation with the end face 16 (FIG. 10). Thus, as in the first embodiment, the current density of the component in the orthogonal direction of the current flowing in the vicinity of the contact portion S1 (the movable contact 58) of the movable contact 50a can be reduced. That is, in the relay 5a of the second embodiment, the electromagnetic repulsive force Fe, Fd (FIG. 5) can be reduced by the extending portion 54a, similarly to the relay 5 of the first embodiment.
 また、可動接触子50aは、単一の部材により形成されている。これにより、可動接触子50aを容易に製造できる。これにより、継電器5aの製造コストを低減できる。 Moreover, the movable contact 50a is formed of a single member. Thereby, the movable contact 50a can be easily manufactured. Thereby, the manufacturing cost of the relay 5a can be reduced.
C.第3実施例:
 図12は、第3実施例の継電器5bを説明するための図である。図12は、図4の4-4断面に相当する断面図である。図12は、図9と同様に、継電器本体6bの内側に配置されている可動接触子50b近傍を図示している。また、図12には、丸で囲んだ部分の拡大図も示している。第3実施例の継電器5bと第2実施例の継電器5aとで異なる点は、可動接触子50bの対向部56bが延びる方向である。その他の構成(例えば、駆動機構90)については、第2実施例の継電器5aと同様の構成であるため、同様の構成については同一符号を付すと共に説明を省略する。
C. Third embodiment:
FIG. 12 is a diagram for explaining the relay 5b of the third embodiment. FIG. 12 is a cross-sectional view corresponding to the 4-4 cross section of FIG. Similarly to FIG. 9, FIG. 12 illustrates the vicinity of the movable contact 50b disposed inside the relay body 6b. FIG. 12 also shows an enlarged view of a circled part. The difference between the relay 5b of the third embodiment and the relay 5a of the second embodiment is the direction in which the facing portion 56b of the movable contact 50b extends. The other configuration (for example, the drive mechanism 90) is the same as that of the relay 5a of the second embodiment. Therefore, the same components are denoted by the same reference numerals and the description thereof will be omitted.
 一対の対向部56は、延伸部54aから互いに近づく方向に延びている。なお、曲面R1と一端面16との位置関係、及び、延伸部54aと一端面16との位置関係は、第2実施例の継電器5aと同様の関係を有する。 The pair of facing portions 56 extend in the direction approaching each other from the extending portion 54a. The positional relationship between the curved surface R1 and the one end surface 16 and the positional relationship between the extending portion 54a and the one end surface 16 have the same relationship as the relay 5a of the second embodiment.
 上記のように第3実施例の継電器5bは、第2実施例と同様の効果を奏する。例えば、可動接触子50aは対向部56bと延伸部54aとを接続する曲面R1を有する(図12)。これにより、対向部56bと延伸部54aとの接続部分に接続面を有さない場合に比べ、可動接点58近傍を流れる電流の多くを移動方向D1の流れにできる。 As described above, the relay 5b of the third embodiment has the same effect as that of the second embodiment. For example, the movable contact 50a has a curved surface R1 connecting the facing portion 56b and the extending portion 54a (FIG. 12). Thereby, compared with the case where the connecting portion between the facing portion 56b and the extending portion 54a does not have a connecting surface, it is possible to make most of the current flowing in the vicinity of the movable contact 58 flow in the moving direction D1.
D.第4実施例:
 図13は、第4実施例の継電器5cを説明するための図である。図13は、図4の4-4断面に相当する断面図である。図13には、継電器本体6cの内側に配置されている可動接触子50c近傍を図示している。第4実施例の継電器5cと第1実施例の継電器5(図6)とで異なる点は、第2の部材54cの第1の端面51c及びその近傍の形状である。その他の構成(例えば、駆動機構90)については、第1実施例の継電器5と同様の構成であるため、同様の構成については同一符号を付すと共に説明を省略する。
D. Fourth embodiment:
FIG. 13 is a view for explaining the relay 5 c of the fourth embodiment. FIG. 13 is a cross-sectional view corresponding to the 4-4 cross section of FIG. FIG. 13 illustrates the vicinity of the movable contact 50c disposed inside the relay main body 6c. The difference between the relay 5c of the fourth embodiment and the relay 5 (FIG. 6) of the first embodiment is the shape of the first end face 51c of the second member 54c and the vicinity thereof. The other configuration (for example, the drive mechanism 90) is the same as that of the relay 5 of the first embodiment, so the same reference numerals are given to the same configurations and the description will be omitted.
 延伸部としての第2の部材54cは、第1実施例の第2の部材54と同様に、移動方向D1に沿って延びている。また、第2の部材54cは、径が他の部分よりも大きい端面部57a(図6)を有していない。第2の部材54cのうち、一端面16と対向する第1の端面51cは第1の側(上)に凸の曲面形状である。第1の端面51cの頂部に可動接点58を有する。なお、第2の部材54cと一端面16との関係は、第1実施例の継電器5と同様の関係を有する。例えば、継電器5cを移動方向D1に垂直な所定平面に垂直投影した場合に、第2の部材54cは一端面16と少なくとも一部が重なる関係にある。本実施例では、第2の部材54cの全てが一端面16に重なる関係にある。 Similar to the second member 54 of the first embodiment, the second member 54c as the extending portion extends along the moving direction D1. Further, the second member 54c does not have the end surface portion 57a (FIG. 6) whose diameter is larger than that of the other portions. Of the second member 54c, a first end face 51c opposite to the end face 16 has a curved surface shape convex on the first side (upper side). A movable contact 58 is provided at the top of the first end face 51c. The relationship between the second member 54c and the end face 16 is the same as that of the relay 5 of the first embodiment. For example, when the relay 5c is vertically projected on a predetermined plane perpendicular to the moving direction D1, the second member 54c is in a relation of at least partially overlapping the one end face 16. In the present embodiment, all of the second members 54 c are in a relation of overlapping the one end face 16.
 上記のように、第4実施例の継電器5cは、第1の端面51cが第1の側に凸の曲面形状を有する。これにより、第1の端面51cが平面状である場合に比べ、接触部S1(可動接点58)近傍を流れる電流の多くを移動方向D1の流れにできる。すなわち、可動接触子50cのうち接触部S1(可動接点58)近傍を流れる電流の移動方向D1に直交する直交方向成分(水平方向成分)の電流密度をより一層低減できる。よって、電磁反発力Fe,Fd(図5)をより一層低減できる。 As described above, in the relay 5c of the fourth embodiment, the first end face 51c has a curved surface shape that is convex on the first side. As a result, compared to the case where the first end face 51c is flat, it is possible to cause most of the current flowing in the vicinity of the contact portion S1 (movable contact 58) to flow in the moving direction D1. That is, the current density of the component in the orthogonal direction (horizontal component) orthogonal to the moving direction D1 of the current flowing in the vicinity of the contact portion S1 (movable contact 58) of the movable contact 50c can be further reduced. Therefore, the electromagnetic repulsive forces Fe and Fd (FIG. 5) can be further reduced.
E.変形例:
 なお、上記実施例における構成要素の中の、特許請求の範囲の独立項に記載した要素以外の要素は、付加的な要素であり、適宜省略可能である。また、本発明の上記実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態において実施することが可能であり、例えば次のような変形も可能である。
E. Modification:
Among the components in the above embodiment, the components other than the components described in the independent claims in the claims are additional components and can be omitted as appropriate. Further, the present invention is not limited to the above-described embodiments and embodiments, and can be implemented in various forms without departing from the scope of the present invention. For example, the following modifications can be made.
E-1.第1変形例:
 上記実施例では、延伸部54,54a,54cは、移動方向D1に沿って延びていたが、延伸部54,54a,54cは移動方向D1成分を有する方向に延びていれば良い。言い換えれば、可動接触子50,50a,50b,50cは、一対の可動接点58と、一対の可動接点58との間に配置され一対の可動接点58との移動方向D1(Z軸方向、高さ方向)について異なる位置にある中央部52,52aと、を備えるように屈曲した形状であれば良い。さらに言い換えれば、継電器5,5a,5b,5cは、可動接触子50,50a,50b,50cの面のうち、固定接点18側に位置する第1の面Faにおいて、一対の可動接点58を結ぶ可動接触子50,50a,50b,50c上の最短経路において移動方向D1成分を有する部分を有すれば良い。すなわち、延伸部54,54a,54cの第1の面Faが移動方向D1成分を有すれば良い。また、可動接触子50,50a,50b,50cは、中央部52,52aと可動接点58とを繋ぐ接続部(延伸部54,54a,54c)の少なくとも一部が一端面16と以下の関係を有すれば良い。すなわち、継電器5,5a,5b,5cを移動方向D1に垂直な所定平面に垂直投影した場合に、接続部の少なくとも一部が一端面16に重なる関係に有れば良い。こうすることで、継電器5,5a,5b,5cのON状態において、可動接触子50,50a,50b,50cのうち接触部S1(可動接点58)近傍を流れる電流の直交方向成分の電流密度を低減できる。以下に具体例について説明する。
E-1. First modification:
In the above embodiment, the extending portions 54, 54a, 54c extend along the moving direction D1, but the extending portions 54, 54a, 54c may extend in the direction having the moving direction D1 component. In other words, the movable contacts 50, 50a, 50b, 50c are disposed between the pair of movable contacts 58 and the pair of movable contacts 58, and move in the moving direction D1 of the pair of movable contacts 58 (Z-axis direction, height And the central portions 52 and 52a at different positions with respect to the direction). In other words, the relays 5, 5a, 5b, 5c connect the pair of movable contacts 58 on the first surface Fa located on the fixed contact 18 side among the surfaces of the movable contacts 50, 50a, 50b, 50c. The shortest path on the movable contacts 50, 50a, 50b, and 50c may have a portion having the movement direction D1 component. That is, the first surface Fa of the extending portions 54, 54a, 54c may have the moving direction D1 component. In the movable contacts 50, 50a, 50b, and 50c, at least a part of the connection portion ( extension portions 54, 54a, 54c) connecting the central portions 52, 52a and the movable contact 58 has the following relationship with the one end surface 16: You just have to. That is, when the relays 5, 5a, 5b, 5c are vertically projected on a predetermined plane perpendicular to the moving direction D1, at least a part of the connection portion may be in a relation overlapping with the one end face 16. Thus, in the ON state of the relays 5, 5a, 5b, 5c, the current density of the orthogonal direction component of the current flowing in the vicinity of the contact portion S1 (the movable contact 58) of the movable contacts 50, 50a, 50b, 50c It can be reduced. Specific examples will be described below.
 図14は、第1変形例の第1の態様を説明するための図である。第1の態様の可動接触子50a1は、第2実施例の可動接触子50a(図9)の構成の一部を変えた態様である。図14に示すように、延伸部54a1が中央部52aから対向部56に向かって斜めに延びても良い。第1の態様の延伸部54a1は、直線状に延びる。詳細には延伸部54a1は、移動方向D1成分に加え、移動方向D1と直交し、かつ、一対の固定端子10が向かい合う対向方向(Y軸方向)成分を有する方向に延びる。 FIG. 14 is a diagram for explaining a first aspect of the first modification. The movable contact 50a1 of the first aspect is an aspect in which a part of the configuration of the movable contact 50a (FIG. 9) of the second embodiment is changed. As shown in FIG. 14, the extending portion 54 a 1 may extend obliquely from the central portion 52 a toward the facing portion 56. The extension portion 54a1 of the first aspect extends in a straight line. Specifically, the extending portion 54a1 extends in a direction having an opposing direction (Y-axis direction) component which is orthogonal to the moving direction D1 and in which the pair of fixed terminals 10 face each other, in addition to the moving direction D1 component.
 図15は、第1変形例の第2の態様を説明するための図である。第2の態様の可動接触子50a2は、第2実施例の可動接触子50aの構成の一部を変えた態様である。図15に示すように、延伸部54a2が中央部52aから対向部56に向かって斜めに延びても良い。第1の態様の延伸部54a2は、折れ曲がった形状である。 FIG. 15 is a diagram for describing a second aspect of the first modified example. The movable contact 50a2 of the second aspect is an aspect in which a part of the configuration of the movable contact 50a of the second embodiment is changed. As shown in FIG. 15, the extending portion 54a2 may extend obliquely from the central portion 52a toward the opposing portion 56. The extension portion 54a2 of the first aspect has a bent shape.
 上記のように、第1と第2の態様のように、延伸部54a1,54a2が対向方向(Y軸方向)成分を含む方向に延びる。また、延伸部54a1,54a2は、対向方向について、中央部52aに対して同じ側に位置する可動接点58から中央部52aに向かうに従って、前記中央部52aに対して反対側に位置する可動接点58側に向かう。これにより、一対の可動接点58を繋ぐ可動接触子50a1,50a2の長さを短くできる。これにより、可動接触子50a1,50a2の電気抵抗を低減できる。よって、電流通電時の継電器内の電圧降下を抑制できる。また、可動接触子50a1,50a2の重量を低減できる。これにより、外部からの衝撃等による可動接点58と固定接点18との接点が開いてしまう(離れてしまう)可能性を低減できる。なお、第1と第2の態様の可動接触子50a1,50a2は、一対の延伸部54a1,54a1はそれぞれが、中央部52aに向かうに従い互いに近づくように移動方向D1に対して傾斜している。これにより、一対の可動接点58を繋ぐ可動接触子50a1,50a2の長さをさらに短くできる。 As described above, as in the first and second embodiments, the extending portions 54a1 and 54a2 extend in the direction including the opposing direction (Y-axis direction) component. Further, the extending portions 54a1 and 54a2 are movable contact points 58 positioned on the opposite side with respect to the central portion 52a as they move from the movable contact point 58 positioned on the same side with respect to the central portion 52a in the opposing direction. Head to the side. Thus, the lengths of the movable contacts 50a1 and 50a2 connecting the pair of movable contacts 58 can be shortened. Thereby, the electrical resistance of movable contact 50a1, 50a2 can be reduced. Therefore, the voltage drop in the relay at the time of current supply can be suppressed. Also, the weight of the movable contacts 50a1 and 50a2 can be reduced. This can reduce the possibility of the contact between the movable contact 58 and the fixed contact 18 being open (detached) due to external impact or the like. In the movable contacts 50a1 and 50a2 of the first and second embodiments, the pair of extension portions 54a1 and 54a1 are inclined with respect to the movement direction D1 so that they approach each other as they approach the central portion 52a. Thus, the lengths of the movable contacts 50a1 and 50a2 connecting the pair of movable contacts 58 can be further shortened.
E-2.第2変形例:
 図16は、第2変形例を説明するための図である。図16は、第2変形例の固定端子10dを示す図である。図16に示すように、固定接点18を有する一端面16aは下(第2の側)に凸の曲面形状でも良い。こうすることで、可動接点58と固定接点18とが接触する接触部S1近傍の領域において、可動接触子と固定端子10のそれぞれに流れる電流における互いに平行かつ逆向きの成分(Y軸方向成分)を有する電流密度を低減できる。よって、電磁反発力Fp(図5)を低減できる。これにより、継電器のON状態のときに、固定接点18と可動接点58とが離れる可能性をさらに低減できる。
E-2. Second modification:
FIG. 16 is a diagram for explaining a second modification. FIG. 16 is a view showing a fixed terminal 10d of a second modification. As shown in FIG. 16, the one end surface 16a having the fixed contact 18 may have a curved surface shape which is convex downward (second side). By doing this, parallel and opposite components (Y-axis direction components) in the current flowing in the movable contact and the fixed terminal 10 in the region near the contact portion S1 where the movable contact 58 and the fixed contact 18 contact each other Current density can be reduced. Therefore, the electromagnetic repulsive force Fp (FIG. 5) can be reduced. This can further reduce the possibility of separation of the fixed contact 18 and the movable contact 58 when the relay is in the ON state.
E-3.第3変形例:
 上記実施例では、駆動機構90として、可動鉄心72を磁力により移動させる機構を用いたが、これに限られるものではなく、可動接触子50を移動させるための他の機構を用いても良い。例えば、可動接触子50の中央部52(図6)のうち固定端子10が位置する側とは反対側の面に、外部から伸縮自在に操作可能なリフト部を設置し、リフト部の伸縮により可動接触子50を移動させる機構を採用しても良い。また、第1のばね62の構成も、上記実施例に限定されるものではなく、ロッド60の動きに応じて変位しない構成や他の構成を採用しても良い。
E-3. Third modification:
Although the mechanism for moving the movable iron core 72 by magnetic force is used as the drive mechanism 90 in the above embodiment, the present invention is not limited to this, and another mechanism for moving the movable contact 50 may be used. For example, on the surface of the central portion 52 (FIG. 6) of the movable contact 50 on the side opposite to the side where the fixed terminal 10 is located, a lift portion that can be extended and contracted from the outside is installed. A mechanism for moving the movable contact 50 may be employed. Also, the configuration of the first spring 62 is not limited to the above embodiment, and a configuration not to be displaced according to the movement of the rod 60 or another configuration may be adopted.
E-4.第4変形例:
 上記実施例では、一対の延伸部54,54a,54cが共に、移動方向D1成分を含む方向に延びると共に、所定平面に垂直投影した場合に一端面16と少なくとも一部が重なる関係を有していた。しかしながら、一対の延伸部54,54a,54cのいずれか一方が、移動方向D1に垂直な所定平面に継電器5,5a,5b,5cを垂直投影した場合に、少なくとも一部が一端面16と重なる関係(「第1の関係」ともいう。)を有すれば良い。このようにしても、第1の関係を有する延伸部側の接触部S1近傍を流れる電流の直交方向成分の電流密度を低減できる。これにより、一対の延伸部のいずれもが第1の関係を有さない場合に比べ、電磁反発力Fe,Fdを低減できる。
E-4. Fourth modified example:
In the above embodiment, the pair of extending portions 54, 54a, 54c both extend in the direction including the moving direction D1 component, and have a relationship in which at least a part thereof overlaps with the one end surface 16 when projected perpendicularly onto a predetermined plane. The However, when one of the pair of extending portions 54, 54a, 54c vertically projects relays 5, 5a, 5b, 5c on a predetermined plane perpendicular to movement direction D1, at least a portion overlaps with one end face 16 It suffices to have a relationship (also referred to as a "first relationship"). Also in this case, it is possible to reduce the current density of the component in the orthogonal direction of the current flowing in the vicinity of the contact portion S1 on the extension portion side having the first relationship. Thereby, compared with the case where neither of a pair of extending | stretching parts has 1st relationship, electromagnetic repulsive force Fe and Fd can be reduced.
E-5.第5変形例:
 図17は、可動接触子50dを説明するための図である。可動接触子50dは、第1実施例の可動接触子50(図6)を単一の部材により形成した点で、第1実施例とは異なる。上記第1,第4実施例の可動接触子50,50cは異なる複数の部材を用いて形成されていたが、図17に示すように単一の部材により形成しても良い。こうすることで、第2第3実施例と同様に、可動接触子50dを容易に製造できることから、継電器の製造コストを低減できる。
E-5. Fifth modification:
FIG. 17 is a diagram for explaining the movable contact 50d. The movable contact 50d differs from the first embodiment in that the movable contact 50 (FIG. 6) of the first embodiment is formed by a single member. The movable contacts 50, 50c of the first and fourth embodiments are formed by using a plurality of different members, but may be formed by a single member as shown in FIG. By doing this, as in the second and third embodiments, the movable contact 50d can be easily manufactured, so that the manufacturing cost of the relay can be reduced.
E-6.第6変形例:
 上記第2、第3実施例では、延伸部54aと対向部56,56bとを接続する接続面が曲面R1であったが(図8、図12)、接続面の形状は曲面に限定されるものではない。例えば、接続面は、対向部56,56bから延伸部54aに向かうに従って下側(第2の側)に位置するように傾斜していれば良い。例えば、接続面は、延伸部54aと対向部56,56bとを接続する平面(傾斜面)であっても良い。傾斜面は、移動方向D1に直交する方向(水平方向)に対して傾斜する。このようにしても、対向部56,56bと延伸部54aとの接続部分に接続面を有さない場合に比べ、可動接点58近傍を流れる電流の多くを移動方向D1の流れにできる。よって、第2、第3実施例と同様に、可動接点58と固定接点18とが接触する接触部S1近傍を流れる電流の直交方向成分の電流密度を低減できる。また、第2、第3実施例と同様に、継電器を移動方向D1に垂直な所定平面に垂直投影した場合に、対向部56,56bに接続される部分である一端部R1aを含む少なくとも一部が、一端面16と重なる関係にあることが好ましい。こうすることで、第2、第3実施例と同様に、接触部S1近傍を流れる電流の直交方向成分の電流密度をより低減できる。
E-6. Sixth modification:
In the second and third embodiments, the connecting surface connecting the extension portion 54a and the facing portions 56 and 56b is the curved surface R1 (FIGS. 8 and 12), but the shape of the connecting surface is limited to the curved surface. It is not a thing. For example, the connection surface may be inclined so as to be positioned on the lower side (second side) as it goes from the facing portions 56, 56b to the extending portion 54a. For example, the connection surface may be a flat surface (inclined surface) connecting the extension portion 54a and the facing portions 56 and 56b. The inclined surface is inclined with respect to the direction (horizontal direction) orthogonal to the moving direction D1. Even in this case, it is possible to make most of the current flowing in the vicinity of the movable contact 58 flow in the moving direction D1 as compared with the case where the connecting portion between the facing portions 56 and 56b and the extending portion 54a does not have a connecting surface. Therefore, as in the second and third embodiments, the current density of the component in the orthogonal direction of the current flowing in the vicinity of the contact portion S1 where the movable contact 58 and the fixed contact 18 contact can be reduced. Further, as in the second and third embodiments, when the relay is vertically projected on a predetermined plane perpendicular to the moving direction D1, at least a portion including the one end portion R1a which is a portion connected to the facing portions 56 and 56b. Preferably overlap with the end face 16. By doing this, as in the second and third embodiments, the current density of the orthogonal direction component of the current flowing in the vicinity of the contact portion S1 can be further reduced.
  5~5c…継電器
  6~6c…継電器本体
  10,10d,10z…固定端子
  16,16a…一端面
  18,18z…固定接点
  20…第1の容器
  50~50c,50z,50a1,50a2…可動接触子
  51…第1の端面
  51a…対向面
  51c…第1の端面
  52,52a…中央部
  54…第2の部材(延伸部)
  54a…延伸部
  54c…第2の部材(延伸部)
  54a1…延伸部
  55…第1の部材
  56~56b…対向部
  57a…端面部
  57b…他の部分
  58,58z…可動接点
  90…駆動機構
  92…第2の容器
  R1…曲面
  S1…接触部
  D1…移動方向
  Fa…第1の面
  Fd,Fe,Fp…ローレンツ力(電磁反発力)
5 to 5c: relay 6 to 6c: main body 10, 10d, 10z: fixed terminal 16, 16a: one end surface 18, 18z: fixed contact 20: first container 50 to 50c, 50z, 50a1, 50a2: movable contact 51: first end face 51a: facing surface 51c: first end face 52, 52a: central portion 54: second member (stretched portion)
54a ... extended section 54c ... second member (extended section)
54a1 Extension portion 55 First member 56 to 56b Opposite portion 57a End surface portion 57b Other portion 58, 58z Moveable contact 90 Drive mechanism 92 Second container R1 Curved surface S1 Contact portion D1 Movement direction Fa ... 1st surface Fd, Fe, Fp ... Lorentz force (electromagnetic repulsive force)

Claims (9)

  1.  一端面に固定接点をそれぞれ有する一対の固定端子と、
     前記各固定接点にそれぞれ対向する一対の可動接点を有する可動接触子と、
     前記可動接点を対向する前記固定接点に接触させるために前記可動接触子を移動させる駆動機構と、を備える継電器において、
     前記可動接触子の移動方向のうち、前記固定接点が位置する側を第1の側とし、前記可動接点が位置する側を第2の側とした場合に、
     前記可動接触子は、
      前記一対の可動接点を前記可動接触子上で結ぶ経路において前記一対の可動接点の間に位置し、前記可動接点よりも第2の側に位置する中央部と、
      前記経路において前記中央部と前記一対の可動接点との間に位置し、前記移動方向成分を含む方向に延びる一対の延伸部と、を有し、
     前記一対の延伸部の少なくとも一方は、
      前記継電器を前記移動方向に垂直な所定平面に垂直投影した場合に、前記中央部に対して同じ側に位置する前記一端面と少なくとも一部が重なる関係にある、ことを特徴とする継電器。
    A pair of fixed terminals each having a fixed contact on one end surface,
    A movable contact having a pair of movable contacts respectively facing the fixed contacts;
    A drive mechanism for moving the movable contact to bring the movable contact into contact with the opposing fixed contact;
    In the movement direction of the movable contact, the side on which the fixed contact is positioned is the first side, and the side on which the movable contact is positioned is the second side.
    The movable contact is
    A central portion positioned between the pair of movable contacts in a path connecting the pair of movable contacts on the movable contact, and positioned on a second side of the movable contacts;
    And a pair of extending portions positioned between the central portion and the pair of movable contacts in the path and extending in a direction including the movement direction component,
    At least one of the pair of extending portions is
    A relay according to claim 1, wherein when said relay is vertically projected onto a predetermined plane perpendicular to said moving direction, at least a part thereof overlaps with said one end surface located on the same side with respect to said central portion.
  2.  請求項1に記載の継電器において、
     前記関係を有する前記延伸部は、
      前記第1の側に位置する第1の端面に前記可動接点を有し、
     前記関係を有する前記延伸部の前記第1の端面は、前記第1の側に凸の曲面形状である、ことを特徴とする継電器。
    In the relay according to claim 1,
    The extension portion having the relationship is
    Having the movable contact on a first end face located on the first side;
    The relay according to claim 1, wherein the first end face of the extension portion having the relationship has a curved surface shape convex to the first side.
  3.  請求項1に記載の継電器において、
     前記可動接触子は、さらに、
      前記移動方向と交差する方向に前記一対の延伸部からそれぞれ延び、前記一対の固定接点とそれぞれ対向する一対の対向部を有し、
     前記一対の対向部は、前記固定接点と対向する対向面に前記可動接点を有する、ことを特徴とする継電器。
    In the relay according to claim 1,
    The movable contact is further
    It has a pair of opposing parts which respectively extend from the pair of extending parts in a direction intersecting the moving direction and which respectively oppose the pair of fixed contacts,
    The relay according to claim 1, wherein the pair of opposing portions have the movable contact on an opposing surface that faces the fixed contact.
  4.  請求項3に記載の継電器において、
     前記可動接触子の面のうち、前記固定接点側に位置する第1の面は、前記関係を有する延伸部と前記関係を有する延伸部から延びる前記対向部とを接続する接続面を有する、ことを特徴とする継電器。
    In the relay according to claim 3,
    Among the surfaces of the movable contact, a first surface located on the fixed contact side has a connecting surface connecting the extending portion having the relationship and the opposing portion extending from the extending portion having the relationship. A relay characterized by
  5.  請求項4に記載の継電器において、
     前記継電器を前記所定平面に垂直投影した場合に、前記接続面の少なくとも一部が前記一端面と重なる関係にある、ことを特徴とする継電器。
    In the relay according to claim 4,
    A relay according to claim 1, wherein when said relay is vertically projected on said predetermined plane, at least a part of said connection surface is in a relation overlapping with said one end surface.
  6.  請求項1乃至請求項5のいずれか一項に記載の継電器において、
     前記関係を有する前記延伸部は、前記移動方向に沿って延びる、ことを特徴とする継電器。
    The relay according to any one of claims 1 to 5.
    The relay according to claim 1, wherein the extension portion having the relationship extends along the moving direction.
  7.  請求項1乃至請求項5のいずれか一項に記載の継電器において、
     前記関係を有する前記延伸部が延びる方向は、前記移動方向と直交し、かつ、前記一対の固定端子が対向する対向方向成分を含み、
     前記関係を有する前記延伸部は、前記対向方向について、前記中央部に対して同じ側に位置する前記可動接点側から前記中央部に向かうに従って前記中央部に対して反対側に位置する前記可動接点側に向かう、ことを特徴とする継電器。
    The relay according to any one of claims 1 to 5.
    A direction in which the extension portion having the relationship extends includes a facing direction component which is orthogonal to the moving direction and in which the pair of fixed terminals face each other,
    The extending portion having the relationship is the movable contact positioned on the opposite side with respect to the central portion as going from the movable contact side located on the same side with respect to the central portion in the opposing direction from the movable contact side to the central portion A relay, characterized in that it is directed to the side.
  8.  請求項1乃至請求項7のいずれか一項に記載の継電器において、
     前記中央部に対して前記関係を有する延伸部と同じ側に位置する前記一端面は、前記第2の側に凸の曲面形状である、ことを特徴とする継電器。
    The relay according to any one of claims 1 to 7.
    The relay according to claim 1, wherein the one end surface located on the same side as the extension portion having the relation with respect to the central portion is a curved surface shape convex to the second side.
  9.  請求項1乃至請求項8のいずれか一項に記載の継電器において、
     前記可動接触子は、単一の部材により形成されている、ことを特徴とする継電器。
    The relay according to any one of claims 1 to 8.
    The relay according to claim 1, wherein the movable contact is formed by a single member.
PCT/JP2011/006098 2010-11-01 2011-10-31 Relay WO2012060089A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137011305A KR20130124503A (en) 2010-11-01 2011-10-31 Relay
JP2012541742A JP5829617B2 (en) 2010-11-01 2011-10-31 relay
US13/882,640 US8754728B2 (en) 2010-11-01 2011-10-31 Relay
CN2011800523564A CN103201816A (en) 2010-11-01 2011-10-31 Relay
EP11837743.1A EP2637192A4 (en) 2010-11-01 2011-10-31 Relay

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-245522 2010-11-01
JP2010245522 2010-11-01
JP2011-006553 2011-01-17
JP2011006553 2011-01-17

Publications (1)

Publication Number Publication Date
WO2012060089A1 true WO2012060089A1 (en) 2012-05-10

Family

ID=46024215

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2011/006098 WO2012060089A1 (en) 2010-11-01 2011-10-31 Relay
PCT/JP2011/006099 WO2012060090A1 (en) 2010-11-01 2011-10-31 Relay
PCT/JP2011/006096 WO2012060087A1 (en) 2010-11-01 2011-10-31 Relay

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/006099 WO2012060090A1 (en) 2010-11-01 2011-10-31 Relay
PCT/JP2011/006096 WO2012060087A1 (en) 2010-11-01 2011-10-31 Relay

Country Status (6)

Country Link
US (3) US8754728B2 (en)
EP (3) EP2637191A4 (en)
JP (3) JP5829616B2 (en)
KR (3) KR20130138250A (en)
CN (3) CN103201814A (en)
WO (3) WO2012060089A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028934A (en) * 2013-07-05 2015-02-12 富士電機株式会社 Contact device and electromagnetic contactor using the same
JP2019503053A (en) * 2016-01-20 2019-01-31 エルエス産電株式会社Lsis Co., Ltd. Relay device

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060089A1 (en) 2010-11-01 2012-05-10 日本特殊陶業株式会社 Relay
JP5727860B2 (en) * 2011-05-19 2015-06-03 富士電機機器制御株式会社 Magnetic contactor
JP5692375B2 (en) * 2011-05-31 2015-04-01 オムロン株式会社 Electromagnetic relay
JP6066598B2 (en) 2012-07-04 2017-01-25 富士通コンポーネント株式会社 Electromagnetic relay
JP5938745B2 (en) * 2012-07-06 2016-06-22 パナソニックIpマネジメント株式会社 Contact device and electromagnetic relay equipped with the contact device
JP6064223B2 (en) * 2012-12-28 2017-01-25 パナソニックIpマネジメント株式会社 Contact device and electromagnetic relay equipped with the contact device
JP6064222B2 (en) * 2012-12-28 2017-01-25 パナソニックIpマネジメント株式会社 Contact device and electromagnetic relay equipped with the contact device
KR101398720B1 (en) * 2013-02-18 2014-05-27 엘에스산전 주식회사 Electromagnetic switching device
US10090127B2 (en) * 2013-06-28 2018-10-02 Panasonic Intellectual Property Management Co., Ltd. Contact device and electromagnetic relay mounted with same
KR101869717B1 (en) * 2014-01-27 2018-06-21 엘에스산전 주식회사 Electromagnetic relay
KR200486560Y1 (en) 2014-01-27 2018-06-07 엘에스산전 주식회사 Electromagnetic relay
JP5741740B1 (en) * 2014-03-14 2015-07-01 オムロン株式会社 Sealed contact device and manufacturing method thereof
DE102014007459A1 (en) * 2014-05-21 2015-11-26 Ellenberger & Poensgen Gmbh Power relay for a vehicle
JP6380893B2 (en) * 2014-06-19 2018-08-29 パナソニックIpマネジメント株式会社 Contact device and electromagnetic relay using the same
DE112015002850T5 (en) * 2014-06-19 2017-03-09 Panasonic Intellectual Property Management Co., Ltd. Contact device, electromagnetic relay using it, and method of manufacturing the contact device
KR200487216Y1 (en) * 2014-07-01 2018-08-22 엘에스산전 주식회사 Direct Current Relay for Electric Vehicle
DE102014223529A1 (en) 2014-11-18 2016-05-19 Volkswagen Aktiengesellschaft DC voltage switch for high-voltage vehicle electrical system
JP6590273B2 (en) * 2015-04-13 2019-10-16 パナソニックIpマネジメント株式会社 Contact device and electromagnetic relay
EP3086351B1 (en) * 2015-04-22 2017-08-30 Ellenberger & Poensgen GmbH Power relay for a vehicle
CN104952655B (en) * 2015-06-27 2018-01-02 贵州振华群英电器有限公司(国营第八九一厂) A kind of nonpolarity arc quenching system of high-voltage DC contactor
KR101961661B1 (en) 2015-07-31 2019-03-26 엘에스산전 주식회사 High voltage relay decice
DE102015114083A1 (en) * 2015-08-25 2017-03-02 Epcos Ag Contact device for an electrical switch and electrical switch
CN106558461B (en) * 2015-09-30 2019-06-04 比亚迪股份有限公司 Relay and its pushing mechanism
KR101943365B1 (en) * 2015-10-14 2019-01-29 엘에스산전 주식회사 Direct Relay
CN105374632B (en) * 2015-12-04 2018-05-22 苏州安来强电子科技有限公司 Nonpolarity D.C. contactor arc-extinguishing mechanism
KR101943366B1 (en) 2015-12-30 2019-01-29 엘에스산전 주식회사 Direct Relay
CN107170604A (en) * 2016-04-29 2017-09-15 浙江英洛华新能源科技有限公司 The opposite arc shielding apparatus of HVDC relay
JP6828294B2 (en) * 2016-07-29 2021-02-10 オムロン株式会社 Electromagnetic relay
JP6668997B2 (en) * 2016-07-29 2020-03-18 オムロン株式会社 Electromagnetic relay
CN106783411B (en) * 2016-12-20 2020-08-04 北京双杰电气股份有限公司 Direct current contactor
CN106710968B (en) * 2016-12-20 2020-08-04 北京双杰电气股份有限公司 Direct current contactor
US10141144B2 (en) * 2017-02-08 2018-11-27 Eaton Intelligent Power Limited Self-powered switches and related methods
USD848958S1 (en) 2017-02-08 2019-05-21 Eaton Intelligent Power Limited Toggle for a self-powered wireless switch
US10541093B2 (en) 2017-02-08 2020-01-21 Eaton Intelligent Power Limited Control circuits for self-powered switches and related methods of operation
KR200487554Y1 (en) * 2017-09-29 2018-10-05 엘에스산전 주식회사 Core mechanism for magnetic contactor
JP6801629B2 (en) * 2017-10-31 2020-12-16 オムロン株式会社 Electromagnetic relay
JP6919504B2 (en) * 2017-10-31 2021-08-18 オムロン株式会社 Electromagnetic relay
JP2019083174A (en) * 2017-10-31 2019-05-30 オムロン株式会社 Electromagnetic relay
JP6822436B2 (en) * 2018-03-30 2021-01-27 オムロン株式会社 relay
US10978266B2 (en) * 2018-04-24 2021-04-13 Te Connectivity Corporation Electromechanical switch having movable contact and dampener
JP7115137B2 (en) * 2018-08-21 2022-08-09 オムロン株式会社 relay
EP3617494A1 (en) * 2018-08-28 2020-03-04 Mahle International GmbH Electromagnetic switch for a starting device
CN109087833A (en) * 2018-08-31 2018-12-25 宁波耀华电气科技有限责任公司 A kind of Monostable permanent magnetism operating mechanism
JP7077890B2 (en) * 2018-09-14 2022-05-31 富士電機機器制御株式会社 Contact mechanism and electromagnetic contactor using this
KR101953292B1 (en) * 2018-10-04 2019-02-28 주식회사 와이엠텍 Bidirectional switch contact device
JP7142219B2 (en) * 2018-11-13 2022-09-27 パナソニックIpマネジメント株式会社 Contact devices and electromagnetic relays
JP7115303B2 (en) * 2018-12-28 2022-08-09 オムロン株式会社 electromagnetic relay
JP2021044908A (en) * 2019-09-10 2021-03-18 ミネベアミツミ株式会社 Stator structure of motor, motor, and movable body
JP7310474B2 (en) * 2019-09-13 2023-07-19 オムロン株式会社 relay
JP2022035129A (en) * 2020-08-20 2022-03-04 トヨタ自動車株式会社 Relay device
CN114914127A (en) * 2021-01-21 2022-08-16 吉加维克有限公司 Switching device with ceramic or glass eyelet
JP2022112549A (en) * 2021-01-22 2022-08-03 富士電機機器制御株式会社 Gas filling structure, sealed magnetic contactor, and gas filling method
US11948762B2 (en) 2021-04-30 2024-04-02 Astronics Advanced Electronic Systems Corp. High voltage high current arc extinguishing contactor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100859U (en) * 1975-02-10 1976-08-13
JPS5540905Y2 (en) * 1975-12-24 1980-09-25
JPH01145041U (en) * 1988-03-30 1989-10-05
JP2003308773A (en) * 2002-04-16 2003-10-31 Toyota Motor Corp Electromagnetic relay and mounting method thereof
JP2004288643A (en) * 2004-05-28 2004-10-14 Mitsubishi Electric Corp Switch
JP2008226547A (en) * 2007-03-09 2008-09-25 Denso Corp Electromagnetic relay
WO2010061576A1 (en) * 2008-11-25 2010-06-03 ダイキン工業株式会社 Switch device

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713628A (en) * 1980-06-27 1982-01-23 Mitsubishi Electric Corp Direct current electromagnetic contactor
JPS57170252U (en) 1981-04-22 1982-10-26
CN85102776B (en) * 1985-04-01 1988-06-08 浙江瑞安永久机电研究所 Three-position electromagnetic relay
US5004874A (en) * 1989-11-13 1991-04-02 Eaton Corporation Direct current switching apparatus
JP3321963B2 (en) * 1994-02-22 2002-09-09 株式会社デンソー Plunger type electromagnetic relay
US5680084A (en) * 1994-11-28 1997-10-21 Matsushita Electric Works, Ltd. Sealed contact device and operating mechanism
JPH09320437A (en) 1996-05-31 1997-12-12 Matsushita Electric Works Ltd Sealed contact apparatus
US5892194A (en) * 1996-03-26 1999-04-06 Matsushita Electric Works, Ltd. Sealed contact device with contact gap adjustment capability
JP3711698B2 (en) * 1997-05-26 2005-11-02 松下電工株式会社 Sealed contact device
FR2768259B1 (en) 1997-09-09 1999-10-08 Valeo Equip Electr Moteur STARTER CONTACTOR COMPRISING A SEALING PARTITION
DE69936026T2 (en) * 1998-08-26 2007-08-16 Matsushita Electric Works, Ltd., Kadoma Single-pole switch arrangement with relays
JP2001118451A (en) 1999-10-14 2001-04-27 Matsushita Electric Works Ltd Contact device
US6700466B1 (en) 1999-10-14 2004-03-02 Matsushita Electric Works, Ltd. Contactor
JP4038966B2 (en) 2000-07-19 2008-01-30 松下電工株式会社 Contact device
JP2004273413A (en) 2003-01-09 2004-09-30 Sumitomo Electric Ind Ltd Dc relay
JP2004355847A (en) 2003-05-27 2004-12-16 Mitsuba Corp Electromagnetic relay
JP2006019148A (en) 2004-07-01 2006-01-19 Matsushita Electric Works Ltd Electromagnetic switch
EP1768152B1 (en) 2005-03-28 2008-08-13 Matsushita Electric Works, Ltd. Contact device
JP4878331B2 (en) * 2007-05-11 2012-02-15 Necトーキン株式会社 Electrical contact opening / closing part
JP5163318B2 (en) * 2008-06-30 2013-03-13 オムロン株式会社 Electromagnet device
JP5195144B2 (en) 2008-08-07 2013-05-08 株式会社デンソー Electromagnetic switch
KR101004465B1 (en) 2008-09-05 2010-12-31 엘에스산전 주식회사 Relay
JP5197480B2 (en) * 2009-05-14 2013-05-15 株式会社日本自動車部品総合研究所 Electromagnetic relay
JP5560058B2 (en) * 2010-01-26 2014-07-23 富士通コンポーネント株式会社 Electromagnetic relay
EP2608235B1 (en) * 2010-03-25 2017-12-20 Panasonic Intellectual Property Management Co., Ltd. Contact device
JP5521852B2 (en) * 2010-03-30 2014-06-18 アンデン株式会社 Electromagnetic relay
WO2012060089A1 (en) 2010-11-01 2012-05-10 日本特殊陶業株式会社 Relay
JP5806562B2 (en) * 2011-01-12 2015-11-10 富士電機株式会社 Magnetic contactor
JP5923932B2 (en) * 2011-11-04 2016-05-25 オムロン株式会社 Contact switching mechanism and electromagnetic relay

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100859U (en) * 1975-02-10 1976-08-13
JPS5540905Y2 (en) * 1975-12-24 1980-09-25
JPH01145041U (en) * 1988-03-30 1989-10-05
JP2003308773A (en) * 2002-04-16 2003-10-31 Toyota Motor Corp Electromagnetic relay and mounting method thereof
JP2004288643A (en) * 2004-05-28 2004-10-14 Mitsubishi Electric Corp Switch
JP2008226547A (en) * 2007-03-09 2008-09-25 Denso Corp Electromagnetic relay
WO2010061576A1 (en) * 2008-11-25 2010-06-03 ダイキン工業株式会社 Switch device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2637192A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028934A (en) * 2013-07-05 2015-02-12 富士電機株式会社 Contact device and electromagnetic contactor using the same
JP2019503053A (en) * 2016-01-20 2019-01-31 エルエス産電株式会社Lsis Co., Ltd. Relay device

Also Published As

Publication number Publication date
US8674796B2 (en) 2014-03-18
EP2637192A4 (en) 2014-08-06
JPWO2012060087A1 (en) 2014-05-12
US8754728B2 (en) 2014-06-17
US20130214881A1 (en) 2013-08-22
WO2012060087A1 (en) 2012-05-10
JP5829616B2 (en) 2015-12-09
KR20130139969A (en) 2013-12-23
JPWO2012060090A1 (en) 2014-05-12
CN103201814A (en) 2013-07-10
EP2637191A1 (en) 2013-09-11
CN103201816A (en) 2013-07-10
EP2637191A4 (en) 2014-11-12
EP2637190A1 (en) 2013-09-11
KR20130124503A (en) 2013-11-14
WO2012060090A1 (en) 2012-05-10
US20130214882A1 (en) 2013-08-22
EP2637192A1 (en) 2013-09-11
JP5829618B2 (en) 2015-12-09
EP2637190A4 (en) 2014-11-19
CN103201813A (en) 2013-07-10
JPWO2012060089A1 (en) 2014-05-12
JP5829617B2 (en) 2015-12-09
US20130214884A1 (en) 2013-08-22
KR20130138250A (en) 2013-12-18

Similar Documents

Publication Publication Date Title
WO2012060089A1 (en) Relay
EP2711965B1 (en) Electromagnetic contactor
US8994482B2 (en) Electromagnetic contactor
US10269517B2 (en) Contact device, electromagnetic relay using the same, and method for manufacturing contact device
WO2012157170A1 (en) Electromagnetic contactor
JP2012199117A (en) Contact device and electromagnetic switching device using the same
JP6193566B2 (en) relay
JP6400906B2 (en) relay
JP6195968B2 (en) relay
JP5991848B2 (en) relay
JP6063193B2 (en) Relay, relay manufacturing method
JP2015037052A (en) Relay
JP6062734B2 (en) relay
JP2015037051A (en) Relay, and relay manufacturing method
JP6551830B2 (en) Contact device and electromagnetic relay using the same
JP2015037053A (en) Relay
JP2014067675A (en) Manufacturing method for relay, sealing device for use in manufacturing method for relay
JPS59224029A (en) Self-holding type electromagnetic relay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837743

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012541742

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137011305

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13882640

Country of ref document: US

Ref document number: 2011837743

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE