WO2012059671A2 - Procede d'optimisation de la consommation specifique d'un helicoptere bimoteur et architecture bimoteur a systeme de regulation pour sa mise en oeuvre - Google Patents
Procede d'optimisation de la consommation specifique d'un helicoptere bimoteur et architecture bimoteur a systeme de regulation pour sa mise en oeuvre Download PDFInfo
- Publication number
- WO2012059671A2 WO2012059671A2 PCT/FR2011/052532 FR2011052532W WO2012059671A2 WO 2012059671 A2 WO2012059671 A2 WO 2012059671A2 FR 2011052532 W FR2011052532 W FR 2011052532W WO 2012059671 A2 WO2012059671 A2 WO 2012059671A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- engine
- gas generator
- power
- turbine
- chamber
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims description 17
- 238000002485 combustion reaction Methods 0.000 claims abstract description 19
- 238000010304 firing Methods 0.000 claims abstract description 7
- 239000007858 starting material Substances 0.000 claims description 10
- 230000000295 complement effect Effects 0.000 claims description 7
- 230000001960 triggered effect Effects 0.000 claims description 5
- 230000001133 acceleration Effects 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000004806 packaging method and process Methods 0.000 claims description 2
- 238000005086 pumping Methods 0.000 claims description 2
- 238000005457 optimization Methods 0.000 claims 8
- 239000007789 gas Substances 0.000 description 28
- 230000004913 activation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000010006 flight Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/20—Adaptations of gas-turbine plants for driving vehicles
- F02C6/206—Adaptations of gas-turbine plants for driving vehicles the vehicles being airscrew driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C5/00—Gas-turbine plants characterised by the working fluid being generated by intermittent combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/20—Adaptations of gas-turbine plants for driving vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/26—Starting; Ignition
- F02C7/268—Starting drives for the rotor, acting directly on the rotor of the gas turbine to be started
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/44—Control of fuel supply responsive to the speed of aircraft, e.g. Mach number control, optimisation of fuel consumption
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the invention relates to a method of optimizing the specific consumption, abbreviated Cs, a helicopter equipped with two turboshaft engines, and a twin-engine architecture, equipped with a control system for the implementation of this process.
- Cs specific consumption
- the turboshaft engines operate at low power levels, below their maximum continuous power, abbreviated PMC (initials of "Maximum Continuous Power”).
- PMC initials of "Maximum Continuous Power”
- PMD initial "Maximum Takeoff Power”
- These low power levels lead to a specific consumption of about 30% higher than the Cs at the PMD, and therefore overconsumption in cruising fuel.
- a helicopter is equipped with two turboshaft engines, each designed so oversized to maintain the helicopter in flight in case of failure of the other engine.
- OEI regimes initials of "One Engine Inoperative” in English terminology
- the valid engine provides a power well beyond its rated power to allow the helicopter to face a perilous situation and then continue its flight.
- each diet is defined by a power level and a maximum duration of use.
- the fuel flow injected into the combustion chamber of the valid turbine engine is then substantially increased in the OEI regime to provide this extra power.
- the duration of restart of the turbine engine standby is typically of the order of 30 seconds. This duration may be insufficient depending on the flight conditions, for example at low flight height with partial failure of the initially active engine. If the engine in standby does not restart in time, landing with the engine in difficulty may be critical.
- the invention aims to reduce the Cs to tend to the Cs PMD power, preserving the minimum power security conditions to provide for any type of mission, for example for a mission with a low search phase altitude.
- the invention provides for a bi-motorization in connection with particular means capable of ensuring reliable restarts.
- the present invention relates to a method of optimizing the specific consumption of a helicopter equipped with two turboshaft engines each having a gas generator provided with a combustion chamber.
- At least one of the turboshaft engines is capable of operating alone in the so-called continuous steady-state flight regime, the other engine then being in the so-called surralentiated mode at zero power able to switch to the mode of acceleration of the gas generator of this engine by a drive compatible with a restart emergency.
- This emergency restart is performed, in the event of failure of at least one prior attempt at conventional restart, by an emergency mechanical assistance to the gas generator, produced by an onboard autonomous energy and dedicated to this restart.
- the other turboshaft engine is restarted by emergency assistance.
- a continuous regime is defined by a non-limited duration and therefore does not relate to the transitional phases of takeoff, hovering and landing.
- a continuous regime refers to the cruise flight phase to the search area and the low-level flight phase in the above-water search area and the flight phase cruising back to the base.
- turboshaft engines according to the invention makes it possible to obtain optimized performances in terms of Cs consumption with powers close to the PMD but less than or equal to the PMC, while facing the case of failure and emergency by means of safe restart of the turbine engine over-idle.
- An out-of-idle speed output to an active "twin engine” mode is triggered in a so-called “normal” manner.
- a change of flight regime requires the passage of one to two engines, for example when the helicopter changes from a cruising mode to a hover, or so-called “emergency” in case of failure of engine or difficult flight conditions.
- the idle speed is selected from a rotational speed of the engine with the combustion chamber on, a maintenance regime in rotation of the engine with the combustion chamber extinguished and zero rotation of the engine with the combustion chamber extinguished; at the "normal" out-of-idle speed output, the chamber being switched on, a variation of the fuel flow rate according to a law of protection against pumping and thermal packaging causes the turbine engine gas generator to accelerate to the level of twin engine power or, the chamber being off, an active drive drives the gas generator in rotation at a speed pre-positioned in an ignition window, in particular according to a speed window of the order of one tenth of the nominal speed then once the chamber is on, the gas generator is accelerated as before or, the chamber is off, the gas generator is driven by electrical equipment specific to the generator, this equipment starts and accelerates until its speed of rotation is in a window of ignition of the chamber then, once the chamber lit, the generator of gas is again accelerated like meadow previously; in the idle mode in the extinguished chamber, a
- Two turbine engines defining PMD powers at takeoff provide substantially different powers having a power heterogeneity ratio at least equal to the ratio between the power of the OEI the highest power of the lower power turbine and the PMD power of the turbine engine the more powerful ; one of the turboshaft engines being able to operate alone in continuous mode, the other engine is then in standby at zero power and combustion chamber extinguished, while remaining maintained in rotation by the drive for emergency restart; the two turboshaft engines work together during the transitional phases of take-off, hovering and landing; - The lower power turbine engine operates alone when the total power demand is less than or equal to its PMC.
- the invention also relates to a twin-engine architecture equipped with a control system for the implementation of this method.
- Such an architecture comprises two turbine engines each equipped with a gas generator and a free turbine transmitting the available power up to the maximum available powers.
- Each gas generator is equipped with means capable of activating the gas generator at the out-of-idle speed output, comprising means for driving in rotation and means for accelerating the gas generator, means for firing at effect quasi-instantaneous, complementary conventional spark ignition means, and an emergency mechanical assistance device comprising an onboard autonomous power source.
- the control system controls the drive means and the emergency assistance devices of the gas generators according to the conditions and phases of flight of the helicopter according to a mission profile previously stored in a memory of this system.
- the invention can eliminate the existence of OEI regimes on the turbine engine of higher power.
- the active drive means a gas generator may be selected from an electric starter equipping this gas generator, powered by an onboard network or a starter / generator equipping the another gas generator, an electric generator driven by a power transfer box, known by the abbreviation BTP, or directly by the free turbine of the other turbine engine, and a mechanical drive device coupled to this BTP or this free turbine;
- the complementary ignition means may be chosen from an incandescent candle device ("glow plug” candles in English terminology), with laser radiation and a pyrotechnic device;
- the on-board autonomous source is chosen from hydraulic, pyrotechnic, pneumatic, anaerobic, electric, (especially by a dedicated battery or super-capacitors), and mechanical power sources, in particular by a mechanical power chain linked to the rotor.
- FIG. 1 a diagram representing an example of a power profile requested during a mission comprising a search phase and two cruise phases;
- FIG. 2 a simplified diagram of an exemplary two-engine architecture according to the invention.
- engine and “turbine engine” are synonymous in the present text.
- the motors have differentiated maximum powers. This mode advantageously makes it possible to suppress the OEI regimes on the turbine engine of higher power, which minimizes the difference in mass between the two engines.
- the most powerful engine or oversized engine can also be designated by the “big” engine and the lower power engine by the “small” engine.
- FIG. 1 represents the total power required variation Pw as a function of time "t" to carry out a shipwreck recovery mission using a twin-engine helicopter. This mission has six main phases:
- FIG. 2 schematically illustrates an example of twin-engine helicopter architecture that optimizes Cs consumption.
- Each turbine engine 1, 2 conventionally comprises a gas generator 1 1, 21 and a free turbine 12, 22 fed by the gas generator to provide power.
- the power supplied can reach predetermined maximum values, respectively PMD and PMC.
- a gas generator is conventionally composed of air compressors "K” in connection with a "CC” combustion chamber of the fuel in the compressed air which deliver gases supplying kinetic energy, and partial expansion turbines of these "TG” gases which rotate the compressors via "AE” drive shafts. The gases also drive the free power transmission turbines.
- the free turbines 12, 22 transmit the power via a BTP 3 which centralizes the supply of power to the loads and accessories (power take-off of the rotor, pumps, alternators, starter / generator device, etc.).
- the maximum powers PMD and PMC of the turbine engine 1 are substantially greater than those that the turbine engine 2 is capable of providing: the turbine engine 1 is oversized in power with respect to the turbine engine 2.
- the ratio of heterogeneity between the two turboshaft engines which corresponds to the ratio between the power of the highest OEI regime of the turbine engine 2 and the maximum power PMD of the turbine engine 1, is equal to 1, 3 in the example.
- the power of a turbine engine here refers to the intrinsic power that can provide the maximum turbine engine at a given speed.
- the two turbine engines 1 and 2 may be identical and the maximum power PMD and PMC of these turboshaft engines are then also identical.
- Each turbine engine 1, 2 is coupled to drive means E1 and E2 and emergency assistance devices, U1 and U2.
- Each drive means E1, E2 in rotation of the respective gas generator January 1, 21 is here constituted by a starter respectively powered by a starter / generator device equipping the other turbine engine.
- each emergency assistance device U1, U2 advantageously comprises, in this example, "glow-plug" glow plugs as a quasi-instantaneous ignition device, in addition to conventional candles, and a propellant cartridge. supplying an auxiliary micro-turbine as a mechanical means of accelerating the gas generators.
- This complementary ignition device can also be used as an output normal flight regime change, or emergency exit from over-idle speed.
- these drive means E1, E2, the emergency assistance devices U1, U2 and the controls of the turbine engines 1 and 2 are managed by activation means of a control system 4, under the control of the general numerical control device of the engine known by the acronym FADEC 5 (initials of "Full Authority Digital Engine Control" in English terminology).
- FIG. 3 An example of management operated by the control system 4, in the context of a mission profile as presented above and recorded in a memory 6 among others, is illustrated in Figure 3.
- the system 4 selects from among a set of management modes MO the management modes adapted to the profile of the mission selected in the memory 6, here four management modes for the selected mission (profile illustrated in FIG. 1): a mode M1 concerning the phases transient, a mode M2 relating to flights in continuous mode - cruising and research phase -, an M3 mode relating to engine failures and an M4 mode of management of emergency restart of engines in regime of over-idle.
- This mission comprises as phases transients A, D and F, respectively takeoff, hovering and landing. These phases are managed by the conventional twin engine operating mode M1 in which the turbine engines 1 and 2 are both in operation (step 100), so that the helicopter has a high power, up to their PMD. . Both motors operate at the same relative power level relative to their rated power.
- the cases of failure of one of the engines are managed in a conventional manner, for example by arming the OEI regimes of the "small" turbine engine 2 of lower power in the case of failure of the other turbine engine.
- the continuous flight corresponds, in the reference mission, to the phases of cruise flight, B and E, and phase C of low-altitude search. These phases are managed by the M2 mode which provides for the operation of a turbine engine while the other turbine engine is in idle and maintained in rotation in the chamber extinguished by drive means, at an ignition speed located in its preferential window.
- the turbine engine 1 operates and the other turbine engine 2 is maintained in rotation by its starter used as drive means E2 and powered by the starter / generator of the turbine engine 1.
- the rotation is set to a preferred chamber ignition rate (step 200).
- This configuration corresponds to the power requirement which, in these cruising phases, is lower than the PMC of the "big" engine 1 and greater than that of the "small” engine 2.
- this solution is also advantageous because the large engine 1 operates at a higher relative power level than in conventional mode, with both engines running.
- the power requirement in these cruising phases can not exceed the PMC of the engines.
- the "small" turbine 2 of lower power operates alone because it is able to provide alone the need for power. Indeed, the need is then substantially lower than the power PMC of the oversized turbine engine 1 but also lower than the PMC of the "small” engine 2. But above all, the consumption Cs is lower because this "small” engine 2 operates at a level relative to the power of the turbine engine 2.
- the turbine engine 1 is maintained in over-idle mode, for example in rotation by the starter used as drive means E1 at a speed of preferential chamber ignition (step 201).
- the M2 mode also manages the conventional restart of the engine in over-idle mode when approaching the end phases B, E or C. If this conventional restart fails, we switch to M4 mode.
- the M3 mode manages the engine failure cases used by reactivating the other engine by its emergency assistance device. For example when the oversized turbine engine 1, used in operation alone during the cruising flight phases B or E, fails, the "small” engine 2 is quickly reactivated via its emergency assistance device U2 (step 300) . Similarly, if the "small” engine 2 alone operating during the search phase C fails, the “big” engine 1 is quickly reactivated via its emergency assistance device U1 (step 301).
- This mode M3 also manages over time these cruise or search phases when the engine initially provided for operation has failed and replaced by the other engine reactivated: in the case of the cruise phases B and E, the U2 emergency assistance device is uncoupled, the OEI schemes of the "small" engine 2 being armed in accordance with safety certifications (step 310) in case of differentiated engines; for the search phase C (step 31 1), the emergency assistance device U1 is uncoupled, the PMD of the oversized engine 1 being at least equal to the power of the highest OEI regime of the "small” engine 2 in case of differentiated engines.
- this device is of a pyrotechnic nature and consists of a propellant cartridge feeding a micro-turbine.
- the present invention is not limited to the examples described and shown. In particular, the invention applies equally well to turbine engines with different or equal powers.
- control system may provide more or less than four management modes.
- another mode or an additional mode of management may be the consideration of geographical conditions (mountains, sea, desert, etc.).
- At least one of the assistance devices may not be disposable, to allow at least one other restart by this device during the same mission.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Control Of Eletrric Generators (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Stand-By Power Supply Arrangements (AREA)
- Control Of Turbines (AREA)
- Supercharger (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2814381A CA2814381C (fr) | 2010-11-04 | 2011-10-28 | Procede d'optimisation de la consommation specifique d'un helicoptere bimoteur et architecture bimoteur a systeme de regulation pour sa mise en oeuvre |
RU2013119963/02A RU2593317C2 (ru) | 2010-11-04 | 2011-10-28 | Способ оптимизации удельного расхода двухмоторного вертолета и двухмоторная конструкция с системой регулирования для его применения |
CN201180051497.4A CN103314198B (zh) | 2010-11-04 | 2011-10-28 | 优化双发动机直升机燃油消耗率的方法和带有用来实施该方法的控制系统的双发动机结构 |
ES11824269.2T ES2638282T3 (es) | 2010-11-04 | 2011-10-28 | Procedimiento de optimización del consumo específico de un helicóptero bimotor y arquitectura de bimotor para su puesta en práctica |
PL11824269T PL2635782T3 (pl) | 2010-11-04 | 2011-10-28 | Sposób optymalizacji jednostkowego zużycia paliwa przez śmigłowiec dwusilnikowy i dwusilnikowa konfiguracja z układem sterowania do jego wdrożenia |
US13/879,829 US20130219905A1 (en) | 2010-11-04 | 2011-10-28 | Method of optimizing the specific fuel consumption of a twin engine helicopter and twin engine architecture with control system for implementing it |
JP2013537180A JP5957461B2 (ja) | 2010-11-04 | 2011-10-28 | ツインエンジンヘリコプタの燃料消費率を最適化する方法およびこれを実施するための制御システムを備えたツインエンジン構造 |
KR1020137010533A KR101849810B1 (ko) | 2010-11-04 | 2011-10-28 | 트윈-엔진 헬리콥터의 특정 연료 소모량를 최적화하는 방법 및 이를 실시하기 위한 제어 시스템을 갖는 트윈-엔진 구조물 |
EP11824269.2A EP2635782B1 (fr) | 2010-11-04 | 2011-10-28 | Procede d'optimisation de la consommation specifique d'un helicoptere bimoteur et architecture bimoteur pour sa mise en oeuvre |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1059065A FR2967132B1 (fr) | 2010-11-04 | 2010-11-04 | Procede d'optimisation de la consommation specifique d'un helicoptere bimoteur et architecture bimoteur dissymetrique a systeme de regulation pour sa mise en oeuvre |
FR1059065 | 2010-11-04 | ||
FR1151717A FR2967133B1 (fr) | 2010-11-04 | 2011-03-03 | Procede d'optimisation de la consommation specifique d'un helicoptere bimoteur et architecture bimoteur a systeme de regulation pour sa mise en oeuvre |
FR1151717 | 2011-03-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012059671A2 true WO2012059671A2 (fr) | 2012-05-10 |
WO2012059671A3 WO2012059671A3 (fr) | 2012-07-19 |
Family
ID=44083129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2011/052532 WO2012059671A2 (fr) | 2010-11-04 | 2011-10-28 | Procede d'optimisation de la consommation specifique d'un helicoptere bimoteur et architecture bimoteur a systeme de regulation pour sa mise en oeuvre |
Country Status (11)
Country | Link |
---|---|
US (1) | US20130219905A1 (fr) |
EP (1) | EP2635782B1 (fr) |
JP (1) | JP5957461B2 (fr) |
KR (1) | KR101849810B1 (fr) |
CN (1) | CN103314198B (fr) |
CA (1) | CA2814381C (fr) |
ES (1) | ES2638282T3 (fr) |
FR (2) | FR2967132B1 (fr) |
PL (1) | PL2635782T3 (fr) |
RU (1) | RU2593317C2 (fr) |
WO (1) | WO2012059671A2 (fr) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2735508A1 (fr) | 2012-11-26 | 2014-05-28 | Airbus Helicopters | Procédé et aéronef à voilure tournante muni de deux turbomoteurs principaux et d'un turbomoteur secondaire moins puissant |
EP2735512A1 (fr) | 2012-11-26 | 2014-05-28 | Airbus Helicopters | Procédé et aéronef à voilure tournante muni de trois moteurs |
EP2815966A1 (fr) | 2013-06-20 | 2014-12-24 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | Aéronef à voilure tournante avec un système de propulsion |
EP2829472A1 (fr) | 2013-07-23 | 2015-01-28 | Airbus Helicopters | Installation motrice trimoteur régulée pour un aéronef à voilure tournante |
WO2015044614A1 (fr) * | 2013-09-30 | 2015-04-02 | Turbomeca | Turbomachine adaptee a fonctionner en mode vireur |
EP2886456A1 (fr) | 2013-12-20 | 2015-06-24 | Airbus Helicopters | Installation motrice disposant d'un moteur secondaire compensant les pertes de puissance des moteurs principaux pour un aéronef à voilure tournante |
WO2015092252A1 (fr) * | 2013-12-20 | 2015-06-25 | Turbomeca | Procede de commande automatique du regime de fonctionnement d'un turbomoteur d'un helicoptere, dispositif de commande correspondant et helicoptere equipe d'un tel dispositif |
WO2015145043A1 (fr) * | 2014-03-27 | 2015-10-01 | Turbomeca | Turbomoteur, helicoptere bimoteur equipe d'un tel turbomoteur et procede d'optimisation du regime de super-ralenti a puissance nulle d'un tel helicoptere bimoteur |
WO2015145045A1 (fr) * | 2014-03-27 | 2015-10-01 | Turbomeca | Turbomoteur comprenant un dispositif de couplage mécanique commandé, hélicoptère equipé d'un tel turbomoteur et procédé d'optimisation du régime de super-ralenti a puissance nulle d'un tel hélicoptère |
FR3024180A1 (fr) * | 2014-07-28 | 2016-01-29 | Turbomeca | Dispositif pneumatique de reactivation rapide d'un turbomoteur, architecture d'un systeme propulsif d'un helicoptere multi-moteur equipe d'un tel dispositif et helicoptere correspondant |
US9267438B2 (en) | 2011-10-11 | 2016-02-23 | Pratt & Whitney Canada Corp. | Starting of aircraft engine |
FR3027058A1 (fr) * | 2014-10-13 | 2016-04-15 | Turbomeca | Architecture d'un systeme propulsif d'un helicoptere comprenant un turbomoteur hybride et un systeme de reactivation de ce turbomoteur hybride |
US20160237917A1 (en) * | 2013-10-09 | 2016-08-18 | Turbomeca | Method for optimising the specific consumption of a twin helicopter |
US9429077B2 (en) | 2011-12-06 | 2016-08-30 | Pratt & Whitney Canada Corp. | Multiple turboshaft engine control method and system for helicopters |
US9447734B2 (en) | 2013-03-25 | 2016-09-20 | Airbus Helicopters | Rotary wing aircraft with a hybrid power plant |
EP3075662A1 (fr) | 2015-03-31 | 2016-10-05 | Airbus Helicopters | Procede et dispositif pour arreter un turbomoteur en fonctionnement nominal |
EP3109156A1 (fr) | 2015-06-23 | 2016-12-28 | Airbus Helicopters | Procede de regulation d'une installation motrice trimoteur pour un aeronef a voilure tournante |
EP3109155A1 (fr) | 2015-06-23 | 2016-12-28 | Airbus Helicopters | Procede de regulation d'une installation motrice trimoteur pour un aeronef a voilure tournante |
EP3125343A1 (fr) | 2015-07-31 | 2017-02-01 | Airbus Helicopters | Stockage d'energie a piles thermiques pour aeronef a voilure tournante |
US9840997B2 (en) | 2013-03-14 | 2017-12-12 | Pratt & Whitney Canada Corp. | Engine starting system using stored energy |
FR3064680A1 (fr) * | 2017-04-03 | 2018-10-05 | Safran Helicopter Engines | Procede de verification de la puissance maximale disponible d'une turbomachine d'un aeronef equipe de deux turbomachines |
RU2684693C2 (ru) * | 2014-04-08 | 2019-04-11 | Сафран Эркрафт Энджинз | Устройство содействия для силовой установки на твердом проперголе одномоторного вертолета, одномоторный вертолет, содержащий такое устройство, и соответствующий способ |
FR3078057A1 (fr) * | 2018-02-19 | 2019-08-23 | Safran Helicopter Engines | Architecture de systeme propulsif d'un helicoptere bimoteurs |
FR3126533A1 (fr) * | 2021-08-31 | 2023-03-03 | Safran Helicopter Engines | procédé d’entrainement à la panne d’une chaine de puissance d’un système propulsif hybride |
US12012215B2 (en) | 2022-07-20 | 2024-06-18 | Airbus Helicopters | Aircraft comprising at least two turboshaft engines and device configured to be connected to one of the turboshaft engines and method for controlling such an aircraft |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3001525B1 (fr) * | 2013-01-29 | 2016-12-09 | Turbomeca | Procede de gestion de la consommation de carburant d un ensemble bimoteur et ensemble associe |
FR3010740B1 (fr) * | 2013-09-19 | 2018-03-02 | Snecma | Systeme et procede de demarrage d'urgence d'une turbomachine d'aeronef |
FR3019217B1 (fr) * | 2014-03-27 | 2018-07-27 | Safran Helicopter Engines | Procede et systeme de reactivation rapide de turbomachine |
FR3019225B1 (fr) * | 2014-03-27 | 2018-06-22 | Safran Helicopter Engines | Procede de detection d'une defaillance d'un premier turbomoteur d'un helicoptere bimoteur et de commande du second turbomoteur, et dispositif correspondant |
FR3019214B1 (fr) * | 2014-03-27 | 2019-05-31 | Safran Helicopter Engines | Dispositif d'assistance pour une turbomachine a turbine libre d'aeronef |
FR3019220A1 (fr) | 2014-03-27 | 2015-10-02 | Turbomeca | Procede de redemarrage alternatif d'un turbomoteur en veille d'un helicoptere et architecture multi-moteur permettant la mise en œuvre d'un tel procede |
FR3019218B1 (fr) | 2014-03-27 | 2016-03-18 | Turbomeca | Architecture d'un systeme propulsif d'un helicoptere multi-moteur et helicoptere correspondant |
FR3019215B1 (fr) * | 2014-03-27 | 2019-05-31 | Safran Helicopter Engines | Dispositif d'assistance pour une turbomachine a turbine libre d'un aeronef comprenant au moins deux turbomachines a turbine libre |
FR3019221B1 (fr) * | 2014-03-27 | 2018-10-12 | Safran Helicopter Engines | Dispositif hydraulique de demarrage d'urgence d'un turbomoteur, architecture d'un systeme propulsif d'un helicoptere multi-moteur equipe d'un tel dispositif et helicoptere correspondant |
FR3019358B1 (fr) | 2014-03-27 | 2016-03-18 | Turbomeca | Procede de gestion globale optimisee d'un reseau energetique d'un aeronef et dispositif correspondant |
FR3019224B1 (fr) * | 2014-03-27 | 2016-03-18 | Turbomeca | Procede d'assistance d'un turbomoteur en veille d'un helicoptere multi-moteur et architecture d'un systeme propulsif d'un helicoptere comprenant au moins un turbomoteur pouvant etre en veille |
FR3019524B1 (fr) * | 2014-04-03 | 2017-12-08 | Turbomeca | Chaine motrice pour helicoptere incorporant un module moteur pyrotechnique d'assistance et helicoptere la comportant |
FR3024707B1 (fr) | 2014-08-07 | 2018-03-23 | Turbomeca | Dispositif d'assistance rapide pour une turbomachine a turbine libre d'un aeronef |
FR3026435B1 (fr) * | 2014-09-29 | 2016-10-21 | Turbomeca | Dispositif et procede de test d'integrite d'un systeme de reactivation rapide d'un turbomoteur d'un helicoptere |
FR3027286B1 (fr) * | 2014-10-20 | 2018-01-05 | Safran Helicopter Engines | Systeme propulsif hybride d'un aeronef multi-moteur |
FR3027346B1 (fr) | 2014-10-20 | 2019-08-09 | Safran Helicopter Engines | Pack amovible de reactivation d'un turbomoteur, architecture d'un systeme propulsif d'un helicoptere multi-moteur equipe d'un tel pack et helicoptere correspondant |
FR3032233B1 (fr) * | 2015-01-29 | 2018-09-28 | Safran Helicopter Engines | Groupe moteur et procede de rechauffement de carburant |
EP3283758A4 (fr) | 2015-04-15 | 2018-12-05 | Sikorsky Aircraft Corporation | Systèmes et procédés pour démarrer un moteur |
EP3283369B1 (fr) * | 2015-04-15 | 2019-12-11 | Sikorsky Aircraft Corporation | Commande d'aube de guidage d'entrée pour fonctionnement d'aeronef en monomoteur |
US10773814B2 (en) | 2015-07-20 | 2020-09-15 | Sikorsky Aircraft Corporation | Control system for rotorcraft in-flight engine restarting |
GB2542921B (en) | 2015-09-02 | 2019-05-29 | Bae Systems Plc | Vehicle power sharing system with engine-driven generator and fuel cell |
GB2542920B (en) * | 2015-09-02 | 2019-11-06 | Bae Systems Plc | A vehicle comprising an engine restart system |
FR3052440B1 (fr) | 2016-06-13 | 2018-05-18 | Safran Helicopter Engines | Integration d'un materiau a changement de phase pour limiter la temperature du carburant a partir d'un module electronique. |
US10760484B2 (en) | 2016-09-16 | 2020-09-01 | Pratt & Whitney Canada Corp. | Multi-engine aircraft power plant with heat recuperation |
CN106586002B (zh) * | 2016-11-30 | 2018-12-11 | 中国航空工业集团公司沈阳飞机设计研究所 | 一种飞机与发动机一体化匹配调节控制方法 |
US10273019B2 (en) * | 2017-03-06 | 2019-04-30 | Rolls-Royce Corporation | Distributed propulsion system power unit control |
WO2019183428A1 (fr) | 2018-03-22 | 2019-09-26 | Continental Motors, Inc. | Calage de l'allumage de moteur et système d'alimentation électrique |
US20200056551A1 (en) * | 2018-08-20 | 2020-02-20 | United Technologies Corporation | Aircraft engine idle suppressor and method |
JP7094232B2 (ja) * | 2019-01-22 | 2022-07-01 | 愛三工業株式会社 | マルチコプタ |
US11987375B2 (en) | 2019-02-08 | 2024-05-21 | Pratt & Whitney Canada Corp. | System and method for operating engines of an aircraft in an asymmetric operating regime |
US11725597B2 (en) * | 2019-02-08 | 2023-08-15 | Pratt & Whitney Canada Corp. | System and method for exiting an asymmetric engine operating regime |
CN109896026B (zh) * | 2019-03-21 | 2020-08-07 | 南京航空航天大学 | 变旋翼转速直升机-涡轴发动机综合控制方法及装置 |
CN109854389B (zh) * | 2019-03-21 | 2020-07-31 | 南京航空航天大学 | 涡轴发动机双发扭矩匹配控制方法及装置 |
US11643965B2 (en) * | 2019-05-15 | 2023-05-09 | Pratt & Whitney Canada Corp. | System and method for operating multi-engine rotorcraft |
US20200362754A1 (en) * | 2019-05-15 | 2020-11-19 | Pratt & Whitney Canada Corp. | System and method for operating a rotorcraft |
US11299286B2 (en) | 2019-05-15 | 2022-04-12 | Pratt & Whitney Canada Corp. | System and method for operating a multi-engine aircraft |
US11663863B2 (en) | 2019-06-07 | 2023-05-30 | Pratt & Whitney Canada Corp. | Methods and systems for operating a rotorcraft |
US11535386B2 (en) | 2019-06-17 | 2022-12-27 | Pratt & Whitney Canada Corp. | System and method for operating a multi-engine rotorcraft for ice accretion shedding |
US11781476B2 (en) | 2019-06-25 | 2023-10-10 | Pratt & Whitney Canada Corp. | System and method for operating a multi-engine rotorcraft |
US11255263B2 (en) | 2020-01-03 | 2022-02-22 | Raytheon Technologies Corporation | Multi core geared gas turbine engine |
EP3951150B1 (fr) | 2020-08-04 | 2023-04-19 | LEONARDO S.p.A. | Procédé de commande d'un aéronef capable de vol stationnaire et aéronef correspondant |
CN112046782A (zh) * | 2020-09-16 | 2020-12-08 | 中国航发沈阳黎明航空发动机有限责任公司 | 一种双发动机飞机的单发故障排除方法 |
US20220106915A1 (en) * | 2020-10-05 | 2022-04-07 | Pratt & Whitney Canada Corp. | Method and system for operating a gas turbine engine to avoid restricted engine speeds |
JP2022099063A (ja) * | 2020-12-22 | 2022-07-04 | 本田技研工業株式会社 | 航空機用推進システム |
FR3121127B1 (fr) * | 2021-03-23 | 2023-07-28 | Airbus Helicopters | Aéronef multimoteur muni d’un mode de fonctionnement économique et procédé appliqué |
FR3135965A1 (fr) | 2022-05-31 | 2023-12-01 | Safran Helicopter Engines | Ensemble propulsif amélioré pour aéronef multi moteurs |
FR3138827A1 (fr) | 2022-08-12 | 2024-02-16 | Safran Helicopter Engines | Procédé de gestion de la sortie d’un mode de consommation spécifique d’un turbomoteur d’aéronef |
FR3138828A1 (fr) | 2022-08-12 | 2024-02-16 | Safran Helicopter Engines | Procédé d’assistance à la propulsion par détection d’une défaillance d’un turbomoteur d’un aéronef |
US20240083570A1 (en) * | 2022-09-09 | 2024-03-14 | Textron Innovations Inc. | Inflight reduced engine operation, engine restart, and associated alerts |
FR3140866B1 (fr) | 2022-10-18 | 2024-08-30 | Airbus Helicopters | procédé et aéronef muni d’au moins un moteur à combustion et d’un système d’entraînement à au moins deux machines électriques |
FR3147793A1 (fr) | 2023-04-13 | 2024-10-18 | Airbus Helicopters | procédé de pilotage d’un aéronef à voilure tournante multimoteur à consommation de carburant réduite au sol |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2723531A (en) * | 1947-07-21 | 1955-11-15 | Solar Aircraft Co | Auxiliary power supply device for aircraft and constant speed drive mechanism therefor |
FR1272496A (fr) * | 1959-09-24 | 1961-09-29 | Ensemble d'attelage de plusieurs turbines à gaz à un arbre moteur commun | |
US3093968A (en) * | 1960-05-05 | 1963-06-18 | Cornell Aeronautical Labor Inc | Method and apparatus for augmenting the drive of a gas turbine |
US3367107A (en) * | 1965-10-05 | 1968-02-06 | Curtiss Wright Corp | Low idle fuel control system |
US3633360A (en) * | 1970-01-20 | 1972-01-11 | Talley Industries | Boost starter system |
US3869862A (en) * | 1972-12-01 | 1975-03-11 | Avco Corp | Fuel conservation system for multi-engine powered vehicle |
US4831567A (en) * | 1988-04-04 | 1989-05-16 | Pratt & Whitney Canada Inc. | Method and apparatus for pilot training |
JPH05193579A (ja) * | 1992-01-20 | 1993-08-03 | Mitsubishi Heavy Ind Ltd | ターボシャフト・エンジン |
US5239830A (en) * | 1992-03-05 | 1993-08-31 | Avco Corporation | Plural engine power producing system |
US5363317A (en) * | 1992-10-29 | 1994-11-08 | United Technologies Corporation | Engine failure monitor for a multi-engine aircraft having partial engine failure and driveshaft failure detection |
US5899411A (en) * | 1996-01-22 | 1999-05-04 | Sundstrand Corporation | Aircraft electrical system providing emergency power and electric starting of propulsion engines |
JP2913581B2 (ja) * | 1996-03-18 | 1999-06-28 | 株式会社コミュータヘリコプタ先進技術研究所 | ヘリコプタta級離着陸支援装置 |
US5873546A (en) * | 1997-06-19 | 1999-02-23 | Sikorsky Aircraft Corporation | System and method for conducting one engine inoperative flight procedures training in a dual-engine helicopter |
US6195247B1 (en) * | 1998-06-02 | 2001-02-27 | Pratt & Whitney Canada | Exciter controlled by FADEC system |
FR2803051B1 (fr) * | 1999-12-23 | 2002-05-03 | Turbomeca | Dispositif et procede de regulation de la puissance d'un groupe motopropulseur d'entrainement de rotor d'helicoptere |
US6880784B1 (en) * | 2003-05-08 | 2005-04-19 | Supersonic Aerospace International, Llc | Automatic takeoff thrust management system |
US8025503B2 (en) * | 2003-12-08 | 2011-09-27 | Pratt & Whitney Canada Corp. | One-engine-inoperative training method and system |
US7031812B1 (en) * | 2004-03-15 | 2006-04-18 | Howell Instruments, Inc. | System and method for monitoring aircraft engine health and determining engine power available, and applications thereof |
RU2289714C2 (ru) * | 2004-11-04 | 2006-12-20 | Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" | Летательный аппарат |
US7926287B2 (en) * | 2007-05-08 | 2011-04-19 | Pratt & Whitney Canada Corp. | Method of operating a gas turbine engine |
WO2009008524A1 (fr) * | 2007-07-12 | 2009-01-15 | Imagineering, Inc. | Accélérateur d'allumage et de réaction chimique et stabilisateur de flamme, moteur à combustion interne de type vitesse et four |
DE102007059950A1 (de) * | 2007-12-12 | 2009-06-18 | Mtu Aero Engines Gmbh | Verfahren zum Betreiben eines Flugzeugs mit mehreren Haupttriebwerken |
GB2460246B (en) * | 2008-05-21 | 2012-09-19 | Matthew P Wood | Helicopter with auxiliary power unit for emergency rotor power |
FR2947006B1 (fr) * | 2009-06-17 | 2014-10-17 | Eurocopter France | Dispositif et procede pour le demarrage d'un moteur a turbine equipant un helicoptere,mettant en oeuvre une source d'energie electrique comprenant des organes d'appoint a decharge |
US9267438B2 (en) * | 2011-10-11 | 2016-02-23 | Pratt & Whitney Canada Corp. | Starting of aircraft engine |
-
2010
- 2010-11-04 FR FR1059065A patent/FR2967132B1/fr active Active
-
2011
- 2011-03-03 FR FR1151717A patent/FR2967133B1/fr active Active
- 2011-10-28 US US13/879,829 patent/US20130219905A1/en not_active Abandoned
- 2011-10-28 CA CA2814381A patent/CA2814381C/fr not_active Expired - Fee Related
- 2011-10-28 ES ES11824269.2T patent/ES2638282T3/es active Active
- 2011-10-28 WO PCT/FR2011/052532 patent/WO2012059671A2/fr active Application Filing
- 2011-10-28 RU RU2013119963/02A patent/RU2593317C2/ru active
- 2011-10-28 PL PL11824269T patent/PL2635782T3/pl unknown
- 2011-10-28 JP JP2013537180A patent/JP5957461B2/ja not_active Expired - Fee Related
- 2011-10-28 EP EP11824269.2A patent/EP2635782B1/fr active Active
- 2011-10-28 CN CN201180051497.4A patent/CN103314198B/zh active Active
- 2011-10-28 KR KR1020137010533A patent/KR101849810B1/ko active IP Right Grant
Non-Patent Citations (1)
Title |
---|
None |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9267438B2 (en) | 2011-10-11 | 2016-02-23 | Pratt & Whitney Canada Corp. | Starting of aircraft engine |
US9429077B2 (en) | 2011-12-06 | 2016-08-30 | Pratt & Whitney Canada Corp. | Multiple turboshaft engine control method and system for helicopters |
US9387934B2 (en) | 2012-11-26 | 2016-07-12 | Airbus Helicopters | Method and a rotary wing aircraft having three engines |
EP2735512A1 (fr) | 2012-11-26 | 2014-05-28 | Airbus Helicopters | Procédé et aéronef à voilure tournante muni de trois moteurs |
EP2735508A1 (fr) | 2012-11-26 | 2014-05-28 | Airbus Helicopters | Procédé et aéronef à voilure tournante muni de deux turbomoteurs principaux et d'un turbomoteur secondaire moins puissant |
US9353642B2 (en) | 2012-11-26 | 2016-05-31 | Airbus Helicopters | Rotary wing aircraft having two main engines together with a less powerful secondary engine, and a corresponding method |
US9840997B2 (en) | 2013-03-14 | 2017-12-12 | Pratt & Whitney Canada Corp. | Engine starting system using stored energy |
US10578071B2 (en) | 2013-03-14 | 2020-03-03 | Pratt & Whitney Canada Corp. | Engine starting system using stored energy |
US9447734B2 (en) | 2013-03-25 | 2016-09-20 | Airbus Helicopters | Rotary wing aircraft with a hybrid power plant |
EP2815966A1 (fr) | 2013-06-20 | 2014-12-24 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | Aéronef à voilure tournante avec un système de propulsion |
RU2573080C1 (ru) * | 2013-07-23 | 2016-01-20 | Эйрбас Хеликоптерс | Регулируемая трехмоторная установка, винтокрылый летательный аппарат, содержащий такую установку, и способ регулирования силовой установки |
US9586691B2 (en) | 2013-07-23 | 2017-03-07 | Airbus Helicopters | Regulated three-engined power plant for a rotary wing aircraft |
EP2829472A1 (fr) | 2013-07-23 | 2015-01-28 | Airbus Helicopters | Installation motrice trimoteur régulée pour un aéronef à voilure tournante |
JP2016535189A (ja) * | 2013-09-30 | 2016-11-10 | ターボメカTurbomeca | 旋回装置モードで作動するように設計されているターボ機械 |
FR3011277A1 (fr) * | 2013-09-30 | 2015-04-03 | Turbomeca | Turbomachine adaptee a fonctionner en mode vireur |
RU2660730C2 (ru) * | 2013-09-30 | 2018-07-09 | Турбомека | Турбомашина, выполненная с возможностью работы в режиме проворачивания устройства |
US10753280B2 (en) | 2013-09-30 | 2020-08-25 | Safran Helicopter Engines | Turbomachine designed to operate in turning gear mode |
WO2015044614A1 (fr) * | 2013-09-30 | 2015-04-02 | Turbomeca | Turbomachine adaptee a fonctionner en mode vireur |
US10054053B2 (en) | 2013-09-30 | 2018-08-21 | Safran Helicopter Engines | Turbomachine designed to operate in turning gear mode |
WO2015044613A1 (fr) * | 2013-09-30 | 2015-04-02 | Turbomeca | Turbomachine adaptee a fonctionner en mode vireur |
RU2661984C2 (ru) * | 2013-09-30 | 2018-07-23 | Турбомека | Турбомашина, выполненная с возможностью работы в режиме проворачивания устройства |
JP2016534268A (ja) * | 2013-09-30 | 2016-11-04 | ターボメカTurbomeca | 旋回装置モードで作動するように設計されているターボ機械 |
US20160237917A1 (en) * | 2013-10-09 | 2016-08-18 | Turbomeca | Method for optimising the specific consumption of a twin helicopter |
US10435167B2 (en) | 2013-12-20 | 2019-10-08 | Safran Helicopter Engines | Method for automatically controlling the operating speed of a helicopter turboshaft engine, corresponding control device and helicopter provided with such a device |
RU2693957C1 (ru) * | 2013-12-20 | 2019-07-08 | Сафран Хеликоптер Энджинз | Способ автоматического управления рабочим режимом газотурбинного двигателя вертолета, соответствующее устройство управления и вертолет, оснащенный таким устройством |
US9890708B2 (en) | 2013-12-20 | 2018-02-13 | Airbus Helicopters | Power plant including a secondary engine for compensating for losses of power from main engines in a rotary wing aircraft |
WO2015092252A1 (fr) * | 2013-12-20 | 2015-06-25 | Turbomeca | Procede de commande automatique du regime de fonctionnement d'un turbomoteur d'un helicoptere, dispositif de commande correspondant et helicoptere equipe d'un tel dispositif |
FR3015574A1 (fr) * | 2013-12-20 | 2015-06-26 | Turbomeca | Procede de commande automatique du regime de fonctionnement d'un turbomoteur d'un helicoptere, dispositif de commande correspondant et helicoptere equipe d'un tel dispositif |
EP2886456A1 (fr) | 2013-12-20 | 2015-06-24 | Airbus Helicopters | Installation motrice disposant d'un moteur secondaire compensant les pertes de puissance des moteurs principaux pour un aéronef à voilure tournante |
WO2015145043A1 (fr) * | 2014-03-27 | 2015-10-01 | Turbomeca | Turbomoteur, helicoptere bimoteur equipe d'un tel turbomoteur et procede d'optimisation du regime de super-ralenti a puissance nulle d'un tel helicoptere bimoteur |
FR3019223A1 (fr) * | 2014-03-27 | 2015-10-02 | Turbomeca | Turbomoteur comprenant un dispositif de couplage mecanique commande, helicoptere equipe d'un tel turbomoteur et procede d'optimisation du regime de super-ralenti a puissance nulle d'un tel helicoptere |
RU2674861C2 (ru) * | 2014-03-27 | 2018-12-13 | Сафран Хеликоптер Энджинз | Газотурбинный двигатель, содержащий устройство управляемого механического соединения, вертолет, оснащенный таким газотурбинным двигателем, и способ оптимизации режима сверхмалого газа с нулевой мощностью такого вертолета |
US10371062B2 (en) | 2014-03-27 | 2019-08-06 | Safran Helicopter Engines | Turboshaft engine, twin-engine helicopter equipped with such a turboshaft engine, and method for optimising the zero-power super-idle speed of such a twin-engine helicopter |
WO2015145045A1 (fr) * | 2014-03-27 | 2015-10-01 | Turbomeca | Turbomoteur comprenant un dispositif de couplage mécanique commandé, hélicoptère equipé d'un tel turbomoteur et procédé d'optimisation du régime de super-ralenti a puissance nulle d'un tel hélicoptère |
US10415482B2 (en) | 2014-03-27 | 2019-09-17 | Safran Helicopter Engines | Turboshaft engine comprising a controlled mechanical coupling device, helicopter equipped with such a turboshaft engine, and method for optimising the zero-power super-idle speed of such a helicopter |
FR3019222A1 (fr) * | 2014-03-27 | 2015-10-02 | Turbomeca | Turbomoteur, helicoptere bimoteur equipe d'un tel turbomoteur et procede d'optimisation du regime de super-ralenti a puissance nulle d'un tel helicoptere bimoteur |
RU2684693C2 (ru) * | 2014-04-08 | 2019-04-11 | Сафран Эркрафт Энджинз | Устройство содействия для силовой установки на твердом проперголе одномоторного вертолета, одномоторный вертолет, содержащий такое устройство, и соответствующий способ |
FR3024180A1 (fr) * | 2014-07-28 | 2016-01-29 | Turbomeca | Dispositif pneumatique de reactivation rapide d'un turbomoteur, architecture d'un systeme propulsif d'un helicoptere multi-moteur equipe d'un tel dispositif et helicoptere correspondant |
WO2016016547A1 (fr) * | 2014-07-28 | 2016-02-04 | Turbomeca | Dispositif pneumatique de réactivation rapide d'un turbomoteur, architecture d'un système propulsif d'un hélicoptère multi-moteur équipé d'un tel dispositif et hélicoptère correspondant |
US11492975B2 (en) * | 2014-07-28 | 2022-11-08 | Safran Helicopter Engines | Pneumatic device for rapidly reactivating a turbine engine, architecture for a propulsion system of a multi-engine helicopter provided with such a device, and corresponding helicopter |
US20170211483A1 (en) * | 2014-07-28 | 2017-07-27 | Safran Helicopter Engines | Pneumatic device for rapidly reactivating a turbine engine, architecture for a propulsion system of a multi-engine helicopter provided with such a device, and corresponding helicopter |
US11161603B2 (en) | 2014-10-13 | 2021-11-02 | Safran Helicopter Engines | Architecture for a propulsion system of a helicopter including a hybrid turboshaft engine and a system for reactivating said hybrid turboshaft engine |
US11597504B2 (en) | 2014-10-13 | 2023-03-07 | Safran Helicopter Engines | Architecture for a propulsion system of a helicopter including a hybrid turboshaft engine and a system for reactivating said hybrid turboshaft engine |
CN106795774A (zh) * | 2014-10-13 | 2017-05-31 | 赛峰直升机发动机公司 | 包括混合涡轮轴发动机和用于重新激活所述混合涡轮轴发动机的系统的直升机推进系统的架构 |
FR3027058A1 (fr) * | 2014-10-13 | 2016-04-15 | Turbomeca | Architecture d'un systeme propulsif d'un helicoptere comprenant un turbomoteur hybride et un systeme de reactivation de ce turbomoteur hybride |
RU2689223C2 (ru) * | 2014-10-13 | 2019-05-24 | Сафран Хеликоптер Энджинз | Конструкция силовой установки вертолета, содержащей гибридный газотурбинный двигатель и систему повторного приведения в действие этого гибридного газотурбинного двигателя |
WO2016059320A1 (fr) * | 2014-10-13 | 2016-04-21 | Turbomeca | Architecture d'un systeme propulsif d'un helicoptere comprenant un turbomoteur hybride et un systeme de reactivation de ce turbomoteur hybride |
EP3075662A1 (fr) | 2015-03-31 | 2016-10-05 | Airbus Helicopters | Procede et dispositif pour arreter un turbomoteur en fonctionnement nominal |
US10112723B2 (en) | 2015-03-31 | 2018-10-30 | Airbus Helicopters | Method and a device for stopping a turboshaft engine in nominal operation |
EP3109155A1 (fr) | 2015-06-23 | 2016-12-28 | Airbus Helicopters | Procede de regulation d'une installation motrice trimoteur pour un aeronef a voilure tournante |
US10106268B2 (en) | 2015-06-23 | 2018-10-23 | Airbus Helicopters | Method of regulating a three-engined power plant for a rotary wing aircraft |
EP3109156A1 (fr) | 2015-06-23 | 2016-12-28 | Airbus Helicopters | Procede de regulation d'une installation motrice trimoteur pour un aeronef a voilure tournante |
US10144528B2 (en) | 2015-06-23 | 2018-12-04 | Airbus Helicopters | Method of regulating a three-engined power plant for a rotary wing aircraft |
US10377501B2 (en) | 2015-07-31 | 2019-08-13 | Airbus Helicopters | Thermopile energy storage for a rotary wing aircraft |
EP3125343A1 (fr) | 2015-07-31 | 2017-02-01 | Airbus Helicopters | Stockage d'energie a piles thermiques pour aeronef a voilure tournante |
WO2018185409A1 (fr) * | 2017-04-03 | 2018-10-11 | Safran Helicopter Engines | Procédé de vérification de la puissance maximale disponible d'une turbomachine d'un aéronef équipé de deux turbomachines |
US11459960B2 (en) | 2017-04-03 | 2022-10-04 | Safran Helicopter Engines | Method for checking the maximum available power of a turbine engine of an aircraft equipped with two turbine engines |
FR3064680A1 (fr) * | 2017-04-03 | 2018-10-05 | Safran Helicopter Engines | Procede de verification de la puissance maximale disponible d'une turbomachine d'un aeronef equipe de deux turbomachines |
CN110621858A (zh) * | 2017-04-03 | 2019-12-27 | 赛峰直升机发动机公司 | 检查装有两个涡轮发动机的飞机的涡轮发动机的最大可用功率的方法 |
FR3078057A1 (fr) * | 2018-02-19 | 2019-08-23 | Safran Helicopter Engines | Architecture de systeme propulsif d'un helicoptere bimoteurs |
FR3126533A1 (fr) * | 2021-08-31 | 2023-03-03 | Safran Helicopter Engines | procédé d’entrainement à la panne d’une chaine de puissance d’un système propulsif hybride |
WO2023031549A1 (fr) * | 2021-08-31 | 2023-03-09 | Safran Helicopter Engines | Procédé d'entrainement à la panne d'une chaine de puissance d'un système propulsif hybride |
US12012215B2 (en) | 2022-07-20 | 2024-06-18 | Airbus Helicopters | Aircraft comprising at least two turboshaft engines and device configured to be connected to one of the turboshaft engines and method for controlling such an aircraft |
Also Published As
Publication number | Publication date |
---|---|
EP2635782A2 (fr) | 2013-09-11 |
RU2593317C2 (ru) | 2016-08-10 |
FR2967132A1 (fr) | 2012-05-11 |
ES2638282T3 (es) | 2017-10-19 |
RU2013119963A (ru) | 2014-12-10 |
CN103314198A (zh) | 2013-09-18 |
KR20130139943A (ko) | 2013-12-23 |
CA2814381C (fr) | 2018-05-01 |
CN103314198B (zh) | 2015-12-02 |
FR2967132B1 (fr) | 2012-11-09 |
EP2635782B1 (fr) | 2017-07-05 |
JP2013544329A (ja) | 2013-12-12 |
US20130219905A1 (en) | 2013-08-29 |
FR2967133B1 (fr) | 2012-11-16 |
JP5957461B2 (ja) | 2016-07-27 |
WO2012059671A3 (fr) | 2012-07-19 |
FR2967133A1 (fr) | 2012-05-11 |
KR101849810B1 (ko) | 2018-04-17 |
CA2814381A1 (fr) | 2012-05-10 |
PL2635782T3 (pl) | 2017-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2635782B1 (fr) | Procede d'optimisation de la consommation specifique d'un helicoptere bimoteur et architecture bimoteur pour sa mise en oeuvre | |
EP3055531B1 (fr) | Procédé d'optimisation de la consommation spécifique d'un hélicoptère bimoteur | |
EP3123014B1 (fr) | Architecture d'un systeme propulsif d'un helicoptere multi-moteur et helicoptere correspondant | |
EP3123015B1 (fr) | Architecture d'un systeme propulsif d'un helicoptere multi-moteur et helicoptere correspondant | |
EP3207223B1 (fr) | Architecture d'un systeme propulsif d'un helicoptere comprenant un turbomoteur hybride et un systeme de reactivation de ce turbomoteur hybride | |
EP3123016B1 (fr) | Aéronef comprenant au moins deux turbomachines à turbine libre avec dispositif d'assistance | |
EP3123017B1 (fr) | Dispositif hydraulique de démarrage d'urgence d'un turbomoteur, système propulsif d'un hélicoptère multi-moteur équipé d'un tel dispositif et hélicoptère correspondant | |
EP3175090B1 (fr) | Dispositif pneumatique de réactivation rapide d'un turbomoteur, architecture d'un système propulsif d'un hélicoptère multi-moteur équipé d'un tel dispositif, hélicoptère et procédé correspondant | |
WO2024170855A1 (fr) | Procede et systeme de demarrage d'une turbomachine aeronautique a turbine libre et generateur de gaz simple corps |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11824269 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 2814381 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13879829 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20137010533 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013537180 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011824269 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011824269 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013119963 Country of ref document: RU Kind code of ref document: A |