WO2012059043A1 - 一种业务接纳控制方法和系统 - Google Patents

一种业务接纳控制方法和系统 Download PDF

Info

Publication number
WO2012059043A1
WO2012059043A1 PCT/CN2011/081646 CN2011081646W WO2012059043A1 WO 2012059043 A1 WO2012059043 A1 WO 2012059043A1 CN 2011081646 W CN2011081646 W CN 2011081646W WO 2012059043 A1 WO2012059043 A1 WO 2012059043A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
home base
admission control
fixed network
henb
Prior art date
Application number
PCT/CN2011/081646
Other languages
English (en)
French (fr)
Inventor
毕以峰
周晓云
霍玉臻
宗在峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012059043A1 publication Critical patent/WO2012059043A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]

Definitions

  • the present invention relates to the field of communications, and in particular, to a service admission control method and system. Background technique
  • the Evolved Packet System (EPS) of the 3rd Generation Partnership Project (3GPP) is evolved by Evolved Universal Terrestrial Radio Access Network (E-UTRAN), mobile management.
  • a component Mobility Management Entity, MME), a Serving Gateway (S-GW), a Packet Data Network Gateway (P-GW), and a Home Subscriber Server (HSS).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • HSS Home Subscriber Server
  • 1 is a schematic diagram of an architecture of a Home evolved NodeB (HeNB) accessing an EPS in a non-roaming scenario according to the related art.
  • the architecture of the HeNB accessing the EPS under the roaming scenario (home routing or local grooming) is mainly embodied in the EPS. online.
  • the MME is connected to the EUTRAN, the S-GW, and the Home Base Station Gateway (HeNB GW), and is responsible for control planes such as mobility management, non-access stratum signaling processing, and user mobility management context management;
  • S-GW is The E-UTRAN-connected access gateway device forwards data between the E-UTRAN and the P-GW and is responsible for buffering the paging waiting data;
  • the P-GW is the EPS and Packet Data Network (PDN).
  • the border gateway of the network is responsible for the access of the PDN and the forwarding of data between the EPS and the PDN.
  • the Policy and Charging Rules Function performs policy and charging rules.
  • the PCRF passes the interface Rx and the carrier network.
  • Internet Protocol IP
  • AF Application Function
  • PCRF Policy and Charging Enforcement Function
  • PCRF Policy and Charging Enforcement Function
  • the S-GW hosts Bearer Binding and Event Report Function (BBERF), and S -
  • BBERF Bearer Binding and Event Report Function
  • S - The GW and the PCRF exchange information through the Gxc interface, and the BBERF is responsible for initiating the establishment, modification, and release of the bearer to ensure the service quality of the service data, and the PCEF performs charging control.
  • the EPS supports access by the HeNB.
  • the HeNB is a small, low-power base station deployed in indoor locations such as homes and offices.
  • the Closed Subscriber Group (CSG) is a new concept introduced after the introduction of the home base station.
  • CSG ID a home or a user within an enterprise forms a closed subscriber group that is identified by a CSG ID and that the home base station serving the subscribers in the closed subscriber group has the same CSG ID.
  • the closed subscriber group can also be directly identified by the home base station identity (e.g., BS ID).
  • CSG users and/or non-CSG users can distinguish between different levels to ensure that the service priority and quality of service categories that are enjoyed when the priorities are different can be different.
  • the user can access the home base station corresponding to the multiple closed user groups, for example, the user's office, home, etc.; thus introducing the concept of allowing the closed user group list, this list is saved in the user's terminal. And in the user data server on the network side.
  • home base stations There are three usage modes for home base stations: closed mode, mixed mode, and open mode.
  • closed mode only the CSG subscription user to which the home base station belongs can access the base station and enjoy the services provided by the base station.
  • the home base station is in the open mode, any operator subscription user can access the base station, and the home base station at this time is equivalent to the macro base station.
  • the home base station is In the hybrid mode, any operator subscription or roaming user is also allowed to access, but different levels are classified according to whether the user subscribes to the CSG, for example, the user who subscribes to the CSG has a higher level when using the hybrid home base station. Business priority, enjoy better service quality and business category.
  • the user data server on the network side sends the closed subscriber group that the subscriber subscribes to to the mobility management entity of the core network.
  • the core network mobility management entity will use the above received information to perform access control on the UE. If the UE accesses the core network from an unlicensed closed mode home base station, the core network will deny access to such users.
  • the HeNB usually accesses the core network of the EPS through the leased fixed line, as shown in Figure 1.
  • the security gateway (SeGW) is shielded in the core network.
  • the data between the HeNB and the SeGW is encapsulated by IPSec. In some cases, according to the actual deployment requirements of the carrier.
  • the data between the HeNB and the SeGW may also not be protected by IPSec.
  • the HeNB may be directly connected to the MME and the S-GW of the core network, or may be connected to the MME and the S-GW through the HeNB GW, that is, the HeNB GW is an optional network element.
  • a Home eNodeB Management System (HeMS) is also introduced, since the network element has little relationship with the present invention, and thus is not shown in the figure.
  • HeMS Home eNodeB Management System
  • the HeNB accesses the EPC (evolved Packet Core), which is a fixed network link (herein referred to as Backhual or fixed network backhaul network), in the fixed network link, there may be NAT ( Network Address Translation, network address translation operation, or NAT operation may not exist.
  • the NAT conversion is a conversion technology for converting a private (reserved) address into a legal/shared IP address, that is, when there is a NAT translation, the HeNB obtains a private network/private IP address assigned by the NAT converter.
  • the HeNB uses this address as the source address for external communication; when the message passes through the NAT, the source address is converted into a public address (for example: 212.10.37.22) plus a port number (for example, 5050).
  • the destination address and port number of the message are the public address and port number, that is, the address and port number of the NAT (for example, 212.10.37.22 and 5050); when the message traverses the NAT, the destination address is replaced with the private network/private IP address ( For example: 192.168.1.10), arrive at HeNB.
  • the NAT converter can be acted upon by an RG (Residential Gateway) in the fixed network.
  • Universal Mobile Telecommunications System Universal Mobile Telecommunications System
  • FIG. 2a is a schematic diagram of the architecture of the HNB accessing the UMTS in the non-roaming scenario according to the related art.
  • the architecture of the HNB accessing the UMTS in the roaming scenario is similar to that of the UMTS, and is not described here.
  • the architecture in Figure 2a is similar to the architecture of Figure 1, except that the Serving General Packet Radio Service Support Node (SGSN) is used instead of the S-GW to use the Gateway General Packet Radio Service Support Node ( The Gateway General Packet Radio Service Supporting Node (GGSN) replaces the P-GW, and the HNB GW is a mandatory network element.
  • SGSN Serving General Packet Radio Service Support Node
  • GGSN Gateway General Packet Radio Service Supporting Node
  • the HNB can access the EPC core network through the enhanced SGSN (S4-SGSN), and the S4-SGSN and the S-GW are connected through the S4 interface, and the HSS is connected through the S6d/Gr interface, and the S4-SGSN is the same.
  • S4-SGSN enhanced SGSN
  • the function of the MME in the HeNB scenario is as shown in Figure 2b.
  • the QoS of the fixed line of the HeNB/HNB access is usually restricted by the contract of the owner of the HeNB/HNB and the fixed network operator, when the 3GPP UE accesses the 3GPP core network through the HeNB/HNB, the required QoS is required.
  • the QoS cannot exceed the subscription QoS of the fixed line provided by the fixed network operator; otherwise, the QoS of the UE access service will not be guaranteed, especially the Guaranteed Bit Rate (GBR) service. Therefore, for 3GPP networks and fixed networks, there must be a unified control mechanism to control the admission of fixed network resources and services. For example, when a new service is initiated, the fixed network needs to ensure that there is sufficient resources/bandwidth to support the service.
  • the service cannot be initiated; even if 3GPP can provide sufficient resources/bandwidth As long as the fixed network cannot guarantee resources/bandwidth, the service (especially GBR) is still not guaranteed. Therefore, it is required to control the total QoS requirements of all UE service accesses accessed through the HeNB/HNB, It can not exceed the QoS guarantee of the fixed line subscription of the HeNB/HNB access, or can manage the fixed network resources reasonably, and can properly control the users and services to ensure that the GBR service established by the authorization can have Sufficient resources/bandwidth.
  • HeNB case The interworking network element HeNB PF (Policy Function Entity) is set in the 3GPP HeNB subsystem (consisting of SeGW, HeNB GW, and other network elements, such as HeMS) and BBF BPCF (Broadband Forum Policy Control Function).
  • HeNB reports the IPsec tunnel information to the HeNB PF through the SeGW, and the HeNB adopts a scheme of accepting the control point to implement service admission management and resource management.
  • the situation shown in Figures 4a and 4b is similar to Figure 3.
  • the SeGW needs to be modified to support the new protocol and the new interface; and when the IPsec tunnel is not established between the HeNB and the SeGW, the existing solution cannot be implemented. This results in poor performance of control service access, which significantly reduces the QoS of service access and reduces user satisfaction. Summary of the invention
  • the main object of the present invention is to provide a service admission control method and system to improve the performance of control service admission.
  • a service admission control method comprising: a home base station/evolved home base station transmitting a resource reconfiguration request to a home base station/evolved home base station policy function entity; and the home base station/evolved home base station policy function entity according to the received resource reconfiguration request Requesting admission control to the fixed network policy control function entity; after the fixed network policy control function entity performs admission control or delegate admission control, the decision is fed back to the home base station/evolved home base station; the home base station/evolved home base station according to the Decision making performs admission control on the home base station/evolved home base station.
  • the policy information sent by the EPC network side is further received before the home base station/evolved home base station requests resource reconfiguration from the home base station/evolved home base station policy function entity.
  • the resource reconfiguration is one of the following: resource request, resource release, and resource modification;
  • the home base station/evolved home base station policy function entity requests admission control from the fixed network policy control function entity to control the fixed network policy through the S9* interface.
  • the functional entity sends a request message for requesting admission control;
  • the process of the fixed network policy control function entity feeding back the decision to the home base station/evolved home base station includes: the fixed network policy control function entity feeds the decision to the home base station/evolved home base station policy function entity through the S9* interface, The home base station/evolved home base station policy function entity feeds back the decision to the home base station/evolved home base station.
  • the home base station/evolved home base station performs admission control on the home base station/evolved home base station, and performs at least one of the following operations: resource establishment/allocation, resource deactivation, resource modification, and resource preemption.
  • the resource preemption includes: when the decision returned by the fixed network policy control function entity indicates that the fixed network resource is insufficient, the home base station/evolved home base station according to the current access user information, resource usage status information, and the home base station/ The information of the evolved home base station level information and the closed user group CSG list determines to release the existing bearer resources and accept the requested quality of service policy.
  • the fixed network control function entity further receives the fixed network link identification information from the home base station/evolved home base station before performing the admission control or the delegate admission control; the home base station/evolved home base station carries the fixed network when requesting resource reconfiguration Link identification information; the home base station/evolved home base station policy function entity sends the fixed network link identification information to the fixed network policy control function entity.
  • the manner in which the home base station/evolved home base station carries the fixed network link identification information is: the home base station/evolved home base station reports the fixed network link identification information after powering on; or, the home base station/evolved home base station is in After receiving the quality of service policy from the EPS core network for the first time or multiple times, the fixed network link identification information is reported.
  • the method further includes: a home base station/evolved home base station and a security gateway SeGW When there is an IPsec tunnel between them, a specific cell is set in the resource reconfiguration request for carrying the fixed network link identification information; when there is no IPsec tunnel between the home base station/evolved home base station and the SeGW, the resource reconfiguration request is set in the resource reconfiguration request.
  • the specific cell is used to carry the fixed network link identification information, or the IP address of the message body itself is used as the fixed network link identification information.
  • the method further includes: when the NAT exists, the SeGW sends the network address translation NAT translated address and port number to the home base station/evolved home base station through the IKEv2 interaction signaling between the home base station/evolved home base station and the SeGW, and the family
  • the base station/evolved home base station sends the address and port number to the HeNB/HNB policy function entity PF.
  • the home base station/evolved home base station directly carries the IP address assigned by the SeGW to the HeNB/HNB policy function entity PF. .
  • the fixed network link identification information includes at least one of the following: an outer IP address, a NAT translated IP address plus a port number, a fixed network user name of the home base station/evolved home base station, and a home base station/evolved home base station.
  • the identifier, the fixed network is an IP address statically configured by the home base station/evolved home base station, and an identifier capable of uniquely determining the fixed network link where the home base station/evolved home base station is located.
  • a method of business admission control comprising:
  • the home base station/evolved home base station sends a resource reconfiguration request to the home base station/evolved home base station policy function entity and provides admission control related information;
  • the home base station/evolved home base station policy function entity requests the admission control from the fixed network policy control function entity;
  • the fixed network policy control function entity After the fixed network policy control function entity performs the admission control or the delegation admission control, the decision is fed back to the home base station/evolved home base station policy function entity;
  • the home base station/evolved home base station policy function entity performs admission control on the home base station/evolved home base station based on the admission control related information and the received feedback decision.
  • the resource reconfiguration request is set to carry the fixed network chain.
  • Cell of road identification information If the home base station/evolved home base station is connected, if there is an IPsec tunnel between the home base station/evolved home base station and the SeGW, the resource reconfiguration request is set to carry the fixed network chain.
  • the home base station/evolved home base station When the home base station/evolved home base station is connected, if there is no IPsec tunnel between the home base station/evolved home base station and the SeGW, a cell for carrying the fixed network link identification information is set in the resource reconfiguration request, or the message body is used. Its own IP address is used as the fixed network link identification information.
  • the home base station/evolved home base station policy function entity performs the admission control on the home base station/evolved home base station, where the home base station/evolved home base station policy function entity formulates resource establishment/allocation, resource deactivation, and Resource modification, resource preemption decision; the court base station/evolved home base station policy function entity performs admission control on the home base station/evolved home base station, and then sends the decision to the home base station/evolved home base station, home base station/evolution
  • the home base station further performs at least one of the following operations according to the decision: resource establishment/allocation, resource deactivation, resource modification, resource preemption.
  • the fixed network link identification information is used to uniquely determine a fixed network link of the home base station/evolved home base station.
  • the manner in which the home base station/evolved home base station carries the fixed network link identification information is: the home base station/evolved home base station reports the fixed network link identification information after powering on; or, the home base station/evolved home base station is in After receiving the quality of service policy from the EPS core network for the first time or multiple times, the fixed network link identification information is reported.
  • a service admission control system including a resource reconfiguration request unit, an admission control request unit, an admission control unit, and an admission control unit on a home base station/evolved home base station; wherein the resource reconfiguration request unit is configured to receive control The requesting unit sends a resource reconfiguration request;
  • the admission control requesting unit is configured to request admission control from the admission control unit according to the received resource reconfiguration request;
  • the admission control unit is configured to perform admission control or delegation admission control, and then send the decision to the admission control request unit;
  • the admission control unit on the home base station/evolved home base station is configured to perform admission control on the home base station/evolved home base station according to the received decision.
  • the resource reconfiguration requesting unit further receives the policy information delivered by the EPC network side before requesting resource reconfiguration.
  • the resource reconfiguration is as follows: a resource request, a resource release, and a resource modification; the admission control request is an S9* interface session message;
  • the method is: feeding the decision to the home base station/evolved home base station policy function entity through the S9* interface, the home base station/evolving home
  • the base station policy function entity feeds back the decision to the admission control unit on the home base station/evolved home base station.
  • the admission control on the home base station/evolved home base station refers to performing at least one of the following operations: resource establishment/allocation, resource deactivation, resource modification, and resource preemption.
  • the admission control unit on the home base station/evolved home base station performs resource preemption, when: the determining indicates that the fixed network resource is insufficient, according to the current access user information, resource usage status information, and the home base station / Evolving the information of the home base station level information and the CSG list, and deciding to release the existing bearer resources and accept the requested quality of service policy.
  • the receiving control unit further receives the fixed network link identification information before performing the admission control or the delegation admission control; the resource reconfiguration requesting unit carries the fixed network link identification information when requesting resource reconfiguration; The admission control request unit transmits the fixed network link identification information to the admission control unit.
  • the method is configured to: report the fixed network link identification information after powering on; or
  • the fixed network link identification information After receiving the quality of service policy from the EPS core network for the first time or multiple times, the fixed network link identification information is reported.
  • the resource reconfiguration requesting unit is further configured to: When an IPsec tunnel exists between the home base station/evolved home base station and the security gateway SeGW, a specific cell is set in the resource reconfiguration request for carrying the fixed network link identification information;
  • a specific cell is set in the resource reconfiguration request for carrying the fixed network link identification information, or the IP address of the message body itself is used as the fixed network link identifier. information.
  • the home base station/evolved home base station is further configured to:
  • the address and the port number of the NAT-transformed NAT are received by the SeGW, and then sent to the HeNB/HNB policy function entity PF through the IKEv2 interaction signaling with the SeGW;
  • the IP address assigned by the SeGW is directly carried to the HeNB/HNB policy function entity PF.
  • the fixed network link identification information includes at least one of the following: an outer IP address, a NAT translated IP address plus a port number, a fixed network user name of the home base station/evolved home base station, and a home base station/evolved home base station.
  • the identifier, the fixed network is an IP address statically configured by the home base station/evolved home base station, and an identifier capable of uniquely determining the fixed network link where the home base station/evolved home base station is located.
  • a service admission control system including a resource reconfiguration request unit, an admission control request unit, an admission control unit, and an admission control unit on a home base station/evolved home base station; wherein the resource reconfiguration request unit is configured to receive control
  • the requesting unit sends a resource reconfiguration request and provides admission control related information;
  • the admission control requesting unit is configured to request admission control from the admission control unit; the admission control unit is configured to perform admission control or delegate admission control, and then send the decision to the admission control unit on the home base station/evolved home base station;
  • the admission control unit on the home base station/evolved home base station is configured to determine admission control on the home base station/evolved home base station according to the admission control related information and the received feedback decision.
  • the resource reconfiguration requesting unit is configured in the home base station/evolved home base station; the admission control request unit, the admission control unit on the home base station/evolved home base station is disposed in the home base station/evolved home base station policy function entity;
  • the admission control unit is disposed in a fixed network policy control function entity.
  • An IPsec tunnel exists between the SeGWs, and a cell for carrying the identifier of the fixed network link is set in the resource reconfiguration request;
  • the home base station/evolved home base station When the home base station/evolved home base station is connected, if there is no IPsec tunnel between the home base station/evolved home base station and the SeGW, a cell for carrying the identifier of the fixed network link is set in the resource reconfiguration request, or the message body is used. Its own IP address is used as the identification information of the fixed network link.
  • the resource reconfiguration requesting unit when requesting the resource reconfiguration, carries the fixed network link identifier information that can uniquely determine the fixed network link where the home base station/evolved home base station is located, in addition to the policy carrying the request.
  • the manner in which the resource reconfiguration requesting unit carries the fixed network link identification information is: reporting the fixed network link identification information after powering on; or
  • the fixed network link identification information After receiving the quality of service policy from the EPS core network for the first time or multiple times, the fixed network link identification information is reported.
  • the method and system of the present invention can solve the problem of how to implement the service admission management and the resource management, so that the total QoS requirement does not exceed the QoS that the fixed base line accessed by the home base station can provide, and the performance of the control service acceptance is improved.
  • FIG. 1 is a schematic structural diagram of an HeNB accessing an EPS in a non-roaming scenario
  • FIG. 2a is a schematic diagram 1 of an architecture of an HNB accessing a UMTS through a fixed network in a non-roaming scenario
  • FIG. 2b is a schematic diagram of an architecture of an HNB accessing a UMTS through a fixed network in a non-roaming scenario
  • FIG. 3 is a schematic diagram of a HeNB architecture
  • Figure 4a is a schematic diagram 1 of the HNB architecture
  • Figure 4b is a schematic diagram 2 of the HNB architecture
  • FIG. 5 is a flowchart of powering on a home base station according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of successful admission in a control service admission process according to an embodiment of the present invention
  • FIG. 7 is a flowchart of admission rejection in a control service admission process according to an embodiment of the present invention
  • FIG. 8 is a control service admission process according to an embodiment of the present invention
  • FIG. 9 is a flowchart of performing a modification in a control service admission process according to an embodiment of the present invention
  • FIG. 10 is a flowchart of performing preemption in a control service admission process according to an embodiment of the present invention
  • FIG. 12 is a flowchart of performing a admission control function of a HeNB PF according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram of a service admission control flow according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of a service admission control process according to another embodiment of the present invention.
  • FIG. 15 is a diagram of a service admission control system in accordance with an embodiment of the present invention. detailed description
  • the home base station/evolved home base station may request resource reconfiguration from the home base station/evolved home base station policy function entity according to the policy information delivered by the EPC network side; the home base station/evolved home base station policy function entity according to the received
  • the resource reconfiguration request requests admission control from the fixed network policy control function entity; the fixed network policy control function entity determines whether to perform admission control or delegate admission control, and determines whether the fixed network link can satisfy the content of the resource reconfiguration request, and A decision is made to the home base station/evolved home base station; the home base station/evolved home base station makes an admission control decision on the home base station/evolved home base station based on the received feedback result.
  • the home base station/evolved home base station may also request resource reconfiguration and provide admission control related information to the home base station/evolved home base station policy function entity; the home base station/evolved home base station policy function entity requests admission from the fixed network policy control function entity.
  • the fixed network policy control function entity performs admission control or delegate admission control to determine whether the fixed network link can satisfy the resource Source reconfiguration request content, and feedback to the home base station/evolved home base station policy function entity; the home base station/evolved home base station policy function entity makes a home base station according to the admission control related information and the received judgment result/ The admission control decision is performed on the evolved home base station, and the admission control decision on the home base station/evolved home base station is fed back to the home base station/evolved home base station.
  • admission control there are two operations of admission control, and the first is the admission control or the admission admission control performed on the fixed network BPCF, which is the operation of the fixed network.
  • the second is the admission control performed on the HeNB or HeNB PF, which is the operation of the HeNB system.
  • the admission control performed on the HeNB or HeNB PF is referred to as admission control on the home base station/acting home base station, or as secondary admission control.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the scenario described in this embodiment is: There is no NAT when the HeNB accesses, and an IPsec tunnel between the HeNB and the SeGW is mandatory.
  • the SeGW allocates an IP address to the HeNB, and the address is used as an inner layer IP address for transmitting data and signaling by the HeNB.
  • the fixed network allocates an IP address for the HeNB, and the IP address is used as the HeNB to transmit data and signaling.
  • the outer IP address The inner IP address and the outer IP address have a corresponding relationship. Because the outer IP address is allocated to the HeNB by the fixed network; therefore, the fixed network can determine the fixed network backhaul network where the HeNB is located according to the outer IP address.
  • the solution for determining the fixed network link may be:
  • the HeNB is powered on, and the IKEv2 signaling is performed on the HeNB and the SeGW.
  • the HeNB uses the IP address assigned by the fixed network, that is, the outer IP address.
  • the SeGW allocates an inner IP address to the HeNB.
  • the UE After the UE accesses the EPC network through the HeNB, the UE sends the QoS policy (bearer setup request) to the HeNB GW/MME (or is initiated by the network side, or the UE initiates the request).
  • the HeNB GW or the MME sends the QoS policy to the HeNB, and the HeNB sends a resource reconfiguration request message (resource allocation) to the HeNB PF through the T2 interface for requesting the resource, and carries the QoS requested by the network side in the resource reconfiguration request message.
  • the resource also carries the outer IP address of the HeNB; the HeNB PF advertises to the BPCF through the S9* interface, and the BPCF finds the backhaul link where the HeNB is located according to the outer IP address, and checks whether the backhaul link where the HeNB is located can Provide the resources requested by the HeNB.
  • the BPCF feeds back a success message to the HeNB PF, and the HeNB PF feeds back the resource reconfiguration request (resource allocation) to the HeNB, and the HeNB accepts the service; if the backhaul link cannot provide The resource requested by the HeNB, the BPCF feeds back a failure message to the HeNB PF, and the HeNB PF feeds back the resource reconfiguration request failure response to the HeNB, and the HeNB rejects the service.
  • Figure 8 and Figure 9 show the scenario where the network side initiates resource deactivation and modification requests.
  • the key ideas in Figure 8 and Figure 9 are the same as those in Figure 6 and Figure 7, except that the requested operation behavior is different.
  • the resource allocation is requested, and in Figures 8 and 9, the resource deactivation and modification are requested.
  • the messages in step 804 and step 903 all carry the outer IP address of the HeNB in a specific cell manner.
  • the adopted parameters are also different. Therefore, the parameter information in the resource configuration request/response message is mapped or reversed by the 3GPP to BBF in the HeNB PF or BPCF. Mapping.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the scenario described in this embodiment is: There is no NAT when the HeNB accesses, and there is no IPsec tunnel between the HeNB and the SeGW.
  • the HeNB when the HeNB is powered on, there is an IKEv2 signaling interaction between the HeNB and the SeGW, but the SeGW does not allocate an IP address for the HeNB; or there is no IKEv2 negotiation between the HeNB and the SeGW.
  • the HeNB only gets an IP address assigned to it by the fixed network.
  • the solution for determining the fixed network link may be:
  • the HeNB is powered on, and there is IKEv2 signaling interaction or no interaction between the HeNB and the SeGW, that is, this step is an optional step.
  • the HeNB only obtains an IP address assigned by the fixed network, and the IP address is also referred to herein as the outer IP address of the HeNB.
  • the UE After the UE accesses the EPC network through the HeNB, the UE sends the QoS policy (bearer setup request) to the HeNB GW/MME (or is initiated by the network side, or the UE initiates the request).
  • the HeNB GW or the MME sends the QoS policy to the HeNB, and the HeNB sends a resource reconfiguration request message (resource allocation) to the HeNB PF through the T2 interface for requesting the resource, and carries the QoS requested by the network side in the resource reconfiguration request message.
  • the resource also carries the outer IP address of the HeNB; the HeNB PF advertises to the BPCF through the S9* interface, and the BPCF finds the backhaul link where the HeNB is located according to the outer IP address, and checks whether the backhaul link where the HeNB is located can Provide the resources requested by the HeNB.
  • the BPCF feeds back a success message to the HeNB PF, and the HeNB PF feeds back the resource reconfiguration request (resource allocation) to the HeNB, and the HeNB accepts the service; if the backhaul link cannot provide The resource requested by the HeNB, the BPCF feeds back a failure message to the HeNB PF, and the HeNB PF feeds back the resource reconfiguration request failure response to the HeNB, and the HeNB rejects the service.
  • FIG. 8 and FIG. 9 show scenarios in which the network side initiates resource deactivation and modification requests.
  • the key ideas of FIG. 8 and FIG. 9 are the same as those of FIG. 6 and FIG. 7, except that the requested operation behavior is different.
  • Figure 6 and Figure 7 are Request resource allocation
  • Figure 8 and Figure 9 are requesting resource deactivation and modification.
  • the messages in step 804 and step 903 all carry the outer IP address of the HeNB in a specific cell manner.
  • the parameter information in the resource configuration request/response message is mapped or reversed by the 3GPP to BBF in the HeNB PF or BPCF. Mapping.
  • the HeNB is powered on, and there is IKEv2 signaling interaction or no interaction between the HeNB and the SeGW, that is, this step is an optional step.
  • the HeNB only obtains an IP address assigned by the fixed network, and the IP address is also referred to herein as the outer IP address of the HeNB.
  • the UE After the UE accesses the EPC network through the HeNB, the UE sends the QoS policy (bearer setup request) to the HeNB GW/MME (or is initiated by the network side, or the UE initiates the request).
  • the HeNB GW or the MME sends the QoS policy to the HeNB, and the HeNB sends a resource reconfiguration request message (resource allocation) to the HeNB PF through the T2 interface for requesting the resource, and carries the QoS requested by the network side in the resource reconfiguration request message.
  • the resource, resource reconfiguration request message does not carry the outer IP address.
  • the HeNB PF After receiving the resource reconfiguration request message, the HeNB PF takes the source address of the message body as the outer IP address, and advertises the requested QoS resource and the outer IP address to the BPCF through the S9* interface.
  • the outer IP address finds the backhaul link where the HeNB is located, and checks whether the backhaul link where the HeNB is located can provide resources requested by the HeNB.
  • the BPCF feeds back a success message to the HeNB PF, and the HeNB PF feeds back the resource reconfiguration request (resource allocation) to the HeNB, and the HeNB accepts the service; if the backhaul link cannot provide The resource requested by the HeNB, the BPCF feeds back a failure message to the HeNB PF, and the HeNB PF feeds back the resource reconfiguration request failure response to the HeNB, and the HeNB rejects the service.
  • FIG. 8 and FIG. 9 show scenarios in which the network side initiates resource deactivation and modification requests.
  • the key ideas of FIG. 8 and FIG. 9 are the same as those of FIG. 6 to FIG. 7, except that the requested operation behavior is different.
  • Figure 6 and Figure 7 Request resource allocation, Figure 8 and Figure 9 request resource deactivation and modification.
  • the message in step 804 and step 903 does not carry the outer IP address of the HeNB through the specific cell, but the HeNB PF uses the message source address of the message as the outer IP address after receiving the message.
  • the adopted parameters are also different. Therefore, the parameter information in the resource configuration request/response message is mapped or reversed by the 3GPP to BBF in the HeNB PF or BPCF. Mapping.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the scenario described in this embodiment is: NAT exists when the HeNB accesses, and an IPsec tunnel is required between the HeNB and the SeGW.
  • the SeGW allocates an IP address to the HeNB, and the address is used as an inner layer IP address for transmitting data and signaling by the HeNB.
  • the RG allocates an IP address of the private network to the HeNB.
  • the fixed network is assigned a IP address for the NAT converter (which can be acted upon by the RG), and the NAT converter/RG uses the IP address to translate the address of the data and signaling originating from the HeNB or destined for the HeNB, that is, the private address of the HeNB
  • the network address is translated into the address of the NAT converter/RG and the corresponding port number.
  • the address that the SeGW can perceive is the NAT translated address and port number.
  • the solution for determining the fixed network link may be:
  • a specific cell is set in the resource request message for carrying the outer IP address.
  • the HeNB is powered on, and during the process of the IKEv2 signaling interaction between the HeNB and the SeGW, and the IPsec tunnel is negotiated, the SeGW allocates an IP address to the HeNB, and the address is called an inner layer IP address, and the SeGW 4ba
  • the obtained translated NAT address and port number are sent to the HeNB.
  • the address and port number are called outer IP addresses. That is, in step 502 of FIG. 5, the SeGW carries the NAT translated address in the message sent to the HeNB. And port number (outer IP address;).
  • the HeNB accesses the EPC network through the HeNB, as shown in FIG. 6 and 7, if the network side has The QoS policy (bearer setup request) is sent to the HeNB GW/MME (or initiated by the network side, or the UE actively requests to initiate), and the HeNB GW/MME sends the QoS policy to the HeNB, and the HeNB sends the resource to the HeNB PF through the T2 interface.
  • the QoS policy bearer setup request
  • the HeNB GW/MME or initiated by the network side, or the UE actively requests to initiate
  • the HeNB GW/MME sends the QoS policy to the HeNB
  • the HeNB sends the resource to the HeNB PF through the T2 interface.
  • the configuration request message (resource allocation) is used to request the resource, and the QoS resource requested by the network side is carried in the resource source configuration request message, and the address and port number of the outer NAT translation are also carried (ie, the outer IP address;
  • the HeNB PF advertises the requested QoS resource and the translated NAT address and port number to the BPCF through the S9* interface, and the BPCF finds the backhaul link where the HeNB is located according to the NAT translated address and port number, and checks the HeNB. Whether the backhaul link is located to provide resources requested by the HeNB.
  • the BPCF feeds back a success message to the HeNB PF, and the HeNB PF feeds back the resource reconfiguration request (resource allocation) success response to the HeNB, and the HeNB accepts the service; if the backhaul link cannot provide The resource requested by the HeNB, the BPCF feeds back the failure message to the HeNB PF, and the HeNB PF feeds back the resource reconfiguration request failure response to the HeNB, and the HeNB rejects the service.
  • Figure 8 and Figure 9 show the scenario where the network side initiates resource deactivation and modification requests.
  • the key ideas in Figure 8 and Figure 9 are the same as those in Figure 6 to Figure 7, except that the requested operation behavior is different.
  • the resource allocation is requested, and in Figure 8 and Figure 9, the resource deactivation and modification are requested.
  • the messages of step 804 and step 903 both carry the NAT translated address and port number (ie, the outer IP address) in a specific cell manner.
  • the parameter information in the resource configuration request/response message is mapped or reversed by the 3GPP to BBF in the HeNB PF or BPCF. Mapping.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • NAT exists when the HeNB accesses, and there is no IPsec tunnel between the HeNB and the SeGW.
  • the RG acts as a NAT translator, and the fixed network allocates an IP address to it. Address.
  • the HeNB obtains a private network IP address assigned by the RG.
  • the NAT converter/RG uses the fixed IP address assigned by the fixed network to convert the address of the data and signaling originating from the HeNB or the HeNB, and converts the private network address of the HeNB into the address of the NAT converter/RG and the corresponding address.
  • the port number The address that can be perceived on the network side is the NAT translated address and port number.
  • the SeGW When the HeNB is powered on, there is an IKEv2 signaling interaction between the HeNB and the SeGW, but the SeGW does not allocate an IP address for the HeNB; or there is no IKEv2 negotiation between the HeNB and the SeGW. If there is IKEv2 interaction between the HeNB and the SeGW, the SeGW can send the NAT translated address and port number to He Feng.
  • the solution for determining the fixed network link may be:
  • Solution (A) Referring to FIG. 5 to FIG. 10, a feasible scenario of the solution is that there is an IKEv2 interaction between the HeNB and the SeGW, and the SeGW sends the NAT translated address and port number to the HeNB.
  • the HeNB is powered on, the HeNB obtains the NAT translated address and port number, and the outer IP address. In addition, the HeNB obtains a private network IP address assigned by the RG, and the HeNB uses the private network IP address.
  • the sent message and data are NAT converted after passing through the RG, and the IP address of the private network is converted into the public IP address of the NAT plus the corresponding port number.
  • the UE accesses the EPC network through the HeNB, if the QoS policy (bearer setup request) is sent to the HeNB GW/MME, the UE is initiated by the network side, or the UE initiates the request.
  • the HeNB GW/MME sends the QoS policy to the HeNB, and the HeNB sends a resource reconfiguration request message (resource allocation) to the HeNB PF to request the resource through the T2 interface, and carries the network side request in the resource source configuration request message.
  • the QoS resource also carries the address and port number of the outer NAT translation (ie, the outer IP address;); the HeNB PF advertises the requested QoS resource and the NAT translated address and port number to the BPCF through the S9* interface, BPCF Find the backhaul link where the HeNB is located according to the NAT translated address and port number, and check Whether the backhaul link where the HeNB is located can provide resources requested by the HeNB.
  • the address and port number of the outer NAT translation ie, the outer IP address;
  • the HeNB PF advertises the requested QoS resource and the NAT translated address and port number to the BPCF through the S9* interface, BPCF Find the backhaul link where the HeNB is located according to the NAT translated address and port number, and check Whether the backhaul link where the HeNB is located can provide resources requested by the HeNB.
  • the BPCF feeds back a success message to the HeNB PF, and the HeNB PF feeds back the resource reconfiguration request (resource allocation) success response to the HeNB, and the HeNB accepts the service; if the backhaul link cannot provide The resource requested by the HeNB, the BPCF feeds back the failure message to the HeNB PF, and the HeNB PF feeds back the resource reconfiguration request failure response to the HeNB, and the HeNB rejects the service.
  • Figure 8 and Figure 9 show the scenario where the network side initiates resource deactivation and modification requests.
  • the key ideas in Figure 8 and Figure 9 are the same as those in Figure 6 to Figure 7, except that the requested operation behavior is different.
  • the resource allocation is requested, and in Figure 8 and Figure 9, the resource deactivation and modification are requested.
  • the messages of step 804 and step 903 both carry the NAT translated address and port number (ie, the outer IP address) in a specific cell manner.
  • Solution (B) Referring to FIG. 5 to FIG. 10, a feasible scenario of the solution is that there is an IKEv2 interaction between the HeNB and the SeGW, and the SeGW sends the NAT translated address and port number to the HeNB.
  • the HeNB is powered on, and the HeNB obtains the private network IP address assigned by the RG, and all the signaling or data sent from the HeNB or sent by other network elements to the HeNB, and the IP address of the private network is converted into the public IP address of the NAT. Address plus corresponding port number.
  • the NAT translated IP address plus the corresponding port number is called the outer IP address.
  • the UE After the UE accesses the EPC network through the HeNB, the UE sends the QoS policy (bearer setup request) to the HeNB GW/MME (or is initiated by the network side, or the UE initiates the request).
  • the HeNB GW or the MME sends the QoS policy to the HeNB, and the HeNB sends a resource reconfiguration request message (resource allocation) to the HeNB PF through the T2 interface for requesting the resource, and carries the QoS requested by the network side in the resource reconfiguration request message.
  • the resource, resource reconfiguration request message does not carry the outer IP address.
  • the HeNB PF After receiving the resource reconfiguration request message, the HeNB PF takes the source address of the message body as the outer IP address, and advertises the requested QoS resource and the outer IP address to the BPCF through the S9* interface.
  • the outer layer The IP address finds the backhaul link where the HeNB is located, and checks whether the backhaul link where the HeNB is located can provide the resources requested by the HeNB.
  • the BPCF feeds back a success message to the HeNB PF, and the HeNB PF feeds back the resource reconfiguration request (resource allocation) to the HeNB, and the HeNB accepts the service; if the backhaul link cannot provide The resource requested by the HeNB, the BPCF feeds back a failure message to the HeNB PF, and the HeNB PF feeds back the resource reconfiguration request failure response to the HeNB, and the HeNB rejects the service.
  • Figure 8 and Figure 9 show the scenario where the network side initiates resource deactivation and modification requests.
  • the key ideas in Figure 8 and Figure 9 are the same as those in Figure 6 to Figure 7, except that the requested operation behavior is different.
  • the resource allocation is requested, and in Figure 8 and Figure 9, the resource deactivation and modification are requested.
  • the message in step 804 and step 903 does not carry the outer IP address of the HeNB through the specific cell, but the HeNB PF uses the message source address of the message as the outer IP address after receiving the message.
  • the adopted parameters are also different. Therefore, the parameter information in the resource configuration request/response message is mapped or reversed by the 3GPP to BBF in the HeNB PF or BPCF. Mapping.
  • Embodiment 5 Resource preemption
  • This embodiment is a specific example of establishing a bearer for a new service by preempting existing service resources in the HeNB system.
  • the service secondary admission control point can be set at the HeNB.
  • the HeNB can determine the resources of the existing service (such as CSG, ARP, etc.) to determine the resources of the existing service according to the resource status returned by the fixed network, thereby establishing/modifying the bearer for the new service. See Figure 10 for a detailed flowchart.
  • Embodiment 6 HeNB ID scheme
  • the HeNB carries the HeNB PF in addition to the request policy, and may also carry the outer IP address or the NAT translated IP address plus the port number in a specific cell manner;
  • the HeNB may also carry the fixed network user name of the HeNB, the identifier of the HeNB, or the fixed network to statically configure the HeNB.
  • the IP address, etc. as long as it can uniquely determine the identity of the fixed network link where the HeNB is located.
  • the information such as the address or the identifier of the fixed network link where the HeNB is located can be collectively referred to as the fixed network link identification information.
  • the above-mentioned fixed network is different from the IP address statically configured by the HeNB and the outer IP address.
  • the statically configured IP address is inherently unchanged by the HeNB during use, and is leased by the HeNB to the fixed network.
  • the outer IP address is dynamically allocated by the fixed network when the HeNB is powered on, and may be changed.
  • Embodiment 7 When the HeNB is powered on, the uplink network link identifier information is obtained.
  • the description is that when the terminal UE accesses the EPS through the HeNB, and the related QoS arrives at the HeNB, the HeNB requests the QoS resource from the HeNB PF while explicitly (in a specific cell manner). Or implicitly carrying the fixed network link identification information in the manner of carrying the source address of the message body itself.
  • the HeNB can be divided into the following two ways:
  • the HeNB After the HeNB receives the QoS policy from the EPS core network for the first time, the HeNB sends a resource reconfiguration request message to the HeNB PF through the T2 interface and carries the fixed network link identification information. After receiving the message, the HeNB PF establishes and H2 T2 session. After the HeNB receives the QoS policy from the EPS core network again, the HeNB requests the HeNB PF to allocate/modify/release resources through the T2 session that has been established on the T2 interface. Since the resource resource is requested to be allocated/modified/released through the T2 interface, the HeNB PF can conclude that the allocation/modification/release resource request is from the corresponding T2 session. The HeNB can determine the fixed network link identification information corresponding to the allocation/modification/release resource request.
  • Manner 2 Whenever the HeNB receives the QoS policy from the EPS core network, it can send a resource reconfiguration request message to the HeNB PF through the T2 interface and carry the fixed network link identification information therein, so that the HeNB PF can be used anyway.
  • the fixed network link identification information corresponding to the HeNB can be obtained.
  • Mode 3 When the HeNB is powered on, the HeNB registers with the HeNB PF.
  • the message that the HeNB registers with the HeNB PF carries the fixed network link identification information.
  • the registration process is the process of T2 session establishment. Therefore, the correspondence between the T2 session and the "fixed network link identification information" is established on both the HeNB and the HeNB PF.
  • the HeNB PF may request to allocate/modify/release resources through the T2 session and does not need to carry the fixed network link identification information, and the HeNB PF can determine, according to the corresponding T2 session, the HeNB from which the allocation/modification/release resource request is derived. And can determine the fixed network link identification information corresponding to the allocation/modification/release resource request.
  • the HeNB PF sends the resource allocation/modification/release request and the fixed network link identification information to the BPCF, the above three methods may also be adopted.
  • Embodiment 8 HeNB PF admission control (secondary admission control)
  • the embodiments 1 to 7 described above are implementations of admission control (secondary admission control) by the HeNB, that is, the HeNB acts as the admission control network element (secondary admission control), and receives the bearer from the EPS core network.
  • the HeNB After establishing/releasing/modifying/session management request, the HeNB requests admission control from the fixed network related network element through the HeNB PF. After the fixed network related network element performs admission control or delegate admission control and feeds back the decision, the HeNB makes a decision based on the feedback. A decision to satisfy the current business (eg, accepting the business, or rejecting the business, or preempting the original business resources, etc.).
  • the admission control (secondary admission control) function can be placed on the HeNB PF to implement service admission control.
  • the specific mechanism is as follows:
  • the HeNB reports the information about the admission control to the HeNB PF, and the related information of the admission control may include: user information, resource usage status information, HeNB level information, CSG list, and other information currently accessed by the HeNB.
  • the HeNB PF performs admission control according to the information about the admission control reported by the HeNB and the resource reconfiguration success/failure response or the fixed network resource usage status returned by the S9* session.
  • the control of the admission control (secondary admission control) is similar to the description of the HeNB admission control (secondary admission control) of FIGS. 6 to 9.
  • the HeNB PF feeds back the admission control decision (secondary admission control) result to the HeNB, and the HeNB completes the corresponding subsequent processing according to the decision result.
  • the operation of reporting the admission control related information to the HeNB PF may be performed in step 1202, or may be performed in step 1206.
  • the latest resource usage information on the current HeNB is usually reported in step 1206.
  • HNB GW is mandatory, HeNB GW is optional;
  • the function of the SGSN replaces the function of the MME
  • the signaling sent by the SGSN to the HNB is the RAB allocation request /Iu interface signaling.
  • FIG. 5 is a flowchart of powering on a home base station according to an embodiment of the present invention, where the process includes the following steps:
  • Step 501 The HeNB is powered on and connected to the fixed network.
  • the relevant network element of the fixed network directly assigns an address to the HeNB, which is used as the outer IP address of the HeNB external routing data;
  • the NAT converter (here, RG) allocates the IP address of the private network to the HeNB, and the relevant network element of the fixed network allocates an IP address to the NAT converter.
  • Step 502. The HeNB and the SeGW perform IKEv2 negotiation. According to the needs of the operator, the data between the HeNB and the SeGW can be protected by IPsec or without IPsec protection.
  • IPsec tunnel is established between the HeNB and the SeGW to ensure the security and integrity of the data during transmission.
  • the SeGW allocates an inner layer IP address to the HeNB, and carries the inner layer IP address to He Feng in response to the message addressed to the HeNB.
  • the HeNB and the SeGW only perform signaling interaction (or there is no IKEv2 signaling interaction between the HeNB and the SeGW), and the SeGW no longer allocates the inner layer IP address to the HeNB. Or, the SeGW and the fixed network device function are combined, and the SeGW and the fixed network device allocate the same IP address to the HeNB.
  • the SeGW may carry the sensed NAT translated address and port number to the HeNB in a message sent to the HeNB for use in subsequent operations.
  • FIG. 6 is a flow chart of successful admission in a control service admission process according to an embodiment of the present invention, and FIG. 6 illustrates a specific example in which a service is initiated and successfully accepted in a HeNB system.
  • the service admission control point is at the HeNB.
  • the HeNB performs service acceptance, it not only integrates the factors in the prior art (such as CSG, ARP, access mode, etc.), but also integrates the resource status of the fixed network.
  • the process shown in Figure 6 includes the following steps:
  • Step 601. The terminal has accessed the EPC system through the HeNB.
  • Step 602. The new service is initiated, and the initiation of the service may be initiated by the network side, or may be the service requested by the UE to the network side.
  • the related network element (the HeNB GW or the MME) of the EPS core network sends a bearer setup request/session management request message to the HeNB through the SI interface, and carries information such as the QoS policy.
  • Step 603. The HeNB sends a resource reconfiguration request (resource allocation) signaling to the HeNB PF through the T2 interface, and requests the resource from the fixed network.
  • resource reconfiguration request resource allocation
  • the HeNB when the HeNB sends resource request signaling to the HeNB PF, the HeNB may be in the resource.
  • the reconfiguration request message carries the outer IP address assigned by the fixed network, or carries the NAT-transformed IP address and port number that the HGW sends to the HeNB when the HeNB establishes an IPsec tunnel with the SeGW, or carries the outer layer of the static configuration of the HeNB.
  • IP address, or other identifier of the HeNB fixed network access name, static IP address, HeNB ID, etc.
  • the HeNB may not carry the IP address in the resource request message, but the source of the message body of the message. The address is implicitly carried to the recipient of the message.
  • Step 604. After receiving the resource request of the HeNB, the HeNB PF obtains an address (which may further include a port number) or other identifiers for the different identifier carrying manners in step 603, and sends the resource request message sent by the HeNB through the S9* interface.
  • the content of the request and the above obtained content are advertised to the BPCF.
  • the BPCF performs admission control or delegate admission control.
  • the so-called admission control means the BPCF can find the fixed network backhaul link where the HeNB is located through the received address (which may further include a port number) or other identifiers; the BPCF and the fixed network policy enforcement device check the fixed network where the HeNB is located Whether the backhaul link can provide the resources requested by the HeNB. If it can be provided, allocate resources and return a resource allocation success response to the PF through the S9* interface.
  • the so-called entrusted admission control means that: BPCF notifies the obtained information to another network element, performs the above operations, or BPCF negotiates with other network elements to perform the above operations.
  • Step 606 The BPCF returns a resource allocation success response to the PF through the S9* interface.
  • Step 607. The PF returns a resource reconfiguration success response to the HeNB through the T2* interface.
  • Step 608. The HeNB implements admission control for the service according to the successful response returned by the fixed network and other existing attributes of the service (such as ARP, CSG, etc.).
  • Step 609 The HeNB returns a bearer setup response/session management response to the EPS core network to notify the core network to successfully allocate resources for the service. Step 610. Related subsequent processing of the core network.
  • FIG. 7 is a flow chart of admission rejection in a control service admission process according to an embodiment of the present invention
  • FIG. 7 is a specific example of a service initiated and rejected in a HeNB system.
  • the service admission control point is at the HeNB.
  • the HeNB performs service acceptance, it not only integrates the factors in the prior art (such as CSG, ARP, access mode, etc.), but also integrates the resource status of the fixed network.
  • the process shown in Figure 7 includes the following steps:
  • Step 701. The terminal has accessed the EPC system through the HeNB.
  • Step 702. The new service is initiated, and the initiation of the service may be initiated by the network side, or may be the service requested by the UE to the network side.
  • the related network element (the HeNB GW or the MME) of the EPS core network sends a bearer setup request/session management request message to the HeNB through the SI interface, and carries information such as the QoS policy.
  • Step 703. The HeNB sends a resource reconfiguration request (allocation resource) signaling to the HeNB PF through the T2 interface, and requests the resource from the fixed network.
  • resource reconfiguration request allocation resource
  • the HeNB when transmitting the resource request signaling to the HeNB PF, may carry the outer IP address assigned by the fixed network in the resource reconfiguration request message, or carry the HeNB to send the HGW to the HeNB when establishing the IPsec tunnel with the SeGW.
  • the IP address and port number after the NAT is translated, or the IP address of the HeNB is statically configured, or carries other identifiers of the HeNB (fixed network access name, static IP address, HeNB ID, etc.); of course, the HeNB requests the resource.
  • the message may also not carry the IP address, but implicitly carry the source address of the message body of the message to the receiver of the message.
  • Step 704 After receiving the resource request of the HeNB, the HeNB PF obtains an address (which may further include a port number) or other identifiers for the different identifier carrying manners in step 703, and sends the resource request message sent by the HeNB through the S9* interface.
  • the content of the request and the above obtained content are advertised to the BPCF.
  • Step 705. the BPCF performs admission control or delegate admission control.
  • Acceptance The control means: the BPCF can find the fixed network backhaul link where the HeNB is located through the received address (which may further include a port number) or other identifiers; the BPCF and the fixed network policy enforcement device check the fixed network backhaul chain where the HeNB is located Whether the road can provide the resources requested by the HeNB. If available, allocate resources and return a resource allocation failure response to the PF through the S9* interface.
  • Step 706 The BPCF returns a resource allocation failure response to the PF through the S9* interface.
  • Step 707 The PF returns a resource reconfiguration failure response to the HeNB through the T2* interface.
  • Step 708 The HeNB refuses to accept the service according to the failure response returned by the fixed network.
  • Step 709 The HeNB returns a bearer setup response/session management response failure notification to the EPS core network.
  • Step 710 Relevant subsequent processing of the core network.
  • FIG. 8 is a flow chart of performing release in the control service admission process according to an embodiment of the present invention, and FIG. 8 is a specific example of resource deactivation in the HeNB system.
  • the process shown in Figure 8 includes the following steps:
  • Step 801. The terminal has accessed the EPC system through the HeNB.
  • Step 802. The bearer is deactivated, and the initiation of the operation may be initiated by the network side, or may be requested by the UE to the network side.
  • the related network element (the HeNB GW or the MME) of the EPS core network sends a bearer deactivation request message to the HeNB through the S1 interface, and carries information such as the QoS policy.
  • Step 803. The HeNB related mechanism deletes the bearer and releases the radio resource.
  • Step 804. The HeNB sends a resource reconfiguration request signaling (resource release) to the HeNB PF through the T2 interface.
  • the HeNB when transmitting the resource release request signaling to the HeNB PF, the HeNB may carry the outer layer IP address allocated by the fixed network in the resource release request message, or carry the HeNB to send the HGW to the HeNB when establishing the IPsec tunnel with the SeGW.
  • Step 805. After receiving the resource release request of the HeNB, the HeNB PF obtains an address (which may further include a port number) or other identifiers according to the different identifier carrying manners in step 804, and releases the resources sent by the HeNB through the S9* interface.
  • the content of the request message request and the obtained content obtained are advertised to the BPCF.
  • the BPCF performs admission control or delegate admission control.
  • the so-called admission control means the BPCF can find the fixed network backhaul link where the HeNB is located through the received address (which may further include a port number) or other identifiers; the BPCF and the fixed network policy enforcement device reconfigure the fixed network according to the signaling. Resources, and return a resource release response to the PF through the S9* interface.
  • Step 807. The BPCF returns a resource release response to the PF through the S9* interface.
  • Step 808 The PF returns a resource reconfiguration response to the HeNB through the T2* interface.
  • Step 809 The HeNB returns a bearer setup response/session management response to the EPS core network to notify the core network that the deactivation is successful.
  • Step 810 Relevant subsequent processing of the core network.
  • FIG. 9 is a flow chart of performing modification in a control service admission process according to an embodiment of the present invention
  • FIG. 9 is a specific example of bearer modification in a HeNB system.
  • the service admission control point is at the HeNB.
  • the HeNB performs bearer modification control, it not only considers factors in the prior art (such as CSG, ARP, access mode, etc.), but also integrates the resource status of the fixed network.
  • the process shown in Figure 9 includes the following steps:
  • Step 901. The terminal has accessed the EPC system through the HeNB.
  • Step 902. The bearer modification initiates, and the initiation of the service may be initiated by the network side, or may be requested by the UE to the network side.
  • the related network element (the HeNB GW or the MME) of the EPS core network sends a bearer modification request/session management request message to the HeNB through the S1 interface, and carries information such as a QoS policy.
  • Step 903. The HeNB sends a resource reconfiguration request signaling (resource modification) to the HeNB PF through the T2 interface.
  • the HeNB when transmitting the resource reconfiguration request signaling to the HeNB PF, may carry the outer IP address assigned by the fixed network in the resource reconfiguration request message, or carry the HeNB to send the EGW when establishing the IPsec tunnel with the SeGW.
  • the resource reconfiguration request message may also not carry the IP address, but implicitly carry the source address of the message body of the message to the receiver of the message.
  • Step 904. After receiving the resource reconfiguration request of the HeNB, the HeNB PF obtains an address (which may further include a port number) or other identifiers for the different identifier carrying manners in step 903, and uses the S9* interface to send the resources sent by the HeNB.
  • the content of the reconfiguration request message request and the obtained content are advertised to the BPCF and the fixed network policy enforcement device.
  • Step 905. the BPCF performs admission control or delegate admission control.
  • the so-called admission control means the BPCF can find the fixed network backhaul link where the HeNB is located through the received address (which may further include a port number) or other identifiers; the BPCF and the fixed network policy enforcement device check the fixed network where the HeNB is located Whether the backhaul link can accept the resource reconfiguration operation in the request.
  • the so-called entrusted admission control means that: BPCF notifies the obtained information to another network element, performs the above operations, or BPCF negotiates with other network elements to perform the above operations.
  • Step 906 The BPCF returns a resource reconfiguration success/failure response to the PF through the S9* interface.
  • Step 907. The PF returns a resource reconfiguration success/failure response to the HeNB through the T2* interface.
  • Step 908. The HeNB accepts/rejects the bearer modification according to the response returned by the fixed network.
  • Step 909 The HeNB returns a bearer setup response/session management response to the EPS core network.
  • Step 910 Relevant subsequent processing of the core network.
  • FIG. 10 is a flow chart of performing preemption in a control service admission process according to an embodiment of the present invention
  • FIG. 10 is a specific example of bearer establishment/modification in a HeNB system.
  • the service admission control point is at the HeNB.
  • the HeNB combines the factors in the prior art (such as CSG, ARP, etc.) according to the resource status returned by the fixed network, and decides to preempt the resources of the existing service, thereby establishing/modifying the bearer for the new service.
  • the process shown in Figure 10 includes the following steps:
  • Step 1001. The terminal has accessed the EPC system through the HeNB.
  • the bearer establishment/modification initiation may be initiated by the network side or may be requested by the UE to the network side.
  • the related network element (HeNB GW or MME) of the EPS core network sends a bearer setup/modification request/session management request message to the HeNB through the S1 interface, and carries information such as the QoS policy.
  • Step 1003. The HeNB sends resource reconfiguration signaling (resource allocation/release/modification) to the HeNB PF through the T2 interface.
  • the HeNB when the HeNB sends the resource reconfiguration request signaling to the HeNB PF, the HeNB may carry the outer IP address assigned by the fixed network in the resource reconfiguration request message, or carry the HeNB to send the SeGW when establishing the IPsec tunnel with the SeGW.
  • the resource reconfiguration request message may also not carry the IP address, but implicitly carry the source address of the message body of the message to the receiver of the message.
  • Step 1004 After receiving the resource reconfiguration request of the HeNB, the HeNB PF obtains an address (which may further include a port number) or other identifiers for the different identifier carrying manners in step 1003, and uses the S9* interface to send the resources sent by the HeNB. Reconfigure request message request content and get The above content is advertised to the BPCF and the fixed network policy enforcement device.
  • the BPCF performs admission control or delegate admission control.
  • the so-called admission control means the BPCF can find the fixed network backhaul link where the HeNB is located through the received address (which may further include a port number) or other identifiers; the BPCF and the fixed network policy enforcement device check the fixed network where the HeNB is located Whether the backhaul link can accept resource establishment/reconfiguration operations in the request. In practical applications, the fixed network may not be able to provide the resources required for the service request.
  • the so-called entrusted admission control means BPCF notifies the obtained information to some other network element, performs the above operations or BPCF negotiates with other network elements to perform the above operations.
  • Step 1006 The BPCF returns a resource reconfiguration response to the PF through the S9* interface, and may return the resource status of the fixed network to the PF.
  • Step 1007 The PF returns a resource reconfiguration response to the HeNB through the T2* interface, and may return the resource status of the fixed network to the HeNB.
  • Step 1008 The HeNB combines the factors in the prior art (such as CSG, ARP, etc.) according to the response returned by the fixed network, and decides to preempt the resources of the existing service, thereby establishing/modifying the bearer for the new service.
  • factors in the prior art such as CSG, ARP, etc.
  • Step 1009 Radio resource reconfiguration.
  • Step 1010 The HeNB informs the PF resource that the PF resource is preempted through the T2 interface.
  • Step 1011 The PF informs the BPCF resource that it is preempted through the S9* interface.
  • Step 1012. Fixed network reconfiguration resources.
  • Step 1013 The HeNB returns a bearer setup response/session management response to the EPS core network.
  • Step 1014 Relevant subsequent processing of the core network.
  • FIG. 11 is a flowchart of reporting fixed network link identification information according to an embodiment of the present invention, where the process includes the following steps:
  • Step 1101. The HeNB is powered on and connected to the fixed network.
  • the HeNB and the SeGW perform IKEv2 negotiation.
  • the specific description is shown in Figure 5.
  • Step 1102. The HeNB registers with the HeNB PF.
  • the HeNB registers with the HeNB PF in the message. Carry the fixed network link identification information and establish a T2 session at the same time.
  • Step 1103. Initiated by step 1102, an S9* session is established between the HeNB PF and the BPCF, and the HeNB PF transmits the fixed network link identification information to the BPCF.
  • Step 1104. The terminal has accessed the EPC system through the HeNB.
  • Step 1105. The new service is initiated, and the initiation of the service may be initiated by the network side, or may be the service requested by the UE to the network side.
  • the related network element (HeNB GW or MME) of the EPS core network sends a bearer setup/release/modification request/session management request message to the HeNB through the S1 interface, and carries information such as the QoS policy.
  • Step 1106 The HeNB sends a resource reconfiguration (allocation/modification/release) request signaling to the HeNB PF through the T2 session, where the signaling does not need to explicitly carry the fixed network link identification information. Based on the corresponding T2 session, the HeNB PF can determine the HeNB from which the allocation/modification/release resource request comes from, and can correspond the allocation/modification/release resource request to the appropriate S9* session.
  • a resource reconfiguration allocation/modification/release
  • Step 1107 The HeNB requests the resource (resource allocation/modification/release) from the BPCF through the S9* session, and the signaling does not need to carry the fixed network link identification information. Based on the corresponding S9* session, the BPCF can determine the HeNB to which the message belongs and the fixed network link identification information corresponding to the request message.
  • Step 1108 For specific subsequent processing, refer to the detailed steps of FIG. 6 to FIG. 10 for details.
  • FIG. 12 is a flow chart of a HeNB PF performing admission control function according to an embodiment of the present invention, where the process includes the following steps:
  • Step 1201. The HeNB is powered on and connected to the fixed network.
  • the HeNB and the SeGW perform IKEv2 negotiation.
  • the specific description is shown in Figure 5.
  • Step 1202. The HeNB registers with the HeNB PF.
  • the message that the HeNB registers with the HeNB PF carries the fixed network link identification information, and carries related information on the HeNB that can be used for admission control, and establishes a T2 session.
  • related information that can be used for admission control on the HeNB may include: user information currently accessing the HeNB, resource usage status information, HeNB level information, a CSG list, and other information.
  • Step 1202a The HeNB PF stores information related to admission control.
  • Step 1203. The S9* session is established between the HeNB PF and the BPCF by the step 1102, and the HeNB PF transmits the fixed network link identification information to the BPCF.
  • Step 1204. The terminal has accessed the EPC system through the HeNB.
  • Step 1205. The new service is initiated, and the initiation of the service may be initiated by the network side, or may be the service requested by the UE to the network side.
  • the related network element (HeNB GW or MME) of the EPS core network sends a bearer setup/release/modification request/session management request message to the HeNB through the S1 interface, and carries information such as the QoS policy.
  • Step 1206 The HeNB sends the QoS policy information from the EPS core network and the current latest resource usage information on the HeNB to the HeNB PF through the T2 session.
  • Step 1207 The HeNB requests resources (resource allocation/modification/release) from the BPCF through the S9* session.
  • Step 1208 The BPCF can find the fixed network backhaul link where the HeNB is located through the fixed network link identification information; the BPCF and the fixed network policy enforcement device check whether the fixed network backhaul link where the HeNB is located can accept the request operation.
  • Step 1209 The BPCF returns a resource reconfiguration success/failure response or a fixed network resource usage status to the HeNB PF through the S9* interface.
  • Step 1209a The HeNB PF performs secondary admission control according to the information about the admission control reported by the HeNB and the resource reconfiguration success/failure response or the fixed network resource usage status returned by the S9* session.
  • the operation of the admission control is similar to that in FIG. 6 to FIG. A description of admission control is done on the HeNB.
  • Step 1210 The HeNB PF feeds back the admission control decision result to the HeNB.
  • Step 1211 to step 1213 The HeNB completes the corresponding response according to the admission control decision result. Continued processing, see the detailed step descriptions of Figures 6-10.
  • the home base station/evolved home base station when the home base station/evolved home base station is connected, if there is an IPsec tunnel between the home base station/evolved home base station and the SeGW, a message for carrying the fixed network link identification information is set in the resource reconfiguration request.
  • a cell for carrying the fixed network link identification information is set in the resource reconfiguration request, or The IP address of the message body is used as the fixed network link identification information.
  • the operation ideas shown in FIG. 13 can be applied when the service admission control is implemented, and the operation ideas shown in FIG. 14 can also be applied.
  • FIG. 13 is a schematic diagram of a service admission control process according to an embodiment of the present invention, where the process includes the following steps:
  • Step 1310 The home base station/evolved home base station sends a resource reconfiguration request to the home base station/evolved home base station policy function entity.
  • Step 1320 The home base station/evolved home base station policy function entity requests admission control from the fixed network policy control function entity according to the received resource reconfiguration request.
  • Step 1330 After the fixed network policy control function entity performs the admission control or the delegation admission control, the decision is fed back to the home base station/evolved home base station.
  • Step 1340 The home base station/evolved home base station performs secondary admission control according to the decision.
  • the setting as shown in FIG. 15 can also be performed to support the operation shown in FIG.
  • FIG. 15 is a diagram of a service admission control system according to an embodiment of the present invention.
  • the system includes a connected resource reconfiguration request unit, an admission control request unit, an admission control unit, and a secondary admission control unit.
  • the resource reconfiguration requesting unit and the secondary admission control unit may be configured in the home base station/evolved home base station;
  • the admission control requesting unit may be configured in the home base station/evolved home base station policy function entity;
  • the admission control unit may be configured on the fixed network The policy control function entity.
  • the resource reconfiguration requesting unit can send a resource reconfiguration request to the admission control request unit; the admission control requesting unit can request admission control from the admission control unit according to the received resource reconfiguration request; the admission control unit can perform admission control or The admission control is delegated, and the decision is sent to the secondary admission control unit, and the secondary admission control unit performs the secondary admission control according to the received decision.
  • the home base station/evolved home base station accesses, there is or does not exist in the NAT, and the IPsec tunnel between the home base station/evolved home base station and the SeGW is mandatory; when the determining the fixed network link is implemented, the resource is The cell used to carry the outer IP address is set in the reconfiguration request.
  • the home base station/evolved home base station accesses, there is or does not exist NAT, and there is no IPsec tunnel between the home base station/evolved home base station and the SeGW; when implementing the determining the fixed network link, setting in the resource reconfiguration request
  • the cell carrying the outer IP address, or the fixed network backhaul network is located by the IP address of the message body itself.
  • the resource reconfiguration requesting unit when the resource reconfiguration requesting unit requests the resource reconfiguration, in addition to the policy carrying the request, the resource reconfiguration requesting unit further carries the fixed network link identification information that can uniquely determine the fixed network link where the home base station/evolved home base station is located. And the manner in which the resource reconfiguration requesting unit carries the fixed network link identifier information may be:
  • the fixed network link identification information After receiving the quality of service policy from the EPS core network for the first time or multiple times, the fixed network link identification information is reported.
  • Figure 14 is a schematic diagram of a service admission control flow according to another embodiment of the present invention, the process comprising the following steps:
  • Step 1410 The home base station/evolved home base station sends a resource reconfiguration request to the home base station/evolved home base station policy function entity and provides admission control related information.
  • Step 1420 The home base station/evolved home base station policy function entity requests admission control from the fixed network policy control function entity.
  • Step 1430 After the fixed network policy control function entity performs admission control or delegate admission control, and returns a decision to the home base station/evolved home base station policy function entity.
  • Step 1440 The home base station/evolved home base station policy function entity performs secondary admission control according to the admission control related information and the received feedback decision.
  • FIG. 15 is a diagram of a service admission control system according to an embodiment of the present invention.
  • the system includes a connected resource reconfiguration request unit, an admission control request unit, an admission control unit, and a secondary admission control unit.
  • the resource reconfiguration requesting unit may be configured in the home base station/evolved home base station;
  • the admission control request unit and the secondary admission control unit may be configured in the home base station/evolved home base station policy function entity;
  • the admission control unit may be configured on the fixed network The policy control function entity.
  • the resource reconfiguration requesting unit can send a resource reconfiguration request to the admission control request unit and provide admission control related information;
  • the admission control request unit can request admission control from the admission control unit;
  • the admission control unit can perform admission control or delegate admission Controlling, and then transmitting the decision to the secondary admission control unit;
  • the secondary admission control unit is capable of performing secondary admission control based on the admission control related information and the received feedback decision.
  • the home base station/evolved home base station accesses, there is or does not exist in the NAT, and the IPsec tunnel between the home base station/evolved home base station and the SeGW is mandatory; when the determining the fixed network link is implemented, the resource is The cell used to carry the outer IP address is set in the reconfiguration request.
  • the home base station/evolved home base station accesses, there is or does not exist NAT, and there is no IPsec tunnel between the home base station/evolved home base station and the SeGW; when implementing the determining the fixed network link, setting in the resource reconfiguration request
  • the cell carrying the outer IP address, or the fixed network backhaul network is located by the IP address of the message body itself.
  • the resource reconfiguration request unit when the resource reconfiguration requesting unit requests resource reconfiguration, in addition to carrying the requested policy, the resource reconfiguration request unit further carries a fixed network link capable of uniquely determining the home base station/evolved home base station. Fixed network link identification information. And the manner in which the resource reconfiguration requesting unit carries the fixed network link identifier information may be:
  • the fixed network link identification information After receiving the quality of service policy from the EPS core network for the first time or multiple times, the fixed network link identification information is reported.
  • the service admission control technology of the present invention can solve the problem of how to implement service admission management and resource management, and the total QoS requirement does not exceed the subscription fixed line of the home base station.
  • the QoS that can be provided improves the performance of the control service.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种业务接纳控制方法和系统,均可以由家庭基站/演进家庭基站向家庭基站/演进家庭基站策略功能实体发送资源重配置请求;所述家庭基站/演进家庭基站策略功能实体根据收到的资源重配置请求向固网策略控制功能实体请求接纳控制;所述固网策略控制功能实体执行接纳控制或委托接纳控制后,将决策反馈给所述家庭基站/演进家庭基站;家庭基站/演进家庭基站根据所述决策执行家庭基站/演进家庭基站上的接纳控制。本发明方法和系统均可解决具体如何实现业务接纳管理和资源管理的问题,使服务质量总需求不超过家庭基站接入的签约固网线路所能提供的服务质量,提高了控制业务接纳的性能。

Description

一种业务接纳控制方法和系统 技术领域
本发明涉及通信领域, 具体涉及一种业务接纳控制方法和系统。 背景技术
第三代合作伙伴计划 ( 3rd Generation Partnership Project, 3GPP ) 的演 进的分组系统( Evolved Packet System, EPS ) 由演进的通用地面无线接入 网 ( Evolved Universal Terrestrial Radio Access Network, E-UTRAN )、 移动 管理单元( Mobility Management Entity, MME )、服务网关( Serving Gateway, S-GW )、 分组数据网络网关(Packet Data Network Gateway, P-GW )、 归属 用户服务器(Home Subscriber Server, HSS )组成。 图 1是根据相关技术的 非漫游场景下的演进家庭基站( Home evolved NodeB, HeNB )接入 EPS的 架构示意图, 漫游场景 (家乡路由或者本地疏导) 下的 HeNB接入 EPS的 架构主要体现在 EPS网络上。
MME与 EUTRAN、 S-GW以及家庭基站网关( HeNB GW )相连接, 负责移动性管理、 非接入层信令的处理和用户移动管理上下文的管理等控 制面的相关工作; S-GW是与 E-UTRAN相连的接入网关设备,在 E-UTRAN 和 P-GW之间转发数据, 并且负责对寻呼等待数据进行緩存; P-GW则是 EPS与分组数据网络( Packet Data Network, PDN ) 网络的边界网关, 负责 PDN的接入及在 EPS与 PDN间转发数据等功能。
如果 EPS系统支持策略计费控制( Policy and Charging Control, PCC ), 则策略和计费规则功能( Policy and Charging Rules Function, PCRF )进行 策略和计费规则的制定; PCRF 通过接口 Rx和运营商网络协议( Internet Protocol, IP ) 业务网络中的应用功能(Application Function, AF )相连, 以获取业务信息, 用于生成 PCC策略的业务信息。 当 S-GW与 P-GW之间 的 S5接口采用 GTP协议时, P-GW中驻留了策略和计费执行功能( Policy and Charging Enforcement Function, PCEF ), PCRF与 P-GW间通过 Gx接口交 换信息, 负责发起承载的建立、 修改和释放, 保证业务数据的服务质量 ( Quality of Service, QoS ), 并进行计费控制。 当 S-GW与 P-GW的 S5接 口采用代理移动 IP ( Proxy Mobile IP, PMIP ) 时, S-GW中驻留承载绑定 和事件报告功能( Bearer Binding and Event Report Function, BBERF ), 并且 S-GW与 PCRF之间通过 Gxc接口交换信息, 由 BBERF负责发起承载的建 立、 修改和释放, 以保证业务数据的服务质量, 并由 PCEF进行计费控制。
另外, EPS支持 HeNB的接入。 HeNB是一种小型、 低功率的基站, 部 署在家庭及办公室等室内场所。闭合用户组( Closed Subscriber Group, CSG ) 是引入家庭基站后提出的新概念。 通常一个家庭或者一个企业内部的用户 组成一个闭合用户组, 这个闭合用户组用 CSG ID进行标识, 并且为这个闭 合用户组内用户服务的家庭基站具有相同的 CSG ID。 当一个闭合用户组只 由一个家庭基站服务时, 该闭合用户组也可以直接采用家庭基站标识(例 如, BS ID ) 来进行标识。 根据家庭基站管理者的意愿, CSG用户和 /或非 CSG用户可以区分不同的等级, 以便保证在优先级不同时所享受的业务优 先级、 服务质量业务类别都可以有所不同。 通过与运营商签约, 用户可以 接入到多个闭合用户组所对应的家庭基站, 例如, 用户的办公场所、 家庭 等; 因此引入了允许闭合用户组列表的概念, 这个列表保存在用户的终端 和网络侧的用户数据服务器中。
家庭基站的使用模式分为三种: 闭合模式、 混合模式和开放模式。 当 家庭基站是闭合模式时, 只有该家庭基站所属 CSG签约用户可以接入该基 站并享受基站提供的业务。 当家庭基站是开放模式时, 任何运营商签约用 户都可以接入该基站, 此时的家庭基站等同于宏基站使用。 当家庭基站是 混合模式时, 同样允许任何运营商签约用户或者漫游用户接入使用, 但是 要根据用户是否签约 CSG的信息区分不同的级别,如:签约该 CSG的用户 在使用混合型家庭基站时具有更高的业务优先级, 享受更好的服务质量和 业务类别。
当用户进行初始化接入时, 网络侧的用户数据服务器会把用户签约的 允许接入的闭合用户组发送到核心网的移动性管理实体。 核心网移动性管 理实体会利用收到的上述信息对 UE进行接入控制。如果 UE从未授权的闭 合模式家庭基站访问核心网, 那么核心网会拒绝该类用户的接入。
HeNB通常通过租用的固网线路接入 EPS的核心网, 如图 1所示。 为 了保障接入的安全, 核心网中引入安全网关(Security Gateway, SeGW )进 行屏蔽, HeNB与 SeGW之间的数据将采用 IPSec进行封装,在某些情况下, 根据运营商的实际部署的需要, HeNB与 SeGW之间的数据也可以不采用 IPSec保护。 HeNB可以通过直接连接到核心网的 MME和 S-GW, 也可以 再通过 HeNB GW连接到 MME和 S-GW, 即 HeNB GW是个可选网元。 同 时,为了实现对 HeNB进行管理,还引入了家庭基站管理系统( Home eNodeB Management System, HeMS ), 因为该网元与本发明关系不大, 故图中未示 出。
因为 HeNB接入到 EPC(evolved Packet Core, 演进的分组核心网)是经 过固网的链路 (在此或者称作 Backhual或者固网回程网) 的, 在固网链路 中, 可能存在 NAT ( Network Address Translation, 网络地址转换)操作, 也可能不存在 NAT操作。 所述的 NAT转换, 是一种将私有(保留 )地址转 化为合法 /共有 IP地址的转换技术, 即当存在 NAT转换时, HeNB获得的是 NAT转换器为其分配的私网 /私有 IP地址(例如: 192.168.1.10 ) , HeNB用 该地址作为源地址对外通信; 当消息经过 NAT后, 源地址被转化为公有地 址(例如: 212.10.37.22 )加端口号(例如 5050 )。 当从外部网络发往 HeNB 消息时 , 消息的目的地址和端口号是公有的地址和端口号, 即 NAT的地址 和端口号(例如 212.10.37.22和 5050 ); 等消息穿越 NAT, 目的地址换成私 网 /私有 IP地址(例如: 192.168.1.10 ) , 到达 HeNB。 所述 NAT转换器可以 由固网中的 RG ( Residence Gateway, 住宅网关)充当。
此夕卜 ,通用移动通信系统( Universal Mobile Telecommunications System,
UMTS ) 支持家庭基站 HNB ( Home NodeB ) 的接入。 图 2a是根据相关技 术的非漫游场景下的 HNB接入 UMTS的架构示意图, 漫游场景下的 HNB 接入 UMTS的架构示意与此类似, 在此不做累述。 图 2a中的架构与图 1的 架构类似,不同的是,使用服务通用分组无线业务支撑节点( Serving General Packet Radio Service Support Node, SGSN )代替了 S-GW, 使用网关通用分 组无线业务支持节点 ( Gateway General Packet Radio Service Supporting Node, GGSN )代替了 P-GW, 而且 HNB GW是个必选网元。 同样, HNB 又可以通过增强的 SGSN (即 S4-SGSN )接入到 EPC核心网, S4-SGSN与 S-GW之间通过 S4接口连接, 与 HSS通过 S6d/Gr接口连接, S4-SGSN的 同能同 HeNB场景下 MME的功能, 如图 2b。
由于 HeNB/HNB接入的固网线路的 QoS通常受到 HeNB/HNB的拥有 者与固网运营商的签约限制,因此,当 3GPP UE通过 HeNB/HNB接入 3GPP 核心网访问业务时, 所需的 QoS不能超过固网运营商所能提供的固网线路 的签约 QoS; 否则, UE访问业务的 QoS将得不到保障, 尤其是保障比特率 ( Guaranteed Bit Rate , GBR )的业务。 因此, 对于 3 GPP网络和固网而言, 必须有一套统一的管控机制来管控固网资源和业务的接纳。 如: 当有新的 业务发起时, 固网需要保证有足够的资源 /带宽来支持该业务, 如果固网不 能提供该资源 /带宽, 该业务就不能发起; 即使 3GPP能够提供足够的资源 / 带宽, 只要固网不能保证资源 /带宽, 该业务(特别是 GBR )还是得不到保 证。从而需要控制通过 HeNB/HNB接入的所有 UE业务访问的 QoS总需求, 使其不超过该 HeNB/HNB接入的固网线路签约的 QoS保障, 或者说, 能够 合理的管理固网资源、 能够对用户和业务做到合理的管控, 以保证授权建 立的 GBR业务能有足够的资源 /带宽。
在当前的研究进程中, 已经有一些架构性的初步方案, 如图 3 所示 ( HeNB情况;)。 互通网元 HeNB PF ( Policy Function, 策略功能实体 )设置 于 3GPP HeNB子系统 (由 SeGW、 HeNB GW以及其他网元, 比如 HeMS 等构成)和 BBF BPCF ( BroadBand Forum Policy Control Function, 宽带论 坛策略控制功能实体)之间, HeNB上电时通过 SeGW向 HeNB PF上报 IPsec 隧道信息, HeNB做接纳控制点的方案, 实现对业务接纳管理和资源管理。 图 4a和图 4b所示情况则与图 3类似。
上述方案中,需要改动 SeGW,使其支持新协议和新接口;并且在 HeNB 和 SeGW之间不建立 IPsec隧道时,现有方案无法实施。这导致控制业务接 纳的性能较差, 会明显降低业务访问的 QoS, 降低用户满意度。 发明内容
有鉴于此, 本发明的主要目的在于提供一种业务接纳控制方法和系统, 以提高控制业务接纳的性能。
为达到上述目的, 本发明的技术方案是这样实现的:
一种业务接纳控制方法, 包括: 家庭基站 /演进家庭基站向家庭基站 / 演进家庭基站策略功能实体发送资源重配置请求; 所述家庭基站 /演进家庭 基站策略功能实体根据收到的资源重配置请求向固网策略控制功能实体请 求接纳控制; 所述固网策略控制功能实体执行接纳控制或委托接纳控制后, 将决策反馈给所述家庭基站 /演进家庭基站; 家庭基站 /演进家庭基站根据所 述决策执行家庭基站 /演进家庭基站上的接纳控制。
其中,在家庭基站 /演进家庭基站向家庭基站 /演进家庭基站策略功能实 体请求资源重配置之前, 进一步接收到 EPC网络侧下发的策略信息; 所述资源重配置为以下一种: 资源请求、 资源释放、 资源修改; 所述家庭基站 /演进家庭基站策略功能实体向固网策略控制功能实体请 求接纳控制是通过 S9*接口向固网策略控制功能实体发送请求消息用于请 求接纳控制的;
所述固网策略控制功能实体将决策反馈给所述家庭基站 /演进家庭基站 的过程包括:固网策略控制功能实体将所述决策通过 S9*接口反馈给家庭基 站 /演进家庭基站策略功能实体, 家庭基站 /演进家庭基站策略功能实体将决 策反馈给家庭基站 /演进家庭基站。
所述家庭基站 /演进家庭基站执行家庭基站 /演进家庭基站上的接纳控 制, 是指执行以下操作中至少之一: 资源建立 /分配、 资源去活、 资源修改、 资源抢占。
其中, 所述的资源抢占包括: 当固网策略控制功能实体反馈回的决策 指示固网资源不足时, 家庭基站 /演进家庭基站根据当前接入用户的用户信 息、资源使用状况信息、家庭基站 /演进家庭基站等级信息、闭合用户组 CSG 列表在内的信息, 决定释放现有的承载资源, 接纳所请求的服务质量策略。
其中, 固网策略控制功能实体执行接纳控制或委托接纳控制之前, 进 一步从家庭基站 /演进家庭基站接收到固网链路标识信息; 家庭基站 /演进家 庭基站在请求资源重配置时, 携带固网链路标识信息; 家庭基站 /演进家庭 基站策略功能实体将所述固网链路标识信息发送给固网策略控制功能实 体。
其中, 家庭基站 /演进家庭基站携带所述固网链路标识信息的方式为: 家庭基站 /演进家庭基站在上电后上报所述固网链路标识信息; 或者, 家庭基站 /演进家庭基站在第一次或多次收到来自 EPS核心网的服务质 量策略后, 上报所述固网链路标识信息。
其中, 该方法进一步包括: 家庭基站 /演进家庭基站和安全网关 SeGW 之间存在 IPsec隧道时, 在资源重配置请求中设置特定信元, 用于携带固网 链路标识信息; 家庭基站 /演进家庭基站和 SeGW之间没有 IPsec隧道时, 在资源重配置请求中设置特定信元, 用于携带固网链路标识信息, 或者用 消息体本身的 IP地址作为固网链路标识信息。
其中, 该方法进一步包括: 存在 NAT时, SeGW把网络地址转换 NAT 转换后的地址和端口号通过家庭基站 /演进家庭基站和 SeGW之间的 IKEv2 交互信令发送给家庭基站 /演进家庭基站, 家庭基站 /演进家庭基站将该地址 和端口号发送给 HeNB/HNB策略功能实体 PF; 不存在 NAT时, 家庭基站 / 演进家庭基站直接把 SeGW为其分配的 IP地址携带给 HeNB/HNB策略功 能实体 PF。
其中, 所述固网链路标识信息包括以下至少之一: 外层 IP地址、 NAT 转换后的 IP地址加端口号、 家庭基站 /演进家庭基站的固网用户名、 家庭基 站 /演进家庭基站的标识、 固网为家庭基站 /演进家庭基站静态配置的 IP地 址以及能够唯一确定家庭基站 /演进家庭基站所在固网链路的标识。
一种业务接纳控制方法, 包括:
家庭基站 /演进家庭基站向家庭基站 /演进家庭基站策略功能实体发送 资源重配置请求并提供接纳控制相关信息;
家庭基站 /演进家庭基站策略功能实体向固网策略控制功能实体请求接 纳控制;
固网策略控制功能实体执行接纳控制或委托接纳控制后, 并将决策反 馈给所述家庭基站 /演进家庭基站策略功能实体;
家庭基站 /演进家庭基站策略功能实体根据所述接纳控制相关信息和收 到的反馈决策执行家庭基站 /演进家庭基站上的接纳控制。
其中, 家庭基站 /演进家庭基站接入时, 如果家庭基站 /演进家庭基站与 SeGW之间的存在 IPsec隧道, 则在资源重配置请求中设置用于携带固网链 路标识信息的信元;
家庭基站 /演进家庭基站接入时, 如果家庭基站 /演进家庭基站与 SeGW 之间没有 IPsec隧道,在资源重配置请求中设置用于携带固网链路标识信息 的信元, 或者, 用消息体本身的 IP地址作为固网链路标识信息。
其中, 家庭基站 /演进家庭基站策略功能实体执行家庭基站 /演进家庭基 站上的接纳控制是指家庭基站 /演进家庭基站策略功能实体为庭基站 /演进 家庭基站制定资源建立 /分配、 资源去活、 资源修改、 资源抢占的决策; 所述庭基站 /演进家庭基站策略功能实体执行家庭基站 /演进家庭基站 上的接纳控制后把所述决策发送给所述家庭基站 /演进家庭基站, 家庭基站 / 演进家庭基站按照决策进一步执行以下操作中至少之一: 资源建立 /分配、 资源去活、 资源修改、 资源抢占。
其中, 所述固网链路标识信息用于唯一确定家庭基站 /演进家庭基站所 在固网链路。
其中, 家庭基站 /演进家庭基站携带所述固网链路标识信息的方式为: 家庭基站 /演进家庭基站在上电后上报所述固网链路标识信息; 或者, 家庭基站 /演进家庭基站在第一次或多次收到来自 EPS核心网的服务质 量策略后, 上报所述固网链路标识信息。
一种业务接纳控制系统, 包括资源重配置请求单元、 接纳控制请求单 元、 接纳控制单元、 家庭基站 /演进家庭基站上的接纳控制单元; 其中, 所述资源重配置请求单元, 用于向接纳控制请求单元发送资源重配置 请求;
所述接纳控制请求单元, 用于根据收到的资源重配置请求向接纳控制 单元请求接纳控制;
所述接纳控制单元, 用于执行接纳控制或委托接纳控制, 再将决策发 送给接纳控制请求单元; 所述家庭基站 /演进家庭基站上的接纳控制单元, 用于根据收到的所述 决策执行家庭基站 /演进家庭基站上的接纳控制。
其中, 在请求资源重配置之前, 所述资源重配置请求单元进一步接收 到 EPC网络侧下发的策略信息;
所述资源重配置为以下一种: 资源请求、 资源释放、 资源修改; 所述接纳控制请求为 S9*接口会话消息;
所述接纳控制单元将决策发送给家庭基站 /演进家庭基站上的接纳控制 单元时, 用于: 将所述决策通过 S9*接口反馈给家庭基站 /演进家庭基站策 略功能实体, 家庭基站 /演进家庭基站策略功能实体将决策反馈给所述家庭 基站 /演进家庭基站上的接纳控制单元。
其中, 所述家庭基站 /演进家庭基站上的接纳控制, 是指执行以下操作 中至少之一: 资源建立 /分配、 资源去活、 资源修改、 资源抢占。
其中,所述家庭基站 /演进家庭基站上的接纳控制单元执行资源抢占时, 用于: 当所述决策指示固网资源不足时, 根据当前接入用户的用户信息、 资源使用状况信息、 家庭基站 /演进家庭基站等级信息、 CSG列表在内的信 息, 决定释放现有的承载资源, 接纳所请求的服务质量策略。
其中, 所述接纳控制单元执行接纳控制或委托接纳控制之前, 进一步 接收到固网链路标识信息; 所述资源重配置请求单元在请求资源重配置时, 携带固网链路标识信息; 所述接纳控制请求单元将所述固网链路标识信息 发送给所述接纳控制单元。
其中, 所述资源重配置请求单元携带所述固网链路标识信息时, 用于: 在上电后上报所述固网链路标识信息; 或者,
在第一次或多次收到来自 EPS核心网的服务质量策略后, 上报所述固 网链路标识信息。
其中, 所述资源重配置请求单元进一步用于: 家庭基站 /演进家庭基站和安全网关 SeGW之间存在 IPsec隧道时, 在 资源重配置请求中设置特定信元, 用于携带固网链路标识信息;
家庭基站 /演进家庭基站和 SeGW之间没有 IPsec隧道时, 在资源重配 置请求中设置特定信元, 用于携带固网链路标识信息, 或者用消息体本身 的 IP地址作为固网链路标识信息。
其中, 所述家庭基站 /演进家庭基站进一步用于:
存在 NAT时, 接收由 SeGW网络地址转换 NAT转换后的地址和端口 号,再通过与 SeGW之间的 IKEv2交互信令发送给 HeNB/HNB策略功能实 体 PF;
不存在 NAT时, 直接把 SeGW为其分配的 IP地址携带给 HeNB/HNB 策略功能实体 PF。
其中, 所述固网链路标识信息包括以下至少之一: 外层 IP地址、 NAT 转换后的 IP地址加端口号、 家庭基站 /演进家庭基站的固网用户名、 家庭基 站 /演进家庭基站的标识、 固网为家庭基站 /演进家庭基站静态配置的 IP地 址以及能够唯一确定家庭基站 /演进家庭基站所在固网链路的标识。
一种业务接纳控制系统, 包括资源重配置请求单元、 接纳控制请求单 元、 接纳控制单元、 家庭基站 /演进家庭基站上的接纳控制单元; 其中, 所述资源重配置请求单元, 用于向接纳控制请求单元发送资源重配置 请求并提供接纳控制相关信息;
所述接纳控制请求单元, 用于向接纳控制单元请求接纳控制; 所述接纳控制单元, 用于执行接纳控制或委托接纳控制, 再将决策发 送给家庭基站 /演进家庭基站上的接纳控制单元;
所述家庭基站 /演进家庭基站上的接纳控制单元, 用于根据所述接纳控 制相关信息和收到的反馈决策制定家庭基站 /演进家庭基站上的接纳控制决 來。 其中, 所述资源重配置请求单元设置于家庭基站 /演进家庭基站中; 所述接纳控制请求单元、 家庭基站 /演进家庭基站上的接纳控制单元设 置于家庭基站 /演进家庭基站策略功能实体中;
所述接纳控制单元设置于固网策略控制功能实体中。
其中, 家庭基站 /演进家庭基站接入时, 如果家庭基站 /演进家庭基站与
SeGW之间存在 IPsec隧道, 在资源重配置请求中设置用于携带固网链路的 标识的信元;
家庭基站 /演进家庭基站接入时, 如果家庭基站 /演进家庭基站与 SeGW 之间没有 IPsec隧道,在资源重配置请求中设置用于携带固网链路的标识的 信元, 或者, 用消息体本身的 IP地址作为固网链路的标识信息。
其中, 所述资源重配置请求单元请求资源重配置时, 除了携带请求的 策略以外, 进一步携带能够唯一确定家庭基站 /演进家庭基站所在固网链路 的固网链路标识信息。
其中, 所述资源重配置请求单元携带所述固网链路标识信息的方式为: 在上电后上报所述固网链路标识信息; 或者,
在第一次或多次收到来自 EPS核心网的服务质量策略后, 上报所述固 网链路标识信息。
本发明方法和系统均可解决具体如何实现业务接纳管理和资源管理的 问题,使 QoS总需求不超过家庭基站接入的签约固网线路所能提供的 QoS, 提高了控制业务接纳的性能。 附图说明
图 1为非漫游场景下的 HeNB接入 EPS的架构示意图;
图 2a为非漫游场景下的 HNB通过固网接入 UMTS的架构示意图一; 图 2b为非漫游场景下的 HNB通过固网接入 UMTS的架构示意图二 s; 图 3为 HeNB架构示意图; 图 4a为 HNB架构示意图一;
图 4b为 HNB架构示意图二;
图 5为本发明实施例的家庭基站上电流程图;
图 6为本发明实施例的控制业务接纳过程中接纳成功的流程图; 图 7为本发明实施例的控制业务接纳过程中接纳拒绝的流程图; 图 8为本发明实施例的控制业务接纳过程中执行释放的流程图; 图 9为本发明实施例的控制业务接纳过程中执行修改的流程图; 图 10为本发明实施例的控制业务接纳过程中执行抢占的流程图; 图 11为本发明实施例的上报固网链路标识信息的流程图;
图 12为本发明实施例的 HeNB PF执行接纳控制功能的流程图; 图 13为本发明一实施例的业务接纳控制流程简图;
图 14为本发明另一实施例的业务接纳控制流程简图;
图 15为本发明一实施例的业务接纳控制系统图。 具体实施方式
总体而言, 家庭基站 /演进家庭基站可以根据 EPC网络侧下发的策略信 息向家庭基站 /演进家庭基站策略功能实体请求资源重配置; 所述家庭基站 / 演进家庭基站策略功能实体根据收到的资源重配置请求向固网策略控制功 能实体请求接纳控制; 所述固网策略控制功能实体判断做接纳控制或者委 托接纳控制, 判断固网链路是否能够满足所述资源重配置请求的内容, 并 将决策给所述家庭基站 /演进家庭基站; 家庭基站 /演进家庭基站根据收到的 反馈结果做出家庭基站 /演进家庭基站上的接纳控制决策。
另外, 也可以由家庭基站 /演进家庭基站向家庭基站 /演进家庭基站策略 功能实体请求资源重配置并提供接纳控制相关信息; 家庭基站 /演进家庭基 站策略功能实体向固网策略控制功能实体请求接纳控制; 固网策略控制功 能实体做接纳控制或者委托接纳控制, 判断固网链路是否能够满足所述资 源重配置请求的内容, 并决策反馈给所述家庭基站 /演进家庭基站策略功能 实体; 家庭基站 /演进家庭基站策略功能实体根据所述接纳控制相关信息和 收到的判断结果做出家庭基站 /演进家庭基站上的接纳控制决策, 并将家庭 基站 /演进家庭基站上的接纳控制决策反馈给家庭基站 /演进家庭基站。
在实际应用中, 上述操作思路中的不同具体处理过程可以包括如下各 实施例。
需要说明的是: 以下实施例及流程图中, 存在两次接纳控制的操作, 第一次是在固网 BPCF 上执行的接纳控制或者委托接纳控制, 是固网的操 作。 第二次是在 HeNB或者 HeNB PF上执行的接纳控制, 是 HeNB系统的 操作。 为了区分, HeNB或者 HeNB PF上执行的接纳控制称作家庭基站 /演 进家庭基站上的接纳控制、 或称作二次接纳控制。
实施例一:
该实施例描述的场景是: HeNB接入时不存在 NAT,并且 HeNB和 SeGW 之间的 IPsec隧道是必选的。
需要说明的是, 不存在 NAT是指: 固网接入部分没有 RG, 或者 RG 起到桥接而非路由的功能。
在本实施例的场景下, SeGW为 HeNB分配了 IP地址, 该地址作为 HeNB发送数据和信令的内层 IP地址; 固网为 HeNB分配了 IP地址, 该 IP 地址作为 HeNB发送数据和信令的外层 IP地址。其中, 内层 IP地址和外层 IP地址存在对应关系。 因为外层 IP地址是固网为 HeNB分配的; 因此, 固 网可以根据该外层 IP地址断定 HeNB所在的固网回程网。
在本实施例的场景下, 确定固网链路的方案可以为:
( A )在资源重配置请求消息中设置特定信元, 用于携带外层 IP地址。 方案 (A )参见图 5至图 10。
首先, 参见图 5, HeNB 上电, 在 HeNB和 SeGW进行 IKEv2信令交 互, 协商建立 IPSec隧道的过程中 , HeNB用的是固网为其分配的 IP地址, 即外层 IP地址; 并在此过程中, SeGW为 HeNB分配了内层 IP地址。
之后, 参见图 6至图 7, UE通过 HeNB接入到 EPC网络后, 如果网络 侧有 QoS策略(承载建立请求 )下发至 HeNB GW/MME (或者由网络侧发 起,或者 UE主动请求发起), HeNB GW或 MME将 QoS策略下发给 HeNB, HeNB通过 T2接口向 HeNB PF发送资源重配置请求消息(资源分配)用 于请求资源, 并在该资源重配置请求消息中携带网络侧请求的 QoS资源, 还携带 HeNB的外层 IP地址; 再由 HeNB PF通过 S9*接口通告给 BPCF , BPCF根据该外层 IP地址找到该 HeNB所在的回程链路, 并检查该 HeNB 所在的回程链路是否可以提供 HeNB请求的资源。 如果该回程链路可以提 供 HeNB所请求的资源 , 则 BPCF向 HeNB PF反馈成功消息 , HeNB PF向 HeNB反馈资源重配置请求(资源分配)成功响应, HeNB接纳该业务; 如 果该回程链路不能提供 HeNB所请求的资源, 则 BPCF向 HeNB PF反馈失 败消息, HeNB PF向 HeNB反馈资源重配置请求失败响应, HeNB拒绝该 业务。
图 8和图 9展示了网络侧发起资源去活和修改请求的场景,图 8和图 9 的关键思路与图 6、 图 7相同, 只是请求的操作行为不同。 图 6和图 7中是 请求资源分配, 图 8和图 9中是请求资源去活和修改。 步驟 804和步驟 903 中的消息均以特定信元的方式携带 HeNB的外层 IP地址。
其中, 因为 3GPP和 BBF描述业务的服务质量的方式不同, 采用的参 数也存在区别, 因此资源配置请求 /应答消息中的参数信息在 HeNB PF或者 BPCF进行了由 3GPP到 BBF的映射或者反向的映射。
实施例二:
该实施例描述的场景是: HeNB接入时不存在 NAT,并且 HeNB和 SeGW 之间没有 IPsec隧道。 在本实施例的场景下,在 HeNB上电时, HeNB和 SeGW之间有 IKEv2 信令交互,但 SeGW没有为 HeNB分配 IP地址; 或者 HeNB与 SeGW之间 没有 IKEv2协商。 HeNB仅仅得到了固网为其分配的一个 IP地址。
在本实施例的场景下, 确定固网链路的方案可以为:
( A )在资源重配置请求消息中设置特定信元, 用于携带外层 IP地址; ( B )用消息体本身的 IP地址定位固网回程网。
方案 (A )参见图 5至图 10。
首先, 参见图 5, HeNB 上电, 在 HeNB和 SeGW之间有 IKEv2信令 交互或者没有交互, 即本步驟为可选步驟。 HeNB仅仅得到了固网为其分配 的一个 IP地址, 该 IP地址在此也称为 HeNB的外层 IP地址。
之后, 参见图 6至图 7, UE通过 HeNB接入到 EPC网络后, 如果网络 侧有 QoS策略(承载建立请求 )下发至 HeNB GW/MME (或者由网络侧发 起,或者 UE主动请求发起), HeNB GW或 MME将 QoS策略下发给 HeNB, HeNB通过 T2接口向 HeNB PF发送资源重配置请求消息 (资源分配)用 于请求资源, 并在该资源重配置请求消息中携带网络侧请求的 QoS资源, 还携带 HeNB的外层 IP地址; 再由 HeNB PF通过 S9*接口通告给 BPCF , BPCF根据该外层 IP地址找到该 HeNB所在的回程链路, 并检查该 HeNB 所在的回程链路是否可以提供 HeNB请求的资源。 如果该回程链路可以提 供 HeNB所请求的资源 , 则 BPCF向 HeNB PF反馈成功消息 , HeNB PF向 HeNB反馈资源重配置请求(资源分配)成功响应, HeNB接纳该业务; 如 果该回程链路不能提供 HeNB所请求的资源, 则 BPCF向 HeNB PF反馈失 败消息, HeNB PF向 HeNB反馈资源重配置请求失败响应, HeNB拒绝该 业务。
图 8和图 9展示了网络侧发起资源去活和修改请求的场景,图 8和图 9 的关键思路与图 6、 图 7相同, 只是请求的操作行为不同。 图 6和图 7中是 请求资源分配, 图 8和图 9中是请求资源去活和修改。 步驟 804和步驟 903 中的消息均以特定信元的方式携带 HeNB的外层 IP地址。
其中, 因为 3GPP和 BBF描述业务的服务质量的方式不同, 采用的参 数也存在区别,因此资源配置请求 /应答消息中的参数信息在 HeNB PF或者 BPCF进行了由 3GPP到 BBF的映射或者反向的映射。
方案 (B )参见图 5至图 10。
首先, 参见图 5, HeNB 上电, 在 HeNB和 SeGW之间有 IKEv2信令 交互或者没有交互, 即本步驟为可选步驟。 HeNB仅仅得到了固网为其分配 的一个 IP地址, 该 IP地址在此也称为 HeNB的外层 IP地址。
之后, 参见图 6至图 7, UE通过 HeNB接入到 EPC网络后, 如果网络 侧有 QoS策略(承载建立请求 )下发至 HeNB GW/MME (或者由网络侧发 起,或者 UE主动请求发起), HeNB GW或 MME将 QoS策略下发给 HeNB, HeNB通过 T2接口向 HeNB PF发送资源重配置请求消息(资源分配)用 于请求资源, 并在该资源重配置请求消息中携带网络侧请求的 QoS资源, 资源重配置请求消息中不携带外层 IP地址。 HeNB PF收到资源重配置请求 消息后, 把该消息体的源地址取出作为外层 IP地址, 并把请求的 QoS资源 和所述外层 IP地址通过 S9*接口通告给 BPCF, BPCF根据收到的所述外层 IP地址找到该 HeNB所在的回程链路, 并检查该 HeNB所在的回程链路是 否可以提供 HeNB请求的资源。 如果该回程链路可以提供 HeNB所请求的 资源, 则 BPCF向 HeNB PF反馈成功消息, HeNB PF向 HeNB反馈资源重 配置请求(资源分配)成功响应, HeNB接纳该业务; 如果该回程链路不能 提供 HeNB所请求的资源 , 则 BPCF向 HeNB PF反馈失败消息 , HeNB PF 向 HeNB反馈资源重配置请求失败响应 , HeNB拒绝该业务。
图 8和图 9展示了网络侧发起资源去活和修改请求的场景,图 8和图 9 的关键思路与图 6至图 7相同, 只是请求的操作行为不同。 图 6和图 7中 是请求资源分配, 图 8和图 9中是请求资源去活和修改。 步驟 804和步驟 903中的消息均没有通过特定信元携带 HeNB的外层 IP地址,而是由 HeNB PF在收到消息后把消息的消息体源地址作为外层 IP地址。
其中, 因为 3GPP和 BBF描述业务的服务质量的方式不同, 采用的参 数也存在区别, 因此资源配置请求 /应答消息中的参数信息在 HeNB PF或者 BPCF进行了由 3GPP到 BBF的映射或者反向的映射。
实施例三:
该实施例描述的场景是: HeNB接入时存在 NAT,并且 HeNB和 SeGW 之间必选 IPsec隧道。
在本实施例的场景下, SeGW为 HeNB分配了 IP地址, 该地址作为 HeNB发送数据和信令的内层 IP地址; RG为 HeNB分配私网的 IP地址。 固网为 NAT转换器(在此可以由 RG充当)分配了 IP地址, NAT转换器 /RG 利用该 IP地址将源自 HeNB或者发往 HeNB的数据和信令的地址进行转换, 即将 HeNB的私网地址转化为 NAT转换器 /RG的地址及对应的端口号。 在 SeGW可以感知到的地址是 NAT转换后的地址和端口号。
在本实施例的场景下, 确定固网链路的方案可以为:
( A )在资源请求消息中设置特定信元, 用于携带外层 IP地址。
方案 (A )参见图 5至图 10。
首先, 参见图 5, HeNB 上电, 在 HeNB与 SeGW进行 IKEv2信令交 互、 协商建立 IPsec隧道的过程中 , SeGW为 HeNB分配的一个 IP地址, 该地址称作内层 IP地址, 而且 SeGW 4巴获取的 NAT转换后的地址和端口 号发送给 HeNB, 该地址和端口号称作外层 IP地址, 即在图 5的步驟 502 中, SeGW在发送给 HeNB的消息中携带了 NAT转换后的地址和端口号(外 层 IP地址;)。
之后, 如图 6和 7, UE通过 HeNB接入到 EPC网络后, 如果网络侧有 QoS策略(承载建立请求) 下发至 HeNB GW/MME (或者由网络侧发起, 或者 UE主动请求发起), HeNB GW/MME将 QoS策略下发给 HeNB, HeNB 通过 T2接口向 HeNB PF发送资源重配置请求消息 (资源分配 )用于请求 资源, 并在该资重源配置请求消息中携带网络侧请求的 QoS资源, 还携带 外层 NAT转换后的地址和端口号(即: 外层 IP地址;); HeNB PF将请求的 QoS资源及 NAT转换后的地址和端口号通过 S9*接口通告给 BPCF, BPCF 根据该 NAT转换后的地址和端口号找到该 HeNB所在的回程链路, 并检查 该 HeNB所在的回程链路是否可以提供 HeNB请求的资源。 如果该回程链 路可以提供 HeNB所请求的资源,则 BPCF向 HeNB PF反馈成功消息, HeNB PF向 HeNB反馈资源重配置请求(资源分配 )成功响应, HeNB接纳该业 务; 如果该回程链路不能提供 HeNB所请求的资源, 则 BPCF向 HeNB PF 反馈失败消息, HeNB PF向 HeNB反馈资源重配置请求失败响应, HeNB 拒绝该业务。
图 8和图 9展示了网络侧发起资源去活和修改请求的场景,图 8和图 9 的关键思路与图 6至图 7相同, 只是请求的操作行为不同。 图 6和图 7中 是请求资源分配, 图 8和图 9中是请求资源去活和修改。 步驟 804和步驟 903的消息均以特定信元的方式携带了 NAT转换后的地址和端口号 (即: 外层 IP地址 )。
其中, 因为 3GPP和 BBF描述业务的服务质量的方式不同, 采用的参 数也存在区别,因此资源配置请求 /应答消息中的参数信息在 HeNB PF或者 BPCF进行了由 3GPP到 BBF的映射或者反向的映射。
实施例四:
该实施例描述的场景是: HeNB接入时存在 NAT,并且 HeNB和 SeGW 之间没有 IPsec隧道。
在本实施例的场景下, RG作为 NAT转换器, 固网为其分配一个 IP地 址。 HeNB得到一个 RG为其分配的私网 IP地址。 NAT转换器 /RG利用固 网为其分配的 IP地址将源自 HeNB或者发往 HeNB的数据和信令的地址进 行转换, 即将 HeNB的私网地址转化为 NAT转换器 /RG的地址及对应的端 口号。在网络侧可以感知到的地址是 NAT转换后的地址和端口号。在 HeNB 上电时, HeNB和 SeGW之间有 IKEv2信令交互, 但 SeGW没有为 HeNB 分配 IP地址; 或者 HeNB与 SeGW之间没有 IKEv2协商。 如果 HeNB和 SeGW之间有 IKEv2交互, SeGW就可以把 NAT转换后的地址和端口号发 送给 He鳳
在本实施例的场景下, 确定固网链路的方案可以为:
( A )在资源请求消息中设置特定信元, 用于携带外层 IP地址; ( B )用消息体本身的 IP地址定位固网回程网。
方案 (A )参见图 5至图 10, 该方案可行的场景是 HeNB和 SeGW之 间有 IKEv2交互 ,并且 SeGW把 NAT转换后的地址和端口号发送给 HeNB。
首先, HeNB 上电, HeNB获得 NAT转换后的地址和端口号, 及外层 IP地址; 除此之外, HeNB得到了 RG为其分配的一个私网 IP地址, HeNB 用该私网 IP地址外发的消息和数据在经过 RG后被执行了 NAT转换,私网 的 IP地址被转换为 NAT的公网 IP地址加对应端口号。
之后, 如图 6和图 7, UE通过 HeNB接入到 EPC网络后, 如果网络侧 有 QoS策略(承载建立请求 )下发至 HeNB GW/MME (或者由网络侧发起, 或者 UE主动请求发起), HeNB GW/MME将 QoS策略下发给 HeNB, HeNB 通过 T2接口向 HeNB PF发送资源重配置请求消息 (资源分配 )用于请求 资源, 并在该资重源配置请求消息中携带网络侧请求的 QoS资源, 还携带 外层 NAT转换后的地址和端口号(即: 外层 IP地址;); HeNB PF将请求的 QoS资源及 NAT转换后的地址和端口号通过 S9*接口通告给 BPCF, BPCF 根据该 NAT转换后的地址和端口号找到该 HeNB所在的回程链路, 并检查 该 HeNB所在的回程链路是否可以提供 HeNB请求的资源。 如果该回程链 路可以提供 HeNB所请求的资源,则 BPCF向 HeNB PF反馈成功消息, HeNB PF向 HeNB反馈资源重配置请求(资源分配 )成功响应, HeNB接纳该业 务; 如果该回程链路不能提供 HeNB所请求的资源, 则 BPCF向 HeNB PF 反馈失败消息, HeNB PF向 HeNB反馈资源重配置请求失败响应, HeNB 拒绝该业务。
图 8和图 9展示了网络侧发起资源去活和修改请求的场景,图 8和图 9 的关键思路与图 6至图 7相同, 只是请求的操作行为不同。 图 6和图 7中 是请求资源分配, 图 8和图 9中是请求资源去活和修改。 步驟 804和步驟 903的消息均以特定信元的方式携带了 NAT转换后的地址和端口号 (即: 外层 IP地址 )。
方案 (B )参见图 5至图 10, 该方案可行的场景是 HeNB和 SeGW之 间有 IKEv2交互 ,并且 SeGW把 NAT转换后的地址和端口号发送给 HeNB。
首先, HeNB 上电, HeNB获得 RG为其分配的私网 IP地址, 所有从 HeNB发出或者由其他网元发往 HeNB的信令或者数据, 其私网的 IP地址 被转换为 NAT的公网 IP地址加对应端口号。该 NAT转换后的 IP地址加对 应端口号称作外层 IP地址。
之后, 参见图 6至图 7, UE通过 HeNB接入到 EPC网络后, 如果网络 侧有 QoS策略(承载建立请求 )下发至 HeNB GW/MME (或者由网络侧发 起,或者 UE主动请求发起), HeNB GW或 MME将 QoS策略下发给 HeNB, HeNB通过 T2接口向 HeNB PF发送资源重配置请求消息(资源分配)用 于请求资源, 并在该资源重配置请求消息中携带网络侧请求的 QoS资源, 资源重配置请求消息中不携带外层 IP地址。 HeNB PF收到资源重配置请求 消息后, 把该消息体的源地址取出作为外层 IP地址, 并把请求的 QoS资源 和所述外层 IP地址通过 S9*接口通告给 BPCF, BPCF根据收到的所述外层 IP地址找到该 HeNB所在的回程链路, 并检查该 HeNB所在的回程链路是 否可以提供 HeNB请求的资源。 如果该回程链路可以提供 HeNB所请求的 资源, 则 BPCF向 HeNB PF反馈成功消息, HeNB PF向 HeNB反馈资源重 配置请求(资源分配)成功响应, HeNB接纳该业务; 如果该回程链路不能 提供 HeNB所请求的资源 , 则 BPCF向 HeNB PF反馈失败消息 , HeNB PF 向 HeNB反馈资源重配置请求失败响应 , HeNB拒绝该业务。
图 8和图 9展示了网络侧发起资源去活和修改请求的场景,图 8和图 9 的关键思路与图 6至图 7相同, 只是请求的操作行为不同。 图 6和图 7中 是请求资源分配, 图 8和图 9中是请求资源去活和修改。 步驟 804和步驟 903中的消息均没有通过特定信元携带 HeNB的外层 IP地址,而是由 HeNB PF在收到消息后把消息的消息体源地址作为外层 IP地址。
其中, 因为 3GPP和 BBF描述业务的服务质量的方式不同, 采用的参 数也存在区别, 因此资源配置请求 /应答消息中的参数信息在 HeNB PF或者 BPCF进行了由 3GPP到 BBF的映射或者反向的映射。
实施例五: 资源抢占
本实施例是 HeNB 系统中, 通过抢占现有业务资源来为新业务建立承 载的具体实例。 业务二次接纳控制点可以设置在 HeNB。 HeNB在进行承载 建立 /修改控制时, 可以根据固网返回的资源状况, 综合现有技术中的因素 (比如 CSG, ARP等)决定抢占现有业务的资源, 从而为新业务建立 /修改 承载。 具体流程图参见图 10。
实施例六: HeNB ID的方案
以上描述的实施例一至实施例五中 , HeNB带给 HeNB PF的除了请求 的策略,还有可能是以特定信元的方式携带了外层 IP地址或者是 NAT转换 后的 IP地址加端口号; 除此之外, 对于上述的各种场景, HeNB还可以携 带该 HeNB 的固网用户名、 HeNB的标识、 或者固网为该 HeNB静态配置 的 IP地址等,只要能够唯一确定该 HeNB所在固网链路的标识即可。在此, 可以统称上述能够唯一确定 HeNB所在固网链路的地址或标识等信息为固 网链路标识信息。
上述的固网为 HeNB静态配置的 IP地址和所述的外层 IP地址的不同之 处在于: 静态配置的 IP地址是该 HeNB在使用期间固有不变的, 是 HeNB 向固网租用的。 根据前述内容, 外层 IP地址是 HeNB上电时固网为其动态 分配的, 可以变化。
实施例七: HeNB上电时就上 ^艮固网链路标识信息
上述实施例一至实施例六中, 描述的都是当终端 UE通过 HeNB接入 EPS之后,相关的 QoS到达 HeNB时, HeNB向 HeNB PF请求 QoS资源的 同时以显式(以特定信元方式携带)或者隐式(以消息体本身的源地址携 带) 的方式携带固网链路标识信息。 作为具体的实现方式可以分为以下两 种方式:
方式一: 当 HeNB第一次收到来自 EPS核心网的 QoS策略后, HeNB 通过 T2接口向 HeNB PF发送资源重配置请求消息并携带固网链路标识信 息, HeNB PF收到该消息后建立与 HeNB的 T2会话。 当该 HeNB再次收到 来自 EPS核心网的 QoS策略后, HeNB通过 T2接口已经建立的 T2会话向 HeNB PF请求分配 /修改 /释放资源。因为是通过 T2接口请求分配 /修改 /释放 资源资源, 所以不用再次携带所述的固网链路标识信息, HeNB PF根据来 自对应的 T2会话, 就能断定该分配 /修改 /释放资源请求所来自的 HeNB, 并能断定该分配 /修改 /释放资源请求对应的固网链路标识信息。
方式二: 无论何时, 当 HeNB收到来自 EPS核心网的 QoS策略后, 均 可通过 T2接口向 HeNB PF发送资源重配置请求消息并在其中携带固网链 路标识信息, 使 HeNB PF无论何时都能获知该 HeNB对应的固网链路标识 信息。 除了上述两种方式以外, 还可以应用另外一种特定的实现方式(方式 方式三: 当 HeNB上电, HeNB向 HeNB PF注册。 HeNB向 HeNB PF 注册的消息中携带了固网链路标识信息, 注册的过程就是 T2会话建立的过 程。 因此 HeNB和 HeNB PF上都建立了 T2会话和 "固网链路标识信息的 对应关系。 无论何时, 当 HeNB收到来自 EPS核心网的 QoS策略后, 可以 通过 T2会话向 HeNB PF请求分配 /修改 /释放资源并且不需要携带固网链 路标识信息, HeNB PF根据来自对应的 T2会话, 就能断定该分配 /修改 /释 放资源请求所来自的 HeNB, 并能断定该分配 /修改 /释放资源请求对应的固 网链路标识信息。
同样的 , HeNB PF在向 BPCF发送资源分配 /修改 /释放请求和固网链路 标识信息时, 也可以采用上述的三种方式。
实施例八: HeNB PF 故接纳控制 (二次接纳控制 )
以上实施例一至实施例七所描述的都是由 HeNB做接纳控制 (二次接 纳控制)的实现方案, 即 HeNB作为接纳控制网元(二次接纳控制), 当收 到来自 EPS 核心网的承载建立 /释放 /修改 /会话管理请求后, HeNB 通过 HeNB PF向固网相关网元请求接纳控制, 等固网相关网元做接纳控制或者 委托接纳控制并反馈回决策后, HeNB根据反馈的决策做出满足当前业务的 决定(如: 接纳该业务, 或拒绝该业务, 或抢占原业务资源等)。
作为另外一种实现方式, 可以将接纳控制 (二次接纳控制) 功能放到 HeNB PF上, 以实现业务接纳控制。 具体机制是: HeNB向 HeNB PF上报 接纳控制的相关信息, 所述接纳控制的相关信息可以包括: 当前接入该 HeNB的用户信息、 资源使用状况信息、 HeNB等级信息、 CSG列表以及其 他信息。 HeNB PF根据 HeNB上报的 接纳控制的相关信息和 S9*会话返回 的资源重配置成功 /失败响应或者固网资源使用状况进行接纳控制 (二次接 纳控制;), 进行接纳控制 (二次接纳控制) 的机制类似图 6至图 9的 HeNB 上故接纳控制 (二次接纳控制) 的相关描述。 HeNB PF向 HeNB反馈接纳 控制决策(二次接纳控制)结果, HeNB根据决策结果, 完成对应的后续处 理。
在图 12展示的具体实施流程中, 接纳控制相关信息上报到 HeNB PF 的操作可以在步驟 1202进行,也可以在步驟 1206进行。其中,在步驟 1206, 当前 HeNB上的最新的资源使用状况信息通常是必须上报的。
实施例九:
除了以上实施例描述的 HeNB的场景以外, 以上实施方案同样适用于 HNB的场景。
细微的不同之处主要在于:
名称区别: 所有与 HeNB有关的名词都改为 HNB;
HNB GW是必选的 , HeNB GW是可选的;
SGSN的功能替代了 MME的功能;
SGSN发送给 HNB的信令为 RAB分配请求 /Iu接口信令。
支持上述各实施例的具体流程如下所述。
参见图 5, 图 5为本发明实施例的家庭基站上电流程图, 该流程包括以 下步驟:
步驟 501. HeNB上电, 接入固网;
在没有 NAT转换的场景下, 即无 RG或者 RG作为桥接功能而非路由 功能时, 固网的相关网元直接为 HeNB分配地址, 该地址作为 HeNB对外 路由数据的外层 IP地址;在有 NAT的场景下, NAT转换器(在此即为 RG ) 为 HeNB分配私网的 IP地址 , 固网的相关网元为 NAT转换器分配了 IP地 址。
步驟 502. HeNB和 SeGW进行 IKEv2协商。 根据运营商的需求, HeNB和 SeGW之间的数据可以经过 IPsec保护, 也可以选择无 IPsec保护。
如果有 IPsec保护, HeNB和 SeGW之间建立 IPsec隧道, 以保证数据 在传输过程中的安全性和完整性。并在 IKEv2协商的过程中, SeGW为 HeNB 分配一个内层 IP地址,并在回应给 HeNB的消息中将该内层 IP地址携带给 He鳳
如果没有 IPsec保护, HeNB和 SeGW只进行信令交互(或者 HeNB和 SeGW之间根本无 IKEv2信令交互), SeGW不再为 HeNB分配内层 IP地 址。 或者认为 SeGW和固网设备功能融合, SeGW和固网设备为 HeNB分 配了同一个 IP地址。
在某些场景下, SeGW可以将感知到的 NAT转换后的地址和端口号在 发送给 HeNB的消息中携带给 HeNB , 以便在后续操作中使用。
参见图 6,图 6为本发明实施例的控制业务接纳过程中接纳成功的流程 图, 图 6描述了 HeNB系统中, 业务发起并成功被接纳的具体实例。 业务 接纳控制点在 HeNB。 HeNB在做业务接纳时, 除了现有技术中的因素(比 如 CSG、 ARP、 接入模式等), 还综合了所在固网的资源状况。 图 6所示流 程包括以下步驟:
步驟 601. 终端已经通过 HeNB接入到 EPC系统。
步驟 602. 新业务发起, 该业务的发起可能是网络侧主动发起, 也可能 是 UE向网络侧请求的业务。 EPS核心网的相关网元( HeNB GW或者 MME ) 通过 SI接口向 HeNB发送承载建立请求 /会话管理请求消息,并携带了 QoS 策略等信息。
步驟 603. HeNB通过 T2接口向 HeNB PF发送资源重配置请求(资源 分配)信令, 向固网请求资源。
不同场景下, HeNB在向 HeNB PF发送资源请求信令时, 可以在资源 重配置请求消息中携带固网为其分配的外层 IP地址, 或者携带 HeNB在与 SeGW建立 IPsec隧道时 SeGW发送给 HeNB的 NAT转换后的 IP地址和端 口号, 或者携带 HeNB静态配置的外层 IP地址, 或者携带 HeNB的其他标 识(固网接入名、 静态 IP地址、 HeNB ID等); 当然, HeNB在资源请求消 息中也可以不携带 IP地址, 而是把该消息的消息体的源地址隐式地携带给 消息的接收方。
步驟 604. HeNB PF在收到 HeNB的资源请求后, 针对步驟 603中的不 同的标识携带方式获取地址(可进一步包括端口号)或者其他标识, 并通 过 S9*接口把 HeNB发送来的资源请求消息请求的内容和获取的上述内容 通告给 BPCF。
步驟 605. 该步中, BPCF执行接纳控制或者委托接纳控制。 所谓接纳 控制是指: BPCF通过收到的所述地址(可进一步包括端口号)或者其他标 识能够找到该 HeNB所在的固网回程链路; BPCF以及固网策略执行设备检 验该 HeNB所在的固网回程链路是否能够提供该 HeNB所请求的资源。 如 果能够提供, 则分配资源, 并通过 S9*接口向 PF返回资源分配成功响应。 所谓委托接纳控制是指: BPCF将获取的信息通知到其他的某个网元, 执行 以上的操作或者是 BPCF与其他网元协商执行以上操作。
步驟 606. BPCF通过 S9*接口向 PF返回资源分配成功响应。
步驟 607. PF通过 T2*接口向 HeNB返回资源重配置成功响应。
步驟 608. HeNB根据固网返回的成功响应以及该业务的现有其他属性 (比如 ARP、 CSG等信息), 实施对该业务的接纳控制。
并在确定接纳该业务时,在 HeNB和 UE之间分配无线资源,并建立承 载。
步驟 609. HeNB向 EPS核心网返回承载建立响应 /会话管理响应, 以通 知核心网为该业务成功分配资源。 步驟 610. 核心网的相关后续处理。
参见图 7,图 7为本发明实施例的控制业务接纳过程中接纳拒绝的流程 图, 图 7描述了 HeNB系统中, 业务发起并被拒绝接纳的具体实例。 业务 接纳控制点在 HeNB。 HeNB在做业务接纳时, 除了现有技术中的因素(比 如 CSG、 ARP、 接入模式等), 还综合了所在固网的资源状况。 图 7所示流 程包括以下步驟:
步驟 701. 终端已经通过 HeNB接入到 EPC系统。
步驟 702. 新业务发起, 该业务的发起可能是网络侧主动发起, 也可能 是 UE向网络侧请求的业务。 EPS核心网的相关网元( HeNB GW或者 MME ) 通过 SI接口向 HeNB发送承载建立请求 /会话管理请求消息,并携带了 QoS 策略等信息。
步驟 703. HeNB通过 T2接口向 HeNB PF发送资源重配置请求(分配 资源)信令, 向固网请求资源。
不同场景下, HeNB在向 HeNB PF发送资源请求信令时, 可以在资源 重配置请求消息中携带固网为其分配的外层 IP地址, 或者携带 HeNB在与 SeGW建立 IPsec隧道时 SeGW发送给 HeNB的 NAT转换后的 IP地址和端 口号, 或者携带 HeNB静态配置的外层 IP地址, 或者携带 HeNB的其他标 识(固网接入名、 静态 IP地址、 HeNB ID等); 当然, HeNB在资源请求消 息中也可以不携带 IP地址, 而是把该消息的消息体的源地址隐式地携带给 消息的接收方。
步驟 704. HeNB PF在收到 HeNB的资源请求后, 针对步驟 703中的不 同的标识携带方式获取地址(可进一步包括端口号)或者其他标识, 并通 过 S9*接口把 HeNB发送来的资源请求消息请求的内容和获取的上述内容 通告给 BPCF。
步驟 705. 该步中, BPCF执行接纳控制或者委托接纳控制。 所谓接纳 控制是指: BPCF通过收到的所述地址(可进一步包括端口号)或者其他标 识能够找到该 HeNB所在的固网回程链路; BPCF以及固网策略执行设备检 验该 HeNB所在的固网回程链路是否能够提供该 HeNB所请求的资源。 如 果能够提供, 则分配资源, 并通过 S9*接口向 PF返回资源分配失败响应。 所谓委托接纳控制是指: BPCF将获取的信息通知到其他的某个网元, 执行 以上的操作或者是 BPCF与其他网元协商执行以上操作。
步驟 706. BPCF通过 S9*接口向 PF返回资源分配失败响应。
步驟 707. PF通过 T2*接口向 HeNB返回资源重配置失败响应。
步驟 708. HeNB根据固网返回的失败响应, 拒绝接纳该业务。
步驟 709. HeNB向 EPS核心网返回承载建立响应 /会话管理响应失败通 知。
步驟 710. 核心网的相关后续处理。
参见图 8,图 8为本发明实施例的控制业务接纳过程中执行释放的流程 图, 图 8描述了 HeNB系统中, 资源去激活的具体实例。 图 8所示流程包 括以下步驟:
步驟 801. 终端已经通过 HeNB接入到 EPC系统。
步驟 802. 承载去激活, 该操作的发起可能是网络侧主动发起, 也可能 是 UE向网络侧请求的。 EPS核心网的相关网元( HeNB GW或者 MME ) 通过 S1接口向 HeNB发送承载去激活请求消息, 并携带 QoS策略等信息。
步驟 803. HeNB相关机制, 删除承载并释放无线资源。
步驟 804. HeNB通过 T2接口向 HeNB PF发送资源重配置请求信令(资 源释放)。
不同场景下, HeNB 在向 HeNB PF发送资源释放请求信令时, 可以在 资源释放请求消息中携带固网为其分配的外层 IP地址, 或者携带 HeNB在 与 SeGW建立 IPsec隧道时 SeGW发送给 HeNB的 NAT转换后的 IP地址和 端口号, 或者携带 HeNB静态配置的外层 IP地址, 或者携带 HeNB的其他 标识(固网接入名、 静态 IP地址、 HeNB ID等); 当然, HeNB在资源请求 消息中也可以不携带 IP地址, 而是把该消息的消息体的源地址隐式地携带 给消息的接收方。
步驟 805. HeNB PF在收到 HeNB的资源释放请求后, 针对步驟 804中 的不同的标识携带方式获取地址(可进一步包括端口号)或者其他标识, 并通过 S9*接口把 HeNB发送来的资源释放请求消息请求的内容和获取的 上述内容通告给 BPCF。
步驟 806. 该步中, BPCF执行接纳控制或者委托接纳控制。 所谓接纳 控制是指: BPCF通过收到的所述地址(可进一步包括端口号)或者其他 标识能够找到该 HeNB所在的固网回程链路; BPCF以及固网策略执行设备 根据信令重配置固网资源, 并通过 S9*接口向 PF返回资源释放响应。 所谓 委托接纳控制是指: BPCF将获取的信息通知到其他的某个网元, 执行以上 的操作或者是 BPCF与其他网元协商执行以上操作。
步驟 807. BPCF通过 S9*接口向 PF返回资源释放响应。
步驟 808. PF通过 T2*接口向 HeNB返回资源重配置响应。
步驟 809. HeNB向 EPS核心网返回承载建立响应 /会话管理响应, 以通 知核心网 载去激活成功。
步驟 810. 核心网的相关后续处理。
参见图 9,图 9为本发明实施例的控制业务接纳过程中执行修改的流程 图,图 9描述了 HeNB系统中,承载修改具体实例。业务接纳控制点在 HeNB。 HeNB在进行承载修改控制时, 除了考虑现有技术中的因素 (比如 CSG、 ARP、 接入模式等), 还综合了所在固网的资源状况。 图 9所示流程包括以 下步驟:
步驟 901. 终端已经通过 HeNB接入到 EPC系统。 步驟 902. 承载修改发起, 该业务的发起可能是网络侧主动发起, 也可 能是 UE向网络侧请求的。 EPS核心网的相关网元( HeNB GW或者 MME ) 通过 S1接口向 HeNB发送承载修改请求 /会话管理请求消息, 并携带 QoS 策略等信息。
步驟 903. HeNB通过 T2接口向 HeNB PF发送资源重配置请求信令(资 源修改)。
不同场景下, HeNB在向 HeNB PF发送资源重配置请求信令时, 可以 在资源重配置请求消息中携带固网为其分配的外层 IP地址,或者携带 HeNB 在与 SeGW建立 IPsec隧道时 SeGW发送给 HeNB的 NAT转换后的 IP地址 和端口号, 或者携带 HeNB静态配置的外层 IP地址, 或者携带 HeNB的其 他标识(固网接入名、 静态 IP地址、 HeNB ID等); 当然, HeNB在资源重 配置请求消息中也可以不携带 IP地址, 而是把该消息的消息体的源地址隐 式地携带给消息的接收方。
步驟 904. HeNB PF在收到 HeNB的资源重配置请求后, 针对步驟 903 中的不同的标识携带方式获取地址(可进一步包括端口号)或者其他标识, 并通过 S9*接口把 HeNB发送来的资源重配置请求消息请求的内容和获取 的上述内容通告给 BPCF及固网策略执行设备。
步驟 905. 该步中, BPCF执行接纳控制或者委托接纳控制。 所谓接纳 控制是指: BPCF通过收到的所述地址(可进一步包括端口号)或者其他 标识能够找到该 HeNB所在的固网回程链路; BPCF以及固网策略执行设备 检验该 HeNB所在的固网回程链路是否能够接受请求中的资源重配置操作。 所谓委托接纳控制是指: BPCF将获取的信息通知到其他的某个网元, 执行 以上的操作或者是 BPCF与其他网元协商执行以上操作。
步驟 906. BPCF通过 S9*接口向 PF返回资源重配置成功 /失败响应。 步驟 907. PF通过 T2*接口向 HeNB返回资源重配置成功 /失败响应。 步驟 908. HeNB根据固网返回的响应, 接受 /拒绝承载修改。 步驟 909. HeNB向 EPS核心网返回承载建立响应 /会话管理响应。
步驟 910. 核心网的相关后续处理。
参见图 10,图 10为本发明实施例的控制业务接纳过程中执行抢占的流 程图, 图 10描述了 HeNB系统中, 承载建立 /修改具体实例。 业务接纳控制 点在 HeNB。HeNB在进行承载建立 /修改控制时,根据固网返回的资源状况, 综合现有技术中的因素 (比如 CSG、 ARP等), 决定抢占现有业务的资源, 从而为新业务建立 /修改承载。 图 10所示流程包括以下步驟:
步驟 1001. 终端已经通过 HeNB接入到 EPC系统。
步驟 1002. 承载建立 /修改发起,该业务的发起可能是网络侧主动发起, 也可能是 UE向网络侧请求的。 EPS核心网的相关网元(HeNB GW或者 MME )通过 S1接口向 HeNB发送承载建立 /修改请求 /会话管理请求消息, 并携带 QoS策略等信息。
步驟 1003. HeNB通过 T2接口向 HeNB PF发送资源重配置信令(资源 分配 /释放 /修改)。
不同场景下, HeNB 在向 HeNB PF发送资源重配置请求信令时, 可以 在资源重配置请求消息中携带固网为其分配的外层 IP地址,或者携带 HeNB 在与 SeGW建立 IPsec隧道时 SeGW发送给 HeNB的 NAT转换后的 IP地址 和端口号, 或者携带 HeNB静态配置的外层 IP地址, 或者携带 HeNB的其 他标识(固网接入名、 静态 IP地址、 HeNB ID等); 当然, HeNB在资源重 配置请求消息中也可以不携带 IP地址, 而是把该消息的消息体的源地址隐 式地携带给消息的接收方。
步驟 1004. HeNB PF在收到 HeNB的资源重配置请求后,针对步驟 1003 中的不同的标识携带方式获取地址(可进一步包括端口号)或者其他标识, 并通过 S9*接口把 HeNB发送来的资源重配置请求消息请求的内容和获取 的上述内容通告给 BPCF及固网策略执行设备。
步驟 1005. 该步中, BPCF执行接纳控制或者委托接纳控制。 所谓接纳 控制是指: BPCF通过收到的所述地址(可进一步包括端口号)或者其他 标识能够找到该 HeNB所在的固网回程链路; BPCF以及固网策略执行设备 检验该 HeNB所在的固网回程链路是否能够接受请求中的资源建立 /重配置 操作。 在实际应用中, 固网有可能不能提供该业务请求所需的资源。 所谓 委托接纳控制是指: BPCF将获取的信息通知到其他的某个网元, 执行以上 的操作或者是 BPCF与其他网元协商执行以上操作。
步驟 1006. BPCF通过 S9*接口向 PF返回资源重配置响应,并可能把固 网的资源状况返回给 PF。
步驟 1007. PF通过 T2*接口向 HeNB返回资源重配置响应, 并可能把 固网的资源状况返回给 HeNB。
步驟 1008. HeNB根据固网返回的响应, 综合现有技术中的因素(比如 CSG、 ARP等), 决定抢占现有业务的资源, 从而为新业务建立 /修改承载。
步驟 1009. 无线资源重配置。
步驟 1010. HeNB通过 T2接口, 通知 PF资源被抢占。
步驟 1011. PF通过 S9*接口, 通知 BPCF资源被抢占。
步驟 1012. 固网重配置资源。
步驟 1013. HeNB向 EPS核心网返回 载建立响应 /会话管理响应。 步驟 1014. 核心网的相关后续处理。
参见图 11 , 图 11为本发明实施例的上报固网链路标识信息的流程图, 该流程包括以下步驟:
步驟 1101. HeNB上电, 接入固网;
可选地, HeNB和 SeGW进行 IKEv2协商。 具体描述参加图 5。
步驟 1102. HeNB向 HeNB PF注册。 HeNB向 HeNB PF注册的消息中 携带了固网链路标识信息, 同时建立 T2会话。
步驟 1103. 受步驟 1102触发, HeNB PF和 BPCF之间建立 S9*会话, HeNB PF向 BPCF传递固网链路标识信息。
步驟 1104. 终端已经通过 HeNB接入到 EPC系统。
步驟 1105. 新业务发起, 该业务的发起可能是网络侧主动发起, 也可 能是 UE向网络侧请求的业务。 EPS核心网的相关网元(HeNB GW或者 MME )通过 S1接口向 HeNB发送承载建立 /释放 /修改请求 /会话管理请求消 息, 并携带 QoS策略等信息。
步驟 1106. HeNB通过 T2会话向 HeNB PF发送资源重配置(分配 /修改 /释放 )请求信令,该信令中不需要显式地携带固网链路标识信息。 HeNB PF 根据来自对应的 T2 会话, 就能断定该分配 /修改 /释放资源请求所来自的 HeNB, 并能将该分配 /修改 /释放资源请求对应到合适的 S9*会话上。
步驟 1107. HeNB通过 S9*会话向 BPCF请求资源 (资源分配 /修改 /释 放), 该信令中不需要携带固网链路标识信息。 BPCF根据来自对应的 S9* 会话,就能断定该消息所属的 HeNB, 以及该请求消息所对应的固网链路标 识信息。
步驟 1108. 具体的后续处理, 具体可以参见图 6至图 10的详细步驟描 述。
参见图 12, 图 12为本发明实施例的 HeNB PF执行接纳控制功能的流 程图, 该流程包括以下步驟:
步驟 1201. HeNB上电, 接入固网;
可选地, HeNB和 SeGW进行 IKEv2协商。 具体描述参加图 5。
步驟 1202. HeNB向 HeNB PF注册。 HeNB向 HeNB PF注册的消息中 携带固网链路标识信息, 并携带该 HeNB上的可以用于做接纳控制的相关 信息, 同时建立 T2会话。 需要注意的是, HeNB 上的可以用于进行接纳控制的相关信息可以包 括: 当前接入该 HeNB的用户信息、 资源使用状况信息、 HeNB等级信息、 CSG列表以及其他信息。
步驟 1202a. HeNB PF存储接纳控制的相关信息。
步驟 1203. 受步驟 1102触发, HeNB PF和 BPCF之间建立 S9*会话, HeNB PF向 BPCF传递固网链路标识信息。
步驟 1204. 终端已经通过 HeNB接入到 EPC系统。
步驟 1205. 新业务发起, 该业务的发起可能是网络侧主动发起, 也可 能是 UE向网络侧请求的业务。 EPS核心网的相关网元(HeNB GW或者 MME )通过 S1接口向 HeNB发送承载建立 /释放 /修改请求 /会话管理请求消 息, 并携带 QoS策略等信息。
步驟 1206. HeNB通过 T2会话向 HeNB PF发送来自 EPS核心网的 QoS 策略信息以及当前最新的 HeNB上资源使用状况信息。
步驟 1207. HeNB通过 S9*会话向 BPCF请求资源 (资源分配 /修改 /释 放)。
步驟 1208. BPCF通过固网链路标识信息能够找到该 HeNB所在的固网 回程链路; BPCF以及固网策略执行设备检验该 HeNB所在的固网回程链路 是否能够接受请求中操作。
步驟 1209. BPCF通过 S9*接口向 HeNB PF返回资源重配置成功 /失败 响应或者固网资源使用状况。
步驟 1209a. HeNB PF根据 HeNB上报的接纳控制的相关信息和 S9*会 话返回的资源重配置成功 /失败响应或者固网资源使用状况进行二次接纳控 制, 接纳控制的操作类似图 6至图 9中的 HeNB上做接纳控制的相关描述。
步驟 1210. HeNB PF向 HeNB反馈接纳控制决策结果。
步驟 1211至步驟 1213. HeNB根据接纳控制决策结果, 完成对应的后 续处理, 参见图 6至图 10的详细步驟描述。
需要说明的是, 家庭基站 /演进家庭基站接入时, 如果家庭基站 /演进家 庭基站与 SeGW之间的存在 IPsec隧道,则在资源重配置请求中设置用于携 带固网链路标识信息的信元; 当然, 家庭基站 /演进家庭基站接入时, 如果 家庭基站 /演进家庭基站与 SeGW之间没有 IPsec隧道, 在资源重配置请求 中设置用于携带固网链路标识信息的信元, 或者, 用消息体本身的 IP地址 作为固网链路标识信息。
结合以上各实施例及流程图可知, 在实现业务接纳控制时, 可以应用 图 13所示的操作思路, 同样也可以应用图 14所示的操作思路。
参见图 13 , 图 13为本发明一实施例的业务接纳控制流程简图, 该流程 包括以下步驟:
步驟 1310:家庭基站 /演进家庭基站向家庭基站 /演进家庭基站策略功能 实体发送资源重配置请求。
步驟 1320: 所述家庭基站 /演进家庭基站策略功能实体根据收到的资源 重配置请求向固网策略控制功能实体请求接纳控制。
步驟 1330: 所述固网策略控制功能实体执行接纳控制或委托接纳控制 后, 将决策反馈给所述家庭基站 /演进家庭基站。
步驟 1340: 家庭基站 /演进家庭基站根据所述决策执行二次接纳控制。 当然, 还可以进行如图 15所示的设置以支持图 13所示的操作。 参见 图 15, 图 15为本发明一实施例的业务接纳控制系统图, 针对图 13时该系 统包括相连的资源重配置请求单元、 接纳控制请求单元、 接纳控制单元、 二次接纳控制单元。 其中, 资源重配置请求单元、 二次接纳控制单元可以 设置于家庭基站 /演进家庭基站中; 接纳控制请求单元可以设置于家庭基站 / 演进家庭基站策略功能实体中; 接纳控制单元可以设置于固网策略控制功 能实体中。 具体应用时, 资源重配置请求单元能够向接纳控制请求单元发送资源 重配置请求; 接纳控制请求单元能够根据收到的资源重配置请求向接纳控 制单元请求接纳控制; 接纳控制单元可以执行接纳控制或委托接纳控制, 再将决策发送给二次接纳控制单元, 由二次接纳控制单元根据收到的所述 决策执行二次接纳控制。
可见, 家庭基站 /演进家庭基站接入时, 存在或不存在 NAT, 并且家庭 基站 /演进家庭基站与 SeGW之间的 IPsec隧道是必选的; 在实现所述判断 固网链路时, 在资源重配置请求中设置用于携带外层 IP地址的信元;
家庭基站 /演进家庭基站接入时, 存在或不存在 NAT, 并且家庭基站 / 演进家庭基站与 SeGW之间没有 IPsec隧道; 在实现所述判断固网链路时, 在资源重配置请求中设置用于携带外层 IP地址的信元, 或者, 用消息体本 身的 IP地址定位固网回程网。
再有, 所述资源重配置请求单元请求资源重配置时, 除了携带请求的 策略以外, 进一步携带能够唯一确定家庭基站 /演进家庭基站所在固网链路 的固网链路标识信息。 并且, 所述资源重配置请求单元携带所述固网链路 标识信息的方式可以为:
在上电后上报所述固网链路标识信息; 或者,
在第一次或多次收到来自 EPS核心网的服务质量策略后, 上报所述固 网链路标识信息。
参见图 14, 图 14为本发明另一实施例的业务接纳控制流程简图, 该流 程包括以下步驟:
步驟 1410:家庭基站 /演进家庭基站向家庭基站 /演进家庭基站策略功能 实体发送资源重配置请求并提供接纳控制相关信息。
步驟 1420: 家庭基站 /演进家庭基站策略功能实体向固网策略控制功能 实体请求接纳控制。 步驟 1430: 固网策略控制功能实体执行接纳控制或委托接纳控制后, 并将决策反馈给所述家庭基站 /演进家庭基站策略功能实体。
步驟 1440: 家庭基站 /演进家庭基站策略功能实体根据所述接纳控制相 关信息和收到的反馈决策执行二次接纳控制。
当然, 还可以进行如图 15所示的设置以支持图 14所示的操作。 参见 图 15, 图 15为本发明一实施例的业务接纳控制系统图, 针对图 14时该系 统包括相连的资源重配置请求单元、 接纳控制请求单元、 接纳控制单元、 二次接纳控制单元。 其中, 资源重配置请求单元可以设置于家庭基站 /演进 家庭基站中; 接纳控制请求单元、 二次接纳控制单元可以设置于家庭基站 / 演进家庭基站策略功能实体中; 接纳控制单元可以设置于固网策略控制功 能实体中。
具体应用时, 资源重配置请求单元能够向接纳控制请求单元发送资源 重配置请求并提供接纳控制相关信息; 接纳控制请求单元能够向接纳控制 单元请求接纳控制; 接纳控制单元可以执行接纳控制或委托接纳控制, 再 将决策发送给二次接纳控制单元; 二次接纳控制单元能够根据所述接纳控 制相关信息和收到的反馈决策执行二次接纳控制。
可见, 家庭基站 /演进家庭基站接入时, 存在或不存在 NAT, 并且家庭 基站 /演进家庭基站与 SeGW之间的 IPsec隧道是必选的; 在实现所述判断 固网链路时, 在资源重配置请求中设置用于携带外层 IP地址的信元;
家庭基站 /演进家庭基站接入时, 存在或不存在 NAT, 并且家庭基站 / 演进家庭基站与 SeGW之间没有 IPsec隧道; 在实现所述判断固网链路时, 在资源重配置请求中设置用于携带外层 IP地址的信元, 或者, 用消息体本 身的 IP地址定位固网回程网。
再有, 所述资源重配置请求单元请求资源重配置时, 除了携带请求的 策略以外, 进一步携带能够唯一确定家庭基站 /演进家庭基站所在固网链路 的固网链路标识信息。 并且, 所述资源重配置请求单元携带所述固网链路 标识信息的方式可以为:
在上电后上报所述固网链路标识信息; 或者,
在第一次或多次收到来自 EPS核心网的服务质量策略后, 上报所述固 网链路标识信息。
综上所述可见, 无论是方法还是系统, 本发明的业务接纳控制技术均 可解决具体如何实现业务接纳管理和资源管理的问题, 使 QoS总需求不超 过家庭基站接入的签约固网线路所能提供的 QoS, 提高了控制业务接纳的 性能。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种业务接纳控制方法, 包括:
家庭基站 /演进家庭基站向家庭基站 /演进家庭基站策略功能实体发送 资源重配置请求;
所述家庭基站 /演进家庭基站策略功能实体根据收到的资源重配置请求 向固网策略控制功能实体请求接纳控制;
所述固网策略控制功能实体执行接纳控制或委托接纳控制后, 将决策 反馈给所述家庭基站 /演进家庭基站;
家庭基站 /演进家庭基站根据所述决策执行家庭基站 /演进家庭基站上 的接纳控制。
2、 根据权利要求 1所述的方法, 其中,
在家庭基站 /演进家庭基站向家庭基站 /演进家庭基站策略功能实体请 求资源重配置之前, 进一步接收到 EPC网络侧下发的策略信息;
所述资源重配置为以下一种: 资源请求、 资源释放、 资源修改; 所述家庭基站 /演进家庭基站策略功能实体向固网策略控制功能实体请 求接纳控制是通过 S9*接口向固网策略控制功能实体发送请求消息用于请 求接纳控制的;
所述固网策略控制功能实体将决策反馈给所述家庭基站 /演进家庭基站 的过程包括:固网策略控制功能实体将所述决策通过 S9*接口反馈给家庭基 站 /演进家庭基站策略功能实体, 家庭基站 /演进家庭基站策略功能实体将决 策反馈给家庭基站 /演进家庭基站。
3、根据权利要求 1所述的方法, 其中, 所述家庭基站 /演进家庭基站执 行家庭基站 /演进家庭基站上的接纳控制, 是指执行以下操作中至少之一: 资源建立 /分配、 资源去活、 资源修改、 资源抢占。
4、 根据权利要求 3所述的方法, 其中, 所述的资源抢占包括: 当固网策略控制功能实体反馈回的决策指示固网资源不足时, 家庭基 站 /演进家庭基站根据当前接入用户的用户信息、 资源使用状况信息、 家庭 基站 /演进家庭基站等级信息、 闭合用户组 CSG列表在内的信息, 决定释放 现有的承载资源, 接纳所请求的服务质量策略。
5、 根据权利要求 1至 4任一项所述的方法, 其中,
固网策略控制功能实体执行接纳控制或委托接纳控制之前, 进一步从 家庭基站 /演进家庭基站接收到固网链路标识信息;
家庭基站 /演进家庭基站在请求资源重配置时,携带固网链路标识信息; 家庭基站 /演进家庭基站策略功能实体将所述固网链路标识信息发送给固网 策略控制功能实体。
6、根据权利要求 5所述的方法, 其中, 家庭基站 /演进家庭基站携带所 述固网链路标识信息的方式为:
家庭基站 /演进家庭基站在上电后上报所述固网链路标识信息; 或者, 家庭基站 /演进家庭基站在第一次或多次收到来自 EPS核心网的服务质 量策略后, 上报所述固网链路标识信息。
7、根据权利要求 1至 4任一项所述的方法,其中,该方法进一步包括: 家庭基站 /演进家庭基站和安全网关 SeGW之间存在 IPsec隧道时, 在 资源重配置请求中设置特定信元, 用于携带固网链路标识信息;
家庭基站 /演进家庭基站和 SeGW之间没有 IPsec隧道时, 在资源重配 置请求中设置特定信元, 用于携带固网链路标识信息, 或者用消息体本身 的 IP地址作为固网链路标识信息。
8、根据权利要求 1至 4任一项所述的方法,其中,该方法进一步包括: 存在 NAT时, SeGW把网络地址转换 NAT转换后的地址和端口号通过 家庭基站 /演进家庭基站和 SeGW之间的 IKEv2交互信令发送给家庭基站 / 演进家庭基站, 家庭基站 /演进家庭基站将该地址和端口号发送给 HeNB/HNB策略功能实体 PF;
不存在 NAT时, 家庭基站 /演进家庭基站直接把 SeGW为其分配的 IP 地址携带给 HeNB/HNB策略功能实体 PF。
9、 根据权利要求 1至 4任一项所述的方法, 其中,
所述固网链路标识信息包括以下至少之一: 外层 IP地址、 NAT转换后 的 IP 地址加端口号、 家庭基站 /演进家庭基站的固网用户名、 家庭基站 /演 进家庭基站的标识、 固网为家庭基站 /演进家庭基站静态配置的 IP地址以及 能够唯一确定家庭基站 /演进家庭基站所在固网链路的标识。
10、 一种业务接纳控制方法, 包括:
家庭基站 /演进家庭基站向家庭基站 /演进家庭基站策略功能实体发送 资源重配置请求并提供接纳控制相关信息;
家庭基站 /演进家庭基站策略功能实体向固网策略控制功能实体请求接 纳控制;
固网策略控制功能实体执行接纳控制或委托接纳控制后, 并将决策反 馈给所述家庭基站 /演进家庭基站策略功能实体;
家庭基站 /演进家庭基站策略功能实体根据所述接纳控制相关信息和收 到的反馈决策执行家庭基站 /演进家庭基站上的接纳控制。
11、 根据权利要求 10所述的方法, 其中,
家庭基站 /演进家庭基站接入时, 如果家庭基站 /演进家庭基站与 SeGW 之间的存在 IPsec隧道,则在资源重配置请求中设置用于携带固网链路标识 信息的信元;
家庭基站 /演进家庭基站接入时, 如果家庭基站 /演进家庭基站与 SeGW 之间没有 IPsec隧道,在资源重配置请求中设置用于携带固网链路标识信息 的信元, 或者, 用消息体本身的 IP地址作为固网链路标识信息。
12、 根据权利要求 11所述的方法, 其中, 家庭基站 /演进家庭基站策略 功能实体执行家庭基站 /演进家庭基站上的接纳控制是指家庭基站 /演进家 庭基站策略功能实体为庭基站 /演进家庭基站制定资源建立 /分配、 资源去 活、 资源修改、 资源抢占的决策;
所述庭基站 /演进家庭基站策略功能实体执行家庭基站 /演进家庭基站 上的接纳控制后把所述决策发送给所述家庭基站 /演进家庭基站, 家庭基站 / 演进家庭基站按照决策进一步执行以下操作中至少之一: 资源建立 /分配、 资源去活、 资源修改、 资源抢占。
13、 根据权利要求 11或 12所述的方法, 其中, 所述固网链路标识信 息用于唯一确定家庭基站 /演进家庭基站所在固网链路。
14、 根据权利要求 13所述的方法, 其中, 家庭基站 /演进家庭基站携带 所述固网链路标识信息的方式为:
家庭基站 /演进家庭基站在上电后上报所述固网链路标识信息; 或者, 家庭基站 /演进家庭基站在第一次或多次收到来自 EPS核心网的服务质 量策略后, 上报所述固网链路标识信息。
15、 一种业务接纳控制系统, 包括资源重配置请求单元、 接纳控制请 求单元、接纳控制单元、 家庭基站 /演进家庭基站上的接纳控制单元; 其中, 所述资源重配置请求单元, 用于向接纳控制请求单元发送资源重配置 请求;
所述接纳控制请求单元, 用于根据收到的资源重配置请求向接纳控制 单元请求接纳控制;
所述接纳控制单元, 用于执行接纳控制或委托接纳控制, 再将决策发 送给接纳控制请求单元;
所述家庭基站 /演进家庭基站上的接纳控制单元, 用于根据收到的所述 决策执行家庭基站 /演进家庭基站上的接纳控制。
16、 根据权利要求 15所述的系统, 其中, 在请求资源重配置之前, 所述资源重配置请求单元进一步接收到 EPC 网络侧下发的策略信息;
所述资源重配置为以下一种: 资源请求、 资源释放、 资源修改; 所述接纳控制请求为 S9*接口会话消息;
所述接纳控制单元将决策发送给家庭基站 /演进家庭基站上的接纳控制 单元时, 用于: 将所述决策通过 S9*接口反馈给家庭基站 /演进家庭基站策 略功能实体, 家庭基站 /演进家庭基站策略功能实体将决策反馈给所述家庭 基站 /演进家庭基站上的接纳控制单元。
17、 根据权利要求 15所述的系统, 其中, 所述家庭基站 /演进家庭基站 上的接纳控制, 是指执行以下操作中至少之一: 资源建立 /分配、 资源去活、 资源修改、 资源抢占。
18、 根据权利要求 17所述的系统, 其中, 所述家庭基站 /演进家庭基站 上的接纳控制单元执行资源抢占时, 用于:
当所述决策指示固网资源不足时, 根据当前接入用户的用户信息、 资 源使用状况信息、家庭基站 /演进家庭基站等级信息、 CSG列表在内的信息, 决定释放现有的承载资源, 接纳所请求的服务质量策略。
19、 根据权利要求 15至 18任一项所述的系统, 其中,
所述接纳控制单元执行接纳控制或委托接纳控制之前, 进一步接收到 固网链路标识信息;
所述资源重配置请求单元在请求资源重配置时, 携带固网链路标识信 息; 所述接纳控制请求单元将所述固网链路标识信息发送给所述接纳控制 单元。
20、 根据权利要求 19所述的系统, 其中, 所述资源重配置请求单元携 带所述固网链路标识信息时, 用于:
在上电后上报所述固网链路标识信息; 或者, 在第一次或多次收到来自 EPS核心网的服务质量策略后, 上报所述固 网链路标识信息。
21、 根据权利要求 15至 18任一项所述的系统, 其中, 所述资源重配 置请求单元进一步用于:
家庭基站 /演进家庭基站和安全网关 SeGW之间存在 IPsec隧道时, 在 资源重配置请求中设置特定信元, 用于携带固网链路标识信息;
家庭基站 /演进家庭基站和 SeGW之间没有 IPsec隧道时, 在资源重配 置请求中设置特定信元, 用于携带固网链路标识信息, 或者用消息体本身 的 IP地址作为固网链路标识信息。
22、 根据权利要求 16至 18任一项所述的系统, 其中, 所述家庭基站 / 演进家庭基站进一步用于:
存在 NAT时, 接收由 SeGW网络地址转换 NAT转换后的地址和端口 号,再通过与 SeGW之间的 IKEv2交互信令发送给 HeNB/HNB策略功能实 体 PF;
不存在 NAT时, 直接把 SeGW为其分配的 IP地址携带给 HeNB/HNB 策略功能实体 PF。
23、 根据权利要求 19所述的系统, 其中,
所述固网链路标识信息包括以下至少之一: 外层 IP地址、 NAT转换后 的 IP地址加端口号、 家庭基站 /演进家庭基站的固网用户名、 家庭基站 /演 进家庭基站的标识、 固网为家庭基站 /演进家庭基站静态配置的 IP地址以及 能够唯一确定家庭基站 /演进家庭基站所在固网链路的标识。
24、 一种业务接纳控制系统, 包括资源重配置请求单元、 接纳控制请 求单元、接纳控制单元、 家庭基站 /演进家庭基站上的接纳控制单元; 其中, 所述资源重配置请求单元, 用于向接纳控制请求单元发送资源重配置 请求并提供接纳控制相关信息; 所述接纳控制请求单元, 用于向接纳控制单元请求接纳控制; 所述接纳控制单元, 用于执行接纳控制或委托接纳控制, 再将决策发 送给家庭基站 /演进家庭基站上的接纳控制单元;
所述家庭基站 /演进家庭基站上的接纳控制单元, 用于根据所述接纳控 制相关信息和收到的反馈决策制定家庭基站 /演进家庭基站上的接纳控制决 來。
25、 根据权利要求 24所述的系统, 其中,
所述资源重配置请求单元设置于家庭基站 /演进家庭基站中;
所述接纳控制请求单元、 家庭基站 /演进家庭基站上的接纳控制单元设 置于家庭基站 /演进家庭基站策略功能实体中;
所述接纳控制单元设置于固网策略控制功能实体中。
26、 根据权利要求 25所述的系统, 其中,
家庭基站 /演进家庭基站接入时, 如果家庭基站 /演进家庭基站与 SeGW 之间存在 IPsec隧道,在资源重配置请求中设置用于携带固网链路的标识的 信元;
家庭基站 /演进家庭基站接入时, 如果家庭基站 /演进家庭基站与 SeGW 之间没有 IPsec隧道,在资源重配置请求中设置用于携带固网链路的标识的 信元, 或者, 用消息体本身的 IP地址作为固网链路的标识信息。
27、 根据权利要求 24至 26任一项所述的系统, 其中, 所述资源重配 置请求单元请求资源重配置时, 除了携带请求的策略以外, 进一步携带能 够唯一确定家庭基站 /演进家庭基站所在固网链路的固网链路标识信息。
28、 根据权利要求 27所述的系统, 其中, 所述资源重配置请求单元携 带所述固网链路标识信息的方式为: 在上电后上报所述固网链路标识信息; 或者, 在第一次或多次收到来自 EPS核心网的服务质量策略后, 上报所述 固网链路标识信息。
PCT/CN2011/081646 2010-11-01 2011-11-01 一种业务接纳控制方法和系统 WO2012059043A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010529376.3 2010-11-01
CN201010529376.3A CN102457974B (zh) 2010-11-01 2010-11-01 一种业务接纳控制方法和系统

Publications (1)

Publication Number Publication Date
WO2012059043A1 true WO2012059043A1 (zh) 2012-05-10

Family

ID=46024029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081646 WO2012059043A1 (zh) 2010-11-01 2011-11-01 一种业务接纳控制方法和系统

Country Status (2)

Country Link
CN (1) CN102457974B (zh)
WO (1) WO2012059043A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833359A (zh) * 2011-06-14 2012-12-19 中兴通讯股份有限公司 隧道信息获取方法、安全网关及演进家庭基站/家庭基站
CN103533599A (zh) * 2012-07-03 2014-01-22 中兴通讯股份有限公司 一种固网移动融合场景下的策略控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742614A (zh) * 2008-11-27 2010-06-16 华为技术有限公司 一种控制用户接入的方法和网络设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123549B (zh) * 2006-08-11 2010-05-12 华为技术有限公司 控制与承载分离的接入网系统及其实现通信的方法
CN101330704B (zh) * 2007-06-20 2012-01-25 华为技术有限公司 网络管理控制的实现方法及装置
CN101179861A (zh) * 2007-12-10 2008-05-14 华为技术有限公司 位置检测的方法和装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742614A (zh) * 2008-11-27 2010-06-16 华为技术有限公司 一种控制用户接入的方法和网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"TECHNICAL SPECIFICATION GROUP SERVICES AND SYSTEM ASPECTS", 3GPP TR 23.839 VO.3.0: STUDY ON SUPPORT OF BBF ACCESS INTERWORKING (RELEASE 11), vol. 23, 1 October 2010 (2010-10-01) *
ZTE: "Admission control when the BPCF reject the QoS authorization request (TD S2-104499)", 3GPP TSG SA WG2 MEETING #81, 15 October 2010 (2010-10-15), PRAGUE, CZECH REPUBLIC *

Also Published As

Publication number Publication date
CN102457974B (zh) 2015-08-12
CN102457974A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
KR101434943B1 (ko) 홈 펨토셀들을 위한 호 수락 제어 방법
KR101575223B1 (ko) 사설기지국에서 로컬 브레이크 세션을 요청하는 방법 및 장치
US8873498B2 (en) Network sharing in an evolved packet core network
KR101700583B1 (ko) 가상 사설 망을 통해 접속을 확립하기 위한 방법 및 장비
WO2012065499A1 (zh) 一种实现服务质量控制的方法和系统
KR20100060800A (ko) HeNB에서 단말에게 선택적으로 자원을 할당하기 위한 시스템 및 장치
US20090016344A1 (en) Method and apparatus for controlling bearers of service data flows
WO2011079782A1 (zh) 一种实现策略与计费控制的方法、网关和移动终端
EP2475142A1 (en) Method and system for acquiring route strategies
JP2012503942A (ja) フェムト基地局の通信を容易にするための動的なサービス品質制御
WO2012041073A1 (zh) 一种实现流迁移的方法及系统
WO2011095025A1 (zh) 一种对移动用户本地接入的策略控制方法和系统
WO2011054264A1 (zh) 一种建立本地ip访问下行数据通道的方法及系统
US8874079B2 (en) Control method for home base station access and home base station gateway
WO2012003781A1 (zh) 一种控制业务接纳的方法及系统
WO2011085620A1 (zh) 一种实现服务质量控制的方法及系统
WO2012171430A1 (zh) 隧道信息获取方法、安全网关及演进家庭基站/家庭基站
WO2013082987A1 (zh) 对本地卸载数据进行资源控制的方法及系统
WO2012059043A1 (zh) 一种业务接纳控制方法和系统
WO2012024997A1 (zh) 一种控制业务接纳的方法及系统
WO2012174977A1 (zh) 业务数据流处理方法及装置
WO2013037141A1 (zh) 实现家庭基站回程网络服务质量控制的方法、设备及系统
WO2012100606A1 (zh) 一种资源管理方法和系统
WO2013075580A1 (zh) 一种对本地卸载数据进行资源控制的方法和系统
WO2011131064A1 (zh) 家用基站接入的控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837569

Country of ref document: EP

Kind code of ref document: A1