WO2012058884A1 - 一种识别触摸屏不规则点的方法及装置 - Google Patents

一种识别触摸屏不规则点的方法及装置 Download PDF

Info

Publication number
WO2012058884A1
WO2012058884A1 PCT/CN2011/071178 CN2011071178W WO2012058884A1 WO 2012058884 A1 WO2012058884 A1 WO 2012058884A1 CN 2011071178 W CN2011071178 W CN 2011071178W WO 2012058884 A1 WO2012058884 A1 WO 2012058884A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
difference
sample
absolute value
value
Prior art date
Application number
PCT/CN2011/071178
Other languages
English (en)
French (fr)
Inventor
卢凯
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012058884A1 publication Critical patent/WO2012058884A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment

Definitions

  • the present invention relates to touch screen technology, and more particularly to a method and apparatus for identifying irregularities of a touch screen. Background technique
  • the types of the touch screen can be divided into four types, namely, a resistive touch screen, an infrared touch screen, a capacitive sensing touch screen, and a surface acoustic wave touch screen.
  • the touch screen has four electrodes: X+, X-, Y+, and Y-.
  • the touch screen control chip After the touch screen is subjected to pressure during operation, the touch screen control chip periodically scans the signals of the touch points relative to the four electrodes, and these signals are all
  • the analog value needs to be converted by the analog/digital (A/D, Analog/Digital) of the touch screen control chip, and then converted and mapped by coordinates to be finally converted into point coordinates on the touch screen.
  • the medium on which the touch screen transmits information is different, and the signals collected by the touch screen are also different. For example, if the touch screen is a resistive touch screen, the signal collected by the trick is a voltage value, and if the touch screen is a capacitive touch screen, The signal collected by ⁇ is the current value.
  • the position on the touch screen corresponding to the point coordinates is the position of the touch point.
  • whether the point coordinates are accurate or not depends directly on whether the analog value of the touch screen control chip is correct. Due to the interference signal around the touch screen, or the accuracy of the touch screen control chip itself, or the defect of the main controller of the touch screen control chip such as the difference of the anti-interference signal or the precision of the processed signal, it is possible to make the touch screen control chip look like The obtained signal is incorrect.
  • the reported coordinate value is significantly offset from the coordinate value of the touch point of the touch screen, forming an irregular point, commonly known as a "flying point.”
  • This irregular point will cause the user to use the touch In the process of touching the screen, the expected operation is not achieved, and even the misoperation is caused, and when the handwriting is input, the flying pen is caused to affect the recognition rate of the handwriting input.
  • the main object of the present invention is to provide a method and apparatus for identifying irregular points of a touch screen, which can identify irregular points on the touch screen, thereby improving the accuracy of the coordinate values reported by the touch screen.
  • the present invention provides a method for identifying irregular points of a touch screen, and setting a cache queue; the method further includes:
  • the irregularity points of the consecutive four or more sample points are identified according to the coordinate data of the saved four consecutive sample points.
  • the determining, according to the saved coordinate data of the consecutive four or more sample points, whether there are irregular points in the consecutive four or more sample points as follows: according to the current period and the previous period, the sample position changes The absolute value of the quantity, and the absolute value of the continuous four or more sample point acceleration difference values, identify whether there are irregular points in the consecutive four or more sample points.
  • the method includes: determining that an absolute value of the current period and the previous period of the sample position change amount is greater than a maximum offset amount in the X-axis direction and/or the Y-axis direction, and is smaller than a corresponding minimum value. And an offset point; and, when the absolute value of the adjacent acceleration difference in the X-axis direction and/or the Y-axis direction is greater than the maximum acceleration, it is recognized that there are irregular points in the consecutive four or more sample points.
  • the absolute value of the change amount of the sample position of the current period and the previous period is: the current period and the position change amount of the X-axis direction and the Y-axis direction of the sample in the previous period Absolute value
  • the absolute value of the position change amount in the X-axis direction is: the current period and the previous one The absolute value of the difference between the coordinate values of the X-axis of the period sample;
  • the amount of change in position in the Y-axis direction is the absolute value of the difference between the current period and the coordinate value of the Y-axis of the previous period.
  • the absolute value of the adjacent acceleration difference in the X-axis direction and/or the Y-axis direction is greater than the maximum acceleration, and is: the continuous four or more sample points are in the X-axis direction and/or the Y-axis direction.
  • the absolute value of one or more acceleration differences in the absolute values of adjacent acceleration differences is greater than the maximum acceleration;
  • the calculation method of the absolute value of the adjacent acceleration difference of the consecutive four or more sample points in the X-axis direction is:
  • the difference between the coordinate values of the X axes of two adjacent ones of the consecutive four or more sample points is determined as a absolute value, and the first rate, the second rate, and the third rate are sequentially obtained;
  • the method for calculating the absolute value of the adjacent acceleration difference values of the consecutive four or more sample points in the Y-axis direction is as follows: the coordinate values of the Y-axis of two adjacent ones of the consecutive four or more sample points are consecutively The difference takes an absolute value, and the fourth rate, the fifth rate, and the sixth rate are sequentially obtained;
  • the difference between the third acceleration and the fourth acceleration is taken as an absolute value to obtain the absolute value of the difference between the adjacent accelerations of the Y-axis.
  • the coordinate data according to the saved consecutive four or more sample points identifies whether the consecutive four or more sample points are There are irregular points, which are: According to the position change amount of the sample points specified in the consecutive four sample points and the adjacent cycle sample points, and the cycle before the specified sample points in the three sample points after the removal of the specified sample points The position change of the sample point and the remaining two sample points identifies whether there are irregular points in the consecutive four sample points.
  • the method includes: determining that a product of the position change amount of the specified sample point and its adjacent period sample point is smaller than zero in the X-axis direction and/or the Y-axis direction, and removing the specified sample In the three sample points after the point, the product of the position change of the one cycle before the specified sample point and the position change of the remaining two sample points is greater than or equal to zero in the X-axis direction and/or the Y-axis direction,
  • the designated sample point is an irregular point.
  • the position change amount of the specified sample point and its adjacent period sample point is: a position change amount in the X-axis direction and the Y-axis direction; wherein the position change amount in the X-axis direction includes: The difference between the coordinate value of the sample X-axis and the coordinate value of the X-axis of the previous cycle, and the coordinate value of the X-axis of the sample after the specified sample point and the X-axis of the specified sample point The difference value of the coordinate values; the position change amount in the Y-axis direction includes: a difference between the coordinate value of the Y-axis of the specified sample point and the coordinate value of the Y-axis of the previous cycle sample point, and the specified sample point Then, the difference between the coordinate value of the Y-axis of the sample point and the coordinate value of the Y-axis of the specified sample point;
  • the position change amount of the one cycle sample point and the remaining two sample points before the specified sample point is the position change amount in the X-axis direction and the Y-axis direction; wherein the position change amount in the X-axis direction includes: the specification The difference between the coordinate value of the X-axis of the sample before the sample point and the coordinate value of the X-axis of the sample after the specified sample point, and a cycle before the specified sample point The difference between the coordinate values of the X-axis of the two periods after the specified sample point; the position change amount of the Y-axis direction includes: the coordinate value of the Y-axis of the sample before the specified sample point The difference between the coordinate values of the Y-axis of one cycle after the designated sample point, and the one cycle before the specified sample point and the two cycles after the specified sample point The difference between the coordinate values of the axes.
  • the method further includes:
  • the coordinate data of the corresponding sample points are modified.
  • the coordinate value of the X-axis is modified as: When the absolute value of the difference between the adjacent accelerations is greater than the maximum acceleration, the number of the acceleration is less than the continuous four or more When the number of absolute values of the difference between the adjacent accelerations of the X-axis is determined, it is judged whether the coordinate value of the X-axis of the sample point that has not been reused when the absolute value of the difference of the adjacent acceleration is calculated is modified, if the modification is outdated , then do not make any modification, if the time is not modified, the coordinate value of the X-axis of the unrepeated sample point is modified to the coordinate value of the X-axis of the unrepeated sample point, and one cycle after the sample point The coordinate value of the X axis, when the unrepeated sample point contains the current period sample point, modify Pcur.x to Pbef.x;
  • Pbef.x Determining whether Pbef.x is modified when the number of absolute values of the difference between adjacent accelerations is greater than the number of absolute values of the difference of adjacent accelerations of the X-axis of the consecutive four or more samples However, if it has been modified, no modification is made. If it has not been modified, the difference between Prel.x and Pbef.x is taken as the absolute value to obtain the first absolute value, and the difference between Prel.x and Pcur.x. Take the absolute value and obtain the second absolute value. Determine whether the absolute value of the difference between the first absolute value and the second absolute value is greater than Mx. If it is greater than, change Pbef.x ⁇ ' ⁇ to Pcur.x. When not greater than, modify Pcur.x to Pbef.x;
  • the coordinate value of the Y-axis is modified as: when the absolute value of the difference of the adjacent accelerations is greater than the number of Ay is less than the four consecutive
  • the number of absolute values of the difference between the adjacent accelerations of the Y-axis of the sample point is determined, it is judged whether the coordinate value of the Y-axis of the sample point that has not been reused when the absolute value of the difference of the adjacent acceleration is calculated is modified, if If the modification is outdated, no modification will be made. If it is not modified, the non-reuse will be used.
  • the coordinate value of the Y-axis of the sample point is modified to the coordinate value of the axis of the sample after the coordinate value of the unrepeated sample point axis, and the non-reusable sample point contains Pcur When changing Pcur.y to Pbef.y;
  • the difference of x is taken as an absolute value to obtain a fourth absolute value, and it is judged whether the absolute value of the difference between the third absolute value and the fourth absolute value is greater than My, and if it is greater than, the Pbef.y is modified to Pcur.x, if When not greater than, change Pcur.y to Pbef.y;
  • Pcur, Pbef and Prepl represent the current cycle sample, the previous cycle sample and the upper cycle sample
  • Pcur.x, Pcur.y, Pbef.x, Pbef.y, Prep 1.x and Prepl y respectively represents the coordinate values of the X-axis and the Y-axis of the current period, the coordinate values of the X-axis and the Y-axis of the previous cycle, and the coordinate values of the X-axis and the Y-axis of the upper and lower cycles
  • the coordinate value of the X-axis is modified as: the coordinate value of the X-axis of the specified sample point is modified to be one cycle before the specified sample point The coordinate value of the X axis;
  • the coordinate value of the Y axis is modified as: Modifying the coordinate value of the Y axis of the specified sample point to a period before the specified sample point The coordinate value of the Y-axis of the sample point.
  • the method further includes:
  • the coordinate data of the sample point saved in the buffer queue is no longer used to identify and modify the coordinate data of the sample point, the coordinate data of the sample point is reported.
  • the identification and tampering are:
  • the identification and tampering of the coordinate values of the X-axis are as follows: Determine whether the absolute value of the difference between Pbef.x and Pcur.x is greater than Mx. If the determination is greater than, the absolute difference between Pbef.y and Pcur.y is further determined.
  • the value is less than Ny, if it is determined to be smaller, it is further determined whether the absolute value of the difference of the accelerations of the X-axis of the consecutive four sample points is greater than Ax, and if the determination is greater than, it is determined whether Pbef.x has been modified, if modified If no change is made, if the absolute value of the difference between the first absolute value and the second absolute value is greater than Mx, if it is greater than, then Pbef.x ⁇ is changed to Pcur.x, if not greater than, change Pcur.x to Pbef.x;
  • Pre2.x is subtracted from Prel.x to obtain a first difference
  • Prel.x is subtracted from Pbef.x to obtain a second difference
  • whether the product of the first difference and the second difference is determined is If it is less than zero, if it is less than zero, then Pre2.x is subtracted from Pbef.x to obtain a third difference
  • Pre2.x is subtracted from Pcur.x to obtain a fourth difference, and the third difference is further determined.
  • the product of the fourth difference is greater than or equal to zero, and when the determination is greater than or equal to, Pprel.x is modified to Ppre2.x;
  • the identification and tampering of the coordinate values of the Y-axis are as follows: Determine whether the absolute value of the difference between Pbef.y and Pcur.y is greater than My, and if the determination is greater than, then further determine the difference between Pbef.x and Pcur.x. If the absolute value of the value is less than Nx, if it is determined to be less than, then it is further determined whether the absolute value of the difference of the accelerations of the Y-axis of the consecutive four sample points is greater than Ay, and if the determination is greater than, then it is determined whether Pbef.y is modified. If it has been modified, no modification is made.
  • Pre2.y is subtracted from Prel.y to obtain a fifth difference
  • Pre ly is subtracted from Pbef.y to obtain a sixth difference
  • P2 is subtracted from Preb.y to obtain the seventh difference
  • Pre2.y is subtracted from Pcur.x to obtain the eighth difference.
  • the seventh difference is determined. Whether the product of the eighth difference is greater than or equal to zero, When determining greater than or equal to, change Ppre 1.y to Ppre2.y;
  • Ppre2 represents a period of the sample before the upper period
  • Ppre2.x and Ppre2.y represent the coordinates of the X-axis and the Y-axis of the sample before the upper period
  • Ny represents the maximum of the M-axis corresponding to the Y-axis.
  • Ax represents the maximum acceleration on the X axis
  • Nx represents the maximum offset value of the X axis corresponding to My
  • Ay represents the maximum acceleration on the Y axis.
  • the identification and tampering are:
  • the identification and modification of the coordinate value of the X axis is: determining whether the product of the first difference value and the second difference value is less than zero, and determining that the third difference value is different from the first Whether the product of the four differences is greater than or equal to zero, and when P or L. Whether the absolute value of the difference between Pbef.y and Pcur.y is less than Ny, and if it is determined to be smaller, further determining whether the absolute value of the difference of the accelerations of the X-axis of the consecutive four sample points is greater than Ax, when the determination is greater than It is judged whether Pbef.x has been modified. If it is modified, no modification is made.
  • the identification and modification of the coordinate value of the Y axis is: determining whether the product of the fifth difference value and the sixth difference value is less than zero, and determining that the value is less than zero, further determining the seventh difference value and Whether the product of the eighth difference is greater than or equal to zero, and when determined to be greater than or equal to, Pprel.y is modified to Ppre2.y;
  • the present invention also provides an apparatus for identifying a touch screen irregular point, the apparatus comprising: a setting module, a buffer queue, and an identification module;
  • a cache queue for storing coordinate data of consecutive sample points
  • the identification module is configured to save the coordinate data of the consecutive consecutive sample points into the buffer queue, and identify whether there are irregular points in the consecutive four or more sample points according to the saved coordinate data of the consecutive four or more sample points. .
  • the device further includes a modifying module, configured to modify coordinate data of the corresponding sample point after receiving the coordinate data of the irregular point sent by the identification module;
  • the identification module is further configured to send the coordinate data of the irregular point to the modification module after identifying the irregular point.
  • the apparatus further includes a reporting module, configured to: after receiving the coordinate data of the sample points sent by the processing module, upload coordinate data of the sample points;
  • the processing module is further configured to: when the coordinate data of the sample point saved in the buffer queue is no longer used to identify and modify the coordinate data of the sample point, send the coordinate data of the sample point to the report module.
  • the invention provides a scheme for identifying irregular points of a touch screen, sets a cache queue, saves coordinate data of consecutive consecutive sample points to a cache queue, and identifies the continuous four according to coordinate data of four consecutive consecutive sample points saved. Whether there are irregular points in more than one sample point, so that irregular points in the touch screen track can be identified, and it is determined that there are irregular points in the consecutive four or more sample points, and the coordinates of the corresponding sample points are modified. Data, which in turn improves the user experience.
  • the method of combining acceleration and velocity is used to judge and filter irregularities. In this way, the irregular points can be identified more accurately.
  • FIG. 1 is a schematic flow chart of a method for identifying irregular points of a touch screen according to the present invention
  • FIG. 2 is a schematic flowchart of a method for identifying and filtering out irregular points of a touch screen according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for identifying and filtering out irregular points of a touch screen according to Embodiment 2 of the present invention
  • Schematic diagram of the structure of the rule point
  • the method for identifying a touch screen irregular point includes the following steps: Step 100: Setting a cache queue;
  • the capacity of the set buffer queue can store coordinate data of at least four sample points, and the coordinate data of the sample points includes coordinate values of the X axis and the Y axis.
  • the cache queue is used to store coordinate data of consecutive samples collected during the operation of the touch screen and processed.
  • the coordinate data of the processed sample point refers to: ⁇
  • the coordinate data of the obtained point after the signal is converted by A/D, and then converted and mapped by coordinates.
  • Step 101 Save the coordinate data of the consecutive consecutive sample points to the buffer queue, and identify whether there are irregular points in the consecutive four or more sample points according to the coordinate data of the consecutive four or more sample points saved.
  • the coordinate data of the consecutive four or more sampling points includes the sampling data of the current period and the coordinate data of the sampling point of the period before the current period.
  • the absolute value of the sample position change amount according to the current period and the previous period, and the continuous The absolute values of the four or more sample point acceleration differences identify whether there are irregular points in the consecutive four or more sample points.
  • the absolute value of the adjacent acceleration difference in the X-axis direction and/or the Y-axis direction is greater than the maximum acceleration, it is recognized that there are irregular points in the consecutive four or more sample points.
  • the X-axis direction and the Y-axis direction are respectively identified, that is, determining that the absolute value of the current period and the previous period of the sample position change amount is greater than the maximum offset amount in the X-axis direction and less than the corresponding minimum offset And; when the absolute value of the adjacent acceleration difference in the X-axis direction is greater than the maximum acceleration, identifying that there are irregular points in the consecutive four or more sample points; determining the current period and the previous period The absolute value of the point position change amount is greater than the maximum offset amount in the Y-axis direction and smaller than the corresponding minimum offset amount; and, when the absolute value of the adjacent acceleration difference value in the Y-axis direction is greater than the maximum acceleration, the There are irregular points in more than four consecutive sample points.
  • the absolute value of the change amount of the sample point position in the current period and the previous period is the absolute value of the position change amount in the X-axis direction and the Y-axis direction of the current period and the previous period.
  • the absolute value of the position change amount in the X-axis direction is: the absolute value of the difference between the current period and the coordinate value of the X-axis of the previous cycle;
  • the position change amount in the Y-axis direction is: the current cycle and the previous cycle
  • the determining that the absolute value of the change amount of the sample position of the current period and the previous period is greater than the maximum offset in the X-axis direction and less than the corresponding minimum offset refers to: the current period and the previous period
  • the absolute value of the difference between the coordinate values of the X axis is greater than the maximum offset of the X axis, and the absolute value of the difference between the current period and the coordinate value of the Y axis of the previous cycle is less than the corresponding minimum offset
  • the determining that the absolute value of the change amount of the sample position in the current period and the previous period is greater than the maximum offset in the Y-axis direction and less than the corresponding minimum offset refers to: the current period and the previous period ⁇ The absolute value of the difference between the coordinate values of the sample Y axis is greater than the maximum offset of the Y axis, and the coordinate value of the X axis of the current cycle and the previous cycle
  • the absolute value d of the difference is the corresponding minimum offset.
  • the absolute value of the adjacent acceleration difference in the X-axis direction and/or the Y-axis direction is greater than the maximum acceleration rate, specifically:
  • the absolute value of one or more acceleration differences in the absolute values of the adjacent acceleration differences of the consecutive four or more sample points in the X-axis direction and/or the Y-axis direction is greater than the maximum acceleration
  • the X-axis direction and the Y-axis direction are respectively determined. Specifically, when determining the absolute value of the current period and the previous period, the sample point position change amount is greater than the maximum offset amount in the X-axis direction, and is smaller than the corresponding minimum.
  • the irregular point is recognized; And/or, when it is determined that the absolute value of the sample position change amount of the current period and the previous period is greater than the maximum offset amount in the Y-axis direction, and less than the corresponding minimum offset amount, and The absolute value of one or more acceleration differences in the absolute values of the adjacent acceleration differences in the Y-axis direction is greater than the maximum acceleration, and the irregular points are identified.
  • the calculation method of the absolute value of the adjacent acceleration difference of the consecutive four or more sample points in the X-axis direction is:
  • the difference between the coordinate values of the X axes of two adjacent ones of the consecutive four or more sample points is determined as a absolute value, and the first rate, the second rate, and the third rate are sequentially obtained;
  • the method for calculating the absolute value of the adjacent acceleration difference values of the consecutive four or more sample points in the Y-axis direction is as follows: the coordinate values of the Y-axis of two adjacent ones of the consecutive four or more sample points are consecutively The difference takes an absolute value, and the fourth rate, the fifth rate, and the sixth rate are sequentially obtained; Taking the difference between the fourth rate and the fifth rate as an absolute value to obtain a third acceleration; taking a difference between the fifth rate and the sixth rate as an absolute value to obtain a fourth acceleration;
  • the difference between the third acceleration and the fourth acceleration is taken as an absolute value to obtain the absolute value of the difference between the adjacent accelerations of the Y-axis.
  • the identification of the coordinate values of the X axis is: Determine whether the
  • the value A1 is less than or equal to Ax, if it is less than or equal, it is considered that there are no irregular points in the four consecutive sample points, and if it is greater, the irregular points are considered to exist in the consecutive four sample points;
  • Pcur And Pbef respectively represent the current period sample point and the previous period sample point
  • Pcur.x, Pbef.x, Pcur.y and Pbef.y respectively represent the coordinate value of the X-axis of the current period sample point, and the previous cycle sample
  • Mx represents the maximum offset value on the X axis
  • Ny represents the corresponding maximum on the Y axis.
  • Ax represents the maximum acceleration on the X axis.
  • the method for calculating the absolute value of the acceleration difference of the X-axis of the four consecutive sample points is specifically as follows:
  • Vl .x
  • V2.x
  • V3.x
  • Pprel.x represents the coordinate value of the X-axis of the upper and lower period samples
  • Ppre2.x represents the coordinate value of the X-axis of the sample before the upper and upper periods.
  • Vl.x, V2.x and V3.x represent continuous Four weeks During the period, the moving rate of the sample point on the X axis, Axl and Ax2, represents the acceleration of the sample point on the X axis for four consecutive cycles.
  • the touch screen control chip periodically reads the level value on the touch screen, and can think that the time interval between adjacent sample points is the same, therefore, the X-axis of two adjacent consecutive points
  • the difference between the coordinate values of the Y-axis can be considered as the moving speed in the direction proportional to the X-axis and the Y-axis.
  • the difference can be considered as the velocity in the X-axis and Y-axis directions.
  • the difference between two adjacent speeds can be seen as their corresponding acceleration. Therefore, according to the above analysis, it is possible to judge the irregular points by using Mx, My, Nx, Ny, Ax, and Ay. Where, My represents the maximum offset value on the Y axis, Nx represents the corresponding maximum offset value on the X axis, and Ay represents the maximum acceleration on the Y axis.
  • the judgment of the coordinate value of the Y-axis is exactly the same as the judgment of the coordinate value of the X-axis, and is: Determine whether or not
  • the calculation method of the absolute value of the difference between the accelerations of the Y axes of the four consecutive sample points is exactly the same as the absolute value of the difference of the acceleration of the X axis, specifically:
  • Vl .y
  • ; V2.y
  • V3.y
  • Pprel.y represents the coordinate value of the Y-axis of the upper and lower period samples
  • Ppre2.y represents the coordinate value of the Y-axis of the sample before the upper and upper periods.
  • Vl.y, V2.y and V3.y represent continuous The rate of movement of the sample on the Y-axis during the four cycles
  • Ayl and Ay2 represent the acceleration of the sample on the Y-axis for four consecutive cycles.
  • Mx, My, Nx, Ny, Ax, and Ay are set, and in actual use, the coordinate value of the reported sliding track can be used.
  • Find the irregular point by the human eye and take the difference between the coordinate value of the irregular point and the coordinate value of the adjacent point as the values of Mx, My, Nx, and Ny; for the values of Ax and Ay, on the touch screen as much as possible
  • Quickly sliding along the X-axis or the Y-axis, according to the coordinate value of the sliding track using the calculation method of the difference of the accelerations of the above four consecutive sample points, Ax and Ay can be obtained; wherein, the adjacent points can be neither
  • the point reported before the rule point can also be the point reported after the irregular point.
  • the smaller the values of Mx, My, Nx, Ny, Ax and Ay the more accurately the irregular points can be identified by the above method.
  • the method may further include:
  • the coordinate data of the modified sample points is specifically determined as follows:
  • the modification of the coordinate value of the X axis is: Determine whether Pbef.x has been modified. If it has been modified, no modification is made. If it has not been modified, it is further judged whether it is satisfied.
  • the tampering of the coordinate value of the Y axis is exactly the same as the tampering of the coordinate value of the X axis, as follows: It is determined whether Pbef.y has been modified, and if it has been modified, no modification is made, if not modified, Further determine whether
  • the coordinate data of the sample points stored in the cache queue is saved in a specific data structure, and the data structure includes coordinate data of the sample points that are not subjected to the irregular point recognition operation, and coordinate data after the identification and modification operations are performed. If the values of the two coordinate data are equal, it indicates that the coordinate data of the point has not been modified, otherwise, the coordinate data of the point is modified.
  • Pbef.x has been modified, it means that Pbef.x has been modified in the previous processing flow. At this time, no modification is needed. Similarly, if Pbef.y is modified, it is indicated in the previous processing flow. , Pbef.y has been modified, at this time, no need to modify.
  • Pbef.x has been modified
  • the modified Pbef.x is used to make the above judgment.
  • Pbef.y is modified, the modified Pbef.y is used to make the above judgment.
  • the method may further include: determining whether at least four are saved in the buffer queue. The coordinate data of the sample point, if yes, further determine whether the difference A1 of the acceleration of the X-axis of the consecutive four sample points is less than or equal to Ax, and if not, do nothing;
  • the method may further include:
  • the method described above may be referred to as an identification method using acceleration.
  • the identification method using acceleration is also applicable to the case of five or more consecutive sample points, specifically:
  • the identification of the coordinate value of the X-axis is: whether the absolute value of the difference between Pbef.x and Pcur.x is greater than Mx, and if it is greater, it is further determined whether the absolute value of the difference between Pbef.y and Pcur.y is less than Ny. If it is smaller, further determining whether the absolute value of the difference of the difference between the adjacent accelerations of the X-axis of the consecutive five or more sampling points is greater than Ax, if at least one, identifying There are irregular points in the continuous five or more sample points.
  • five consecutive sample points include Pcur, Pbef, Pprel, Ppre2, and the previous cycle of the previous cycle, and the previous cycle of the previous cycle.
  • the sample point is represented by Ppre3; when it is judged that the absolute value of the difference between Pbef.x and Pcur.x is larger than Mx, and the absolute value of the difference between Pbef.y and Pcur.y is less than Ny, the above five consecutive
  • the method of calculating the absolute value of the acceleration difference by the sample point obtains A3 and A4, and judges whether at least one of A3 and A4 is greater than Ax, and if so, it is considered that there are irregular points among the five consecutive sample points.
  • the coordinate values of the X-axis of the sample points used to calculate A3 include: Ppre3.x, Ppre2.x, Pprel.x, and Pbef.x.
  • the coordinate values of the X-axis of the sample points used to calculate A4 include: Ppre2. x, Pprel.x, Pbef.x and Pcur.x.
  • the recognition of the coordinate value of the Y-axis is identical to the identification of the coordinate value of the X-axis.
  • the coordinate data of the corresponding sample points is modified, specifically:
  • the modification of the coordinate value of the X-axis is: when the absolute value of the difference of the adjacent accelerations is greater than the absolute value of the difference of the adjacent accelerations of the X-axis of the consecutive five or more sample points.
  • the coordinate value of the X-axis of the unrepeated sample point is modified to the coordinate value of the X-axis of the unrepeated sample point and the coordinate value of the X-axis of the sample after one cycle, when the unrepeated sample When the point contains the current sample point, modify Pcur.x to Pbef.x;
  • Pbef.x has been modified when the number of absolute values of the difference between adjacent accelerations is greater than the number of absolute values of the difference of adjacent accelerations of the X-axis of the consecutive five or more consecutive points If it has been modified, no modification is made. If it has not been modified, the difference between Pre 1.x and Pbef.x is taken as the absolute value to obtain the first absolute value, and the difference between Pre 1 ⁇ and Pcur.x The value takes the absolute value, and the second absolute value is obtained. It is determined whether the absolute value of the difference between the first absolute value and the second absolute value is greater than Mx. If it is greater, Pbef.x ⁇ is changed to Pcur.x, otherwise, Pcur is .x ⁇ is changed to Pbef.x.
  • the coordinate values of the X-axis of the sample point that are not reused include Ppre3.x and Pcur.x; when A3 is larger than Ax, and When A4 is less than or equal to Ax, it is judged whether Ppre3.x has been modified. If it is modified, no modification is made. If it has not been modified, Ppre3.x is modified to Ppre2.x; when A4 is greater than Ax, and A3 is less than or equal to Ax , then modify Pcur.x to Pbef.x; when both A3 and A4 are greater than Ax, judge Whether Pbef.x has been modified, if it has been modified, no modification is made.
  • the absolute difference between Prel.x and Pbef.x is taken to obtain the first absolute value, and Pre 1.x and The difference of Pcur.x takes the absolute value, and the second absolute value is obtained. It is determined whether the absolute value of the difference between the first absolute value and the second absolute value is greater than Mx. If it is greater, the Pbef.x is modified to Pcur.x. Otherwise, change Pcur.x to Pbef.x.
  • the tampering method for the coordinate value of the Y-axis is the same as the tampering method for the coordinate value of the X-axis, which is:
  • the difference between the adjacent accelerations is determined. If the absolute value of the value is not used, the coordinate value of the Y-axis of the sample point has been modified. If it is modified, no modification is made. If it has not been modified, the unused Y-axis of the sample point will be The coordinate value is modified to the coordinate value of the Y axis of one cycle after the coordinate value of the Y axis of the unrepeated sample point, and when the unrepeated sample point contains the current sample point, Pcur is .y modified to Pbef.y;
  • Pbef.y has been modified when the number of absolute values of the difference of adjacent accelerations is greater than the number of absolute values of the difference of adjacent accelerations of the consecutive five or more consecutive Y-axis points If it has been modified, no modification is made. If it has not been modified, the difference between Prepl .y and Pbef.y is taken as the absolute value to obtain the third absolute value. The difference between Prep 1.y and Pcur.x Take the absolute value and obtain the fourth absolute value. Determine whether the absolute value of the difference between the third absolute value and the fourth absolute value is greater than My. If it is greater, change Pbef.y ⁇ to Pcur.x. Otherwise, Pcur. Change y ⁇ to Pbef.y.
  • the position change of the sample point and the remaining two sample points identifies whether there are irregular points in the consecutive four sample points.
  • a product of the position change amount of the specified sample point and its adjacent period sample point is smaller than zero in the X-axis direction and/or the Y-axis direction, and three ⁇ after the specified sample point is removed In the sample, the product of the specified period of the sample point and the position change amount of the remaining two sample points is greater than or equal to zero in the X-axis direction and/or the Y-axis direction, and the specified sample is identified.
  • Points are irregular points.
  • the X-axis direction and the Y-axis direction are respectively determined, that is, the product of the position change amount of the specified sample point and its adjacent period sample point is determined to be smaller than zero in the X-axis direction, and the specified sample is removed.
  • the continuous four are identified.
  • An irregular point exists in the sample point; and/or, a product of the position change amount of the specified sample point and its adjacent period sample point is less than zero in the Y-axis direction, and after the specified sample point is removed In the three sample points, when the product of the one cycle before the specified sample point and the position change amount of the remaining two sample points are greater than or equal to zero, the specified sample point is identified as irregular. point.
  • the position change amount of the specified sample point and its adjacent period sample point is: a position change amount in the X-axis direction and the Y-axis direction; wherein the position change amount in the X-axis direction includes: the specified sample point The difference between the coordinate value of the X-axis and the coordinate value of the X-axis of the previous cycle, and the coordinate value of the X-axis of the sample after the specified sample point and the coordinate of the X-axis of the specified sample point The difference value of the value; the position change amount in the Y-axis direction includes: a difference between the coordinate value of the Y-axis of the specified sample point and the coordinate value of the Y-axis of the previous cycle sample point, and the specified sample The difference between the coordinate value of the Y-axis of the sample point and the coordinate value of the Y-axis of the specified sample point after one point;
  • the position change amount of the one cycle sample point and the remaining two sample points before the specified sample point is the position change amount in the X-axis direction and the Y-axis direction; wherein the position change amount in the X-axis direction includes: the specification The difference between the coordinate value of the X-axis of the sample before the sample point and the coordinate value of the X-axis of the sample after the specified sample point, and a cycle before the specified sample point The difference between the coordinate values of the X-axis of the two periods after the specified sample point; the position change amount of the Y-axis direction includes: the coordinate value of the Y-axis of the sample before the specified sample point The difference between the coordinate values of the Y-axis of one cycle after the designated sample point, and the one cycle before the specified sample point and the Y-axis of the two cycles after the specified sample point The difference between the coordinate values.
  • the coordinate data of the corresponding sample point is modified, specifically:
  • the coordinate value of the X-axis is modified as: the coordinate value of the X-axis of the specified sample point is modified to be one cycle before the specified sample point The coordinate value of the X axis;
  • the coordinate value of the Y axis is modified as: Modifying the coordinate value of the Y axis of the specified sample point to a period before the specified sample point The coordinate value of the Y-axis of the sample point.
  • the specified sample point is Pprel.
  • the coordinate data of the corresponding sample point is modified, specifically:
  • the modification of the coordinate value of the X axis is: Modify Pprel.x to Ppre2.x;
  • the tampering of the coordinate value of the Y axis is exactly the same as the tampering of the coordinate value of the X axis, as follows: Modify Pprel.y to Ppre2.ycons
  • the method may further include:
  • the method may further include:
  • the identification method described above may be referred to as an identification method that utilizes the consistency of speed.
  • the method may further comprise: identifying that there is no irregular point, without making any modifications.
  • identifying that there is no irregular point in the actual use process, when the coordinate data of a sample point saved in the buffer queue is no longer used to identify and modify the coordinate data of the sample point, the coordinate data of the sample point is reported, and then The coordinate data of the sample point is overwritten by the coordinate data of the new sample point, the judgment is restarted, and after the irregular point is determined, the coordinate data of the corresponding sample point is modified.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the processing flow of the coordinate value of the X-axis is taken as an example.
  • the method for identifying and filtering out the irregular points of the touch screen in this embodiment, as shown in FIG. 2, includes the following steps:
  • Step 200 Set a cache queue
  • Step 201 Save coordinate data of consecutive consecutive sample points to the cache queue, and determine whether
  • Step 202 Determine whether the coordinate data of at least four sample points is saved in the cache queue, if yes, go to step 203, otherwise, go to step 209;
  • Step 203 Determine whether the difference A1 of the accelerations of the X-axis of the four consecutive sample points is less than or equal to Ax. If it is less than or equal to, perform step 207. If yes, execute step 204. Step 204: Determine whether Pbef.x is modified. If yes, go to step 207, if not modified, go to step 205;
  • Step 205 further determining whether
  • Step 206a Modify Pbef.x to Pcur.x, and then perform step 207;
  • Step 206b Modify Pcur.x to Pbef.x, and then perform step 207;
  • Step 208 Modify Pprel.x to Ppre2.x, and then perform step 209;
  • Step 209 End the current processing flow.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the processing flow of the coordinate value of the X-axis is taken as an example.
  • the method for identifying and filtering out the irregular points of the touch screen in this embodiment, as shown in FIG. 3, includes the following steps:
  • Step 300 Set a cache queue
  • Step 301 Save the coordinate data of consecutive consecutive sample points to the buffer queue, determine whether the coordinate data of at least four sample points is saved in the cache queue, and if yes, execute step 302; otherwise, execute step 309;
  • Step 303 Modify Pprel.x to Ppre2.x, and then perform step 304;
  • Step 304 Determine whether it is satisfied that
  • Step 305 Determine whether the difference A1 of the accelerations of the X-axis of the four consecutive sample points is less than or equal to Ax. If it is less than or equal to, perform step 309. If it is greater, perform step 306.
  • Pprel.x has been modified, at this time, ⁇ use the modified value to judge.
  • Step 306 Determine whether Pbef.x has been modified, if it has been modified, go to step 309, if it has not been modified, go to step 307;
  • Step 307 Further determining whether
  • Step 308a Modify Pbef.x to Pcur.x, and then perform step 309;
  • Step 308b Modify Pcur.x to Pbef.x, and then perform step 309;
  • Step 309 End the current processing flow.
  • the present invention further provides an apparatus for identifying a touch screen irregular point.
  • the apparatus includes: a setting module 41, a buffer queue 42 and an identification module 43;
  • a cache queue 42 for storing coordinate data of consecutive sampling points
  • the identification module 43 is configured to save the coordinate data of the consecutive consecutive sample points into the buffer queue 42 and identify whether the consecutive four or more sample points exist according to the saved coordinate data of the consecutive four or more sample points. Rule point.
  • the identification module 43 is further configured to recognize that no irregularities exist after the irregular point is not present.
  • the device may further include: a modifying module, configured to: after receiving the coordinate data of the irregular point sent by the identification module 43, modify the coordinate data of the corresponding sample point;
  • the identification module 43 is further configured to send coordinate data of the irregular point to the modification module after identifying the irregular point.
  • the device may further include: a reporting module, configured to report coordinate data of the sample point after receiving the coordinate data of the sample point sent by the identification module 43;
  • the identification module 43 is further configured to: when the coordinate data of the sample point saved in the buffer queue is no longer used to identify and modify the coordinate data of the sample point, send the coordinate data of the sample point to the reporting module.
  • the specific processing procedure of the identification module and the modification module in the device of the present invention has been described in detail above and will not be described again.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Description

一种识别触摸屏不规则点的方法及装置 技术领域
本发明涉及触摸屏技术, 特别是指一种识别触摸屏不规则点的方法及 装置。 背景技术
目前, 很多终端交互设备都配有触摸屏, 以便向用户提供直观、 方便、 快捷的输入方式。 按照触摸屏的工作原理和传输信息的介质, 可以将触摸 屏的种类分成四种, 分别是电阻式触摸屏、 红外线触摸屏、 电容感应式触 摸屏、 以及表面声波式触摸屏。
一般, 触摸屏有四个电极: X+、 X-、 Y+和 Y-, 触摸屏在工作过程中受 到压力作用后, 触摸屏控制芯片会定时扫描釆集触摸点相对于四个电极的 信号, 这些信号都是模拟值, 需要经过触摸屏控制芯片的模拟数字 (A/D, Analog/Digital )转化, 然后再经过坐标的转换和映射, 才能最终转化成触 摸屏上的点坐标。 其中, 触摸屏传输信息的介质不同, 则釆集到的信号也 有所不同, 举个例子来说, 如果触摸屏为电阻式触摸屏, 则釆集到的信号 是电压值, 如果触摸屏为电容式触摸屏, 则釆集到的信号为电流值。
当转化后得到的点坐标非常精确时, 则点坐标对应的触摸屏上的位置 即为触摸点的位置。 但是, 点坐标是否精确直接取决于触摸屏控制芯片釆 样的模拟值是否正确。 由于触摸屏周边的干扰信号、 或触摸屏控制芯片自 身釆样的精度不够、 或触摸屏控制芯片的主控制器的缺陷如抗干扰信号差 或处理信号的精度差等, 都有可能使得触摸屏控制芯片釆样得到的信号是 不正确的, 如此, 会导致上报的坐标值与触摸屏的触摸点的坐标值存在明 显的偏移, 形成不规则点,俗称"飞点"。 这个不规则点会导致用户在使用触 摸屏的过程中, 点不到预想的操作, 甚至造成误操作, 进而在手写输入的 时候, 导致飞笔, 影响手写输入的识别率。 发明内容
有鉴于此, 本发明的主要目的在于提供一种识别触摸屏不规则点的方 法及装置, 能识别出触摸屏上的不规则点, 进而提高触摸屏上报的坐标值 的准确度。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种识别触摸屏不规则点的方法, 设置緩存队列; 该方 法还包括:
将周期连续的釆样点的坐标数据保存到緩存队列中;
根据保存的连续四个以上釆样点的坐标数据识别所述连续四个以上釆 样点中是否存在不规则点。
上述方案中, 所述根据保存的连续四个以上釆样点的坐标数据识别所 述连续四个以上釆样点中是否存在不规则点, 为: 根据当前周期与上一周 期釆样点位置变化量的绝对值、 以及所述连续四个以上釆样点加速度差值 的绝对值, 识别所述连续四个以上釆样点中是否存在不规则点。
上述方案中, 所述方法包括: 确定所述当前周期与所述上一周期釆样 点位置变化量的绝对值在 X轴方向和 /或 Y轴方向大于最大偏移量、且小于 对应的最小偏移量; 并且, 在 X轴方向和 /或 Y轴方向的相邻加速度差值的 绝对值大于最大加速度时, 识别出所述连续四个以上釆样点中存在不规则 点。
上述方案中, 所述当前周期与所述上一周期釆样点位置变化量的绝对 值为: 所述当前周期与所述上一周期釆样点 X轴方向和 Y轴方向的位置变 化量的绝对值;
其中, X 轴方向的位置变化量的绝对值为: 所述当前周期与所述上一 周期釆样点 X轴的坐标值的差值的绝对值;
Y轴方向的位置变化量为: 所述当前周期与所述上一周期釆样点 Y轴 的坐标值的差值的绝对值。
上述方案中,所述在 X轴方向和 /或 Y轴方向的相邻加速度差值的绝对 值大于最大加速度, 为: 所述连续四个以上釆样点在 X轴方向和 /或 Y轴方 向的相邻加速度差值的绝对值中一个以上加速度差值的绝对值大于最大加 速度;
所述连续四个以上釆样点在 X轴方向的相邻加速度差值的绝对值的计 算方法为:
将连续四个以上釆样点中相邻的两个釆样点 X轴的坐标值的差值取绝 对值, 依次得到第一速率、 第二速率及第三速率;
将第一速率与第二速率的差值取绝对值, 得到第一加速度;
将第二速率与第三速率的差值取绝对值, 得到第二加速度;
将第一加速度与第二加速度的差值取绝对值, 得到 X轴的相邻加速度 的差值的绝对值;
所述连续四个以上釆样点在 Y轴方向的相邻加速度差值的绝对值的计 算方法为: 将连续四个以上釆样点中相邻的两个釆样点 Y轴的坐标值的差 值取绝对值, 依次得到第四速率、 第五速率及第六速率;
将第四速率与第五速率的差值取绝对值, 得到第三加速度;
将第五速率与第六速率的差值取绝对值, 得到第四加速度;
将第三加速度与第四加速度的差值取绝对值, 得到 Y轴的相邻加速度 的差值的绝对值。
上述方案中, 当所述连续四个以上釆样点为连续四个釆样点时, 所述 根据保存的连续四个以上釆样点的坐标数据识别所述连续四个以上釆样点 中是否存在不规则点, 为: 根据连续四个釆样点中指定的釆样点与其相邻周期釆样点的位置变化 量、 以及除去所述指定釆样点后的三个釆样点中所述指定釆样点之前一个 周期釆样点与剩余两个釆样点的位置变化量, 识别所述连续四个釆样点中 是否存在不规则点。
上述方案中, 所述方法包括: 确定所述指定釆样点与其相邻周期釆样 点的位置变化量之积在 X轴方向和 /或 Y轴方向小于零, 并且, 除去所述指 定釆样点后的三个釆样点中, 所述指定釆样点之前一个周期釆样点与剩余 两个釆样点的位置变化量之积在 X轴方向和 /或 Y轴方向大于等于零时,识 别出所述指定釆样点为不规则点。
上述方案中, 所述指定釆样点与其相邻周期釆样点的位置变化量为: X 轴方向和 Y轴方向的位置变化量; 其中, X轴方向的位置变化量包括: 所 述指定釆样点 X轴的坐标值与其之前一个周期釆样点 X轴的坐标值的差 值、 以及所述指定釆样点之后一个周期釆样点 X轴的坐标值与所述指定釆 样点 X轴的坐标值的差值; Y轴方向的位置变化量包括: 所述指定釆样点 Y轴的坐标值与其之前一个周期釆样点 Y轴的坐标值的差值、 以及所述指 定釆样点之后一个周期釆样点 Y轴的坐标值与所述指定釆样点 Y轴的坐标 值的差值;
所述指定釆样点之前一个周期釆样点与剩余两个釆样点的位置变化量 为 X轴方向和 Y轴方向的位置变化量; 其中, X轴方向的位置变化量包括: 所述指定釆样点之前一个周期釆样点 X轴的坐标值与所述指定釆样点之后 一个周期釆样点 X轴的坐标值的差值、 以及所述指定釆样点之前一个周期 釆样点与所述指定釆样点之后两个周期釆样点 X轴的坐标值的差值; Y轴 方向的位置变化量包括: 所述指定釆样点之前一个周期釆样点 Y轴的坐标 值与所述指定釆样点之后一个周期釆样点 Y轴的坐标值的差值、 以及所述 指定釆样点之前一个周期釆样点与所述指定釆样点之后两个周期釆样点 Y 轴的坐标值的差值。
上述方案中, 该方法进一步包括:
识别出所述连续四个以上釆样点中存在不规则点后, 修改相应釆样点 的坐标数据。
上述方案中, 所述修改相应釆样点的坐标数据, 为:
当釆用 X轴的坐标值识别出存在不规则点时, X轴的坐标值的修改为: 当相邻加速度的差值的绝对值中大于最大加速度的个数小于所述连续四个 以上釆样点 X轴的相邻加速度的差值的绝对值的个数时, 判断计算相邻加 速度的差值的绝对值时未重复使用的釆样点 X轴的坐标值是否修改过, 如 果修改过时, 则不做任何修改, 如果未修改过时, 则将所述未重复使用的 釆样点 X轴的坐标值修改为所述未重复使用的釆样点 X轴的坐标值之后一 个周期釆样点 X轴的坐标值, 当所述未重复使用的釆样点包含当前周期釆 样点时, 将 Pcur.x修改为 Pbef.x;
当相邻加速度的差值的绝对值中大于最大加速度的个数等于所述连续 四个以上釆样点 X轴的相邻加速度的差值的绝对值的个数时, 判断 Pbef.x 是否修改过, 如果修改过, 则不做任何修改, 如果未修改过, 则将 Prel .x 与 Pbef.x的差值取绝对值, 得到第一绝对值, 将 Prel .x与 Pcur.x的差值取 绝对值, 得到第二绝对值, 判断第一绝对值与第二绝对值的差值的绝对值 是否大于 Mx, 如果大于时, 则将 Pbef.x ^ί'爹改为 Pcur.x, 如果不大于时, 将 Pcur.x修改为 Pbef.x;
相应的, 当釆用 Y轴的坐标值识别出存在不规则点时, Y轴的坐标值 的修改为: 当相邻加速度的差值的绝对值中大于 Ay的个数小于所述连续四 个以上釆样点 Y轴的相邻加速度的差值的绝对值的个数时, 判断计算相邻 加速度的差值的绝对值时未重复使用的釆样点 Y轴的坐标值是否修改过, 如果修改过时, 则不做任何修改, 如果未修改过时, 则将所述未重复使用 的釆样点 Y轴的坐标值修改为所述未重复使用的釆样点 Υ轴的坐标值之后 一个周期釆样点的 Υ轴的坐标值,当所述未重复使用的釆样点包含 Pcur时, 将 Pcur.y修改为 Pbef.y;
当相邻加速度的差值的绝对值中大于 Ay的个数等于所述连续四个以上 釆样点 Y轴的相邻加速度的差值的绝对值的个数时, 判断 Pbef.y是否修改 过,如果爹改过时 ,则不#文任何爹改,如果未爹改过时 ,则将 Prepl .y与 Pbef.y 的差值取绝对值, 得到第三绝对值, 将 Prep 1.y与 Pcur.x的差值取绝对值, 得到第四绝对值, 判断第三绝对值与第四绝对值的差值的绝对值是否大于 My, 如果大于时, 则将 Pbef.y修改为 Pcur.x, 如果不大于时, 将 Pcur.y修 改为 Pbef.y;
其中, Pcur、 Pbef及 Prepl表示当前周期釆样点、 上一周期釆样点及上 上周期釆样点, Pcur.x、 Pcur.y, Pbef.x、 Pbef.y, Prep 1.x及 Prepl. y分别表 示当前周期釆样点 X轴和 Y轴的坐标值、上一周期釆样点 X轴和 Y轴的坐 标值及上上周期釆样点 X轴和 Y轴的坐标值, Mx表示在 X轴的最大偏移 值, My表示在 Y轴的最大偏移值。
上述方案中, 所述修改相应釆样点的坐标数据, 为:
当釆用 X轴的坐标值识别出不规则点时, X轴的坐标值的修改为: 将 所述指定釆样点 X轴的坐标值修改为所述指定釆样点之前一个周期釆样点 X轴的坐标值;
相应的, 当釆用 X轴的坐标值识别出不规则点时, Y轴的坐标值的修 改为: 将所述指定釆样点 Y轴的坐标值修改为所述指定釆样点之前一个周 期釆样点 Y轴的坐标值。
上述方案中, 该方法进一步包括:
当緩存队列中保存的釆样点的坐标数据不再用于识别和修改釆样点的 坐标数据时, 上报该釆样点的坐标数据。 上述方案中, 当所述连续四个以上釆样点为连续四个釆样点时, 所述 识别、 爹改, 为:
X轴的坐标值的识别、 爹改, 为: 判断 Pbef.x与 Pcur.x的差值的绝对 值是否大于 Mx, 确定大于时, 则进一步判断 Pbef.y与 Pcur.y的差值的绝对 值是否小于 Ny, 确定小于时, 则进一步判断所述连续四个釆样点的 X轴的 加速度的差值的绝对值是否大于 Ax, 确定大于时, 则判断 Pbef.x是否修改 过, 如果修改过, 则不做任何修改, 如果未修改过, 则判断所述第一绝对 值与所述第二绝对值的差值的绝对值是否大于 Mx,如果大于时,则将 Pbef.x 爹改为 Pcur.x, 如果不大于时, 将 Pcur.x 爹改为 Pbef.x;
之后将 Pre2.x减去 Prel.x, 得到第一差值; 将 Prel.x减去 Pbef.x, 得到 第二差值; 判断所述第一差值与所述第二差值之积是否小于零, 确定小于 零时, 则将 Pre2.x减去 Pbef.x, 得到第三差值, 将 Pre2.x减去 Pcur.x, 得到 第四差值, 进一步判断所述第三差值与所述第四差值之积是否大于等于零, 确定大于等于时, 将 Pprel.x修改为 Ppre2.x;
相应的, Y轴的坐标值的识别、 爹改, 为: 判断 Pbef.y与 Pcur.y的差 值的绝对值是否大于 My, 确定大于时, 则进一步判断 Pbef.x与 Pcur.x的差 值的绝对值是否小于 Nx, 确定小于时, 则进一步判断所述连续四个釆样点 的 Y轴的加速度的差值的绝对值是否大于 Ay,确定大于时,则再判断 Pbef.y 是否修改过, 如果修改过, 则不做任何修改, 如果未修改过, 则判断所述 第三绝对值与所述第四绝对值的差值的绝对值是否大于 My, 如果大于时, 则将 Pbef.y修改为 Pcur.x, 如果不大于时, 将 Pcur.y修改为 Pbef.y;
之后将 Pre2.y减去 Prel.y, 得到第五差值; 将 Pre l.y减去 Pbef.y, 得到 第六差值; 判断所述第五差值与所述第六差值之积是否小于零, 确定小于 零时, 则将 Pre2.y减去 Pbef.y, 得到第七差值, 将 Pre2.y减去 Pcur.x, 得到 第八差值; 进一步判断所述第七差值与所述第八差值之积是否大于等于零, 确定大于等于时, 将 Ppre 1.y修改为 Ppre2.y;
其中, Ppre2表示上上周期之前一个周期釆样点, Ppre2.x和 Ppre2.y表 示上上周期之前一个周期釆样点 X轴和 Y轴的坐标值, Ny表示 Mx对应 的在 Y轴的最大偏移值, Ax表示在 X轴的最大加速度, Nx表示 My对应 的在 X轴的最大偏移值, Ay表示在 Y轴的最大加速度。
上述方案中, 当所述连续四个以上釆样点为连续四个釆样点时, 所述 识别、 爹改, 为:
X 轴的坐标值的识别、 修改, 为: 判断所述第一差值与所述第二差值 之积是否小于零, 确定小于零时, 则进一步判断所述第三差值与所述第四 差值之积是否大于等于零, 确定大于等于时, 将 Pprel.x修改为 Ppre2.x; 之后判断 Pbef.x与 Pcur.x的差值的绝对值是否大于 Μχ , 确定大于时, 则进一步判断 Pbef.y与 Pcur.y的差值的绝对值是否小于 Ny, 确定小于时, 进一步判断所述连续四个釆样点的 X轴的加速度的差值的绝对值是否大于 Ax, 确定大于时, 判断 Pbef.x是否修改过, 如果修改过, 则不做任何修改, 如果未修改过, 则进一步判断判断所述第一绝对值与所述第二绝对值的差 值的绝对值是否大于 Mx, 如果大于时, 则将 Pbef.x ^ί'爹改为 Pcur.x, 如果不 大于时, 将 Pcur.x修改为 Pbef.x;
相应的, Y 轴的坐标值的识别、 修改, 为: 判断所述第五差值与所述 第六差值之积是否小于零, 确定小于零时, 则进一步判断所述第七差值与 所述第八差值之积是否大于等于零, 确定大于等于时, 将 Pprel.y修改为 Ppre2.y;
之后判断 Pbef.y与 Pcur.y的差值的绝对值是否大于 My, 确定大于时, 则进一步判断 Pbef.x与 Pcur.x的差值的绝对值是否小于 Nx, 确定小于时, 进一步判断所述连续四个釆样点的 Y轴的加速度的差值的绝对值是否大于 Ay, 确定大于时, 判断 Pbef.y是否修改过, 如果修改过, 则不做任何修改, 如果未修改过, 则进一步判断第三绝对值与第四绝对值的差值的绝对值是 否大于 My, 如果大于时, 则将 Pbef.y修改为 Pcur.y, 如果不大于时, 则将 Pcur.y修改为 Pbef.y。
本发明还提供了一种识别触摸屏不规则点的装置, 该装置包括: 设置 模块、 緩存队列及识别模块; 其中,
设置模块, 用于设置緩存队列;
緩存队列, 用于存储周期连续的釆样点的坐标数据;
识别模块, 用于将周期连续的釆样点的坐标数据保存到緩存队列中, 根据保存的连续四个以上釆样点的坐标数据识别所述连续四个以上釆样点 中是否存在不规则点。
上述方案中, 该装置进一步包括修改模块, 用于在收到识别模块发送 的不规则点的坐标数据后, 修改相应釆样点的坐标数据;
识别模块, 还用于在识别出不规则点后, 将不规则点的坐标数据发送 给修改模块。
上述方案中, 该装置进一步包括上报模块, 用于在收到处理模块发送 的釆样点的坐标数据后, 上艮釆样点的坐标数据;
所述处理模块, 还用于当緩存队列中保存的釆样点的坐标数据不再用 于识别和修改釆样点的坐标数据时, 将该釆样点的坐标数据发送给上报模 块。
本发明提供的识别触摸屏不规则点的方案, 设置緩存队列, 将周期连 续的釆样点的坐标数据保存到緩存队列中, 根据保存的连续四个以上釆样 点的坐标数据识别所述连续四个以上釆样点中是否存在不规则点, 如此, 能识别出触摸屏轨迹中的不规则点, 确定所述连续四个以上釆样点中存在 不规则点后, 并修改相应釆样点的坐标数据, 进而提升用户体验。
另外, 利用加速度与速度的一致性相结合的方法判断法并滤除不规则 点, 如此, 能更准确地识别不规则点。 附图说明
图 1为本发明识别触摸屏不规则点的方法流程示意图;
图 2为本发明实施例一识别和滤除触摸屏不规则点的方法流程示意图; 图 3为本发明实施例二识别和滤除触摸屏不规则点的方法流程示意图; 图 4为本发明识别触摸屏不规则点的装置结构示意图。 具体实施方式
下面结合附图及具体实施例对本发明再作进一步详细的说明。
本发明识别触摸屏不规则点的方法, 如图 1所示, 包括以下步骤: 步骤 100: 设置緩存队列;
这里, 所设置的緩存队列的容量能保存至少四个釆样点的坐标数据, 所述釆样点的坐标数据包含 X轴和 Y轴的坐标值。
所述緩存队列用于存储触摸屏工作过程中连续周期釆集、 且经过处理 的釆样点的坐标数据。 其中, 所述经过处理的釆样点的坐标数据是指: 釆 集到的信号经过 A/D转化, 然后再经过坐标的转换和映射后, 得到的点的 坐标数据。
步骤 101 : 将周期连续的釆样点的坐标数据保存到緩存队列中, 根据保 存的连续四个以上釆样点的坐标数据识别所述连续四个以上釆样点中是否 存在不规则点。
这里, 所述连续以上四个釆样点的坐标数据包含当前周期的釆样点、 及当前周期之前周期的釆样点的坐标数据。
所述根据保存的连续四个以上釆样点的坐标数据识别所述连续四个以 上釆样点中是否存在不规则点, 具体为:
根据当前周期与上一周期釆样点位置变化量的绝对值、 以及所述连续 四个以上釆样点加速度差值的绝对值识别所述连续四个以上釆样点中是否 存在不规则点。
更具体地, 确定所述当前周期与上一周期釆样点位置变化量的绝对值 在 X轴方向和 /或 Y轴方向大于最大偏移量、且小于对应的最小偏移量; 并 且,在 X轴方向和 /或 Y轴方向的相邻加速度差值的绝对值大于最大加速度 时, 识别出所述连续四个以上釆样点中存在不规则点。
其中, X轴方向和 Y轴方向分别进行识别, 即: 确定所述当前周期与 上一周期釆样点位置变化量的绝对值在 X轴方向大于最大偏移量、 且小于 对应的最小偏移量; 并且, 在 X轴方向的相邻加速度差值的绝对值大于最 大加速度时, 识别出所述连续四个以上釆样点中存在不规则点; 确定所述 当前周期与上一周期釆样点位置变化量的绝对值在 Y轴方向大于最大偏移 量、 且小于对应的最小偏移量; 并且, 在 Y轴方向的相邻加速度差值的绝 对值大于最大加速度时, 识别出所述连续四个以上釆样点中存在不规则点。
这里, 所述当前周期与上一周期釆样点位置变化量的绝对值为: 当前 周期与上一周期釆样点 X轴方向和 Y轴方向的位置变化量的绝对值。其中, X轴方向的位置变化量的绝对值为: 当前周期与上一周期釆样点 X轴的坐 标值的差值的绝对值; Y 轴方向的位置变化量为: 当前周期与上一周期釆 样点 Y轴的坐标值的差值的绝对值。 所述确定所述当前周期与上一周期釆 样点位置变化量的绝对值在 X轴方向大于最大偏移量、 且小于对应的最小 偏移量是指: 当前周期与上一周期釆样点 X轴的坐标值的差值的绝对值大 于 X轴的最大偏移量, 且当前周期与上一周期釆样点 Y轴的坐标值的差值 的绝对值小于对应的最小偏移量; 相应的, 所述确定所述当前周期与上一 周期釆样点位置变化量的绝对值在 Y轴方向大于最大偏移量、 且小于对应 的最小偏移量是指: 当前周期与上一周期釆样点 Y轴的坐标值的差值的绝 对值大于 Y轴的最大偏移量, 且当前周期与上一周期釆样点 X轴的坐标值 的差值的绝对值 d、于对应的最小偏移量。
所述在 X轴方向和 /或 Y轴方向的相邻加速度差值的绝对值大于最大加 速度, 具体为:
所述连续四个以上釆样点在 X轴方向和 /或 Y轴方向的相邻加速度差值 的绝对值中一个以上加速度差值的绝对值大于最大加速度;
其中, X轴方向和 Y轴方向分别进行确定, 具体地, 当确定所述当前 周期与上一周期釆样点位置变化量的绝对值在 X轴方向大于最大偏移量、 且小于对应的最小偏移量后, 并且, 所述连续四个以上釆样点在 X轴方向 的相邻加速度差值的绝对值中一个以上加速度差值的绝对值大于最大加速 度, 识别出所述不规则点; 和 /或, 当确定所述当前周期与上一周期釆样点 位置变化量的绝对值在 Y轴方向大于最大偏移量、 且小于对应的最小偏移 量后, 并且, 所述连续四个以上釆样点在 Y轴方向的相邻加速度差值的绝 对值中一个以上加速度差值的绝对值大于最大加速度, 识别出所述不规则 点。
所述连续四个以上釆样点在 X轴方向的相邻加速度差值的绝对值的计 算方法为:
将连续四个以上釆样点中相邻的两个釆样点 X轴的坐标值的差值取绝 对值, 依次得到第一速率、 第二速率及第三速率;
将第一速率与第二速率的差值取绝对值, 得到第一加速度;
将第二速率与第三速率的差值取绝对值, 得到第二加速度;
将第一加速度与第二加速度的差值取绝对值, 得到 X轴的相邻加速度 的差值的绝对值;
所述连续四个以上釆样点在 Y轴方向的相邻加速度差值的绝对值的计 算方法为: 将连续四个以上釆样点中相邻的两个釆样点 Y轴的坐标值的差 值取绝对值, 依次得到第四速率、 第五速率及第六速率; 将第四速率与第五速率的差值取绝对值, 得到第三加速度; 将第五速率与第六速率的差值取绝对值, 得到第四加速度;
将第三加速度与第四加速度的差值取绝对值, 得到 Y轴的相邻加速度 的差值的绝对值。
当釆用连续四个釆样点的坐标数据判断时, 识别的具体流程为: 对于 X 轴的坐标值的识别为: 判断是否满足 |Pbef.x-Pcur.x|>Mx , 且 |Pbef.y-Pcur.y|<Ny, 如果不满足, 则认为所述连续四个釆样点中不存在不规 则点, 如果满足, 进一步判断所述连续四个釆样点的 X轴的加速度的差值 A1 是否小于等于 Ax, 如果小于等于, 则认为所述连续四个釆样点中不存 在不规则点, 如果大于, 则认为所述连续四个釆样点中存在不规则点; 其 中, Pcur和 Pbef分别表示当前周期釆样点和上一周期釆样点, Pcur.x、 Pbef.x、 Pcur.y及 Pbef.y分别表示当前周期釆样点 X轴的坐标值、 上一周期釆样点 X轴的坐标值、 当前周期釆样点 Y轴的坐标值及上一周期釆样点 Y轴的坐 标值, Mx表示在 X轴的最大偏移值, Ny表示对应的在 Y轴的最大偏移值, Ax表示在 X轴的最大加速度。
所述连续四个釆样点的 X轴的加速度差值的绝对值的计算方法, 具体 为:
Vl .x=| Pprel .x-Ppre2.x|;
V2.x=| Pbef.x-Pprel .x|;
V3.x=| Pcur.x-Pbef.x|;
Axl=|V2.x-Vl .x|;
Ax2=|V3.x-V2.x|;
Al=|Ax2-Axl |;
其中, Pprel .x表示上上周期釆样点 X轴的坐标值, Ppre2.x表示上上周 期之前一个周期釆样点 X轴的坐标值, Vl .x、 V2.x及 V3.x表示连续四个周 期内釆样点在 X轴的移动速率, Axl和 Ax2表示连续四个周期内釆样点在 X轴的加速度。
进行上述判断的依据为: 根据滑动的轨迹分析, 大部分不规则点一般 是沿着一个方向如沿 X轴或 γ轴的方向偏离轨迹, 且偏移很大, 而另一个 坐标轴的坐标偏移一般 4艮小;
在触摸屏正常的轨迹滑动中, 存在用户滑动的最大加速度, 因此, 一 般地, 如果轨迹中某个点对应的加速度在这个范围外, 并且相邻的两个加 速度的差值超过 Ax则可以认为该点是不规则点。
在实际应用时, 触摸屏控制芯片会定时读取触摸屏上的电平值, 可以 认为相邻的釆样点之间的时间间隔都是一样的, 因此, 两个相邻的连续点 的 X轴和 Y轴的坐标值的差值 ,就可以认为是正比于 X轴和 Y轴的方向的 移动速度, 为了减小计算量, 进而可以认为这个差值就是 X轴和 Y轴方向 上的速度。 同样的, 如果相邻的两个速度的差值, 可以看作是它们对应的 加速度。 因此, 根据以上分析, 可以利用 Mx、 My、 Nx、 Ny、 Ax及 Ay, 进行不规则点的判断。 其中, My表示在 Y轴的最大偏移值, Nx表示对应 的在 X轴的最大偏移值, Ay表示在 Y轴的最大加速度。
对于 Y轴的坐标值的判断与 X轴的坐标值的判断完全相同, 为: 判断 是否满足 |Pbef.y-Pcur.y|>My, 且 |Pbef.x-Pcur.x|<Nx, 如果不满足, 则认为所 述连续四个釆样点中不存在不规则点, 如果满足, 进一步判断所述连续四 个釆样点的 Y轴的加速度的差值 A2是否小于等于 Ay, 如果小于等于, 则 认为所述连续四个釆样点中不存在不规则点, 如果大于, 则认为所述连续 四个釆样点中存在不规则点。
其中, 所述连续四个釆样点的 Y轴的加速度的差值的绝对值的计算方 法与 X轴的加速度的差值的绝对值的计算方法完全相同, 具体为:
Vl .y=| Pprel .y -Ppre2.y |; V2.y=| Pbef.y-Pprel.y|;
V3.y=| Pcur.y-Pbef.y|;
Ayl=|V2.y-Vl.y|;
Ay2=|V3.y-V2.y|;
A2=|Ay2-Ayl |;
其中, Pprel.y表示上上周期釆样点 Y轴的坐标值, Ppre2.y表示上上周 期之前一个周期釆样点 Y轴的坐标值, Vl.y、 V2.y及 V3.y表示连续四个周 期内釆样点在 Y轴的移动速率, Ayl和 Ay2表示连续四个周期内釆样点在 Y轴的加速度。
这里, 依据所使用的触摸屏对应的液晶显示器 (LCD, Liquid Crystal Display ) 的分辨率, 设置 Mx、 My、 Nx、 Ny、 Ax及 Ay, 在实际使用过程 中, 可以根据上报的滑动轨迹的坐标值通过人眼找到不规则点, 将不规则 点的坐标值与其相邻点的坐标值的差值作为 Mx、 My、 Nx及 Ny的取值; 对于 Ax及 Ay的取值,在触摸屏上尽可能快的沿着 X轴或 Y轴滑动,根据 滑动轨迹的坐标值, 利用上述连续四个釆样点的加速度的差值的计算方法 即可得到 Ax及 Ay; 其中, 相邻点既可以是不规则点之前上报的点, 还可 以是不规则点之后上报的点。 在实际使用过程中, Mx、 My、 Nx、 Ny、 Ax 及 Ay的取值越小, 则釆用上述方法就能越准确地识别不规则点。
识别出所述连续四个以上釆样点中存在不规则点后, 该方法还可以进 一步包括:
修改相应釆样点的坐标数据。
根据上述方法, 识别出连续四个釆样点中存在不规则点后, 所述修改 相应的釆样点的坐标数据, 具体为:
对于 X轴的坐标值的修改为: 判断 Pbef.x是否修改过, 如果修改过, 则不做任何修改, 如果未修改过, 则进一步判断是否满足 ||Pprel .x-Pbef.x卜 |Pprel .x-Pcur.x||>Mx,如果满足, 则将 Pbef.x 爹改为 Pcur.x, 如果不满足, 则将 Pcur.x修改为 Pbef.x;
相应的, 对于 Y轴的坐标值的爹改与 X轴的坐标值的爹改完全相同, 为: 判断 Pbef.y是否修改过, 如果修改过, 则不做任何修改, 如果未修改 过,则进一步判断是否满足 ||Pprel .y-Pbef.y|-|Pprel .y-Pcur.y||>My,如果满足, 则将 Pbef.y修改为 Pcur.y, 如果不满足, 则将 Pcur.y修改为 Pbef.y。
其中, 在緩存队列中保存的釆样点的坐标数据以特定的数据结构保存, 数据结构包括釆样点的未进行不规则点识别操作的坐标数据、 以及进行识 别、 修改操作后的坐标数据, 如果这两个坐标数据的值相等, 则表明该点 的坐标数据未修改过, 否则, 表明该点的坐标数据进行过修改。
如果 Pbef.x修改过, 说明在上一个处理流程中, Pbef.x 已经进行了修 改, 此时, 则不需要再进行修改; 同样的, 如果 Pbef.y修改过, 说明在上 一个处理流程中, Pbef.y已经进行了修改, 此时, 则不需要再进行修改。 当 Pbef.x修改过时, 釆用修改过的 Pbef.x进行上述判断, 同样的, 当 Pbef.y 修改过时, 釆用修改过的 Pbef.y进行上述判断。
为了确保后续操作的顺利进行,在进一步判断所述连续四个釆样点的 X 轴的加速度的差值 A1是否小于等于 Ax之前, 该方法还可以进一步包括: 判断緩存队列中是否保存至少四个釆样点的坐标数据, 如果是, 再进 一步判断所述连续四个釆样点的 X轴的加速度的差值 A1是否小于等于 Ax, 如果不是, 则不做任何操作;
相应的, 在进行 Y轴的坐标值的判断时, 在进一步判断所述连续四个 釆样点的 Y轴的加速度的差值 A2是否小于等于 Ay之前, 该方法还可以进 一步包括:
判断緩存队列中是否保存至少四个釆样点的坐标数据, 如果是, 再进 一步判断所述连续四个釆样点的 Y轴的加速度的差值 A2是否小于等于 Ay, 如果不是, 则不做任何操作。
上面描述的方法可以称为利用加速度的识别方法。
利用加速度的识别方法同样适用于连续五个以上釆样点的情况, 具体 为:
对于 X轴的坐标值的识别为: 判断 Pbef.x与 Pcur.x的差值的绝对值是 否大于 Mx, 如果大于, 则进一步判断 Pbef.y与 Pcur.y的差值的绝对值是否 小于 Ny, 如果小于, 则进一步判断所述连续五个以上釆样点 X轴的相邻加 速度的差值的绝对值中是否至少有一个加速度的差值的绝对值大于 Ax, 如 果至少有一个, 则识别出所述连续五个以上釆样点中存在不规则点。
其中,以连续五个釆样点为例,连续五个釆样点包括 Pcur、 Pbef、 Pprel、 Ppre2、 及上上周期之前周期的上一周期釆样点, 上上周期之前周期的上一 周期釆样点用 Ppre3表示; 当判断出 Pbef.x与 Pcur.x的差值的绝对值大于 Mx, 且 Pbef.y与 Pcur.y的差值的绝对值小于 Ny后, 釆用上述连续五个釆 样点计算加速度差值的绝对值的方法得到 A3和 A4,判断 A3和 A4中是否 至少有一个大于 Ax,如果是,则认为所述连续五个釆样点中存在不规则点。 其中,计算 A3所用的釆样点的 X轴的坐标值包括: Ppre3.x、 Ppre2.x、 Pprel.x 及 Pbef.x, 计算 A4所用的釆样点的 X轴的坐标值包括: Ppre2.x、 Pprel.x, Pbef.x及 Pcur.x。
当判断出 Pbef.x与 Pcur.x的差值的绝对值小于等于 Mx时, 则认为所 述连续五个以上釆样点中不存在不规则点;当进一步判断出 Pbef.y与 Pcur.y 的差值的绝对值大于等于 Ny时,则认为所述连续五个以上釆样点中不存在 不规则点; 当进一步判断出所述连续五个以上釆样点 X轴的相邻加速度的 差值的绝对值中没有一个加速度的差值的绝对值大于 Ax时,则认为所述连 续五个以上釆样点中不存在不规则点。
相应的, 对于 Y轴的坐标值的识别与 X轴的坐标值的识别完全相同, 为: 判断 Pbef.y与 Pcur.y的差值的绝对值是否大于 My, 如果大于, 则进一 步判断 Pbef.x与 Pcur.x的差值的绝对值是否小于 Nx, 如果小于, 则进一步 判断所述连续五个以上釆样点 Y轴的相邻加速度的差值的绝对值中是否至 少有一个加速度的差值的绝对值大于 Ay, 如果至少有一个, 则识别出所述 连续五个以上釆样点中存在不规则点。
当识别出所述连续五个以上釆样点中存在不规则点后, 所述修改相应 的釆样点的坐标数据, 具体为:
对于 X轴的坐标值的修改为: 当相邻加速度的差值的绝对值中大于 Ax 的个数小于所述连续五个以上釆样点 X轴的相邻加速度的差值的绝对值的 个数时, 判断计算相邻加速度的差值的绝对值时未重复使用的釆样点 X轴 的坐标值是否修改过, 如果修改过, 则不做任何修改, 如果未修改过, 则 将所述未重复使用的釆样点 X轴的坐标值修改为所述未重复使用的釆样点 X轴的坐标值之后一个周期釆样点的 X轴的坐标值, 当所述未重复使用的 釆样点包含当前釆样点时, 将 Pcur.x修改为 Pbef.x;
当相邻加速度的差值的绝对值中大于 Ax 的个数等于所述连续五个以 上釆样点 X轴的相邻加速度的差值的绝对值的个数时, 判断 Pbef.x是否修 改过, 如果修改过, 则不做任何修改, 如果未修改过, 则将 Pre 1.x与 Pbef.x 的差值取绝对值 , 得到第一绝对值 , 将 Pre 1 ·χ与 Pcur.x的差值取绝对值 , 得到第二绝对值, 判断第一绝对值与第二绝对值的差值的绝对值是否大于 Mx, 如果大于, 则将 Pbef.x 爹改为 Pcur.x, 否则, 将 Pcur.x 爹改为 Pbef.x。
其中, 以连续五个釆样点为例, 计算相邻加速度的差值的绝对值时未 重复使用的釆样点 X轴的坐标值包括 Ppre3.x和 Pcur.x; 当 A3大于 Ax,且 A4小于等于 Ax时, 判断 Ppre3.x是否修改过, 如果修改过, 则不做任何修 改, 如果未修改过, 则 Ppre3.x修改为 Ppre2.x; 当 A4大于 Ax, 且 A3小于 等于 Ax时, 则将 Pcur.x修改为 Pbef.x; 当 A3和 A4均大于 Ax时, 判断 Pbef.x是否修改过, 如果修改过, 则不做任何修改, 如果未修改过, 则将 Prel .x与 Pbef.x的差值取绝对值, 得到第一绝对值, 将 Pre 1.x与 Pcur.x的 差值取绝对值, 得到第二绝对值, 判断第一绝对值与第二绝对值的差值的 绝对值是否大于 Mx,如果大于,则将 Pbef.x修改为 Pcur.x, 否则,将 Pcur.x 爹改为 Pbef.x。
相应的, 对于 Y轴的坐标值的爹改方法与 X轴的坐标值的爹改方法相 同, 为:
当相邻加速度的差值的绝对值中大于 Ay的个数小于所述连续五个以上 釆样点 Y轴的相邻加速度的差值的绝对值的个数时, 判断计算相邻加速度 的差值的绝对值时未重复使用的釆样点 Y轴的坐标值是否修改过, 如果修 改过, 则不做任何修改, 如果未修改过, 则将所述未重复使用的釆样点 Y 轴的坐标值修改为所述未重复使用的釆样点 Y轴的坐标值之后一个周期釆 样点的 Y轴的坐标值, 当所述未重复使用的釆样点包含当前釆样点时, 将 Pcur.y修改为 Pbef.y;
当相邻加速度的差值的绝对值中大于 Ay的个数等于所述连续五个以上 釆样点 Y轴的相邻加速度的差值的绝对值的个数时, 判断 Pbef.y是否修改 过, 如果修改过, 则不做任何修改, 如果未修改过, 则将 Prepl .y与 Pbef.y 的差值取绝对值, 得到第三绝对值, 将 Prep 1.y与 Pcur.x的差值取绝对值, 得到第四绝对值, 判断第三绝对值与第四绝对值的差值的绝对值是否大于 My, 如果大于, 则将 Pbef.y爹改为 Pcur.x, 否则, 将 Pcur.y爹改为 Pbef.y。
由于在正常的触摸屏滑动轨迹中, 连续周期的釆样点的 X轴或 Y轴的 坐标值是持续变化的, 即递增或递减, 如果有一个点与上一周期釆样点的 变化不一致, 且该点与上上周期釆样点的变化也不一致, 则认为该点为不 规则点。 因此, 当釆用连续四个釆样点的坐标数据判断时, 所述根据保存 的连续四个釆样点的坐标数据识别所述连续四个釆样点中是否存在不规则 点, 具体为:
根据连续四个釆样点中指定的釆样点与其相邻周期釆样点的位置变化 量、 以及除去所述指定釆样点后的三个釆样点中所述指定釆样点之前一个 周期釆样点与剩余两个釆样点的位置变化量, 识别所述连续四个釆样点中 是否存在不规则点。
具体地, 确定所述指定釆样点与其相邻周期釆样点的位置变化量之积 在 X轴方向和 /或 Y轴方向小于零, 并且, 除去所述指定釆样点后的三个釆 样点中, 所述指定釆样点之前一个周期釆样点与剩余两个釆样点的位置变 化量之积在 X轴方向和 /或 Y轴方向大于等于零时,识别出所述指定釆样点 为不规则点。
其中, X轴方向和 Y轴方向分别进行确定, 即: 确定所述指定釆样点 与其相邻周期釆样点的位置变化量之积在 X轴方向小于零, 并且, 除去所 述指定釆样点后的三个釆样点中, 所述指定釆样点之前一个周期釆样点与 剩余两个釆样点的位置变化量之积在 X轴方向大于等于零时, 识别出所述 连续四个釆样点中存在不规则点; 和 /或, 所述指定釆样点与其相邻周期釆 样点的位置变化量之积在 Y轴方向小于零, 并且, 除去所述指定釆样点后 的三个釆样点中, 所述指定釆样点之前一个周期釆样点与剩余两个釆样点 的位置变化量之积 Y轴方向大于等于零时, 识别出所述指定釆样点为不规 则点。
这里, 所述指定釆样点与其相邻周期釆样点的位置变化量为: X 轴方 向和 Y轴方向的位置变化量; 其中, X轴方向的位置变化量包括: 所述指 定釆样点 X轴的坐标值与其之前一个周期釆样点 X轴的坐标值的差值、 以 及所述指定釆样点之后一个周期釆样点 X轴的坐标值与所述指定釆样点 X 轴的坐标值的差值; Y轴方向的位置变化量包括: 所述指定釆样点 Y轴的 坐标值与其之前一个周期釆样点 Y轴的坐标值的差值、 以及所述指定釆样 点之后一个周期釆样点 Y轴的坐标值与所述指定釆样点 Y轴的坐标值的差 值;
所述指定釆样点之前一个周期釆样点与剩余两个釆样点的位置变化量 为 X轴方向和 Y轴方向的位置变化量; 其中, X轴方向的位置变化量包括: 所述指定釆样点之前一个周期釆样点 X轴的坐标值与所述指定釆样点之后 一个周期釆样点 X轴的坐标值的差值、 以及所述指定釆样点之前一个周期 釆样点与所述指定釆样点之后两个周期釆样点 X轴的坐标值的差值; Y轴 方向的位置变化量包括: 所述指定釆样点之前一个周期釆样点 Y轴的坐标 值与所述指定釆样点之后一个周期釆样点 Y轴的坐标值的差值、 以及所述 指定釆样点之前一个周期釆样点与所述指定釆样点之后两个周期釆样点 Y 轴的坐标值的差值。
相应的, 识别出所述指定釆样点为不规则点后, 所述修改相应釆样点 的坐标数据, 具体为:
当釆用 X轴的坐标值识别出不规则点时, X轴的坐标值的修改为: 将 所述指定釆样点 X轴的坐标值修改为所述指定釆样点之前一个周期釆样点 X轴的坐标值;
相应的, 当釆用 X轴的坐标值识别出不规则点时, Y轴的坐标值的修 改为: 将所述指定釆样点 Y轴的坐标值修改为所述指定釆样点之前一个周 期釆样点 Y轴的坐标值。
上述方法, 釆用公式进行描述, 识别的具体流程为:
对于 X 轴的坐标值的识别为: 判断是否满足 ( Ppre2.x-Pprel .x ) ( Pprel .x-Pbef.x ) <0 , 且 ( Ppre2.x-Pbef.x ) ( Ppre2.x-Pcur.x ) >=0 , 如果 满足, 则识别出 Pprel为不规则点, 如果不满足, 则认为所述连续四个釆样 点中不存在不规则点;
相应的, 对于 Y轴的坐标值的判断与 X轴的坐标值的判断过程完全相 同, 为: 判断是否满足 ( Ppre2.y-Pprel.y ) ( Pprel . y-Pbef.y ) <0 , 且 ( Ppre2.y-Pbef.y ) ( Ppre2.y-Pcur.y ) >=0, ^口果满足, 则 i只另 出 Pprel 为 不规则点, 如果不满足, 则认为所述连续四个釆样点中不存在不规则点。
这里, 所述指定釆样点为 Pprel。
相应的,识别出 Pprel为不规则点后, 所述修改相应的釆样点的坐标数 据, 具体为:
对于 X轴的坐标值的修改为: 将 Pprel.x修改为 Ppre2.x;
相应的, 对于 Y轴的坐标值的爹改与 X轴的坐标值的爹改完全相同, 为: 将 Pprel . y修改为 Ppre2.y„
为了确保后续操作的顺利进行, 在判断是否满足(Ppre2.x-Pprel.x ) ( Pprel.x-Pbef.x ) <0, 且 ( Ppre2.x-Pbef.x ) ( Ppre2.x-Pcur.x ) >=0之前, 该方法还可以进一步包括:
判断緩存队列中是否保存至少四个釆样点的坐标数据, 如果是, 再判 断是否满足 ( Ppre2.x-Pprel.x ) ( Pprel.x-Pbef.x ) <0, 且 ( Ppre2.x-Pbef.x ) ( Ppre2.x-Pcur.x ) >=0, 如果不是, 则不做任何操作;
相应的, 在进行 Y 轴的坐标值的判断时, 在判断是否满足 ( Ppre2.y-Pprel.y ) ( Pprel . y-Pbef.y ) <0 , 且 ( Ppre2.y-Pbef.y ) ( Ppre2.y-Pcur.y ) >=0之前, 该方法还可以进一步包括:
判断緩存队列中是否保存至少四个釆样点的坐标数据, 如果是, 再判 断是否满足 ( Ppre2.y-Pprel.y ) ( Pprel . y-Pbef.y ) <0, 且( Ppre2.y-Pbef.y ) ( Ppre2.y-Pcur.y ) >=0, 如果不是, 则不做任何操作。
上面描述的识别方法可以称为利用速度的一致性的识别方法。
该方法还可以进一步包括: 识别出不存在不规则点后, 不做任何修改。 在实际使用过程中, 当緩存队列中保存的一个釆样点的坐标数据不再 用于识别和修改釆样点的坐标数据时, 则上报该釆样点的坐标数据, 之后 该釆样点的坐标数据会被新的釆样点的坐标数据覆盖, 重新开始判断, 并 在确定存在不规则点后, 修改相应的釆样点的坐标数据。
在实际使用过程中, 为了能更准确地识别不规则点, 可以将上述两种 方法结合。
实施例一:
本实施例以 X轴的坐标值的处理流程为例, 本实施例识别和滤除触摸 屏不规则点的方法, 如图 2所示, 包括以下步骤:
步骤 200: 设置緩存队列;
步骤 201 : 将周期连续的釆样点的坐标数据保存到緩存队列中, 判断是 否满足 |Pbef.x-Pcur.x|>Mx, JL|Pbef.y-Pcur.y|<Ny, 如果不满足, 则执行步骤 207, 如果满足, 则执行步骤 202;
步骤 202: 判断緩存队列中是否保存至少四个釆样点的坐标数据, 如果 是, 则执行步骤 203 , 否则, 执行步骤 209;
步骤 203:判断连续四个釆样点的 X轴的加速度的差值 A1是否小于等 于 Ax, 如果小于等于, 则执行步骤 207 , 如果大于, 则执行步骤 204; 步骤 204: 判断 Pbef.x是否修改过, 如果修改过, 则执行步骤 207, 如 果未修改过, 则执行步骤 205;
步骤 205: 进一步判断是否满足 ||Pprel.x-Pbef.x|-|Pprel.x-Pcur.x||>Mx, 如果满足, 则执行步骤 206a, 否则, 执行步骤 206b;
步骤 206a: 将 Pbef.x修改为 Pcur.x, 之后执行步骤 207;
步骤 206b: 将 Pcur.x修改为 Pbef.x, 之后执行步骤 207;
步骤 207: 判断是否满足 ( Ppre2.x-Pprel .x ) ( Pprel.x-Pbef.x ) <0, 且 ( Ppre2.x-Pbef.x ) ( Ppre2.x-Pcur.x ) >=0, ^口果满足, 则执行步聚 208 , 否 则, 执行步骤 209;
这里, 如果在进行本步骤的判断之前, Pbef.x或 Pcur.x已经进行修改, 此时, 釆用修改后的值进行判断。
步骤 208: 将 Pprel.x修改为 Ppre2.x, 之后执行步骤 209;
步骤 209: 结束当前处理流程。
需要说明的是: Y轴的坐标值的处理流程与 X轴的坐标值的处理流程 完全相同, 这里不再赘述。
实施例二:
本实施例以 X轴的坐标值的处理流程为例, 本实施例识别和滤除触摸 屏不规则点的方法, 如图 3所示, 包括以下步骤:
步骤 300: 设置緩存队列;
步骤 301 : 将周期连续的釆样点的坐标数据保存到緩存队列中, 判断緩 存队列中是否保存至少四个釆样点的坐标数据, 如果是, 则执行步骤 302 , 否则, 执行步骤 309;
步骤 302: 判断是否满足 ( Ppre2.x-Pprel .x ) ( Pprel.x-Pbef.x ) <0, 且 ( Ppre2.x-Pbef.x ) ( Ppre2.x-Pcur.x ) >=0, ^口果满足, 则执行步聚 303 , 否 则, 执行步骤 304;
步骤 303: 将 Pprel.x修改为 Ppre2.x, 之后执行步骤 304;
步骤 304: 判断是否满足 |Pbef.x-Pcur.x|>Mx, JL|Pbef.y-Pcur.y|<Ny, 如 果不满足, 则执行步骤 309 , 如果满足, 则执行步骤 305;
步骤 305:判断连续四个釆样点的 X轴的加速度的差值 A1是否小于等 于 Ax, 如果小于等于, 则执行步骤 309 , 如果大于, 则执行步骤 306; 这里, 如果在进行本步骤的判断之前, Pprel.x已经进行了修改, 此时, 釆用修改后的值进行判断。
步骤 306: 判断 Pbef.x是否修改过, 如果修改过, 则执行步骤 309, 如 果未修改过, 则执行步骤 307;
步骤 307: 进一步判断是否满足 ||Pprel.x-Pbef.x|-|Pprel.x-Pcur.x||>Mx, 如果满足, 则执行步骤 308a, 否则, 执行步骤 308b;
步骤 308a: 将 Pbef.x修改为 Pcur.x, 之后执行步骤 309;
步骤 308b: 将 Pcur.x修改为 Pbef.x, 之后执行步骤 309;
步骤 309: 结束当前处理流程。
需要说明的是: Y轴的坐标值的处理流程与 X轴的坐标值的处理流程 完全相同, 这里不再赘述。
为实现上述方法, 本发明还提供了一种识别触摸屏不规则点的装置, 如图 4所示, 该装置包括: 设置模块 41、 緩存队列 42及识别模块 43 ; 其 中,
设置模块 41 , 用于设置緩存队列 42;
緩存队列 42 , 用于存储周期连续的釆样点的坐标数据;
识别模块 43 , 用于将周期连续的釆样点的坐标数据保存到緩存队列 42 中, 根据保存的连续四个以上釆样点的坐标数据识别所述连续以上四个釆 样点中是否存在不规则点。
其中, 所述识别模块 43 , 还用于识别出不存在不规则点后, 不做任何 修改。
该装置还可以进一步包括: 修改模块, 用于在收到识别模块 43发送的 不规则点的坐标数据后, 修改相应釆样点的坐标数据;
所述识别模块 43 , 还用于在识别出不规则点后, 将不规则点的坐标数 据发送给修改模块。
该装置还可以进一步包括: 上报模块, 用于在收到识别模块 43发送的 釆样点的坐标数据后, 上报釆样点的坐标数据;
所述识别模块 43 , 还用于当緩存队列中保存的釆样点的坐标数据不再 用于识别和修改釆样点的坐标数据时, 将该釆样点的坐标数据发送给上报 模块。 这里, 本发明的所述装置中的识别模块及修改模块的具体处理过程已 在上文中详述, 不再赘述。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种识别触摸屏不规则点的方法, 其特征在于, 设置緩存队列; 该 方法还包括:
将周期连续的釆样点的坐标数据保存到緩存队列中;
根据保存的连续四个以上釆样点的坐标数据识别所述连续四个以上釆 样点中是否存在不规则点。
2、 根据权利要求 1所述的方法, 其特征在于,
所述根据保存的连续四个以上釆样点的坐标数据识别所述连续四个以 上釆样点中是否存在不规则点, 为:
根据当前周期与上一周期釆样点位置变化量的绝对值、 以及所述连续 四个以上釆样点加速度差值的绝对值, 识别所述连续四个以上釆样点中是 否存在不规则点。
3、 根据权利要求 2所述的方法, 其特征在于, 所述方法包括: 确定所述当前周期与所述上一周期釆样点位置变化量的绝对值在 X轴 方向和 /或 Y轴方向大于最大偏移量、 且小于对应的最小偏移量; 并且, 在 X轴方向和 /或 Y轴方向的相邻加速度差值的绝对值大于最大加速度时, 识 别出所述连续四个以上釆样点中存在不规则点。
4、 根据权利要求 3所述的方法, 其特征在于,
所述当前周期与所述上一周期釆样点位置变化量的绝对值为: 所述当 前周期与所述上一周期釆样点 X轴方向和 Y轴方向的位置变化量的绝对 值;
其中, X 轴方向的位置变化量的绝对值为: 所述当前周期与所述上一 周期釆样点 X轴的坐标值的差值的绝对值;
Y轴方向的位置变化量为: 所述当前周期与所述上一周期釆样点 Y轴 的坐标值的差值的绝对值。
5、根据权利要求 4所述的方法, 其特征在于, 所述在 X轴方向和 /或 Y 轴方向的相邻加速度差值的绝对值大于最大加速度, 为:
所述连续四个以上釆样点在 X轴方向和 /或 Y轴方向的相邻加速度差值 的绝对值中一个以上加速度差值的绝对值大于最大加速度;
所述连续四个以上釆样点在 X轴方向的相邻加速度差值的绝对值的计 算方法为:
将连续四个以上釆样点中相邻的两个釆样点 X轴的坐标值的差值取绝 对值, 依次得到第一速率、 第二速率及第三速率;
将第一速率与第二速率的差值取绝对值, 得到第一加速度;
将第二速率与第三速率的差值取绝对值, 得到第二加速度;
将第一加速度与第二加速度的差值取绝对值, 得到 X轴的相邻加速度 的差值的绝对值;
所述连续四个以上釆样点在 Y轴方向的相邻加速度差值的绝对值的计 算方法为: 将连续四个以上釆样点中相邻的两个釆样点 Y轴的坐标值的差 值取绝对值, 依次得到第四速率、 第五速率及第六速率;
将第四速率与第五速率的差值取绝对值, 得到第三加速度;
将第五速率与第六速率的差值取绝对值, 得到第四加速度;
将第三加速度与第四加速度的差值取绝对值, 得到 Y轴的相邻加速度 的差值的绝对值。
6、 根据权利要求 1所述的方法, 其特征在于, 当所述连续四个以上釆 样点为连续四个釆样点时, 所述根据保存的连续四个以上釆样点的坐标数 据识别所述连续四个以上釆样点中是否存在不规则点, 为:
根据连续四个釆样点中指定的釆样点与其相邻周期釆样点的位置变化 量、 以及除去所述指定釆样点后的三个釆样点中所述指定釆样点之前一个 周期釆样点与剩余两个釆样点的位置变化量, 识别所述连续四个釆样点中 是否存在不规则点。
7、 根据权利要求 6所述的方法, 其特征在于, 所述方法包括: 确定所述指定釆样点与其相邻周期釆样点的位置变化量之积在 X轴方 向和 /或 Y轴方向小于零, 并且, 除去所述指定釆样点后的三个釆样点中, 所述指定釆样点之前一个周期釆样点与剩余两个釆样点的位置变化量之积 在 X轴方向和 /或 Y轴方向大于等于零时,识别出所述指定釆样点为不规则 点。
8、 根据权利要求 7所述的方法, 其特征在于,
所述指定釆样点与其相邻周期釆样点的位置变化量为: X轴方向和 Y 轴方向的位置变化量; 其中, X 轴方向的位置变化量包括: 所述指定釆样 点 X轴的坐标值与其之前一个周期釆样点 X轴的坐标值的差值、 以及所述 指定釆样点之后一个周期釆样点 X轴的坐标值与所述指定釆样点 X轴的坐 标值的差值; Y轴方向的位置变化量包括: 所述指定釆样点 Y轴的坐标值 与其之前一个周期釆样点 Y轴的坐标值的差值、 以及所述指定釆样点之后 一个周期釆样点 Y轴的坐标值与所述指定釆样点 Y轴的坐标值的差值; 所述指定釆样点之前一个周期釆样点与剩余两个釆样点的位置变化量 为 X轴方向和 Y轴方向的位置变化量; 其中, X轴方向的位置变化量包括: 所述指定釆样点之前一个周期釆样点 X轴的坐标值与所述指定釆样点之后 一个周期釆样点 X轴的坐标值的差值、 以及所述指定釆样点之前一个周期 釆样点与所述指定釆样点之后两个周期釆样点 X轴的坐标值的差值; Y轴 方向的位置变化量包括: 所述指定釆样点之前一个周期釆样点 Y轴的坐标 值与所述指定釆样点之后一个周期釆样点 Y轴的坐标值的差值、 以及所述 指定釆样点之前一个周期釆样点与所述指定釆样点之后两个周期釆样点 Y 轴的坐标值的差值。
9、 根据权利要求 1至 8任一项所述的方法, 其特征在于, 该方法进一 步包括:
识别出所述连续四个以上釆样点中存在不规则点后, 修改相应釆样点 的坐标数据。
10、 根据权利要求 9所述的方法, 其特征在于, 所述修改相应釆样点 的坐标数据, 为:
当釆用 X轴的坐标值识别出存在不规则点时, X轴的坐标值的修改为: 当相邻加速度的差值的绝对值中大于最大加速度的个数小于所述连续四个 以上釆样点 X轴的相邻加速度的差值的绝对值的个数时, 判断计算相邻加 速度的差值的绝对值时未重复使用的釆样点 X轴的坐标值是否修改过, 如 果修改过时, 则不做任何修改, 如果未修改过时, 则将所述未重复使用的 釆样点 X轴的坐标值修改为所述未重复使用的釆样点 X轴的坐标值之后一 个周期釆样点 X轴的坐标值, 当所述未重复使用的釆样点包含当前周期釆 样点时, 将 Pcur.x修改为 Pbef.x;
当相邻加速度的差值的绝对值中大于最大加速度的个数等于所述连续 四个以上釆样点 X轴的相邻加速度的差值的绝对值的个数时, 判断 Pbef.x 是否修改过, 如果修改过, 则不做任何修改, 如果未修改过, 则将 Prel .x 与 Pbef.x的差值取绝对值, 得到第一绝对值, 将 Prel .x与 Pcur.x的差值取 绝对值, 得到第二绝对值, 判断第一绝对值与第二绝对值的差值的绝对值 是否大于 Mx, 如果大于时, 则将 Pbef.x ^ί'爹改为 Pcur.x, 如果不大于时, 将 Pcur.x修改为 Pbef.x;
相应的, 当釆用 Y轴的坐标值识别出存在不规则点时, Y轴的坐标值 的修改为: 当相邻加速度的差值的绝对值中大于 Ay的个数小于所述连续四 个以上釆样点 Y轴的相邻加速度的差值的绝对值的个数时, 判断计算相邻 加速度的差值的绝对值时未重复使用的釆样点 Y轴的坐标值是否修改过, 如果修改过时, 则不做任何修改, 如果未修改过时, 则将所述未重复使用 的釆样点 Y轴的坐标值修改为所述未重复使用的釆样点 Υ轴的坐标值之后 一个周期釆样点的 Υ轴的坐标值,当所述未重复使用的釆样点包含 Pcur时, 将 Pcur.y修改为 Pbef.y;
当相邻加速度的差值的绝对值中大于 Ay的个数等于所述连续四个以上 釆样点 Y轴的相邻加速度的差值的绝对值的个数时, 判断 Pbef.y是否修改 过,如果爹改过时 ,则不#文任何爹改,如果未爹改过时 ,则将 Prepl .y与 Pbef.y 的差值取绝对值, 得到第三绝对值, 将 Prep 1.y与 Pcur.x的差值取绝对值, 得到第四绝对值, 判断第三绝对值与第四绝对值的差值的绝对值是否大于 My, 如果大于时, 则将 Pbef.y修改为 Pcur.x, 如果不大于时, 将 Pcur.y修 改为 Pbef.y;
其中, Pcur、 Pbef及 Prepl表示当前周期釆样点、 上一周期釆样点及上 上周期釆样点, Pcur.x、 Pcur.y, Pbef.x、 Pbef.y, Prep 1.x及 Prepl. y分别表 示当前周期釆样点 X轴和 Y轴的坐标值、上一周期釆样点 X轴和 Y轴的坐 标值及上上周期釆样点 X轴和 Y轴的坐标值, Mx表示在 X轴的最大偏移 值, My表示在 Y轴的最大偏移值。
11、 根据权利要求 9 所述的方法, 其特征在于, 所述修改相应釆样点 的坐标数据, 为:
当釆用 X轴的坐标值识别出不规则点时, X轴的坐标值的修改为: 将 所述指定釆样点 X轴的坐标值修改为所述指定釆样点之前一个周期釆样点 X轴的坐标值;
相应的, 当釆用 X轴的坐标值识别出不规则点时, Y轴的坐标值的修 改为: 将所述指定釆样点 Y轴的坐标值修改为所述指定釆样点之前一个周 期釆样点 Y轴的坐标值。
12、 根据权利要求 9所述的方法, 其特征在于, 该方法进一步包括: 当緩存队列中保存的釆样点的坐标数据不再用于识别和修改釆样点的 坐标数据时, 上报该釆样点的坐标数据。
13、 根据权利要求 10所述的方法, 其特征在于, 当所述连续四个以上 釆样点为连续四个釆样点时, 所述识别、 修改, 为:
X轴的坐标值的识别、 爹改, 为: 判断 Pbef.x与 Pcur.x的差值的绝对 值是否大于 Mx, 确定大于时, 则进一步判断 Pbef.y与 Pcur.y的差值的绝对 值是否小于 Ny, 确定小于时, 则进一步判断所述连续四个釆样点的 X轴的 加速度的差值的绝对值是否大于 Ax, 确定大于时, 则判断 Pbef.x是否修改 过, 如果修改过, 则不做任何修改, 如果未修改过, 则判断所述第一绝对 值与所述第二绝对值的差值的绝对值是否大于 Mx,如果大于时,则将 Pbef.x 爹改为 Pcur.x, 如果不大于时, 将 Pcur.x 爹改为 Pbef.x;
之后将 Pre2.x减去 Prel.x, 得到第一差值; 将 Prel.x减去 Pbef.x, 得到 第二差值; 判断所述第一差值与所述第二差值之积是否小于零, 确定小于 零时, 则将 Pre2.x减去 Pbef.x, 得到第三差值, 将 Pre2.x减去 Pcur.x, 得到 第四差值, 进一步判断所述第三差值与所述第四差值之积是否大于等于零, 确定大于等于时, 将 Pprel.x修改为 Ppre2.x;
相应的, Y轴的坐标值的识别、 爹改, 为: 判断 Pbef.y与 Pcur.y的差 值的绝对值是否大于 My, 确定大于时, 则进一步判断 Pbef.x与 Pcur.x的差 值的绝对值是否小于 Nx, 确定小于时, 则进一步判断所述连续四个釆样点 的 Y轴的加速度的差值的绝对值是否大于 Ay,确定大于时,则再判断 Pbef.y 是否修改过, 如果修改过, 则不做任何修改, 如果未修改过, 则判断所述 第三绝对值与所述第四绝对值的差值的绝对值是否大于 My, 如果大于时, 则将 Pbef.y修改为 Pcur.x, 如果不大于时, 将 Pcur.y修改为 Pbef.y;
之后将 Pre2.y减去 Prel.y, 得到第五差值; 将 Pre l.y减去 Pbef.y, 得到 第六差值; 判断所述第五差值与所述第六差值之积是否小于零, 确定小于 零时, 则将 Pre2.y减去 Pbef.y, 得到第七差值, 将 Pre2.y减去 Pcur.x, 得到 第八差值; 进一步判断所述第七差值与所述第八差值之积是否大于等于零, 确定大于等于时, 将 Ppre 1.y修改为 Ppre2.y;
其中, Ppre2表示上上周期之前一个周期釆样点, Ppre2.x和 Ppre2.y表 示上上周期之前一个周期釆样点 X轴和 Y轴的坐标值, Ny表示 Mx对应 的在 Y轴的最大偏移值, Ax表示在 X轴的最大加速度, Nx表示 My对应 的在 X轴的最大偏移值, Ay表示在 Y轴的最大加速度。
14、 根据权利要求 13所述的方法, 其特征在于, 当所述连续四个以上 釆样点为连续四个釆样点时, 所述识别、 修改, 为:
X 轴的坐标值的识别、 修改, 为: 判断所述第一差值与所述第二差值 之积是否小于零, 确定小于零时, 则进一步判断所述第三差值与所述第四 差值之积是否大于等于零, 确定大于等于时, 将 Pprel.x修改为 Ppre2.x; 之后判断 Pbef.x与 Pcur.x的差值的绝对值是否大于 Μχ , 确定大于时, 则进一步判断 Pbef.y与 Pcur.y的差值的绝对值是否小于 Ny, 确定小于时, 进一步判断所述连续四个釆样点的 X轴的加速度的差值的绝对值是否大于 Ax, 确定大于时, 判断 Pbef.x是否修改过, 如果修改过, 则不做任何修改, 如果未修改过, 则进一步判断判断所述第一绝对值与所述第二绝对值的差 值的绝对值是否大于 Mx, 如果大于时, 则将 Pbef.x ^ί'爹改为 Pcur.x, 如果不 大于时, 将 Pcur.x修改为 Pbef.x;
相应的, Y 轴的坐标值的识别、 修改, 为: 判断所述第五差值与所述 第六差值之积是否小于零, 确定小于零时, 则进一步判断所述第七差值与 所述第八差值之积是否大于等于零, 确定大于等于时, 将 Pprel.y修改为 Ppre2.y;
之后判断 Pbef.y与 Pcur.y的差值的绝对值是否大于 My, 确定大于时, 则进一步判断 Pbef.x与 Pcur.x的差值的绝对值是否小于 Nx, 确定小于时, 进一步判断所述连续四个釆样点的 Y轴的加速度的差值的绝对值是否大于 Ay, 确定大于时, 判断 Pbef.y是否修改过, 如果修改过, 则不做任何修改, 如果未修改过, 则进一步判断第三绝对值与第四绝对值的差值的绝对值是 否大于 My, 如果大于时, 则将 Pbef.y修改为 Pcur.y, 如果不大于时, 则将 Pcur.y修改为 Pbef.y。
15、 一种识别触摸屏不规则点的装置, 其特征在于, 该装置包括: 设 置模块、 緩存队列及识别模块; 其中,
设置模块, 用于设置緩存队列;
緩存队列, 用于存储周期连续的釆样点的坐标数据;
识别模块, 用于将周期连续的釆样点的坐标数据保存到緩存队列中, 根据保存的连续四个以上釆样点的坐标数据识别所述连续四个以上釆样点 中是否存在不规则点。
16、 根据权利要求 15所述的装置, 其特征在于, 该装置进一步包括修 改模块, 用于在收到识别模块发送的不规则点的坐标数据后, 修改相应釆 样点的坐标数据;
识别模块, 还用于在识别出不规则点后, 将不规则点的坐标数据发送 给修改模块。
17、 根据权利要求 16所述的装置, 其特征在于, 该装置进一步包括上 报模块, 用于在收到处理模块发送的釆样点的坐标数据后, 上报釆样点的 坐标数据;
所述处理模块, 还用于当緩存队列中保存的釆样点的坐标数据不再用 于识别和修改釆样点的坐标数据时, 将该釆样点的坐标数据发送给上报模 块。
PCT/CN2011/071178 2010-11-04 2011-02-22 一种识别触摸屏不规则点的方法及装置 WO2012058884A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010531962.1 2010-11-04
CN201010531962.1A CN102004578B (zh) 2010-11-04 2010-11-04 一种识别触摸屏不规则点的方法及装置

Publications (1)

Publication Number Publication Date
WO2012058884A1 true WO2012058884A1 (zh) 2012-05-10

Family

ID=43811975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071178 WO2012058884A1 (zh) 2010-11-04 2011-02-22 一种识别触摸屏不规则点的方法及装置

Country Status (2)

Country Link
CN (1) CN102004578B (zh)
WO (1) WO2012058884A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761004B (zh) * 2014-01-10 2016-10-05 广东欧珀移动通信有限公司 一种改善触控屏触控灵敏度的方法、触控屏及触控终端
CN107491212A (zh) * 2017-08-28 2017-12-19 江苏沁恒股份有限公司 一种触摸屏防抖优化方法、系统及触摸屏终端
CN109407888B (zh) * 2018-10-31 2020-08-14 上海海栎创微电子有限公司 一种触摸屏坐标实时跟随及去抖动的两级滤波处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295217A (zh) * 2008-06-05 2008-10-29 中兴通讯股份有限公司 手写输入处理装置和方法
CN101498975A (zh) * 2008-02-02 2009-08-05 德信智能手机技术(北京)有限公司 一种处理触摸屏飞点的数字滤波方法
CN101727243A (zh) * 2010-02-02 2010-06-09 中兴通讯股份有限公司 一种触摸屏校准参数的获取方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561726B (zh) * 2009-05-19 2011-05-11 华映光电股份有限公司 坐标定位方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101498975A (zh) * 2008-02-02 2009-08-05 德信智能手机技术(北京)有限公司 一种处理触摸屏飞点的数字滤波方法
CN101295217A (zh) * 2008-06-05 2008-10-29 中兴通讯股份有限公司 手写输入处理装置和方法
CN101727243A (zh) * 2010-02-02 2010-06-09 中兴通讯股份有限公司 一种触摸屏校准参数的获取方法及装置

Also Published As

Publication number Publication date
CN102004578A (zh) 2011-04-06
CN102004578B (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
TWI450148B (zh) Touch screen touch track detection method and detection device
CN102147676B (zh) 操作方向确定设备、远程操作系统、操作方向确定方法和程序
EP3054373A1 (en) Method and apparatus for processing suspended or distance operation
US20130069886A1 (en) Edge grip detection method of a touch panel and a device using the same
TW201435694A (zh) 觸控裝置及其觸控偵測方法
CN104008031B (zh) 测试电容式触摸屏响应时间的方法和装置
US20140049502A1 (en) Touch filtering through virtual areas on a touch screen
DE60301020D1 (de) Berührungsempfindlicher Bildschirm, System und Verfahren
US20130057515A1 (en) Depth camera as a touch sensor
KR102623873B1 (ko) 터치 패널 컨트롤러
WO2012075936A1 (zh) 触摸屏参数调整的方法及装置
WO2012041183A1 (zh) 识别在移动终端界面上输入的操作轨迹的方法和系统
WO2012006929A1 (zh) 多点触控装置及对其进行多点触控检测的方法
WO2012058884A1 (zh) 一种识别触摸屏不规则点的方法及装置
US10761641B2 (en) Dynamic on-demand joint processing of touch sensor data from multiple independent touch sensors at an electronic circuit
WO2017028491A1 (zh) 触控显示设备及触控显示方法
WO2012140656A1 (en) System and method for detection with a capacitive based digitizer sensor
JP2000357046A (ja) 手書入力装置、方法ならびに手書入力プログラムを記録したコンピュータで読取可能な記録媒体
WO2021128819A1 (zh) 书写笔迹生成方法、装置、存储介质、电子设备及系统
CN106462336A (zh) 一种移动屏幕界面的方法及终端
JP2018018133A (ja) 情報処理装置、ストリームストレージ制御プログラム、及びインデックスデータ参照方法
TWI416963B (zh) 具振動補償功能的移動電子設備及其振動補償方法
JP2015064859A (ja) 入力装置
JP6255321B2 (ja) 情報処理装置とその指先操作識別方法並びにプログラム
WO2020124323A1 (zh) 触摸检测方法、触控芯片及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837414

Country of ref document: EP

Kind code of ref document: A1