WO2012058864A1 - 热塑性树脂基体复合材料导线芯棒及其制备模具和方法 - Google Patents

热塑性树脂基体复合材料导线芯棒及其制备模具和方法 Download PDF

Info

Publication number
WO2012058864A1
WO2012058864A1 PCT/CN2011/001828 CN2011001828W WO2012058864A1 WO 2012058864 A1 WO2012058864 A1 WO 2012058864A1 CN 2011001828 W CN2011001828 W CN 2011001828W WO 2012058864 A1 WO2012058864 A1 WO 2012058864A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
thermoplastic resin
core rod
resin matrix
molten resin
Prior art date
Application number
PCT/CN2011/001828
Other languages
English (en)
French (fr)
Inventor
朱波
蔡珣
王成国
蔡华甦
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010205852931U external-priority patent/CN201838372U/zh
Priority claimed from CN2010205852912U external-priority patent/CN201838406U/zh
Priority claimed from CN2010105262089A external-priority patent/CN102024518B/zh
Priority to UAA201309009A priority Critical patent/UA111836C2/uk
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2012058864A1 publication Critical patent/WO2012058864A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the invention belongs to the field of production and application of high-voltage transmission wires, and particularly relates to a thermoplastic resin matrix composite wire core rod and a preparation mold and method thereof.
  • wire One of the key technologies in high-voltage transmission at home and abroad is the wire.
  • the performance of the wire directly affects the transmission characteristics. During the use of the wire, it must withstand the influence of complex working conditions: wind fatigue load, electric field induction, magnetic field eddy current, high temperature, high cold, rain and snow hail, etc., and it is corroded by various media in the atmosphere, thus requiring the wire to have high Conductive properties, high tensile strength, high fatigue resistance, high resistance to complex environmental influences and corrosion resistance.
  • most of the wires used at home and abroad are steel-cored aluminum stranded wires or steel-core copper stranded wires. Although such wires can meet the electrical conductivity requirements, the wire loss is high, the sag is large, and the electromagnetic noise is large, which is not conducive to increasing the tower pitch and high-temperature power transmission. .
  • the resin matrix is a thermosetting system, it is difficult to recycle and reuse, which causes environmental pollution and increases resource consumption, thus limiting the application on the high voltage line.
  • the object of the present invention is to solve the above problems and to provide a thermoplastic resin matrix composite wire core rod and a preparation mold and method thereof, and to open up a new field for the production and application of carbon fiber composite wire.
  • the present invention adopts the following technical solutions:
  • thermoplastic resin matrix composite wire core rod comprising a thermoplastic resin matrix for uniformly distributing reinforcing fiber bundles in a thermoplastic resin matrix.
  • the thermoplastic resin matrix is a thermoplastic resin, and has thermoplastic properties of one or two or more of polyphenylene sulfide, polyetheretherketone, bismale resin, nylon, ultrahigh molecular weight polyethylene, and polypropylene. A mixture of polymer materials.
  • the reinforcing fiber bundle is a mixture of one or more of carbon fiber, glass fiber, basalt fiber or aramid fiber.
  • a thermoplastic resin matrix composite wire core rod for preparing a mold which is a closed combined structure mainly composed of a preform mold, a molten resin mold, a structure setting mold and a cooling water jacket, and the preform mold is tightly connected with the molten resin mold.
  • the resin resin inlet is provided on the molten resin mold, and the molten resin and the reinforcing fiber bundle are impregnated in the molten resin cavity of the molten resin mold; the molten resin mold is tightly connected to the structural setting mold, and the structural setting mold is connected to the cooling water jacket.
  • thermoplastic resin matrix composite wire core rod which is produced by a melt pultrusion process in a mold, and a pultrusion process and a thermoplastic resin melting process are completed at one time, and the steps are as follows:
  • the final structure size is obtained through the structural sizing die, and the temperature is lowered, the temperature range is 40-100, and then the finished product is obtained after cooling at the die outlet.
  • thermoplastic resin matrix composite wire core rod of the invention has a circular cross section and a continuous length
  • the core rod base body is a thermoplastic resin
  • the reinforcing material is a carbon fiber-based high temperature resistant high strength fiber, which is produced by an in-mold melt pultrusion process.
  • the base material of the thermoplastic resin matrix composite wire core rod of the present invention may be in the form of particles or fibers.
  • the thermoplastic resin may be a single material such as polyphenylene sulfide (PPS), polyetheretherketone (PEEK), bismale resin, nylon, ultrahigh molecular weight polyethylene, polypropylene, or two or more thermoplastic resin systems.
  • the reinforcing material of the composite core rod is a continuous long fiber, which may be carbon fiber, glass fiber, basalt fiber, aramid fiber or a mixture of the above fibers.
  • the molding rod of the thermoplastic resin matrix composite wire core rod of the invention is characterized by in-mold melt molding.
  • the thermoplastic resin material is solid granular, the pellet material is melted and injected into the cavity by a pressurizing device to maintain the high pressure in the cavity.
  • the fiber is cooled together with the fibers by a sizing die to obtain a desired structure; if the raw material is fibrous, the thermoplastic resin fibers and the reinforcing fibers are simultaneously introduced into the hot cavity, in the cavity. After the inner melting, the reinforcing fibers are impregnated, and then cooled by a sizing die to obtain a desired structure.
  • the mold structure of the thermoplastic resin matrix composite wire core rod of the present invention is characterized by a closed combination.
  • the complete mold consists of three parts, the first part is the preforming cavity, the second part is the molten pressurized chamber, and the third part is the structural forming cavity with the cooling water jacket.
  • the basic shape of the composite mandrel is obtained in the preforming cavity, and the resin-to-fiber dipping is realized in the molten and pressurized cavity, and the composite mandrel structure size is obtained after the structural forming cavity is cooled.
  • the second part has a feeding port in the middle of the molten pressurizing chamber, and can be sealed or injected into the molten resin by external pressure.
  • the mold heating temperature control feature is that the first part is a fiber preparation preform part, the temperature is 20-100 ° C, and the second part of the molten pressurization chamber temperature and the resin system used are melted. Temperature-related, temperature range is 100-50 (TC, the third part of the structure cavity temperature control range is the cooling zone, temperature range of 40-100 °C.
  • the carbon fiber composite core rod prepared by the invention is characterized in that the pultrusion process and the thermoplastic resin melting process are completed at one time, and the core rod prepared by the process has the characteristics of compact structure and stable comprehensive performance.
  • the beneficial effects of the invention are as follows: After the molding of the invention, the tensile strength exceeds 1800 MPa, the tensile modulus is greater than 120 Gpa, the use temperature exceeds 150 ° C, and the corrosion resistance is excellent.
  • the carbon core composite continuous core rod is produced by the process of the invention, and has high efficiency and stable quality, and is particularly suitable for large-scale production.
  • Figure 1 is a cross-sectional view of a thermoplastic resin matrix carbon fiber composite wire core
  • Figure 2 is a structural view of the mold used.
  • 1 preform mold 1 molten resin mold, 2 molten resin mold, 3 resin feed port, 4 molten resin chamber, 5 structure setting mold, 6 cooling water jacket, 7 thermoplastic resin matrix, and 8 reinforcing fibers.
  • thermoplastic resin matrix carbon fiber composite wire core rod of the present invention A cross-sectional view of a thermoplastic resin matrix carbon fiber composite wire core rod of the present invention is shown in Fig. 1, which comprises a thermoplastic resin matrix 7 in which a reinforcing fiber bundle 8 is uniformly distributed in a thermoplastic resin matrix 7.
  • the thermoplastic resin substrate 7 is a thermoplastic resin and is one of polyphenylene sulfide, polyetheretherketone, bismale resin, nylon, ultrahigh molecular weight polyethylene, polypropylene, or a mixture of any two or more thereof. .
  • the reinforcing fiber bundle 8 is a mixture of one or more of carbon fiber, glass fiber, basalt fiber or aramid fiber.
  • thermoplastic resin matrix carbon fiber composite wire core rod The interface characteristic of the thermoplastic resin matrix carbon fiber composite wire core rod is that the reinforcing fiber bundle is evenly distributed on the thermoplastic substrate.
  • the mold structure used in the present invention is as shown in Fig. 2, and is mainly composed of a preform mold 1, a molten resin mold 2, a structure sizing mold 5, and a cooling water jacket 6.
  • the molten resin mold 2 is provided with a resin feed port 3, and the molten resin and the reinforcing fibers are impregnated in the molten resin chamber 4 of the molten resin mold 2.
  • the reinforcing fiber enters the molten resin cavity 2 through the preforming die 1 and is sufficiently impregnated and mixed with the resin in the cavity, and then the final structural size is obtained through the structural setting die 5, and the finished product is obtained after the die outlet is cooled.
  • a specific embodiment of producing the mandrel of the present invention is as follows: 100 bundles of 12K carbon fibers are introduced into a molten resin cavity through a preform having a diameter of 10 mm, in which The molten polyphenylene sulfide resin which is pressed into the cavity by the melt pump is thoroughly mixed, and then the mold cavity is formed by a structure having a diameter of 10 mm, and is solidified by water cooling at the outlet under the pulling of the tractor to obtain a final diameter of 10 mm. product.
  • the carbon fiber is used as the reinforcing material and the polyphenylene sulfide (PPS) fiber is used as the matrix.
  • PPS polyphenylene sulfide
  • the specific implementation of the mandrel of the present invention is as follows: 100 bundles of 12K carbon fibers and 30 bundles of polyphenylene sulfide (PPS) fibers are preformed through a diameter of 12 mm. The mold enters the molten resin cavity, in which the molten polyphenylene sulfide fiber is melted, fully impregnated, and then formed into a mold cavity through a structure having a diameter of 10 mm, and solidified at the outlet water under the traction of the tractor. A final product with a diameter of 10 mm was obtained.
  • the carbon fiber and glass fiber are used as reinforcing materials, and polyphenylene sulfide (PPS) and nylon (PA) resins are used as the matrix.
  • PPS polyphenylene sulfide
  • PA nylon
  • the carbon fiber and glass fiber are used as reinforcing materials, and the ultrahigh molecular weight polyethylene (PE) fiber is used as a matrix.
  • the specific embodiment of producing the core rod of the present invention is as follows:
  • the pre-formed mold enters the molten resin cavity, in which the ultra-high molecular weight polyethylene (PE) fiber is melted, fully impregnated, and then formed into a mold cavity through a structure having a diameter of 5 mm, under the traction of the tractor , cured at the outlet water-cooled to obtain a final product with a diameter of 5mm.
  • PE polyethylene

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Description

说明书
热塑性树脂基体复合材料导线芯棒及其制备模具和方法 技术领域
本发明属于高压输电导线的生产和应用领域, 特别涉及热塑性树脂基体复合材料导线芯 棒及其制备模具和方法。
背景技术
国内外高压输电中的关键技术之一是导线, 导线性能的好坏直接影响输电特性。 导线在 使用过程中, 要承受复杂工况的影响: 风力疲劳载荷、 电场感应、 磁场涡流、 高温、 高寒、 雨雪冰雹等, 而且受到大气中各种介质的腐蚀, 因而要求导线要具有高的导电特性、 高的拉 伸强度、 高的抗疲劳性能、 高的耐复杂环境影响和耐腐蚀性能。 目前国内外用的导线几乎全 部为钢芯铝绞线或钢芯铜绞线, 该类导线虽然能够满足导电要求, 但线损高, 弧垂大, 电磁 噪音大, 不利于加大塔距和高温输电。
国外近几年出现了以复合材料为芯的输电导线, 其特征是以碳纤维增强热固性环氧树脂 基复合材料芯棒代替钢芯, 该新型导线具有受热不膨胀, 重量轻等优点, 获得了国际输变电 系统的青睐和认可。 但环氧树脂长期户外使用, 抗老化性能下降较大, 输电耐温不能超过
120 , 特别是在碳纤维复合芯导线收到损伤后, 由于树脂基体是热固性体系, 回收再利用 难度很大, 对环境造成污染, 同时增加了资源消耗, 因而一定上限制了在高压线路上的应 用。
发明内容
本发明的目的在于解决上述问题, 提供研制一种热塑性树脂基体复合材料导线芯棒及其 制备模具和方法, 为目前碳纤维复合材料导线的生产应用开拓新的领域。
为实现上述目的, 本发明采用如下技术方案:
一种热塑性树脂基体复合材料导线芯棒, 它包括热塑性树脂基体, 在热塑性树脂基体内 均匀分布增强纤维束。
所述热塑性树脂基体为热塑性树脂, 为聚苯硫醚、 聚醚醚酮、 双马树脂、 尼龙、 超高分 子量聚乙烯、 聚丙烯中的一种或任意两种或两种以上具有热塑特性高分子材料的混合体。
所述增强纤维束为碳纤维、玻璃纤维、玄武岩纤维或芳纶纤维中的一种或几种的混合体。 一种热塑性树脂基体复合材料导线芯棒用制备模具, 它为一种密闭组合结构, 主要由预 成型模、 熔融树脂模、 结构定型模和冷却水套组成, 预成型模与熔融树脂模密闭连接, 在熔 融树脂模上配备树脂进料口,熔融树脂与增强纤维束在熔融树脂模的熔融树脂腔内实现浸渍; 熔融树脂模与结构定型模密闭连接, 结构定型模与冷却水套连接。
一种采用热塑性树脂基体复合材料导线芯棒用制备模具的芯棒制备方法, 它采用模具内 熔融拉挤成型工艺生产, 拉挤工艺和热塑性树脂熔融工艺一次完成, 其步骤为:
1) 将增强纤维束送入预成型模, 温度在 20-100°C , 获得复合材料芯棒基本形状;
2) 将增强纤维束送入熔融树脂模内, 并加压 0. 5-5MPa注入熔融树脂实现浸渍, 温度在 确 认 本 说明书
100-500 °C;
3 ) 充分浸渍混合后, 再经过结构定型模获得最终结构尺寸, 并进行降温, 温度范围 40-100 , 随后在模具出口冷却后制得成品。
本发明热塑性树脂基体复合材料导线芯棒的截面为圆形, 长度连续, 芯棒基体为热塑性 树脂, 增强材料为碳纤维为主的耐高温高强度纤维, 采用模内熔融拉挤成型工艺生产。
本发明热塑性树脂基体复合材料导线芯棒的基体材料可以是粒状, 也可以是纤维状。 热 塑性树脂可以是聚苯硫醚 (PPS ) ,聚醚醚酮 (PEEK) , 双马树脂, 尼龙, 超高分子量聚乙烯、 聚丙烯等单一材料, 或者是两种或两种以上热塑性树脂体系的混合; 复合材料芯棒的增强材 料为连续长纤维, 可以是碳纤维、 玻璃纤维、 玄武岩纤维、 芳纶纤维或以上几种纤维的混合 体。
本发明热塑性树脂基体复合材料导线芯棒的成型特征为模内熔融成型, 当热塑性树脂原 料是固体颗粒状时, 则将颗粒料熔化后利用加压装置注入模腔内, 保持模腔内高压, 高压树 脂在模腔内与增强纤维充分浸渍后, 连同纤维一起通过定型模后冷却, 获得所需结构; 如果 原料是纤维状, 则将热塑性树脂纤维与增强纤维同时进入热模腔, 在模腔内熔融后浸渍增强 纤维, 然后再经过定型模具冷却后获得所需结构。
本发明热塑性树脂基体复合材料导线芯棒制备时所用模具结构特征为密闭组合式。 整套 模具由三部分组成, 第一部分为预成型腔, 第二部分为熔融加压腔, 第三部分为带有冷却水 套的结构成型腔。 在预成型腔获得复合材料芯棒基本形状, 在熔融加压腔实现树脂对纤维的 浸胶, 在结构成型腔冷却后获得复合材料芯棒结构尺寸。 第二部分为熔融加压腔中间具有加 料口, 可封闭也可由外部加压注入熔融树脂。
本发明热塑性树脂基体复合材料导线芯棒制备时, 其模具加热温度控制特征为, 第一部 分为纤维准备预成型部分, 温度 20-100°C , 第二部分熔融加压仓温度与所用树脂体系熔化温 度有关, 温度范围为 100-50(TC , 第三部分结构成型腔温度控制范围为降温区, 温度范围 40-100 °C。
本发明的制备碳纤维复合材料芯杆, 其成型特征为拉挤工艺和热塑性树脂熔融工艺一次 完成, 利用本工艺制备的芯杆具有整体结构密实, 综合性能稳定等特点。
本发明的有益效果是: 本发明成型后, 其拉伸强度超过 1800Mpa, 拉伸模量大于 120Gpa, 使用温度超过 150°C , 耐腐蚀性能优良。 采用本发明工艺生产碳纤维复合材料连续芯杆, 效 率高, 质量稳定, 特别适合大规模生产。
附图说明
图 1为热塑性树脂基体碳纤维复合材料导线芯剖面图;
图 2为所用模具结构图。
其中, 1预成型模, 2熔融树脂模, 3树脂进料口, 4熔融树脂腔, 5结构定型模, 6冷却水 套, 7热塑性树脂基体, 8增强纤维。
具体实施方式 说明书
下面结合附图与实施例对本发明做进一步说明。
本发明热塑性树脂基体碳纤维复合材料导线芯棒剖面图如附图 1所示, 它包括热塑性树 脂基体 7, 在热塑性树脂基体 7内均匀分布增强纤维束 8。
所述热塑性树脂基体 7为热塑性树脂, 为聚苯硫醚、 聚醚醚酮、 双马树脂、 尼龙、 超高 分子量聚乙烯、 聚丙烯中的一种或任意两种或两种以上的混合体。
所述增强纤维束 8为碳纤维、 玻璃纤维、 玄武岩纤维或芳纶纤维中的一种或几种的混合 体。
热塑性树脂基体碳纤维复合材料导线芯棒的界面特征为热塑性基体上均匀分布着增强纤 维束。
本发明的所用模具结构如附图 2所示,主要由预成型模 1,熔融树脂模 2,结构定型模 5, 冷却水套 6组成。 熔融树脂模 2上配备树脂进料口 3, 熔融树脂与增强纤维在熔融树脂模 2 的熔融树脂腔 4内实现浸渍。
增强纤维经过预成型模 1进入熔融树脂模腔 2, 在此腔体内与树脂充分浸渍混合后, 再 经过结构定型模 5获得最终结构尺寸, 在模具出口冷却后制得成品。
实施例 1 :
以碳纤维为增强材料, 聚苯硫醚(PPS )树脂为基体,生产本发明芯棒的具体实施例如下: 100束 12K碳纤维通过直径为 10mm的预成型模进入熔融树脂模腔, 在其中与外部通过 熔融泵加压打入腔体的熔融聚苯硫醚树脂充分混合后, 再通过直径为 10mm的结构成型模具 腔体, 在牵引机的牵引拉动下, 在出口水冷固化, 获得直径 10mm的最终产品。
实施例 2:
以碳纤维为增强材料, 聚苯硫醚(PPS )纤维为基体,生产本发明芯棒的具体实施例如下: 100束 12K碳纤维和 30束聚苯硫醚 (PPS ) 纤维通过直径为 12mm的预成型模进入熔融 树脂模腔, 在此腔体内, 使熔融聚苯硫醚纤维熔化, 充分浸渍后, 再通过直径为 10mm的结 构成型模具腔体, 在牵引机的牵引拉动下, 在出口水冷固化, 获得直径 10mm的最终产品。
实施例 3:
以碳纤维和玻璃纤维为增强材料, 聚苯硫醚(PPS )和尼龙(PA)树脂为基体, 生产本发 明芯棒的具体实施例如下:
40束 12K碳纤维和 20束玻璃碳纤维通过直径为 8mm的预成型模进入熔融树脂模腔,在 其中与通过熔融泵加压打入的腔体的充分熔融的聚苯硫醚和尼龙树脂充分混合后, 再通过直 径为 8mm的结构成型模具腔体, 在牵引机的牵引拉动下, 在出口水冷固化, 获得直径 8mm 的最终产品。
实施例 4:
以碳纤维和玻璃纤维为增强材料, 超高分子量聚乙烯 (PE) 纤维为基体, 生产本发明芯 棒的具体实施例如下:
30束 12K碳纤维和 10束玻璃碳纤维和 30束超高分子量聚乙烯 ( PE )纤维通过直径为 6mm 说明书
的预成型模进入熔融树脂模腔, 在此腔体内, 使超高分子量聚乙烯 (PE) 纤维熔化, 充分浸 渍后, 再通过直径为 5mm的结构成型模具腔体, 在牵引机的牵引拉动下, 在出口水冷固化, 获得直径 5mm的最终产品。

Claims

权利要求书
1. 一种热塑性树脂基体复合材料导线芯棒, 其特征是, 它包括热塑性树脂基体, 在热塑 性树脂基体内均匀分布增强纤维束。
2. 如权利要求 1所述的热塑性树脂基体复合材料导线芯棒, 其特征是, 所述热塑性树脂 基体为热塑性树脂, 为聚苯硫醚、 聚醚醚酮、 双马树脂、 尼龙、 超高分子量聚乙烯、 聚丙烯 中的一种或任意两种或两种以上的混合体。
3. 如权利要求 1所述的热塑性树脂基体复合材料导线芯棒, 其特征是, 所述增强纤维束 为碳纤维、 玻璃纤维、 玄武岩纤维或芳纶纤维中的一种或几种的混合体。
4. 一种热塑性树脂基体复合材料导线芯棒用制备模具, 其特征是, 它为一种密闭组合结 构, 主要由预成型模、 熔融树脂模、 结构定型模和冷却水套组成, 预成型模与熔融树脂模密 闭连接, 在熔融树脂模上配备树脂进料口, 熔融树脂与增强纤维束在熔融树脂模的熔融树脂 腔内实现浸渍; 熔融树脂模与结构定型模密闭连接, 结构定型模与冷却水套连接。
5.一种采用权利要求 4所述热塑性树脂基体复合材料导线芯棒用制备模具的芯棒制备方 法, 其特征是, 它釆用模具内熔融拉挤成型工艺生产, 拉挤工艺和热塑性树脂熔融工艺一次 完成, 其步骤为-
1 ) 将增强纤维束送入预成型模, 温度在 20-10(TC, 获得复合材料芯棒基本形状;
2) 将增强纤维束送入熔融树脂模内, 并加压 0. 5-5MPa注入熔融树脂实现浸渍, 温度在 100-500 °C ;
3 ) 充分浸渍混合后, 再经过结构定型模获得最终结构尺寸, 并进行降温, 温度范围 40-100 °C , 随后在模具出口冷却后制得成品。
PCT/CN2011/001828 2010-11-01 2011-11-01 热塑性树脂基体复合材料导线芯棒及其制备模具和方法 WO2012058864A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
UAA201309009A UA111836C2 (uk) 2010-11-01 2011-01-11 Сердечник електричного дроту з композитного матеріалу з матрицею на основі термопластичної смоли, форма та спосіб для його виготовлення

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201020585293.1 2010-11-01
CN201010526208.9 2010-11-01
CN201020585291.2 2010-11-01
CN2010205852931U CN201838372U (zh) 2010-11-01 2010-11-01 热塑性树脂基体复合材料导线芯棒
CN2010205852912U CN201838406U (zh) 2010-11-01 2010-11-01 制备热塑性树脂基体复合材料导线芯棒的模具
CN2010105262089A CN102024518B (zh) 2010-11-01 2010-11-01 热塑性树脂基体复合材料导线芯棒及其制备模具和方法

Publications (1)

Publication Number Publication Date
WO2012058864A1 true WO2012058864A1 (zh) 2012-05-10

Family

ID=46023953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001828 WO2012058864A1 (zh) 2010-11-01 2011-11-01 热塑性树脂基体复合材料导线芯棒及其制备模具和方法

Country Status (1)

Country Link
WO (1) WO2012058864A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909119A (zh) * 2006-08-02 2007-02-07 中利科技集团有限公司 热熔胶涂胶装置
CN101295564A (zh) * 2008-06-19 2008-10-29 南京诺尔泰复合材料设备制造有限公司 碳纤维多用途复合绞线制造方法及设备
CN101315816A (zh) * 2007-05-31 2008-12-03 日立电线株式会社 绝缘电线及电缆
CN101345097A (zh) * 2008-09-05 2009-01-14 四川香江实业集团股份有限公司 复合超高强铝导线
CN101792557A (zh) * 2010-02-24 2010-08-04 沈阳军航电源科技有限公司 一种热塑性橡胶在风力发电用软电力电缆上的应用
CN102024518A (zh) * 2010-11-01 2011-04-20 山东大学 热塑性树脂基体复合材料导线芯棒及其制备模具和方法
CN201838406U (zh) * 2010-11-01 2011-05-18 山东大学 制备热塑性树脂基体复合材料导线芯棒的模具
CN201838372U (zh) * 2010-11-01 2011-05-18 山东大学 热塑性树脂基体复合材料导线芯棒

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909119A (zh) * 2006-08-02 2007-02-07 中利科技集团有限公司 热熔胶涂胶装置
CN101315816A (zh) * 2007-05-31 2008-12-03 日立电线株式会社 绝缘电线及电缆
CN101295564A (zh) * 2008-06-19 2008-10-29 南京诺尔泰复合材料设备制造有限公司 碳纤维多用途复合绞线制造方法及设备
CN101345097A (zh) * 2008-09-05 2009-01-14 四川香江实业集团股份有限公司 复合超高强铝导线
CN101792557A (zh) * 2010-02-24 2010-08-04 沈阳军航电源科技有限公司 一种热塑性橡胶在风力发电用软电力电缆上的应用
CN102024518A (zh) * 2010-11-01 2011-04-20 山东大学 热塑性树脂基体复合材料导线芯棒及其制备模具和方法
CN201838406U (zh) * 2010-11-01 2011-05-18 山东大学 制备热塑性树脂基体复合材料导线芯棒的模具
CN201838372U (zh) * 2010-11-01 2011-05-18 山东大学 热塑性树脂基体复合材料导线芯棒

Similar Documents

Publication Publication Date Title
CN102024518B (zh) 热塑性树脂基体复合材料导线芯棒及其制备模具和方法
CN102602083B (zh) 一种纤维增强复合材料芯及其制备方法
CN104672782B (zh) 一种纤维增强树脂基复合材料芯及其制造方法
CN102290146B (zh) 一种复合材料电缆增强芯的制造方法
CN103887023B (zh) 一种树脂基增强纤维复合芯和架空导线及其制造方法
CN104385627A (zh) 带有抗雷击表面功能层的先进树脂基复合材料及制备方法
CN109228399A (zh) 一种热固性复合材料短切纤维与连续纤维的一体成型方法
CN102516715B (zh) 一种新型复合材料输电塔构件制备方法
CN102261193B (zh) 一种输电线路用复合材料横担及其制备方法
CN101740186B (zh) 二步成型的高电压复合绝缘子实心芯棒的制备方法
CN103000279A (zh) 一种碳纤维复合材料芯棒及其加工方法
CN114734659A (zh) 一种连续纤维增强热塑性pake中空复合材料制品的成型方法
CN204732214U (zh) 一种特高压纤维复合芯架空导线
CN102504523B (zh) 一种高韧性聚氨酯复合绝缘子芯棒及其制备方法
CN204955474U (zh) 拉挤复合材料空心型材后固化装置
CN107443773A (zh) 连续抽油杆、制备连续抽油杆的设备及方法
CN104842569B (zh) 复合型frp筋、制备工艺及制备装置
CN201838406U (zh) 制备热塑性树脂基体复合材料导线芯棒的模具
CN202965218U (zh) 一种纤维增强复合材料防偏磨连续抽油杆的制备装置
CN201838372U (zh) 热塑性树脂基体复合材料导线芯棒
CN105719768B (zh) 架空导线用铝包纤维增强复合芯及其制造方法
CN202540829U (zh) 一种纤维增强复合材料芯
CN103709604A (zh) 一种增强塑料杆及其生产装置和方法
WO2012058864A1 (zh) 热塑性树脂基体复合材料导线芯棒及其制备模具和方法
CN207177755U (zh) 连续抽油杆及制备连续抽油杆的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A201309009

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 2013/07872

Country of ref document: TR

122 Ep: pct application non-entry in european phase

Ref document number: 11837394

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 11837394

Country of ref document: EP

Kind code of ref document: A1