WO2012057254A1 - モニター可能な分光計測装置 - Google Patents
モニター可能な分光計測装置 Download PDFInfo
- Publication number
- WO2012057254A1 WO2012057254A1 PCT/JP2011/074783 JP2011074783W WO2012057254A1 WO 2012057254 A1 WO2012057254 A1 WO 2012057254A1 JP 2011074783 W JP2011074783 W JP 2011074783W WO 2012057254 A1 WO2012057254 A1 WO 2012057254A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spectroscopic measurement
- spectroscopic
- region
- measurement
- monitorable
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 92
- 230000003287 optical effect Effects 0.000 claims abstract description 45
- 238000003384 imaging method Methods 0.000 claims abstract description 17
- 238000010586 diagram Methods 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0256—Compact construction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0208—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/021—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0237—Adjustable, e.g. focussing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0243—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows having a through-hole enabling the optical element to fulfil an additional optical function, e.g. a mirror or grating having a throughhole for a light collecting or light injecting optical fiber
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0264—Electrical interface; User interface
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/04—Slit arrangements slit adjustment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/2823—Imaging spectrometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1066—Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/143—Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1793—Remote sensing
Definitions
- the present invention relates to a spectroscopic measurement system, and more particularly to a miniaturized spectroscopic measurement apparatus capable of monitoring the periphery of a measurement site to be scanned.
- a system that performs spectroscopic measurement while scanning a measurement object is known for early diagnosis of skin diseases such as melanoma.
- the related spectroscopic measurement device includes a spectroscope (first optical device) and an autofocus controller (second optical device).
- a slit mirror is placed near the focal point of the objective optical system, and the reflected light from the slit mirror is detected by a position sensor. Then, the auto-focus control of the objective optical system is performed, and the transmitted light that travels straight through the slit enters the spectroscope and is spectroscopically measured by the diffraction grating.
- two-dimensional spectral information on the measurement object can be obtained.
- the related art has a structure in which an independent spectroscope is connected to the main body including the slit mirror part, and the incident slit is used to specify the measurement position in a state where the transmitted light of the slit is condensed again by the optical system. It was necessary to input to a spectroscope such as a grating. Therefore, there is a problem that the entire length of the apparatus becomes large and the scanning apparatus becomes large.
- the present invention was devised in view of the above problems, and according to the present invention, since the spectroscopic device can be made compact, the scanning device is also lightened, and the scanning speed and operability of the measurement site are improved. Can do. In addition, the spectral target part can be confirmed in real time in the two-dimensional monitor image.
- a spectroscopic measurement device that can be monitored includes a first optical path that guides a first light beam from a measurement target to the spectroscope main body, and a second optical path from the target to the two-dimensional imaging device.
- a second optical path for guiding the first light beam, an optical system through which the first optical path and the second optical path pass, and transmitting the first light beam through the optical system and transmitting the second light beam
- the spectroscope body is disposed adjacent to the reflection block.
- FIG. 1 is a conceptual diagram of a spectroscopic measurement system according to the present invention. It is a conceptual diagram of the partially transparent block which concerns on this invention. It is a conceptual diagram of the monitor display of the spectroscopic measurement system which concerns on this invention. It is an example of mounting the spectroscopic measurement system according to the present invention on an orbiting satellite.
- the spectroscopic measurement system 1 will be described as an apparatus that performs spectroscopic measurement while scanning a predetermined region on the skin surface. In the figure, directions are expressed in an XYZ orthogonal coordinate system.
- the spectroscopic measurement system 1 according to the embodiment of the present invention includes an optical system 30, a reflection block 21 having a slit 23 as a light transmission region at a focal position FL thereof, and a spectroscopic distribution integrally distributed with the slit 23.
- a spectroscope body 25 that performs spectroscopic measurement of the measurement region Sf and a two-dimensional imaging device 28 that acquires spectroscopic results are provided.
- the spectroscopic measurement device 1 is mounted on a scanning device (not shown) and repeats the measurement while scanning in the A direction parallel to the X axis so as to cover the measurement region T on the skin surface.
- the spectroscopic measurement region Sf corresponding to the instantaneous measurement region of the spectroscopic unit 20 is a one-dimensional region, and the reflected light (including light emission and fluorescence) is slit along the optical path L1 that is the optical axis of the optical system 30. Then, the light is converged and transmitted to reach the spectroscope main body 25. Further, the reflected light from the peripheral region Vo of the spectroscopic measurement region Sf is reflected by the reflection region 22 of the reflection block 21, travels along the optical path L ⁇ b> 2, and forms an image on the imaging surface of the two-dimensional imaging device 40.
- the measurement region Sm of the two-dimensional image acquired by the two-dimensional imaging device 40 and the spectroscopic measurement region Sf of the spectroscopic unit 20 move in the A direction over time by scanning.
- the optical system 30 includes an objective optical system, and can be controlled to move in the optical axis direction so that the focal position FL is maintained at the position of the slit portion 23 by an autofocus mechanism (not shown).
- an autofocus mechanism (not shown).
- Related art can be used for the autofocus mechanism.
- the mechanism disclosed in Japanese Patent Application Laid-Open No. 2007-086470 is applied, the laser light scattered in the measurement region T is branched from the optical path L2 to be a position sensor (not shown). ) Can be detected.
- a reflection block 21 (hereinafter referred to as a slit-mirror block) including a slit portion 23 as a light transmission region also serves as a slit of a spectroscopic portion 25 described later and a mirror that reflects observation light toward the two-dimensional imaging device 40.
- FIG. 2 shows a schematic diagram of a slit-mirror block.
- the slit-mirror block 21 is formed with a reflection region in a prism having a predetermined refractive index so as to cross obliquely with respect to the optical axis L1.
- the reflection region 22 is a mirror surface having a long opening.
- the block is typically a rectangular parallelepiped, and can be configured by bonding two triangular prisms with a mirror surface in between.
- the main axis of the slit portion 23 is disposed along the Y-axis direction.
- the reflective region 22 and the slit portion 23 can also be configured by forming a mirror thin film by coating one surface of the triangular prism serving as a joint surface with a metal thin film.
- the focal position FL of the optical system 30 is always positioned at the slit portion 23, only the reflected light of the spectroscopic measurement region Sf, which is a specific long region in the measurement region Sm, passes through the slit portion 23, and the other regions Vo.
- the reflected light is reflected by the reflection region 22, travels along the optical path L ⁇ b> 2, and forms an image on the two-dimensional imaging device 40.
- a transmissive part in a part of the flat mirror and tilting it, it can be partly transmissive member, but the transmissive part is inclined, so that multiple reflections in the substrate material depending on the thickness of the substrate This causes a ghost and makes it difficult to perform accurate spectroscopic measurement.
- the slit-mirror block 21 of the present embodiment can be integrated with the spectroscope main body, which will be described later, to perform a small and accurate spectroscopic measurement, and is structured mechanically so that it is mechanically stable and improved in reliability. To do.
- the optical path is changed by 90 degrees on the mirror surface 22, but the angle formed with respect to the optical axis L1 of the mirror surface 22 is not limited to 45 degrees and is arbitrary.
- the spectroscopic unit 20 includes a slit-mirror block 21 as a slit and a spectroscope main body 25 including a grating 35 disposed adjacent thereto.
- the grating 35 may be transmissive or reflective.
- a specific one-dimensional area (spectral measurement area) Sf of the measurement area T is selected according to the position of the slit portion 23 of the slit-mirror block 21. That is, the spectroscopic measurement region Sf is an instantaneous measurement region, and a real image by the optical system 30 is formed at the focal position FL, and the effective width ⁇ of the slit portion 23 corresponds to the width of the spectroscopic measurement region Sf in the X direction.
- the reflected light of the spectroscopic measurement region Sf that has passed through the slit portion 23 is converted into a parallel light beam by the collimator lens 33 and is split by the grating 35 in accordance with the position of the spectroscopic measurement region Sf in the Y-axis direction.
- the two-dimensional imaging device 28 acquires the two-dimensional image reflecting the position information and the spectrum information.
- the output data of the two-dimensional imaging device 28 can be monitored as it is, but is stored in association with a monitor image of the measurement region Sm described later.
- the two-dimensional imaging device 40 includes an area CCD camera or the like having a two-dimensional image sensor, and acquires a two-dimensional image (hereinafter referred to as a monitor image) of a measurement region Sm that is a peripheral region of the spectroscopic measurement region Sf related to spectroscopy. Therefore, when performing spectroscopic measurement while scanning the skin surface in the A direction (X-axis direction), a two-dimensional image of the portion Vo excluding the spectroscopic measurement region Sf of the measurement region Sm can always be acquired.
- the light flux of the reflected light from one point Vo other than the spectroscopic measurement region Sf is represented by a broken line.
- the spectroscopic measurement region Sf moves with time by scanning, the real-time confirmation of the spectroscopic measurement region Sf that is actually the measurement object is facilitated by displaying the measurement region Sm.
- the reflected light from the spectroscopic measurement region Sf does not reach the two-dimensional imaging device 40, and the real image of the slit portion 23 is displayed in black in the monitor image, so that the position of the spectroscopic measurement region Sf can be confirmed easily and accurately. .
- Fig. 3 shows a conceptual diagram of monitor image display by the improved two-dimensional imaging device.
- an image Dm2 ′ having no defect complemented by the portion Df2 corresponding to the spectroscopic measurement region Sf is displayed on the monitor screen, and the position of the spectroscopic measurement region Sf can be confirmed.
- a frame If2 is displayed. Therefore, in FIG. 3, the specific region E such as a disease can be confirmed in real time by a two-dimensional monitor image, and the positional relationship with the spectroscopic measurement region can be easily visually confirmed.
- the immediately preceding monitor image is the latest image including the partial image Df2, but is not limited thereto, and may be synthesized from a plurality of images including the partial image Df2.
- a spectroscopic measurement system capable of monitoring a measurement object according to the present invention can be mounted on a flying object or the like and used for remote sensing.
- FIG. 4 shows an example in which the spectroscopic measurement system 1 of the present invention is mounted on an orbiting satellite 50 that orbits a celestial body such as a planet.
- the spectroscopic measurement region Sf corresponds to an instantaneous field of view (IFOV) on the measurement target surface viewed from the slit portion 23, and the peripheral measurement region Sm is a two-dimensional image sensor (CCD or the like) mounted on the two-dimensional imaging device 40 that acquires a monitor image. ) Corresponding to the instantaneous visual field.
- IFOV instantaneous field of view
- the spectroscopic measurement system 1 can be miniaturized by integrating the partial transmission mechanism 21 by the slit mirror and the spectroscope main body 25, and accurate and stable spectroscopic measurement by adopting the slit-mirror block 21. Therefore, it can be mounted on a flying object that requires light weight and high reliability.
- the two-dimensional imaging device 40 can perform real-time monitoring. However, the two-dimensional imaging device 40 can temporarily store a spectroscopic measurement image and a monitor image in association with each other by including an image storage device having a predetermined capacity. A series of image data may be stored at the time of spectroscopic measurement, and predetermined image data may be transmitted to the ground station after the measurement is completed. In this case, after receiving a series of measurement data on the ground, the black image element Bf2 may be replaced with the image element Df2 corresponding to the slit portion 23 to form a monitor image Dm2 ′ having no defect.
- the slit-mirror block and the spectroscope body are integrated to form the spectroscopic unit, whereby the apparatus can be configured to be small and light. Further, since the reflection region and the slit portion are integrally formed with the block, there is no influence of multiple reflection in the slit portion, and the strength and reliability are improved.
- the monitor image can be acquired through the slit-mirror block, the position of the spectroscopic measurement region can be confirmed in real time. Furthermore, by complementing the image of the spectroscopic measurement region using the immediately preceding monitor image, the position and image of the spectroscopic measurement region can be easily visually confirmed in real time.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Human Computer Interaction (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectrometry And Color Measurement (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
光透過領域としてのスリット部23を含む反射ブロック21(以下スリット-ミラーブロックという。)は、後述する分光部25のスリットと観察光を二次元撮像装置40に向けて反射するミラーとを兼ねている。図2にはスリット-ミラーブロックの模式図を示す。スリット-ミラーブロック21は所定の屈折率を有するプリズムに光軸L1に対して斜めに横断するように反射領域が形成される。また、反射領域22は長形の開口を有する鏡面である。ブロックは典型的には直方体であり2つの三角プリズムを鏡面を挟んで貼り合わせて構成することができる。
本発明にかかる分光部20はスリットとしてのスリット-ミラーブロック21とこれに隣接配置されグレーティング35を含む分光器本体25とから成る。グレーティング35は透過型でも反射型でもよい。
二次元撮像装置40は2次元イメージセンサを有するエリアCCDカメラ等を含み、分光にかかる分光測定領域Sfの周辺領域である測定領域Smの2次元画像(以下モニター画像という。)を取得する。したがって、A方向(X軸方向)に皮膚表面を走査しつつ分光計測を行う場合に、常に測定領域Smの分光測定領域Sfを除く部分Voの2次元画像を取得することができる。図1、2において分光測定領域Sf以外の1点Voからの反射光の光束を破線で表している。
本発明にかかる測定対象がモニター可能な分光計測システムは、飛翔体等に搭載してリモートセンシングに利用することが可能である。図4には惑星等の天体を周回する周回衛星50に本発明の分光計測システム1を搭載した例を示す。分光測定領域Sfはスリット部23からみた測定対象表面における瞬時視野(IFOV)に対応し、周辺の測定領域Smはモニター画像を取得する2次元撮像装置40に搭載された2次元イメージセンサ(CCD等)の瞬時視野に対応する。
発明の効果
以上のように、本発明によれば、スリット-ミラーブロックと分光器本体を一体化して分光部を構成することにより装置を小型かつ軽量に構成することができる。また、反射領域およびスリット部をブロックと一体に構成したことによりスリット部における多重反射の影響がなく、かつ強度や信頼性が向上する。
本国際特許出願は米国指定に関し、2010年10月29日に出願された日本国特許出願第2010-243381号について米国特許法第119条(a)に基づく優先権の利益を援用し、当該開示内容を引用する。
Claims (6)
- モニター可能な分光計測装置であって、測定対象から分光器本体に到る第1の光線を導く第1の光路および前記対象から二次元撮像装置に到る第2の光線を導く第2の光路が設けられ、前記分光計測装置は、
前記第1の光路および前記第2の光路が通る光学系と、
前記光学系を通った前記第1の光線を透過させかつ前記第2の光線を反射する反射ブロックであって、
前記第1の光線以外の光線を反射する反射領域を備え、
前記第1の光路における前記光学系の焦点面に位置づけられるスリット領域が前記反射領域に形成されるものとを具備し、
前記分光器本体が前記反射ブロックに隣接配置されることを特徴とするモニター可能な分光計測装置。 - 前記反射ブロックの前記反射領域以外の屈折率が均一であることを特徴とする請求項1記載のモニター可能な分光計測装置。
- 前記分光器本体の分光測定データおよび2次元モニターの画像データを関連づけて一時保管する蓄積装置をさらに具備することを特徴とする請求項1又は2記載のモニター可能な分光計測装置。
- 前記スリット領域に対応する前記2次元モニターの画像データを前記測定対象の過去の画像データに基づいて補完する画像処理装置をさらに具備することを特徴とする請求項3記載のモニター可能な分光計測装置。
- 前記光学系は光軸方向に移動可能な対物光学系を含み、前記測定対象に対してオートフォーカス制御されることを特徴とする請求項1乃至4のいずれか1項記載のモニター可能な分光計測装置。
- 測定対象に対して飛翔移動する飛翔体に搭載され、飛翔方向に走査しながら測定対象の分光測定することを特徴とする請求項1乃至4のいずれか1項記載のモニター可能な分光計測装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/879,459 US8922762B2 (en) | 2010-10-29 | 2011-10-27 | Spectroscopic measuring apparatus with monitoring capability |
SG2013031133A SG189984A1 (en) | 2010-10-29 | 2011-10-27 | Spectroscopic measuring apparatus with monitoring capability |
AU2011321433A AU2011321433B2 (en) | 2010-10-29 | 2011-10-27 | Spectroscopic measuring apparatus with monitoring capability |
CN2011800525428A CN103189735A (zh) | 2010-10-29 | 2011-10-27 | 可监视的分光测量装置 |
EP11836387.8A EP2634559A4 (en) | 2010-10-29 | 2011-10-27 | MONITORING SPECTRAL PHOTOMETRY DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010243381A JP2012098050A (ja) | 2010-10-29 | 2010-10-29 | モニター可能な分光計測装置 |
JP2010-243381 | 2010-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012057254A1 true WO2012057254A1 (ja) | 2012-05-03 |
Family
ID=45993958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/074783 WO2012057254A1 (ja) | 2010-10-29 | 2011-10-27 | モニター可能な分光計測装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8922762B2 (ja) |
EP (1) | EP2634559A4 (ja) |
JP (1) | JP2012098050A (ja) |
CN (1) | CN103189735A (ja) |
AU (1) | AU2011321433B2 (ja) |
SG (1) | SG189984A1 (ja) |
WO (1) | WO2012057254A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103969197A (zh) * | 2013-02-06 | 2014-08-06 | 上海帆声图像科技有限公司 | 一种艺术品鉴定装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012210954B4 (de) * | 2012-06-27 | 2022-10-20 | Nico Correns | Spektrometeranordnung |
DE102014105222A1 (de) * | 2014-04-11 | 2015-10-15 | Jenoptik Optical Systems Gmbh | Kamera mit integriertem Spektrometer |
CN107110707B (zh) * | 2015-01-07 | 2018-08-17 | 奥林巴斯株式会社 | 分光图像获取装置 |
JP6601007B2 (ja) * | 2015-06-18 | 2019-11-06 | セイコーエプソン株式会社 | 分光測定装置、画像形成装置、及び分光測定方法 |
CN114200668B (zh) * | 2021-11-12 | 2024-08-30 | 中林信达(北京)科技信息有限责任公司 | 基于全球面、分色镜和双点源探测器的光学成像系统 |
CN217483672U (zh) * | 2022-08-10 | 2022-09-23 | 武汉加特林光学仪器有限公司 | 一种可视瞄准光谱测量装置和光学检测设备 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001208979A (ja) | 2000-01-27 | 2001-08-03 | Mitaka Koki Co Ltd | 立体顕微鏡 |
JP2001289619A (ja) | 2000-04-07 | 2001-10-19 | Mitaka Koki Co Ltd | 表面形状測定方法 |
JP2001525580A (ja) * | 1997-12-04 | 2001-12-11 | アプライド スペクトラル イメージング リミテッド | 癌細胞の検出方法 |
JP2004145372A (ja) | 2004-02-20 | 2004-05-20 | Mitaka Koki Co Ltd | 固定高倍率切換型顕微鏡 |
JP2007086470A (ja) | 2005-09-22 | 2007-04-05 | Mitaka Koki Co Ltd | 光学計測システム |
JP2008281513A (ja) * | 2007-05-14 | 2008-11-20 | St Japan Inc | 文化財検査装置 |
JP2009086573A (ja) * | 2007-10-03 | 2009-04-23 | Fuji Xerox Co Ltd | 光走査装置及び画像形成装置 |
JP2010243381A (ja) | 2009-04-08 | 2010-10-28 | Avanstrate Inc | 帯電性に基づくガラス板の評価方法、それを用いたガラス板の製造方法、その評価に用いる装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4088410A (en) * | 1976-02-17 | 1978-05-09 | Vickers Limited | Optical sizing instrument |
US4844617A (en) * | 1988-01-20 | 1989-07-04 | Tencor Instruments | Confocal measuring microscope with automatic focusing |
US5790306A (en) * | 1995-06-16 | 1998-08-04 | Global Surgical Corporation | Microscope beamsplitter |
EP1178283A1 (en) * | 2000-07-31 | 2002-02-06 | CO.RI.AL. Consorzio Ricerche Alimentari S.C.p.A. | Airborne spectroscopic digital camera imaging system |
US7518710B2 (en) * | 2005-07-14 | 2009-04-14 | Battelle Memorial Institute | Optical devices for biological and chemical detection |
JP2007195726A (ja) * | 2006-01-26 | 2007-08-09 | Mitaka Koki Co Ltd | 眼底検査装置 |
-
2010
- 2010-10-29 JP JP2010243381A patent/JP2012098050A/ja active Pending
-
2011
- 2011-10-27 AU AU2011321433A patent/AU2011321433B2/en not_active Ceased
- 2011-10-27 CN CN2011800525428A patent/CN103189735A/zh active Pending
- 2011-10-27 SG SG2013031133A patent/SG189984A1/en unknown
- 2011-10-27 EP EP11836387.8A patent/EP2634559A4/en not_active Withdrawn
- 2011-10-27 US US13/879,459 patent/US8922762B2/en not_active Expired - Fee Related
- 2011-10-27 WO PCT/JP2011/074783 patent/WO2012057254A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001525580A (ja) * | 1997-12-04 | 2001-12-11 | アプライド スペクトラル イメージング リミテッド | 癌細胞の検出方法 |
JP2001208979A (ja) | 2000-01-27 | 2001-08-03 | Mitaka Koki Co Ltd | 立体顕微鏡 |
JP2001289619A (ja) | 2000-04-07 | 2001-10-19 | Mitaka Koki Co Ltd | 表面形状測定方法 |
JP2004145372A (ja) | 2004-02-20 | 2004-05-20 | Mitaka Koki Co Ltd | 固定高倍率切換型顕微鏡 |
JP2007086470A (ja) | 2005-09-22 | 2007-04-05 | Mitaka Koki Co Ltd | 光学計測システム |
JP2008281513A (ja) * | 2007-05-14 | 2008-11-20 | St Japan Inc | 文化財検査装置 |
JP2009086573A (ja) * | 2007-10-03 | 2009-04-23 | Fuji Xerox Co Ltd | 光走査装置及び画像形成装置 |
JP2010243381A (ja) | 2009-04-08 | 2010-10-28 | Avanstrate Inc | 帯電性に基づくガラス板の評価方法、それを用いたガラス板の製造方法、その評価に用いる装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2634559A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103969197A (zh) * | 2013-02-06 | 2014-08-06 | 上海帆声图像科技有限公司 | 一种艺术品鉴定装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2634559A4 (en) | 2015-01-14 |
US20130201475A1 (en) | 2013-08-08 |
JP2012098050A (ja) | 2012-05-24 |
CN103189735A (zh) | 2013-07-03 |
EP2634559A1 (en) | 2013-09-04 |
AU2011321433B2 (en) | 2014-09-18 |
SG189984A1 (en) | 2013-06-28 |
US8922762B2 (en) | 2014-12-30 |
AU2011321433A1 (en) | 2013-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012057254A1 (ja) | モニター可能な分光計測装置 | |
EP1840502B1 (en) | Optical interferometer for measuring changes in thickness | |
TW200912281A (en) | Optical characteristic measuring apparatus and measuring method using light reflected from object to be measured | |
US20130128268A1 (en) | Detection optical system and scanning microscope | |
JP5424108B2 (ja) | ラマンイメージング装置 | |
JP4447970B2 (ja) | 物体情報生成装置および撮像装置 | |
US20110292389A1 (en) | Device and Method for Determining a Piece of Polarisation Information and Polarimetric Imaging Device | |
JP2003516522A (ja) | 対象物からのスペクトル発光の空間分布を測定するための装置 | |
US12066615B2 (en) | Apparatus and method for light-beam scanning microspectrometry | |
US10921721B1 (en) | Measurement system and grating pattern array | |
JP5150343B2 (ja) | 天体望遠鏡接眼部の情報合成構造 | |
JP2003295118A (ja) | 撮像装置 | |
Fourspring et al. | Scattered light in a DMD based multi-object spectrometer | |
JP2008020231A (ja) | 光学主軸分布測定方法および光学主軸分布測定装置 | |
EP3792679B1 (en) | Electromagnetic wave detection device and information acquisition system | |
US7209229B2 (en) | Wavelength selectable spectroheliograph | |
Moreno-Ventas et al. | ALTIUS instrument: a study of scattering effects | |
Katsukawa et al. | Focal plane instrument for the Solar UV-Vis-IR Telescope aboard SOLAR-C | |
JP2015094703A (ja) | 分光透過率測定機 | |
JP2006322710A (ja) | 分光測定装置 | |
JP5963331B2 (ja) | X線測定装置 | |
US11204234B1 (en) | High speed wide field autocollimator | |
Quijada et al. | Optical component performance for the Ocean Radiometer for Carbon Assessment (ORCA) | |
US20220303440A1 (en) | Hyperspectral sensor, hyperspectral imaging system including the sensor, and hyperspectral imaging method using the system | |
JP4448301B2 (ja) | 透過光量測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11836387 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13879459 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011836387 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011321433 Country of ref document: AU Date of ref document: 20111027 Kind code of ref document: A |