WO2012057042A1 - 樹脂製容器の表面改質方法および樹脂製容器の表面改質装置 - Google Patents

樹脂製容器の表面改質方法および樹脂製容器の表面改質装置 Download PDF

Info

Publication number
WO2012057042A1
WO2012057042A1 PCT/JP2011/074357 JP2011074357W WO2012057042A1 WO 2012057042 A1 WO2012057042 A1 WO 2012057042A1 JP 2011074357 W JP2011074357 W JP 2011074357W WO 2012057042 A1 WO2012057042 A1 WO 2012057042A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin container
surface modification
electron beam
wheel
plasma
Prior art date
Application number
PCT/JP2011/074357
Other languages
English (en)
French (fr)
Inventor
俊也 小林
時夫 高橋
西納 幸伸
正己 林
富久雄 西
山本 幸宏
▲たく▼也 大西
Original Assignee
サントリーホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サントリーホールディングス株式会社 filed Critical サントリーホールディングス株式会社
Priority to CN201180052203.XA priority Critical patent/CN103209900B/zh
Publication of WO2012057042A1 publication Critical patent/WO2012057042A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • B65B55/04Sterilising wrappers or receptacles prior to, or during, packaging
    • B65B55/08Sterilising wrappers or receptacles prior to, or during, packaging by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B61/00Auxiliary devices, not otherwise provided for, for operating on sheets, blanks, webs, binding material, containers or packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/24Cleaning of, or removing dust from, containers, wrappers, or packaging ; Preventing of fouling

Definitions

  • the present invention relates to a surface modification method for a resin container and a surface modification apparatus for a resin container in which the inner and outer surfaces of the mouth of the resin container are surface-modified so as to enhance the hydrophilicity by surface modification means.
  • a container-side electrode having a space for accommodating a container and serving also as a vacuum chamber, a mouth-side electrode disposed above the container opening in an insulated state from the container-side electrode, and a container A configuration including an internal gas supply means and an external gas supply means for supplying gas to the inside and the outside, and a high frequency supply means for supplying a high frequency to the container side electrode is described.
  • JP 2005-105294 A JP 2005-105294 A
  • a container is accommodated in a vacuum chamber, the inside of the container is replaced with a source gas, and the inside of the chamber is replaced with a discharge gas, and then a high frequency is applied to the container side electrode. Since the surface of the container is modified by supplying and generating plasma, it is applied to an apparatus configured to irradiate an electron beam to a container being conveyed by a conveying means such as an electron beam sterilizer. There was a problem that could not be done.
  • a surface modification method for a resin container according to a first aspect of the present invention is made in order to solve the above-mentioned problem.
  • Surface modification for improving hydrophilicity by means of surface modification means on the inner and outer surfaces of the mouth of the resin container is characterized by performing.
  • the second invention is characterized in that, in the invention described in claim 1, the surface modifying means irradiates plasma.
  • a third invention is the invention according to claim 1 or 2, wherein the resin container is a resin container sterilized by electron beam irradiation, before irradiation with an electron beam or irradiation. Then, surface modification is performed by the surface modification means.
  • a surface modification device for a resin container is a surface modification device that performs surface modification that improves hydrophilicity on the inner and outer surfaces of the mouth of the resin container to be transported and a transport means for transporting the resin container. It is characterized by comprising quality means.
  • a fifth invention is characterized in that, in the invention according to claim 4, the surface modifying means is a plasma irradiation apparatus.
  • the electron beam according to the fourth or fifth aspect wherein the surface modification unit sterilizes the resin container transported by the transport unit by irradiating the electron beam. It is provided upstream or downstream of the irradiation means.
  • the surface modification method and the surface modification device for the resin container of the present invention improve the hydrophilicity by modifying the surface of the resin container by a surface modification means such as a plasma injection device on the resin container, Electric charges easily flow at the mouth of the resin container, and local static electricity can be suppressed.
  • FIG. 1 is a plan view showing a simplified arrangement of the entire electron beam sterilizer.
  • Example 1 is a view showing a state in which plasma is injected into the container by a plasma injection device provided on the supply wheel.
  • the resin container is transported by transport means and sent to the front surface of the electron beam irradiation device, and is sterilized by being irradiated with an electron beam from the electron beam irradiation device.
  • surface modification means for modifying the surface of the resin container such as plasma injection means is disposed, and the resin container is subjected to this surface modification. Since the inner and outer surfaces of the mouth are modified by the means and the hydrophilicity is improved, the object of suppressing the generation of local static electricity is achieved.
  • FIG. 1 shows, as an example, a sterilizing and filling apparatus that sterilizes a container and then fills and capping a liquid (indicated by reference numeral 1 as a whole).
  • the right side is a sterilization zone S provided with a zone F for filling and capping (hereinafter referred to as a filling zone).
  • the sterilization zone S is a lead wall 4 that shields the electron beam and X-rays (braking X-rays) from leaking outside when the resin container 2 (see FIG. 2) is sterilized by irradiating with an electron beam. Is housed in a sterilization chamber 6 surrounded by.
  • a supply wheel 8 disposed on the inlet side and a sterilization wheel 10 that rotates and conveys the container 2 delivered from the supply wheel 8 are provided.
  • the resin container 2 passes through the front side of the electron beam irradiation device 12 and is irradiated with an electron beam while being supported and transported by a bottle support means (not shown) provided on the sterilization wheel 10. And sterilized.
  • the resin container 2 that has been irradiated with the electron beam is delivered to the discharge wheel 14 disposed on the downstream side of the sterilization chamber 6 and sent to the next filling zone F.
  • the container 2 sterilized in the sterilization zone S and filled with contents such as liquid in the filling zone F on the downstream side thereof is a resin container 2 such as a PET bottle.
  • the resin container 2 includes a cylindrical mouth 2a at the top.
  • a flange 2b is formed near the lower portion of the mouth portion 2a, and the upper or lower portion of the flange 2b is gripped by a gripper, or the lower surface side of the flange 2b is supported on the bottle support means of the sterilization wheel 10 or other support means. It is supported by and transported in a suspended state.
  • the resin container 2 is continuously transported by an air transport conveyor 16 and separated at a predetermined interval by an infeed screw or the like (not shown), and then delivered to a supply wheel 8 disposed on the inlet side of the sterilization chamber 6. It is.
  • the supply wheel 8 is provided with a plurality of grippers 18 at equal intervals in the circumferential direction, and each gripper 18 grips and conveys the upper side of the flange 2 b of the resin container 2.
  • the resin container 2 held and rotated by the gripper 18 of the supply wheel 8 is delivered to the next sterilization wheel 10.
  • a plasma injection device 20 is installed on the inlet side of the supply wheel 8. The plasma injection device 20 will be described later.
  • the sterilization wheel 10 is provided with a plurality of bottle support means at equal intervals in the circumferential direction, and each bottle support means supports and conveys the lower surface side of the flange 2b of the resin container 2.
  • the supply wheel 8 and the sterilization wheel 10 rotate synchronously, and at the supply position A, the resin container 2 is delivered from each gripper 18 of the supply wheel 8 to each bottle support means of the sterilization wheel 10.
  • the resin container 2 supported and supported by each bottle support means of the sterilization wheel 10 passes through the front of the electron beam irradiation device 12, and in the meantime, the entire electron beam irradiation device 12 extends over the entire length in the vertical direction. It is sterilized by being irradiated with an electron beam.
  • the sterilized resin container 2 is delivered to the discharge wheel 14 on the downstream side.
  • the discharge wheel 14 is provided with a plurality of grippers 22 on the outer peripheral portion at equal intervals in the circumferential direction. These grippers 22 are flanges 2b of the resin container 2 supported by the bottle support means of the sterilization wheel 10. Grab the upper part and receive.
  • the discharge wheel 14 also rotates synchronously with the sterilization wheel 10, and the resin container 2 is delivered from the bottle support means of the sterilization wheel 10 to each gripper 22 of the discharge wheel 14 at the discharge position B.
  • the resin container 2 held by the gripper 22 of the discharge wheel 14 is a container of the receiving wheel 26 arranged on the inlet side of the next chamber (chamber 24 of the filling zone F) provided adjacent to the sterilization chamber 6. It is delivered to a support means (not shown) and sent to the next step.
  • An opening 4a is formed on one wall surface (upper wall surface in FIG. 1) of the sterilization chamber 6, and an electron beam irradiation device 12 is attached to the opening 4a.
  • the electron beam irradiation apparatus 12 includes a vacuum chamber (acceleration chamber) for irradiating the resin container 2 with an electron beam, and as is well known, the filament is heated in a vacuum in the vacuum chamber. After generating thermal electrons and accelerating the electrons with a high voltage to form a high-speed electron beam, it is taken out into the atmosphere through a window foil made of metal such as Ti attached to the irradiation window 12a (this object to be processed) In the embodiment, the resin container 2) is irradiated with an electron beam and sterilized.
  • the resin container 2 supported and transported by the bottle support means of the sterilization wheel 10 is sterilized by being irradiated with an electron beam from the electron beam irradiation device 12 and then delivered to the gripper 22 of the discharge wheel 14. It is rotated and conveyed.
  • a chamber 24 in the filling zone F is disposed adjacent to the sterilization chamber 6 in the sterilization zone S, and the resin container 2 rotated and conveyed by the discharge wheel 14 in the sterilization zone S is disposed in the chamber 24 in the filling zone F. It is delivered to a receiving wheel 26 arranged on the inlet side.
  • the resin container 2 delivered to the receiving wheel 26 is rotated and supplied to the next filler 28.
  • the filler 28 that has received the resin container 2 from the receiving wheel 26 fills the contents such as a liquid while holding the resin container 2 and rotating and transporting it.
  • the resin container 2 that has been filled in the filler 28 is taken out by an intermediate wheel 30 that also serves as a discharge wheel of the filler 28 and a supply wheel of the next capper, and is supplied to the capper 32.
  • the resin container 2 capped in the capper 32 is taken out by the discharge wheel 34 from the capper 32, discharged by the discharge conveyor 36, and sent to the next step.
  • Three plasma injection devices 20 (20A, 20B, 20C) are provided near the entrance of the supply wheel 8 (see FIG. 2).
  • a plurality of grippers 18 are provided on the outer peripheral portion of the supply wheel 8 at equal intervals in the circumferential direction, and each gripper 18 grips and conveys the upper side of the flange 2 b of the resin container 2.
  • the second and third plasma injection devices 20B and 20C are installed respectively.
  • the second and third plasma injection devices 20B and 20C are arranged to inject plasma to the outer surface side of the mouth portion 2a of the resin container 2.
  • the resin container 2 conveyed by the supply wheel 8 is spread over the entire inner surface of the mouth 2a and the outer surface of the mouth 2b of the resin container 2 by these three plasma sprayers 20A, 20B, 20C.
  • Plasma is irradiated.
  • the plasma injection apparatus 20 (20A, 20B, 20C) generates a plasma discharge in the atmosphere using a high-voltage arc plasma discharge and air.
  • the surface is modified to improve the hydrophilicity.
  • the operation of the sterilizing and filling apparatus 1 will be described.
  • the resin container 2 to be sterilized by the electron beam sterilization device provided in the sterilization zone S on the upstream side of the sterilization filling device 1 is conveyed by the air conveyance conveyor 16 and pitch-cut at predetermined intervals, and then lead It is carried into a sterilization chamber 6 surrounded by a wall 4 made of metal.
  • the supply wheel 8 disposed on the inlet side of the sterilization chamber 6 is provided with a plurality of grippers 18 at equal intervals in the circumferential direction, near the lower portion of the cylindrical mouth portion 2a of the resin container 2 carried in from the outside.
  • the upper side of the formed flange 2b is gripped.
  • the resin container 2 held by the gripper 18 is rotated and conveyed by the rotation of the supply wheel 8.
  • Plasma injection devices 20 (20A, 20B, 20C) are provided above the inlet portion of the supply wheel 8, and these plasma injection devices are provided on the inner and outer surfaces of the mouth portion 2a of the resin container 2 held by the gripper 18. Plasma discharge electrons are irradiated from 20A, 20B, and 20C. In the mouth portion 2a of the resin container 2, the entire inner and outer surfaces are improved in hydrophilicity by the plasma irradiation, and the charge flows more easily than in the case where the plasma is not irradiated.
  • the resin container 2 irradiated with plasma is transferred from the gripper 18 of the supply wheel 8 to a bottle support means (not shown) provided on the sterilization wheel 10 at a supply position A to the sterilization wheel 10.
  • the resin container 2 supported by the bottle support means is rotated and conveyed in the direction of arrow R in FIG. 1 and reaches the front side of the electron beam irradiation device 12.
  • the resin container 2 supported by the bottle support means is sterilized by being irradiated with an electron beam while moving in front of the irradiation window 12a of the electron beam irradiation device 16.
  • the resin container 2 sterilized by being irradiated with an electron beam while passing through the front side of the electron beam irradiation device 12 is supported by the bottle support means of the sterilization wheel 10 and is rotated and conveyed to the next discharge wheel 14. Delivered.
  • the resin container 2 supported on the lower side of the flange 2b by the bottle support means is delivered to the gripper 22 provided on the discharge wheel 14 at the discharge position B and is gripped on the upper side of the flange 2b.
  • the resin container 2 held and gripped by the gripper 22 of the discharge wheel 14 is transferred to a receiving wheel 26 disposed on the inlet side of the next chamber (chamber 24 in the filling zone F).
  • the resin container 2 held on the receiving wheel 26 is supplied to the next filler 28.
  • the liquid is filled inside while being rotated and conveyed in the filler 28.
  • the resin container 2 filled with the liquid is sent to the capper 32 through the intermediate wheel 30, and after capping is performed, the resin container 2 is taken out to the discharge wheel 34 and discharged onto the discharge conveyor 36. It is sent to the next process.
  • the resin container 2 sterilized by the apparatus of this embodiment and capped after being filled with liquid has the following effects.
  • the plasma is irradiated, the surface of the material of the resin container 2 is modified and the hydrophilicity is improved.
  • the hydrophilicity is improved, the electric charge easily flows and the generation of local static electricity is suppressed.
  • the inner and outer surfaces of the mouth which have been improved in hydrophilicity by surface modification, have higher resistance and less charge flow than liquid, so the speed of the flowing charge is slower than when flowing through the liquid, and the influence of the charge Can reduce irritation.
  • the plasma injection device 20 is arranged on the transport path of the resin container 2 by the supply wheel 8 and plasma is injected before the electron beam irradiation device 12 irradiates the resin container 2 with the electron beam.
  • the present invention is not necessarily limited to the one that injects plasma before the electron beam irradiation.
  • the plasma injection device is disposed in the conveyance path of the discharge wheel 14 and the intermediate wheel 30 arranged on the upstream side of the capper 32.
  • the surface modification of the resin container 2 was performed by spraying plasma, but the means for surface modification is not limited to plasma spraying, and other methods such as corona discharge and electron beam Surface modification can also be performed by irradiation or the like.
  • it is not limited to resin containers sterilized by electron beam irradiation, but is made of resin containers such as Teflon (registered trademark), vinyl chloride, polyethylene, etc. It is also possible to apply to surface modification of resin containers of various materials and shapes such as containers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)

Abstract

 樹脂製容器2に、プラズマを噴射して親水性を高めるように表面改質を行う。 殺菌ホイール10に設けた複数の支持手段に樹脂製容器2を支持させて回転搬送し、電子線照射装置12の前面側を通過する際に電子線を照射して殺菌を行う。前記殺菌ホイール10に樹脂製容器2を供給する供給ホイール8の、容器搬送経路内に表面改質手段としてのプラズマ噴射装置20(20A、20B、20C)が配置されている。搬送される樹脂製容器2の口部2aの内外面にプラズマを噴射すると、表面が改質され親水性が向上する。その結果、樹脂製容器2の口部2aに体の一部が触れたときに、電子線の照射により滞留している電荷が流れやすくなり、静電気の発生が抑制される。

Description

樹脂製容器の表面改質方法および樹脂製容器の表面改質装置
 本発明は、樹脂製容器の口部内外面を表面改質手段によって親水性を高めるように表面改質を行う樹脂製容器の表面改質方法および樹脂製容器の表面改質装置に関するものである。
 PETボトル等の樹脂製容器に電子線を照射して殺菌すると、樹脂製容器が帯電することが従来から知られている。このように樹脂製容器が帯電すると埃や塵を引き寄せてしまうという問題が発生する。また、電子線の照射による殺菌を行うと、樹脂製容器の壁面の内部に電荷が滞留するとともに、直接電子線の照射を受ける外側の表面と、壁面を透過して内部側の表面に滞留する電荷の量が異なる状態になるため、内面と外面との間に大きな電位差が発生し、このことが原因で静電気が発生するという問題もあった。このような樹脂製容器の静電気は、プラズマを照射することによって表面を改質することで防止できることがすでに知られている(特許文献1参照)。
 前記特許文献1には、容器を収容するための空所を有し、真空チャンバーを兼ねる容器側電極と、この容器側電極と絶縁状態で容器の開口部上方に配置した口側電極と、容器の内部と外部にそれぞれガスを供給する内部ガス供給手段および外部ガス供給手段と、容器側電極に高周波を供給する高周波供給手段等を備えた構成が記載されている。
特開2005-105294号公報
 前記特許文献1に記載された構成では、真空チャンバーの内部に容器を収容し、容器の内部を原料ガスに置換するとともに、前記チャンバー内を放電ガスに置換した後、前記容器側電極に高周波を供給してプラズマを発生させることにより、容器の表面改質を行うようにしているので、電子線殺菌装置のように搬送手段によって搬送している容器に電子線を照射する構成の装置には適用することができないという問題があった。
 第1の発明に係る樹脂製容器の表面改質方法は、前記課題を解決するために成されたもので、樹脂製容器の口部内外面に表面改質手段によって、親水性を高める表面改質を行うことを特徴とするものである。
 また、第2の発明は、請求項1に記載の発明において、前記表面改質手段が、プラズマを照射することを特徴とするものである。
 さらに、第3の発明は、請求項1または請求項2に記載の発明において、前記樹脂製容器は、電子線照射により殺菌される樹脂製容器であって、電子線を照射する前、もしくは照射した後に、前記表面改質手段によって表面改質を行うことを特徴とするものである。
 また、第4の発明に係る樹脂製容器の表面改質装置は、樹脂製容器を搬送する搬送手段と、搬送される樹脂製容器の口部内外面に親水性を高める表面改質を行う表面改質手段を備えることを特徴とするものである。
 また、第5の発明は、請求項4に記載の発明において、前記表面改質手段が、プラズマ照射装置であることを特徴とするものである。
 また、第6の発明は、請求項4または請求項5に記載の発明において、前記表面改質手段が、搬送手段により搬送される樹脂製容器に電子線を照射することにより殺菌を行う電子線照射手段の上流側もしくは下流側に設けられることを特徴とするものである。
 本発明の樹脂製容器の表面改質方法および表面改質装置は、樹脂製容器に、プラズマ噴射装置等の表面改質手段によって樹脂製容器の表面を改質して親水性を向上させるので、樹脂製容器の口部において電荷が流れやすくなり、局所的な静電気の発生を抑制することができる。
図1は電子線殺菌装置の全体の配置を簡略化して示す平面図である。(実施例1) 図2は供給ホイールに設けられたプラズマ噴射装置により容器にプラズマを噴射している状態を示す図である。
  2  樹脂製容器
 10  搬送手段(殺菌ホイール)
 12  電子線照射手段
 20  表面改質手段(プラズマ噴射手段)
 樹脂製容器は搬送手段によって搬送されて電子線照射装置の前面に送られ、電子線照射装置から電子線を照射されて殺菌される。前記電子線照射装置よりも上流側または下流側には、例えば、プラズマ噴射手段のような樹脂製容器の表面を改質する表面改質手段が配置されており、樹脂製容器はこの表面改質手段によって口部の内外の表面が改質され、親水性が向上されるので、局所的な静電気の発生を抑制するという目的を達成する。
 以下、図面に示す実施例により本発明を説明する。図1は一例として、容器を殺菌した後、液体を充填しキャッピングを行う殺菌充填装置であり(全体として符号1で示す)、図の左側が、本発明の一実施例に係る電子線殺菌装置を備えた殺菌ゾーンS、右側が充填およびキャッピングを行うゾーンF(以下、充填ゾーンと呼ぶ)である。殺菌ゾーンSは、樹脂製容器2(図2参照)に電子線を照射して殺菌する際に、電子線やX線(制動X線)が外部に漏れないように遮蔽する鉛製の壁面4によって囲まれた殺菌チャンバー6内に収容されている。この殺菌チャンバー6内には、入口側に配置された供給ホイール8と、この供給ホイール8から受け渡された容器2を回転搬送する殺菌ホイール10が設けられている。樹脂製容器2は、この殺菌ホイール10に設けられたボトル支持手段(図示せず)によって支持されて搬送される間に、電子線照射装置12の前面側を通過して電子線の照射を受けて殺菌される。電子線の照射を受けた樹脂製容器2は、殺菌チャンバー6の下流側に配置された排出ホイール14に受け渡されて、次の充填ゾーンFに送られる。
 前記殺菌ゾーンSで殺菌され、その下流側の充填ゾーンFにおいて液体等の内容物が充填される容器2は、PETボトル等の樹脂製の容器2である。この樹脂製容器2は、上部に円筒状の口部2aを備えている。この口部2aの下部寄りにフランジ2bが形成されており、このフランジ2bの上方または下方をグリッパによって把持し、あるいはフランジ2bの下面側を前記殺菌ホイール10のボトル支持手段やその他の支持手段等によって支持して、吊り下げた状態で搬送する。
 この樹脂製容器2は、エア搬送コンベヤ16によって連続的に搬送され、図示しないインフィードスクリュー等によって所定の間隔に切り離された後、前記殺菌チャンバー6の入口側に配置された供給ホイール8に引き渡される。供給ホイール8には、円周方向等間隔で複数のグリッパ18が設けられており、各グリッパ18が前記樹脂製容器2のフランジ2bよりも上方側を把持して搬送する。供給ホイール8のグリッパ18に保持されて回転搬送された樹脂製容器2は、次の殺菌ホイール10に引き渡される。なお、この実施例では、供給ホイール8の入口側にプラズマ噴射装置20が設置されている。このプラズマ噴射装置20については後に説明する。
 前記殺菌ホイール10には、円周方向等間隔で複数のボトル支持手段が設けられており、これら各ボトル支持手段が樹脂製容器2のフランジ2bの下面側を支持して搬送する。前記供給ホイール8と殺菌ホイール10とは同期回転しており、供給位置Aにおいて、供給ホイール8の各グリッパ18から殺菌ホイール10の各ボトル支持手段に樹脂製容器2が受け渡される。
 殺菌ホイール10の各ボトル支持手段に支持されて回転搬送される樹脂製容器2は、電子線照射装置12の前方を通過し、その間に上下方向の全長に亘って全体的に電子線照射装置12から電子線の照射を受けて殺菌される。殺菌された樹脂製容器2は、その下流側の排出ホイール14に引き渡される。排出ホイール14は外周部に円周方向等間隔で複数のグリッパ22が設けられており、これら各グリッパ22が、前記殺菌ホイール10のボトル支持手段が支持している樹脂製容器2の、フランジ2bよりも上部を把持して受け取る。排出ホイール14も前記殺菌ホイール10と同期回転しており、排出位置Bにおいて、殺菌ホイール10の各ボトル支持手段から排出ホイール14の各グリッパ22に樹脂製容器2が受け渡される。排出ホイール14のグリッパ22に把持された樹脂製容器2は、殺菌チャンバー6に隣接して設けられた次のチャンバー(充填ゾーンFのチャンバー24)の入口側に配置されている受け取りホイール26の容器支持手段(図示せず)に受け渡されて次の工程に送られる。
 前記殺菌チャンバー6の一方の壁面(図1の上方の壁面)に開口部4aが形成され、この開口部4aに電子線照射装置12が取り付けられている。この電子線照射装置12は、図示はしないが、樹脂製容器2に電子線を照射する真空チャンバー(加速チャンバー)を備えており、周知のように、真空チャンバー内の真空中でフィラメントを加熱して熱電子を発生させ、高電圧によって電子を加速して高速の電子線ビームにした後、照射窓12aに取り付けてあるTi等の金属製の窓箔を通して大気中に取り出して被処理物(この実施例では樹脂製容器2)に電子線を当てて殺菌等の処理を行う。
 前記殺菌ホイール10のボトル支持手段に支持されて搬送されている樹脂製容器2が、電子線照射装置12から電子線を照射されて殺菌された後、排出ホイール14のグリッパ22に受け渡されて回転搬送される。前記殺菌ゾーンSの殺菌チャンバー6に隣接して、充填ゾーンFのチャンバー24が配置されており、殺菌ゾーンSの排出ホイール14によって回転搬送された樹脂製容器2は、充填ゾーンFのチャンバー24の入口側に配置された受け取りホイール26に受け渡される。受け取りホイール26に受け渡された樹脂製容器2は、回転搬送されて次のフィラ28に供給される。
 受け取りホイール26から樹脂製容器2を受け取ったフィラ28は、この樹脂製容器2を保持して回転搬送する間に液体等の内容物の充填を行う。フィラ28において充填が終了した樹脂製容器2は、フィラ28の排出ホイールと次のキャッパの供給ホイールとを兼ねた中間ホイール30によって取り出され、キャッパ32に供給される。キャッパ32においてキャッピングが行われた樹脂製容器2は、キャッパ32からの排出ホイール34によって取り出されて、排出コンベヤ36によって排出され次の工程に送られる。
 前記供給ホイール8の入り口付近に3台のプラズマ噴射装置20(20A、20B、20C)が設けられている(図2参照)。供給ホイール8の外周部に円周方向等間隔で複数のグリッパ18が設けられており、各グリッパ18が前記樹脂製容器2のフランジ2bよりも上方側を把持して搬送する。この樹脂製容器2の中心が通過する搬送経路の上方に、直下方向にプラズマを噴射する第1プラズマ噴射装置20Aが、そして、樹脂製容器2の搬送経路の半径方向外方側と内方側にそれぞれ、第2、第3のプラズマ噴射装置20B、20Cが設置されている。これら第2および第3のプラズマ噴射装置20B、20Cは、樹脂製容器2の口部2aの外面側にプラズマを噴射するように配置されている。従って、供給ホイール8によって搬送されている樹脂製容器2は、これら3台のプラズマ噴射装置20A、20B、20Cによって、樹脂製容器2の口部2aの内面と口部2bの外面全域に亘ってプラズマが照射される。プラズマ噴射装置20(20A、20B、20C)は、高電圧アークプラズマ放電と空気を用い、大気中でプラズマ放電を発生させる。そのプラズマ放電電子を直接樹脂製容器2の口部2aの内外面に照射することにより、表面改質を行い親水性を高める。
 以上の構成に係る殺菌充填装置1の作動について説明する。この殺菌充填装置1の上流側の殺菌ゾーンSに設けられている電子線殺菌装置で殺菌される樹脂製容器2は、エア搬送コンベヤ16によって搬送され、所定の間隔にピッチ切りされた後、鉛製の壁面4で囲まれた殺菌チャンバー6内に搬入される。殺菌チャンバー6の入口側に配置された供給ホイール8は、円周方向等間隔で複数のグリッパ18が設けられており、外部から搬入された樹脂製容器2の円筒状口部2aの下部寄りに形成されているフランジ2bの上方側をグリップする。グリッパ18に保持された樹脂製容器2は、供給ホイール8の回転によって回転搬送される。
 供給ホイール8の入口部の上方にプラズマ噴射装置20(20A、20B、20C)が設けられており、グリッパ18に保持されている樹脂製容器2の口部2aの内外面に、これらプラズマ噴射装置20A、20B、20Cからプラズマ放電電子が照射される。樹脂製容器2の口部2aは、内外面全域がプラズマの照射によって親水性が向上し、プラズマを照射しない場合と比較して電荷が流れやすい状態になる。プラズマが照射された樹脂製容器2は、殺菌ホイール10への供給位置Aで、供給ホイール8のグリッパ18から殺菌ホイール10に設けられたボトル支持手段(図示せず)に受け渡される。
 殺菌ホイール10の回転により、ボトル支持手段に支持されている樹脂製容器2が図1の矢印R方向に回転搬送されて電子線照射装置12の前面側に到達する。ボトル支持手段に支持された樹脂製容器2が、電子線照射装置16の照射窓12aの前方側を移動する間に電子線の照射を受けて殺菌される。
 電子線照射装置12の前面側を通過する間に電子線の照射を受けて殺菌された樹脂製容器2は、殺菌ホイール10のボトル支持手段に支持されて回転搬送され、次の排出ホイール14に引き渡される。ボトル支持手段にフランジ2bの下方側を支持されている樹脂製容器2は、排出位置Bにおいて、排出ホイール14に設けられているグリッパ22に受け渡されてフランジ2bの上方側を把持される。排出ホイール14のグリッパ22に保持されて回転搬送された樹脂製容器2は、次のチャンバー(充填ゾーンFのチャンバー24)の入口側に配置された受け取りホイール26に受け渡される。
 前記受け取りホイール26に保持された樹脂製容器2は、次のフィラ28に供給される。このフィラ28内で回転搬送されつつ内部に液体が充填される。液体が充填された樹脂製容器2は、中間ホイール30を介してキャッパ32に送られ、キャッピングが行われた後、排出ホイール34に取り出されて排出コンベヤ36上に排出され、この排出コンベヤ36によって次の工程へ送られる。この実施例装置によって殺菌され、内部に液体が充填された後キャッピングが行われた樹脂製容器2は、以下のような効果を奏する。プラズマが照射されると、樹脂製容器2の素材の表面が改質され親水性が向上する。親水性が向上すると電荷が流れやすくなり、局所的な静電気の発生が抑制される。つまり、通常は、樹脂製容器2に手や口が触れた際に、樹脂製容器2の口部内外面は電荷が流れないため、液体が手や口に触れた瞬間に外面と内面に発生する電位差に相当する電荷が流れるが、この実施例に係る表面改質装置でプラズマを噴射した樹脂製容器2の口部内外面は、親水性を高めることによって液体が付着しやすい状態となっている。そのため、樹脂製容器2に手や口などが触れて内部の液体が手や口に触れる前に電荷が流れることになる。しかも、表面改質により親水性が高められた口部内外面は液体と比較すると抵抗が大きく電荷が流れにくいので、流れる電荷の速度は液体を介して流れる場合と比較して遅くなり、電荷の影響による刺激を低減することができる。なお、この実施例では、供給ホイール8による樹脂製容器2の搬送経路にプラズマ噴射装置20を配置し、電子線照射装置12から樹脂製容器2に電子線を照射する前にプラズマの噴射を行ったが、必ずしも電子線の照射の前にプラズマを噴射するものに限定されるものではなく、例えば、キャッパー32の上流側に配置された排出ホイール14や中間ホイール30の搬送経路にプラズマ噴射装置を設けて、電子線の照射の後でプラズマを噴射するようにしてもよい。また、この実施例では、プラズマを噴射することにより樹脂製容器2の表面改質を行ったが、表面改質をする手段はプラズマの噴射に限るものではなく、その他、コロナ放電や電子線の照射等によっても表面改質を行うことができる。また、電子線照射により殺菌された樹脂製容器に限定されるものではなく、搬送手段により搬送されている樹脂製容器や静電気の発生しやすいテフロン(登録商標)や塩化ビニル、ポリエチレン等の樹脂製容器等様々な材質や形状の樹脂製容器の表面改質に適用することも可能である。

Claims (6)

  1.  樹脂製容器の表面改質方法であって、
     樹脂製容器の口部内外面に表面改質手段によって、親水性を高める表面改質を行うことを特徴とする樹脂製容器の表面改質方法。
  2.  前記表面改質手段は、プラズマを照射することを特徴とする請求項1に記載の樹脂製容器の表面改質方法。
  3.  前記樹脂製容器は、電子線照射により殺菌される樹脂製容器であって、電子線を照射する前、もしくは照射した後に、前記表面改質手段によって表面改質を行うことを特徴とする請求項1または請求項2に記載の樹脂製容器の表面改質方法。
  4.  樹脂製容器を搬送する搬送手段と、搬送される樹脂製容器の口部内外面に親水性を高める表面改質を行う表面改質手段を備えることを特徴とする樹脂製容器の表面改質装置。
  5.  前記表面改質手段は、プラズマ照射装置であることを特徴とする請求項5に記載の樹脂製容器の表面改質装置。
  6.  前記表面改質手段は、搬送手段により搬送される樹脂製容器に電子線を照射することにより殺菌を行う電子線照射手段の上流側もしくは下流側に設けられることを特徴とする請求項4または請求項5に記載の樹脂製容器の表面改質装置。
PCT/JP2011/074357 2010-10-27 2011-10-21 樹脂製容器の表面改質方法および樹脂製容器の表面改質装置 WO2012057042A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180052203.XA CN103209900B (zh) 2010-10-27 2011-10-21 树脂制容器的表面改性方法及树脂制容器的表面改性装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010241176A JP5603201B2 (ja) 2010-10-27 2010-10-27 樹脂製容器の表面改質方法および樹脂製容器の表面改質装置
JP2010-241176 2010-10-27

Publications (1)

Publication Number Publication Date
WO2012057042A1 true WO2012057042A1 (ja) 2012-05-03

Family

ID=45993752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074357 WO2012057042A1 (ja) 2010-10-27 2011-10-21 樹脂製容器の表面改質方法および樹脂製容器の表面改質装置

Country Status (3)

Country Link
JP (1) JP5603201B2 (ja)
CN (1) CN103209900B (ja)
WO (1) WO2012057042A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10259922B2 (en) * 2013-11-06 2019-04-16 The Board Of Trustees Of The Leland Stanford Junior University Methods for modifying a hydrophobic polymer surface and devices thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531757B2 (ja) * 2014-03-14 2019-06-19 大日本印刷株式会社 容器の殺菌方法及び装置
WO2016047607A1 (ja) * 2014-09-25 2016-03-31 大日本印刷株式会社 プリフォーム及び樹脂製容器の殺菌方法
JP6940754B2 (ja) * 2017-06-15 2021-09-29 澁谷工業株式会社 樹脂製容器の表面処理装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338639A (ja) * 1992-06-01 1993-12-21 Kuwabara Yasunaga 密封包装容器の着臭防止法
JPH09302118A (ja) * 1996-03-15 1997-11-25 Sekisui Chem Co Ltd 放電プラズマを利用した基材の表面処理方法
JP2002068202A (ja) * 2000-08-29 2002-03-08 Toyo Seikan Kaisha Ltd 紫外線遮断性ボトル

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69841227D1 (de) * 1997-11-18 2009-11-19 Panasonic Corp Mehrschichtprodukt, Kondensator und Verfahren zur Herstellung des Mehrschichtprodukts
AU2003236027A1 (en) * 2002-04-11 2003-10-20 Mitsubishi Shoji Plastics Corporation Plasma cvd film forming apparatus and method for manufacturing cvd film coating plastic container
JP4149748B2 (ja) * 2002-06-24 2008-09-17 三菱商事プラスチック株式会社 ロータリー型量産用cvd成膜装置及びプラスチック容器内表面へのcvd膜成膜方法
JP2005105294A (ja) * 2003-09-26 2005-04-21 Mitsubishi Shoji Plast Kk Cvd成膜装置及びcvd膜コーティングプラスチック容器の製造方法
ITMO20040111A1 (it) * 2004-05-07 2004-08-07 Sig Simonazzi Spa Apparati e metodi per sterilizzare e riempire componenti di unita' di confezionamento,particolarmente bottiglie e-o tappi.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338639A (ja) * 1992-06-01 1993-12-21 Kuwabara Yasunaga 密封包装容器の着臭防止法
JPH09302118A (ja) * 1996-03-15 1997-11-25 Sekisui Chem Co Ltd 放電プラズマを利用した基材の表面処理方法
JP2002068202A (ja) * 2000-08-29 2002-03-08 Toyo Seikan Kaisha Ltd 紫外線遮断性ボトル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10259922B2 (en) * 2013-11-06 2019-04-16 The Board Of Trustees Of The Leland Stanford Junior University Methods for modifying a hydrophobic polymer surface and devices thereof

Also Published As

Publication number Publication date
CN103209900B (zh) 2015-12-09
JP2012091833A (ja) 2012-05-17
CN103209900A (zh) 2013-07-17
JP5603201B2 (ja) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5336949B2 (ja) 樹脂製容器の帯電除去方法、樹脂製容器の殺菌充填方法、樹脂製容器の充填キャッピング方法、樹脂製容器の帯電除去装置および樹脂製容器の殺菌充填システム
JP6554192B2 (ja) 電子線により包装容器を無菌化するための装置および方法
JP5091264B2 (ja) 電子線容器殺菌装置および電子線容器殺菌方法
JP4365835B2 (ja) 開口容器用電子線照射装置
JP5603201B2 (ja) 樹脂製容器の表面改質方法および樹脂製容器の表面改質装置
CN103028126B (zh) 利用引入容器的电荷载子源为容器杀菌的设备和方法
JP5496842B2 (ja) 電子線殺菌方法および電子線殺菌装置
JP5393612B2 (ja) 樹脂製容器の帯電除去方法および帯電除去装置
JP5755133B2 (ja) 電子線殺菌装置
JP6294582B2 (ja) プラスチック材料製の容器を電子放射線によって殺菌する装置および方法
JP5970856B2 (ja) 電子線照射装置
JP6940754B2 (ja) 樹脂製容器の表面処理装置
JP4910819B2 (ja) 電子線殺菌装置
JP5818501B2 (ja) 除電装置
JP2021095178A (ja) 電子線殺菌装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836176

Country of ref document: EP

Kind code of ref document: A1