WO2012056982A1 - 画像処理方法、画像処理装置及び撮像装置 - Google Patents
画像処理方法、画像処理装置及び撮像装置 Download PDFInfo
- Publication number
- WO2012056982A1 WO2012056982A1 PCT/JP2011/074123 JP2011074123W WO2012056982A1 WO 2012056982 A1 WO2012056982 A1 WO 2012056982A1 JP 2011074123 W JP2011074123 W JP 2011074123W WO 2012056982 A1 WO2012056982 A1 WO 2012056982A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- distortion coefficient
- distortion
- virtual projection
- image data
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 115
- 238000003384 imaging method Methods 0.000 title claims abstract description 41
- 238000003672 processing method Methods 0.000 title claims abstract description 18
- 230000003287 optical effect Effects 0.000 claims abstract description 127
- 238000000034 method Methods 0.000 claims description 25
- 238000004364 calculation method Methods 0.000 claims description 15
- 230000009467 reduction Effects 0.000 abstract description 2
- 238000012937 correction Methods 0.000 description 79
- 238000006243 chemical reaction Methods 0.000 description 24
- 238000010586 diagram Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 21
- 230000008859 change Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004075 alteration Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 3
- 241000226585 Antennaria plantaginifolia Species 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 206010034719 Personality change Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/46—Colour picture communication systems
- H04N1/56—Processing of colour picture signals
- H04N1/60—Colour correction or control
- H04N1/603—Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
- H04N1/6033—Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/12—Panospheric to cylindrical image transformations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/80—Camera processing pipelines; Components thereof
- H04N23/81—Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/61—Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
Definitions
- the present invention relates to an image processing method, an image processing apparatus, and an imaging apparatus that perform distortion correction processing of an image captured by an imaging element via an optical system including a condenser lens.
- Patent Document 1 discloses a correction method of the prior art that corrects distortion generated in a captured image captured using a lens with a short focal length using a lens correction parameter.
- Patent Document 2 it is necessary to use an external information processing device to calculate the optical distortion correction parameter for each lens position from the wide end to the tele end of the optical zoom mechanism by using an interpolation operation.
- the optical distortion correction parameter for the discrete lens position within the range to perform the optical zoom the lens position at the time of zooming is limited to the lens position having the optical distortion correction parameter.
- the optical zoom between the positions is connected by electronic zoom.
- distortion correction is performed depending on the difference in the angle of view switched by the angle-of-view switching means, such as performing distortion correction in the case of the angle of view on the wide angle side, and not performing distortion correction in the case of the angle of view other than the wide angle side.
- a video processing apparatus for changing the above is disclosed.
- Patent Document 1 there is a problem that when a captured image obtained by a lens is hardwareized as an image processing device, the processing time becomes long, the circuit scale increases, and the cost increases. .
- the lens position at the time of zooming is limited to a position corresponding to the discrete distortion correction parameter, and the zoom operation is omitted by interpolating the distortion correction parameter by connecting between them with an electronic zoom.
- the zoom operation of the image pickup device alone is realized.
- it can be applied only to a one-dimensional lens movement such as a zoom operation, and is difficult to apply to various movements such as panning and tilting.
- the image after distortion correction processing has a narrow viewing angle, so it is difficult to recognize a wide area at once.
- the viewing angle is widened, but on the other hand, it is difficult to recognize the sense of distance and size due to distortion of the subject.
- the present invention provides an image processing method, an image processing apparatus, and an imaging apparatus capable of accurately recognizing a subject and shortening the processing time with a relatively small circuit.
- the purpose is to provide.
- the coordinates in the world coordinate system of each pixel of the virtual projection plane set in the first step are converted into a camera coordinate system using a distortion coefficient, and based on the coordinates in the converted camera coordinate system and the plurality of pixel data
- a second step of calculating image data of the virtual projection plane set in the first step is calculated based on at least the physical characteristics of the lens of the optical system and the incident angle of incident light from the virtual projection plane set on the optical system.
- a first distortion coefficient and a second distortion coefficient that is an image height from the optical center at which the imaging element and the optical axis of the optical system intersect, calculated using a tangent function of the incident angle to the optical system as a variable, are included.
- image data is calculated using at least one of the first distortion coefficient and the second distortion coefficient.
- the coordinates in the world coordinate system of each pixel of the virtual projection plane set in the first step are converted into a camera coordinate system using a distortion coefficient, and based on the coordinates in the converted camera coordinate system and the plurality of pixel data
- a second step of calculating image data of the virtual projection plane set in the first step is calculated using a display image based on the image data calculated in the second step;
- the distortion coefficient used in the second step includes at least a first distortion coefficient for correcting distortion caused by the optical system and a second distortion coefficient not correcting the distortion,
- image data is calculated using at least one of the first distortion coefficient and the second distortion coefficient.
- a virtual projection plane is used by using the first distortion coefficient in the first and second distortion coefficients in the second step.
- the image data is calculated and the display image of the image data whose distortion is not corrected in the third step is output, the second of the first and second distortion coefficients in the second step.
- the first distortion coefficient, the second distortion coefficient, and the first and first distortions are output in the second step. 4.
- the image data of the virtual projection plane is calculated by stepwise switching and using the third distortion coefficient obtained by interpolation from the two distortion coefficients.
- the first position and the second position of the virtual projection plane of the world coordinate system are set
- the first position obtained by interpolation between the initial second position and the second distortion coefficient, the final first position and the first distortion coefficient, and the intermediate second position and the first position.
- the image processing method according to 4 wherein the image data of the virtual projection plane is calculated by switching between three positions and the third distortion coefficient in stages.
- the first distortion coefficient is a fourth distortion coefficient obtained by multiplying the image height from the optical center with respect to the incident angle to the optical system by 2 n times (n is an integer), 7.
- image processing method according to claim 1, wherein in the second step, image data of 1 ⁇ 2 n times is calculated using the fourth distortion coefficient.
- ExportImageSize Length of the long side of the output image displayed on the display focal: Angle of view in the long side direction of the set virtual projection plane
- An image processing apparatus that obtains image data processed using a plurality of pixel data obtained by receiving an image sensor having a plurality of pixels via an optical system,
- a storage unit for storing a distortion coefficient;
- the coordinates in the world coordinate system of each pixel of the virtual projection plane for which the position and size are set are converted into the camera coordinate system using the distortion coefficient stored in the storage unit, the coordinates converted into the camera coordinate system, and the plurality of coordinates
- An image processing unit that calculates image data of the virtual projection plane based on the pixel data;
- An image signal output unit for outputting an image signal for display of the image data calculated by the image processing unit;
- a first distortion coefficient and a second distortion coefficient that is an image height from an optical center at which the image sensor and the optical axis of the optical system intersect, which is calculated using a tangent function of an incident angle to the optical system as a variable,
- the image processing device wherein the image processing unit calculates image data using at least one of the first distortion coefficient and the second distortion coefficient.
- An image processing apparatus that obtains image data processed using a plurality of pixel data obtained by receiving an image sensor having a plurality of pixels via an optical system, A storage unit for storing a distortion coefficient; The coordinates in the world coordinate system of each pixel of the virtual projection plane for which the position and size are set are converted into the camera coordinate system using the distortion coefficient stored in the storage unit, the coordinates converted into the camera coordinate system, and the plurality of coordinates An image processing unit that calculates image data of the virtual projection plane based on the pixel data; An image signal output unit for outputting an image signal for display of the image data calculated by the image processing unit; Have The storage unit includes at least a first distortion coefficient for correcting distortion generated in the optical system and a second distortion coefficient not correcting the distortion, as the stored distortion coefficient. The image processing device, wherein the image processing unit calculates image data using at least one of the first distortion coefficient and the second distortion coefficient.
- the image processing unit When outputting a moving image for display of image data in which distortion is corrected stepwise in the image signal output unit, The image processing unit switches the first distortion coefficient, the second distortion coefficient, and the third distortion coefficient obtained by interpolation from the first and second distortion coefficients in a stepwise manner and uses the image on the virtual projection plane. 12.
- the image processing apparatus according to any one of 9 to 11, wherein data is calculated.
- the virtual projection plane of the world coordinate system has a first position and a second position
- the image processing unit is obtained by interpolation between the initial second position and the second distortion coefficient, the final first position and the first distortion coefficient, and the second position and the first position in the middle.
- the image processing apparatus according to 12, wherein the image data of the virtual projection plane is calculated by switching between three positions and the third distortion coefficient in stages.
- the virtual projection plane is two, Calculation of image data in the image processing unit of one virtual projection plane of the two virtual projection planes is performed using the first distortion coefficient, and image data in the image processing unit of the other virtual projection plane is calculated. The calculation is performed using the second distortion coefficient,
- the image processing apparatus according to 9 or 10, wherein the image signal output unit outputs a display image based on the two image data calculated by the image processing unit for the two virtual projection planes.
- the first distortion coefficient is a fourth distortion coefficient obtained by multiplying the image height from the optical center with respect to the incident angle to the optical system by 2 n times (n is an integer),
- the image processing apparatus according to any one of 9 to 14, wherein the image processing unit calculates 1/2 n times image data using the fourth distortion coefficient.
- ExportImageSize Length of the long side of the output image displayed on the display focal: Angle of view in the long side direction of the set virtual projection plane
- An imaging device having a plurality of pixels; A storage unit for storing a distortion coefficient of the optical system; A coordinate in the world coordinate system of each pixel of the virtual projection plane is converted into a camera coordinate system using a distortion coefficient of the optical system, and the plurality of coordinates obtained by receiving the light in the image sensor and the coordinates converted into the camera coordinate system An image processing unit that calculates image data of the virtual projection plane based on pixel data; An image signal output unit for outputting an image signal for display of the image data calculated by the image processing unit; Have The distortion coefficient stored in the storage unit is calculated based on at least the physical characteristics of the lens of the optical system and the incident angle of incident light from the virtual projection plane set on the optical system.
- the second distortion coefficient which is the image height from the optical center where the image sensor and the optical axis of the optical system intersect, calculated using the tangent function of the incident angle to the optical system as a variable,
- the image processing unit calculates image data using at least one of the first distortion coefficient and the second distortion coefficient.
- An imaging device having a plurality of pixels; A storage unit for storing a distortion coefficient of the optical system; A coordinate in the world coordinate system of each pixel of the virtual projection plane is converted into a camera coordinate system using a distortion coefficient of the optical system, and the plurality of coordinates obtained by receiving the light in the image sensor and the coordinates converted into the camera coordinate system An image processing unit that calculates image data of the virtual projection plane based on pixel data; An image signal output unit for outputting an image signal for display of the image data calculated by the image processing unit; Have The storage unit includes, as the stored distortion coefficient, at least a first distortion coefficient for correcting distortion generated in the optical system and a second distortion coefficient not correcting the distortion, The imaging apparatus, wherein the image processing unit calculates image data using at least one of the first distortion coefficient and the second distortion coefficient.
- the image processing unit switches the first distortion coefficient, the second distortion coefficient, and the third distortion coefficient obtained by interpolation from the first and second distortion coefficients in a stepwise manner and uses the image on the virtual projection plane.
- the imaging device according to any one of 17 to 19, wherein data is calculated.
- the virtual projection plane of the world coordinate system has a first position and a second position
- the image processing unit is obtained by interpolation between the initial second position and the second distortion coefficient, the final first position and the first distortion coefficient, and the second position and the first position in the middle.
- 21. The imaging apparatus according to 20, wherein the image data of the virtual projection plane is calculated by switching between three positions and the third distortion coefficient in stages.
- the virtual projection plane is two, Calculation of image data in the image processing unit of one virtual projection plane of the two virtual projection planes is performed using the first distortion coefficient, and image data in the image processing unit of the other virtual projection plane is calculated. The calculation is performed using the second distortion coefficient, 19.
- the first distortion coefficient is a fourth distortion coefficient obtained by multiplying the image height from the optical center with respect to the incident angle to the optical system by 2 n times (n is an integer),
- the imaging apparatus according to any one of claims 17 to 22, wherein the image processing unit calculates 1 ⁇ 2 n times of image data using the fourth distortion coefficient.
- ExportImageSize Length of the long side of the output image displayed on the display focal: Angle of view in the long side direction of the set virtual projection plane
- At least one of the first correction coefficient calculated based on the physical characteristics of the lens of the optical system and the second correction coefficient calculated by the relational expression using the incident angle to the optical system as a variable is calculated.
- FIG. 1 shows the state which set the virtual projection surface VP in the optical range. It is a schematic diagram which shows the relationship between the image height h in the 1st distortion coefficient L1 and the 2nd distortion coefficient L2.
- (A) is a figure which shows the example of an input image
- (b) is a figure which shows the example of an output image, respectively.
- (A) is a figure which shows the whole control flow of 1st Embodiment
- (b) is a figure which shows the whole control flow in a comparative example. It is a figure which shows the example which set two virtual projection surfaces as 2nd Embodiment. It is a figure which shows the example which displayed 2 screens divided
- FIG. 1 It is a figure which shows the relationship between incident angle (theta) and the image height h on image pick-up element surface IA.
- (A) and (b) are figures which show the example of an output image. It is a figure which shows the control flow of 3rd Embodiment. It is a figure which shows the example which changes the position of the virtual projection surface VP centering on the image center o of a camera coordinate system. It is a figure which shows the example which changes the position of the virtual projection surface VP centering on the center ov of the virtual projection surface VP0.
- FIG. 1 is a schematic diagram for explaining distortion correction according to the first embodiment.
- X, Y, and Z are world coordinate systems, and the origin O is the lens center.
- Z includes the optical axis, and the XY plane includes the lens center plane LC passing through the lens center O.
- Point P is an object point of the subject in the world coordinate system XYZ.
- ⁇ is an incident angle with respect to the optical axis (coincident with the Z axis).
- X and y are camera coordinate systems, and the xy plane corresponds to the image sensor surface IA.
- o is the optical center, which is the intersection of the optical axis Z and the image sensor surface.
- the point p is a point on the image sensor surface in the camera coordinate system, and the object point P is a distortion correction coefficient (a first distortion coefficient L1 described later) based on a parameter based on the physical characteristics of the lens (hereinafter referred to as “lens parameter”).
- L1 a distortion correction coefficient
- the VP is a virtual projection plane.
- the virtual projection plane VP is set on the opposite side of the imaging element (and imaging element surface IA) with respect to the lens position (lens center plane LC) of the optical system.
- the virtual projection plane VP can be moved and changed in size based on an instruction from the user to the operation unit 130 (see FIG. 3).
- position change is a concept that includes not only the case where the virtual projection plane VP is translated on the XY plane, but also an angle change (also referred to as an attitude change) with respect to the XY plane.
- the virtual projection plane VP is arranged at a predetermined position (Z direction) parallel to the lens center plane LC (XY direction) with a predetermined size, and the center of the virtual projection plane VP.
- ov is located on the Z axis.
- Gv is a point where the object point P is projected onto the virtual projection plane VP, and is an intersection of the object point P and a straight line passing through the lens center O and the virtual projection plane VP.
- a virtual projection plane VP1 in FIG. 2 shows a state in which the virtual projection plane VP0 is rotated on the XZ plane based on the input of the operation unit 130.
- FIG. 3 is a block diagram illustrating a schematic configuration of the imaging apparatus.
- the imaging apparatus includes an imaging unit 110, a control device 100, a display unit 120, and an operation unit 130.
- the imaging unit 110 includes a short-focus lens, an imaging element, and the like.
- examples of the lens include a wide-angle lens and a fisheye lens.
- the control device 100 includes an image processing unit 101, a setting unit 102, and a storage unit 103.
- the setting unit 102 sets the position and size of the virtual projection plane VP based on an input instruction to the operation unit 130.
- the image processing unit 101 creates a conversion table of each coordinate on the virtual projection plane into the camera coordinate system based on the set position and size of the virtual projection plane VP, and shoots with the imaging unit 110 using the conversion table.
- the processed pixel data is processed to create image data to be displayed on the display unit 120.
- the image processing unit also functions as an image signal output unit that outputs an image signal for display.
- the storage unit 103 stores the coefficient calculated by the lens parameter based on the physical characteristics of the lens (real lens) of the imaging unit 110 and the incident angle of the incident light from the set virtual projection plane, that is, distortion generated in the optical system.
- the first distortion coefficient L1 that is a coefficient for correction and the tangent function of the incident angle of incident light incident on the lens from the set virtual projection plane, which corresponds to a coefficient for not correcting the distortion, are used as variables.
- the calculated second distortion coefficient L2 which is the image height from the optical center where the image sensor and the optical axis of the optical system intersect, is stored. Also, the position and size of the virtual projection plane VP and the created conversion table are stored.
- the distortion coefficient can be obtained by obtaining lens calibration data or calculating based on the f ⁇ characteristic of the lens.
- “does not perform distortion correction” means that the distortion as it is actually taken is generated, and does not indicate that the distortion correction is performed satisfactorily. Absent.
- the display unit 120 includes a display screen such as a liquid crystal display, and sequentially displays a display image based on the image data created by the image processing unit 101 based on the pixel data captured by the imaging unit 110 on the display screen.
- a display screen such as a liquid crystal display
- the operation unit 130 includes a keyboard, a mouse, or a touch panel arranged so as to be superimposed on the liquid crystal display of the display unit, and receives a user's input operation.
- FIG. 4 is a diagram illustrating a control flow of the first embodiment.
- an input image that is continuously input is processed and an output image is continuously displayed on the display unit 120 to display a moving image.
- the set distortion correction conditions are input.
- the distortion correction condition (including viewpoint conversion) is set by setting the position and size of the virtual projection plane VP in the world coordinate system by the setting unit 102 in accordance with an input instruction to the operation unit 130 by the user as described above. Is called.
- step S12 an image signal is input from the imaging unit 110, and an input image is obtained at a frame rate of 60 fps, for example.
- step S13 a translation vector and a rotation vector are calculated based on the conditions set in step S11, and in step S14, eugrid conversion is performed based on the calculated translation vector and rotation vector.
- step S14 eugrid conversion is performed based on the calculated translation vector and rotation vector.
- step S14 conversion from the world coordinate system to the camera coordinate system is performed. That is, based on the lens data, coordinate transformation is performed to apply to which coordinate position of the camera coordinates the world coordinate position corresponds. At this time, distortion correction and rotation, translation, enlargement, and reduction associated with calculation of the position of the virtual projection plane VP are performed together.
- a distortion coefficient is acquired.
- the distortion coefficient acquired here includes a first distortion coefficient L1 determined based on a lens parameter that is a coefficient for correcting distortion generated in the optical system and an incident angle of incident light from the set virtual projection plane.
- the optical center at which the image sensor and the optical axis of the optical system intersect is calculated using the tangent function of the incident angle ⁇ (see FIG. 1) of the incident light incident from the virtual projection plane set on the optical system as a variable.
- the second distortion coefficient L2 that is the image height from the second image is included.
- the second distortion coefficient L2 is a distortion coefficient corresponding to not performing distortion correction, and will be described in detail later.
- a plurality of stages of distortion coefficients may be included so as to interpolate between the first distortion coefficient L1 and the second distortion coefficient L2 separately from these.
- an LUT is generated by converting the coordinates of the virtual projection plane VP set using the distortion coefficient acquired in step S15 from the world coordinate system to the camera coordinate system.
- the LUT is generated using one or both of the first distortion coefficient L1 and the second distortion coefficient L2, or a plurality of new distortion coefficients that interpolate between them.
- the generated LUT is stored in the storage unit 103.
- an example of generating an LUT using the first distortion coefficient L1 will be described with reference to the drawings.
- FIG. 5 is a schematic diagram for explaining the coordinate system.
- point A (0, 0, Za), point B (0, 479, Zb), point C (639, 479, Zc), point D of the virtual projection plane VP in the world coordinate system.
- a plane surrounded by (639, 0, Zd) is divided into 640 ⁇ 480 pixel pixels Gv (total number of pixels: 307,000) at equal intervals, and coordinates of all the pixels Gv in the world coordinate system are obtained.
- the values of the X and Y coordinates in the figure are examples, and the X and Y coordinates of the point A are displayed as zero for easy understanding.
- the coordinates Gi (x ′, y ′) in the corresponding camera coordinate system on the image sensor surface IA are calculated. Specifically, it is calculated from the incident angle ⁇ with respect to the optical axis Z obtained from the distortion correction coefficient and the coordinates of each pixel Gv (reference document: International Publication No. 2010/032720).
- FIG. 6 is a diagram illustrating a correspondence relationship between the camera coordinate system xy and the imaging element surface IA.
- points a to d are obtained by converting the points A to D in FIG. 5 into the camera coordinate system by the LUT generated using the first distortion coefficient L1.
- the virtual projection plane VP surrounded by the points A to D is a rectangular plane.
- the area surrounded by the points a to d after the coordinate conversion to the camera coordinate system is (the virtual projection plane VP The shape is distorted (corresponding to the position).
- the figure shows an example in which the barrel shape is distorted, but due to the characteristics of the optical system, it becomes a pincushion type and a Jinkasa type (a barrel shape at the center and a shape that changes to a straight line or a pincushion at the end). In some cases.
- FIG. 7 is a schematic diagram for explaining the distortion correction processing.
- a part of the image data is enlarged and displayed, and the grids in the figure each indicate a pixel.
- the input image data in FIG. 7 (a) is an enlarged display of a part of FIG. 6.
- subjects on a straight line illustrated by thick frames Gi1 to Gi3.
- the generation of the output image data is performed by using the pixel data corresponding to the input image data for each pixel data of the output image data using the LUT. Since the LUT is generated in consideration of the distortion coefficient, when the LUT generated based on the first distortion coefficient L1 is used, the data (for example, luminance signal) of the pixel Gv1 is shown in FIG. The data of Gi1 at the coordinates (100, 200) of (a) will be referred to. Similarly, Gv2 and Gv3 refer to the data of Gi2 and Gi3, respectively.
- the curved distortion is eliminated with the generation of the output image data, and the straight subject is generated (displayed) as the original straight line.
- clipping (zoom) or viewpoint conversion is set by the setting of the virtual projection plane VP in step S11, such processing is also performed.
- the points a to d after the coordinate conversion to the camera coordinate system shown in FIG. 6 are regions having a straight outline without distortion (in a direction to cancel distortion such as distortion).
- a rectangular shape similar to the virtual projection plane VP is obtained (when the viewpoint conversion is set, a rectangular shape such as a trapezoid or a parallelogram). Becomes).
- FIG. 7B an output image is generated in which a curved straight object is maintained as it is.
- step S21 among the plurality of LUTs generated in step S16 stored in the storage unit 103, the LUT to be referenced is switched in a time-sharing manner. For example, two LUTs generated based on the first distortion coefficient L1 and the second distortion coefficient L2 are alternately switched at a cycle of several seconds.
- step S22 image generation is performed on the input image input in step S12 using the LUT referenced in step S21.
- image generation method there is a four-point interpolation as described below.
- the pixel of the image sensor to be referred to is determined from the coordinates Gi (x ′, y ′) shown in FIG. 6, and x and y at the coordinates (x, y) of each pixel of the image sensor are integers.
- X ′ and y ′ of the coordinates Gi (x ′, y ′) used in the process of generating the LUT in step S16 are not limited to integers and can take real values having a decimal part.
- the pixel data of the pixel of the corresponding image sensor is used as a pixel on the virtual projection plane VP. It can be used as pixel data of an output image corresponding to Gv (X, Y, Z).
- the calculated coordinates Gi are used as pixel data of the output image corresponding to the pixel Gv as four-point interpolation.
- an output process is performed based on the generated image.
- an output process in the demosaic process, an output image can be obtained by calculating BGR data of each pixel from a signal of a peripheral pixel.
- the demosaic process is, for example, an image sensor composed of pixels arranged in a Bayer array, so that each pixel has only color information for one color, and interpolation processing is performed from information on neighboring pixels to obtain the color for three colors. It is to calculate color information.
- step S24 the generated output image is output to the display unit 120, for example, at a frame rate of 30 fps or 60 fps, and the process ends.
- FIG. 8 is a diagram illustrating the relationship between the incident angle ⁇ and the image height h from the optical center o that intersects the optical axis Z on the image sensor surface IA.
- FIG. 8 shows the relationship between the incident angle ⁇ of the first distortion coefficient L1 and the second distortion coefficient L2 and the image height h.
- FIG. 9 shows a state in which the virtual projection plane VP is set in the optical range determined by the optical system.
- FIG. 10 is a diagram illustrating the relationship between the image heights h (indicated by h1 and h2) in the first distortion coefficient L1 and the second distortion coefficient L2. In the figure, the same reference numerals are given to the portions common to FIG.
- the first distortion coefficient L1 is a distortion correction coefficient set so as to cancel the influence of distortion aberration caused by the lens, and is mainly incident on the optical system from the physical characteristics of the lens of the imaging unit 110 and the set virtual projection plane. It is a coefficient determined by the incident angle of incident light.
- the second distortion coefficient L2 is a distortion coefficient related to the image height from the optical center where the imaging element and the optical axis of the optical system intersect, which is calculated using the incident angle ⁇ to the optical system as a variable. For example, the following formula (1) is used. Note that if the expression (1) is multiplied several times, there is an advantage that the output image can be easily scaled.
- ExportImageSize is the length of the long side (usually the horizontal direction, x) of the output image displayed on the display unit, and the unit is pixel. This coincides with the size of the long side of the virtual projection plane VP.
- “Focal” will be described with reference to FIG. In FIG. 9, ⁇ is an optical angle of view corresponding to the optical range, and “focal” is an angle of view in the short side direction of the virtual projection plane VP. It should be noted that a relational expression of orthographic projection and equidistant projection may be used instead of the expression (1).
- “Focal” corresponds to a display range in an optical range arbitrarily set by the user, and does not necessarily have to be in the long side direction of the angle of view.
- conditional expression (1) has been described.
- conditional expression is not necessarily limited to this.
- image height with the incident angle ⁇ as a variable that is, the camera coordinates from the optical center Any conditional expression that calculates the distance may be used.
- FIG. 10 is a schematic diagram showing the relationship between the first distortion coefficient L1 and the image height h at the second distortion coefficient L2.
- the image height h is determined by the incident angle ⁇ and the correction coefficient as shown in FIG.
- the image height (distance from the optical axis Z) of the subject (object point P) is proportional to the image height h on the image sensor surface IA.
- the image height h2 at the second distortion coefficient L2 is longer than the image height h1 of the first distortion coefficient L1.
- FIG. 11 shows an example of an input image and an output image after distortion correction processing.
- FIG. 11A shows an input image.
- FIG. 11B shows an example of an output image when the distortion correction processing after step S22 is performed using the first distortion coefficient L1, and
- FIG. 11B is the second distortion coefficient L2.
- the distorted curve is corrected to be a straight line.
- the distortion correction processing is performed with the second distortion coefficient L2 as shown in FIG. 11C
- the output image is almost the same as the input image shown in FIG. That is, it can be seen that an output image equivalent to the case where distortion correction is not performed is obtained.
- FIG. 12 is a diagram showing an overall control flow of the first embodiment.
- FIG. 12A is a diagram showing an overall control flow of this embodiment
- FIG. 12B is a diagram showing an overall control flow in a comparative example.
- FIG. 12A corresponds to FIG. 4, and is a simplified control flow of FIG.
- the second distortion coefficient L2 that can be used to obtain an output image equivalent to the dummy without distortion correction is used.
- distortion correction is always performed using the second distortion coefficient L2 instead of processing without distortion correction. .
- step S32 the parameter for distortion correction execution (first distortion coefficient L1) and in S33 the parameter for no distortion correction (second distortion coefficient L2).
- post-processing such as distortion correction processing in step S34 and demosaic processing in step S35 may be performed.
- the processing speed differs depending on whether or not the distortion correction processing is executed, processing for correcting it is necessary. Specifically, it is determined whether or not to execute the distortion correction process in step S31. If it is determined that the distortion correction process is not performed, the processing speed is faster than the case where the distortion correction process is performed.
- step S345 In order to synchronize with the case where the distortion correction process is performed without causing a difference, it is necessary to provide the timing adjustment process in step S345. As described above, in the comparative example, there is a problem in that the algorithm becomes complicated due to the addition of the timing adjustment process or the circuit scale needs to be increased if it is a hardware process, resulting in disadvantages such as an increase in cost.
- FIG. 13 shows an example in which two virtual projection planes are set as the second embodiment. Except for the configuration shown in FIG. 13, the embodiment is the same as the embodiment described in FIGS.
- FIG. 13 shows an example in which two virtual projection planes VPh and VPj are set. Both can set the position and size independently.
- the ranges corresponding to the virtual projection planes VPh and VPj on the image sensor surface IA are the areas h and j
- the points corresponding to the object points P1 and P2 are the points p1 and p2.
- the image data obtained at the respective positions of the two virtual projection planes in FIG. 2 is divided and displayed on the display unit 120.
- image data is generated by sequentially switching the first distortion coefficient L1 and the second distortion coefficient L2 in the control flow shown in FIG.
- an output image is obtained by referring to the LUT based on the first distortion coefficient L1 for one virtual projection plane and to the LUT based on the second distortion coefficient L2 for the other virtual projection plane.
- FIG. 14 shows an example in which the output image obtained in this way is displayed on the display unit 120.
- two screens divided vertically are displayed. In the upper half, an image in which distortion is corrected based on the first distortion coefficient L1 is displayed, and in the lower half, an image in which an equivalent distortion remains as it is unless distortion correction is performed based on the second distortion coefficient L2. Is displayed.
- the following problem occurs in which a distortion image is corrected on one side as shown in FIG.
- a region where distortion correction is performed and a region where distortion correction is not performed are mixed in one frame of the display image.
- the processing speed is faster than when the distortion correction is performed, and therefore, the processing speed is different for each line (particularly the division boundary). In such a case, timing adjustment is required within one frame, and there is a risk that the algorithm and circuit configuration are complicated and large-scale.
- the distortion correction processing is performed on the two divided regions by the first distortion coefficient L1 and the second distortion coefficient L2, one frame Since the same process is performed for all lines with only the distortion correction coefficient changed, the timing adjustment for each line is not necessary, and it is always possible to handle with a constant process. There is an effect that no additional circuit is required.
- [Modification] 15 and 16 are diagrams for explaining an embodiment according to a modification.
- distortion correction is performed on the first distortion coefficient L1 using a fourth distortion coefficient L4 in which the image height from the optical center with respect to the incident angle to the optical system is 2 n times (n is an integer). Is.
- n is a positive integer
- a reduced image can be obtained
- n is a negative integer
- an enlarged image can be obtained
- n is 0, an equal-size image is obtained. Can be obtained.
- FIG. 15 is a diagram showing the relationship between the incident angle ⁇ and the image height h on the image sensor surface IA, and displays the first distortion coefficient L1 and the fourth distortion coefficient L4.
- FIG. 16A is an output image obtained using the first distortion coefficient L1 in the control flow shown in FIG. 4, and FIG. 16B is obtained similarly using the fourth distortion coefficient L4.
- Output image In the image of FIG. 16B, it is possible to easily obtain a 1/4 reduced image obtained by reducing the vertical and horizontal directions by 1/4 times (1/2 n times) with respect to the image of FIG. In the modification, almost no algorithm change is required, and a reduced image can be easily obtained without adding a special algorithm or adding a circuit.
- the first distortion can be easily performed by performing nbit shift (left shift if n is a positive integer, right shift if negative integer) in the data calculation process. Since the coefficient L1 can be increased by 2 n times, an enlarged or reduced output image can be easily obtained.
- the third distortion coefficient L3 calculated by interpolation between the first distortion coefficient L1 and the second distortion coefficient L2 is switched stepwise by changing the distortion correction rate (DistRatio).
- the position of the virtual projection plane VP and the third position V3 calculated by interpolation between the first position V1 and the second position V2 are also stepwise according to the change of the viewpoint conversion ratio (VCRatio). Switching. A specific example of the viewpoint conversion will be described later.
- the third distortion coefficient L3 and the third position V3 are calculated by the following equations (2) and (3).
- FIG. 17 is a diagram showing a control flow according to the third embodiment. Since the control flow shown in the figure is the same as the control flow shown in FIG. 4 before step S15 and after step S22, the description thereof will be omitted.
- step S41 in the figure the time is measured by the internal timer of the control device.
- step S42 a distortion correction rate and a viewpoint conversion rate are calculated from the measured time. For example, when 10 sec is set as one cycle, the distortion correction rate is obtained if the time is 0.0 sec as a reference, the viewpoint conversion rate is 0%, and the time is 5.0 sec. Both conversion rates are 50%.
- step S43 the distortion correction coefficient L3 is calculated based on the equation (2) from the distortion correction rate calculated in step S42.
- the distortion correction rate is 0%, the second distortion coefficient L2, and when 100%, the first distortion coefficient L1.
- step S44 the third position of the virtual projection plane VP is calculated from the viewpoint conversion rate.
- the second position that is the initial position of the virtual projection plane VP corresponding to the second distortion coefficient L2 and the first position L1 that is the final position of the virtual projection plane VP corresponding to the first distortion coefficient L1 are step S11. It is set in.
- the coordinates of the first position and the second position of the virtual projection plane VP are calculated by the equation (3) using the viewpoint conversion rate.
- step S45 the coordinates in the world coordinate system of each pixel of the virtual projection plane VP at the third position are converted into the camera coordinate system using the third distortion coefficient L3.
- step S22 and subsequent steps an output image is generated from the coordinates of the camera coordinate system converted in step S45, and the image is output.
- Tables 1 and 2 show examples of changing the distortion correction rate or the distortion correction rate and the viewpoint conversion rate at a predetermined cycle.
- Table 1 shows an example in which the third distortion coefficient L3 is changed stepwise by changing the distortion correction rate with 10 sec as one period. In the example of Table 1, viewpoint conversion is not performed.
- Table 2 is an example in which the third distortion coefficient L3 is changed stepwise by changing the distortion correction factor with 10 seconds as one period. Further, the third position V3 is also changed stepwise by changing the viewpoint conversion rate. In the example of Table 2, the distortion correction rate is also changed with the change of the viewpoint conversion rate.
- Tables 1 and 2 an example in which the period is changed in 10 sec cycle and 11 steps is shown, but it is only an example, and the cycle may be arbitrarily changed or may be changed in more detailed steps than this.
- An example of the first position V1 will be described below.
- FIG. 18 is an example in which the position of the virtual projection plane VP0 is changed with the image center o in the camera coordinate system as the rotation center (or movement center).
- the rotation about the x axis with the image center o as the rotation center is the actual pitch (also referred to as tilt)
- the rotation about the y axis is the actual Yaw (also referred to as pan)
- the rotation about the Z axis Is the actual Roll.
- FIG. 19 shows an example in which the position of the virtual projection plane VP is changed with the center ov of the virtual projection plane VP0 as the center of rotation based on the input rotation amount setting value.
- One of the two axes that are orthogonal to each other on the virtual projection plane VP0 is set as Yaw-axis, and the other as P-axis. Both are axes passing through the center ov, and rotation around the Yaw-axis with the center ov as the center of rotation is called virtual yaw rotation, and rotation around the P-axis is called virtual pitch rotation.
- viewpoint conversion corresponding to rotating or changing the position of the virtual camera Ca0 is performed.
- the second position V2 is set to the initial position.
- the virtual projection plane VP at this time is parallel to the XY plane and the center ov is on the optical axis Z (corresponding to the position of VP0 in FIGS. 18 and 19).
- the first position V1 is an example in which the virtual pitch and the real pitch are both 45 degrees, and both are set to 90 degrees. In this case, the viewpoint is changed so as to look down at the subject. Note that the combination of position changes is not limited to this, and any of parallel movement, real Picth, real Yaw, real Roll, virtual pitch, virtual Yaw, or a combination thereof may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
- Studio Devices (AREA)
Abstract
被写体の正確な認識を図ること、及び、比較的小規模な回路で、処理時間の短縮化を図ることが可能な、画像処理方法、画像処理装置及び撮像装置を提供する。歪み係数には、少なくとも、光学系のレンズの物理的特性及び前記光学系への設定された仮想投影面からの入射光の入射角に基づいて算出された第1歪み係数と、前記光学系への入射角の正接関数を変数として算出される撮像素子と前記光学系の光軸とが交わる光学中心からの像高である第2歪み係数が含まれており、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出する。
Description
本願発明は、集光レンズを含む光学系を介して撮像素子により撮像された画像の歪み補正処理を行う、画像処理方法、画像処理装置及び撮像装置に関するものである。
一般に、広角レンズあるいは魚眼レンズのような焦点距離の短いレンズや画角の大きなレンズを備えた光学系により撮影した画像は歪曲を伴うので、歪曲を補正する画像処理を行う。特許文献1には従来技術の補正方法として、焦点距離の短いレンズを使用して撮像された撮像画像に生じる歪曲を、レンズの補正用のパラメータを用いて補正する方法が開示されている。
特許文献2では、光学ズーム機構のワイド端からテレ端までレンズ位置毎の光学歪み補正パラメータの算出を補間演算により行うことは、外部情報処理機器を必要とし、撮像装置単体では処理能力的に難しいという問題に対して、光学ズームを行う範囲内で離散的なレンズ位置に対する光学歪み補正パラメータを備え、そしてズームを行う際のレンズ位置を光学歪み補正パラメータを備えるレンズ位置に制限し、制限された位置間の光学ズームを電子ズームで繋いでいる。
特許文献3では、広角側の画角の場合には歪み補正を行い、広角側でない画角の場合には歪み補正を行わない等、画角切り換え手段により切り換えた画角の違いによって歪み補正量を変更する映像処理装置が開示されている。
特許文献1に開示されたように、レンズで得た撮像画像を画像処理装置としてハード化した場合に処理時間が長くなり、回路規模が増大してしまい、コストが嵩んでしまうという問題があった。
特許文献2では、ズームの際のレンズ位置を離散的な歪み補正パラメータと対応する位置に制限することと、その間を電子ズームで繋ぐことにより、ズーム動作を歪み補正パラメータの補間処理を省略することで撮像装置単体でのズーム動作を実現している。しかし、ズーム動作のような一次元のレンズの動きにのみ適用できることであり、パン、チルト等の多様な動きには適用し難い。
また歪み補正処理をした後の画像は、視野角が狭くなるので広い領域を一度に認識することは難しくなる。歪み補正処理を行わない画像では、視野角は広くなるがその反面、被写体が歪むことにより距離感や大きさの認識が難しくなる。
特許文献3では、このような問題に対して画角に応じて歪み補正量を異ならせているが、歪み補正量を逐次変更するものではなく、被写体の歪みの改善と、距離感や大きさの正確な認識という2つの問題の双方を解決するものではない。
本願発明はこのような問題に鑑み被写体の正確な認識を図ること、及び、比較的小規模な回路で、処理時間の短縮化を図ることが可能な、画像処理方法、画像処理装置及び撮像装置を提供することを目的とする。
上記の目的は、下記に記載する発明により達成される。
1.光学系を介して複数の画素を有する撮像素子に受光して得られた複数の画素データを用いて処理した画像データを得る画像処理方法において、
ワールド座標系の仮想投影面の位置及びサイズを設定する第1ステップと、
前記第1ステップで設定された前記仮想投影面の各画素のワールド座標系における座標を歪み係数を用いてカメラ座標系に変換し、前記変換したカメラ座標系における座標及び前記複数の画素データに基づいて前記第1ステップで設定された仮想投影面の画像データを算出する第2ステップと、
前記第2ステップで算出された画像データによる表示用画像を出力する第3ステップと、
を有し、
前記第2ステップで用いられる前記歪み係数には、少なくとも、前記光学系のレンズの物理的特性及び前記光学系への設定された前記仮想投影面からの入射光の入射角に基づいて算出された第1歪み係数と、前記光学系への入射角の正接関数を変数として算出される前記撮像素子と前記光学系の光軸とが交わる光学中心からの像高である第2歪み係数が含まれており、
前記第2ステップでは、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする画像処理方法。
ワールド座標系の仮想投影面の位置及びサイズを設定する第1ステップと、
前記第1ステップで設定された前記仮想投影面の各画素のワールド座標系における座標を歪み係数を用いてカメラ座標系に変換し、前記変換したカメラ座標系における座標及び前記複数の画素データに基づいて前記第1ステップで設定された仮想投影面の画像データを算出する第2ステップと、
前記第2ステップで算出された画像データによる表示用画像を出力する第3ステップと、
を有し、
前記第2ステップで用いられる前記歪み係数には、少なくとも、前記光学系のレンズの物理的特性及び前記光学系への設定された前記仮想投影面からの入射光の入射角に基づいて算出された第1歪み係数と、前記光学系への入射角の正接関数を変数として算出される前記撮像素子と前記光学系の光軸とが交わる光学中心からの像高である第2歪み係数が含まれており、
前記第2ステップでは、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする画像処理方法。
2.光学系を介して複数の画素を有する撮像素子に受光して得られた複数の画素データを用いて処理した画像データを得る画像処理方法において、
ワールド座標系の仮想投影面の位置及びサイズを設定する第1ステップと、
前記第1ステップで設定された前記仮想投影面の各画素のワールド座標系における座標を歪み係数を用いてカメラ座標系に変換し、前記変換したカメラ座標系における座標及び前記複数の画素データに基づいて前記第1ステップで設定された仮想投影面の画像データを算出する第2ステップと、
前記第2ステップで算出された画像データによる表示用画像を出力する第3ステップと、
を有し、
前記第2ステップで用いられる前記歪み係数には、少なくとも、前記光学系により生ずる歪みを補正するための第1歪み係数と、前記歪みを補正しない第2歪み係数が含まれており、
前記第2ステップでは、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする画像処理方法。
ワールド座標系の仮想投影面の位置及びサイズを設定する第1ステップと、
前記第1ステップで設定された前記仮想投影面の各画素のワールド座標系における座標を歪み係数を用いてカメラ座標系に変換し、前記変換したカメラ座標系における座標及び前記複数の画素データに基づいて前記第1ステップで設定された仮想投影面の画像データを算出する第2ステップと、
前記第2ステップで算出された画像データによる表示用画像を出力する第3ステップと、
を有し、
前記第2ステップで用いられる前記歪み係数には、少なくとも、前記光学系により生ずる歪みを補正するための第1歪み係数と、前記歪みを補正しない第2歪み係数が含まれており、
前記第2ステップでは、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする画像処理方法。
3.前記第3ステップにおいて歪みが補正された画像データの表示用画像を出力する場合には、前記第2ステップにおいて前記第1及び第2歪み係数の内、前記第1歪み係数を用いて仮想投影面の画像データを算出し、前記第3ステップにおいて歪みが補正されていない画像データの表示用画像を出力する場合には、前記第2ステップにおいて前記第1及び第2歪み係数の内、前記第2歪み係数を用いて仮想投影面の画像データを算出することを特徴とする前記1又は2に記載の画像処理方法。
4.前記第3ステップにおいて段階的に歪みが補正された画像データの表示用動画像を出力する場合には、前記第2ステップにおいて前記第1歪み係数、前記第2歪み係数、及び前記第1、第2歪み係数から補間によって得られた第3歪み係数を段階的に切り替えて用いて仮想投影面の画像データを算出する事を特徴とする前記1から3のうちいずれか1項に記載の画像処理方法。
5.前記第1ステップでは、ワールド座標系の仮想投影面の第1位置と第2位置を設定し、
前記第2ステップでは、初期の前記第2位置と前記第2歪み係数、最終の前記第1位置と前記第1歪み係数、途中の前記第2位置と前記第1位置の補間によって得られた第3位置と前記第3歪み係数、と段階的に切り替えて用いて仮想投影面の画像データを算出することを特徴とする前記4に記載の画像処理方法。
前記第2ステップでは、初期の前記第2位置と前記第2歪み係数、最終の前記第1位置と前記第1歪み係数、途中の前記第2位置と前記第1位置の補間によって得られた第3位置と前記第3歪み係数、と段階的に切り替えて用いて仮想投影面の画像データを算出することを特徴とする前記4に記載の画像処理方法。
6.前記第1ステップで設定される仮想投影面は2つであり、
2つの仮想投影面のうちの一方の仮想投影面の、前記第2ステップにおける画像データの算出は前記第1歪み係数を用いて行い、他方の仮想投影面の前記第2ステップにおける画像データの算出は前記第2歪み係数を用いて行い、
前記第3ステップでは、前記2つの仮想投影面について前記第2ステップにより算出した2つの画像データによる表示用画像を出力することを特徴とする前記1又は2に記載の画像処理方法。
2つの仮想投影面のうちの一方の仮想投影面の、前記第2ステップにおける画像データの算出は前記第1歪み係数を用いて行い、他方の仮想投影面の前記第2ステップにおける画像データの算出は前記第2歪み係数を用いて行い、
前記第3ステップでは、前記2つの仮想投影面について前記第2ステップにより算出した2つの画像データによる表示用画像を出力することを特徴とする前記1又は2に記載の画像処理方法。
7.前記第1歪み係数を前記光学系への入射角に対する光学中心からの像高を2n倍(nは整数)した第4歪み係数とし、
前記第2ステップでは前記第4歪み係数を用いて、1/2n倍の画像データを算出することを特徴とする前記1から6のいずれか一項に記載の画像処理方法。
前記第2ステップでは前記第4歪み係数を用いて、1/2n倍の画像データを算出することを特徴とする前記1から6のいずれか一項に記載の画像処理方法。
8.前記第2歪み係数は、以下の条件式(1)で表される事を特徴とする前記1から6のいずれか一項に記載の画像処理方法。
9.光学系を介して複数の画素を有する撮像素子に受光して得られた複数の画素データを用いて処理した画像データを得る画像処理装置であって、
歪み係数を記憶する記憶部と、
位置及びサイズが設定された仮想投影面の各画素のワールド座標系における座標を前記記憶部に記憶された歪み係数を用いてカメラ座標系に変換し、前記カメラ座標系に変換した座標及び前記複数の画素データに基づいて、前記仮想投影面の画像データを算出する画像処理部と、
前記画像処理部で算出した画像データの表示用の画像信号を出力する画像信号出力部と、
を有し、
前記記憶部には、記憶される前記歪み係数として少なくとも、前記光学系のレンズの物理的特性及び前記光学系への設定された前記仮想投影面からの入射光の入射角に基づいて算出された第1歪み係数と前記光学系への入射角の正接関数を変数として算出される前記撮像素子と前記光学系の光軸とが交わる光学中心からの像高である第2歪み係数を有し、 前記画像処理部は、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする画像処理装置。
歪み係数を記憶する記憶部と、
位置及びサイズが設定された仮想投影面の各画素のワールド座標系における座標を前記記憶部に記憶された歪み係数を用いてカメラ座標系に変換し、前記カメラ座標系に変換した座標及び前記複数の画素データに基づいて、前記仮想投影面の画像データを算出する画像処理部と、
前記画像処理部で算出した画像データの表示用の画像信号を出力する画像信号出力部と、
を有し、
前記記憶部には、記憶される前記歪み係数として少なくとも、前記光学系のレンズの物理的特性及び前記光学系への設定された前記仮想投影面からの入射光の入射角に基づいて算出された第1歪み係数と前記光学系への入射角の正接関数を変数として算出される前記撮像素子と前記光学系の光軸とが交わる光学中心からの像高である第2歪み係数を有し、 前記画像処理部は、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする画像処理装置。
10.光学系を介して複数の画素を有する撮像素子に受光して得られた複数の画素データを用いて処理した画像データを得る画像処理装置であって、
歪み係数を記憶する記憶部と、
位置及びサイズが設定された仮想投影面の各画素のワールド座標系における座標を前記記憶部に記憶された歪み係数を用いてカメラ座標系に変換し、前記カメラ座標系に変換した座標及び前記複数の画素データに基づいて、前記仮想投影面の画像データを算出する画像処理部と、
前記画像処理部で算出した画像データの表示用の画像信号を出力する画像信号出力部と、
を有し、
前記記憶部には、記憶される前記歪み係数として少なくとも、前記光学系で生ずる歪みを補正するための第1歪み係数と、前記歪みを補正しない第2歪み係数とを有し、
前記画像処理部は、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする画像処理装置。
歪み係数を記憶する記憶部と、
位置及びサイズが設定された仮想投影面の各画素のワールド座標系における座標を前記記憶部に記憶された歪み係数を用いてカメラ座標系に変換し、前記カメラ座標系に変換した座標及び前記複数の画素データに基づいて、前記仮想投影面の画像データを算出する画像処理部と、
前記画像処理部で算出した画像データの表示用の画像信号を出力する画像信号出力部と、
を有し、
前記記憶部には、記憶される前記歪み係数として少なくとも、前記光学系で生ずる歪みを補正するための第1歪み係数と、前記歪みを補正しない第2歪み係数とを有し、
前記画像処理部は、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする画像処理装置。
11.前記画像信号出力部において歪みが補正された画像データの表示用画像を出力する場合には、前記画像処理部において前記第1及び第2歪み係数の内、前記第1歪み係数を用いて仮想投影面の画像データを算出し、前記画像処理部において歪みが補正されていない画像データの表示用画像を出力する場合には、前記第1及び第2歪み係数の内、前記第2歪み係数を用いて仮想投影面の画像データを算出することを特徴とする前記9又は10に記載の画像処理装置。
12.前記画像信号出力部において段階的に歪みが補正された画像データの表示用動画像を出力する場合には、
前記画像処理部は、前記第1歪み係数、前記第2歪み係数、及び前記第1、第2歪み係数から補間によって得られた第3歪み係数を段階的に切り替えて用いて仮想投影面の画像データを算出する事を特徴とする前記9から11のいずれか1項に記載の画像処理装置。
前記画像処理部は、前記第1歪み係数、前記第2歪み係数、及び前記第1、第2歪み係数から補間によって得られた第3歪み係数を段階的に切り替えて用いて仮想投影面の画像データを算出する事を特徴とする前記9から11のいずれか1項に記載の画像処理装置。
13.ワールド座標系の前記仮想投影面は第1位置と第2位置が設定されており、
前記画像処理部は、初期の前記第2位置と前記第2歪み係数、最終の前記第1位置と前記第1歪み係数、途中の前記第2位置と前記第1位置の補間によって得られた第3位置と前記第3歪み係数、と段階的に切り替えて用いて仮想投影面の画像データを算出することを特徴とする前記12に記載の画像処理装置。
前記画像処理部は、初期の前記第2位置と前記第2歪み係数、最終の前記第1位置と前記第1歪み係数、途中の前記第2位置と前記第1位置の補間によって得られた第3位置と前記第3歪み係数、と段階的に切り替えて用いて仮想投影面の画像データを算出することを特徴とする前記12に記載の画像処理装置。
14.前記仮想投影面は2つであり、
前記2つの仮想投影面のうちの一方の仮想投影面の、前記画像処理部における画像データの算出は前記第1歪み係数を用いて行い、他方の仮想投影面の前記画像処理部における画像データの算出は前記第2歪み係数を用いて行い、
前記画像信号出力部は、前記2つの仮想投影面について前記画像処理部により算出した2つの画像データによる表示用画像を出力することを特徴とする前記9又は10に記載の画像処理装置。
前記2つの仮想投影面のうちの一方の仮想投影面の、前記画像処理部における画像データの算出は前記第1歪み係数を用いて行い、他方の仮想投影面の前記画像処理部における画像データの算出は前記第2歪み係数を用いて行い、
前記画像信号出力部は、前記2つの仮想投影面について前記画像処理部により算出した2つの画像データによる表示用画像を出力することを特徴とする前記9又は10に記載の画像処理装置。
15.前記第1歪み係数を前記光学系への入射角に対する光学中心からの像高を2n倍(nは整数)した第4歪み係数とし、
前記画像処理部は、前記第4歪み係数を用いて、1/2n倍の画像データを算出することを特徴とする前記9から14の何れか一項に記載の画像処理装置。
前記画像処理部は、前記第4歪み係数を用いて、1/2n倍の画像データを算出することを特徴とする前記9から14の何れか一項に記載の画像処理装置。
16.前記第2歪み係数は、以下の条件式(1)で表される事を特徴とする前記9から14のいずれか一項に記載の画像処理装置。
ここで、
ExportImageSize:表示部で表示する出力画像の長辺の長さ
focal:設定された仮想投影面の長辺方向における画角
ExportImageSize:表示部で表示する出力画像の長辺の長さ
focal:設定された仮想投影面の長辺方向における画角
17.光学系と、
複数の画素を有する撮像素子と、
前記光学系の歪み係数を記憶する記憶部と、
仮想投影面の各画素のワールド座標系における座標を前記光学系の歪み係数を用いてカメラ座標系に変換し、前記カメラ座標系に変換した座標及び前記撮像素子に受光して得られた複数の画素データに基づいて、前記仮想投影面の画像データを算出する画像処理部と、
前記画像処理部で算出した画像データの表示用の画像信号を出力する画像信号出力部と、
を有し、
前記記憶部には、記憶される前記歪み係数としては、少なくとも、前記光学系のレンズの物理的特性及び前記光学系への設定された前記仮想投影面からの入射光の入射角に基づいて算出された第1歪み係数と、前記光学系への入射角の正接関数を変数として算出される前記撮像素子と前記光学系の光軸とが交わる光学中心からの像高である第2歪み係数とを有し、
前記画像処理部は、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする撮像装置。
複数の画素を有する撮像素子と、
前記光学系の歪み係数を記憶する記憶部と、
仮想投影面の各画素のワールド座標系における座標を前記光学系の歪み係数を用いてカメラ座標系に変換し、前記カメラ座標系に変換した座標及び前記撮像素子に受光して得られた複数の画素データに基づいて、前記仮想投影面の画像データを算出する画像処理部と、
前記画像処理部で算出した画像データの表示用の画像信号を出力する画像信号出力部と、
を有し、
前記記憶部には、記憶される前記歪み係数としては、少なくとも、前記光学系のレンズの物理的特性及び前記光学系への設定された前記仮想投影面からの入射光の入射角に基づいて算出された第1歪み係数と、前記光学系への入射角の正接関数を変数として算出される前記撮像素子と前記光学系の光軸とが交わる光学中心からの像高である第2歪み係数とを有し、
前記画像処理部は、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする撮像装置。
18.光学系と、
複数の画素を有する撮像素子と、
前記光学系の歪み係数を記憶する記憶部と、
仮想投影面の各画素のワールド座標系における座標を前記光学系の歪み係数を用いてカメラ座標系に変換し、前記カメラ座標系に変換した座標及び前記撮像素子に受光して得られた複数の画素データに基づいて、前記仮想投影面の画像データを算出する画像処理部と、
前記画像処理部で算出した画像データの表示用の画像信号を出力する画像信号出力部と、
を有し、
前記記憶部には、記憶される前記歪み係数としては、少なくとも、前記光学系で生ずる歪みを補正するための第1歪み係数と、前記歪みを補正しない第2歪み係数とを有し、
前記画像処理部は、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする撮像装置。
複数の画素を有する撮像素子と、
前記光学系の歪み係数を記憶する記憶部と、
仮想投影面の各画素のワールド座標系における座標を前記光学系の歪み係数を用いてカメラ座標系に変換し、前記カメラ座標系に変換した座標及び前記撮像素子に受光して得られた複数の画素データに基づいて、前記仮想投影面の画像データを算出する画像処理部と、
前記画像処理部で算出した画像データの表示用の画像信号を出力する画像信号出力部と、
を有し、
前記記憶部には、記憶される前記歪み係数としては、少なくとも、前記光学系で生ずる歪みを補正するための第1歪み係数と、前記歪みを補正しない第2歪み係数とを有し、
前記画像処理部は、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする撮像装置。
19.前記画像信号出力部において歪みが補正された画像データの表示用画像を出力する場合には、前記画像処理部において前記第1及び第2歪み係数の内、前記第1歪み係数を用いて仮想投影面の画像データを算出し、前記画像処理部において歪みが補正されていない画像データの表示用画像を出力する場合には、前記第1及び第2歪み係数の内、前記第2歪み係数を用いて仮想投影面の画像データを算出することを特徴とする前記17又は18に記載の撮像装置。
20.前記画像信号出力部において段階的に歪みが補正された画像データの表示用動画像を出力する場合には、
前記画像処理部は、前記第1歪み係数、前記第2歪み係数、及び前記第1、第2歪み係数から補間によって得られた第3歪み係数を段階的に切り替えて用いて仮想投影面の画像データを算出する事を特徴とする前記17から19のいずれか1項に記載の撮像装置。
前記画像処理部は、前記第1歪み係数、前記第2歪み係数、及び前記第1、第2歪み係数から補間によって得られた第3歪み係数を段階的に切り替えて用いて仮想投影面の画像データを算出する事を特徴とする前記17から19のいずれか1項に記載の撮像装置。
21.ワールド座標系の前記仮想投影面は第1位置と第2位置が設定されており、
前記画像処理部は、初期の前記第2位置と前記第2歪み係数、最終の前記第1位置と前記第1歪み係数、途中の前記第2位置と前記第1位置の補間によって得られた第3位置と前記第3歪み係数、と段階的に切り替えて用いて仮想投影面の画像データを算出することを特徴とする前記20に記載の撮像装置。
前記画像処理部は、初期の前記第2位置と前記第2歪み係数、最終の前記第1位置と前記第1歪み係数、途中の前記第2位置と前記第1位置の補間によって得られた第3位置と前記第3歪み係数、と段階的に切り替えて用いて仮想投影面の画像データを算出することを特徴とする前記20に記載の撮像装置。
22.前記仮想投影面は2つであり、
前記2つの仮想投影面のうちの一方の仮想投影面の、前記画像処理部における画像データの算出は前記第1歪み係数を用いて行い、他方の仮想投影面の前記画像処理部における画像データの算出は前記第2歪み係数を用いて行い、
前記画像信号出力部は、前記2つの仮想投影面について前記画像処理部により算出した2つの画像データによる表示用画像を出力することを特徴とする前記17又は18に記載の撮像装置。
前記2つの仮想投影面のうちの一方の仮想投影面の、前記画像処理部における画像データの算出は前記第1歪み係数を用いて行い、他方の仮想投影面の前記画像処理部における画像データの算出は前記第2歪み係数を用いて行い、
前記画像信号出力部は、前記2つの仮想投影面について前記画像処理部により算出した2つの画像データによる表示用画像を出力することを特徴とする前記17又は18に記載の撮像装置。
23.前記第1歪み係数を前記光学系への入射角に対する光学中心からの像高を2n倍(nは整数)した第4歪み係数とし、
前記画像処理部は、前記第4歪み係数を用いて、1/2n倍の画像データを算出することを特徴とする前記17から22のいずれか一項に記載の撮像装置。
前記画像処理部は、前記第4歪み係数を用いて、1/2n倍の画像データを算出することを特徴とする前記17から22のいずれか一項に記載の撮像装置。
24.前記第2歪み係数は、以下の条件式(1)で表される事を特徴とする前記17から22のいずれか一項に記載の撮像装置。
ここで、
ExportImageSize:表示部で表示する出力画像の長辺の長さ
focal:設定された仮想投影面の長辺方向における画角
ExportImageSize:表示部で表示する出力画像の長辺の長さ
focal:設定された仮想投影面の長辺方向における画角
本願発明によれば光学系のレンズの物理的特性に基づいて算出された第1補正係数と光学系への入射角を変数とする関係式により算出された第2補正係数のいずれか少なくとも一方を用いて画像データを算出することにより、被写体の正確な認識を図ること及び、比較的小規模な回路で、処理時間の短縮化を図ることが可能となる。
本発明を実施の形態に基づいて説明するが、本発明は該実施の形態に限られない。
[第1の実施形態]
図1は、第1の実施形態に係る歪曲補正を説明する模式図である。図1において、X、Y、Zはワールド座標系であり、原点Oはレンズ中心である。Zは光軸、XY平面はレンズ中心Oを通るレンズ中心面LCを含んでいる。点Pはワールド座標系XYZにおける被写体の物点である。θは光軸(Z軸に一致)に対する入射角である。
図1は、第1の実施形態に係る歪曲補正を説明する模式図である。図1において、X、Y、Zはワールド座標系であり、原点Oはレンズ中心である。Zは光軸、XY平面はレンズ中心Oを通るレンズ中心面LCを含んでいる。点Pはワールド座標系XYZにおける被写体の物点である。θは光軸(Z軸に一致)に対する入射角である。
x、yはカメラ座標系であり、xy平面は撮像素子面IAに対応する。oは光学中心であり光軸Zと撮像素子面との交点である。点pはカメラ座標系における撮像素子面上の点であり、物点Pをレンズの物理的特性に基づくパラメータ(以下、「レンズパラメータ」という)に基づく歪み補正係数(後述の第1歪み係数L1に相当)を用いてカメラ座標系に変換したものである。
VPは仮想投影面である。仮想投影面VPは光学系のレンズ位置(レンズ中心面LC)に対して撮像素子(及び撮像素子面IA)とは反対側に設定される。仮想投影面VPは、ユーザによる操作部130(図3参照)への指示に基づいて、位置の移動及びサイズの変更を行うことが可能である。本願において「位置変更」とは、仮想投影面VPをXY平面上で平行移動させる場合のみならず、XY平面に対する角度変更(姿勢変更ともいう)をも含む概念である。
初期状態(初期の位置設定のこと、以下同様)において仮想投影面VPは、所定サイズでレンズ中心面LCと平行(XY方向)の所定位置(Z方向)に配置され、仮想投影面VPの中心ovはZ軸上に位置している。Gvは物点Pが仮想投影面VP上に投影された点であり、物点Pとレンズ中心Oを通る直線と仮想投影面VPとの交点である。図2における仮想投影面VP1は、仮想投影面VP0を操作部130の入力に基づいてXZ平面上で回転させた状態を示している。
[ブロック図]
図3は、撮像装置の概略構成を示すブロック図である。撮影装置は、撮像ユニット110、制御装置100、表示部120、操作部130を備えている。
図3は、撮像装置の概略構成を示すブロック図である。撮影装置は、撮像ユニット110、制御装置100、表示部120、操作部130を備えている。
撮像ユニット110は、短焦点のレンズ、撮像素子等から構成される。本実施形態においては、レンズとしては例えば広角レンズ、魚眼レンズがある。
制御装置100は、画像処理部101、設定部102、記憶部103から構成される。
設定部102では、操作部130への入力指示に基づいて仮想投影面VPの位置、サイズの設定を行う。
画像処理部101では、設定された仮想投影面VPの位置、サイズに基づいて仮想投影面上の各座標のカメラ座標系への変換テーブルを作成し、当該変換テーブルを用いて撮像ユニット110で撮影した画素データを処理して表示部120に表示させる画像データの作成を行う。また画像処理部は、表示用の画像信号の出力を行う画像信号出力部としても機能する。
記憶部103には、撮像ユニット110のレンズ(実レンズ)の物理的特性及び設定された仮想投影面からの入射光の入射角に基づくレンズパラメータにより算出された係数、すなわち光学系で生ずる歪みを補正するための係数である第1歪み係数L1と、当該歪みの補正を行わないための係数に相当する、設定された仮想投影面からレンズへ入射する入射光の入射角の正接関数を変数として算出される、前記撮像素子と前記光学系の光軸とが交わる光学中心からの像高である、第2歪み係数L2とが記憶されている。また仮想投影面VPの位置、サイズ及び作成した変換テーブルの記憶も行う。なお歪み係数は、レンズのキャリブレーションデータの取得やレンズのfθ特性に基づく計算等により求めることができる。
なお、本発明でいう「歪み補正を行わない」とは、実質、撮像されたままの歪みが生じているものを言い、歪み補正が良好に行われているものから若干劣るものを指すものではない。
表示部120は、液晶ディスプレイ等の表示画面を備え、撮像ユニット110で撮影した画素データに基づいて画像処理部101で作成した画像データに基づく表示用画像を逐次、表示画面に表示させる。
操作部130は、キーボード、マウス、あるいは表示部の液晶ディスプレイに重畳して配置したタッチパネルを備え、ユーザの入力操作を受け付ける。
[制御フロー]
図4は、第1の実施形態の制御フローを示す図である。本制御フローにより、連続して入力する入力画像を処理して連続的に出力画像を表示部120に表示させることにより動画を表示するものである。ステップS11では、設定された歪み補正条件が入力される。(視点変換を含む)歪み補正条件の設定は、前述の様にユーザによる操作部130への入力指示により、設定部102により仮想投影面VPのワールド座標系における位置、サイズを設定することにより行われる。
図4は、第1の実施形態の制御フローを示す図である。本制御フローにより、連続して入力する入力画像を処理して連続的に出力画像を表示部120に表示させることにより動画を表示するものである。ステップS11では、設定された歪み補正条件が入力される。(視点変換を含む)歪み補正条件の設定は、前述の様にユーザによる操作部130への入力指示により、設定部102により仮想投影面VPのワールド座標系における位置、サイズを設定することにより行われる。
ステップS12では、撮像ユニット110から画像信号が入力され、例えばフレームレート60fpsで入力画像が得られる。
ステップS13では、ステップS11で設定された条件に基づいて並進ベクトル、回転ベクトルが計算され、ステップS14では計算された並進ベクトル、回転ベクトルに基づいてユーグリッド変換を行う。これらにより仮想投影面VPの位置の計算がなされる。
ステップS14以降では、ワールド座標系からカメラ座標系への変換を行う。つまり、レンズデータに基づいてワールド座標の位置がカメラ座標のどの座標位置に対応するかを当てはめる座標変換を行う。この際に歪み補正及び、仮想投影面VPの位置の計算にともなう回転、平行移動、拡大、縮小が併せて行われる。
ステップS15では、歪み係数を取得する。ここで取得する歪み係数には、光学系で生ずる歪みを補正するための係数であるレンズパラメータ及び設定された仮想投影面からの入射光の入射角に基づいて決定された第1歪み係数L1と、光学系への設定された仮想投影面から入射する入射光の入射角θ(図1参照)の正接関数を変数として算出される、前記撮像素子と前記光学系の光軸とが交わる光学中心からの像高である第2歪み係数L2が含まれている。第2歪み係数L2とは、歪み補正を行わないに相当する歪み係数であり詳細は後述する。更に他の例として、これらとは別に第1歪み係数L1と第2歪み係数L2との間を補間するように、複数段階の歪み係数が含まれるようにしてもよい。
ステップS16では、ステップS15で取得した歪み係数を用いて設定された仮想投影面VPの座標をワールド座標系からカメラ座標系に変換することによりLUTを生成する。ステップS16においては、LUTは第1歪み係数L1及び第2歪み係数L2のいずれか一方、あるいは両方、もしくはこれらの間を補間する複数の新たな歪み係数を用いて生成される。そして生成されたLUTは記憶部103に記憶される。以下、第1歪み係数L1を用いてLUTを生成する例を図に基づいて説明する。
図5は、座標系を説明する模式図である。図5に示すようにワールド座標系における仮想投影面VPの4隅の点A(0,0,Za)、点B(0,479,Zb)、点C(639,479,Zc)、点D(639,0,Zd)で囲まれる平面を等間隔で640×480pixelの画素Gv(総画素数30.7万)に分割し、全ての画素Gvそれぞれのワールド座標系における座標を取得する。なお同図におけるX、Y座標の値は例示であり、理解を容易にするために、A点のX、Y座標をゼロとして表示している。
画素Gvのワールド座標系での座標と、ステップS15で取得した歪み補正係数から、撮像素子面IAでの対応するカメラ座標系での座標Gi(x’,y’)を算出する。具体的には、当該歪み補正係数と各画素Gvの座標から得られる、光軸Zに対する入射角度θにより算出している(参考文献:国際公開第2010/032720号)。
図6は、カメラ座標系xyと撮像素子面IAとの対応関係を示す図である。図6において点a~dは、図5の点A~Dを、第1歪み係数L1を用いて生成されたLUTによりカメラ座標系に変換したものである。なお図5では点A~Dで囲まれる仮想投影面VPは矩形の平面であるが、図6においてカメラ座標系に座標変換した後の点a~dで囲まれる領域は(仮想投影面VPの位置に対応して)歪んだ形状となる。なお同図においては樽型形状に歪んだ例を示しているが、光学系の特性により糸巻型、陣笠型(中央では樽型で端部では直線あるいは糸巻型に変化する形状)の歪みとなる場合もある。
図7は、歪み補正処理を説明する模式図である。同図は画像データの一部を拡大表示したものであり同図の格子はそれぞれ画素を示している。図7(a)入力画像データは、図6の一部を拡大表示したものである図7(a)に示す様に撮像素子面IA上では直線上の被写体(太枠のGi1~Gi3で例示)は収差の影響で曲線上に入力されることになる。
出力画像データの生成は、LUTを用いて出力画像データの各画素データを、入力画像データの対応する画素データを用いることにより行う。LUTは歪み係数を考慮して生成されているので第1歪み係数L1に基づいて生成されたLUTを用いた場合には、当該LUTの対応関係により画素Gv1のデータ(例えば輝度信号)は図7(a)の座標(100,200)のGi1のデータを参照することになる。Gv2、Gv3も同様にそれぞれGi2、Gi3のデータを参照する。
このような結果、図7(b)に示すように、出力画像データの生成に伴い曲線状の歪みは解消され、直線の被写体は、元の直線として生成(表示)されることになる。なおこの際に、ステップS11の仮想投影面VPの設定により切り出し(ズーム)や視点変換の設定がなされているような場合には、このような処理も併せて行われることになる。
以上は、第1歪み係数L1を用いて生成されたLUTを用いた歪み補正処理の説明であり、第2歪み係数L2を用いて生成されたLUTを用いた歪み補正処理を行ったような場合には、図6に示したカメラ座標系に座標変換した後の点a~dは、(歪曲収差等の歪を打ち消す方向に)歪まずに直線上の輪郭を持つ領域となる。具体的には、視点変換の設定がされていない場合には仮想投影面VPに相似な矩形状となる(なお視点変換の設定がされている場合には台形や平行四辺形のような四角形状となる)。また図7(b)においては、曲線状となった直線の被写体はそのままの曲線が維持された出力画像が生成されることになる。
ステップS21では、記憶部103に記憶されているステップS16で生成された複数のLUTのうちで、参照するLUTを時分割で切り替える。例えば第1歪み係数L1と第2歪み係数L2それぞれに基づいて生成された2つのLUTを交互に数秒周期で切り替える。
ステップS22では、ステップS12で入力された入力画像に対して、ステップS21で参照されたLUTを用いて画像生成が行われる。画像生成の方法としては以下に説明するように4点補間がある。
図6に示した座標Gi(x’,y’)から参照する撮像素子の画素を決定するが、この際に撮像素子の各画素の座標(x,y)におけるx、yは整数であるが、ステップS16のLUT生成過程で用いられる座標Gi(x’,y’)のx’、y’は整数とは限らず小数部分を持つ実数値を取り得る。x’、y’が整数で、座標Gi(x’,y’)と撮像素子の画素の位置とが一致する場合には、対応する撮像素子の画素の画素データを仮想投影面VP上の画素Gv(X,Y,Z)に対応する出力画像の画素データとして用いることが可能である。一方で、x’、y’が整数でなくx’、y’とx、yとが一致しない場合には4点補間として、画素Gvに対応する出力画像の画素データとして、算出された座標Gi(x’,y’)周辺の画素、座標Gi(x’,y’)の位置に近接する上位4箇所の画素の画素データを用いて、これらの単純平均値あるいは、座標Gi(x’,y’)に対する距離により近接する4箇所の画素に対して重み付けをして算出した画素データを用いる。なお4点補間に限られず、周辺の箇所としては1箇所の単純補間や、16箇所若しくはそれ以上を用いる多点補間であってもよい。
ステップS23では生成された画像に基づいて出力処理を行う。出力処理としてはデモザイク処理において、周辺画素の信号から各画素のBGRデータの演算を行って出力画像を得ることができる。デモザイク処理とは、例えば撮像素子がベイヤー配列で並んだ画素で構成されることにより各画素が1色分の色情報しか持たない場合に、周辺画素の情報から補間処理することにより3色分の色情報を算出することである。
ステップS24では、生成された出力画像を表示部120に、例えばフレームレート30fps、あるいは60fpsで出力して終了する。
[歪み補正係数]
ここで歪み係数について図8~図11を参照して説明する。図8は、入射角θと、撮像素子面IA上の光軸Zと交わる光学中心oからの像高hとの関係を示す図である。図8に第1歪み係数L1及び第2歪み係数L2の入射角θと像高hとの関係を表示している。図9は光学系によって決まる光学的範囲に仮想投影面VPを設定した状態を示している。図10は、第1歪み係数L1、第2歪み係数L2におけるそれぞれの像高h(h1、h2で表示)の関係を示す図である。同図において図1と共通する部位については共通する符号を付与させている。
ここで歪み係数について図8~図11を参照して説明する。図8は、入射角θと、撮像素子面IA上の光軸Zと交わる光学中心oからの像高hとの関係を示す図である。図8に第1歪み係数L1及び第2歪み係数L2の入射角θと像高hとの関係を表示している。図9は光学系によって決まる光学的範囲に仮想投影面VPを設定した状態を示している。図10は、第1歪み係数L1、第2歪み係数L2におけるそれぞれの像高h(h1、h2で表示)の関係を示す図である。同図において図1と共通する部位については共通する符号を付与させている。
図8に示すように第2歪み係数L2では、入射角θに対応した歪曲収差が生じ、入射角θが大きくなるほど像高hが大きくなり、歪曲収差の量も大きくなる。つまり、当該係数を用いる事で光学系に応じた歪みがそのまま補正されていない画像データが得られる。一方、第1歪み係数L1はレンズによる歪曲収差の影響を打ち消すように設定した歪み補正係数であり、主に撮像ユニット110のレンズの物理的な特性及び設定された仮想投影面から光学系に入射する入射光の入射角により決定される係数である。
第2歪み係数L2は、光学系への入射角θを変数として算出される、前記撮像素子と前記光学系の光軸とが交わる光学中心からの像高に関する歪み係数であり、関係式としては例えば以下の式(1)を用いている。なお、式(1)を数倍にすれば出力画像の拡大縮小を容易に行う事ができるというメリットがある。
式(1)においては、「ExportImageSize」とは、表示部で表示する出力画像の長辺(通常は水平方向、x)の長さであり、単位はpixelである。またこれは仮想投影面VPの長辺のサイズと一致している。図9を参照して「focal」について説明する。図9においてωは、光学的範囲に対応する光学的画角であり、「focal」とは仮想投影面VPの短辺方向における画角のことである。なお、式(1)に替えて、正射影や等距離射影の関係式を用いても良い。また「focal」はユーザが任意に設定する光学的範囲の内、表示範囲に相当するものであり、必ずしも画角の長辺方向でなくても良い。
なお、本実施態様においては上記条件式(1)で説明しているが、条件式は必ずしもこれに限定されず、要は入射角θを変数とした像高、つまり光学中心からのカメラ座標上の距離を算出する条件式であれば良い。
図10は、第1歪み係数L1と第2歪み係数L2での像高hとの関係を示す模式図である。像高hは、図8に示すように入射角θと補正係数で決定される。第2歪み係数L2では被写体(物点P)の像高(光軸Zからの距離)と撮像素子面IA上における像高hとは比例する関係となる。また第1歪み係数L1の像高h1に比べて第2歪み係数L2における像高h2は長くなる。
図11に入力画像及び歪み補正処理後の出力画像の例を示す。なお、同図においては、仮想投影面VPが初期状態に設定されている場合の例を示している。図11(a)は入力画像である。図11(b)は第1歪み係数L1を、図11(b)は第2歪み係数L2を用いてステップS22以降の歪み補正処理を行った場合の出力画像の例である。図11(b)に示す例では歪曲した曲線は直線となるように補正されていることがわかる。一方で図11(c)に示すように第2歪み係数L2により歪み補正処理した場合には、出力画像は図11(a)に示す入力画像とほぼ同一である。つまり歪み補正を行わない場合と同等の出力画像が得られていることがわかる。
図12は、第1の実施形態の全体の制御フローを示す図である。図12(a)は本実施形態の全体制御フローを示す図であり、図12(b)は比較例での全体制御フローを示す図である。図12(a)は図4に対応する図であり、図4の制御フローを簡略化したものである。図12(a)に示す例では歪み補正処理を実行しない出力画像を得るためには、ダミーに相当する歪み補正なしと同等の出力画像が得られる第2歪み係数L2を用いている。これにより、歪み補正の実行無し/有りの出力画像を時分割で切り替えて出力する場合において、歪み補正無しの処理に替えて第2歪み係数L2を用いて常に歪み補正を行うよう制御している。つまり歪み補正処理を実行するか否か(ステップS31)に係わらず、ステップS32では歪補正実行用のパラメータ(第1歪み係数L1)、S33で歪補正なし用のパラメータ(第2歪み係数L2)をそれぞれ設定する様な単純なフローで、ステップS34の歪み補正処理、及びステップS35のデモザイク処理等の後段処理を行えばよい。これに対して図12(b)の比較例においては、歪み補正処理の実行有無により処理速度が異なるためにそれを是正する処理が必要となる。具体的には、ステップS31で歪み補正処理を実行するか否かの判断を行い、歪み補正処理を行わないと判断した場合には行う場合に比べて処理速度が速くなるために処理完了時間の差が生じさせずに、歪み補正処理を行う場合と同期をとるために、ステップS345でのタイミング調整処理を設ける必要がある。このように比較例においてはタイミング調整処理追加に伴うアルゴリズムの複雑化あるいは、ハード処理であれば回路規模の増大が必要となりコストアップ等のデメリットが生じるという問題がある。
これに対して図12(a)に示す本実施形態では、このような処理は不要となるので特別なアルゴリズムや回路増設は不要になるという効果が得られる。
[第2の実施形態]
次に、第2の実施形態について説明する。図13には、第2の実施形態として2つの仮想投影面を設定した例を示している。図13に示す構成以外は、図3から図12に説明した実施形態と同一であり説明は省略する。
次に、第2の実施形態について説明する。図13には、第2の実施形態として2つの仮想投影面を設定した例を示している。図13に示す構成以外は、図3から図12に説明した実施形態と同一であり説明は省略する。
図13では仮想投影面VPh、VPjの2つの仮想投影面を設定した例を示している。両者は独立にその位置、サイズを設定可能である。同図においては、撮像素子面IA上で仮想投影面VPh、VPjにそれぞれ対応する範囲は領域h、jであり、物点P1、P2に対応する点は、点p1、p2である。
第2の実施形態においては、図2つの仮想投影面それぞれの位置で得られた画像データを表示部120に分割して表示する。その際に、図4に示した制御フローにおいて第1歪み係数L1及び第2歪み係数L2を順次切り替えて画像データの生成を行う。具体的には一方の仮想投影面に対しては第1歪み係数L1に基づくLUTを、他方の仮想投影面に対しては第2歪み係数L2に基づくLUTをそれぞれ参照して、出力画像を得る。図14は、そのようにして得られた出力画像を表示部120に表示させた例である。図14では上下に分割された2画面が表示されている。上半分には、第1歪み係数L1に基づいて歪曲が補正された画像が表示され、下半分には、第2歪み係数L2に基づいて歪み補正がなされないと同等の歪曲がそのまま残る画像が表示される。
前述の比較例において図14に示すような一方では歪み補正を行い、他方では歪み補正が行われない2分割の表示画像を得ようとする以下の問題が生じる。歪み補正を行わない表示画像を得るために歪み補正無しの処理を行うと、表示画像の1フレーム内で歪み補正を行う領域と行わない領域とが混在する。そして一般的には歪み補正なしの場合には、歪み補正ありの場合に比べて処理速度が速いので、ライン毎(特に分割境界)に処理速度が異なることになる。このような場合には、1フレーム内でタイミング調整が必要となり、アルゴリズムや回路構成が複雑、大規模化してしまう虞がある。このような問題に対して第2の実施形態においては、2分割した双方の領域に対して第1歪み係数L1及び第2歪み係数L2により歪み補正処理を行うことになるために、1フレームの全ラインに対して歪補正係数のみを変更した同一処理を行うことになるので、各ライン毎のタイミング調整が不要となり常に一定の処理で対応可能となるので、アルゴリズムが単純となり、特別なアルゴリズムや回路増設は不要になるという効果がある。
[変形例]
図15、図16は変形例に係る実施形態を説明する図である。変形例においては、第1歪み係数L1に対して、光学系への入射角に対する光学中心からの像高を2n倍(nは整数)にした第4歪み係数L4を用いた歪み補正を行うものである。以下に説明するようにnが正の整数の場合には縮小画像を得ることができ、nが負の整数の場合には拡大画像を得ることができ、nが0の場合には等倍画像を得ることができる。
図15、図16は変形例に係る実施形態を説明する図である。変形例においては、第1歪み係数L1に対して、光学系への入射角に対する光学中心からの像高を2n倍(nは整数)にした第4歪み係数L4を用いた歪み補正を行うものである。以下に説明するようにnが正の整数の場合には縮小画像を得ることができ、nが負の整数の場合には拡大画像を得ることができ、nが0の場合には等倍画像を得ることができる。
図15は入射角θと、撮像素子面IA上の像高hとの関係を示す図であり、第1歪み係数L1と、第4歪み係数L4を表示している。同図においては第4歪み係数L4は、第1歪み係数L1に対して、光学系への入射角に対する光学中心からの像高hを4倍(=2n倍(nは2))した係数である。
図16(a)は図4に示した制御フローにおいて第1歪み係数L1を用いて得られた出力画像であり、図16(b)は同様にして第4歪み係数L4を用いて得られた出力画像である。図16(b)の画像では、図16(a)の画像に対して縦横をそれぞれ1/4倍(1/2n倍)に縮小した1/4縮小画像を容易に得ることができる。変形例においてはアルゴリズムの変更がほとんど不要で、特別なアルゴリズムの追加や回路増設はせずに、容易に縮小画像を得ることが可能となる。特に像高hを2n倍とする際に、データ演算処理においては、nbitシフト(nが正の整数の場合には左シフト、負の整数では右シフト)処理することにより容易に第1歪み係数L1を2n倍させることができるので容易に、拡大、縮小した出力画像を得ることが可能となる。
[第3の実施形態]
次に、第3の実施形態について説明する。第3の実施形態においては、歪補正率(DistRatio)を変更することにより、第1歪み係数L1と第2歪み係数L2との補間によって算出する第3歪み係数L3を段階的に切り替えている。また第3の実施形態では更に、仮想投影面VPの位置も第1位置V1と第2位置V2との補間によって算出する第3位置V3も視点変換率(VCRatio)の変更に合わせて段階的に切り替えている。視点変換の具体例については後述する。
次に、第3の実施形態について説明する。第3の実施形態においては、歪補正率(DistRatio)を変更することにより、第1歪み係数L1と第2歪み係数L2との補間によって算出する第3歪み係数L3を段階的に切り替えている。また第3の実施形態では更に、仮想投影面VPの位置も第1位置V1と第2位置V2との補間によって算出する第3位置V3も視点変換率(VCRatio)の変更に合わせて段階的に切り替えている。視点変換の具体例については後述する。
なお第3歪み係数L3、第3位置V3は、以下の式(2)、(3)により算出している。
L3=DistRatio/100×L1+(1-DistRatio/100)×L2 式(2)
(但し、0≦DistRatio/100≦1)
V3=VCRatio/100×V1+(1-VCRatio/100)×V2 式(3)
(但し、0≦VCRatio/100≦1)
(但し、0≦DistRatio/100≦1)
V3=VCRatio/100×V1+(1-VCRatio/100)×V2 式(3)
(但し、0≦VCRatio/100≦1)
図17は、第3の実施形態に係る制御フローを示す図である。同図に示す制御フローはステップS15以前と、ステップS22以降は図4に示す制御フローと同一であるので説明を省略する。
同図のステップS41では、制御装置の内部タイマーにより時間を計測する。ステップS42では計測した時間から歪補正率を、視点変換率を算出する。例えば10secを1サイクルに設定して場合には、時間が基準の0.0secであれば歪補正率を、視点変換率はともに0%、時間が5.0secであれば歪補正率を、視点変換率はともに50%となる。
ステップS43では、ステップS42で算出した歪補正率から式(2)に基づいて歪補正係数L3を算出する。なお、歪補正率が0%の場合には第2歪み係数L2、100%の場合には第1歪み係数L1となる。
ステップS44では、視点変換率から、仮想投影面VPの第3位置の算出を行う。なお第2歪み係数L2に対応する仮想投影面VPの初期状態の位置である第2位置と、第1歪み係数L1に対応する仮想投影面VPの最終位置である第1位置L1は、ステップS11で設定されたものである。第3位置の算出は、仮想投影面VPの第1位置と第2位置の座標を、視点変換率を用いて式(3)により算出する。
ステップS45では、第3位置の仮想投影面VPの各画素のワールド座標系における座標を、第3歪み係数L3を用いてカメラ座標系に変換する。
ステップS22以降では、ステップS45で変換したカメラ座標系の座標から出力画像を生成して画像を出力する。
次に、歪補正率あるいは、歪補正率と視点変換率を所定の周期で変更する例を表1、表2に示す。
表1は、10secを1周期として歪補正率の変更により第3歪み係数L3を段階的に変更する例である。表1の例では視点変換は行っていない。
表2は、10secを1周期として歪補正率の変更により第3歪み係数L3を段階的に変更する例である。また視点変換率を変更することにより第3位置V3も段階的に変更している。表2の例では視点変換率の変更にともない歪補正率も変更している。なお、表1、2においては10sec周期、11段階で変更した例を示しているがあくまでも例示であり、周期を任意に変更したり、これよりも細かく多段階に変更したりしてもよい。また第1位置V1の例については以下に説明する。
[仮想投影面VPの位置変更による視点変換の例]
図18は、カメラ座標系の画像中心oを回転中心(若しくは移動中心)として仮想投影面VP0の位置を変更する例である。図18に示すように画像中心oを回転中心としてx軸回りの回転が実Pitch(tilt:チルトともいう)であり、y軸回りの回転が実Yaw(pan:パンともいう)、Z軸回りの回転が実Rollである。
図18は、カメラ座標系の画像中心oを回転中心(若しくは移動中心)として仮想投影面VP0の位置を変更する例である。図18に示すように画像中心oを回転中心としてx軸回りの回転が実Pitch(tilt:チルトともいう)であり、y軸回りの回転が実Yaw(pan:パンともいう)、Z軸回りの回転が実Rollである。
図19は、入力された回転量の設定値に基づいて仮想投影面VP0の中心ovを回転中心として仮想投影面VPの位置を変更する例である。仮想投影面VP0上の直交する関係となる2軸の一方をYaw-axis、他方をP-axisとして設定する。両者は中心ovを通る軸であり、中心ovを回転中心としてYaw-axis回りの回転を仮想yaw回転、P-axis回りの回転を仮想Pitch回転という。以下においては仮想カメラCa0を回転あるいは位置変更させたことに相当する視点変換が行われる。
表1における、第2位置V2は初期状態の位置に設定している。このときの仮想投影面VPはXY平面と平行でありその中心ovは光軸Z上にある(図18、図19のVP0の位置に相当)。第1位置V1は、仮想Pitch及び実Pitchがともに45度で両者を合わせて90度に設定した例である。この場合、被写体を見下ろすように視点変更がなされる。なお位置変更の組み合わせはこれに限られず、平行移動、実Picth、実Yaw、実Roll、仮想Pitch、仮想Yaw、の何れかあるいはこれらを組み合わせても良い。
本実施形態によれば、歪補正しない出力画像から、歪補正を行う出力画像までを、歪補正率を段階的に変更することにより歪補正しない出力画像の正確な認識を図ることが容易になる。
本発明は、明細書に記載の実施形態に限定されるものではなく、他の実施形態、変形例を含むことは、本明細書に記載された実施形態や技術的思想から本分野の当業者にとって明らかである。明細書の記載及び実施形態は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。
100 制御装置
101 画像処理部
102 設定部
103 記憶部
110 撮像ユニット
120 表示部
130 操作部
VP 仮想投影面
LC レンズ中心面
IA 撮像素子面
O レンズ中心
o 画像中心
L1 第1歪み係数
L2 第2歪み係数
L3 第3歪み係数
L4 第4歪み係数
101 画像処理部
102 設定部
103 記憶部
110 撮像ユニット
120 表示部
130 操作部
VP 仮想投影面
LC レンズ中心面
IA 撮像素子面
O レンズ中心
o 画像中心
L1 第1歪み係数
L2 第2歪み係数
L3 第3歪み係数
L4 第4歪み係数
Claims (24)
- 光学系を介して複数の画素を有する撮像素子に受光して得られた複数の画素データを用いて処理した画像データを得る画像処理方法において、
ワールド座標系の仮想投影面の位置及びサイズを設定する第1ステップと、
前記第1ステップで設定された前記仮想投影面の各画素のワールド座標系における座標を歪み係数を用いてカメラ座標系に変換し、前記変換したカメラ座標系における座標及び前記複数の画素データに基づいて前記第1ステップで設定された仮想投影面の画像データを算出する第2ステップと、
前記第2ステップで算出された画像データによる表示用画像を出力する第3ステップと、
を有し、
前記第2ステップで用いられる前記歪み係数には、少なくとも、前記光学系のレンズの物理的特性及び前記光学系への設定された前記仮想投影面からの入射光の入射角に基づいて算出された第1歪み係数と、前記光学系への入射角の正接関数を変数として算出される前記撮像素子と前記光学系の光軸とが交わる光学中心からの像高である第2歪み係数が含まれており、
前記第2ステップでは、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする画像処理方法。 - 光学系を介して複数の画素を有する撮像素子に受光して得られた複数の画素データを用いて処理した画像データを得る画像処理方法において、
ワールド座標系の仮想投影面の位置及びサイズを設定する第1ステップと、
前記第1ステップで設定された前記仮想投影面の各画素のワールド座標系における座標を歪み係数を用いてカメラ座標系に変換し、前記変換したカメラ座標系における座標及び前記複数の画素データに基づいて前記第1ステップで設定された仮想投影面の画像データを算出する第2ステップと、
前記第2ステップで算出された画像データによる表示用画像を出力する第3ステップと、
を有し、
前記第2ステップで用いられる前記歪み係数には、少なくとも、前記光学系により生ずる歪みを補正するための第1歪み係数と、前記歪みを補正しない第2歪み係数が含まれており、
前記第2ステップでは、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする画像処理方法。 - 前記第3ステップにおいて歪みが補正された画像データの表示用画像を出力する場合には、前記第2ステップにおいて前記第1及び第2歪み係数の内、前記第1歪み係数を用いて仮想投影面の画像データを算出し、前記第3ステップにおいて歪みが補正されていない画像データの表示用画像を出力する場合には、前記第2ステップにおいて前記第1及び第2歪み係数の内、前記第2歪み係数を用いて仮想投影面の画像データを算出することを特徴とする請求項1又は2に記載の画像処理方法。
- 前記第3ステップにおいて段階的に歪みが補正された画像データの表示用動画像を出力する場合には、前記第2ステップにおいて前記第1歪み係数、前記第2歪み係数、及び前記第1、第2歪み係数から補間によって得られた第3歪み係数を段階的に切り替えて用いて仮想投影面の画像データを算出する事を特徴とする請求項1乃至3のいずれか1項に記載の画像処理方法。
- 前記第1ステップでは、ワールド座標系の仮想投影面の第1位置と第2位置を設定し、
前記第2ステップでは、初期の前記第2位置と前記第2歪み係数、最終の前記第1位置と前記第1歪み係数、途中の前記第2位置と前記第1位置の補間によって得られた第3位置と前記第3歪み係数、と段階的に切り替えて用いて仮想投影面の画像データを算出することを特徴とする請求項4に記載の画像処理方法。 - 前記第1ステップで設定される仮想投影面は2つであり、
2つの仮想投影面のうちの一方の仮想投影面の、前記第2ステップにおける画像データの算出は前記第1歪み係数を用いて行い、他方の仮想投影面の前記第2ステップにおける画像データの算出は前記第2歪み係数を用いて行い、
前記第3ステップでは、前記2つの仮想投影面について前記第2ステップにより算出した2つの画像データによる表示用画像を出力することを特徴とする請求項1又は2に記載の画像処理方法。 - 前記第1歪み係数を前記光学系への入射角に対する光学中心からの像高を2n倍(nは整数)した第4歪み係数とし、
前記第2ステップでは前記第4歪み係数を用いて、1/2n倍の画像データを算出することを特徴とする請求項1乃至6のいずれか一項に記載の画像処理方法。 - 光学系を介して複数の画素を有する撮像素子に受光して得られた複数の画素データを用いて処理した画像データを得る画像処理装置であって、
歪み係数を記憶する記憶部と、
位置及びサイズが設定された仮想投影面の各画素のワールド座標系における座標を前記記憶部に記憶された歪み係数を用いてカメラ座標系に変換し、前記カメラ座標系に変換した座標及び前記複数の画素データに基づいて、前記仮想投影面の画像データを算出する画像処理部と、
前記画像処理部で算出した画像データの表示用の画像信号を出力する画像信号出力部と、
を有し、
前記記憶部には、記憶される前記歪み係数として少なくとも、前記光学系のレンズの物理的特性及び前記光学系への設定された前記仮想投影面からの入射光の入射角に基づいて算出された第1歪み係数と前記光学系への入射角の正接関数を変数として算出される前記撮像素子と前記光学系の光軸とが交わる光学中心からの像高である第2歪み係数を有し、
前記画像処理部は、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする画像処理装置。 - 光学系を介して複数の画素を有する撮像素子に受光して得られた複数の画素データを用いて処理した画像データを得る画像処理装置であって、
歪み係数を記憶する記憶部と、
位置及びサイズが設定された仮想投影面の各画素のワールド座標系における座標を前記記憶部に記憶された歪み係数を用いてカメラ座標系に変換し、前記カメラ座標系に変換した座標及び前記複数の画素データに基づいて、前記仮想投影面の画像データを算出する画像処理部と、
前記画像処理部で算出した画像データの表示用の画像信号を出力する画像信号出力部と、
を有し、
前記記憶部には、記憶される前記歪み係数として少なくとも、前記光学系で生ずる歪みを補正するための第1歪み係数と、前記歪みを補正しない第2歪み係数とを有し、
前記画像処理部は、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする画像処理装置。 - 前記画像信号出力部において歪みが補正された画像データの表示用画像を出力する場合には、前記画像処理部において前記第1及び第2歪み係数の内、前記第1歪み係数を用いて仮想投影面の画像データを算出し、前記画像処理部において歪みが補正されていない画像データの表示用画像を出力する場合には、前記第1及び第2歪み係数の内、前記第2歪み係数を用いて仮想投影面の画像データを算出することを特徴とする請求項9又は10に記載の画像処理装置。
- 前記画像信号出力部において段階的に歪みが補正された画像データの表示用動画像を出力する場合には、前記画像処理部は、前記第1歪み係数、前記第2歪み係数、及び前記第1、第2歪み係数から補間によって得られた第3歪み係数を段階的に切り替えて用いて仮想投影面の画像データを算出する事を特徴とする請求項9乃至11のいずれか一項に記載の画像処理装置。
- ワールド座標系の前記仮想投影面は第1位置と第2位置が設定されており、
前記画像処理部は、初期の前記第2位置と前記第2歪み係数、最終の前記第1位置と前記第1歪み係数、途中の前記第2位置と前記第1位置の補間によって得られた第3位置と前記第3歪み係数、と段階的に切り替えて用いて仮想投影面の画像データを算出することを特徴とする請求項12に記載の画像処理装置。 - 前記仮想投影面は2つであり、
前記2つの仮想投影面のうちの一方の仮想投影面の、前記画像処理部における画像データの算出は前記第1歪み係数を用いて行い、他方の仮想投影面の前記画像処理部における画像データの算出は前記第2歪み係数を用いて行い、
前記画像信号出力部は、前記2つの仮想投影面について前記画像処理部により算出した2つの画像データによる表示用画像を出力することを特徴とする請求項9又は10に記載の画像処理装置。 - 前記第1歪み係数を前記光学系への入射角に対する光学中心からの像高を2n倍(nは整数)した第4歪み係数とし、
前記画像処理部は、前記第4歪み係数を用いて、1/2n倍の画像データを算出することを特徴とする請求項9乃至14のいずれか一項に記載の画像処理装置。 - 光学系と、
複数の画素を有する撮像素子と、
前記光学系の歪み係数を記憶する記憶部と、
仮想投影面の各画素のワールド座標系における座標を前記光学系の歪み係数を用いてカメラ座標系に変換し、前記カメラ座標系に変換した座標及び前記撮像素子に受光して得られた複数の画素データに基づいて、前記仮想投影面の画像データを算出する画像処理部と、
前記画像処理部で算出した画像データの表示用の画像信号を出力する画像信号出力部と、
を有し、
前記記憶部には、記憶される前記歪み係数としては、少なくとも、前記光学系のレンズの物理的特性及び前記光学系への設定された前記仮想投影面からの入射光の入射角に基づいて算出された第1歪み係数と、前記光学系への入射角の正接関数を変数として算出される前記撮像素子と前記光学系の光軸とが交わる光学中心からの像高である第2歪み係数とを有し、
前記画像処理部は、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする撮像装置。 - 光学系と、
複数の画素を有する撮像素子と、
前記光学系の歪み係数を記憶する記憶部と、
仮想投影面の各画素のワールド座標系における座標を前記光学系の歪み係数を用いてカメラ座標系に変換し、前記カメラ座標系に変換した座標及び前記撮像素子に受光して得られた複数の画素データに基づいて、前記仮想投影面の画像データを算出する画像処理部と、
前記画像処理部で算出した画像データの表示用の画像信号を出力する画像信号出力部と、
を有し、
前記記憶部には、記憶される前記歪み係数としては、少なくとも、前記光学系で生ずる歪みを補正するための第1歪み係数と、前記歪みを補正しない第2歪み係数とを有し、
前記画像処理部は、前記第1歪み係数及び前記第2歪み係数のいずれか少なくとも一方を用いて画像データを算出することを特徴とする撮像装置。 - 前記画像信号出力部において歪みが補正された画像データの表示用画像を出力する場合には、前記画像処理部において前記第1及び第2歪み係数の内、前記第1歪み係数を用いて仮想投影面の画像データを算出し、前記画像処理部において歪みが補正されていない画像データの表示用画像を出力する場合には、前記第1及び第2歪み係数の内、前記第2歪み係数を用いて仮想投影面の画像データを算出することを特徴とする請求項17又は18に記載の撮像装置。
- 前記画像信号出力部において段階的に歪みが補正された画像データの表示用動画像を出力する場合には、
前記画像処理部は、前記第1歪み係数、前記第2歪み係数、及び前記第1、第2歪み係数から補間によって得られた第3歪み係数を段階的に切り替えて用いて仮想投影面の画像データを算出する事を特徴とする請求項17乃至19のいずれか1項に記載の撮像装置。 - ワールド座標系の前記仮想投影面は第1位置と第2位置が設定されており、
前記画像処理部は、初期の前記第2位置と前記第2歪み係数、最終の前記第1位置と前記第1歪み係数、途中の前記第2位置と前記第1位置の補間によって得られた第3位置と前記第3歪み係数、と段階的に切り替えて用いて仮想投影面の画像データを算出することを特徴とする請求項20に記載の撮像装置。 - 前記仮想投影面は2つであり、
前記2つの仮想投影面のうちの一方の仮想投影面の、前記画像処理部における画像データの算出は前記第1歪み係数を用いて行い、他方の仮想投影面の前記画像処理部における画像データの算出は前記第2歪み係数を用いて行い、
前記画像信号出力部は、前記2つの仮想投影面について前記画像処理部により算出した2つの画像データによる表示用画像を出力することを特徴とする請求項17又は18に記載の撮像装置。 - 前記第1歪み係数を前記光学系への入射角に対する光学中心からの像高を2n倍(nは整数)した第4歪み係数とし、
前記画像処理部は、前記第4歪み係数を用いて、1/2n倍の画像データを算出することを特徴とする請求項17乃至22のいずれか一項に記載の撮像装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012540805A JPWO2012056982A1 (ja) | 2010-10-25 | 2011-10-20 | 画像処理方法、画像処理装置及び撮像装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010238285 | 2010-10-25 | ||
JP2010-238285 | 2010-10-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012056982A1 true WO2012056982A1 (ja) | 2012-05-03 |
Family
ID=45993694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/074123 WO2012056982A1 (ja) | 2010-10-25 | 2011-10-20 | 画像処理方法、画像処理装置及び撮像装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2012056982A1 (ja) |
WO (1) | WO2012056982A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI663421B (zh) * | 2018-02-01 | 2019-06-21 | 大陸商江西聯創電子有限公司 | 廣角鏡頭的畸變矯正方法、裝置及系統 |
CN111862051A (zh) * | 2020-02-04 | 2020-10-30 | 牧今科技 | 执行自动相机校准的方法和系统 |
JP2021124487A (ja) * | 2020-02-04 | 2021-08-30 | 株式会社Mujin | 自動カメラキャリブレーションを実施する方法及びシステム |
US11508088B2 (en) | 2020-02-04 | 2022-11-22 | Mujin, Inc. | Method and system for performing automatic camera calibration |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000011166A (ja) * | 1998-06-24 | 2000-01-14 | Sony Corp | 画像処理装置および方法、並びに提供媒体 |
JP2003223633A (ja) * | 2002-01-29 | 2003-08-08 | Sharp Corp | 全方位視覚システム |
JP2008227996A (ja) * | 2007-03-14 | 2008-09-25 | Sony Corp | 画像処理装置、カメラ装置、画像処理方法、およびプログラム |
JP2008301052A (ja) * | 2007-05-30 | 2008-12-11 | Kyocera Corp | 画像処理方法及び装置 |
JP2009111892A (ja) * | 2007-10-31 | 2009-05-21 | Aiphone Co Ltd | インターホン装置 |
JP2010074312A (ja) * | 2008-09-16 | 2010-04-02 | Canon Inc | 画像処理装置および画像処理方法、プログラム |
-
2011
- 2011-10-20 WO PCT/JP2011/074123 patent/WO2012056982A1/ja active Application Filing
- 2011-10-20 JP JP2012540805A patent/JPWO2012056982A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000011166A (ja) * | 1998-06-24 | 2000-01-14 | Sony Corp | 画像処理装置および方法、並びに提供媒体 |
JP2003223633A (ja) * | 2002-01-29 | 2003-08-08 | Sharp Corp | 全方位視覚システム |
JP2008227996A (ja) * | 2007-03-14 | 2008-09-25 | Sony Corp | 画像処理装置、カメラ装置、画像処理方法、およびプログラム |
JP2008301052A (ja) * | 2007-05-30 | 2008-12-11 | Kyocera Corp | 画像処理方法及び装置 |
JP2009111892A (ja) * | 2007-10-31 | 2009-05-21 | Aiphone Co Ltd | インターホン装置 |
JP2010074312A (ja) * | 2008-09-16 | 2010-04-02 | Canon Inc | 画像処理装置および画像処理方法、プログラム |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI663421B (zh) * | 2018-02-01 | 2019-06-21 | 大陸商江西聯創電子有限公司 | 廣角鏡頭的畸變矯正方法、裝置及系統 |
CN111862051A (zh) * | 2020-02-04 | 2020-10-30 | 牧今科技 | 执行自动相机校准的方法和系统 |
JP2021124487A (ja) * | 2020-02-04 | 2021-08-30 | 株式会社Mujin | 自動カメラキャリブレーションを実施する方法及びシステム |
US11508088B2 (en) | 2020-02-04 | 2022-11-22 | Mujin, Inc. | Method and system for performing automatic camera calibration |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012056982A1 (ja) | 2014-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11190709B2 (en) | Conversion between aspect ratios in camera | |
US10572982B2 (en) | Method and system of image distortion correction for images captured by using a wide-angle lens | |
WO2012060269A1 (ja) | 画像処理方法、画像処理装置及び撮像装置 | |
US9313411B2 (en) | Camera, distortion correction device and distortion correction method | |
US20120093365A1 (en) | Conference system, monitoring system, image processing apparatus, image processing method and a non-transitory computer-readable storage medium | |
US8774495B2 (en) | Image synthesizing apparatus and method of synthesizing images | |
JP2007143173A (ja) | キーストーン歪みを防止する方法および装置 | |
WO2012056982A1 (ja) | 画像処理方法、画像処理装置及び撮像装置 | |
TWI517094B (zh) | 影像校正方法及影像校正電路 | |
JP6236908B2 (ja) | 撮像装置、撮像システムおよび撮像方法 | |
JP2013005393A (ja) | 広角歪補正処理を有する画像処理方法、画像処理装置及び撮像装置 | |
JP5682473B2 (ja) | 広角歪補正処理を有する画像処理方法、画像処理装置及び撮像装置 | |
WO2011161746A1 (ja) | 画像処理方法、プログラム、画像処理装置及び撮像装置 | |
WO2012060271A1 (ja) | 画像処理方法、画像処理装置及び撮像装置 | |
WO2012056684A1 (ja) | 画像信号処理装置、画像信号処理方法およびプログラム | |
JP2013005392A (ja) | 広角歪補正処理を有する画像処理方法、画像処理装置及び撮像装置 | |
WO2012081400A1 (ja) | 画像処理方法、画像処理装置及び撮像装置 | |
WO2011158344A1 (ja) | 画像処理方法、プログラム、画像処理装置及び撮像装置 | |
KR100546646B1 (ko) | 화면 왜곡 보정 방법 및 장치 | |
WO2011158343A1 (ja) | 画像処理方法、プログラム、画像処理装置及び撮像装置 | |
JP2020061662A (ja) | 映像処理装置、映像処理方法、及びプログラム | |
WO2012077544A1 (ja) | 画像処理方法及び撮像装置 | |
JP6291795B2 (ja) | 撮像システムおよび撮像方法 | |
JP2013005140A (ja) | 画像処理装置及び画像処理方法 | |
JP4211653B2 (ja) | 映像生成システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11836118 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012540805 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11836118 Country of ref document: EP Kind code of ref document: A1 |