WO2012056965A1 - 画像処理装置、電子機器、画像処理方法 - Google Patents

画像処理装置、電子機器、画像処理方法 Download PDF

Info

Publication number
WO2012056965A1
WO2012056965A1 PCT/JP2011/074027 JP2011074027W WO2012056965A1 WO 2012056965 A1 WO2012056965 A1 WO 2012056965A1 JP 2011074027 W JP2011074027 W JP 2011074027W WO 2012056965 A1 WO2012056965 A1 WO 2012056965A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
subband
absolute value
enhancement
Prior art date
Application number
PCT/JP2011/074027
Other languages
English (en)
French (fr)
Inventor
張 小▲忙▼
上野 雅史
康寛 大木
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012056965A1 publication Critical patent/WO2012056965A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/409Edge or detail enhancement; Noise or error suppression
    • H04N1/4092Edge or detail enhancement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/10Image enhancement or restoration using non-spatial domain filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20064Wavelet transform [DWT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20192Edge enhancement; Edge preservation

Definitions

  • the present invention relates to an image processing apparatus for performing edge enhancement processing of an image.
  • Patent Document 1 and Non-Patent Document 1 disclose a technique for performing edge enhancement processing of an image using Wavelet transform.
  • FIG. 8 is a block diagram showing an outline of an image processing apparatus 700 using conventional Wavelet transform.
  • the Wavelet conversion unit 701 performs a Wavelet conversion unit on the input image data img_in to generate four subbands (img_LL, img_HL, img_LH, img_HH).
  • the subband img_LL is generated by applying low-pass filtering to the input image data img both in the horizontal direction and in the vertical direction.
  • the subband img_HL is generated by applying a high-pass filter in the horizontal direction and a low-pass filter in the vertical direction to the input image data img.
  • the subband img_LH is generated by applying a low-pass filter in the horizontal direction and a high-pass filter in the vertical direction to the input image data img.
  • the subband img_HH is generated by applying high-pass filtering to the input image data img in both the horizontal and vertical directions.
  • the generated four subbands are inverse wavelet transformed in the inverse wavelet transform unit 703 in the subsequent stage.
  • the multiplication units 702 multiply the subbands other than the subband img_LL by the enhancement coefficients K HL , K LH , and K HH , respectively, and then the inverse wavelet transform unit 703 Inverse Wavelet conversion is then performed.
  • the image subjected to the inverse wavelet transform is an image in which edges are emphasized.
  • JP 2007-280202 A Japanese Patent Publication “JP 2007-280202 A” (published on October 25, 2007)
  • the horizontal axis indicates the pixel position of the image
  • the vertical axis indicates the luminance value
  • FIG. 9B shows a state in which the H subband is input as zero
  • FIG. 9C shows a state in which the L subband is input as zero.
  • the conventional edge enhancement processing among the wavelet transformed subbands, the high frequency H subband is multiplied by an enhancement coefficient, and edge enhancement is performed by inverse wavelet transformation. Therefore, the vibration generated in the signal component of the H subband in (c) of FIG. 9 is emphasized, and as shown in (d) of FIG. 9, unnatural vibration is generated in the edge correction result. That is, the conventional edge enhancement processing has a problem that an unnatural edge enhancement result is obtained.
  • the present invention has been made in view of the above problems, and an object of the present invention is to perform an edge enhancement process in which a natural edge enhancement result is obtained without causing vibration in the edge correction result in the edge enhancement process in which wavelet transform is performed. Is to provide an image processing apparatus capable of realizing the above.
  • an image processing apparatus that performs wavelet transformation on input image data and performs image edge enhancement processing.
  • a wavelet transform unit that generates a subband on the high frequency side and a code detection unit that detects a concave / convex code indicating a concave / convex tendency in horizontal, vertical, and oblique directions from the subband on the low frequency side generated by the wavelet transform unit;
  • the edge of the image is obtained by multiplying the absolute value calculation unit for obtaining the absolute value of the subband on the high frequency side, the absolute value obtained by the absolute value calculation unit, and the uneven code value detected by the code detection unit.
  • An enhancement processing unit for performing enhancement processing on the low-frequency side subband generated by the Wavelet transform unit It is characterized by outputting an image obtained by adding the multiplied values.
  • the image processing method of the present invention is an image processing method for performing edge enhancement processing of an image by performing wavelet transform on input image data.
  • the input image data includes a low frequency side subband and a high frequency side subband.
  • a wavelet transform step for generating a ridge, a code detection step for detecting a concavo-convex code indicating a concavo-convex tendency in the horizontal, vertical, and diagonal directions from the low-frequency subbands generated by the wavelet transform step, and the high-frequency side subband An absolute value calculation step for obtaining an absolute value of the band, and an enhancement processing step for performing an edge enhancement process of the image by multiplying the absolute value obtained by the absolute value calculation step and the unevenness code detected in the code detection step.
  • the low frequency side subband generated by the Wavelet transform step It is characterized by comprising the step of outputting an image obtained by adding the multiplication value obtained by the serial enhancement processing step.
  • an absolute value is obtained for the high frequency subband generated by the Wavelet transform, and the absolute value is detected from the low frequency subband generated by the Wavelet transform.
  • the edge emphasis process is performed while suppressing the vibration generated in the sub-band on the high frequency side.
  • the subbands on the high frequency side that have been subjected to enhancement processing in a state in which the vibration is suppressed are added to the subbands on the low frequency side generated by the Wavelet transform, so that unnatural vibrations are added.
  • No natural edge enhancement result that is, an output image subjected to natural edge enhancement processing can be obtained.
  • the enhancement processing unit includes the absolute value obtained by the absolute value calculation unit, the uneven code value detected by the code detection unit, It is preferable to perform the enhancement processing of the edge of the image by multiplying the enhancement coefficient.
  • the multiplication unit further includes a multiplication unit that multiplies the enhancement coefficient by the high frequency side subband generated by the Wavelet transform unit, and the absolute value
  • the arithmetic unit preferably obtains the absolute value of the subband on the high frequency side multiplied by the enhancement coefficient by the multiplication unit.
  • the degree of edge enhancement that is, the effect in the etch enhancement process is controlled by multiplying the subband on the high frequency side by a coefficient (enhancement coefficient) indicating the degree of enhancement in the edge enhancement process.
  • a coefficient enhancement coefficient
  • timing for applying the enhancement coefficient may be before or after the subband absolute value calculation.
  • An enlargement / reduction processing unit that performs enlargement / reduction processing on the input image data, and the Wavelet conversion unit performs Wavelet conversion on the image data enlarged / reduced by the enlargement / reduction processing unit. Yes.
  • the Wavelet conversion unit can perform the enlargement / reduction processing and the edge enhancement processing at the same time by performing Wavelet conversion on the image data enlarged / reduced by the enlargement / reduction processing unit.
  • the enlargement / reduction processing unit performs an enlargement process that doubles the size of the input image data.
  • Such simultaneous processing is effective when there is a problem that the edge is blurred because the resolution is converted, for example, when an SD size image is enlarged and displayed as a full HD size image.
  • an image processing apparatus performs an edge enhancement process on a YCbCr format color image data by performing wavelet conversion on the Y component image data.
  • an image processing unit that outputs an image of a Y component that has undergone edge enhancement processing, and an enlargement / reduction processing unit that outputs an image of a Cb component that has been subjected to enlargement / reduction processing on the image data of the Cb component
  • An enlargement / reduction processing unit that outputs an image of a Cr component obtained by enlarging / reducing the Cr component image data, and the image processing unit is realized by the image processing apparatus. It is characterized by.
  • an image processing apparatus performs an edge enhancement process of an image by performing Wavelet transform on color image data in RGB format.
  • an image processing unit that outputs an R component image subjected to edge enhancement processing an image processing unit that outputs an R component image subjected to edge enhancement processing on the R component image data
  • An image processing unit that outputs a B component image obtained by performing edge enhancement processing on the B component image data, and that all the image processing units described above are realized by the image processing apparatus. It is a feature.
  • any electronic apparatus that is required to perform edge processing on an input image can be applied.
  • a television receiver Electronic book terminals, portable terminal devices, and the like.
  • An image processing apparatus is an image processing apparatus that performs wavelet transformation on input image data and performs edge enhancement processing of the image.
  • the input image data includes a low-frequency side subband and a high-frequency side subband.
  • An absolute value calculation unit for obtaining an absolute value, an enhancement processing unit for performing an edge enhancement process on an image by multiplying the absolute value obtained by the absolute value calculation unit and the uneven code value detected by the code detection unit;
  • FIG. 1 is a block diagram of a schematic configuration of an image processing apparatus according to Embodiment 1 of the present invention. It is a figure explaining the outline
  • FIG. 2 It is a schematic block diagram of an image processing apparatus according to Embodiment 2 of the present invention.
  • (A) to (d) are graphs showing the relationship between the pixel position and the luminance value in the image in the edge enhancement processing state in the image processing apparatus shown in FIG. 1 or FIG.
  • (A) to (d) are graphs showing the relationship between the pixel position and the luminance value in the image in the edge enhancement processing state in the image processing apparatus
  • FIG. 1 is a schematic configuration block diagram of an image processing apparatus 100 according to the first embodiment.
  • the image processing apparatus 100 includes a scale-up unit (enlargement / reduction processing unit) 101, a wavelet conversion unit 102, an absolute value calculation unit 103, a code detection unit 104, and an enhancement processing unit 105. is there.
  • the image processing apparatus 100 is an apparatus that performs wavelet conversion on the input image data img_in and performs image edge enhancement processing.
  • the scale-up unit 101 performs scale-up processing on the input image data img_in.
  • a Wavelet transform unit 102 that generates a low-frequency side subband and a high-frequency side subband from the image img_up that has been subjected to the case-up process by the scale-up unit 101, and a low-frequency side generated by the Wavelet transform unit 102
  • a code detecting unit 104 that detects a concave / convex code indicating the tendency of the concave / convex in the horizontal, vertical, and oblique directions from the subband, and an absolute value calculating unit 103 that calculates an absolute value of the high frequency side subband generated by the Wavelet transform unit;
  • An enhancement processing unit 105 that multiplies the output unevenness code by a preset enhancement
  • the scale-up unit 101 performs scale-up processing (enlargement or reduction processing) on the input image data img_in.
  • the scale-up unit 101 enlarges the input image data img_in twice to make the size of the output image data img_out the same as the size of the input image data img_in, and the input image data img_in.
  • a method (2) in which the size of the output image data img_out is made the same as the size of the target image by enlarging to twice the target image size can be realized.
  • a Lanczos method is used as an enlargement method used in the scale-up unit 101.
  • the enlargement method is not limited to the Lanczos method, and other enlargement methods may be used.
  • the above method (1) that is, the input image data img_in is doubled and the size of the output image data img_out is set to the input image data img_in.
  • An example of applying the same method as the size of will be described.
  • the input image data img_in enlarged by the scale-up unit 101 is output to the Wavelet conversion unit 102 as a scale-up image img_up.
  • the Wavelet transform unit 102 uses the input scale-up image img_up as an original image, and uses four pairs of subbands (img_LL, img_LL, img_HL, img_LH, img_HH).
  • the Wavelet conversion unit 102 uses a Wavelet conversion method called CDF9 / 7.
  • CDF9 / 7 Wavelet conversion method
  • other Wavelet conversion methods may be used, and the method is not limited to CDF9 / 7.
  • the subband img_LL is generated by applying low-pass filtering to the input image data img both in the horizontal direction and in the vertical direction.
  • the subband img_HL is generated by applying a high-pass filter in the horizontal direction and a low-pass filter in the vertical direction to the input image data img.
  • the subband img_LH is generated by applying a low-pass filter in the horizontal direction and a high-pass filter in the vertical direction to the input image data img.
  • the subband img_HH is generated by applying high-pass filtering to the input image data img in both the horizontal and vertical directions.
  • the subband img_LL is generated by applying a low-pass filter in both the horizontal direction and the vertical direction, it is an image reduced in size by half.
  • the subband img_HL indicates edge information in the vertical direction
  • the subband img_LH indicates horizontal direction
  • the subband img_HH indicates diagonal direction information.
  • the wavelet transform unit 102 transfers the high frequency side subbands (subband img_HL, subband img_LH, subband img_HH) among the four subbands to the absolute value calculation unit 103.
  • the absolute value calculation unit 103 calculates the absolute value of each input subband and transfers it to the subsequent enhancement processing unit 105.
  • the Wavelet transform unit 102 transfers the subband img_LL, which is a subband on the low frequency side, to the code detection unit 104 and the synthesis unit 106.
  • the code detection unit 104 performs code detection from the input subband img_LL using, for example, a 7-tap filter shown in FIG. Specifically, the subband img_LL, which is an input image, is filtered in the horizontal, vertical, and diagonal directions to detect the sign of the value (sign_hz, sign_vt, sign_di shown in FIG. 1). That is, the code detected by the code detection unit 104 is a concavo-convex code indicating the concavo-convex tendency in the horizontal direction, the vertical direction, and the oblique direction in the subband on the low frequency side.
  • the graph showing the relationship between the pixel position and the luminance value (for example, (b) of FIG. 5)
  • the graph is output from the bottom as a positive sign for the concave curve portion and negative as the convex portion. Zero is output to the flat portion.
  • the above code detection result is used for calculation in the enhancement processing unit 105.
  • the enhancement processing unit 105 multiplies the absolute value of each high-frequency subband transferred from the absolute value calculation unit 103, the code detection result of the code detection unit 104, and a preset enhancement coefficient.
  • the absolute value of the sub-band Img_HL, the code Sign_hz, multiplied and the emphasis coefficient k HL, and the absolute value of the sub-band Img_LH, and sign Sign_vt, and the emphasis coefficient k LH multiplied subband img_HH the absolute value of a code Sign_di, and the emphasis coefficient k HH are multiplied.
  • Each multiplication result is transferred to the synthesis unit 106.
  • the enhancement coefficients k HL , k LH , and k HH are coefficients for determining the degree of effect of edge enhancement processing. By changing the value of the enhancement coefficient, the effect of the edge enhancement process can be easily controlled.
  • the emphasis coefficients k HL , k LH , and k HH may be set in advance or may be determined adaptively according to the image content.
  • a preset enhancement coefficient is used.
  • the synthesizing unit 106 combines the subband img_LL transferred from the Wavelet transform unit 102 and the multiplication result of the subband img_HL, subband img_LH, and subband img_HH transferred from the enhancement processing unit 105 to output image data img_out Output as.
  • an absolute value is obtained for the high frequency side subband generated by the Wavelet transform unit 102, and the low value generated by the Wavelet transform unit 102 is obtained for the absolute value.
  • the enhancement coefficient is further multiplied to the high frequency side subband in this state, the enhancement processing is performed in a state in which vibration is eliminated.
  • the low-frequency side subband generated by the Wavelet transform unit 102 is added to the high-frequency side subband that has been subjected to enhancement processing in a state where vibration is eliminated, thereby reducing unnaturalness.
  • An output image that has undergone natural edge enhancement processing is obtained.
  • FIG. 4 is a schematic block diagram of the image processing apparatus 200 according to the second embodiment.
  • the image processing apparatus 200 includes a scale-up unit 201, Wavelet conversion unit 202, absolute value calculation unit 203, code detection unit 204, enhancement processing unit 205, synthesis unit 206, and multiplication unit 207. It is a configuration.
  • the image processing apparatus 200 has almost the same configuration as the image processing apparatus 100 shown in FIG. 1, but the place where the enhancement coefficient is multiplied is different.
  • the multiplication unit 207 multiplies the enhancement coefficient before obtaining the absolute values of the high frequency side subbands (subband img_HL, subband img_LH, and subband img_HH) generated by the Wavelet transform unit 202. I am doing so.
  • the image processing apparatus 200 is an image processing apparatus that performs wavelet conversion on the input image data img_in and performs edge enhancement processing on the image.
  • the input image data img_in includes a scale-up unit 201, A Wavelet transform unit 202 that generates a low-frequency side subband and a high-frequency side subband from the image img_up that has been scaled up by the scale-up unit 201, and a low-frequency side subband generated by the Wavelet transform unit 202
  • a code detecting unit 204 that detects a concave / convex code indicating a tendency of concave / convex in the horizontal, vertical, and oblique directions from the band, and a multiplying unit 207 that multiplies the enhancement frequency by the high frequency side subband generated by the Wavelet transform unit 202.
  • An absolute value calculation unit 203 that calculates the absolute value of the signal
  • an enhancement processing unit 205 that multiplies the absolute value calculated by the absolute value calculation unit 203 and the uneven code value detected by the code detection unit 204
  • the multiplication value obtained by the enhancement processing unit 205 is added to the low frequency side subband generated by the Wavelet transform unit 202 by the synthesis unit 206, and output image data img_out is output.
  • the scale-up unit 201, Wavelet conversion unit 202, absolute value calculation unit 203, code detection unit 204, and synthesis unit 206 are the scale-up units in the image processing apparatus 100 of the first embodiment. 101, a wavelet conversion unit 102, an absolute value calculation unit 103, a code detection unit 104, and a synthesis unit 106.
  • the enhancement processing unit 105 of the image processing apparatus 100 of the first embodiment is executed by different units, that is, the multiplication unit 207 and the enhancement processing unit 205. ing.
  • the second embodiment and the first embodiment are different in the edge enhancement processing in the output image data img_out to be output, except for the place where the enhancement coefficient is applied to the high frequency side subband.
  • the effects of the image processing apparatus 200 having the above configuration are the same as the effects of the image processing apparatus 100 of the first embodiment.
  • the high frequency subband generated by the Wavelet transform unit 202 is subjected to the enhancement processing by multiplying the enhancement coefficient, and then the absolute value is obtained.
  • the vibration generated in the subband on the high frequency side can be eliminated.
  • the low frequency side subband generated by the Wavelet transform unit 202 is added to the high frequency side subband that has been subjected to enhancement processing in a state in which vibration is eliminated, thereby reducing unnaturalness.
  • An output image that has undergone natural edge enhancement processing is obtained.
  • the image enlarged twice is wavelet transformed and decomposed into four subbands LL, HL, LH, and HH.
  • the subband obtained here is the same as the size of the original image.
  • an output image without edge enhancement is used for the subband LL.
  • the vertical edge enhancement is performed by multiplying the absolute value of the subband HL by the concave / convex code sign_hz detected from the subband LL.
  • the horizontal edge emphasis is performed by multiplying the absolute value of the subband LH by the concave-convex code sign_vt detected from the subband LL.
  • Diagonal edge emphasis is performed by multiplying the absolute value of the subband HH by the concave-convex code sign_di detected from the subband LL.
  • 5 (a) to 5 (d) are graphs showing the relationship between the pixel position and the luminance value in the image in the edge enhancement processing state in the image processing apparatus 100 and the image processing apparatus 200.
  • FIG. 5 (a) to 5 (d) are graphs showing the relationship between the pixel position and the luminance value in the image in the edge enhancement processing state in the image processing apparatus 100 and the image processing apparatus 200.
  • the input image data img_in which is the original image shown in FIG. 5A is scaled up twice by the scale-up unit 101 and then subjected to Wavelet conversion by the Wavelet conversion unit 102.
  • This code detection result (3) indicates the unevenness of each direction (horizontal direction, vertical direction, diagonal direction) of the subband (1) on the low frequency side generated by the wavelet transform in the wavelet transform unit 102 by the code detection unit 104. This is a result obtained by detecting.
  • FIG. 5 (d) is a graph showing the relationship between the pixel position and the luminance value in the output image data img_out.
  • the output image data img_out hardly shows vibration as shown in FIG. 9D of the prior art. Therefore, it can be seen that the output image data img_out is an output image that has been subjected to natural edge enhancement processing without unnaturalness.
  • the effects of the image processing apparatus 100 according to the first embodiment have been described.
  • the image processing apparatus 200 according to the second embodiment also has the same effects.
  • processing is performed so that the high-frequency subband after Wavelet conversion is directly emphasized as an edge. Therefore, unlike the conventional method, edge enhancement processing is not performed by emphasizing high-frequency subbands and performing inverse Wavelet transform.
  • FIG. 6 shows a schematic block diagram of the image processing apparatus 300 according to the present embodiment.
  • the image processing apparatus 300 has the following configuration. .
  • the image processing apparatus 300 includes an image processing unit 301, a scale-up unit 302, and a scale-up unit 303.
  • the image processing unit 301 performs an edge enhancement process on the Y component input image data img_Y_in to obtain output image data img_Y_out.
  • the image processing unit 301 is realized by either the image processing apparatus 100 according to the first embodiment or the image processing apparatus 200 according to the second embodiment.
  • the scale-up unit 302 performs a scale-up process on the Cb component input image data img_Cb_in to obtain output image data img_Cb_out.
  • the scale-up unit 303 performs a scale-up process on the input image data img_Cr_in of the Cr component to obtain output image data img_Cr_out.
  • the image processing apparatus 300 configured as described above, it is possible to obtain an output color image in the YCbCr format that has been subjected to natural edge enhancement processing that does not cause vibration in the edge correction result.
  • FIG. 7 shows a schematic block diagram of the image processing apparatus 400 according to the present embodiment.
  • the image processing apparatus 400 includes three image processing units 401 corresponding to the R component, the G component, and the B component, respectively. These three image processing units 401 have the same function.
  • the image processing unit 401 performs, for example, edge enhancement processing on R component input image data img_R_in to obtain output image data img_R_out.
  • edge enhancement processing on R component input image data img_R_in to obtain output image data img_R_out.
  • the G component input image data img_G_in is subjected to edge enhancement processing to obtain output image data img_G_out
  • the B component input image data img_B_in is subjected to edge enhancement processing to obtain output image data img_B_out. It is like that.
  • the image processing unit 401 is realized by either the image processing apparatus 100 of the first embodiment or the image processing apparatus 200 of the second embodiment.
  • the image processing apparatus 400 having the above configuration, it is possible to obtain an output color image in the RGB format that has been subjected to natural edge enhancement processing that does not cause vibration in the edge correction result.
  • the image processing apparatus has been described.
  • the present invention includes not only the apparatus but also the image processing method described below.
  • the image processing method of the present invention is an image processing method that performs wavelet transformation on input image data and performs edge enhancement processing of the image.
  • the wavelet transformation unit 102 performs sub-frequency-side subtraction from the input image data.
  • Wavelet transform step for generating a band and a high-frequency subband, and a concave-convex code indicating the tendency of irregularities in the horizontal, vertical, and diagonal directions from the low-frequency subband generated by the wavelet transform step by the code detection unit 104
  • a sign detecting step for detecting the absolute value
  • an absolute value calculating step for obtaining the absolute value of the high frequency side subband by the absolute value calculating unit 103
  • an absolute value obtained by the absolute value calculating step by the enhancement processing unit 105 Multiplied by the concavo-convex code detected in the code detection step
  • any electronic apparatus that is required to perform edge processing on an input image can be applied.
  • Examples include a receiver, an electronic book terminal, and a portable terminal device.
  • processing performed by the image processing apparatus 100 of the present invention may be realized as software by the following control program.
  • the control program causes a computer to generate a wavelet conversion procedure for generating a low-frequency side subband and a high-frequency side subband from input image data, and horizontally from a low-frequency side subband generated by the wavelet conversion procedure.
  • the emphasis processing procedure for emphasizing the edge of the image by multiplying the concave and convex codes detected by the code detection procedure, and the low frequency side subband generated by the Wavelet transform procedure are obtained by the enhancement processing procedure.
  • control program may be recorded on a computer-readable recording medium and supplied to the computer for execution.
  • the image processing apparatus 100 of the present invention may be configured by hardware logic, or may be realized by software using a CPU as follows.
  • the image processing apparatus 100 includes a CPU (central processing unit) that executes instructions of a control program that implements each processing (each procedure such as scale-up processing and wavelet conversion processing), and a ROM (read that stores the control program). only (memory), a RAM (random access memory) for expanding the control program, a storage device (recording medium) such as a memory for storing the control program and various data, and the like.
  • An object of the present invention is to supply a computer with a recording medium in which the program code (execution format program, intermediate code program, source program) of the control program, which is software for realizing the functions described above, is recorded so as to be readable by the computer. However, this can also be achieved by reading and executing the program code recorded on the recording medium by the computer (or CPU or MPU).
  • Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R.
  • Card system such as IC card, IC card (including memory card) / optical card, or semiconductor memory system such as mask ROM / EPROM / EEPROM / flash ROM.
  • the image processing apparatus 100 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication. A net or the like is available.
  • the transmission medium constituting the communication network is not particularly limited.
  • wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc.
  • infrared rays such as IrDA and remote control, Bluetooth (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • the present invention can be used for an image display device that requires edge enhancement processing on an output image, particularly a liquid crystal display device using a liquid crystal panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

 本発明の画像処理装置(100)は、Wavelet変換部(102)により生成された低周波数側のサブバンドから凹凸符号値を検出する符号検出部(104)と、Wavelet変換部(102)により生成された高周波数側のサブバンドの絶対値を求める絶対値演算部(103)と、絶対値演算部(103)により求めた絶対値と、上記符号検出部(104)で検出された凹凸符号値と、予め設定した強調係数とを掛ける強調処理部(105)とを備える。Wavelet変換部(102)により生成された低周波数側のサブバンドに対して、強調処理部(105)で得られた乗算値を足し合わせてエッジ強調処理を施した画像を出力する。これにより、Wavelet変換を行うエッジ強調処理において、エッジ補正結果に振動が生じない、自然なエッジ強調処理を実現し得る。

Description

画像処理装置、電子機器、画像処理方法
 本発明は、画像のエッジ強調処理を施すための画像処理装置に関する。
 従来より、画像のエッジ強調処理を施すための画像処理装置が種々提案されている。
 例えば、特許文献1や非特許文献1には、Wavelet変換を用いて画像のエッジ強調処理を施す技術が開示されている。
 図8は、従来のWavelet変換を用いた画像処理装置700の概略を示すブロック図である。
 上記画像処理装置700では、図8に示すように、入力画像データimg_inに対してWavelet変換部701においてWavelet変換部を行って、4つのサブバンド(img_LL、img_HL、img_LH、img_HH)を生成する。
 サブバンドimg_LLは、入力された画像データimgに水平方向でも垂直方向でもローパスフィルタを掛けて生成する。
 サブバンドimg_HLは、入力された画像データimgに水平方向でハイパスフィルタを、垂直方向でローパスフィルタを掛けて生成する。
 サブバンドimg_LHは、入力された画像データimgに水平方向でローパスフィルタを、垂直方向でハイパスフィルタを掛けて生成する。
 サブバンドimg_HHは、入力された画像データimgに水平方向でも垂直方向でもハイパスフィルタを掛けて生成する。
 生成された4つのサブバンドは、後段の逆Wavelet変換部703において逆Wavelet変換される。このとき、生成された4つのサブバンドのうち、サブバンドimg_LL以外のサブバンドに対して乗算部702において、強調係数KHL,KLH,KHHをそれぞれ掛けた後、逆Wavelet変換部703にて、逆Wavelet変換される。
 上記のように、逆Wavelet変換された画像は、エッジが強調された画像となる。
日本国公開特許公報「特開2007-280202号公報(2007年10月25日公開)」
Adaptive image denoising and edge enhancement in scale-space using the wavelet transform,Pattern Recognition Letters 24(3) pp.965-971, 2003
 図8に示す画像処理装置におけるエッジ強調処理について、図9の(a)~図9の(d)を参照しながら以下に説明する。ここで、図9の(a)~図9の(d)において、横軸は画像のピクセル位置を示し、縦軸は輝度値を示している。
 まず、図9の(a)に示す入力された画像データ(元信号)に対して、Wavelet変換を行って得られたLサブバンドを逆Wavelet変換を行い得られた結果、図9の(b)に示すグラフとなり、Wavelet変換を行って得られたHサブバンドを逆Wavelet変換を行い得られた結果、図9の(c)に示すグラフとする。
 このとき、図9の(b)では、Hサブバンドをゼロとして入力された状態を示し、図9の(c)では、Lサブバンドをゼロとして入力された状態を示す。
 次に、図9の(b)、図9の(c)に示す結果を合成することで、元信号に対してエッジ補正を行った結果を得る。このときのエッジ補正結果は、図9の(d)に示すグラフのようになる。
 ところで、従来のエッジ強調処理では、Wavelet変換したサブバンドのうち、高周波数のHサブバンドに対して強調係数を掛けて、逆Wavelet変換によりエッジ強調を行っている。このため、図9の(c)におけるHサブバンドの信号成分に生じている振動が強調され、図9の(d)に示すように、エッジ補正結果に不自然な振動が生じることになる。つまり、従来のエッジ強調処理では、不自然なエッジ強調結果になってしまうという問題が生じる。
 本発明は、上記課題に鑑みなされたものであって、その目的は、Wavelet変換を行うエッジ強調処理において、エッジ補正結果に振動が生じない、自然なエッジ強調結果が得られるようなエッジ強調処理を実現し得る画像処理装置を提供することにある。
 本発明の画像処理装置は、上記の課題を解決するために、入力画像データに対して、Wavelet変換を行い画像のエッジ強調処理を行う画像処理装置において、入力画像データから低周波数側のサブバンドと高周波数側のサブバンドとを生成するWavelet変換部と、Wavelet変換部により生成された低周波数側のサブバンドから水平、垂直、斜め方向における凹凸傾向を示す凹凸符号を検出する符号検出部と、上記高周波数側のサブバンドの絶対値を求める絶対値演算部と、上記絶対値演算部により求めた絶対値と、上記符号検出部で検出された凹凸符号値とを掛け合わせて画像のエッジの強調処理を行う強調処理部とを備え、上記Wavelet変換部により生成された低周波数側のサブバンドに、上記強調処理部で得られた乗算値を足し合わせた画像を出力することを特徴としている。
 また、本発明の画像処理方法は、入力画像データに対して、Wavelet変換を行い画像のエッジ強調処理を行う画像処理方法において、入力画像データから低周波数側のサブバンドと高周波数側のサブバンドとを生成するWavelet変換ステップと、Wavelet変換ステップにより生成された低周波数側のサブバンドから水平、垂直、斜め方向における凹凸傾向を示す凹凸符号を検出する符号検出ステップと、上記高周波数側のサブバンドの絶対値を求める絶対値演算ステップと、上記絶対値演算ステップにより求めた絶対値と、上記符号検出ステップで検出された凹凸符号とを掛け合わせて画像のエッジの強調処理を行う強調処理ステップと、上記Wavelet変換ステップにより生成された低周波数側のサブバンドに、上記強調処理ステップで得られた乗算値を足し合わせた画像を出力するステップとを含むことを特徴としている。
 上記の構成によれば、Wavelet変換により生成された高周波数側のサブバンドに対して、絶対値を求め、その絶対値に対して、Wavelet変換により生成された低周波数側のサブバンドから検出された凹凸符号値が掛けられることで、高周波数側のサブバンドに生じる振動を抑えたエッジの強調処理が施される。そして、上記Wavelet変換により生成された低周波数側のサブバンドに対して、振動が抑えられた状態で強調処理が施された高周波数側のサブバンドが足し合わされることで、不自然な振動の無い自然なエッジ強調結果、すなわち自然なエッジ強調処理が施された出力画像を得ることができる。
 上記エッジ強調処理における強調の度合いを示す係数を強調係数としたとき、上記強調処理部は、上記絶対値演算部により求めた絶対値と、上記符号検出部で検出された凹凸符号値と、上記強調係数とを掛け合わせて画像のエッジの強調処理を行うことが好ましい。
 上記エッジ強調処理における強調の度合いを示す係数を強調係数としたとき、Wavelet変換部により生成された高周波数側のサブバンドに対して、上記強調係数を掛け合わせる乗算部をさらに備え、上記絶対値演算部は、上記乗算部により強調係数が掛け合わされた高周波数側のサブバンドの絶対値を求めることが好ましい。
 上記のように、高周波数側のサブバンドに対して、エッジ強調処理における強調の度合いを示す係数(強調係数)を掛け合わせることで、エッジ強調の度合い、すなわちエッチ強調処理における効果を制御することが可能となる。つまり、上記強調係数の値を変更することで、エッチ強調処理における効果を容易に制御することが可能となる。
 なお、上記強調係数を掛けるタイミングは、サブバンドの絶対値演算前後の何れであってもよい。
 上記入力画像データに対して拡大または縮小処理を施す拡大縮小処理部を備え、上記Wavelet変換部は、上記拡大縮小処理部によって拡大縮小処理された画像データに対してWavelet変換を行うことを特徴としている。
 上記の構成によれば、Wavelet変換部は、上記拡大縮小処理部によって拡大縮小処理された画像データに対してWavelet変換を行うことで、拡大・縮小処理とエッジ強調処理とを同時に行うことができる。
 通常、Wavelet変換を行った場合、入力画像データのサイズが半分のサイズになるので、Wavelet変換を行う前に、入力画像データのサイズを2倍のサイズとなるように拡大処理を施す必要がある。
 従って、上記拡大縮小処理部では、入力画像データのサイズを2倍に拡大する拡大処理を施すのが好ましい。
 また、出力画像のサイズを入力画像(元画像)のサイズあるいは目標となる画像のサイズとなるように、元画像のサイズを拡大あるいは縮小処理するようにすることもできる。
 このような同時処理は、例えば、SDサイズの画像をフルHDサイズの画像に拡大処理して表示する場合のように、解像度変換されるためエッジがぼやけるという問題が生じる場合に有効である。
 本発明の画像処理装置を用いることで、YCbCrフォーマットのカラー画像データ、RGBフォーマットのカラー画像データに対しても自然なエッジ強調処理を施すことが可能となる。具体的な構成は、以下の通りである。
 本発明の画像処理装置は、上記の課題を解決するために、YCbCrフォーマットのカラー画像データに対して、Wavelet変換を行い画像のエッジ強調処理を行う画像処理装置において、上記Y成分の画像データに対して、エッジ強調処理を行ったY成分の画像を出力する画像処理部と、上記Cb成分の画像データに対して、拡大・縮小処理を行ったCb成分の画像を出力する拡大縮小処理部と、上記Cr成分の画像データに対して、拡大・縮小処理を行ったCr成分の画像を出力する拡大縮小処理部とを備え、上記画像処理部は、上記の画像処理装置によって実現されていることを特徴としている。
 上記の構成によれば、YCbCrフォーマットのカラー画像データに対して、画像のエッジが振動の無い自然なエッジ強調処理が施された出力カラー画像を得ることができる。
 本発明の画像処理装置は、上記の課題を解決するために、RGBフォーマットのカラー画像データに対して、Wavelet変換を行い画像のエッジ強調処理を行う画像処理装置において、上記R成分の画像データに対して、エッジ強調処理を行ったR成分の画像を出力する画像処理部と、上記R成分の画像データに対して、エッジ強調処理を行ったR成分の画像を出力する画像処理部と、上記B成分の画像データに対して、エッジ強調処理を行ったB成分の画像を出力する画像処理部とを備え、上記の全ての画像処理部は、上記の画像処理装置によって実現されていることを特徴としている。
 上記の構成によれば、RGBフォーマットのカラー画像データに対して、画像のエッジが振動の無い自然なエッジ強調処理が施された出力カラー画像を得ることができる。
 上記構成の画像処理装置を備えた電子機器として、入力画像に対してエッジ処理を施す必要のある電子機器であれば、どのような電子機器であっても適用可能であり、例えば、テレビ受像機、電子書籍端末、携帯端末装置等を挙げることができる。
 本発明の画像処理装置は、入力画像データに対して、Wavelet変換を行い画像のエッジ強調処理を行う画像処理装置において、入力画像データから低周波数側のサブバンドと高周波数側のサブバンドとを生成するWavelet変換部と、Wavelet変換部により生成された低周波数側のサブバンドから水平、垂直、斜め方向における凹凸傾向を示す凹凸符号を検出する符号検出部と、上記高周波数側のサブバンドの絶対値を求める絶対値演算部と、上記絶対値演算部により求めた絶対値と、上記符号検出部で検出された凹凸符号値とを掛け合わせて画像のエッジの強調処理を行う強調処理部とを備え、上記Wavelet変換部により生成された低周波数側のサブバンドに、上記強調処理部で得られた乗算値を足し合わせた画像を出力する構成である。これにより、不自然な振動の無い自然なエッジ強調処理が施された出力画像を得ることができるという効果を奏する。
本発明の実施の形態1に係る画像処理装置の概略構成ブロック図である。 Wavelet変換の概要を説明する図である。 図1に示す画像処理装置の符号検出部で使用されるフィルタ例を示す図である。 本発明の実施の形態2に係る画像処理装置の概略構成ブロック図である。 (a)~(d)は、図1または図4に示す画像処理装置におけるエッジ強調処理状態の画像におけるピクセル位置と輝度値との関係を示すグラフである。 本発明の実施の形態3に係る画像処理装置の概略構成ブロック図である。 本発明の実施の形態4に係る画像処理装置の概略構成ブロック図である。 従来の画像処理装置の概略構成ブロック図である。 (a)~(d)は、図8に示す画像処理装置におけるエッジ強調処理状態の画像におけるピクセル位置と輝度値との関係を示すグラフである。
 以下、本発明の実施の形態について、詳細に説明する。
 (実施の形態1)
 図1は、本実施の形態1に係る画像処理装置100の概略構成ブロック図である。
 上記画像処理装置100は、図1に示すように、スケールアップ部(拡大縮小処理部)101、Wavelet変換部102、絶対値演算部103、符号検出部104、強調処理部105を含んだ構成である。
 すなわち、画像処理装置100は、入力画像データimg_inに対して、Wavelet変換を行い画像のエッジ強調処理を行う装置であり、入力画像データimg_inに対して、スケールアップ処理を施すスケールアップ部101と、スケールアップ部101によりスケースアップ処理を施した画像img_upから低周波数側のサブバンドと高周波数側のサブバンドとを生成するWavelet変換部102と、Wavelet変換部102により生成された低周波数側のサブバンドから水平、垂直、斜め方向における凹凸傾向を示す凹凸符号を検出する符号検出部104と、Wavelet変換部により生成された高周波数側のサブバンドの絶対値を求める絶対値演算部103と、上記絶対値演算部103により求めた絶対値と、上記符号検出部104で検出された凹凸符号と、予め設定した強調係数とを掛け合わせる強調処理部105とを備え、上記Wavelet変換部102により生成された低周波数側のサブバンドに対して、上記乗算部で得られた乗算値を合成部106にて足し合わせて出力画像データimg_outを出力する。
 上記スケールアップ部101は、入力画像データimg_inに対してスケールアップ処理(拡大または縮小処理)を施すようになっている。
 ここで、上記スケールアップ部101は、入力画像データimg_inを2倍に拡大して、出力画像データimg_outのサイズを入力画像データimg_inのサイズと同じにする方法(1)と、入力画像データimg_inを目標画像サイズの2倍に拡大して、出力画像データimg_outのサイズを目標画像のサイズと同じにする方法(2)とを実現可能にしている。このスケールアップ部101で用いられる拡大方法としては、Lanczos方法を用いる。しかしながら、拡大方法として、Lanczos方法に限定されず、他の拡大方法であってもよい。
 なお、本実施の形態1及び下記の各実施の形態においては、全て、上記(1)の方法、すなわち入力画像データimg_inを2倍に拡大して、出力画像データimg_outのサイズを入力画像データimg_inのサイズと同じにする方法を適用した例について説明する。
 上記スケールアップ部101によって拡大処理された入力画像データimg_inは、スケールアップ画像img_upとしてWavelet変換部102に出力される。
 上記Wavelet変換部102は、図2に示すように、入力されたスケールアップ画像img_upを原画像として、原画像imgに対して、ローパスフィルタ、ハイパスフィルタのペアを用いて4つのサブバンド(img_LL、img_HL、img_LH、img_HH)を生成する。ここで、Wavelet変換部102では、CDF9/7というWavelet変換方式を用いる。但し、これ以外のWavelet変換方式であってもよく、CDF9/7に限定されるものではない。
 サブバンドimg_LLは、入力された画像データimgに水平方向でも垂直方向でもローパスフィルタを掛けて生成する。
 サブバンドimg_HLは、入力された画像データimgに水平方向でハイパスフィルタを、垂直方向でローパスフィルタを掛けて生成する。
 サブバンドimg_LHは、入力された画像データimgに水平方向でローパスフィルタを、垂直方向でハイパスフィルタを掛けて生成する。
 サブバンドimg_HHは、入力された画像データimgに水平方向でも垂直方向でもハイパスフィルタを掛けて生成する。
 ここで、サブバンドimg_LLは、水平方向、垂直方向の両方向でローパスフィルタを掛けて生成されているので、サイズが半分に縮小した画像である。サブバンドimg_HLは縦方向、サブバンドimg_LHは横方向、サブバンドimg_HHは斜め方向のエッジ情報を示す。
 上記Wavelet変換部102は、4つのサブバンドのうち、高周波数側のサブバンド(サブバンドimg_HL、サブバンドimg_LH、サブバンドimg_HH)を絶対値演算部103に転送する。
 上記絶対値演算部103は、入力されたサブバンドそれぞれの絶対値を求めて、後段の強調処理部105に転送する。
 一方、上記Wavelet変換部102は、低周波数側のサブバンドであるサブバンドimg_LLを符号検出部104と合成部106に転送する。
 上記符号検出部104では、例えば図4に示す7タップフィルタを用いて、入力されたサブバンドimg_LLから符号検出を行う。具体的には、入力画像である、サブバンドimg_LLに水平、垂直、斜めの方向で夫々、フィルタ掛けて、その値の符号を検出する(図1に示すsign_hz, sign_vt, sign_di)。つまり、符号検出部104において検出される符号は、低周波数側のサブバンドにおける水平方向、垂直方向、斜め方向における凹凸傾向を示す凹凸符号である。ここで、ピクセル位置と輝度値との関係を示すグラフ(例えば図5の(b))において、当該グラフを下から見て、凹む曲線部分に正、凸部分に負が符号として出力される。平坦部分にはゼロが出力される。
 上記の符号検出結果は、強調処理部105における演算に用いられる。
 上記強調処理部105では、絶対値演算部103から転送された高周波数側のサブバンドそれぞれの絶対値と、上記符号検出部104における符号検出結果と、予め設定した強調係数とが掛け合わされる。
 具体的には、サブバンドimg_HLの絶対値と、符号sign_hzと、強調係数kHLとが掛け合わされ、サブバンドimg_LHの絶対値と、符号sign_vtと、強調係数kLHとが掛け合わされ、サブバンドimg_HHの絶対値と、符号sign_diと、強調係数kHHとが掛け合わされる。それぞれの乗算結果は、合成部106に転送される。
 上記強調係数kHL、kLH、kHHは、エッジ強調処理の効果の度合いを決定するための係数である。この強調係数の値を変更することにより、エッジ強調処理の効果を容易に制御することができる。
 また、強調係数kHL、kLH、kHHは、予め設定していてもよいし、画像内容に応じて適応的に決めてもよい。ここでは、予め設定した強調係数を使用するものとする。
 上記合成部106では、Wavelet変換部102から転送されたサブバンドimg_LLと、強調処理部105から転送されたサブバンドimg_HL、サブバンドimg_LH、サブバンドimg_HHの乗算結果とを合わせて、出力画像データimg_outとして出力する。
 上記構成の画像処理装置100によれば、Wavelet変換部102により生成された高周波数側のサブバンドに対して、絶対値を求め、その絶対値に対して、Wavelet変換部102により生成された低周波数側のサブバンドから検出された凹凸符号値が掛けられることで、高周波数側のサブバンドに生じる振動を無くすことができる。この状態の高周波側のサブバンドに対して、さらに強調係数が掛け合わされるので、振動を無くした状態で強調処理が施されることになる。そして、上記Wavelet変換部102により生成された低周波数側のサブバンドに対して、振動を無くした状態で強調処理が施された高周波数側のサブバンドが足し合わされることで、不自然さの無い自然なエッジ強調処理が施された出力画像を得ることになる。
 (実施の形態2)
 図4は、本実施の形態2に係る画像処理装置200の概略構成ブロック図である。
 上記画像処理装置200は、図4に示すように、スケールアップ部201、Wavelet変換部202、絶対値演算部203、符号検出部204、強調処理部205、合成部206、乗算部207を含んだ構成である。
 ここで、上記画像処理装置200は、図1に示す画像処理装置100と殆ど同じ構成であるが、強調係数を掛け合わせる場所が異なっている。画像処理装置200では、Wavelet変換部202によって生成される高周波数側のサブバンド(サブバンドimg_HL、サブバンドimg_LH、サブバンドimg_HH)の絶対値を求める前に、乗算部207によって強調係数を掛け合わせるようにしている。
 具体的には、画像処理装置200は、入力画像データimg_inに対して、Wavelet変換を行い画像のエッジ強調処理を行う画像処理装置であり、入力画像データimg_inに対して、スケールアップ部201と、スケールアップ部201によりスケールアップ処理を施した画像img_upから低周波数側のサブバンドと高周波数側のサブバンドとを生成するWavelet変換部202と、Wavelet変換部202により生成された低周波数側のサブバンドから水平、垂直、斜め方向における凹凸傾向を示す凹凸符号を検出する符号検出部204と、Wavelet変換部202により生成された高周波数側のサブバンドに対して、強調係数を掛け合わせる乗算部207と、上記乗算部207により強調係数が掛け合わされた高周波数側のサブバンドの絶対値を求める絶対値演算部203と、上記絶対値演算部203により求めた絶対値と、上記符号検出部204で検出された凹凸符号値とを掛け合わせる強調処理部205とを備え、上記Wavelet変換部202により生成された低周波数側のサブバンドに対して、上記強調処理部205で得られた乗算値を合成部206にて足し合わせて出力画像データimg_outを出力する。
 上記構成の画像処理装置200において、スケールアップ部201、Wavelet変換部202、絶対値演算部203、符号検出部204、合成部206については、前記実施の形態1の画像処理装置100におけるスケールアップ部101、Wavelet変換部102、絶対値演算部103、符号検出部104、合成部106と同じ機能を有する。
 前記実施の形態1の画像処理装置100の強調処理部105で行ったことを、本実施の形態2の画像処理装置200では、別々の部、すなわち乗算部207と強調処理部205とで実行している。
 従って、本実施の形態2と前記実施の形態1とは、高周波数側のサブバンドに対する強調係数を掛ける場所が異なるだけで、出力される出力画像データimg_outにおけるエッジ強調処理に違いは殆どないので、上記構成の画像処理装置200による効果は、前記実施の形態1の画像処理装置100による効果と同様の効果を奏する。
 すなわち、上記構成の画像処理装置200によれば、Wavelet変換部202により生成された高周波数側のサブバンドに対して、強調係数を掛け合わせて強調処理を施し、その後、絶対値を求め、その絶対値に対して、Wavelet変換部202により生成された低周波数側のサブバンドから検出された凹凸符号が掛けられることで、高周波数側のサブバンドに生じる振動を無くすことができる。そして、上記Wavelet変換部202により生成された低周波数側のサブバンドに対して、振動が無くなった状態で強調処理が施された高周波数側のサブバンドが足し合わされることで、不自然さの無い自然なエッジ強調処理が施された出力画像を得ることになる。
 (実施の形態1,2による効果)
 以上のように、上記の各実施の形態では、元画像を2倍拡大してからエッジ強調を行うことを前提として、以下の強調処理を行っている。これは、逆Wavelet変換を行わずに画像サイズを合わせるためである。
 すなわち、2倍に拡大した画像をWavelet変換して、4つのサブバンドLL、HL,LH,HHに分解する。ここで得られるサブバンドは、元画像のサイズと同じになる。
 ここでは、サブバンドLLに対しては、エッジ強調なしの出力画像とする。
 サブバンドHLの絶対値とサブバンドLLから検出した凹凸符号sign_hzとを掛け合わせることで、垂直エッジ強調を行う。
 サブバンドLHの絶対値とサブバンドLLから検出した凹凸符号sign_vtとを掛け合わせることで、水平エッジ強調を行う。
 サブバンドHHの絶対値とサブバンドLLから検出した凹凸符号sign_diとを掛け合わせることで、斜めエッジ強調を行う。
 そして、サブバンドLLに強調した上記の各エッジを上乗せすれば、振動を無くしたエッジ強調効果を実現できる。
 上記エッジ強調効果について、図5の(a)~図5の(d)を参照して具体的に説明する。
 図5の(a)~図5の(d)は、画像処理装置100、画像処理装置200におけるエッジ強調処理状態の画像におけるピクセル位置と輝度値との関係を示すグラフである。
 上記構成の画像処理装置100では、図5の(a)に示す元画像である入力画像データimg_inに対して、スケールアップ部101により2倍にスケールアップした後、Wavelet変換部102におけるWavelet変換により生成した低周波数側のサブバンド(サブバンドimg_LL)(1)と、高周波数側のサブバンド(サブバンドimg_HL、サブバンドimg_LH、サブバンドimg_HH)(2)とのピクセル位置と輝度値との関係は、図5の(b)に示すグラフのようになる。
 このグラフには、高周波数側のサブバンド(2)に対して掛け合わせる符号検出結果(3)が表示されている。この符号検出結果(3)は、符号検出部104によって、Wavelet変換部102におけるWavelet変換により生成した低周波数側のサブバンド(1)の各方向(水平方向、垂直方向、斜め方向)の凹凸性を検出して得られた結果である。
 上記のように、高周波数側のサブバンド(2)に対して、符号検出結果(3)を掛け合わせると、図5の(c)に示すように、高周波数側のサブバンド(2)の振動が抑えられる。
 このようにして振動が抑えられた高周波数側のサブバンド(2)を、上記低周波数側のサブバンド(1)に足し合わせた結果、図5の(d)に示すグラフのようになる。このグラフは、出力画像データimg_outにおけるピクセル位置と輝度値との関係を示すグラフである。
 従って、図5の(d)に示すグラフから、出力画像データimg_outでは、従来技術の図9の(d)に示すような振動が殆ど見られないことが分かる。よって、出力画像データimg_outは、不自然さの無い自然なエッジ強調処理が施された出力画像であることが分かる。
 ここまでは、実施の形態1の画像処理装置100の効果について説明したものであるが、実施の形態2の画像処理装置200においても同様の効果を奏する。
 以上のように、本実施の形態1,2の画像処理装置100,200によれば、Wavelet変換後の高周波数側のサブバンドに対して直接的にエッジとして強調するように処理を行っているので、従来のように、高周波数のサブバンドを強調して、逆Wavelet変換を行ってエッジ強調処理を行うものではない。
 このため、逆Wavelet変換に起因する不自然な振動による不自然なエッジ強調結果を招くことは無い。
 上記の各実施の形態では、入力画像データがカラー画像であるか否かをについて特に考慮していないが、以下の実施の形態3,4では、入力画像データがカラー画像である場合のエッジ強調処理について説明する。
 (実施の形態3)
 本実施の形態では、YCbCrフォーマットのカラー画像データに対するエッジ強調処理を行う画像処理装置について説明する。
 図6は、本実施の形態に係る画像処理装置300の概略構成ブロック図を示す。
 ここで、YCbCrフォーマットのカラー画像では、Y成分の画像のみにエッジ強調処理を施せば、画像全体のエッジ強調処理を施したことになるので、画像処理装置300は、以下のような構成となる。
 すなわち、上記画像処理装置300は、画像処理部301、スケールアップ部302、スケールアップ部303を含んだ構成となている。
 上記画像処理部301は、Y成分の入力画像データimg_Y_inに対してエッジ強調処理を施して、出力画像データimg_Y_outを得るようになっている。この画像処理部301は、前記実施の形態1の画像処理装置100または前記実施の形態2の画像処理装置200の何れかで実現されている。
 上記スケールアップ部302は、Cb成分の入力画像データimg_Cb_inに対してスケールアップ処理を施して、出力画像データimg_Cb_outを得るようになっている。
 同様に、上記スケールアップ部303は、Cr成分の入力画像データimg_Cr_inに対してスケールアップ処理を施して、出力画像データimg_Cr_outを得るようになっている。
 ここで、入力画像と出力画像とが同じサイズである場合には、スケールアップ部302、303におけるCb成分の入力画像データimg_Cb_in、Cr成分の入力画像データimg_Cr_inに対するスケールアップ処理は不要となる。
 上記構成の画像処理装置300によれば、エッジ補正結果に振動が生じない、自然なエッジ強調処理が施された、YCbCrフォーマットの出力カラー画像を得ることができる。
 (実施の形態4)
 本実施の形態では、RGBフォーマットのカラー画像データに対するエッジ強調処理を行う画像処理装置について説明する。
 図7は、本実施の形態に係る画像処理装置400の概略構成ブロック図を示す。
 上記画像処理装置400は、R成分、G成分、B成分のそれぞれに対応する3つの画像処理部401を含んだ構成である。これら3つの画像処理部401は同一機能を有するものとする。
 上記画像処理部401は、例えばR成分の入力画像データimg_R_inに対してエッジ強調処理を施して、出力画像データimg_R_outを得るようになっている。同様に、G成分の入力画像データimg_G_inに対してエッジ強調処理を施して、出力画像データimg_G_outを得、B成分の入力画像データimg_B_inに対してエッジ強調処理を施して、出力画像データimg_B_outを得るようになっている。
 ここで、上記画像処理部401は、前記実施の形態1の画像処理装置100または前記実施の形態2の画像処理装置200の何れかで実現されている。
 上記構成の画像処理装置400によれば、エッジ補正結果に振動が生じない、自然なエッジ強調処理が施された、RGBフォーマットの出力カラー画像を得ることができる。
 以上の何れの実施の形態では、何れも画像処理装置について説明しているが、本発明は装置だけでなく、以下に示す画像処理方法も権利範囲に含まれる。
 すなわち、本発明の画像処理方法は、入力画像データに対して、Wavelet変換を行い画像のエッジ強調処理を行う画像処理方法であって、Wavelet変換部102によって、入力画像データから低周波数側のサブバンドと高周波数側のサブバンドとを生成するWavelet変換ステップと、符号検出部104によって、Wavelet変換ステップにより生成された低周波数側のサブバンドから水平、垂直、斜め方向における凹凸傾向を示す凹凸符号を検出する符号検出ステップと、絶対値演算部103によって、上記高周波数側のサブバンドの絶対値を求める絶対値演算ステップと、強調処理部105によって、 上記絶対値演算ステップにより求めた絶対値と、上記符号検出ステップで検出された凹凸符号とを掛け合わせて画像のエッジの強調処理を行う強調処理ステップと、上記合成部106によって、上記Wavelet変換ステップにより生成された低周波数側のサブバンドに、上記強調処理ステップで得られた乗算値を足し合わせた画像を出力するステップとを含んでいる。
 以上の構成の画像処理方法であっても、上述した画像処理装置と同様に、不自然な振動の無い自然なエッジ強調処理が施された出力画像を得ることができるという効果を奏する。
 また、上記構成の画像処理装置を備えた電子機器として、入力画像に対してエッジ処理を施す必要のある電子機器であれば、どのような電子機器であっても適用可能であり、例えば、テレビ受像機、電子書籍端末、携帯端末装置等を挙げることができる。
 また、本発明の画像処理装置100で行っている処理は、以下に示す制御プログラムによってソフトウェアとして実現しもよい。
 上記制御プログラムは、コンピュータに、入力画像データから低周波数側のサブバンドと高周波数側のサブバンドとを生成するWavelet変換手順と、上記Wavelet変換手順により生成された低周波数側のサブバンドから水平、垂直、斜め方向における凹凸傾向を示す凹凸符号を検出する符号検出手順と、上記高周波数側のサブバンドの絶対値を求める絶対値演算手順と、上記絶対値演算手順により求めた絶対値と、上記符号検出手順で検出された凹凸符号とを掛け合わせて画像のエッジの強調処理を行う強調処理手順と、上記Wavelet変換手順により生成された低周波数側のサブバンドに、上記強調処理手順で得られた乗算値を足し合わせた画像を出力する出力手順とを実行させるプログラムである。
 また、上記の制御プログラムは、コンピュータ読み取り可能な記録媒体に記録し、コンピュータに供給して実行してもよい。
 以上のことから、本発明の画像処理装置100は、ハードウェアロジックによって構成してもよいし、次のようにCPUを用いてソフトウェアによって実現してもよいことになる。
 この場合、画像処理装置100は、各処理(スケールアップ処理、Wavelet変換処理等の各手順)を実現する制御プログラムの命令を実行するCPU(central processing unit)、上記制御プログラムを格納したROM(read only memory)、上記制御プログラムを展開するRAM(random access memory)、上記制御プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアである上記制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、コンピュータに供給し、そのコンピュータ(またはCPUやMPU)が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である。
 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM/MO/MD/DVD/CD-R等の光ディスクを含むディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ系などを用いることができる。
 また、画像処理装置100を通信ネットワークと接続可能に構成し、上記プログラムコードを通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、特に限定されず、例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。
 本発明は上述した各実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、出力画像に対してエッジ強調処理を必要とする画像表示装置、特に、液晶パネルを用いた液晶表示装置に利用することができる。
100 画像処理装置
101 スケールアップ部
102 Wavelet変換部
103 絶対値演算部
104 符号検出部
105 強調処理部
106 合成部
200 画像処理装置
201 スケールアップ部
202 Wavelet変換部
203 絶対値演算部
204 符号検出部
205 強調処理部
206 合成部
207 乗算部
300 画像処理装置
301 画像処理部
302 スケールアップ部
303 スケールアップ部
400 画像処理装置
401 画像処理部
HH  サブバンド
HL  サブバンド
LH  サブバンド
LL  サブバンド
HH  強調係数
HL  強調係数
LH  強調係数

Claims (10)

  1.  入力画像データに対して、Wavelet変換を行い画像のエッジ強調処理を行う画像処理装置において、
     入力画像データから低周波数側のサブバンドと高周波数側のサブバンドとを生成するWavelet変換部と、
     Wavelet変換部により生成された低周波数側のサブバンドから水平、垂直、斜め方向における凹凸傾向を示す凹凸符号を検出する符号検出部と、
     上記高周波数側のサブバンドの絶対値を求める絶対値演算部と、
     上記絶対値演算部により求めた絶対値と、上記符号検出部で検出された凹凸符号値とを掛け合わせて画像のエッジの強調処理を行う強調処理部とを備え、
     上記Wavelet変換部により生成された低周波数側のサブバンドに、上記強調処理部で得られた乗算値を足し合わせた画像を出力することを特徴とする画像処理装置。
  2.  上記エッジ強調処理における強調の度合いを示す係数を強調係数としたとき、
     上記強調処理部は、上記絶対値演算部により求めた絶対値と、上記符号検出部で検出された凹凸符号値と、上記強調係数とを掛け合わせて画像のエッジの強調処理を行うことを特徴とする請求項1に記載の画像処理装置。
  3.  上記エッジ強調処理における強調の度合いを示す係数を強調係数としたとき、
     Wavelet変換部により生成された高周波数側のサブバンドに対して、上記強調係数を掛け合わせる乗算部をさらに備え、
     上記絶対値演算部は、上記乗算部により強調係数が掛け合わされた高周波数側のサブバンドの絶対値を求めることを特徴とする請求項1に記載の画像処理装置。
  4.  上記入力画像データに対して拡大または縮小処理を施す拡大縮小処理部をさらに備え、
     上記Wavelet変換部は、上記拡大縮小処理部によって拡大縮小処理された画像データに対してWavelet変換を行うことを特徴とする請求項1~3の何れか1項に記載の画像処理装置。
  5.  YCbCrフォーマットのカラー画像データに対して、Wavelet変換を行い画像のエッジ強調処理を行う画像処理装置において、
     Y成分の画像データに対して、エッジ強調処理を行ったY成分の画像を出力する画像処理部と、
     Cb成分の画像データに対して、拡大・縮小処理を行ったCb成分の画像を出力する拡大縮小処理部と、
     Cr成分の画像データに対して、拡大・縮小処理を行ったCr成分の画像を出力する拡大縮小処理部とを備え、
     上記画像処理部は、請求項1~4の何れか1項に記載の画像処理装置によって実現されていることを特徴とする画像処理装置。
  6.  RGBフォーマットのカラー画像データに対して、Wavelet変換を行い画像のエッジ強調処理を行う画像処理装置において、
     R成分の画像データに対して、エッジ強調処理を行ったR成分の画像を出力する画像処理部と、
     G成分の画像データに対して、エッジ強調処理を行ったG成分の画像を出力する画像処理部と、
     B成分の画像データに対して、エッジ強調処理を行ったB成分の画像を出力する画像処理部とを備え、
     上記の画像処理部は、請求項1~4の何れか1項に記載の画像処理装置によって実現されていることを特徴とする画像処理装置。
  7.  請求項1~6の何れか1項に記載の画像処理装置を備えた電子機器。
  8.  入力画像データに対して、Wavelet変換を行い画像のエッジ強調処理を行う画像処理方法において、
     入力画像データから低周波数側のサブバンドと高周波数側のサブバンドとを生成するWavelet変換ステップと、
     Wavelet変換ステップにより生成された低周波数側のサブバンドから水平、垂直、斜め方向における凹凸傾向を示す凹凸符号を検出する符号検出ステップと、
     上記高周波数側のサブバンドの絶対値を求める絶対値演算ステップと、
     上記絶対値演算ステップにより求めた絶対値と、上記符号検出ステップで検出された凹凸符号とを掛け合わせて画像のエッジの強調処理を行う強調処理ステップと、
     上記Wavelet変換ステップにより生成された低周波数側のサブバンドに、上記強調処理ステップで得られた乗算値を足し合わせた画像を出力するステップとを含むことを特徴とする画像処理方法。
  9.  コンピュータに、
     入力画像データから低周波数側のサブバンドと高周波数側のサブバンドとを生成するWavelet変換手順と、
     上記Wavelet変換手順により生成された低周波数側のサブバンドから水平、垂直、斜め方向における凹凸傾向を示す凹凸符号を検出する符号検出手順と、
     上記高周波数側のサブバンドの絶対値を求める絶対値演算手順と、
     上記絶対値演算手順により求めた絶対値と、上記符号検出手順で検出された凹凸符号とを掛け合わせて画像のエッジの強調処理を行う強調処理手順と、
     上記Wavelet変換手順により生成された低周波数側のサブバンドに、上記強調処理手順で得られた乗算値を足し合わせた画像を出力する出力手順とを、
    実行させるプログラム。
  10.  請求項9に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2011/074027 2010-10-26 2011-10-19 画像処理装置、電子機器、画像処理方法 WO2012056965A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-239549 2010-10-26
JP2010239549 2010-10-26

Publications (1)

Publication Number Publication Date
WO2012056965A1 true WO2012056965A1 (ja) 2012-05-03

Family

ID=45993678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074027 WO2012056965A1 (ja) 2010-10-26 2011-10-19 画像処理装置、電子機器、画像処理方法

Country Status (2)

Country Link
TW (1) TW201225000A (ja)
WO (1) WO2012056965A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337997A (zh) * 2013-06-26 2013-10-02 西安交通大学 一种电动汽车用永磁同步电机矢量控制系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110139086A (zh) * 2018-02-09 2019-08-16 台达电子工业股份有限公司 影像增强电路及影像增强方法
US11113796B2 (en) 2018-02-09 2021-09-07 Delta Electronics, Inc. Image enhancement circuit and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173078A (ja) * 2002-11-21 2004-06-17 Canon Inc 画像処理装置
JP2004248269A (ja) * 2003-01-22 2004-09-02 Ricoh Co Ltd データ形式可逆変換方法、画像処理装置、データ形式可逆変換用プログラム及び記憶媒体
JP2008015741A (ja) * 2006-07-05 2008-01-24 Konica Minolta Holdings Inc 画像処理装置、画像処理方法及びこれを用いた撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173078A (ja) * 2002-11-21 2004-06-17 Canon Inc 画像処理装置
JP2004248269A (ja) * 2003-01-22 2004-09-02 Ricoh Co Ltd データ形式可逆変換方法、画像処理装置、データ形式可逆変換用プログラム及び記憶媒体
JP2008015741A (ja) * 2006-07-05 2008-01-24 Konica Minolta Holdings Inc 画像処理装置、画像処理方法及びこれを用いた撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337997A (zh) * 2013-06-26 2013-10-02 西安交通大学 一种电动汽车用永磁同步电机矢量控制系统及方法
CN103337997B (zh) * 2013-06-26 2016-01-20 西安交通大学 一种电动汽车用永磁同步电机矢量控制系统及方法

Also Published As

Publication number Publication date
TW201225000A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
JP6461165B2 (ja) 画像の逆トーンマッピングの方法
US9747514B2 (en) Noise filtering and image sharpening utilizing common spatial support
JP4556276B2 (ja) 画像処理回路及び画像処理方法
US9626744B2 (en) Global approximation to spatially varying tone mapping operators
Lee et al. A space-variant luminance map based color image enhancement
WO2023123927A1 (zh) 图像增强方法、装置、设备和存储介质
JP4214457B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
US9384533B2 (en) Method and device for converting image resolution, and electronic device having the device
TWI387312B (zh) 影像雜訊消除方法以及影像處理裝置
TW201120809A (en) System and method for processing an image edge
US20070086650A1 (en) Method and Device for Color Saturation and Sharpness Enhancement
JP2013041565A (ja) 画像処理装置、画像表示装置、画像処理方法、コンピュータプログラム及び記憶媒体
KR102605392B1 (ko) 에지 보존 필터를 이용하여 이미지를 선명화하는 방법 및 장치
WO2012056965A1 (ja) 画像処理装置、電子機器、画像処理方法
WO2013151163A1 (ja) 画像処理装置、画像表示装置、画像処理方法、コンピュータプログラム及び記録媒体
KR20150090515A (ko) 고주파수 성분의 위상 변조를 통한 영상 질감 향상 방법 및 그 장치
WO2011040074A1 (ja) 画像拡大装置、画像拡大プログラム、及び表示装置
CN111815535B (zh) 图像处理方法、装置、电子设备和计算机可读介质
JP2007215188A (ja) 画像変換方法、変換画像生成方法、および画像補正装置
WO2016131370A1 (zh) 一种实现小波去噪的方法和装置
JP4632100B2 (ja) 画像処理装置、画像処理方法、記録媒体、およびプログラム
WO2015151279A1 (ja) フォーカス評価を補助するための装置、プログラム及び方法
JP5349204B2 (ja) 画像処理装置及び方法、並びに画像表示装置及び方法
JP5135134B2 (ja) 画像処理装置及びその方法
WO2012147879A1 (ja) 画像処理装置、表示装置、画像処理方法および画像処理プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP