WO2012056815A1 - Process for producing liquid crystal alignment film, and liquid crystal display element - Google Patents

Process for producing liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2012056815A1
WO2012056815A1 PCT/JP2011/070495 JP2011070495W WO2012056815A1 WO 2012056815 A1 WO2012056815 A1 WO 2012056815A1 JP 2011070495 W JP2011070495 W JP 2011070495W WO 2012056815 A1 WO2012056815 A1 WO 2012056815A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
solvent
substrate
crystal alignment
aligning agent
Prior art date
Application number
PCT/JP2011/070495
Other languages
French (fr)
Japanese (ja)
Inventor
林 英治
宏司 平澤
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020127033627A priority Critical patent/KR101418465B1/en
Priority to JP2012540732A priority patent/JP5741593B2/en
Publication of WO2012056815A1 publication Critical patent/WO2012056815A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a method for producing a liquid crystal alignment film and a liquid crystal display element, and more specifically, to form a liquid crystal alignment film on a substrate by removing the solvent in the liquid crystal alignment agent applied on the substrate by heating.
  • the present invention relates to a preferred method for producing a liquid crystal alignment film, and a liquid crystal display device comprising a liquid crystal alignment film produced by the production method.
  • a horizontal alignment type liquid crystal display element such as a TN (Twisted Nematic) type or an IPS (In-Plane Switching) type and a vertical alignment type liquid crystal display element such as a VA (Vertical Alignment) type are known.
  • a liquid crystal alignment film formed on a substrate.
  • a liquid crystal alignment film is formed by applying a liquid crystal alignment agent in which polyimide or polyamic acid is dissolved in a solvent such as N-methyl-2-pyrrolidone (NMP) or ⁇ -butyrolactone to the surface of the substrate. It can be obtained by heating.
  • NMP N-methyl-2-pyrrolidone
  • ⁇ -butyrolactone N-methyl-2-pyrrolidone
  • a solvent that can dissolve polyimide or polyamic acid is a high boiling point solvent such as NMP or ⁇ -butyrolactone, and when a coating film is formed on a substrate using a liquid crystal aligning agent containing these solvents, It is necessary to heat the coated surface at a relatively high temperature (for example, 200 ° C.). Therefore, for example, in a color liquid crystal display element, it may be considered that inconveniences such as discoloration of a dye contained in the color filter occur due to heat at the time of forming the liquid crystal alignment film. In addition, since high-temperature heat treatment is required when forming the liquid crystal alignment film, it may be considered that application to, for example, a plastic substrate is limited.
  • a coating film can be formed at a low temperature, it is possible to reduce the total amount of heat in the manufacturing process, and as a result, it is possible to reduce CO 2 emissions and reduce costs. Also from such a viewpoint, it is desired to realize coating film formation at a low temperature.
  • the present invention has been made in view of the above-described problems, and can perform heating at the time of forming a liquid crystal alignment film at a relatively low temperature and can obtain a liquid crystal alignment film having good voltage holding characteristics even by low-temperature heating.
  • the main object is to provide a method for producing a film and a liquid crystal display device comprising a liquid crystal alignment film produced by the production method.
  • the present invention employs the following means to achieve the above object.
  • the method for producing a liquid crystal alignment film of the present invention uses a liquid crystal alignment agent containing at least one polymer selected from the group consisting of a polyamic acid and a polyimide, and a solvent soluble in the polymer.
  • a method for producing a film wherein the liquid crystal aligning agent is applied on a substrate, and the liquid crystal aligning agent applied on the substrate is compatible with the solvent and has a lower boiling point than the solvent.
  • a liquid compatible with a solvent capable of dissolving polyamic acid or polyimide (first solvent) is brought into contact with a liquid crystal aligning agent applied on a substrate before heating for forming a coating film.
  • first solvent a liquid crystal aligning agent capable of dissolving polyamic acid or polyimide
  • substrate before the heating, the quantity of the 1st solvent contained in the liquid crystal aligning agent on a board
  • substrate can be decreased as much as possible.
  • the liquid used in the contact step has a boiling point lower than that of the first solvent, it can be evaporated by heating at a lower temperature than that of the first solvent. Therefore, even when heating for film formation is performed at a relatively low temperature, the remaining amount of the solvent in the formed liquid crystal alignment film can be reduced as much as possible. As a result, a liquid crystal alignment film having good voltage holding characteristics can be obtained.
  • liquid that is poorly soluble or insoluble in polyamic acid or polyimide
  • mixing between the liquid crystal aligning agent and the liquid is suppressed, and the film thickness of the formed coating film is improved. can do.
  • a liquid it is preferable to use at least one selected from the group consisting of water, alcohols having 1 to 5 carbon atoms, ketones having 3 to 5 carbon atoms, and acetonitrile.
  • the present invention may include a preheating step of heating the liquid crystal aligning agent on the substrate at a temperature lower than the heating temperature in the film forming step after the coating step and before the contacting step. .
  • a preheating step of heating the liquid crystal aligning agent on the substrate may be performed by two-stage heating.
  • the previous heating is performed at a relatively low temperature to prevent the liquid crystal aligning agent from dripping on the substrate, and the subsequent heating is performed at a relatively high temperature.
  • a coating film may be formed.
  • the heating temperature during the subsequent heating can be made relatively low.
  • the film forming step may be a step of heating the liquid crystal aligning agent on the substrate under atmospheric pressure.
  • the heating temperature is kept relatively low even when the liquid crystal aligning agent is heated on the substrate at atmospheric pressure.
  • the residual amount of the solvent in the formed liquid crystal alignment film can be minimized.
  • the film forming step may be a step of heating the liquid crystal aligning agent on the substrate under reduced pressure. By doing so, the heating temperature can be further lowered in the heating for film formation.
  • a liquid crystal display device comprising a liquid crystal alignment film manufactured by the method for manufacturing a liquid crystal alignment film described above.
  • the manufacturing method of the liquid crystal aligning film of this invention includes the process of forming the coating film used as a liquid crystal aligning film on a board
  • Step (1) is a step of preparing a liquid crystal aligning agent for forming a liquid crystal alignment film on the substrate.
  • a liquid crystal aligning agent in a solvent, at least one polymer selected from the group consisting of polyamic acid and polyimide (hereinafter also referred to as a specific polymer) and other additives optionally blended as necessary.
  • a composition dissolved in is used.
  • the polyamic acid contained in the liquid crystal aligning agent in this invention can be obtained by making tetracarboxylic dianhydride and diamine react.
  • tetracarboxylic dianhydride examples include aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, aromatic tetracarboxylic dianhydrides and the like. Can be mentioned.
  • examples of the aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride.
  • examples of the alicyclic tetracarboxylic dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride, 1,3, 3a, 4,5,9b-Hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 1,3,3a, 4 5,9b-Hexahydro-8-methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 3-oxabicyclo [3.2 .1] Octane-2,4-dione-6-spiro
  • aromatic tetracarboxylic dianhydride examples include pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, and other aromatic tetracarboxylic dianhydrides described in JP 2010-97188 A Of these, those other than the above can be used.
  • PMDA pyromellitic dianhydride
  • 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride
  • 1,4,5,8-naphthalene tetracarboxylic dianhydride examples of the aromatic tetracarboxylic dianhydride.
  • said aliphatic, alicyclic, and aromatic tetracarboxylic dianhydride can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the diamine for synthesizing the polyamic acid in the present invention include aliphatic diamines, alicyclic diamines, aromatic diamines, diaminoorganosiloxanes, and the like. Specific examples thereof include aliphatic diamines such as 1,1-metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine and the like; Examples of alicyclic diamines include 1,4-diaminocyclohexane, 4,4′-methylenebis (cyclohexylamine), 1,3-bis (aminomethyl) cyclohexane, and the like;
  • aromatic diamines examples include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 4-aminophenyl-4′-aminobenzoate, 3,3′-dimethyl-4-aminophenyl-4′-aminobenzoate, 3,3 ′, 5,5′-tetramethyl-4-aminophenyl-4′-aminobenzoate, 3-methyl-4-aminophenyl-4′-aminobenzoate, 4,4′-diaminodiphenylmethane, 4,4 '-Diaminodiphenyl sulfide, 1,5-diaminonaphthalene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl, 2, 7-diaminofluorene, 4,4'-diaminodiphenyl ether, 2,
  • diaminoorganosiloxane examples include 1,3-bis (3-aminopropyl) -tetramethyldisiloxane, and other diamines described in JP 2010-97188 A except for the above. Can be used.
  • Examples of the divalent group represented by “—X I — (R I —X II ) n —” in the above formula (A-1) include a methylene group, an alkylene group having 2 or 3 carbon atoms, * —O— , * —COO— or * —O—CH 2 CH 2 —O— (wherein a bond marked with “*” is bonded to a diaminophenyl group).
  • group “—C c H 2c + 1 ” include, for example, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, and n-octyl group.
  • N-nonyl group N-nonyl group, n-decyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group And n-eicosyl group.
  • the two amino groups in the diaminophenyl group are preferably in the 2,4-position or 3,5-position with respect to the other groups.
  • Specific examples of the compound represented by the formula (A-1) include compounds represented by the following formulas (A-1-1) to (A-1-3).
  • the ratio of the tetracarboxylic dianhydride and the diamine used for the polyamic acid synthesis reaction is such that the acid anhydride group of the tetracarboxylic dianhydride is 0.2 to 2 with respect to 1 equivalent of the amino group of the diamine. A ratio of equivalents is preferable, and a ratio of 0.3 to 1.2 equivalents is more preferable.
  • the synthesis reaction of polyamic acid is preferably performed in an organic solvent.
  • the reaction temperature at this time is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 to 100 ° C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
  • organic solvent used for the synthesis of the polyamic acid examples include a solvent (first solvent) in which the specific polymer is soluble.
  • a solvent first solvent
  • polyamic acid such as an aprotic polar solvent or a phenolic solvent
  • Good solvents can be mentioned.
  • Specific examples of these first solvents include, for example, N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, ⁇ - Butyrolactone, tetramethylurea, hexamethylphosphortriamide and the like
  • the phenol solvent include m-cresol, xylenol, and halogenated phenol.
  • an aprotic polar solvent is preferable, and NMP or ⁇ -butyrolactone is more preferable.
  • these can be used individually or in mixture of 2 or more types.
  • a solvent (second solvent) that has low solubility in the specific polymer or does not dissolve the specific polymer is used in combination with the first solvent as long as the specific polymer does not precipitate.
  • the second solvent include poor solvents and non-solvents of polyamic acid, and specific examples include alcohols, ketones, esters, ethers, halogenated hydrocarbons, and hydrocarbons.
  • examples of the alcohol include methyl alcohol, ethyl alcohol, isopropyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 1,4-butanediol, triethylene glycol, and ethylene glycol monomethyl ether;
  • examples of the ketone include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone;
  • ester examples include ethyl lactate, butyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, diethyl oxalate, and diethyl malonate;
  • ether examples include diethyl ether, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol-n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl ether acetate.
  • the halogenated hydrocarbon include dichloromethane, 1,2-dichloroethane, 1,4-dichlorobutane, trichloroethane, chlorobenzene, o-dichlorobenzene and the like;
  • Examples of the hydrocarbon include hexane, heptane, octane, benzene, toluene, xylene, isoamylpropionate, isoamylisobutyrate, and diisopentyl ether.
  • the content ratio of the second solvent in the organic solvent is preferably 50% by weight or less, more preferably 40% by weight or less, based on the total amount of the first solvent and the second solvent. Preferably it is 30 weight% or less.
  • the amount (a) of the organic solvent used is such that the total amount (b) of tetracarboxylic dianhydride and diamine is 0.1 to 50% by weight based on the total amount (a + b) of the reaction solution. It is preferable that
  • reaction solution obtained by dissolving polyamic acid is obtained.
  • This reaction solution may be used for the preparation of the liquid crystal aligning agent as it is, or may be used for the preparation of the liquid crystal aligning agent after isolating the polyamic acid contained in the reaction solution. Or you may use for preparation of a liquid crystal aligning agent, after refine
  • the polyimide in the present invention can be obtained by dehydrating and ring-closing and imidizing the synthesized polyamic acid.
  • the reaction solution obtained by dissolving the polyamic acid may be used for the dehydration ring-closing reaction as it is, or the polyamic acid contained in the reaction solution may be isolated and then used for the dehydration ring-closing reaction.
  • the isolated polyamic acid may be purified and then subjected to a dehydration ring closure reaction.
  • the polyimide in the present invention may be a completely imidized product obtained by dehydrating and cyclizing all of the amic acid structure possessed by the polyamic acid that is a precursor thereof, and by dehydrating and cyclizing only a part of the amic acid structure, A partially imidized product in which a structure and an imide ring structure coexist may be used.
  • the imidation ratio of the polyimide in the present invention is preferably 30% or more, more preferably 50 to 99%, still more preferably 65 to 99%. This imidation ratio represents the ratio of the number of imide ring structures to the total of the number of amic acid structures of polyimide and the number of imide ring structures, expressed as a percentage.
  • a part of the imide ring may be an isoimide ring.
  • the polyamic acid is preferably dehydrated and closed by heating the polyamic acid, or by dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydrating ring-closing catalyst to the solution, and heating the solution as necessary. . Of these, the latter method is preferred.
  • an acid anhydride such as acetic anhydride, propionic anhydride, or trifluoroacetic anhydride can be used as the dehydrating agent.
  • the amount of the dehydrating agent used is preferably 0.01 to 20 mol with respect to 1 mol of the amic acid structure of the polyamic acid.
  • the dehydration ring closure catalyst for example, tertiary amines such as pyridine, collidine, lutidine, and triethylamine can be used.
  • the amount of the dehydration ring closure catalyst used is preferably 0.01 to 10 moles per mole of the dehydrating agent used.
  • Examples of the organic solvent used in the dehydration ring-closing reaction include the organic solvents exemplified as those used for the synthesis of polyamic acid.
  • the reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C, more preferably 10 to 150 ° C.
  • the reaction time is preferably 1.0 to 120 hours, more preferably 2.0 to 30 hours.
  • reaction solution containing polyimide is obtained.
  • This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, or may be used for the preparation of the liquid crystal aligning agent after removing the dehydrating agent and the dehydrating ring-closing catalyst from the reaction solution. May be used for the preparation of a liquid crystal aligning agent, or may be used for the preparation of a liquid crystal aligning agent after purifying the isolated polyimide. These purification operations can be performed according to known methods.
  • the specific polymer obtained as described above preferably has a solution viscosity of 20 to 800 mPa ⁇ s, and a solution viscosity of 30 to 500 mPa ⁇ s, when this is a 10% by weight solution. It is more preferable that it has.
  • the solution viscosity (mPa ⁇ s) of the specific polymer is a polymer solution having a concentration of 10% by weight prepared using a good solvent for the specific polymer (for example, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.). Is a value measured at 25 ° C. using an E-type viscometer.
  • the liquid crystal aligning agent of this invention contains the said specific polymer, you may contain the other component as needed.
  • Such other components include, for example, a compound having at least one epoxy group in the molecule (hereinafter, referred to as “improvement of mechanical strength in the liquid crystal alignment film” or “adhesion between the liquid crystal alignment film and the substrate”). "Epoxy compound”).
  • epoxy compound examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6- Hexanediol diglycidyl ether, glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, N, N, N ′, N′-tetraglycidyl-m-xylenediamine, 1, 3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N′-tetraglycidyl-4,4′-diaminodi Enirumetan, N, N-diglycid
  • the blending ratio is preferably 40 parts by weight or less, more preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the total of the polymers contained in the liquid crystal aligning agent. preferable.
  • additives include, for example, polymers other than polyamic acid and polyimide, functional silane compounds, imidization accelerators, and the like.
  • a solvent used for the liquid crystal aligning agent in this invention the solvent which can dissolve said specific polymer can be mentioned, Specifically, what was illustrated as said 1st solvent can be mentioned.
  • an aprotic polar solvent is preferable, and NMP or ⁇ -butyrolactone is more preferable.
  • they can be used individually or in mixture of 2 or more types.
  • the solvent a solvent that has low solubility in the specific polymer or does not dissolve the specific polymer, specifically, those exemplified as the second solvent, the first solvent in the range where the specific polymer does not precipitate. It can be used in combination with a solvent.
  • the content ratio of the second solvent in the solvent is preferably 50% by weight or less, more preferably 40% by weight or less, and still more preferably 30% by weight or less with respect to the whole solvent.
  • Step (2) Application step
  • This step is a step of applying the liquid crystal aligning agent on the substrate.
  • the substrate to be used include glass such as float glass and soda glass; and a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, and poly (alicyclic olefin).
  • a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, and poly (alicyclic olefin).
  • two substrates provided with a patterned transparent conductive film are used.
  • a NESA film (registered trademark of US PPG) made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 -SnO 2 ), etc. Can be used.
  • a substrate provided with a transparent conductive film patterned in a comb shape and a counter substrate provided with no conductive film are used.
  • the application method for applying the liquid crystal aligning agent on the substrate is not particularly limited, and for example, an offset printing method, a spin coating method, a roll coater method, and an ink jet printing method can be applied.
  • the solid content concentration of the liquid crystal aligning agent used when applying the liquid crystal aligning agent on the substrate is viscous and volatile. However, it is preferably in the range of 1 to 10% by weight.
  • the solid content concentration is less than 1% by weight, the film thickness of the coating film is too small to obtain a good liquid crystal alignment film.
  • the solid content concentration exceeds 10% by weight, it is difficult to obtain a good liquid crystal alignment film due to excessive film thickness, and the viscosity of the liquid crystal aligning agent may increase, resulting in poor coating characteristics. There is.
  • the particularly preferable solid content concentration range varies depending on the method used when applying the liquid crystal aligning agent to the substrate.
  • the solid content concentration is particularly preferably in the range of 1.5 to 4.5% by weight.
  • the solid content concentration is in the range of 3 to 9% by weight, and thereby the solution viscosity is in the range of 12 to 50 mPa ⁇ s.
  • the solid content concentration is in the range of 1 to 5% by weight, and thereby the solution viscosity is in the range of 3 to 15 mPa ⁇ s.
  • Step (3) provisional coating film forming step After the coating step, it is preferable to perform a treatment for reducing the amount of the solvent in the liquid crystal aligning agent on the surface of the liquid crystal aligning agent on the substrate for the purpose of preventing dripping. By this step, a part of the solvent in the liquid crystal aligning agent is removed, and a temporary coating film made of the liquid crystal aligning agent is formed on the substrate.
  • the form of solvent removal is not particularly limited, and for example, natural drying, reduced pressure drying, heat drying or the like can be applied. Especially, the thing by the preheating (prebaking) shown below is preferable.
  • the heating temperature for preheating the liquid crystal aligning agent coating surface may be any temperature that can evaporate the solvent to such an extent that dripping can be prevented.
  • the specific polymer is dissolved in the preparation of the liquid crystal aligning agent.
  • the temperature may be lower than the boiling point of the solvent (first solvent) used in the above.
  • it is preferable that the heating temperature at this time is low temperature rather than the heating (process (5) mentioned later) for forming the coating film used as an orientation film.
  • the pre-baking temperature is preferably 30 to 150 ° C., more preferably 40 to 120 ° C., and further preferably 40 to 100 ° C.
  • the prebake time is preferably 0.25 to 20 minutes, more preferably 0.5 to 10 minutes.
  • Step (4): Contacting step In this step, a liquid crystal aligning agent applied on the substrate, preferably a temporary coating film made of the liquid crystal aligning agent formed by the preheating step is applied to a liquid compatible with the first solvent (hereinafter referred to as a specific liquid). It is also a step of contacting with. By this step, the solvent contained in the liquid crystal aligning agent on the substrate, particularly the first solvent can be extracted. In addition, when the contact with the specific liquid is performed on the temporary coating after the preheating, the solvent remaining in the temporary coating can be more suitably extracted, and the specific liquid and the liquid crystal alignment Mixing with the agent is further suppressed, and it becomes easy to ensure a sufficient film thickness in the coating film.
  • a specific liquid a liquid compatible with the first solvent
  • the specific liquid in the present invention is compatible with the first solvent used for the purpose of solubilizing the specific polymer in the preparation of the liquid crystal aligning agent among those exemplified above as the second solvent.
  • a solvent having a boiling point lower than that of the first solvent can be used.
  • Specific examples of such a liquid include a single solvent such as water, an alcohol having 1 to 5 carbon atoms, a ketone having 3 to 5 carbon atoms, and acetonitrile, or a mixed solvent of two or more kinds.
  • examples of the alcohol having 1 to 5 carbon atoms include methanol, ethanol, isopropanol, isobutanol, and isopentyl alcohol.
  • Examples of the ketone having 3 to 5 carbon atoms include acetone, methyl ethyl ketone, diethyl ketone, And methyl isopropyl ketone.
  • water, methanol, ethanol, isopropanol, acetone or methyl ethyl ketone is preferably a single solvent or a mixed solvent of two or more of them, and is a single solvent with water or at least one of methanol, ethanol and isopropanol and water. It is more preferable that it is a mixed solvent.
  • the concentration of alcohol with respect to the entire specific liquid is preferably 5 to 55% by weight, and more preferably 10 to 50% by weight.
  • the content is 55% by weight or less, the flammability of the mixed solution can be suitably reduced. Further, if it is 10% by weight or more, the residual amount of the solvent in the liquid crystal alignment film can be further reduced, and a liquid crystal alignment film having good voltage holding characteristics even by low-temperature heating, which is the object of this patent, is obtained. It is significant to realize such things.
  • a method for bringing the liquid crystal aligning agent and the specific liquid into contact with each other on the substrate is not particularly limited, and for example, a shower method, a spray method, a dip (immersion) method, a paddle (liquid accumulation) method, or the like can be applied.
  • a part of the surface of the liquid crystal aligning agent may be brought into contact with the specific liquid, but the entire surface of the liquid crystal aligning agent is preferably brought into contact with the specific liquid.
  • the specific liquid is stirred. Alternatively, shaking is also effective.
  • the temperature at the time of contact with the specific liquid is preferably 10 to 50 ° C., more preferably 20 to 30 ° C.
  • the contact time is preferably 5 seconds to 30 minutes, more preferably 5 seconds to 15 minutes.
  • the usage-amount of the specific liquid in the case of contact with a liquid crystal aligning agent is suitably selected in consideration of the contact method etc. with a specific liquid.
  • Step (5): Film formation step This step is a step of heating the application surface of the liquid crystal aligning agent on the substrate. By the heating (post-bake) in this step, the solvent remaining in the liquid crystal aligning agent applied on the substrate is almost removed, and a coating film that becomes a liquid crystal aligning film is formed on the substrate. Moreover, this process is also heat processing performed in order to thermally imidize the amic acid unit contained in a liquid crystal aligning agent as needed.
  • the post-bake temperature is preferably 80 to 190 ° C, more preferably 120 to 180 ° C, and further preferably 140 to 180 ° C.
  • the post-bake time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes.
  • the first solvent generally has a high boiling point, but when heated in this step, the amount of the first solvent contained in the liquid crystal aligning agent on the substrate is reduced in advance by the contact step. In the case of carrying out the process, the residual solvent amount in the coating film can be sufficiently reduced.
  • the film thickness of the coating film thus formed is preferably 30 nm to 150 nm, more preferably 30 nm to 120 nm.
  • the above heat treatment may be performed under atmospheric pressure (normal pressure) or under reduced pressure. Or after performing the pressure reduction process after the said contact process, you may implement said heat processing in the state returned to atmospheric pressure.
  • the pressure during the pressure reduction process it is preferable that the pressure during the pressure reduction process be equal to or lower than the saturated vapor pressure in the solvent having the highest saturated vapor pressure among the solvents contained in the liquid crystal aligning agent.
  • the pressure reducing operation may be performed in a plurality of stages in consideration of the difference between the saturated vapor pressures.
  • the method for producing a liquid crystal alignment film of the present invention may include, for example, the following step (6) as necessary in addition to the above steps (1) to (5).
  • Step (6) rubbing treatment
  • the liquid crystal display element is wound with a cloth made of fibers such as nylon, rayon, and cotton, for example.
  • a rubbing process that rubs in a certain direction with a roll is applied.
  • the orientation ability of a liquid crystal molecule is provided to a coating film, and it becomes a liquid crystal aligning film.
  • a treatment for changing the pretilt angle of a part of the liquid crystal alignment film by irradiating a part of the liquid crystal alignment film with ultraviolet rays, or a resist film on a part of the liquid crystal alignment film surface After forming the film, the resist film may be removed after the rubbing treatment in a direction different from the previous rubbing treatment.
  • the liquid crystal display element of this invention comprises the liquid crystal aligning film manufactured by the said manufacturing method, for example, can be manufactured by the following process (7).
  • Step (7): Construction of liquid crystal display element In constructing a liquid crystal display element, first, with respect to a pair of substrates on which a liquid crystal alignment film is formed by the above manufacturing method, a gap (cell) is set so that the rubbing directions of the liquid crystal alignment films of the two substrates are orthogonal or antiparallel. It is arranged oppositely through a gap).
  • a liquid crystal display element can be obtained by bonding a polarizing plate on the outer surface of a liquid crystal cell so that the polarization direction thereof matches or is orthogonal to the rubbing direction of the liquid crystal alignment film formed on each substrate.
  • sealant for example, an epoxy resin containing a curing agent and aluminum oxide spheres as a spacer can be used.
  • liquid crystal examples include nematic liquid crystal and smectic liquid crystal.
  • nematic liquid crystal is preferable.
  • Cyclohexane liquid crystals, pyrimidine liquid crystals, dioxane liquid crystals, bicyclooctane liquid crystals, cubane liquid crystals, and the like can be used.
  • cholesteric liquid crystals such as cholesteryl chloride, cholesteryl nonate, cholesteryl carbonate, etc .; chiral agents such as those sold under the trade names “C-15” and “CB-15” (manufactured by Merck)
  • a ferroelectric liquid crystal such as p-decyloxybenzylidene-p-amino-2-methylbutylcinnamate may be added and used.
  • a polarizing film or an H film itself in which a polarizing film called an “H film” in which iodine is absorbed while stretching and aligning polyvinyl alcohol is sandwiched between cellulose acetate protective films As a polarizing plate to be bonded to the outer surface of the liquid crystal cell, a polarizing film or an H film itself in which a polarizing film called an “H film” in which iodine is absorbed while stretching and aligning polyvinyl alcohol is sandwiched between cellulose acetate protective films
  • the polarizing plate which consists of can be mentioned.
  • the liquid crystal display element of the present invention can be effectively applied to various devices such as watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, various monitors. It can be used for a display device such as a liquid crystal television.
  • the solution viscosity of the polymer in each of the following synthesis examples is a value measured at 25 ° C. using an E-type rotational viscometer.
  • the imidation ratio of polyimide was measured as follows. [Imidation rate of polyimide] The polyimide solution was poured into pure water, and the resulting precipitate was sufficiently dried at room temperature under reduced pressure, then dissolved in deuterated dimethyl sulfoxide, and 1 H-NMR was measured at room temperature using tetramethylsilane as a reference substance. From the obtained 1 H-NMR spectrum, the imidation ratio was determined by the formula shown by the following formula (1).
  • Imidation ratio (%) (1 ⁇ A 1 / A 2 ⁇ ⁇ ) ⁇ 100 (1)
  • a 1 is a peak area derived from protons of NH groups appearing near a chemical shift of 10 ppm
  • a 2 is a peak area derived from other protons
  • is a precursor of a polymer (polyamic acid). The number ratio of other protons to one proton of NH group in)
  • the solvent in the system was replaced with a new ⁇ -butyrolactone (the pyridine and acetic anhydride used for the imidation reaction were removed from the system in this operation), and the polyimide with an imidation ratio of about 80% A solution (A-2) containing about 15 wt% was obtained.
  • a solution (A-2) containing about 15 wt% was obtained.
  • a small amount of the obtained polyimide solution was taken, and ⁇ -butyrolactone was added to measure the solution viscosity as a solution having a polyimide concentration of 10% by weight.
  • the solution viscosity was 87 mPa ⁇ s.
  • a glass substrate with a transparent electrode made of ITO is subjected to ultrasonic cleaning in order for 30 minutes each in an alkaline aqueous solution for glass cleaning and ultrapure water, and then washed with running water for 30 minutes with ultrapure water. After ultrasonic cleaning for 30 minutes in isopropanol, drying was performed in a 100 ° C. oven for 30 minutes. The substrate was further dehydrated by heating on a 200 ° C. hot plate for 1 minute, and then UV ozone cleaning was performed with a UV ozone cleaner (SEN LIGHT CORP., Model “PM9011 N-1”).
  • each of the liquid crystal alignment agents (1) and (2) is 200 to 280 mg using an ink jet printing apparatus (manufactured by Shibaura Mechatronics). / Head ⁇ 10 seconds, 2,500 times / nozzle ⁇ second, 2 reciprocating coatings (4 times coating).
  • a substrate in which a liquid crystal aligning agent was applied in the form of a regular square (10 cm ⁇ 10 cm) on a glass substrate was obtained.
  • pre-baking Each of the obtained glass substrates was heated on a hot plate at 100 ° C. for 10 minutes to remove a part of the solvent. As a result, pre-fired alignment films (1) and (2) having an average film thickness of 100 nm were obtained.
  • the prepared pre-fired alignment films (1) and (2) were each immersed in 500 mL of ultrapure water or 500 g of a 50 wt% / 50 wt% mixed solution of ultrapure water and ethanol at 25 ° C. for 10 minutes. Thereafter, the droplets on the alignment film surface were removed with an air knife or the like. As a result, water-washed alignment films (M-1) and (M-2) and water / ethanol mixed solution cleaning-treated alignment films (M-3) and (M-4) were obtained.
  • Each of the cleaning treatment alignment films (M-1) to (M-4) is baked at 150 ° C. or 180 ° C. under normal pressure for 20 minutes under a nitrogen stream to obtain a liquid crystal alignment film on a glass substrate. It was.
  • An evaluation cell was prepared by the same method as that for the cleaning-treated alignment films (M-1) to (M-4) except that the cleaning treatment was not performed. 17-No. 24 (comparative example). For these evaluation cells, the evaluation cell no. 1-No. The voltage holding ratio was measured by the same method as in No. 16, and the voltage holding characteristics were evaluated. The results are shown in Table 1 below.
  • evaluation cell numbers using the cleaning alignment films (M-1) to (M-4) are shown.
  • 1-No. No. 16 Example
  • evaluation cell No. provided with the liquid crystal aligning film produced without performing the washing
  • 17-No. No. 24 Comparative Example

Abstract

Provided are: a process for producing a liquid crystal alignment film, in which a heating procedure in the formation of the liquid crystal alignment film can be carried out at a relatively low temperature; and a liquid crystal display element. The present invention provides a process for producing a liquid crystal alignment film using a liquid crystal aligning agent that comprises at least one polymer selected from the group consisting of a polyamic acid and a polyimide and a solvent capable of solubilizing the polymer, wherein the process comprises: an application step of applying the liquid crystal aligning agent onto a substrate; a contact step of bringing the liquid crystal aligning agent that has been applied on the substrate into contact with a liquid which is compatible with the solvent and has a lower boiling point than that of the solvent and in which the polymer is poorly soluble or insoluble; and a film formation step of, subsequent to the contact step, heating the liquid crystal aligning agent on the substrate to form a coating film on the substrate.

Description

液晶配向膜の製造方法及び液晶表示素子Method for producing liquid crystal alignment film and liquid crystal display element
 本発明は、液晶配向膜の製造方法及び液晶表示素子に関し、詳しくは、基板上に塗布された液晶配向剤中の溶剤を加熱によって除去することにより該基板上に液晶配向膜を形成するのに好適な液晶配向膜の製造方法、及び該製造方法により製造された液晶配向膜を具備する液晶表示素子に関する。 The present invention relates to a method for producing a liquid crystal alignment film and a liquid crystal display element, and more specifically, to form a liquid crystal alignment film on a substrate by removing the solvent in the liquid crystal alignment agent applied on the substrate by heating. The present invention relates to a preferred method for producing a liquid crystal alignment film, and a liquid crystal display device comprising a liquid crystal alignment film produced by the production method.
 従来、液晶表示素子としては、TN(Twisted Nematic)型やIPS(In-Plane Switching)型といった水平配向型液晶表示素子や、VA(Vertical Alignment)型といった垂直配向型液晶表示素子が知られている。これらの液晶表示素子では、基板上に形成された液晶配向膜によって液晶分子の配向制御が行われる。一般に、液晶配向膜は、基板表面に対し、ポリイミドやポリアミック酸を、例えばN-メチル-2-ピロリドン(NMP)やγ-ブチロラクトンなどの溶剤に溶解した液晶配向剤を塗布し、その塗布面を加熱することによって得ることができる。(例えば、特許文献1や特許文献2参照)。 Conventionally, as a liquid crystal display element, a horizontal alignment type liquid crystal display element such as a TN (Twisted Nematic) type or an IPS (In-Plane Switching) type and a vertical alignment type liquid crystal display element such as a VA (Vertical Alignment) type are known. . In these liquid crystal display elements, alignment control of liquid crystal molecules is performed by a liquid crystal alignment film formed on a substrate. In general, a liquid crystal alignment film is formed by applying a liquid crystal alignment agent in which polyimide or polyamic acid is dissolved in a solvent such as N-methyl-2-pyrrolidone (NMP) or γ-butyrolactone to the surface of the substrate. It can be obtained by heating. (For example, refer to Patent Document 1 and Patent Document 2).
特開平9-241646号公報Japanese Patent Laid-Open No. 9-241646 特開2010-156934号公報JP 2010-156934 A
 ところで、一般にポリイミドやポリアミック酸を可溶な溶剤は、NMPやγ-ブチロラクトン等といった高沸点溶剤であり、これらの溶剤を含む液晶配向剤を用いて基板上に塗膜を形成する際に、その塗布面を比較的高温(例えば200℃)で加熱する必要がある。そのため、例えば、カラー液晶表示素子では、液晶配向膜を形成する際の熱によって、カラーフィルタに含まれる染料が変色するなどの不都合が生じることが考えられる。また、液晶配向膜の形成に際し高温の熱処理が必要であることにより、例えばプラスチック基板への適用が制限されることも考えられる。一方、染料の変色の抑制等を図るべく加熱を低温で行った場合には、液晶配向膜中に溶剤が残存してしまい、その残存溶剤の影響により、形成された液晶配向膜において電圧保持率が低下する等の不都合が生じるおそれがある。 By the way, generally a solvent that can dissolve polyimide or polyamic acid is a high boiling point solvent such as NMP or γ-butyrolactone, and when a coating film is formed on a substrate using a liquid crystal aligning agent containing these solvents, It is necessary to heat the coated surface at a relatively high temperature (for example, 200 ° C.). Therefore, for example, in a color liquid crystal display element, it may be considered that inconveniences such as discoloration of a dye contained in the color filter occur due to heat at the time of forming the liquid crystal alignment film. In addition, since high-temperature heat treatment is required when forming the liquid crystal alignment film, it may be considered that application to, for example, a plastic substrate is limited. On the other hand, when heating is performed at a low temperature in order to suppress discoloration of the dye, the solvent remains in the liquid crystal alignment film, and the voltage holding ratio in the formed liquid crystal alignment film is affected by the residual solvent. There is a risk that inconveniences such as lowering may occur.
 さらに、低温による塗膜形成を実現できれば、製造プロセスにおける総熱量を低減することができ、その結果、CO排出量の削減やコスト低減を図ることができると考えられる。このような観点からも、低温による塗膜形成を実現することが望まれている。 Furthermore, if a coating film can be formed at a low temperature, it is possible to reduce the total amount of heat in the manufacturing process, and as a result, it is possible to reduce CO 2 emissions and reduce costs. Also from such a viewpoint, it is desired to realize coating film formation at a low temperature.
 本発明は上記課題に鑑みなされたものであり、液晶配向膜形成に際しての加熱を比較的低温で実施できるとともに、低温加熱によっても良好な電圧保持特性を備える液晶配向膜を得ることができる液晶配向膜の製造方法、及び該製造方法により製造された液晶配向膜を具備する液晶表示素子を提供することを主たる目的とする。 The present invention has been made in view of the above-described problems, and can perform heating at the time of forming a liquid crystal alignment film at a relatively low temperature and can obtain a liquid crystal alignment film having good voltage holding characteristics even by low-temperature heating. The main object is to provide a method for producing a film and a liquid crystal display device comprising a liquid crystal alignment film produced by the production method.
 本発明は、上記目的を達成するべく以下の手段を採用した。 The present invention employs the following means to achieve the above object.
 すなわち、本発明の液晶配向膜の製造方法は、ポリアミック酸及びポリイミドからなる群より選ばれる少なくとも一種の重合体と、該重合体を可溶な溶媒とを含有する液晶配向剤を用いて液晶配向膜を製造する方法であって、基板上に前記液晶配向剤を塗布する塗布工程と、前記基板上に塗布された液晶配向剤を、前記溶媒と相溶しかつ前記溶媒よりも低沸点であるとともに前記重合体に対して貧溶又は非溶である液体と接触させる接触工程と、前記接触工程の後において、前記基板上における液晶配向剤を加熱して前記基板上に塗膜を形成する膜形成工程と、を含むことを特徴とする。 That is, the method for producing a liquid crystal alignment film of the present invention uses a liquid crystal alignment agent containing at least one polymer selected from the group consisting of a polyamic acid and a polyimide, and a solvent soluble in the polymer. A method for producing a film, wherein the liquid crystal aligning agent is applied on a substrate, and the liquid crystal aligning agent applied on the substrate is compatible with the solvent and has a lower boiling point than the solvent. And a contact step of contacting a liquid which is poorly soluble or insoluble with respect to the polymer, and a film that forms a coating film on the substrate by heating the liquid crystal aligning agent on the substrate after the contact step. And a forming step.
 本発明によれば、塗膜形成のための加熱の前に、ポリアミック酸やポリイミドを溶解可能な溶媒(第1の溶媒)と相溶する液体を、基板上に塗布した液晶配向剤と接触させる。これにより、その加熱前において、基板上の液晶配向剤に含有される第1の溶媒の量を極力少なくしておくことができる。また、上記接触工程で用いる液体は第1の溶媒よりも沸点が低いため、第1の溶媒よりも低温の加熱により蒸発させることができる。したがって、膜形成のための加熱を比較的低温で行った場合にも、形成される液晶配向膜中において溶剤の残存量をできるだけ少なくすることができる。その結果、良好な電圧保持特性を備える液晶配向膜を得ることができる。 According to the present invention, a liquid compatible with a solvent capable of dissolving polyamic acid or polyimide (first solvent) is brought into contact with a liquid crystal aligning agent applied on a substrate before heating for forming a coating film. . Thereby, before the heating, the quantity of the 1st solvent contained in the liquid crystal aligning agent on a board | substrate can be decreased as much as possible. Further, since the liquid used in the contact step has a boiling point lower than that of the first solvent, it can be evaporated by heating at a lower temperature than that of the first solvent. Therefore, even when heating for film formation is performed at a relatively low temperature, the remaining amount of the solvent in the formed liquid crystal alignment film can be reduced as much as possible. As a result, a liquid crystal alignment film having good voltage holding characteristics can be obtained.
 また、上記液体として、ポリアミック酸やポリイミドに対して貧溶又は非溶である液体を用いることにより、液晶配向剤と上記液体とのミキシングが抑制され、形成される塗膜の膜厚を良好にすることができる。このような液体としては、水、炭素数1~5のアルコール、炭素数3~5のケトン、及びアセトニトリルからなる群より選ばれる少なくとも1種を用いるのが好ましい。 Further, by using a liquid that is poorly soluble or insoluble in polyamic acid or polyimide as the liquid, mixing between the liquid crystal aligning agent and the liquid is suppressed, and the film thickness of the formed coating film is improved. can do. As such a liquid, it is preferable to use at least one selected from the group consisting of water, alcohols having 1 to 5 carbon atoms, ketones having 3 to 5 carbon atoms, and acetonitrile.
 本発明において、上記塗布工程の後であって上記接触工程の前において、基板上における液晶配向剤を、上記膜形成工程での加熱温度よりも低温で加熱する予備加熱工程を含むものとしてもよい。溶媒除去に際しては2段階の加熱により行うことがあり、その際、先の加熱を比較的低温で行うことにより、基板上における液晶配向剤の液垂れ等を防止し、後の加熱を比較的高温で行うことにより、塗膜の形成を行う場合がある。このような構成において、先の加熱と後の加熱との間に上記接触工程を設けることにより、後の加熱時における加熱温度を比較的低温にすることができる。また、上記液体の塗膜への影響をより小さくすることができる点においても好適である。 The present invention may include a preheating step of heating the liquid crystal aligning agent on the substrate at a temperature lower than the heating temperature in the film forming step after the coating step and before the contacting step. . When removing the solvent, it may be performed by two-stage heating. At this time, the previous heating is performed at a relatively low temperature to prevent the liquid crystal aligning agent from dripping on the substrate, and the subsequent heating is performed at a relatively high temperature. In some cases, a coating film may be formed. In such a configuration, by providing the contact step between the previous heating and the subsequent heating, the heating temperature during the subsequent heating can be made relatively low. Moreover, it is suitable also in the point which can make the influence on the coating film of the said liquid smaller.
 本発明において、上記膜形成工程を、基板上における液晶配向剤を大気圧下で加熱する工程としてもよい。本製造方法では、膜形成のための加熱前に上記接触工程が設けられているため、基板上における液晶配向剤の加熱を大気圧下で行った場合にも、加熱温度を比較的低温にしつつ、しかも形成された液晶配向膜中における溶剤の残存量を最小限にすることができる。 In the present invention, the film forming step may be a step of heating the liquid crystal aligning agent on the substrate under atmospheric pressure. In the present manufacturing method, since the contact step is provided before heating for film formation, the heating temperature is kept relatively low even when the liquid crystal aligning agent is heated on the substrate at atmospheric pressure. In addition, the residual amount of the solvent in the formed liquid crystal alignment film can be minimized.
 また、本発明において、上記膜形成工程を、基板上における液晶配向剤を減圧下で加熱する工程としてもよい。こうすることにより、膜形成のための加熱において加熱温度を更に低くすることができる。 In the present invention, the film forming step may be a step of heating the liquid crystal aligning agent on the substrate under reduced pressure. By doing so, the heating temperature can be further lowered in the heating for film formation.
 さらに、本発明によれば、上記に記載の液晶配向膜の製造方法により製造された液晶配向膜を具備する液晶表示素子が提供される。 Furthermore, according to the present invention, there is provided a liquid crystal display device comprising a liquid crystal alignment film manufactured by the method for manufacturing a liquid crystal alignment film described above.
 本発明の液晶配向膜の製造方法は、基板上に液晶配向剤を塗布し、次いでその塗膜面を加熱することにより、基板上において液晶配向膜となる塗膜を形成する工程を含むものであり、具体的には、以下(1)~(5)の工程を含んでいるのが好ましい。 The manufacturing method of the liquid crystal aligning film of this invention includes the process of forming the coating film used as a liquid crystal aligning film on a board | substrate by apply | coating a liquid crystal aligning agent on a board | substrate, and then heating the coating-film surface. Specifically, it is preferable that the following steps (1) to (5) are included.
[工程(1):準備工程]
 本工程は、基板上に液晶配向膜を形成するための液晶配向剤を準備する工程である。液晶配向剤としては、ポリアミック酸及びポリイミドからなる群より選ばれる少なくとも一種の重合体(以下、特定重合体ともいう)と、必要に応じて任意的に配合されるその他の添加剤とが溶剤中に溶解された組成物が使用される。
[Step (1): Preparation step]
This step is a step of preparing a liquid crystal aligning agent for forming a liquid crystal alignment film on the substrate. As the liquid crystal aligning agent, in a solvent, at least one polymer selected from the group consisting of polyamic acid and polyimide (hereinafter also referred to as a specific polymer) and other additives optionally blended as necessary. A composition dissolved in is used.
<ポリアミック酸>
 本発明における液晶配向剤に含まれるポリアミック酸は、テトラカルボン酸二無水物とジアミンとを反応させることにより得ることができる。
<Polyamic acid>
The polyamic acid contained in the liquid crystal aligning agent in this invention can be obtained by making tetracarboxylic dianhydride and diamine react.
(テトラカルボン酸二無水物)
 本発明におけるポリアミック酸を合成するためのテトラカルボン酸二無水物としては、例えば、脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物等を挙げることができる。
(Tetracarboxylic dianhydride)
Examples of tetracarboxylic dianhydrides for synthesizing polyamic acid in the present invention include aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, aromatic tetracarboxylic dianhydrides and the like. Can be mentioned.
 具体的には、脂肪族テトラカルボン酸二無水物としては、例えば1,2,3,4-ブタンテトラカルボン酸二無水物が挙げられる。また、脂環式テトラカルボン酸二無水物としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-8-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]フラン-1,3-ジオン、3-オキサビシクロ[3.2.1]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’-ジオン)、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、3,5,6-トリカルボキシ-2-カルボキシメチルノルボルナン-2:3,5:6-二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、4,9-ジオキサトリシクロ[5.3.1.02,6]ウンデカン-3,5,8,10-テトラオン、シクロヘキサンテトラカルボン酸二無水物を挙げることができる。その他、特開2010-97188号公報に記載の脂肪族テトラカルボン酸二無水物及び脂環式のテトラカルボン酸二無水物であって上記以外のものを用いることができる。 Specifically, examples of the aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride. Examples of the alicyclic tetracarboxylic dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride, 1,3, 3a, 4,5,9b-Hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 1,3,3a, 4 5,9b-Hexahydro-8-methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 3-oxabicyclo [3.2 .1] Octane-2,4-dione-6-spiro-3 ′-(tetrahydrofuran-2 ′, 5′-dione), 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl- 3-Cyclohexene-1,2-dica Boric anhydride, 3,5,6-tricarboxy-2-carboxymethylnorbornane-2: 3,5: 6-dianhydride, bicyclo [3,3,0] octane-2,4,6,8- And tetracarboxylic dianhydride, 4,9-dioxatricyclo [5.3.1.0 2,6 ] undecane-3,5,8,10-tetraone, cyclohexanetetracarboxylic dianhydride. it can. In addition, aliphatic tetracarboxylic dianhydrides and alicyclic tetracarboxylic dianhydrides described in JP 2010-97188 A, other than those described above, can be used.
 芳香族テトラカルボン酸二無水物として具体的には、例えば、ピロメリット酸二無水物(PMDA)や、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、その他、特開2010-97188号公報に記載の芳香族テトラカルボン酸二無水物のうち上記以外のものを用いることができる。 Specific examples of the aromatic tetracarboxylic dianhydride include pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, and other aromatic tetracarboxylic dianhydrides described in JP 2010-97188 A Of these, those other than the above can be used.
 なお、上記の脂肪族、脂環式及び芳香族のテトラカルボン酸二無水物は、1種単独で又は2種以上組み合わせて用いることができる。 In addition, said aliphatic, alicyclic, and aromatic tetracarboxylic dianhydride can be used individually by 1 type or in combination of 2 or more types.
(ジアミン)
 本発明におけるポリアミック酸を合成するためのジアミンとしては、例えば、脂肪族ジアミン、脂環式ジアミン、芳香族ジアミン、ジアミノオルガノシロキサンなどを挙げることができる。これらの具体例としては、脂肪族ジアミンとして、例えば1,1-メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミンなどを;
脂環式ジアミンとして、例えば1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、1,3-ビス(アミノメチル)シクロヘキサンなどを;
(Diamine)
Examples of the diamine for synthesizing the polyamic acid in the present invention include aliphatic diamines, alicyclic diamines, aromatic diamines, diaminoorganosiloxanes, and the like. Specific examples thereof include aliphatic diamines such as 1,1-metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine and the like;
Examples of alicyclic diamines include 1,4-diaminocyclohexane, 4,4′-methylenebis (cyclohexylamine), 1,3-bis (aminomethyl) cyclohexane, and the like;
 芳香族ジアミンとして、例えばo-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4-アミノフェニル-4’-アミノベンゾエート、3,3’-ジメチル-4-アミノフェニル-4’-アミノベンゾエート、3,3’,5,5’-テトラメチル-4-アミノフェニル-4’-アミノベンゾエート、3-メチル-4-アミノフェニル-4’-アミノベンゾエート、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、1,5-ジアミノナフタレン、2,2’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、2,7-ジアミノフルオレン、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-(p-フェニレンジイソプロピリデン)ビスアニリン、4,4’-(m-フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノアクリジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,5-ジアミノ安息香酸、ドデカノキシ-2,4-ジアミノベンゼン、テトラデカノキシ-2,4-ジアミノベンゼン、ペンタデカノキシ-2,4-ジアミノベンゼン、ヘキサデカノキシ-2,4-ジアミノベンゼン、オクタデカノキシ-2,4-ジアミノベンゼン、ドデカノキシ-2,5-ジアミノベンゼン、テトラデカノキシ-2,5-ジアミノベンゼン、ペンタデカノキシ-2,5-ジアミノベンゼン、ヘキサデカノキシ-2,5-ジアミノベンゼン、オクタデカノキシ-2,5-ジアミノベンゼン、コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、コレステニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル、3-(3,5-ジアミノベンゾイルオキシ)コレスタン、3,6-ビス(4-アミノベンゾイルオキシ)コレスタン、3,6-ビス(4-アミノフェノキシ)コレスタン、4-(4’-トリフルオロメトキシベンゾイロキシ)シクロヘキシル-3,5-ジアミノベンゾエート、4-(4’-トリフルオロメチルベンゾイロキシ)シクロヘキシル-3,5-ジアミノベンゾエート、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-ブチルシクロヘキサン、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-ヘプチルシクロヘキサン、1,1-ビス(4-((アミノフェノキシ)メチル)フェニル)-4-ヘプチルシクロヘキサン、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-(4-ヘプチルシクロヘキシル)シクロヘキサン、2,4-ジアミノ-N,N―ジアリルアニリン、4-アミノベンジルアミン、3-アミノベンジルアミン、1-(2,4-ジアミノフェニル)ピペラジン-4-カルボン酸、4-(モルホリン-4-イル)ベンゼン-1,3-ジアミン、1,3-ビス(N-(4-アミノフェニル)ピペリジニル)プロパン、α-アミノ-ω-アミノフェニルアルキレン、及び下記式(A-1)
Figure JPOXMLDOC01-appb-C000001
(式(A-1)中、X及びXIIは、それぞれ、単結合、-O-、-COO-又は-OCO-であり、Rは、メチレン基又は炭素数2もしくは3のアルキレン基であり、aは0又は1であり、bは0~2の整数であり、cは1~20の整数であり、nは0又は1である。ただし、a及びbが同時に0になることはない。)
で表される化合物などを;
Examples of aromatic diamines include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 4-aminophenyl-4′-aminobenzoate, 3,3′-dimethyl-4-aminophenyl-4′-aminobenzoate, 3,3 ′, 5,5′-tetramethyl-4-aminophenyl-4′-aminobenzoate, 3-methyl-4-aminophenyl-4′-aminobenzoate, 4,4′-diaminodiphenylmethane, 4,4 '-Diaminodiphenyl sulfide, 1,5-diaminonaphthalene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl, 2, 7-diaminofluorene, 4,4'-diaminodiphenyl ether, 2,2-bis [4- (4-aminophenoxy) fe Ru] propane, 9,9-bis (4-aminophenyl) fluorene, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoro Propane, 4,4 '-(p-phenylenediisopropylidene) bisaniline, 4,4'-(m-phenylenediisopropylidene) bisaniline, 1,4-bis (4-aminophenoxy) benzene, 4,4'- Bis (4-aminophenoxy) biphenyl, 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminoacridine, 3,6-diaminocarbazole, N-methyl-3, 6-diaminocarbazole, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diaminocarbazole N, N′-bis (4-aminophenyl) -benzidine, N, N′-bis (4-aminophenyl) -N, N′-dimethylbenzidine, 1,4-bis- (4-aminophenyl)- Piperazine, 3,5-diaminobenzoic acid, dodecanoxy-2,4-diaminobenzene, tetradecanoxy-2,4-diaminobenzene, pentadecanoxy-2,4-diaminobenzene, hexadecanoxy-2,4-diaminobenzene, octadecanoxy-2, 4-diaminobenzene, dodecanoxy-2,5-diaminobenzene, tetradecanoxy-2,5-diaminobenzene, pentadecanoxy-2,5-diaminobenzene, hexadecanoxy-2,5-diaminobenzene, octadecanoxy-2,5-diaminobenzene, Cholestanyloxy-3,5-diaminobenze Cholestenyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, cholestenyloxy-2,4-diaminobenzene, cholestanyl 3,5-diaminobenzoate, 3,5-diaminobenzoic acid Cholestenyl, Lanostanyl 3,5-diaminobenzoate, 3- (3,5-diaminobenzoyloxy) cholestane, 3,6-bis (4-aminobenzoyloxy) cholestane, 3,6-bis (4-aminophenoxy) cholestane 4- (4′-trifluoromethoxybenzoyloxy) cyclohexyl-3,5-diaminobenzoate, 4- (4′-trifluoromethylbenzoyloxy) cyclohexyl-3,5-diaminobenzoate, 1,1-bis (4-((Aminophenyl) methyl) phenyl) -4-butylcyclo Hexane, 1,1-bis (4-((aminophenyl) methyl) phenyl) -4-heptylcyclohexane, 1,1-bis (4-((aminophenoxy) methyl) phenyl) -4-heptylcyclohexane, 1-bis (4-((aminophenyl) methyl) phenyl) -4- (4-heptylcyclohexyl) cyclohexane, 2,4-diamino-N, N-diallylaniline, 4-aminobenzylamine, 3-aminobenzylamine 1- (2,4-diaminophenyl) piperazine-4-carboxylic acid, 4- (morpholin-4-yl) benzene-1,3-diamine, 1,3-bis (N- (4-aminophenyl) piperidinyl ) Propane, α-amino-ω-aminophenylalkylene, and the following formula (A-1)
Figure JPOXMLDOC01-appb-C000001
(In the formula (A-1), X I and X II are each a single bond, —O—, —COO— or —OCO—, and R I is a methylene group or an alkylene group having 2 or 3 carbon atoms. A is 0 or 1, b is an integer of 0 to 2, c is an integer of 1 to 20, and n is 0 or 1. provided that a and b are 0 at the same time. No.)
A compound represented by:
 ジアミノオルガノシロキサンとして、例えば1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサンなどを、それぞれ挙げることができるほか、特開2010-97188号公報に記載のジアミンのうち上記以外のものを用いることができる。 Examples of the diaminoorganosiloxane include 1,3-bis (3-aminopropyl) -tetramethyldisiloxane, and other diamines described in JP 2010-97188 A except for the above. Can be used.
 上記式(A-1)における「-X-(R-XII-」で表される2価の基としては、メチレン基、炭素数2もしくは3のアルキレン基、-O-、-COO-又は-O-CHCH-O-(ただし、「*」を付した結合手がジアミノフェニル基と結合する。)であることが好ましい。基「-C2c+1」の具体例としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコシル基などを挙げることができる。ジアミノフェニル基における2つのアミノ基は、他の基に対して2,4-位又は3,5-位にあることが好ましい。 Examples of the divalent group represented by “—X I — (R I —X II ) n —” in the above formula (A-1) include a methylene group, an alkylene group having 2 or 3 carbon atoms, * —O— , * —COO— or * —O—CH 2 CH 2 —O— (wherein a bond marked with “*” is bonded to a diaminophenyl group). Specific examples of the group “—C c H 2c + 1 ” include, for example, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, and n-octyl group. N-nonyl group, n-decyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group And n-eicosyl group. The two amino groups in the diaminophenyl group are preferably in the 2,4-position or 3,5-position with respect to the other groups.
 上記式(A-1)で表される化合物の具体例としては、例えば下記式(A-1-1)~(A-1-3)のそれぞれで表される化合物などを挙げることができる。
Figure JPOXMLDOC01-appb-C000002
Specific examples of the compound represented by the formula (A-1) include compounds represented by the following formulas (A-1-1) to (A-1-3).
Figure JPOXMLDOC01-appb-C000002
(ポリアミック酸の合成)
 ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミンとの使用割合は、ジアミンのアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2~2当量となる割合が好ましく、0.3~1.2当量となる割合が更に好ましい。また、ポリアミック酸の合成反応は、好ましくは有機溶媒中において行われる。このときの反応温度は-20℃~150℃が好ましく、0~100℃がより好ましい。また、反応時間は0.1~24時間が好ましく、0.5~12時間がより好ましい。
(Synthesis of polyamic acid)
The ratio of the tetracarboxylic dianhydride and the diamine used for the polyamic acid synthesis reaction is such that the acid anhydride group of the tetracarboxylic dianhydride is 0.2 to 2 with respect to 1 equivalent of the amino group of the diamine. A ratio of equivalents is preferable, and a ratio of 0.3 to 1.2 equivalents is more preferable. The synthesis reaction of polyamic acid is preferably performed in an organic solvent. The reaction temperature at this time is preferably −20 ° C. to 150 ° C., more preferably 0 to 100 ° C. The reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
(有機溶媒)
 ポリアミック酸の合成に使用する有機溶媒としては、上記の特定重合体を可溶な溶媒(第1の溶媒)を挙げることができ、例えば、非プロトン性極性溶媒、フェノール系溶媒等といったポリアミック酸の良溶媒を挙げることができる。これら第1の溶媒の具体例としては、上記非プロトン性極性溶媒として、例えばN-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミドなどを;上記フェノール系溶媒として、例えば、m-クレゾール、キシレノール、ハロゲン化フェノールなどを挙げることができる。これらの中でも、溶解性の観点から、好ましくは非プロトン性極性溶媒であり、より好ましくはNMP又はγ-ブチロラクトンである。なお、これらは単独で又は2種以上を混合して使用することができる。
(Organic solvent)
Examples of the organic solvent used for the synthesis of the polyamic acid include a solvent (first solvent) in which the specific polymer is soluble. For example, polyamic acid such as an aprotic polar solvent or a phenolic solvent can be used. Good solvents can be mentioned. Specific examples of these first solvents include, for example, N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, γ- Butyrolactone, tetramethylurea, hexamethylphosphortriamide and the like; Examples of the phenol solvent include m-cresol, xylenol, and halogenated phenol. Among these, from the viewpoint of solubility, an aprotic polar solvent is preferable, and NMP or γ-butyrolactone is more preferable. In addition, these can be used individually or in mixture of 2 or more types.
 上記有機溶媒としては、特定重合体に対する溶解性が低いか又は特定重合体を溶解しない溶媒(第2の溶媒)を、特定重合体が析出しない範囲で上記第1の溶媒と併せて使用することができる。第2の溶媒としては、ポリアミック酸の貧溶媒及び非溶媒を挙げることができ、具体的には、例えば、アルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素などを挙げることができる。より具体的には、上記アルコールとして、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリエチレングリコール、エチレングリコールモノメチルエーテルなどを;
上記ケトンとして、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどを;
As the organic solvent, a solvent (second solvent) that has low solubility in the specific polymer or does not dissolve the specific polymer is used in combination with the first solvent as long as the specific polymer does not precipitate. Can do. Examples of the second solvent include poor solvents and non-solvents of polyamic acid, and specific examples include alcohols, ketones, esters, ethers, halogenated hydrocarbons, and hydrocarbons. More specifically, examples of the alcohol include methyl alcohol, ethyl alcohol, isopropyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 1,4-butanediol, triethylene glycol, and ethylene glycol monomethyl ether;
Examples of the ketone include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone;
上記エステルとして、例えば乳酸エチル、乳酸ブチル、酢酸メチル、酢酸エチル、酢酸ブチル、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、シュウ酸ジエチル、マロン酸ジエチルなどを;
上記エーテルとして、例えばジエチルエーテル、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコール-n-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、テトラヒドロフランなどを;
上記ハロゲン化炭化水素として、例えばジクロロメタン、1,2-ジクロロエタン、1,4-ジクロロブタン、トリクロロエタン、クロルベンゼン、o-ジクロルベンゼンなどを;
上記炭化水素として、例えばヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテルなどを、それぞれ挙げることができる。
Examples of the ester include ethyl lactate, butyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, diethyl oxalate, and diethyl malonate;
Examples of the ether include diethyl ether, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol-n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl ether acetate. Diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, tetrahydrofuran and the like;
Examples of the halogenated hydrocarbon include dichloromethane, 1,2-dichloroethane, 1,4-dichlorobutane, trichloroethane, chlorobenzene, o-dichlorobenzene and the like;
Examples of the hydrocarbon include hexane, heptane, octane, benzene, toluene, xylene, isoamylpropionate, isoamylisobutyrate, and diisopentyl ether.
 上記有機溶媒中における第2の溶媒の含有割合は、第1の溶媒及び第2の溶媒の合計量に対して、好ましくは50重量%以下であり、より好ましくは40重量%以下であり、更に好ましくは30重量%以下である。また、有機溶媒の使用量(a)は、テトラカルボン酸二無水物及びジアミンの合計量(b)が、反応溶液の全量(a+b)に対して0.1~50重量%になるような量とすることが好ましい。 The content ratio of the second solvent in the organic solvent is preferably 50% by weight or less, more preferably 40% by weight or less, based on the total amount of the first solvent and the second solvent. Preferably it is 30 weight% or less. The amount (a) of the organic solvent used is such that the total amount (b) of tetracarboxylic dianhydride and diamine is 0.1 to 50% by weight based on the total amount (a + b) of the reaction solution. It is preferable that
 以上のようにして、ポリアミック酸を溶解してなる反応溶液が得られる。この反応溶液はそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸を単離した上で液晶配向剤の調製に供してもよい。あるいは、単離したポリアミック酸を精製した上で液晶配向剤の調製に供してもよい。ポリアミック酸の単離及び精製は公知の方法に従って行うことができる。 As described above, a reaction solution obtained by dissolving polyamic acid is obtained. This reaction solution may be used for the preparation of the liquid crystal aligning agent as it is, or may be used for the preparation of the liquid crystal aligning agent after isolating the polyamic acid contained in the reaction solution. Or you may use for preparation of a liquid crystal aligning agent, after refine | purifying the isolated polyamic acid. Isolation and purification of the polyamic acid can be performed according to known methods.
<ポリイミド>
 本発明におけるポリイミドは、上記合成したポリアミック酸を脱水閉環してイミド化することにより得ることができる。この場合、ポリアミック酸を溶解してなる上記反応溶液をそのまま脱水閉環反応に供してもよく、反応溶液中に含まれるポリアミック酸を単離したうえで脱水閉環反応に供してもよい。あるいは、単離したポリアミック酸を精製したうえで脱水閉環反応に供してもよい。
<Polyimide>
The polyimide in the present invention can be obtained by dehydrating and ring-closing and imidizing the synthesized polyamic acid. In this case, the reaction solution obtained by dissolving the polyamic acid may be used for the dehydration ring-closing reaction as it is, or the polyamic acid contained in the reaction solution may be isolated and then used for the dehydration ring-closing reaction. Alternatively, the isolated polyamic acid may be purified and then subjected to a dehydration ring closure reaction.
 本発明におけるポリイミドは、その前駆体であるポリアミック酸が有していたアミック酸構造のすべてを脱水閉環した完全イミド化物であってもよく、アミック酸構造の一部のみを脱水閉環し、アミック酸構造とイミド環構造が併存する部分イミド化物であってもよい。本発明におけるポリイミドは、そのイミド化率が30%以上であることが好ましく、50~99%であることがより好ましく、65~99%であることが更に好ましい。このイミド化率は、ポリイミドのアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。ここで、イミド環の一部がイソイミド環であってもよい。 The polyimide in the present invention may be a completely imidized product obtained by dehydrating and cyclizing all of the amic acid structure possessed by the polyamic acid that is a precursor thereof, and by dehydrating and cyclizing only a part of the amic acid structure, A partially imidized product in which a structure and an imide ring structure coexist may be used. The imidation ratio of the polyimide in the present invention is preferably 30% or more, more preferably 50 to 99%, still more preferably 65 to 99%. This imidation ratio represents the ratio of the number of imide ring structures to the total of the number of amic acid structures of polyimide and the number of imide ring structures, expressed as a percentage. Here, a part of the imide ring may be an isoimide ring.
 ポリアミック酸の脱水閉環は、好ましくはポリアミック酸を加熱する方法により、又はポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し必要に応じて加熱する方法により行われる。このうち、後者の方法によることが好ましい。 The polyamic acid is preferably dehydrated and closed by heating the polyamic acid, or by dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydrating ring-closing catalyst to the solution, and heating the solution as necessary. . Of these, the latter method is preferred.
 上記ポリアミック酸の溶液中に脱水剤及び脱水閉環触媒を添加する方法において、脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸などの酸無水物を用いることができる。脱水剤の使用量は、ポリアミック酸のアミック酸構造の1モルに対して0.01~20モルとすることが好ましい。脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミンなどの3級アミンを用いることができる。脱水閉環触媒の使用量は、使用する脱水剤1モルに対して0.01~10モルとすることが好ましい。脱水閉環反応に用いられる有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒を挙げることができる。脱水閉環反応の反応温度は好ましくは0~180℃であり、より好ましくは10~150℃である。反応時間は好ましくは1.0~120時間であり、より好ましくは2.0~30時間である。 In the method of adding a dehydrating agent and a dehydrating ring-closing catalyst to the polyamic acid solution, an acid anhydride such as acetic anhydride, propionic anhydride, or trifluoroacetic anhydride can be used as the dehydrating agent. The amount of the dehydrating agent used is preferably 0.01 to 20 mol with respect to 1 mol of the amic acid structure of the polyamic acid. As the dehydration ring closure catalyst, for example, tertiary amines such as pyridine, collidine, lutidine, and triethylamine can be used. The amount of the dehydration ring closure catalyst used is preferably 0.01 to 10 moles per mole of the dehydrating agent used. Examples of the organic solvent used in the dehydration ring-closing reaction include the organic solvents exemplified as those used for the synthesis of polyamic acid. The reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C, more preferably 10 to 150 ° C. The reaction time is preferably 1.0 to 120 hours, more preferably 2.0 to 30 hours.
 このようにしてポリイミドを含有する反応溶液が得られる。この反応溶液は、これをそのまま液晶配向剤の調製に供してもよく、反応溶液から脱水剤及び脱水閉環触媒を除いたうえで液晶配向剤の調製に供してもよく、ポリイミドを単離したうえで液晶配向剤の調製に供してもよく、又は単離したポリイミドを精製したうえで液晶配向剤の調製に供してもよい。これらの精製操作は公知の方法に従って行うことができる。 In this way, a reaction solution containing polyimide is obtained. This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, or may be used for the preparation of the liquid crystal aligning agent after removing the dehydrating agent and the dehydrating ring-closing catalyst from the reaction solution. May be used for the preparation of a liquid crystal aligning agent, or may be used for the preparation of a liquid crystal aligning agent after purifying the isolated polyimide. These purification operations can be performed according to known methods.
(重合体の溶液粘度)
 以上のようにして得られる特定重合体は、これを濃度10重量%の溶液としたときに、20~800mPa・sの溶液粘度を持つものであることが好ましく、30~500mPa・sの溶液粘度を持つものであることがより好ましい。なお、特定重合体の溶液粘度(mPa・s)は、当該特定重合体の良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドンなど)を用いて調製した濃度10重量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。
(Solution viscosity of polymer)
The specific polymer obtained as described above preferably has a solution viscosity of 20 to 800 mPa · s, and a solution viscosity of 30 to 500 mPa · s, when this is a 10% by weight solution. It is more preferable that it has. The solution viscosity (mPa · s) of the specific polymer is a polymer solution having a concentration of 10% by weight prepared using a good solvent for the specific polymer (for example, γ-butyrolactone, N-methyl-2-pyrrolidone, etc.). Is a value measured at 25 ° C. using an E-type viscometer.
<その他の添加剤>
 本発明の液晶配向剤は上記特定重合体を含有するが、必要に応じてその他の成分を含有していてもよい。かかるその他の成分としては、例えば、液晶配向膜における機械的強度の向上や液晶配向膜と基材との接着性の向上などを目的として、分子内に少なくとも一つのエポキシ基を有する化合物(以下、「エポキシ化合物」という。)を含有させることができる。
<Other additives>
Although the liquid crystal aligning agent of this invention contains the said specific polymer, you may contain the other component as needed. Such other components include, for example, a compound having at least one epoxy group in the molecule (hereinafter, referred to as “improvement of mechanical strength in the liquid crystal alignment film” or “adhesion between the liquid crystal alignment film and the substrate”). "Epoxy compound").
 上記エポキシ化合物としては、例えば、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン、N,N-ジグリシジル-ベンジルアミン、N,N-ジグリシジル-アミノメチルシクロヘキサン、N,N-ジグリシジル-シクロヘキシルアミンなどを好ましいものとして挙げることができる。 Examples of the epoxy compound include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6- Hexanediol diglycidyl ether, glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, N, N, N ′, N′-tetraglycidyl-m-xylenediamine, 1, 3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N′-tetraglycidyl-4,4′-diaminodi Enirumetan, N, N-diglycidyl - benzylamine, N, N-diglycidyl - aminomethyl cyclohexane, N, N-diglycidyl - cyclohexyl amine may be mentioned as preferred.
 これらエポキシ化合物を液晶配向剤に添加する場合、その配合比率は、液晶配向剤中に含まれる重合体の合計100重量部に対して40重量部以下が好ましく、0.1~30重量部がより好ましい。 When these epoxy compounds are added to the liquid crystal aligning agent, the blending ratio is preferably 40 parts by weight or less, more preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the total of the polymers contained in the liquid crystal aligning agent. preferable.
 なお、その他の添加剤としては、上記エポキシ化合物以外に、例えば、ポリアミック酸及びポリイミド以外の他の重合体、官能性シラン化合物、イミド化促進剤などを挙げることができる。 In addition to the above epoxy compounds, other additives include, for example, polymers other than polyamic acid and polyimide, functional silane compounds, imidization accelerators, and the like.
<溶剤>
 本発明における液晶配向剤に使用される溶剤としては、上記の特定重合体を可溶な溶媒を挙げることができ、具体的には、上記第1の溶媒として例示したものを挙げることができる。中でも、非プロトン性極性溶媒が好ましく、NMP又はγ-ブチロラクトンがより好ましい。なお、それらは単独で又は2種以上を混合して使用することができる。
<Solvent>
As a solvent used for the liquid crystal aligning agent in this invention, the solvent which can dissolve said specific polymer can be mentioned, Specifically, what was illustrated as said 1st solvent can be mentioned. Among these, an aprotic polar solvent is preferable, and NMP or γ-butyrolactone is more preferable. In addition, they can be used individually or in mixture of 2 or more types.
 上記溶剤としては、特定重合体に対する溶解性が低いか又は特定重合体を溶解しない溶媒、具体的には上記第2の溶媒として例示したものを、特定重合体が析出しない範囲で上記第1の溶媒と併せて使用することができる。この場合の溶剤中における第2の溶媒の含有割合は、溶剤全体に対して、好ましくは50重量%以下であり、より好ましくは40重量%以下であり、更に好ましくは30重量%以下である。 As the solvent, a solvent that has low solubility in the specific polymer or does not dissolve the specific polymer, specifically, those exemplified as the second solvent, the first solvent in the range where the specific polymer does not precipitate. It can be used in combination with a solvent. In this case, the content ratio of the second solvent in the solvent is preferably 50% by weight or less, more preferably 40% by weight or less, and still more preferably 30% by weight or less with respect to the whole solvent.
[工程(2):塗布工程]
 本工程は、上記の液晶配向剤を基板上に塗布する工程である。用いる基板としては、例えば、フロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)などのプラスチックからなる透明基板を挙げることができる。また、液晶表示素子における動作モードがTN型、STN型又はVA型の液晶表示素子を製造する場合には、パターニングされた透明導電膜が設けられている基板二枚を用いる。基板の一面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In-SnO)からなるITO膜などを用いることができる。また、パターニングされた透明導電膜を得るには、例えばパターンなし透明導電膜を形成した後フォト・エッチングによりパターンを形成する方法、透明導電膜を形成する際に所望のパターンを有するマスクを用いる方法などによることができる。一方、IPS型液晶表示素子を製造する場合、櫛歯型にパターニングされた透明導電膜が設けられている基板と、導電膜が設けられていない対向基板とを用いる。
[Step (2): Application step]
This step is a step of applying the liquid crystal aligning agent on the substrate. Examples of the substrate to be used include glass such as float glass and soda glass; and a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, and poly (alicyclic olefin). In the case of manufacturing a liquid crystal display element in which the operation mode of the liquid crystal display element is a TN type, STN type, or VA type, two substrates provided with a patterned transparent conductive film are used. As the transparent conductive film provided on one surface of the substrate, a NESA film (registered trademark of US PPG) made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 -SnO 2 ), etc. Can be used. Moreover, in order to obtain the patterned transparent conductive film, for example, a method of forming a pattern by photo-etching after forming a transparent conductive film without a pattern, and a method of using a mask having a desired pattern when forming the transparent conductive film And so on. On the other hand, when manufacturing an IPS liquid crystal display element, a substrate provided with a transparent conductive film patterned in a comb shape and a counter substrate provided with no conductive film are used.
<塗布方法>
 上記液晶配向剤を基板上に塗布する際の塗布方法は特に限定せず、例えば、オフセット印刷法、スピンコート法、ロールコーター法、インクジェット印刷法を適用することができる。
<Application method>
The application method for applying the liquid crystal aligning agent on the substrate is not particularly limited, and for example, an offset printing method, a spin coating method, a roll coater method, and an ink jet printing method can be applied.
 基板上に液晶配向剤を塗布する際に使用される液晶配向剤の固形分濃度(液晶配向剤の溶媒以外の成分の合計重量が液晶配向剤の全重量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10重量%の範囲である。固形分濃度が1重量%未満である場合には、塗膜の膜厚が過小となって良好な液晶配向膜を得にくい。一方、固形分濃度が10重量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜を得にくく、また、液晶配向剤の粘性が増大して塗布特性が劣るおそれがある。 The solid content concentration of the liquid crystal aligning agent used when applying the liquid crystal aligning agent on the substrate (the ratio of the total weight of components other than the solvent of the liquid crystal aligning agent to the total weight of the liquid crystal aligning agent) is viscous and volatile. However, it is preferably in the range of 1 to 10% by weight. When the solid content concentration is less than 1% by weight, the film thickness of the coating film is too small to obtain a good liquid crystal alignment film. On the other hand, when the solid content concentration exceeds 10% by weight, it is difficult to obtain a good liquid crystal alignment film due to excessive film thickness, and the viscosity of the liquid crystal aligning agent may increase, resulting in poor coating characteristics. There is.
 特に好ましい固形分濃度の範囲は、基板に液晶配向剤を塗布する際に用いる方法によって異なる。例えば、スピンコート法による場合には固形分濃度1.5~4.5重量%の範囲が特に好ましい。オフセット印刷法による場合には、固形分濃度を3~9重量%の範囲とし、それにより溶液粘度を12~50mPa・sの範囲とすることが特に好ましい。インクジェット印刷法による場合には、固形分濃度を1~5重量%の範囲とし、それにより、溶液粘度を3~15mPa・sの範囲とすることが特に好ましい。 The particularly preferable solid content concentration range varies depending on the method used when applying the liquid crystal aligning agent to the substrate. For example, when the spin coating method is used, the solid content concentration is particularly preferably in the range of 1.5 to 4.5% by weight. In the case of the offset printing method, it is particularly preferable that the solid content concentration is in the range of 3 to 9% by weight, and thereby the solution viscosity is in the range of 12 to 50 mPa · s. In the case of the ink jet printing method, it is particularly preferable that the solid content concentration is in the range of 1 to 5% by weight, and thereby the solution viscosity is in the range of 3 to 15 mPa · s.
 なお、液晶配向剤を塗布する前において、基板表面及び透明導電膜と塗膜との接着性をさらに良好にするために、基板表面のうち塗膜を形成するべき面に、官能性シラン化合物、官能性チタン化合物などを予め塗布する前処理を施しておいてもよい。 Before applying the liquid crystal aligning agent, in order to further improve the adhesion between the substrate surface and the transparent conductive film and the coating film, a functional silane compound, You may give the pretreatment which apply | coats a functional titanium compound etc. previously.
[工程(3)仮塗膜形成工程]
 上記塗布工程後においては、基板上における液晶配向剤の塗布面に対し、液垂れ防止等を目的として、液晶配向剤中の溶剤量を減らすための処理を施すのが好ましい。本工程により、液晶配向剤中の一部の溶剤が除去され、基板上において液晶配向剤からなる仮塗膜が形成される。溶剤除去の形態は特に限定せず、例えば、自然乾燥や減圧乾燥、加熱乾燥等を適用することができる。中でも、以下に示す予備加熱(プレベーク)によるものが好ましい。
[Step (3) provisional coating film forming step]
After the coating step, it is preferable to perform a treatment for reducing the amount of the solvent in the liquid crystal aligning agent on the surface of the liquid crystal aligning agent on the substrate for the purpose of preventing dripping. By this step, a part of the solvent in the liquid crystal aligning agent is removed, and a temporary coating film made of the liquid crystal aligning agent is formed on the substrate. The form of solvent removal is not particularly limited, and for example, natural drying, reduced pressure drying, heat drying or the like can be applied. Especially, the thing by the preheating (prebaking) shown below is preferable.
[工程(3-1):予備加熱工程]
 液晶配向剤の塗布面を予備加熱する際の加熱温度は、液垂れを防止できる程度に溶剤を蒸発可能な温度であればよく、例えば、液晶配向剤の調製に際し上記特定重合体を溶解するのに用いた溶媒(第1の溶媒)の沸点よりも低い温度とするとよい。また、このときの加熱温度は、配向膜となる塗膜を形成するための加熱(後述する工程(5))よりも低温であるのが好ましい。具体的には、プレベーク温度は、好ましくは30~150℃であり、より好ましくは40~120℃であり、更に好ましくは40~100℃である。プレベーク時間は、好ましくは0.25~20分であり、より好ましくは0.5~10分である。
[Step (3-1): Preheating step]
The heating temperature for preheating the liquid crystal aligning agent coating surface may be any temperature that can evaporate the solvent to such an extent that dripping can be prevented. For example, the specific polymer is dissolved in the preparation of the liquid crystal aligning agent. The temperature may be lower than the boiling point of the solvent (first solvent) used in the above. Moreover, it is preferable that the heating temperature at this time is low temperature rather than the heating (process (5) mentioned later) for forming the coating film used as an orientation film. Specifically, the pre-baking temperature is preferably 30 to 150 ° C., more preferably 40 to 120 ° C., and further preferably 40 to 100 ° C. The prebake time is preferably 0.25 to 20 minutes, more preferably 0.5 to 10 minutes.
[工程(4):接触工程]
 本工程は、基板上に塗布された液晶配向剤、好ましくは上記予備加熱工程により形成された液晶配向剤からなる仮塗膜を、上記第1の溶媒と相溶性がある液体(以下、特定液体ともいう)と接触させる工程である。本工程により、基板上の液晶配向剤中に含有される溶剤、特に上記第1の溶媒を抽出することができる。また、特定液体との接触を予備加熱後の仮塗膜に対して行った場合には、仮塗膜の内部に残留する溶剤の抽出をより好適に行うことができるとともに、特定液体と液晶配向剤とのミキシングが一層抑制され、塗膜において十分な膜厚を確保しやすくなる。
[Step (4): Contacting step]
In this step, a liquid crystal aligning agent applied on the substrate, preferably a temporary coating film made of the liquid crystal aligning agent formed by the preheating step is applied to a liquid compatible with the first solvent (hereinafter referred to as a specific liquid). It is also a step of contacting with. By this step, the solvent contained in the liquid crystal aligning agent on the substrate, particularly the first solvent can be extracted. In addition, when the contact with the specific liquid is performed on the temporary coating after the preheating, the solvent remaining in the temporary coating can be more suitably extracted, and the specific liquid and the liquid crystal alignment Mixing with the agent is further suppressed, and it becomes easy to ensure a sufficient film thickness in the coating film.
<特定液体>
 本発明における特定液体としては、上記において第2の溶媒として例示したもののうち、液晶配向剤の調製に際し、特定重合体を可溶化する目的で用いた第1の溶媒に対して相溶性があり、かつ該第1の溶媒よりも沸点が低いものを用いることができる。このような液体として具体的には、例えば、水、炭素数1~5のアルコール、炭素数3~5のケトン、アセトニトリル等の単一溶媒又は2種以上の混合溶媒を挙げることができる。これらのうち、炭素数1~5のアルコールとしては、メタノール、エタノール、イソプロパノール、イソブタノール、イソペンチルアルコール等を挙げることができ、炭素数3~5のケトンとしては、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソプロピルケトン等を挙げることができる。中でも、水、メタノール、エタノール、イソプロパノール、アセトン若しくはメチルエチルケトンの単一溶媒か又はそれら2種以上の混合溶媒であるのが好ましく、水による単一溶媒か又はメタノール、エタノール及びイソプロパノールの少なくともいずれかと水との混合溶媒であるのがより好ましい。
<Specific liquid>
The specific liquid in the present invention is compatible with the first solvent used for the purpose of solubilizing the specific polymer in the preparation of the liquid crystal aligning agent among those exemplified above as the second solvent. A solvent having a boiling point lower than that of the first solvent can be used. Specific examples of such a liquid include a single solvent such as water, an alcohol having 1 to 5 carbon atoms, a ketone having 3 to 5 carbon atoms, and acetonitrile, or a mixed solvent of two or more kinds. Among these, examples of the alcohol having 1 to 5 carbon atoms include methanol, ethanol, isopropanol, isobutanol, and isopentyl alcohol. Examples of the ketone having 3 to 5 carbon atoms include acetone, methyl ethyl ketone, diethyl ketone, And methyl isopropyl ketone. Among them, water, methanol, ethanol, isopropanol, acetone or methyl ethyl ketone is preferably a single solvent or a mixed solvent of two or more of them, and is a single solvent with water or at least one of methanol, ethanol and isopropanol and water. It is more preferable that it is a mixed solvent.
 特定液体としてアルコールと水との混合溶媒を用いる場合、特定液体の全体に対するアルコールの濃度は、5~55重量%が好ましく、10~50重量%がより好ましい。55重量%以下であると、混合溶液の引火性の低減を好適に図ることができる。また、10重量%以上であると、液晶配向膜中の溶剤の残存量を一層低減させることができ、本特許の目的である、低温加熱によっても良好な電圧保持特性を備える液晶配向膜を得るといったことを実現するのに有意である。 When a mixed solvent of alcohol and water is used as the specific liquid, the concentration of alcohol with respect to the entire specific liquid is preferably 5 to 55% by weight, and more preferably 10 to 50% by weight. When the content is 55% by weight or less, the flammability of the mixed solution can be suitably reduced. Further, if it is 10% by weight or more, the residual amount of the solvent in the liquid crystal alignment film can be further reduced, and a liquid crystal alignment film having good voltage holding characteristics even by low-temperature heating, which is the object of this patent, is obtained. It is significant to realize such things.
<接触方法>
 基板上における液晶配向剤と特定液体とを接触させる方法としては特に限定せず、例えば、シャワー法、スプレー法、ディップ(浸漬)法、パドル(液盛り)法などを適用することができる。また、特定液体との接触に際しては、液晶配向剤の表面の一部を特定液体と接触させてもよいが、液晶配向剤の表面全体を特定液体と接触させるのが好ましい。このとき、液晶配向剤中の溶剤をできるだけ抽出・除去するには、例えば、基板上への特定液体の供給及び接触の一連の処理を複数回行ったり、あるいはディップ法であれば特定液体を攪拌又は振盪したりすることも有効である。特定液体との接触時の温度は、好ましくは10~50℃であり、より好ましくは20~30℃である。接触時間は、好ましくは5秒~30分であり、より好ましくは5秒~15分である。なお、液晶配向剤との接触の際における特定液体の使用量は、特定液体との接触方法などを考慮して適宜に選択される。
<Contact method>
A method for bringing the liquid crystal aligning agent and the specific liquid into contact with each other on the substrate is not particularly limited, and for example, a shower method, a spray method, a dip (immersion) method, a paddle (liquid accumulation) method, or the like can be applied. In contact with the specific liquid, a part of the surface of the liquid crystal aligning agent may be brought into contact with the specific liquid, but the entire surface of the liquid crystal aligning agent is preferably brought into contact with the specific liquid. At this time, in order to extract and remove the solvent in the liquid crystal aligning agent as much as possible, for example, a series of processes of supplying and contacting the specific liquid onto the substrate are performed a plurality of times, or if the dipping method is used, the specific liquid is stirred. Alternatively, shaking is also effective. The temperature at the time of contact with the specific liquid is preferably 10 to 50 ° C., more preferably 20 to 30 ° C. The contact time is preferably 5 seconds to 30 minutes, more preferably 5 seconds to 15 minutes. In addition, the usage-amount of the specific liquid in the case of contact with a liquid crystal aligning agent is suitably selected in consideration of the contact method etc. with a specific liquid.
[工程(5):膜形成工程]
 本工程は、基板上における液晶配向剤の塗布面を加熱する工程である。本工程での加熱(ポストベーク)により、基板上に塗布された液晶配向剤中に残存する溶剤が概ね除去され、基板上において液晶配向膜となる塗膜が形成される。また、本工程は、必要に応じて、液晶配向剤中に含まれるアミック酸単位を熱イミド化することを目的として行われる加熱処理でもある。
[Step (5): Film formation step]
This step is a step of heating the application surface of the liquid crystal aligning agent on the substrate. By the heating (post-bake) in this step, the solvent remaining in the liquid crystal aligning agent applied on the substrate is almost removed, and a coating film that becomes a liquid crystal aligning film is formed on the substrate. Moreover, this process is also heat processing performed in order to thermally imidize the amic acid unit contained in a liquid crystal aligning agent as needed.
 ポストベーク条件について具体的には、ポストベーク温度は、好ましくは80~190℃であり、より好ましくは120~180℃であり、更に好ましくは140~180℃である。ポストベーク時間は、好ましくは5~200分であり、より好ましくは10~100分である。上記第1の溶媒は一般に沸点が高いが、本工程の加熱時には、基板上の液晶配向剤に含まれる第1の溶媒の量が上記接触工程によって事前に低減されているため、上記条件で加熱を行った場合にも、塗膜中における溶剤残存量を十分に低減させることができる。なお、このようにして形成される塗膜の膜厚は、好ましくは30nm~150nmであり、より好ましくは30nm~120nmである。 Regarding the post-bake conditions, specifically, the post-bake temperature is preferably 80 to 190 ° C, more preferably 120 to 180 ° C, and further preferably 140 to 180 ° C. The post-bake time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes. The first solvent generally has a high boiling point, but when heated in this step, the amount of the first solvent contained in the liquid crystal aligning agent on the substrate is reduced in advance by the contact step. In the case of carrying out the process, the residual solvent amount in the coating film can be sufficiently reduced. The film thickness of the coating film thus formed is preferably 30 nm to 150 nm, more preferably 30 nm to 120 nm.
 上記の加熱処理は、大気圧下(常圧下)で行ってもよいし、減圧下で行ってもよい。あるいは、上記接触工程後に減圧処理を行った後、大気圧に戻した状態で上記の加熱処理を実施してもよい。減圧処理を行う場合、その減圧処理時の圧力については、液晶配向剤に含有される溶剤のうち飽和蒸気圧が最も高い溶剤における飽和蒸気圧以下とするのが好ましい。また、液晶配向剤中に複数種の溶剤が含有される場合には、それらの飽和蒸気圧の差を考慮し、減圧操作を複数段で行うとよい。 The above heat treatment may be performed under atmospheric pressure (normal pressure) or under reduced pressure. Or after performing the pressure reduction process after the said contact process, you may implement said heat processing in the state returned to atmospheric pressure. When performing a pressure reduction process, it is preferable that the pressure during the pressure reduction process be equal to or lower than the saturated vapor pressure in the solvent having the highest saturated vapor pressure among the solvents contained in the liquid crystal aligning agent. Further, when a plurality of types of solvents are contained in the liquid crystal aligning agent, the pressure reducing operation may be performed in a plurality of stages in consideration of the difference between the saturated vapor pressures.
 本発明の液晶配向膜の製造方法は、上記工程(1)~(5)の他、必要に応じて例えば以下の工程(6)等を含んでいてもよい。 The method for producing a liquid crystal alignment film of the present invention may include, for example, the following step (6) as necessary in addition to the above steps (1) to (5).
[工程(6):ラビング処理]
 液晶表示素子における動作モードが、TN型、STN型又はIPS型液晶表示素子を製造する場合、上記のようにして形成された塗膜を、例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで一定方向に擦るラビング処理を施す。これにより、液晶分子の配向能が塗膜に付与されて液晶配向膜となる。
[Step (6): rubbing treatment]
When manufacturing a TN, STN, or IPS type liquid crystal display element, the liquid crystal display element is wound with a cloth made of fibers such as nylon, rayon, and cotton, for example. A rubbing process that rubs in a certain direction with a roll is applied. Thereby, the orientation ability of a liquid crystal molecule is provided to a coating film, and it becomes a liquid crystal aligning film.
 さらに、上記の液晶配向膜に対し、液晶配向膜の一部に紫外線を照射することによって液晶配向膜の一部の領域のプレチルト角を変化させる処理や、液晶配向膜表面の一部にレジスト膜を形成した上で先のラビング処理と異なる方向にラビング処理を行った後にレジスト膜を除去する処理を行ってもよい。液晶配向膜が領域ごとに異なる液晶配向能を持つようにすることによって、得られる液晶表示素子の視界特性を改善することが可能である。 Furthermore, with respect to the liquid crystal alignment film, a treatment for changing the pretilt angle of a part of the liquid crystal alignment film by irradiating a part of the liquid crystal alignment film with ultraviolet rays, or a resist film on a part of the liquid crystal alignment film surface After forming the film, the resist film may be removed after the rubbing treatment in a direction different from the previous rubbing treatment. By making the liquid crystal alignment film have different liquid crystal alignment ability for each region, it is possible to improve the visual field characteristics of the obtained liquid crystal display element.
 なお、VA型液晶表示素子を製造する場合には、上記のようにして形成された塗膜をそのまま液晶配向膜として使用することができるが、上記のラビング処理を施してもよい。 In addition, when manufacturing a VA type liquid crystal display element, although the coating film formed as mentioned above can be used as a liquid crystal alignment film as it is, you may give said rubbing process.
[液晶表示素子]
 本発明の液晶表示素子は、上記製造方法により製造された液晶配向膜を具備するものであり、例えば下記工程(7)により製造することができる。
[工程(7):液晶表示素子の構築]
 液晶表示素子を構築するのに際し、まず、上記製造方法により液晶配向膜が形成された一対の基板につき、二枚の基板の液晶配向膜のラビング方向が直交又は逆平行となるように間隙(セルギャップ)を介して対向配置する。続いて、二枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填し、注入孔を封止して液晶セルを構成する。そして、液晶セルの外表面に、偏光板を、その偏光方向が各基板に形成された液晶配向膜のラビング方向と一致又は直交するように貼り合わせることにより、液晶表示素子を得ることができる。
[Liquid crystal display element]
The liquid crystal display element of this invention comprises the liquid crystal aligning film manufactured by the said manufacturing method, for example, can be manufactured by the following process (7).
[Step (7): Construction of liquid crystal display element]
In constructing a liquid crystal display element, first, with respect to a pair of substrates on which a liquid crystal alignment film is formed by the above manufacturing method, a gap (cell) is set so that the rubbing directions of the liquid crystal alignment films of the two substrates are orthogonal or antiparallel. It is arranged oppositely through a gap). Subsequently, the peripheral portions of the two substrates are bonded together using a sealant, and liquid crystal is injected and filled into the cell gap defined by the substrate surface and the sealant, and the injection hole is sealed to form a liquid crystal cell. . And a liquid crystal display element can be obtained by bonding a polarizing plate on the outer surface of a liquid crystal cell so that the polarization direction thereof matches or is orthogonal to the rubbing direction of the liquid crystal alignment film formed on each substrate.
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂などを用いることができる。 As the sealant, for example, an epoxy resin containing a curing agent and aluminum oxide spheres as a spacer can be used.
 液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、例えばシッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶などを用いることができる。また、これらの液晶に、例えばコレスチルクロライド、コレステリルノナエート、コレステリルカーボネートなどのコレステリック液晶;商品名「C-15」、「CB-15」(メルク社製)として販売されているようなカイラル剤;p-デシロキシベンジリデン-p-アミノ-2-メチルブチルシンナメートなどの強誘電性液晶などを、添加して使用してもよい。 Examples of the liquid crystal include nematic liquid crystal and smectic liquid crystal. Among them, nematic liquid crystal is preferable. For example, Schiff base liquid crystal, azoxy liquid crystal, biphenyl liquid crystal, phenylcyclohexane liquid crystal, ester liquid crystal, terphenyl liquid crystal, biphenyl. Cyclohexane liquid crystals, pyrimidine liquid crystals, dioxane liquid crystals, bicyclooctane liquid crystals, cubane liquid crystals, and the like can be used. Further, cholesteric liquid crystals such as cholesteryl chloride, cholesteryl nonate, cholesteryl carbonate, etc .; chiral agents such as those sold under the trade names “C-15” and “CB-15” (manufactured by Merck) A ferroelectric liquid crystal such as p-decyloxybenzylidene-p-amino-2-methylbutylcinnamate may be added and used.
 液晶セルの外表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光膜を酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。 As a polarizing plate to be bonded to the outer surface of the liquid crystal cell, a polarizing film or an H film itself in which a polarizing film called an “H film” in which iodine is absorbed while stretching and aligning polyvinyl alcohol is sandwiched between cellulose acetate protective films The polarizing plate which consists of can be mentioned.
 本発明の液晶表示素子は、種々の装置に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、各種モニター、液晶テレビなどの表示装置に用いることができる。 The liquid crystal display element of the present invention can be effectively applied to various devices such as watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, various monitors. It can be used for a display device such as a liquid crystal television.
 以下、本発明を実施例により更に具体的に説明するが、本発明はこれらの実施例に制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
 なお、以下の各合成例における重合体の溶液粘度は、いずれもE型回転粘度計を用いて25℃において測定した値である。また、ポリイミドのイミド化率は、次のようにして測定した。
[ポリイミドのイミド化率]
 ポリイミドの溶液を純水に投入し、得られた沈殿を室温で十分に減圧乾燥した後、重水素化ジメチルスルホキシドに溶解し、テトラメチルシランを基準物質として室温でH-NMRを測定した。得られたH-NMRスペクトルから、下記数式(1)で示される式によりイミド化率を求めた。
  イミド化率(%)=(1-A/A×α)×100   …(1)
(数式(1)中、Aは化学シフト10ppm付近に現れるNH基のプロトン由来のピーク面積であり、Aはその他のプロトン由来のピーク面積であり、αは重合体の前駆体(ポリアミック酸)におけるNH基のプロトン1個に対するその他のプロトンの個数割合である。)
The solution viscosity of the polymer in each of the following synthesis examples is a value measured at 25 ° C. using an E-type rotational viscometer. Moreover, the imidation ratio of polyimide was measured as follows.
[Imidation rate of polyimide]
The polyimide solution was poured into pure water, and the resulting precipitate was sufficiently dried at room temperature under reduced pressure, then dissolved in deuterated dimethyl sulfoxide, and 1 H-NMR was measured at room temperature using tetramethylsilane as a reference substance. From the obtained 1 H-NMR spectrum, the imidation ratio was determined by the formula shown by the following formula (1).
Imidation ratio (%) = (1−A 1 / A 2 × α) × 100 (1)
(In Formula (1), A 1 is a peak area derived from protons of NH groups appearing near a chemical shift of 10 ppm, A 2 is a peak area derived from other protons, and α is a precursor of a polymer (polyamic acid). The number ratio of other protons to one proton of NH group in)
[準備工程]
<重合体の合成>
(合成例1)
 テトラカルボン酸二無水物として2,3,5-トリカルボキシシクロペンチル酢酸二無水物110g(0.50モル)、ジアミン化合物としてp-フェニレンジアミン43g(0.40モル)及び3-(3,5-ジアミノベンゾイルオキシ)コレスタン52g(0.10モル)を、NMP830gに溶解させ、60℃で6時間反応させた。得られたポリアミック酸溶液を小量分取し、NMPを加えて固形分濃度10%の溶液で粘度を測定したところ、60mPa・sであった。次いで、得られたポリアミック酸溶液にNMP1900gを追加し、ピリジン40g及び無水酢酸51gを添加し110℃で4時間脱水閉環させた。イミド化反応後、系内の溶剤を新たなNMPで溶剤置換し(本操作にてイミド化反応に使用したピリジン、無水酢酸を系外に除去した)、イミド化率約50%のポリイミドを約15重量%含有する溶液(A-1)を得た。得られたポリイミド溶液を少量分取し、NMPを加えてポリイミド濃度10重量%の溶液として測定した溶液粘度は47mPa・sであった。
[Preparation process]
<Synthesis of polymer>
(Synthesis Example 1)
110 g (0.50 mol) of 2,3,5-tricarboxycyclopentyl acetic acid dianhydride as tetracarboxylic dianhydride, 43 g (0.40 mol) of p-phenylenediamine and 3- (3,5- Diaminobenzoyloxy) cholestane 52 g (0.10 mol) was dissolved in NMP 830 g and reacted at 60 ° C. for 6 hours. A small amount of the resulting polyamic acid solution was taken, NMP was added, and the viscosity was measured with a solution having a solid content concentration of 10%. As a result, it was 60 mPa · s. Next, 1900 g of NMP was added to the obtained polyamic acid solution, 40 g of pyridine and 51 g of acetic anhydride were added, and dehydration ring closure was performed at 110 ° C. for 4 hours. After the imidization reaction, the solvent in the system was replaced with new NMP (pyridine and acetic anhydride used for the imidization reaction were removed from the system in this operation), and about 50% of the imidation ratio of polyimide was reduced. A solution (A-1) containing 15% by weight was obtained. A small amount of the obtained polyimide solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10% by weight was 47 mPa · s.
(合成例2)
 テトラカルボン酸二無水物として2,3,5-トリカルボキシシクロペンチル酢酸二無水物110g(0.50モル)、ジアミン化合物としてp-フェニレンジアミン38g(0.35モル)、4,4’-ジアミノジフェニルメタン20g(0.1モル)、及び3-(3,5-ジアミノベンゾイルオキシ)コレスタン26g(0.05モル)を、NMP800gに溶解させ、60℃で6時間反応させた。得られたポリアミック酸溶液を小量分取し、NMPを加えて固形分濃度10%の溶液で粘度を測定したところ、60mPa・sであった。次いで、得られたポリアミック酸溶液にNMP1800gを追加し、ピリジン80g及び無水酢酸100gを添加し110℃で4時間脱水閉環させた。イミド化反応後、系内の溶剤を新たなγ-ブチロラクトンで溶剤置換し(本操作にてイミド化反応に使用したピリジン、無水酢酸を系外に除去した)、イミド化率約80%のポリイミドを約15重量%含有する溶液(A-2)を得た。得られたポリイミド溶液を少量分取し、γ-ブチロラクトンを加えてポリイミド濃度10重量%の溶液として測定した溶液粘度は87mPa・sであった。
(Synthesis Example 2)
110 g (0.50 mol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride as tetracarboxylic dianhydride, 38 g (0.35 mol) of p-phenylenediamine as a diamine compound, 4,4′-diaminodiphenylmethane 20 g (0.1 mol) and 26 g (0.05 mol) of 3- (3,5-diaminobenzoyloxy) cholestane were dissolved in 800 g of NMP and reacted at 60 ° C. for 6 hours. A small amount of the resulting polyamic acid solution was taken, NMP was added, and the viscosity was measured with a solution having a solid content concentration of 10%. As a result, it was 60 mPa · s. Next, 1800 g of NMP was added to the obtained polyamic acid solution, 80 g of pyridine and 100 g of acetic anhydride were added, and dehydration ring closure was performed at 110 ° C. for 4 hours. After the imidization reaction, the solvent in the system was replaced with a new γ-butyrolactone (the pyridine and acetic anhydride used for the imidation reaction were removed from the system in this operation), and the polyimide with an imidation ratio of about 80% A solution (A-2) containing about 15 wt% was obtained. A small amount of the obtained polyimide solution was taken, and γ-butyrolactone was added to measure the solution viscosity as a solution having a polyimide concentration of 10% by weight. The solution viscosity was 87 mPa · s.
<液晶配向剤の調製>
(液晶配向剤(1))
 上記合成例1で得たポリイミド溶液(A-1)に、NMP及びブチルセロソルブ(BC)を加え、更にエポキシ化合物としてN,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタンを重合体の合計100重量部に対して10重量部加えて十分に撹拌し、溶剤組成がNMP:BC=50:50(重量比)、固形分濃度3.5重量%の溶液とした。この溶液を孔径1μmのフィルターを用いて濾過することにより、塗布溶液としての液晶配向剤(1)を調製した。
<Preparation of liquid crystal aligning agent>
(Liquid crystal aligning agent (1))
NMP and butyl cellosolve (BC) are added to the polyimide solution (A-1) obtained in Synthesis Example 1, and N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane is added as an epoxy compound. 10 parts by weight with respect to a total of 100 parts by weight of the polymer was added and stirred sufficiently to obtain a solution having a solvent composition of NMP: BC = 50: 50 (weight ratio) and a solid content concentration of 3.5% by weight. The solution was filtered using a filter having a pore diameter of 1 μm to prepare a liquid crystal aligning agent (1) as a coating solution.
(液晶配向剤(2))
 上記合成例2で得たポリイミド溶液(A-2)に、γ-ブチロラクトン(BL)、NMP及びBCを加え、更にエポキシ化合物としてN,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタンを重合体の合計100重量部に対して10重量部加えて十分に撹拌し、溶剤組成がBL:NMP:BC=30:40:30(重量比)、固形分濃度3.5重量%の溶液とした。この溶液を孔径1μmのフィルターを用いて濾過することにより、塗布溶液としての液晶配向剤(2)を調製した。
(Liquid crystal aligning agent (2))
Γ-Butyrolactone (BL), NMP and BC are added to the polyimide solution (A-2) obtained in Synthesis Example 2, and N, N, N ′, N′-tetraglycidyl-4,4 ′ is added as an epoxy compound. -Add 10 parts by weight of diaminodiphenylmethane to 100 parts by weight of the total amount of polymer, stir well, solvent composition BL: NMP: BC = 30: 40: 30 (weight ratio), solid content concentration 3.5 weight % Solution. The solution was filtered using a filter having a pore diameter of 1 μm to prepare a liquid crystal aligning agent (2) as a coating solution.
[塗布工程]
 ITOからなる透明電極付きのガラス基板を、ガラス洗浄用アルカリ水溶液中および超純水中でそれぞれ30分間ずつ、順次に超音波洗浄を行い、次いで超純水による30分の流水洗浄を行い、更にイソプロパノール中で30分超音波洗浄を行った後、100℃オーブン中で30分乾燥した。この基板をさらに200℃のホットプレート上で1分間加熱して脱水した後、UVオゾン洗浄機(SEN LIGHT CORP.製、型式「PM9011 N-1」)によるUVオゾン洗浄を行った。
[Coating process]
A glass substrate with a transparent electrode made of ITO is subjected to ultrasonic cleaning in order for 30 minutes each in an alkaline aqueous solution for glass cleaning and ultrapure water, and then washed with running water for 30 minutes with ultrapure water. After ultrasonic cleaning for 30 minutes in isopropanol, drying was performed in a 100 ° C. oven for 30 minutes. The substrate was further dehydrated by heating on a 200 ° C. hot plate for 1 minute, and then UV ozone cleaning was performed with a UV ozone cleaner (SEN LIGHT CORP., Model “PM9011 N-1”).
 上記UV洗浄直後の透明電極付きガラス基板の透明電極面上に、上記の液晶配向剤(1),(2)のそれぞれを、インクジェット印刷装置(芝浦メカトロニクス(株)製)を用いて200~280mg/ヘッド・10秒、2,500回/ノズル・秒にて二往復塗布(四回塗布)を行った。この塗布により、ガラス基板上に正四角形(10cm×10cm)の形に液晶配向剤が塗布された基板を得た。 On the transparent electrode surface of the glass substrate with a transparent electrode immediately after the UV cleaning, each of the liquid crystal alignment agents (1) and (2) is 200 to 280 mg using an ink jet printing apparatus (manufactured by Shibaura Mechatronics). / Head · 10 seconds, 2,500 times / nozzle · second, 2 reciprocating coatings (4 times coating). By this application, a substrate in which a liquid crystal aligning agent was applied in the form of a regular square (10 cm × 10 cm) on a glass substrate was obtained.
[予備加熱工程(プレベーク)]
 上記得られたガラス基板のそれぞれを、100℃にて10分間、ホットプレート上にて加熱して溶剤の一部を除去した。これにより、平均膜厚100nmの仮焼成配向膜(1)及び(2)を得た。
[Preheating step (pre-baking)]
Each of the obtained glass substrates was heated on a hot plate at 100 ° C. for 10 minutes to remove a part of the solvent. As a result, pre-fired alignment films (1) and (2) having an average film thickness of 100 nm were obtained.
[接触工程(洗浄工程)]
 上記作製された仮焼成配向膜(1)及び(2)をそれぞれ、超純水500mL、又は超純水とエタノールとの50wt%/50wt%混合溶液500gに、25℃下で10分間浸漬した。その後、配向膜表面の液滴をエアーナイフ等により除去した。これにより、水洗浄処理配向膜(M-1),(M-2)、及び水/エタノール混合液洗浄処理配向膜(M-3),(M-4)を得た。
[Contact process (cleaning process)]
The prepared pre-fired alignment films (1) and (2) were each immersed in 500 mL of ultrapure water or 500 g of a 50 wt% / 50 wt% mixed solution of ultrapure water and ethanol at 25 ° C. for 10 minutes. Thereafter, the droplets on the alignment film surface were removed with an air knife or the like. As a result, water-washed alignment films (M-1) and (M-2) and water / ethanol mixed solution cleaning-treated alignment films (M-3) and (M-4) were obtained.
[膜形成工程(ポストベーク)]
 上記により得られた水洗浄処理配向膜(M-1),(M-2)、及び水/エタノール混合液洗浄処理配向膜(M-3),(M-4)のそれぞれを、150℃又は180℃で加熱した。加熱に際しては、真空下又は常圧下で行った。
<真空下での焼成>
 3200リットル/minの排気能力のポンプを用い、排気通路の途中にスローベンドバルブを入れ、一定圧までの減圧スピードを制御可能な真空焼成装置を用いて焼成を行った。まず、上記の洗浄処理配向膜(M-1)~(M-4)のそれぞれを装置に入れ、150℃又は180℃下にて、まず2.7mmHgまで14秒かけて減圧し、そこでバルブを全開にして0.5mmHgまで21秒かけて更に減圧した。この状態で20分間ホールドし、その後、常圧に戻し、ガラス基板上に液晶配向膜を得た。
[Film formation process (post-bake)]
Each of the water-washed alignment films (M-1) and (M-2) and the water / ethanol mixed solution washing-treated alignment films (M-3) and (M-4) obtained as described above was heated at 150 ° C. or Heated at 180 ° C. The heating was performed under vacuum or normal pressure.
<Baking under vacuum>
Firing was performed using a vacuum firing apparatus capable of controlling the pressure reduction speed up to a constant pressure by inserting a slow bend valve in the middle of the exhaust passage using a pump having an exhaust capacity of 3200 liters / min. First, each of the cleaning-treated alignment films (M-1) to (M-4) is put in an apparatus and depressurized at 150 ° C. or 180 ° C. to 2.7 mmHg over 14 seconds. Fully opened and further depressurized to 0.5 mmHg over 21 seconds. It hold | maintained for 20 minutes in this state, Then, it returned to a normal pressure and obtained the liquid crystal aligning film on the glass substrate.
<常圧下での焼成>
 焼成装置としてクリーンオーブンを用いた。上記の洗浄処理配向膜(M-1)~(M-4)のそれぞれを、窒素気流下、150℃又は180℃下にて常圧下で20分間焼成し、ガラス基板上に液晶配向膜を得た。
<Baking under normal pressure>
A clean oven was used as the baking apparatus. Each of the cleaning treatment alignment films (M-1) to (M-4) is baked at 150 ° C. or 180 ° C. under normal pressure for 20 minutes under a nitrogen stream to obtain a liquid crystal alignment film on a glass substrate. It was.
[溶剤残留量の測定及び評価]
 下記表1に示すNo.1~No.24の各条件で基板上に形成した液晶配向膜について溶剤残留量を測定した。まず、液晶配向膜を有する基板を1cm×8cmに10枚切り出し、日本分析化学工業製JTD-505IIとHewlett Packard製HP6890及び日本電子製WJMS-Q1000GC K9からなるヘッドスペースガスクロマトグラム分析装置によりポストベーク後の溶剤残存量を測定した。溶剤残存量はオクタデカンを標準物質として換算定量評価した。その測定結果を下記表1に示す。
[Measurement and evaluation of solvent residue]
No. shown in Table 1 below. 1-No. The solvent residual amount was measured for the liquid crystal alignment film formed on the substrate under each of the 24 conditions. First, 10 substrates having a liquid crystal alignment film were cut into 1 cm × 8 cm, and post-baked by a headspace gas chromatogram analyzer consisting of JTD-505II manufactured by Nippon Analytical Chemical Industry, HP6890 manufactured by Hewlett Packard, and WJMS-Q1000GC K9 manufactured by JEOL. The residual amount of solvent was measured. Residual amount of solvent was quantitatively evaluated in terms of octadecane as a standard substance. The measurement results are shown in Table 1 below.
[電圧保持率評価用の液晶セルの作製]
 下記表1に示すNo.1~No.16の各条件で形成した配向膜を有する基板一対(2枚)を用意し、次に、一対の基板のどちらか一枚の外縁に、直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤を塗布した後、液晶配向膜面が相対するように重ね合わせて圧着し、接着剤を硬化させた。次いで、液晶注入口より一対の基板間に、ネマチック液晶(メルク社製、MLC-6608)を充填した後、アクリル系光硬化接着剤で液晶注入口を封止した。これにより、実施例1~16の評価セルを得た。
[Production of liquid crystal cell for evaluating voltage holding ratio]
No. shown in Table 1 below. 1-No. Prepare a pair (two) of substrates having alignment films formed under each of the 16 conditions, and then apply an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 5.5 μm to the outer edge of one of the pair of substrates. After coating, the adhesive was cured by overlapping and pressing so that the liquid crystal alignment film surfaces face each other. Next, a nematic liquid crystal (MLC-6608, manufactured by Merck & Co., Inc.) was filled between the pair of substrates from the liquid crystal injection port, and then the liquid crystal injection port was sealed with an acrylic photo-curing adhesive. Thereby, evaluation cells of Examples 1 to 16 were obtained.
[電圧保持率の測定及び評価]
 得られた実施例1~16の評価セル(No.1~No.16)に、5Vの電圧を60マイクロ秒の印加時間、167ミリ秒のスパンで印加した後、印加解除から167ミリ秒後の電圧保持率を測定した。測定装置は(株)東陽テクニカ製VHR-1を使用した。電圧保持率が98%以上の場合を「良」、それ以外の場合を「不良」と評価した。その結果を下記表1に示す。
[Measurement and evaluation of voltage holding ratio]
A voltage of 5 V was applied to the obtained evaluation cells (No. 1 to No. 16) of Examples 1 to 16 with an application time of 60 microseconds and a span of 167 milliseconds, and 167 milliseconds after the application release. The voltage holding ratio was measured. As a measuring device, VHR-1 manufactured by Toyo Corporation was used. The case where the voltage holding ratio was 98% or more was evaluated as “good”, and the other cases were evaluated as “bad”. The results are shown in Table 1 below.
 また、上記洗浄処理を施さない以外は上記洗浄処理配向膜(M-1)~(M-4)と同様の方法により評価セルを作製し、これらを評価セルNo.17~No.24(比較例)とした。これらの評価セルについても、評価セルNo.1~No.16と同様の方法により電圧保持率を測定し、電圧保持特性の評価を行った。その結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000003
An evaluation cell was prepared by the same method as that for the cleaning-treated alignment films (M-1) to (M-4) except that the cleaning treatment was not performed. 17-No. 24 (comparative example). For these evaluation cells, the evaluation cell no. 1-No. The voltage holding ratio was measured by the same method as in No. 16, and the voltage holding characteristics were evaluated. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、ポストベーク前に洗浄処理を施した実施例(No.1~No.16)のものでは、ポストベーク前に洗浄処理を施さなかった比較例(No.17~No.24)のものに比べて液晶配向膜中の溶剤残留量が少なく、比較例の溶剤残留量の0.6~0.7程度であった。また、洗浄液として、水を用いた場合と、水/エタノールの混合液を用いた場合との溶剤残留量を比較すると、ほぼ同じか又は水を用いた場合の方が溶剤残留量が少なかった。 As shown in Table 1, in the examples (No. 1 to No. 16) in which the cleaning treatment was performed before the post-baking, comparative examples (No. 17 to No. 16) in which the cleaning treatment was not performed before the post-baking. The amount of residual solvent in the liquid crystal alignment film was smaller than that of 24), which was about 0.6 to 0.7 of the residual amount of solvent in the comparative example. Further, when the amount of residual solvent was compared between the case where water was used as the cleaning liquid and the case where the mixed liquid of water / ethanol was used, the amount of residual solvent was almost the same or less when water was used.
 また、表1に示すように、洗浄処理配向膜(M-1)~(M-4)を用いた評価セルNo.1~No.16(実施例)は、いずれにおいても、ポストベーク温度を180℃、150℃とした場合において良好な電圧保持特性を示した。この結果は、ポストベークを常圧下又は真空下にて行った場合の両者において観察された。一方、洗浄工程を施さずに作製された液晶配向膜を備える評価セルNo.17~No.24(比較例)は、ポストベーク温度を180℃、150℃とした場合において電圧保持率が98%未満と低かった。 In addition, as shown in Table 1, the evaluation cell numbers using the cleaning alignment films (M-1) to (M-4) are shown. 1-No. No. 16 (Example) showed good voltage holding characteristics when the post-bake temperature was 180 ° C. and 150 ° C. This result was observed in both cases where post-baking was performed under normal pressure or under vacuum. On the other hand, evaluation cell No. provided with the liquid crystal aligning film produced without performing the washing | cleaning process. 17-No. No. 24 (Comparative Example) had a low voltage holding ratio of less than 98% when the post-bake temperature was 180 ° C. and 150 ° C.

Claims (6)

  1.  ポリアミック酸及びポリイミドからなる群より選ばれる少なくとも一種の重合体と、該重合体を可溶な溶媒とを含有する液晶配向剤を用いて液晶配向膜を製造する方法であって、
     基板上に前記液晶配向剤を塗布する塗布工程と、
     前記基板上に塗布された液晶配向剤を、前記溶媒と相溶しかつ前記溶媒よりも低沸点であるとともに前記重合体に対して貧溶又は非溶である液体と接触させる接触工程と、
     前記接触工程の後において、前記基板上における液晶配向剤を加熱して前記基板上に塗膜を形成する膜形成工程と、
    を含むことを特徴とする液晶配向膜の製造方法。
    A method for producing a liquid crystal alignment film using a liquid crystal aligning agent containing at least one polymer selected from the group consisting of polyamic acid and polyimide, and a solvent soluble in the polymer,
    An application step of applying the liquid crystal aligning agent on a substrate;
    Contacting the liquid crystal aligning agent applied on the substrate with a liquid that is compatible with the solvent and has a lower boiling point than the solvent and is poorly soluble or insoluble in the polymer;
    After the contacting step, a film forming step of forming a coating film on the substrate by heating the liquid crystal aligning agent on the substrate;
    A method for producing a liquid crystal alignment film, comprising:
  2.  前記塗布工程の後であって前記接触工程の前において、前記基板上における液晶配向剤を前記膜形成工程での加熱温度よりも低温で加熱する予備加熱工程を含む請求項1に記載の液晶配向膜の製造方法。 2. The liquid crystal alignment according to claim 1, further comprising a preheating step of heating the liquid crystal alignment agent on the substrate at a temperature lower than the heating temperature in the film forming step after the coating step and before the contact step. A method for producing a membrane.
  3.  前記液体が、水、炭素数1~5のアルコール、炭素数3~5のケトン、及びアセトニトリルからなる群より選ばれる少なくとも1種である請求項1又は2に記載の液晶配向膜の製造方法。 3. The method for producing a liquid crystal alignment film according to claim 1, wherein the liquid is at least one selected from the group consisting of water, alcohol having 1 to 5 carbon atoms, ketone having 3 to 5 carbon atoms, and acetonitrile.
  4.  前記膜形成工程は、前記基板上における液晶配向剤を大気圧下で加熱する工程である請求項1乃至3のいずれか一項に記載の液晶配向膜の製造方法。 The method for producing a liquid crystal alignment film according to any one of claims 1 to 3, wherein the film forming step is a step of heating a liquid crystal alignment agent on the substrate under atmospheric pressure.
  5.  前記膜形成工程は、前記基板上における液晶配向剤を減圧下で加熱する工程である請求項1乃至3のいずれか一項に記載の液晶配向膜の製造方法。 The method for producing a liquid crystal alignment film according to any one of claims 1 to 3, wherein the film forming step is a step of heating the liquid crystal alignment agent on the substrate under reduced pressure.
  6.  請求項1乃至5のいずれか一項に記載の液晶配向膜の製造方法により製造された液晶配向膜を具備する液晶表示素子。 A liquid crystal display element comprising a liquid crystal alignment film manufactured by the method for manufacturing a liquid crystal alignment film according to any one of claims 1 to 5.
PCT/JP2011/070495 2010-10-28 2011-09-08 Process for producing liquid crystal alignment film, and liquid crystal display element WO2012056815A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127033627A KR101418465B1 (en) 2010-10-28 2011-09-08 Process for producing liquid crystal alignment film, and liquid crystal display element
JP2012540732A JP5741593B2 (en) 2010-10-28 2011-09-08 Method for producing liquid crystal alignment film and method for producing liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-242070 2010-10-28
JP2010242070 2010-10-28

Publications (1)

Publication Number Publication Date
WO2012056815A1 true WO2012056815A1 (en) 2012-05-03

Family

ID=45993545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070495 WO2012056815A1 (en) 2010-10-28 2011-09-08 Process for producing liquid crystal alignment film, and liquid crystal display element

Country Status (4)

Country Link
JP (1) JP5741593B2 (en)
KR (1) KR101418465B1 (en)
TW (1) TWI510528B (en)
WO (1) WO2012056815A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084362A1 (en) * 2012-11-30 2014-06-05 日産化学工業株式会社 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
CN111089911A (en) * 2018-10-24 2020-05-01 江苏和成显示科技有限公司 Method for detecting residual solvent in photoelectric display material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201500187A (en) * 2013-06-28 2015-01-01 Hon Hai Prec Ind Co Ltd Article and electronic device using same
KR102108558B1 (en) * 2017-09-29 2020-05-08 주식회사 엘지화학 Preparation Method for Substrate used in Optical Device
CN113419382A (en) * 2021-06-30 2021-09-21 深圳市华星光电半导体显示技术有限公司 Manufacturing method of display panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825616A (en) * 1981-08-08 1983-02-15 Matsushita Electric Ind Co Ltd Formation of film for orienting liquid crystal molecules
JP2001125108A (en) * 1999-10-29 2001-05-11 Seiko Epson Corp Method of manufacturing for alignment layer and method of manufacturing for liquid crystal device
JP2006159152A (en) * 2004-12-10 2006-06-22 Ulvac Japan Ltd Printer and printing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825616A (en) * 1981-08-08 1983-02-15 Matsushita Electric Ind Co Ltd Formation of film for orienting liquid crystal molecules
JP2001125108A (en) * 1999-10-29 2001-05-11 Seiko Epson Corp Method of manufacturing for alignment layer and method of manufacturing for liquid crystal device
JP2006159152A (en) * 2004-12-10 2006-06-22 Ulvac Japan Ltd Printer and printing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084362A1 (en) * 2012-11-30 2014-06-05 日産化学工業株式会社 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JPWO2014084362A1 (en) * 2012-11-30 2017-01-05 日産化学工業株式会社 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
CN111089911A (en) * 2018-10-24 2020-05-01 江苏和成显示科技有限公司 Method for detecting residual solvent in photoelectric display material

Also Published As

Publication number Publication date
JPWO2012056815A1 (en) 2014-03-20
TWI510528B (en) 2015-12-01
JP5741593B2 (en) 2015-07-01
TW201221561A (en) 2012-06-01
KR101418465B1 (en) 2014-07-10
KR20130020692A (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5655583B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5273357B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP5939066B2 (en) Method for producing liquid crystal aligning agent
JP5849391B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP5516836B2 (en) Vertical alignment type liquid crystal aligning agent and vertical alignment type liquid crystal display element
JP5783023B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2008108493A1 (en) Liquid crystal aligning agent and in-plane switching mode liquid crystal display
JP2013101303A (en) Liquid crystal aligning agent, liquid crystal aligned film and liquid crystal display element
JP5751403B2 (en) Liquid crystal alignment agent
KR101748250B1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display device
JP5741593B2 (en) Method for producing liquid crystal alignment film and method for producing liquid crystal display element
TWI582147B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display
JP2009198739A (en) Liquid crystal aligning agent and liquid crystal display
KR101809990B1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
JP5655507B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5057052B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP4978434B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP2009075140A (en) Liquid crystal aligning agent and liquid crystal display element
JP2013101304A (en) Liquid crystal aligning agent, liquid crystal aligned film and liquid crystal display element
JP2012173453A (en) Liquid crystal aligning agent and liquid crystal display element
JP5832847B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP6079210B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, polymer and compound
JP5832846B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP5057062B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012540732

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127033627

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835956

Country of ref document: EP

Kind code of ref document: A1