WO2012056581A1 - Operating capacity management system for energy-supplying devices - Google Patents

Operating capacity management system for energy-supplying devices Download PDF

Info

Publication number
WO2012056581A1
WO2012056581A1 PCT/JP2010/069370 JP2010069370W WO2012056581A1 WO 2012056581 A1 WO2012056581 A1 WO 2012056581A1 JP 2010069370 W JP2010069370 W JP 2010069370W WO 2012056581 A1 WO2012056581 A1 WO 2012056581A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy supply
supply device
expected value
operation plan
predetermined
Prior art date
Application number
PCT/JP2010/069370
Other languages
French (fr)
Japanese (ja)
Inventor
道樹 中野
鮫嶋 茂稔
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2010/069370 priority Critical patent/WO2012056581A1/en
Priority to JP2012540634A priority patent/JPWO2012056581A1/en
Publication of WO2012056581A1 publication Critical patent/WO2012056581A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Definitions

  • the present invention relates to an operating capacity management system for an energy supply device.
  • Patent Document 1 In the prior art, in an integrated maintenance management system that collects data (plant data or inspection data) from a plurality of devices and manages each data in an integrated manner, an optimum operation schedule (according to plant conditions) ( (Operation plan) is formulated (Patent Document 1). Thereby, in the prior art, it is possible to create an operation plan for giving priority to the operation of a device having high processing performance or giving priority to the operation of a device that is expected to save energy. Furthermore, in the prior art, it is possible to create an operation plan for leveling the operation time of each device that performs the scheduled operation.
  • an energy supply device with high processing performance or an energy supply device that can be expected to save energy can be operated with priority over other energy supply devices.
  • the operation status of the energy supply device is biased.
  • the old energy supply device must also bear the output of the new energy supply device. Even if the required total output is within the rated output of the old energy supply device, the energy consuming device cannot be operated unless the performance expected by the old energy supply device is exhibited.
  • the old energy supply device is deteriorated due to the installation environment or aging, and a situation where it can operate at a low output but cannot operate at a high output may occur. Even if the maintenance work of the old energy supply device is performed, it is difficult to grasp whether or not such a deterioration state exists.
  • an object of the present invention is to provide an operating capability management system for an energy supply device that can confirm and manage the actual operating capability of the energy supply device.
  • an operation capability management system for an energy supply apparatus includes an operation result management unit that manages operation results of a plurality of energy supply apparatuses that supply energy according to an operation plan, and each energy supply apparatus.
  • Each energy supply is based on the expected value management unit that manages the expected value indicating the expected operating capacity, each operation result managed by the operation result management unit, and each expected value managed by the expected value management unit
  • An extraction unit that extracts a predetermined energy supply device having an operation result lower than an expected value from among the devices, and an operation plan is corrected so that the extracted predetermined energy supply device is operated at or above the expected value.
  • a correction unit is provided.
  • the correction unit further selects a backup energy supply device from each of the energy supply devices and prepares for the case where the predetermined energy supply device does not exhibit an operation capability that exceeds the expected value. It can also be included in the operation plan to have the energy supply device stand by.
  • the extraction unit detects a lower limit value of the operation capability of the predetermined energy supply device based on an expected value and an operation result of the predetermined energy supply device, and uses the lower limit value as a guaranteed value of the operation capability of the predetermined energy supply device. It outputs to a correction part, and a correction part may correct an operation plan in consideration of a guarantee value of a predetermined energy supply device.
  • FIG. 1 is a hardware configuration diagram of the entire system including an operation capability management apparatus.
  • FIG. 2 is an explanatory diagram showing various data stored in the storage device of the operating capacity management device.
  • FIG. 3 is an explanatory diagram illustrating functions of the operating capability guarantee device.
  • FIG. 4 is a configuration diagram of data for managing the operation history.
  • FIG. 5 is a configuration diagram of data for managing an expected value of the energy supply apparatus.
  • FIG. 6 is a configuration diagram of data for managing the operation guarantee value.
  • FIG. 7 is a configuration diagram of data for managing the date and time when the expected value is output.
  • FIG. 8 is a configuration diagram of device master data.
  • FIG. 9 is a configuration diagram of data for managing the number of test standby times.
  • FIG. 10 is a block diagram showing a functional configuration of the system.
  • FIG. 10 is a block diagram showing a functional configuration of the system.
  • FIG. 11 is a flowchart showing processing for monitoring operation history data.
  • FIG. 12 is a flowchart illustrating processing for confirming an expected value.
  • FIG. 13 is a flowchart showing processing for correcting an operation plan.
  • FIG. 14 is a schematic diagram showing how the operation plan is corrected.
  • FIG. 15 is a schematic diagram showing another state of correcting the operation plan.
  • the energy supply device to be inspected is incorporated into the operation plan, and a test operation is performed, and the operation capability that the energy supply device can actually exhibit is confirmed.
  • the operation capability that the energy supply device can actually exhibit is confirmed.
  • FIG. 1 shows an overall configuration of an energy supply system including an operation capability guarantee device 100 as an “operation capability management device”.
  • This system includes, for example, an operation capability guarantee device 100, an operation plan creation device 200, a centralized control device 300, a device maintenance management device 400, a plurality of energy supply devices 500, and one or more energy consumption devices 600. Is provided.
  • Communication network 700 may be configured as either wired or wireless.
  • the energy supply device 500 is a device that outputs electrical energy, such as a gas turbine generator, a storage battery, a solar panel, and a wind power generator.
  • the energy consuming apparatus 600 consumes electric energy, for example, various production facilities provided in a production line of a factory or various facilities of a building.
  • the energy supply device 500 and the energy consumption device 600 are connected by an energy supply system 800 in a wired manner, and the electric energy output from the energy supply device 500 is consumed by the energy consumption device 600.
  • the operation capability guarantee device 100 is a device that guarantees the operation capability expected of each energy supply device 500.
  • the operation capability guarantee device 100 accumulates and manages operation result data of each energy supply device 500 and information on the operation capability expected from each energy supply device 500.
  • the operating capability guarantee device 100 provides various information to other devices such as a system administrator or an energy manager, an operation plan creation device 200, a centralized control device 300, and the like.
  • Various types of information stored in the operation capability guarantee device 100 are provided through the input / output device 104 or the communication device 105.
  • the operating capability guarantee device 100 is configured as a computer system including, for example, a storage device 101, a CPU 102, a memory 103, an input / output device 104, and a communication device 105.
  • the storage device 101 stores various management data 1010, 1011, 1012, 1013, 1014, and 1015, which will be described later with reference to FIG. 2, and a predetermined computer program.
  • functions 1000, 1001, and 1002 described later with reference to FIG. 3 are realized.
  • the operation plan creation device 200 creates an operation plan for the energy supply device 500 within a predetermined period based on the energy demand from the energy consumption device 600, the operation cost of the energy supply device 500, and the like.
  • the operation plan can be created regularly or irregularly.
  • the central control device 300 controls the operation status of the energy supply device 500 based on the information from the operation capability guarantee device 100 and the information from the operation plan creation device 200.
  • the device maintenance management device 400 accumulates and manages the master information and operation results of the energy supply device 500 and the master information and operation results of the energy consumption device 600.
  • the device maintenance management device 400 estimates the deterioration status of the various devices 500 and 600 and creates a maintenance plan.
  • the energy supply device 500 is a device for outputting electrical energy, such as a micro gas turbine generator, a solar power generator, a wind power generator, or the like.
  • the energy supply device 500 includes a control device 501.
  • the control device 501 controls the operating status of the energy supply device 500.
  • the control device 501 adjusts the output of the energy supply device 500, connects the energy supply device 500 and the energy supply system 800, and releases the connection.
  • the control device 501 may be built in the energy supply device 500, or may be detachably attached to the outside of the energy supply device 500.
  • the control device 501 receives the control command from the central control device 300 and controls the energy supply device 500 according to the control command.
  • the control device 501 measures the operating status of the energy supply device 500, and sends the measurement result, the measurement date and time, and the device ID for identifying the energy supply device 500 to be measured via the network 700 to the operation capability guarantee device. 100, the central control apparatus 300, and the apparatus maintenance management apparatus 400.
  • FIG. 2 shows data stored in the storage device 101.
  • the storage device 101 holds, for example, operation history data 1010, device expected value data 1011, operation guaranteed value data 1012, expected value output date / time data 1013, device master data 1014, and device test standby frequency data 1015. .
  • the operation history data 1010 constitutes an “operation result management unit” together with the operation history data management unit 1000 (FIG. 3).
  • the operation history data 1010 holds an operation history of the energy supply device 500 measured by the control device 501.
  • the configuration of the operation history data 1010 is shown in FIG.
  • the device expected value data 1011 as the “expected value management unit” holds information related to the operation capability expected from the energy supply device 500. For example, when the energy supply device 500 is a micro gas turbine generator and its rated maximum output power is 100 kW, the operating capacity expected for the energy supply device 500 is an output voltage of 100 kW. The expected operating capability may be output voltage or output current in addition to output power.
  • the configuration of the device expected value data 1011 is shown in FIG.
  • the operation guarantee value data 1012 as “the lower limit value of the operation capability” holds the maximum value of the latest operation history data of the energy supply device 500.
  • the data items to be retained are the same items as those set in the device expected value data 1011.
  • the latest operation history data means data from the last date and time when the energy supply apparatus 500 operates at an output equal to or higher than the expected value indicated in the apparatus expected value data 1011 to the present time.
  • the configuration of the operation guarantee value data 1012 is shown in FIG.
  • the expected value output date and time data 1013 as the “predetermined date and time management unit” holds the latest date and time when the energy supply device 500 has been operated with an output greater than or equal to the expected value indicated in the device expected value data 1011.
  • the configuration of the expected value output date / time data 1013 is shown in FIG.
  • the device master data 1014 holds information related to the energy supply device 500.
  • the device master data 1014 holds, for example, an output class classified by the type or output size of the energy supply device 500, specifications such as a rated maximum output, an ID for identifying the energy supply device, and the like.
  • the configuration of the device master data 1014 is shown in FIG.
  • the apparatus test standby frequency data 1015 as the “standby frequency management unit” holds the number of times that the energy supply apparatus 500 having a low operation rate has not been tested.
  • a predetermined energy supply device 500 is selected as an object to be inspected for operating capability.
  • the selected energy supply apparatus 500 is included in the operation plan and is operated for test.
  • the apparatus test standby frequency data 1015 holds the number of times that the operation plan has been executed without the energy supply apparatus 500 being tested. That is, the device test standby frequency data 1015 holds the number of times that the device test standby frequency data 1015 was not incorporated into the operation plan.
  • the apparatus test standby frequency data 1015 also holds the importance in the energy supply system 800 of each energy supply apparatus 500.
  • the importance level indicates the magnitude of the influence on the energy supply system 800 when the energy supply apparatus 500 stops. The greater the impact, the greater the importance.
  • the importance of the energy supply device 500 responsible for the operation of the energy consuming device (medical device) related to human life is increased.
  • the importance of the energy supply device 500 that is in charge of power for the production line of the main product is also increased.
  • the configuration of the apparatus test standby frequency data 1015 is shown in FIG.
  • FIG. 3 shows a functional configuration of the operation capability guarantee device 100.
  • the operation capability guarantee device 100 includes an operation history data monitoring unit 1000, a device expected value confirmation unit 1001, and an operation plan correction unit 1002.
  • Each of these functions 1000, 1001, and 1002 is realized by executing a predetermined computer program (not shown) stored in the storage device 101 by the microprocessor 102.
  • the operation history data monitoring unit 1000 has a function of collecting an operation history of each energy supply device 500 from the operation history data 1010 and outputting the operation history to the device expected value confirmation unit 1001.
  • the operation history data monitoring unit 1000 starts its operation when the operation plan creation device 200 creates an operation plan.
  • the processing flow of the operation history data monitoring unit 1000 is shown in FIG.
  • the device expected value confirmation unit 1001 acquires the operation history of each energy supply device 500 from the operation history data monitoring unit 1000 and does not match the conditions held in the device expected value data 1011 and has a low operation rate. With the ability to extract The energy supply device 500 with a low operating rate is an example of a “predetermined energy supply device”.
  • the device expected value confirmation unit 1001 outputs the extraction result to the operation plan correction unit 1002.
  • the processing flow of the device expected value confirmation unit 1001 is shown in FIG.
  • the operation plan correction unit 1002 acquires a list of energy supply devices 500 having a low operation rate from the device expected value confirmation unit 1001. Furthermore, the operation plan correction unit 1002 acquires the expected value set in the device expected value data 1011 of the energy supply device 500.
  • the operation plan correction unit 1002 performs an operation created by the operation plan creation device 200 so that the energy supply device 500 shown in the list is tested and a backup of the energy supply device 500 to be tested is prepared. Has the ability to modify the plan. That is, the operation plan correction unit 1002 corrects the operation plan so that the energy supply apparatus 500 to be inspected can be tested in an environment where a backup is prepared.
  • the processing flow of the operation plan correction unit 1002 is shown in FIG.
  • FIG. 4 shows a configuration example of the operation history data 1010.
  • the operation history data 1010 includes, for example, date and time 1010a, device ID 1010b, voltage 1010c, current 1010d, active power 1010e, and reactive power 1010f.
  • the date and time 1010a the date and time when the control device 501 measures data is set.
  • the device ID 1010b an ID for uniquely identifying each energy supply device 500 is set.
  • the voltage 1010c, the current 1010d, the active power 1010e, and the reactive power 1010f the result of the control device 501 measuring those values is set.
  • FIG. 5 shows a configuration example of the device expected value data 1011.
  • the expected device value data 1011 includes, for example, a device type 1011a, a device class 1011b, a low operation period 1011c, and an expected output 1011d.
  • the type of energy supply device 500 is set in the device type 1011a.
  • the apparatus type 1011a may be set to MGT or the like.
  • a value representing the output class of the device is set in the device class 1011b. For example, when the maximum output power is 100 kW, the device class is set to “B”, and when the maximum output voltage is 200 kW, the device class is set to “A”. .
  • a threshold for extracting an energy supply device with a low operation rate is set.
  • the threshold corresponds to a “time threshold”. For example, when the operation history data of a certain energy supply device 500 does not satisfy the condition (expected value) indicated by the expected output 1011d during the low operation period 1011c, the energy supply device 500 has energy with a low operation rate. It is determined that it is a supply device.
  • FIG. 6 shows a configuration example of the operation guarantee value data 1012.
  • the guaranteed operation value data 1012 includes, for example, a device ID 1012a, a guaranteed value 1012b, and a guaranteed item 1012c.
  • An identifier (ID) for uniquely identifying each energy supply device 500 is set in the device ID 1012a.
  • the maximum output value of the operation history data 1010 of the energy supply apparatus 500 is set.
  • the operation history data 1010 that is a target for guaranteed value extraction is operation history data from the last date and time when the energy supply device 500 was operated with an output that is equal to or higher than the expected value indicated in the device expected value data 1011 to the present time.
  • the name of the data item that is the target of the guaranteed value is set.
  • the guaranteed item 1012c is set as active power or the like.
  • the value set in the guarantee item 1012c is assumed to be the same value as the item set in the expected output 1011d of the device expected value data 1011.
  • an output value that can be output by each energy supply device 500 can be guaranteed. Since the operation plan can be created or modified based on values that can actually be output, the safety of the energy supply system can be maintained.
  • FIG. 7 shows a configuration example of the expected value output date / time data 1013.
  • the expected value output date / time data 1013 includes, for example, a device ID 1013a and a date / time 1013b.
  • the device ID 1013a an ID for uniquely identifying each energy supply device 500 is set.
  • the date and time 1013b the latest date and time when the energy supply device 500 has been operated with the expected output indicated in the device expected value data 1011 is set.
  • the operation history data monitoring unit 1000 does not need to check all the operation history data of the energy supply device 500 from the beginning, and only checks the operation history data after the date / time 1013b. That's it. Therefore, the processing load of the operation history data monitoring unit 1000 can be reduced.
  • FIG. 8 shows a configuration example of the device master data 1014.
  • the device master data 1014 includes, for example, a device ID 1014a, a device type 1014b, a device class 1014c, and a device specification 1014d.
  • the device ID 1014a an ID for uniquely identifying the energy supply device 500 is set.
  • the type of energy supply device 500 is set in the device type 1014b.
  • the device type 1014b may be set to MGT or the like.
  • a value representing the output class of the energy supply device 500 is set. For example, when the maximum output power is 100 kW, the device class 1014c is set to “B”, and when the maximum output voltage is 200 kW, each energy supply device 500 is output so that the device class is set to “A”. You may classify according to.
  • the specification of the energy supply device 500 is set. For example, when the rated maximum output power of the energy supply device 500 is 200 kW, “maximum output power 200 kW” may be set.
  • FIG. 9 shows a configuration example of the device test standby frequency data 1015.
  • the device test standby frequency data 1015 includes, for example, a device ID 1015a, a test standby frequency 1015b, and an importance 1015c.
  • the device ID 1015a an ID for uniquely identifying each energy supply device 500 is set.
  • the test standby count 1015b is set to the number of times that the operation plan is executed without performing the test operation while the operation rate of the energy supply device 500 is low. That is, the test standby frequency 1015b stores the number of times that the energy supply device 500 having a low operation rate is not included in the operation plan.
  • the importance level 1015c the importance level in the energy supply system of the energy supply apparatus 500 is set.
  • the operation plan can be corrected more appropriately by using the device test standby frequency data 1015 described above. For example, when a plurality of energy supply devices 500 to be tested are found, the energy supply device 500 having the higher standby frequency or the higher importance can be selected as a test operation target and included in the operation plan. .
  • FIG. 10 is an explanatory diagram schematically showing the system of this embodiment. The overall flow of this system will be described first with reference to FIG. Details of each process will be described with reference to FIGS.
  • the operation plan creation device 200 creates an operation plan 201 for satisfying the energy demand by each energy consuming device 600.
  • the operation plan 201 is created every predetermined period (for example, every 24 hours).
  • the operation plan 201 describes a plan such as which energy supply device 500 is to be operated with what capacity for each minimum management unit constituting the predetermined period (for example, every hour).
  • the centralized control device 300 outputs a control command to each energy supply device 500 according to the operation plan 201 and controls its operation.
  • Each energy supply device 500 operates according to a control instruction from the central control device 300 and outputs electrical energy.
  • the apparatus maintenance management apparatus 400 monitors the deterioration state of each energy supply apparatus 500 and each energy consumption apparatus 600.
  • the operating status of each energy supply device 500 is measured by a sensor such as a voltage sensor or a current sensor and stored in the operating history data 1010.
  • the operation history data monitoring unit 1000 extracts, as operation history data to be checked, operation history data after the latest date and time output above the expected value from the operation history data of each energy supply device 500.
  • the operation history data monitoring unit 1000 outputs the extracted operation history data to the device expected value confirmation unit 1001.
  • the device expected value confirmation unit 1001 compares the operation history data acquired from the operation history data monitoring unit 1000 with the device expected value data 1001 to determine the maximum output value that each energy supply device 500 can actually output. Detected as a guaranteed value. That is, the guaranteed value is a lower limit value that can be guaranteed as a value that can be output from the energy supply device 500.
  • the device expected value confirmation unit 1001 stores the detected guaranteed value in the operation guaranteed value data 1012.
  • the operation plan correction unit 1002 selects one or a plurality of energy supply devices 500 to be inspected from the energy supply devices 500 included in the system. When there are a plurality of energy supply devices 500 to be inspected, the operation plan correction unit 1002 selects the energy supply device 500 to be tested in the operation plan based on the number of test standby times and / or importance.
  • the operation plan correction unit 1002 causes the energy supply apparatus 500 to be inspected to be included in the operation plan so that it can operate at the expected value or more. Further, the operation plan correcting unit 1002 selects the backup energy supply device 500 and includes it in the operation plan in case the energy supply device 500 to be inspected can exhibit only an operation capability less than the expected value.
  • the operation plan correction unit 1002 selects the energy supply device 500 whose operation capability is to be checked, and includes the energy supply device 500 in the next operation plan.
  • the operation plan correction unit 1002 corrects the operation plan so that the energy supply device 500 is operated at an expected value or more, and further adds the energy supply device 500 serving as a backup of the energy supply device 500 to the operation plan.
  • FIG. 11 shows a processing flow of the operation history data monitoring unit 1000.
  • the operation history data monitoring unit 1000 may be abbreviated as the monitoring unit 1000 in some cases.
  • Step is abbreviated as “S”.
  • the monitoring unit 1000 acquires a device ID list of the energy supply device 500 from the device master data 1014 (S10).
  • the monitoring unit 1000 acquires, from the expected value output date / time data 1013, the latest date / time operated with the expected output for each device ID acquired in S10 (S11).
  • the monitoring unit 1000 acquires operation history data after the expected value output date acquired in S11 from the operation history data 1010 for each device ID acquired in S10 (S12).
  • the monitoring unit 1000 associates the operation history data acquired in S12 and the device ID, and outputs them to the device expected value confirmation unit 1001 (S13).
  • FIG. 12 shows a processing flow of the device expected value confirmation unit 1001.
  • the device expected value confirmation unit 1001 may be abbreviated as the confirmation unit 1001 in some cases.
  • the confirmation unit 1001 acquires device expected value data from the device expected value data 1011 for each device ID acquired from the operation history data monitoring unit 1000, using the device type and device class as keys (S20).
  • the confirmation unit 1001 repeats the processing of S22, S23, or S24 by the number of device IDs acquired from the operation history data monitoring unit 1000 (S21).
  • the confirmation unit 1001 determines whether the operation history data acquired from the operation history data monitoring unit 1000 does not match the condition (expected value) set in the expected output 1011d of the device expected value data acquired in S20 (S22). ).
  • the active power 1010e for the operation history data related to the device ID Is not 100 kW or more, that is, whether there is data having an active power of less than 100 kW.
  • the confirmation unit 1001 acquires the maximum value of the items set in the expected output 1011d among the target operation history data, and stores the maximum value in the memory in association with the device ID. Furthermore, the confirmation unit 1001 registers the device ID, the maximum value, and the above items in the operation guarantee value data 1012 (S23). In other words, when the confirmation unit 1001 finds an energy supply device 500 that does not exhibit performance exceeding the expected value, the confirmation unit 1001 sets the maximum value actually output by the energy supply device 500 as a guaranteed value in the operation guaranteed value data 1012. Let me register.
  • the confirmation unit 1001 registers the value of the latest date and time in the expected value output date and time data 1013 together with the device ID of the operation history data that matches the expected value condition.
  • the above processing is repeated for the number of device IDs acquired from the operation history data monitoring unit 1000.
  • the confirmation unit 1001 outputs the device ID, the maximum value, and a list of the items held on the memory 103 in S23 to the operation plan correction unit 1002 (S25).
  • the energy supply device 500 that has not been operated for a predetermined period or more with an expected output can be specified as a device to be inspected. Thereby, as will be described later, the operation plan can be corrected so that the specified energy supply apparatus 500 operates at an expected output.
  • FIG. 13 shows a processing flow of the operation plan correction unit 1002.
  • the correction unit 1002 may be abbreviated.
  • the correction unit 1002 acquires an operation plan from the operation plan creation device 200 (S30).
  • the correcting unit 1002 divides the acquired operation plan into minimum time units, and repeatedly executes the processes of S32 to S36 for each minimum time. For example, when the operation plan created by the operation plan creation unit 200 is a plan for one day (24 hours) every hour unit, the number of divisions in S31 is 24.
  • the correction unit 1002 determines whether or not the demand of the energy consuming apparatus 600 assumed by the acquired operation plan (hereinafter also referred to as total demand) can be satisfied only by the normal operation apparatus (S32).
  • the normal operation device means a device that is not determined to be an energy supply device having a low operation rate by the device expected value confirmation unit 1001 among the energy supply devices 500. In other words, it is an energy device that always exhibits an operating capacity that is greater than or equal to the expected value. For convenience, an energy supply device with a low operating rate may be referred to as a low operating device.
  • the low operation device is an energy supply device 500 to be inspected, and corresponds to a “predetermined energy supply device”.
  • the correction unit 1002 determines whether the total output value of the normally operating device is 600 kW or more.
  • the output value at which the normally operating device can operate can be acquired from the expected output 1011d of the device expected value data 1011.
  • the correction unit 1002 corrects the operation plan so that the low operation device operates with the value set in the expected output 1011d of the device expected value data 1011 (S33). Further, the correction unit 1002 corrects the operation plan so that the normal operation device can be operated at any time with the normally operating device in a standby state (S33). This is to prevent a situation in which the low operating device cannot exhibit an operating capacity higher than the expected value and the energy demand cannot be satisfied.
  • the correction unit 1002 acquires the guaranteed value 1012b from the guaranteed operating value data 1012 for the low operating device.
  • the correction unit 1002 searches for a selection pattern of the low operating device in which the sum of the output value of the normal operating device and the operation guarantee value of the low operating device can satisfy the total demand (S34).
  • the correction unit 1002 determines whether or not there is a low operation device whose output is 0 in the pattern (S35).
  • the low operation device whose output is 0 is an energy device that does not need to be operated, and is an energy supply device that can be selected as an inspection target.
  • the correction unit 1002 refers to the device test standby frequency data 1015 for each candidate energy supply device.
  • the correction unit 1002 gives priority to a pattern in which an energy supply device having a large value of the test standby count 1015b is selected.
  • the correction unit 1002 gives priority to the pattern in which the energy supply device having the large importance 1015c value is selected. If all the low operating devices are necessary to satisfy the total demand, the process proceeds to the next iterative process. This is because the system does not have enough room for test operation.
  • the correction unit 1002 corrects the operation plan so that the energy supply device (low operation device) whose output is 0 operates with the value set in the expected output 1011d of the device expected value data 1011 (S36).
  • the correction unit 1002 selects a normal operation device for backing up the low operation device, and corrects the operation plan so that the normal operation device is put on standby.
  • the above processes S32 to S36 are performed for all time units.
  • the correction unit 1002 increases the value of the test standby frequency 1015b of the device test standby frequency data 1015 by one for the low operation device that could not be operated in the test in the above operation plan correction (S37).
  • the correction unit 1002 updates the value of the test standby count 1015b to 0 for the low operation device incorporated in the corrected operation plan (S37).
  • the correction unit 1002 outputs the corrected operation plan to the central control apparatus 300 (S38).
  • the operation capability assurance device 100 can actually operate the energy supply device with a low operation rate, and set a predetermined testable timing at which the normal operation device can be put on standby as a backup. Find out in the inside.
  • the operation capability guarantee device 100 corrects the operation plan so that the energy supply device having a low operation rate operates at an expected output at the inspectable timing. Thereby, the capability (guaranteed value) of the operation capability can be confirmed while appropriately operating an energy supply device having a low operation rate. Therefore, it is not necessary to stop the system and test each energy supply device 500 individually, and the reliability of the energy supply system can be maintained without stopping the system.
  • FIG. 14 schematically shows how the operation plan is corrected. Assume that there are four energy supply devices (# 1- # 4) as shown in FIG. For convenience of explanation, it is assumed that the expected value EP of each energy supply device is the same.
  • the three energy supply devices (# 1- # 3) are normal operation devices that exhibit an operation capability that exceeds the expected value.
  • the guaranteed value GP1 of the normally operating device (# 1- # 3) is equal to the expected value EP.
  • the remaining energy supply device (# 4) is a low operating device, and its guaranteed value GP2 is smaller than the expected value EP.
  • ⁇ P be the difference between the expected value EP and the guaranteed value GP2.
  • the total demand is satisfied with only two normal operation devices (# 1, # 2).
  • the total energy demand is indicated by a thick black frame.
  • the energy supply devices (# 3, # 4) indicated by dotted lines in the figure are stopped.
  • the total demand is satisfied by one normal operation device (# 1) and one low operation device (# 4).
  • one normal operation device (# 2) stands by as a backup device.
  • the low operation device (# 4) to be inspected is operated at or above its expected value. Then, the actual output value of the low operating device (# 4) is stored as the guaranteed value GP2. In the unlikely event that the output of the low operation device (# 4) is low and the total demand cannot be met, the backup normal operation device (# 2) immediately operates and supplies energy.
  • FIG. 15 shows another example in which the operation plan is corrected.
  • FIG. 15A it is assumed that there are four energy supply devices (# 1- # 4) having the same expected value EP.
  • FIG. 15B two of the four energy supply devices (# 1, # 2) are normal operation devices, and the other two are low operation devices (# 3, # 4). Suppose there is.
  • the energy demand is satisfied by two normal operation devices (# 1, # 2) and one low operation device (# 3). It has become. That is, since the demand is large, the demand cannot be satisfied only by the normal operation devices (# 1, # 2). In this case, the low operating device (# 3) is used with its guaranteed value GP2.
  • the modified operation plan OP4 As shown in FIG. 15 (d), in the modified operation plan OP4, other low operation devices (# 4) are included in the operation plan as inspection targets and set to operate at or above the expected value.
  • the normal operation device (# 2) stands by as a backup of the low operation device (# 4) to be inspected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

While actually operating energy-supplying devices within this system, the operating capacities thereof are checked and managed. An extraction unit (1001) extracts a device to be inspected from among energy-supplying devices (500) on the basis of operation results managed by an operation result management unit (1000, 1010) and respective expected values managed by an expected value management unit (1011). A revision unit (1002) revises an operation plan (201) so that the extracted device operates at the expected value thereof or better. A backup device for the device to be inspected is also added to the revised operation plan.

Description

エネルギ供給装置の稼働能力管理システムEnergy supply system operating capacity management system
 本発明は、エネルギ供給装置の稼働能力管理システムに関する。 The present invention relates to an operating capacity management system for an energy supply device.
 近年、電力供給システムのようなエネルギ供給システムに関する分野において、センサを用いてエネルギ供給装置の稼働状態をセンシングし、センシングデータを活用してエネルギ供給装置の運転計画を作成する技術が検討されている。 In recent years, in the field related to an energy supply system such as a power supply system, a technique for sensing an operation state of the energy supply apparatus using a sensor and creating an operation plan of the energy supply apparatus using the sensing data has been studied. .
 従来技術では、複数の機器からデータ(プラントデータまたは点検データ)を収集し、各データを統合的に管理する統合維持管理システムにおいて、上記データを基に、プラント状況に応じた最適な運転スケジュール(運転計画)を策定する(特許文献1)。これにより、従来技術では、処理性能が高い装置の稼動を優先させたり、省エネルギが期待される装置の稼動を優先させたりするための運転計画を作成できる。さらに、従来技術では、スケジュール運転を行う各装置の運転時間を平準化させるための運転計画を作成することもできる。 In the prior art, in an integrated maintenance management system that collects data (plant data or inspection data) from a plurality of devices and manages each data in an integrated manner, an optimum operation schedule (according to plant conditions) ( (Operation plan) is formulated (Patent Document 1). Thereby, in the prior art, it is possible to create an operation plan for giving priority to the operation of a device having high processing performance or giving priority to the operation of a device that is expected to save energy. Furthermore, in the prior art, it is possible to create an operation plan for leveling the operation time of each device that performs the scheduled operation.
特開2009‐157624号公報JP 2009-157624 A
 従来技術では、処理性能の高いエネルギ供給装置、または、省エネルギが期待できるエネルギ供給装置を他のエネルギ供給装置に優先させて稼働させることができる。その反面、エネルギ供給装置の稼働状況に偏りが出てくる。 In the prior art, an energy supply device with high processing performance or an energy supply device that can be expected to save energy can be operated with priority over other energy supply devices. On the other hand, the operation status of the energy supply device is biased.
 例えば、定格出力電力は同等だが、応答性能または省エネルギ効果等に優れた新型エネルギ供給装置と、それらが劣る旧型エネルギ供給装置とが複数混在する環境を考える。このような性能の異なる新旧のエネルギ供給装置が混在する環境下では、新型エネルギ供給装置の稼働率が高くなり、旧型エネルギ供給装置の稼働率が低くなるという状況が発生しうる。 For example, consider an environment in which a plurality of new energy supply devices with the same rated output power but excellent response performance or energy saving effect and old energy supply devices with inferior ones are mixed. Under such an environment where old and new energy supply devices having different performances coexist, a situation may occur in which the operation rate of the new energy supply device increases and the operation rate of the old energy supply device decreases.
 もしも、新型エネルギ供給装置が調子不良またはメンテナンスにより稼働できなくなると、旧型エネルギ供給装置が新型エネルギ供給装置分の出力も負担する必要がある。必要とされる合計出力が、旧型エネルギ供給装置の定格出力内であったとしても、旧型エネルギ供給装置が期待される性能を発揮できないと、エネルギ消費装置を稼働させることができない。 If the new energy supply device cannot be operated due to malfunction or maintenance, the old energy supply device must also bear the output of the new energy supply device. Even if the required total output is within the rated output of the old energy supply device, the energy consuming device cannot be operated unless the performance expected by the old energy supply device is exhibited.
 何故なら、設置環境または経年によって旧型エネルギ供給装置が劣化しており、低出力では動作可能だが高出力では動作できない状況が発生しうるためである。旧型エネルギ供給装置のメンテナンス作業をしたとしても、そのような劣化状態になっているか否かを把握するのは難しい。 This is because the old energy supply device is deteriorated due to the installation environment or aging, and a situation where it can operate at a low output but cannot operate at a high output may occur. Even if the maintenance work of the old energy supply device is performed, it is difficult to grasp whether or not such a deterioration state exists.
 そこで、本発明の目的は、エネルギ供給装置の実際の稼働能力を確認して管理することができるエネルギ供給装置の稼働能力管理システムを提供することにある。 Accordingly, an object of the present invention is to provide an operating capability management system for an energy supply device that can confirm and manage the actual operating capability of the energy supply device.
 上記課題を解決すべく、本発明に係るエネルギ供給装置の稼働能力管理システムは、運転計画に従ってエネルギを供給する複数のエネルギ供給装置の稼働実績を管理する稼働実績管理部と、各エネルギ供給装置に期待されている稼働能力を示す期待値を管理する期待値管理部と、稼働実績管理部により管理される各稼働実績と期待値管理部により管理される各期待値とに基づいて、各エネルギ供給装置の中から、期待値よりも稼働実績の方が低い所定のエネルギ供給装置を抽出する抽出部と、抽出された所定のエネルギ供給装置をその期待値以上で作動させるように運転計画を修正する修正部と、を備える。 In order to solve the above-described problems, an operation capability management system for an energy supply apparatus according to the present invention includes an operation result management unit that manages operation results of a plurality of energy supply apparatuses that supply energy according to an operation plan, and each energy supply apparatus. Each energy supply is based on the expected value management unit that manages the expected value indicating the expected operating capacity, each operation result managed by the operation result management unit, and each expected value managed by the expected value management unit An extraction unit that extracts a predetermined energy supply device having an operation result lower than an expected value from among the devices, and an operation plan is corrected so that the extracted predetermined energy supply device is operated at or above the expected value. A correction unit.
 修正部は、さらに、所定のエネルギ供給装置がその期待値以上の稼働能力を発揮しない場合に備えて、各エネルギ供給装置の中からバックアップ用のエネルギ供給装置を選択し、選択されたバックアップ用のエネルギ供給装置を待機させるように運転計画に含めることもできる。 The correction unit further selects a backup energy supply device from each of the energy supply devices and prepares for the case where the predetermined energy supply device does not exhibit an operation capability that exceeds the expected value. It can also be included in the operation plan to have the energy supply device stand by.
 抽出部は、所定のエネルギ供給装置の期待値及び稼働実績に基づいて、所定のエネルギ供給装置の稼働能力の下限値を検出し、その下限値を所定のエネルギ供給装置の稼働能力の保証値として修正部に出力し、修正部は、所定のエネルギ供給装置の保証値を考慮して、運転計画を修正してもよい。 The extraction unit detects a lower limit value of the operation capability of the predetermined energy supply device based on an expected value and an operation result of the predetermined energy supply device, and uses the lower limit value as a guaranteed value of the operation capability of the predetermined energy supply device. It outputs to a correction part, and a correction part may correct an operation plan in consideration of a guarantee value of a predetermined energy supply device.
図1は、稼働能力管理装置を含むシステム全体のハードウェア構成図。FIG. 1 is a hardware configuration diagram of the entire system including an operation capability management apparatus. 図2は、稼働能力管理装置の記憶装置に記憶されている各種データを示す説明図。FIG. 2 is an explanatory diagram showing various data stored in the storage device of the operating capacity management device. 図3は、稼働能力保証装置の機能を示す説明図。FIG. 3 is an explanatory diagram illustrating functions of the operating capability guarantee device. 図4は、稼働履歴を管理するデータの構成図。FIG. 4 is a configuration diagram of data for managing the operation history. 図5は、エネルギ供給装置の期待値を管理するデータの構成図。FIG. 5 is a configuration diagram of data for managing an expected value of the energy supply apparatus. 図6は、稼働保証値を管理するデータの構成図。FIG. 6 is a configuration diagram of data for managing the operation guarantee value. 図7は、期待値が出力された日時を管理するデータの構成図。FIG. 7 is a configuration diagram of data for managing the date and time when the expected value is output. 図8は、装置マスタデータの構成図。FIG. 8 is a configuration diagram of device master data. 図9は、テスト待機回数を管理するデータの構成図。FIG. 9 is a configuration diagram of data for managing the number of test standby times. 図10は、システムの機能構成を示すブロック図。FIG. 10 is a block diagram showing a functional configuration of the system. 図11は、稼働履歴データを監視する処理を示すフローチャート。FIG. 11 is a flowchart showing processing for monitoring operation history data. 図12は、期待値を確認する処理を示すフローチャート。FIG. 12 is a flowchart illustrating processing for confirming an expected value. 図13は、運転計画を修正する処理を示すフローチャート。FIG. 13 is a flowchart showing processing for correcting an operation plan. 図14は、運転計画を修正する様子を示す模式図。FIG. 14 is a schematic diagram showing how the operation plan is corrected. 図15は、運転計画を修正する他の様子を示す模式図。FIG. 15 is a schematic diagram showing another state of correcting the operation plan.
 以下、図面に基づいて、本発明の実施の形態を説明する。本実施形態では、以下に詳述するように、検査対象となるエネルギ供給装置を運転計画に組み込んでテスト稼働させながら、そのエネルギ供給装置が実際に発揮可能な稼働能力を確認する。これにより、例えば、旧型のエネルギ供給装置の稼働能力が期待値を下回って、エネルギ需要を満たすことができない、といった問題が発生するのを防止することができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, as will be described in detail below, the energy supply device to be inspected is incorporated into the operation plan, and a test operation is performed, and the operation capability that the energy supply device can actually exhibit is confirmed. Thereby, for example, it is possible to prevent a problem that the operating capacity of the old-type energy supply apparatus is below an expected value and the energy demand cannot be satisfied.
 図1は、「稼働能力管理装置」としての稼働能力保証装置100を含むエネルギ供給システムの全体構成を示す。このシステムは、例えば、稼働能力保証装置100と、運転計画作成装置200と、集中制御装置300と、装置保全管理装置400と、複数のエネルギ供給装置500と、一つ以上のエネルギ消費装置600とを備える。 FIG. 1 shows an overall configuration of an energy supply system including an operation capability guarantee device 100 as an “operation capability management device”. This system includes, for example, an operation capability guarantee device 100, an operation plan creation device 200, a centralized control device 300, a device maintenance management device 400, a plurality of energy supply devices 500, and one or more energy consumption devices 600. Is provided.
 各装置100,200,300,400,500,600は、通信ネットワーク700を介して接続されている。通信ネットワーク700は、有線または無線のいずれとして構成されてもよい。 The devices 100, 200, 300, 400, 500, and 600 are connected via a communication network 700. Communication network 700 may be configured as either wired or wireless.
 エネルギ供給装置500は、例えば、ガスタービン発電機、蓄電池、太陽光パネル、風力発電装置等の電気エネルギを出力する装置である。エネルギ消費装置600は、例えば、工場の生産ラインに設けられる各種生産設備、または、ビルディングの各種設備のように、電気エネルギを消費する。エネルギ供給装置500とエネルギ消費装置600は、エネルギ供給系統800により有線で接続されており、エネルギ供給装置500から出力される電気エネルギは、エネルギ消費装置600により消費される。 The energy supply device 500 is a device that outputs electrical energy, such as a gas turbine generator, a storage battery, a solar panel, and a wind power generator. The energy consuming apparatus 600 consumes electric energy, for example, various production facilities provided in a production line of a factory or various facilities of a building. The energy supply device 500 and the energy consumption device 600 are connected by an energy supply system 800 in a wired manner, and the electric energy output from the energy supply device 500 is consumed by the energy consumption device 600.
 稼働能力保証装置100は、各エネルギ供給装置500に期待する稼働能力を保証する装置である。稼働能力保証装置100は、各エネルギ供給装置500の稼働実績データ及び各エネルギ供給装置500に期待する稼働能力に関する情報等を蓄積して管理する。稼働能力保証装置100は、システム管理者またはエネルギ管理者等のユーザ、運転計画作成装置200、集中制御装置300等の他装置に、各種情報を提供する。稼働能力保証装置100に蓄積された各種情報は、入出力装置104または通信装置105を通じて提供される。 The operation capability guarantee device 100 is a device that guarantees the operation capability expected of each energy supply device 500. The operation capability guarantee device 100 accumulates and manages operation result data of each energy supply device 500 and information on the operation capability expected from each energy supply device 500. The operating capability guarantee device 100 provides various information to other devices such as a system administrator or an energy manager, an operation plan creation device 200, a centralized control device 300, and the like. Various types of information stored in the operation capability guarantee device 100 are provided through the input / output device 104 or the communication device 105.
 稼働能力保証装置100は、例えば、記憶装置101と、CPU102と、メモリ103と、入出力装置104及び通信装置105を備えるコンピュータシステムとして構成される。記憶装置101には、図2で後述する各種の管理用データ1010,1011,1012,1013,1014,1015と、所定のコンピュータプログラムとが記憶されている。所定のコンピュータプログラムが実行されると、図3で後述する機能1000,1001,1002が実現される。 The operating capability guarantee device 100 is configured as a computer system including, for example, a storage device 101, a CPU 102, a memory 103, an input / output device 104, and a communication device 105. The storage device 101 stores various management data 1010, 1011, 1012, 1013, 1014, and 1015, which will be described later with reference to FIG. 2, and a predetermined computer program. When a predetermined computer program is executed, functions 1000, 1001, and 1002 described later with reference to FIG. 3 are realized.
 運転計画作成装置200は、エネルギ消費装置600によるエネルギ需要と、エネルギ供給装置500の運転コスト等とに基づいて、所定の期間内におけるエネルギ供給装置500の運転計画を作成する。なお、運転計画は、定期的にまたは不定期に作成することができる。 The operation plan creation device 200 creates an operation plan for the energy supply device 500 within a predetermined period based on the energy demand from the energy consumption device 600, the operation cost of the energy supply device 500, and the like. The operation plan can be created regularly or irregularly.
 集中制御装置300は、稼働能力保証装置100からの情報及び運転計画作成装置200からの情報に基づいて、エネルギ供給装置500の稼働状況を制御する。 The central control device 300 controls the operation status of the energy supply device 500 based on the information from the operation capability guarantee device 100 and the information from the operation plan creation device 200.
 装置保全管理装置400は、エネルギ供給装置500のマスタ情報及び稼働実績と、エネルギ消費装置600のマスタ情報及び稼働実績とを、蓄積して管理する。装置保全管理装置400は、各種装置500,600の劣化状況を推定し、保全計画を作成する。 The device maintenance management device 400 accumulates and manages the master information and operation results of the energy supply device 500 and the master information and operation results of the energy consumption device 600. The device maintenance management device 400 estimates the deterioration status of the various devices 500 and 600 and creates a maintenance plan.
 エネルギ供給装置500は、例えば、マイクロガスタービン発電機、太陽光発電機、風力発電機等のような、電気エネルギを出力するための装置である。エネルギ供給装置500は、制御装置501を備える。制御装置501は、エネルギ供給装置500の稼働状況を制御する。制御装置501は、エネルギ供給装置500の出力を調整したり、エネルギ供給装置500とエネルギ供給系統800とを接続したり、接続を解除したりする。制御装置501は、エネルギ供給装置500に内蔵してもよいし、エネルギ供給装置500の外部に着脱可能に取り付けられてもよい。 The energy supply device 500 is a device for outputting electrical energy, such as a micro gas turbine generator, a solar power generator, a wind power generator, or the like. The energy supply device 500 includes a control device 501. The control device 501 controls the operating status of the energy supply device 500. The control device 501 adjusts the output of the energy supply device 500, connects the energy supply device 500 and the energy supply system 800, and releases the connection. The control device 501 may be built in the energy supply device 500, or may be detachably attached to the outside of the energy supply device 500.
 制御装置501は、集中制御装置300からの制御命令を受信し、その制御命令に従ってエネルギ供給装置500を制御する。制御装置501は、エネルギ供給装置500の稼働状況を計測し、測定結果と測定日時と測定対象のエネルギ供給装置500を識別するための装置IDとを、ネットワーク700を経由して、稼働能力保証装置100と集中制御装置300及び装置保全管理装置400に送信する。 The control device 501 receives the control command from the central control device 300 and controls the energy supply device 500 according to the control command. The control device 501 measures the operating status of the energy supply device 500, and sends the measurement result, the measurement date and time, and the device ID for identifying the energy supply device 500 to be measured via the network 700 to the operation capability guarantee device. 100, the central control apparatus 300, and the apparatus maintenance management apparatus 400.
 図2に記憶装置101が保持するデータを示す。記憶装置101は、例えば、稼働履歴データ1010と、装置期待値データ1011と、稼働保証値データ1012と、期待値出力日時データ1013と、装置マスタデータ1014と、装置テスト待機回数データ1015を保持する。 FIG. 2 shows data stored in the storage device 101. The storage device 101 holds, for example, operation history data 1010, device expected value data 1011, operation guaranteed value data 1012, expected value output date / time data 1013, device master data 1014, and device test standby frequency data 1015. .
 稼働履歴データ1010は、稼働履歴データ管理部1000(図3)と共に「稼働実績管理部」を構成する。稼働履歴データ1010は、制御装置501が測定したエネルギ供給装置500の稼働履歴を保持する。稼働履歴データ1010の構成は、後述する図4に示す。 The operation history data 1010 constitutes an “operation result management unit” together with the operation history data management unit 1000 (FIG. 3). The operation history data 1010 holds an operation history of the energy supply device 500 measured by the control device 501. The configuration of the operation history data 1010 is shown in FIG.
 「期待値管理部」としての装置期待値データ1011は、エネルギ供給装置500に期待する稼働能力に関する情報を保持する。例えば、エネルギ供給装置500がマイクロガスタービン発電機であり、その定格最大出力電力が100kWである場合、そのエネルギ供給装置500に期待する稼働能力は、出力電圧100kWである。期待する稼働能力は、出力電力以外に、出力電圧または出力電流等でも良い。装置期待値データ1011の構成は、後述する図5に示す。 The device expected value data 1011 as the “expected value management unit” holds information related to the operation capability expected from the energy supply device 500. For example, when the energy supply device 500 is a micro gas turbine generator and its rated maximum output power is 100 kW, the operating capacity expected for the energy supply device 500 is an output voltage of 100 kW. The expected operating capability may be output voltage or output current in addition to output power. The configuration of the device expected value data 1011 is shown in FIG.
 「稼働能力の下限値」としての稼働保証値データ1012は、エネルギ供給装置500の直近の稼働履歴データの最大値を保持する。保持対象となるデータ項目は、装置期待値データ1011に設定されている項目と同じ項目である。直近の稼働履歴データとは、エネルギ供給装置500が、装置期待値データ1011に示される期待値以上の出力で動作した最後の日時から現時点までのデータを意味する。稼働保証値データ1012の構成は、後述する図6に示す。 The operation guarantee value data 1012 as “the lower limit value of the operation capability” holds the maximum value of the latest operation history data of the energy supply device 500. The data items to be retained are the same items as those set in the device expected value data 1011. The latest operation history data means data from the last date and time when the energy supply apparatus 500 operates at an output equal to or higher than the expected value indicated in the apparatus expected value data 1011 to the present time. The configuration of the operation guarantee value data 1012 is shown in FIG.
 「所定日時管理部」としての期待値出力日時データ1013は、エネルギ供給装置500が装置期待値データ1011に示される期待値以上の出力で稼働した最新の日時を保持する。期待値出力日時データ1013の構成は、後述する図7に示す。 The expected value output date and time data 1013 as the “predetermined date and time management unit” holds the latest date and time when the energy supply device 500 has been operated with an output greater than or equal to the expected value indicated in the device expected value data 1011. The configuration of the expected value output date / time data 1013 is shown in FIG.
 装置マスタデータ1014は、エネルギ供給装置500に関する情報を保持する。装置マスタデータ1014は、例えば、エネルギ供給装置500の種類または出力の大きさで分類される出力クラスと、定格最大出力等の仕様と、エネルギ供給装置を識別するためのID等を保持する。装置マスタデータ1014の構成は、後述する図8に示す。 The device master data 1014 holds information related to the energy supply device 500. The device master data 1014 holds, for example, an output class classified by the type or output size of the energy supply device 500, specifications such as a rated maximum output, an ID for identifying the energy supply device, and the like. The configuration of the device master data 1014 is shown in FIG.
 「待機回数管理部」としての装置テスト待機回数データ1015は、稼働率の低いエネルギ供給装置500がテスト稼働されなかった回数を保持する。後述のように、本実施例では、所定のエネルギ供給装置500を稼働能力を検査する対象として選定する。選定されたエネルギ供給装置500は、運転計画に含められて、テスト稼働させる。装置テスト待機回数データ1015は、そのエネルギ供給装置500がテスト稼働されずに、運転計画が実行された回数を保持する。つまり、装置テスト待機回数データ1015は、運転計画に組み込まれなかった回数を保持する。 The apparatus test standby frequency data 1015 as the “standby frequency management unit” holds the number of times that the energy supply apparatus 500 having a low operation rate has not been tested. As will be described later, in this embodiment, a predetermined energy supply device 500 is selected as an object to be inspected for operating capability. The selected energy supply apparatus 500 is included in the operation plan and is operated for test. The apparatus test standby frequency data 1015 holds the number of times that the operation plan has been executed without the energy supply apparatus 500 being tested. That is, the device test standby frequency data 1015 holds the number of times that the device test standby frequency data 1015 was not incorporated into the operation plan.
 装置テスト待機回数データ1015は、各エネルギ供給装置500のエネルギ供給系統800における重要度も保持する。重要度とは、エネルギ供給装置500が停止した場合の、エネルギ供給系統800へ与える影響の大きさを示す。影響が大きくなるほど重要度も大きくなる。例えば、人命に関わるエネルギ消費装置(医療装置)の稼働を担うエネルギ供給装置500の重要度は大きくなる。主力製品の生産ライン等の電力を担っているエネルギ供給装置500の重要度も大きくなる。装置テスト待機回数データ1015の構成は、後述する図9に示す。 The apparatus test standby frequency data 1015 also holds the importance in the energy supply system 800 of each energy supply apparatus 500. The importance level indicates the magnitude of the influence on the energy supply system 800 when the energy supply apparatus 500 stops. The greater the impact, the greater the importance. For example, the importance of the energy supply device 500 responsible for the operation of the energy consuming device (medical device) related to human life is increased. The importance of the energy supply device 500 that is in charge of power for the production line of the main product is also increased. The configuration of the apparatus test standby frequency data 1015 is shown in FIG.
 図3に稼働能力保証装置100の機能構成を示す。稼働能力保証装置100は、稼働履歴データ監視部1000と、装置期待値確認部1001と、稼働計画修正部1002とで構成される。それらの各機能1000,1001,1002は、記憶装置101に記憶される所定のコンピュータプログラム(不図示)がマイクロプロセッサ102により実行されることにより、実現される。 FIG. 3 shows a functional configuration of the operation capability guarantee device 100. The operation capability guarantee device 100 includes an operation history data monitoring unit 1000, a device expected value confirmation unit 1001, and an operation plan correction unit 1002. Each of these functions 1000, 1001, and 1002 is realized by executing a predetermined computer program (not shown) stored in the storage device 101 by the microprocessor 102.
 稼働履歴データ監視部1000は、稼働履歴データ1010から各エネルギ供給装置500の稼働履歴を収集し、装置期待値確認部1001へ出力する機能を持つ。稼働履歴データ監視部1000は、運転計画作成装置200が運転計画を作成した際に、その動作を開始する。稼働履歴データ監視部1000の処理フローは、後述する図11に示す。 The operation history data monitoring unit 1000 has a function of collecting an operation history of each energy supply device 500 from the operation history data 1010 and outputting the operation history to the device expected value confirmation unit 1001. The operation history data monitoring unit 1000 starts its operation when the operation plan creation device 200 creates an operation plan. The processing flow of the operation history data monitoring unit 1000 is shown in FIG.
 装置期待値確認部1001は、稼働履歴データ監視部1000から各エネルギ供給装置500の稼働履歴を取得し、装置期待値データ1011に保持されている条件に合致しない、稼働率の低いエネルギ供給装置500を抽出する機能を持つ。稼働率の低いエネルギ供給装置500は、「所定のエネルギ供給装置」の一例である。 The device expected value confirmation unit 1001 acquires the operation history of each energy supply device 500 from the operation history data monitoring unit 1000 and does not match the conditions held in the device expected value data 1011 and has a low operation rate. With the ability to extract The energy supply device 500 with a low operating rate is an example of a “predetermined energy supply device”.
 装置期待値確認部1001は、抽出結果を、稼働計画修正部1002へ出力する。装置期待値確認部1001の処理フローは、後述する図12に示す。 The device expected value confirmation unit 1001 outputs the extraction result to the operation plan correction unit 1002. The processing flow of the device expected value confirmation unit 1001 is shown in FIG.
 運転計画修正部1002は、稼働率の低いエネルギ供給装置500の一覧を装置期待値確認部1001から取得する。さらに、運転計画修正部1002は、エネルギ供給装置500の装置期待値データ1011に設定されている期待値を取得する。運転計画修正部1002は、前記一覧に示されたエネルギ供給装置500がテスト稼働され、かつ、テスト稼働されるエネルギ供給装置500のバックアップが用意されるように、運転計画作成装置200が作成した運転計画を修正する機能を持つ。つまり、運転計画修正部1002は、バックアップを用意した環境下で、検査対象のエネルギ供給装置500をテスト稼働できるように、運転計画を修正する。運転計画修正部1002の処理フローは、後述する図12に示す。 The operation plan correction unit 1002 acquires a list of energy supply devices 500 having a low operation rate from the device expected value confirmation unit 1001. Furthermore, the operation plan correction unit 1002 acquires the expected value set in the device expected value data 1011 of the energy supply device 500. The operation plan correction unit 1002 performs an operation created by the operation plan creation device 200 so that the energy supply device 500 shown in the list is tested and a backup of the energy supply device 500 to be tested is prepared. Has the ability to modify the plan. That is, the operation plan correction unit 1002 corrects the operation plan so that the energy supply apparatus 500 to be inspected can be tested in an environment where a backup is prepared. The processing flow of the operation plan correction unit 1002 is shown in FIG.
 図4に稼働履歴データ1010の構成例を示す。稼働履歴データ1010は、例えば、日時1010a、装置ID1010b、電圧1010c、電流1010d、有効電力1010e、無効電力1010fを含む。 FIG. 4 shows a configuration example of the operation history data 1010. The operation history data 1010 includes, for example, date and time 1010a, device ID 1010b, voltage 1010c, current 1010d, active power 1010e, and reactive power 1010f.
 日時1010aには、制御装置501がデータを計測した日時を設定する。装置ID1010bには、各エネルギ供給装置500を一意に識別するためのIDを設定する。電圧1010c、電流1010d、有効電力1010e、無効電力1010fには、制御装置501がそれらの各値を計測した結果を設定する。 In the date and time 1010a, the date and time when the control device 501 measures data is set. In the device ID 1010b, an ID for uniquely identifying each energy supply device 500 is set. As the voltage 1010c, the current 1010d, the active power 1010e, and the reactive power 1010f, the result of the control device 501 measuring those values is set.
 図5に装置期待値データ1011の構成例を示す。装置期待値データ1011は、例えば、装置タイプ1011a、装置クラス1011b、低稼働期間1011c、期待出力1011dを含む。 FIG. 5 shows a configuration example of the device expected value data 1011. The expected device value data 1011 includes, for example, a device type 1011a, a device class 1011b, a low operation period 1011c, and an expected output 1011d.
 装置タイプ1011aには、エネルギ供給装置500の種類を設定する。例えば、対象となるエネルギ供給装置500がマイクロガスタービンである場合、装置タイプ1011aには、MGT等と設定すればよい。装置クラス1011bには、装置の出力クラスを表す値を設定する。例えば、最大出力電力が100kWの場合は装置クラスを「B」に設定し、最大出力電圧が200kWの場合は装置クラスを「A」に設定する等のように、出力に合わせて分類すればよい。 The type of energy supply device 500 is set in the device type 1011a. For example, when the target energy supply apparatus 500 is a micro gas turbine, the apparatus type 1011a may be set to MGT or the like. A value representing the output class of the device is set in the device class 1011b. For example, when the maximum output power is 100 kW, the device class is set to “B”, and when the maximum output voltage is 200 kW, the device class is set to “A”. .
 低稼働期間1011cには、稼働率の低いエネルギ供給装置を抽出するための閾値が設定される。その閾値は、「時間閾値」に相当する。例えば、或るエネルギ供給装置500の稼働履歴データが、期待出力1011dに示される条件(期待値)を、低稼働期間1011cの間以上満たしていない場合、そのエネルギ供給装置500は稼働率の低いエネルギ供給装置であると判定される。 In the low operation period 1011c, a threshold for extracting an energy supply device with a low operation rate is set. The threshold corresponds to a “time threshold”. For example, when the operation history data of a certain energy supply device 500 does not satisfy the condition (expected value) indicated by the expected output 1011d during the low operation period 1011c, the energy supply device 500 has energy with a low operation rate. It is determined that it is a supply device.
 上述の装置期待値データ1011を用いることで、稼働率の低いエネルギ供給装置を特定することが可能である。 By using the device expected value data 1011 described above, it is possible to specify an energy supply device with a low operating rate.
 図6に稼働保証値データ1012の構成例を示す。稼働保証値データ1012は、例えば、装置ID1012a、保証値1012b、保証項目1012cを含む。装置ID1012aには、各エネルギ供給装置500を一意に識別するための識別子(ID)が設定される。 FIG. 6 shows a configuration example of the operation guarantee value data 1012. The guaranteed operation value data 1012 includes, for example, a device ID 1012a, a guaranteed value 1012b, and a guaranteed item 1012c. An identifier (ID) for uniquely identifying each energy supply device 500 is set in the device ID 1012a.
 保証値1012bには、エネルギ供給装置500の稼働履歴データ1010のうち、最大の出力値を設定する。但し、保証値抽出対象となる稼働履歴データ1010は、エネルギ供給装置500が装置期待値データ1011に示す期待値以上の出力で稼働した最後の日時から現時点までの稼働履歴データである。 As the guaranteed value 1012b, the maximum output value of the operation history data 1010 of the energy supply apparatus 500 is set. However, the operation history data 1010 that is a target for guaranteed value extraction is operation history data from the last date and time when the energy supply device 500 was operated with an output that is equal to or higher than the expected value indicated in the device expected value data 1011 to the present time.
 保証項目1012cには、保証値の対象となっているデータ項目名を設定する。例えば、保証値1012bに設定されている値が有効電力を表す値である場合、保証項目1012cには、有効電力等と設定する。保証項目1012cに設定される値は、装置期待値データ1011の期待出力1011dに設定される項目と同じ値になるものとする。 In the guaranteed item 1012c, the name of the data item that is the target of the guaranteed value is set. For example, when the value set in the guaranteed value 1012b is a value representing active power, the guaranteed item 1012c is set as active power or the like. The value set in the guarantee item 1012c is assumed to be the same value as the item set in the expected output 1011d of the device expected value data 1011.
 上述の稼働保証値データ1012を用いて運転計画を修正することで、各エネルギ供給装置500が出力可能な出力値を保証できる。実際に出力可能な値に基づいて運転計画を作成または修正できるため、エネルギ供給系統の安全性を維持することができる。 By correcting the operation plan using the operation guarantee value data 1012 described above, an output value that can be output by each energy supply device 500 can be guaranteed. Since the operation plan can be created or modified based on values that can actually be output, the safety of the energy supply system can be maintained.
 図7に期待値出力日時データ1013の構成例を示す。期待値出力日時データ1013は、例えば、装置ID1013aと日時1013bを含む。装置ID1013aには、各エネルギ供給装置500を一意に識別するためのIDを設定する。日時1013bには、エネルギ供給装置500が、装置期待値データ1011に示される期待出力で稼働した最新の日時を設定する。 FIG. 7 shows a configuration example of the expected value output date / time data 1013. The expected value output date / time data 1013 includes, for example, a device ID 1013a and a date / time 1013b. In the device ID 1013a, an ID for uniquely identifying each energy supply device 500 is set. In the date and time 1013b, the latest date and time when the energy supply device 500 has been operated with the expected output indicated in the device expected value data 1011 is set.
 上述の期待値出力日時データ1013を用いることで、稼働履歴データ監視部1000は、エネルギ供給装置500の稼働履歴データを最初から全て調べる必要がなく、日時1013b以降の稼働履歴データのみを調査すれば済む。従って、稼働履歴データ監視部1000の処理負荷を軽減することが可能である。 By using the expected value output date / time data 1013 described above, the operation history data monitoring unit 1000 does not need to check all the operation history data of the energy supply device 500 from the beginning, and only checks the operation history data after the date / time 1013b. That's it. Therefore, the processing load of the operation history data monitoring unit 1000 can be reduced.
 図8に装置マスタデータ1014の構成例を示す。装置マスタデータ1014は、例えば、装置ID1014a、装置タイプ1014b、装置クラス1014c、装置仕様1014dを含む。 FIG. 8 shows a configuration example of the device master data 1014. The device master data 1014 includes, for example, a device ID 1014a, a device type 1014b, a device class 1014c, and a device specification 1014d.
 装置ID1014aには、エネルギ供給装置500を一意に識別するためのIDを設定する。装置タイプ1014bには、エネルギ供給装置500の種類を設定する。例えば、対象となる装置がマイクロガスタービン発電機である場合、装置タイプ1014bは、MGT等と設定すればよい。 In the device ID 1014a, an ID for uniquely identifying the energy supply device 500 is set. The type of energy supply device 500 is set in the device type 1014b. For example, when the target device is a micro gas turbine generator, the device type 1014b may be set to MGT or the like.
 装置クラス1014cには、エネルギ供給装置500の出力クラスを表す値が設定される。例えば、最大出力電力が100kWの場合は、装置クラス1014cを「B」に設定し、最大出力電圧が200kWの場合は装置クラスを「A」に設定するように、各エネルギ供給装置500をその出力に合わせて分類すればよい。 In the device class 1014c, a value representing the output class of the energy supply device 500 is set. For example, when the maximum output power is 100 kW, the device class 1014c is set to “B”, and when the maximum output voltage is 200 kW, each energy supply device 500 is output so that the device class is set to “A”. You may classify according to.
 装置仕様1014dには、エネルギ供給装置500の仕様を設定する。例えば、エネルギ供給装置500の定格最大出力電力が200kWの場合、「最大出力電力200kW」等のように設定すればよい。 In the device specification 1014d, the specification of the energy supply device 500 is set. For example, when the rated maximum output power of the energy supply device 500 is 200 kW, “maximum output power 200 kW” may be set.
 図9に装置テスト待機回数データ1015の構成例を示す。装置テスト待機回数データ1015は、例えば、装置ID1015a、テスト待機回数1015b、重要度1015cを含む。 FIG. 9 shows a configuration example of the device test standby frequency data 1015. The device test standby frequency data 1015 includes, for example, a device ID 1015a, a test standby frequency 1015b, and an importance 1015c.
 装置ID1015aには、各エネルギ供給装置500を一意に識別するためのIDが設定される。テスト待機回数1015bには、エネルギ供給装置500の稼働率が低い状態のままテスト稼働されずに運転計画が実行された回数を設定する。つまり、テスト待機回数1015bは、稼働率の低いエネルギ供給装置500が運転計画に含まれなかった回数を記憶する。重要度1015cには、エネルギ供給装置500のエネルギ供給系統における重要度を設定する。 In the device ID 1015a, an ID for uniquely identifying each energy supply device 500 is set. The test standby count 1015b is set to the number of times that the operation plan is executed without performing the test operation while the operation rate of the energy supply device 500 is low. That is, the test standby frequency 1015b stores the number of times that the energy supply device 500 having a low operation rate is not included in the operation plan. In the importance level 1015c, the importance level in the energy supply system of the energy supply apparatus 500 is set.
 上述の装置テスト待機回数データ1015を用いることで、より適切に運転計画を修正できる。例えば、テスト稼働させるべきエネルギ供給装置500が複数発見された場合、待機回数の多い方または重要度の大きい方のエネルギ供給装置500を、テスト稼働の対象として選定し、運転計画に含めることができる。 The operation plan can be corrected more appropriately by using the device test standby frequency data 1015 described above. For example, when a plurality of energy supply devices 500 to be tested are found, the energy supply device 500 having the higher standby frequency or the higher importance can be selected as a test operation target and included in the operation plan. .
 図10は、本実施例のシステムを模式的に示す説明図である。図10を参照して本システムの全体の流れを先に説明する。各処理の詳細は図11-図15で述べる。 FIG. 10 is an explanatory diagram schematically showing the system of this embodiment. The overall flow of this system will be described first with reference to FIG. Details of each process will be described with reference to FIGS.
 運転計画作成装置200は、各エネルギ消費装置600によるエネルギ需要を満たすための運転計画201を作成する。運転計画201は、所定期間毎に(例えば24時間毎に)作成される。運転計画201には、所定期間を構成する最小の管理単位毎に(例えば1時間毎に)、どのエネルギ供給装置500をどの程度の能力で稼働させるか等の計画が記述されている。 The operation plan creation device 200 creates an operation plan 201 for satisfying the energy demand by each energy consuming device 600. The operation plan 201 is created every predetermined period (for example, every 24 hours). The operation plan 201 describes a plan such as which energy supply device 500 is to be operated with what capacity for each minimum management unit constituting the predetermined period (for example, every hour).
 集中制御装置300は、運転計画201に従って、各エネルギ供給装置500に制御指令を出力し、その動作を制御する。各エネルギ供給装置500は、集中制御装置300からの制御指示に応じて作動し、電気エネルギを出力する。装置保全管理装置400は、各エネルギ供給装置500及び各エネルギ消費装置600の劣化状態を監視する。 The centralized control device 300 outputs a control command to each energy supply device 500 according to the operation plan 201 and controls its operation. Each energy supply device 500 operates according to a control instruction from the central control device 300 and outputs electrical energy. The apparatus maintenance management apparatus 400 monitors the deterioration state of each energy supply apparatus 500 and each energy consumption apparatus 600.
 各エネルギ供給装置500の稼働状況は、電圧センサまたは電流センサ等のセンサにより計測されて、稼働履歴データ1010に記憶される。稼働履歴データ監視部1000は、各エネルギ供給装置500の稼働履歴データのうち、期待値以上で出力された最新日時以降の稼働履歴データを確認対象の稼働履歴データとして抽出する。稼働履歴データ監視部1000は、抽出された稼働履歴データを装置期待値確認部1001に出力する。 The operating status of each energy supply device 500 is measured by a sensor such as a voltage sensor or a current sensor and stored in the operating history data 1010. The operation history data monitoring unit 1000 extracts, as operation history data to be checked, operation history data after the latest date and time output above the expected value from the operation history data of each energy supply device 500. The operation history data monitoring unit 1000 outputs the extracted operation history data to the device expected value confirmation unit 1001.
 装置期待値確認部1001は、稼働履歴データ監視部1000から取得した稼働履歴データと、装置期待値データ1001とを比較することにより、各エネルギ供給装置500が実際に出力可能な最大の出力値を保証値として検出する。つまり、保証値とは、そのエネルギ供給装置500から出力可能な値として保証できる下限値である。装置期待値確認部1001は、検出された保証値を稼働保証値データ1012に記憶させる。 The device expected value confirmation unit 1001 compares the operation history data acquired from the operation history data monitoring unit 1000 with the device expected value data 1001 to determine the maximum output value that each energy supply device 500 can actually output. Detected as a guaranteed value. That is, the guaranteed value is a lower limit value that can be guaranteed as a value that can be output from the energy supply device 500. The device expected value confirmation unit 1001 stores the detected guaranteed value in the operation guaranteed value data 1012.
 運転計画修正部1002は、システムに含まれる各エネルギ供給装置500のうち、稼働能力を検査すべき検査対象のエネルギ供給装置500を一つまたは複数選定する。検査対象のエネルギ供給装置500が複数ある場合、運転計画修正部1002は、テスト待機回数及び/または重要度に基づいて、運転計画中でテスト稼働させるエネルギ供給装置500を選択する。 The operation plan correction unit 1002 selects one or a plurality of energy supply devices 500 to be inspected from the energy supply devices 500 included in the system. When there are a plurality of energy supply devices 500 to be inspected, the operation plan correction unit 1002 selects the energy supply device 500 to be tested in the operation plan based on the number of test standby times and / or importance.
 運転計画修正部1002は、検査対象のエネルギ供給装置500がその期待値以上で動作できるように、運転計画に含めさせる。さらに、運転計画修正部1002は、検査対象のエネルギ供給装置500が万が一期待値未満の稼働能力しか発揮できない場合に備えて、バックアップ用のエネルギ供給装置500を選択し、運転計画に含めさせる。 The operation plan correction unit 1002 causes the energy supply apparatus 500 to be inspected to be included in the operation plan so that it can operate at the expected value or more. Further, the operation plan correcting unit 1002 selects the backup energy supply device 500 and includes it in the operation plan in case the energy supply device 500 to be inspected can exhibit only an operation capability less than the expected value.
 つまり、運転計画修正部1002は、稼働能力を検査すべきエネルギ供給装置500を選択し、そのエネルギ供給装置500を次の運転計画に含める。運転計画修正部1002は、そのエネルギ供給装置500を期待値以上で稼働させるように運転計画を修正し、さらに、そのエネルギ供給装置500のバックアップとなるエネルギ供給装置500を運転計画に追加する。 That is, the operation plan correction unit 1002 selects the energy supply device 500 whose operation capability is to be checked, and includes the energy supply device 500 in the next operation plan. The operation plan correction unit 1002 corrects the operation plan so that the energy supply device 500 is operated at an expected value or more, and further adds the energy supply device 500 serving as a backup of the energy supply device 500 to the operation plan.
 図11に稼働履歴データ監視部1000の処理フローを示す。便宜上、稼働履歴データ監視部1000を監視部1000と略す場合がある。ステップを「S」と略する。 FIG. 11 shows a processing flow of the operation history data monitoring unit 1000. For convenience, the operation history data monitoring unit 1000 may be abbreviated as the monitoring unit 1000 in some cases. Step is abbreviated as “S”.
 まず最初に、監視部1000は、装置マスタデータ1014からエネルギ供給装置500の装置ID一覧を取得する(S10)。監視部1000は、S10で取得した各装置IDについて、期待する出力で稼働した最新の日時を期待値出力日時データ1013から取得する(S11)。 First, the monitoring unit 1000 acquires a device ID list of the energy supply device 500 from the device master data 1014 (S10). The monitoring unit 1000 acquires, from the expected value output date / time data 1013, the latest date / time operated with the expected output for each device ID acquired in S10 (S11).
 監視部1000は、S10で取得した各装置IDについて、S11で取得した期待値出力日時以降の稼働履歴データを稼働履歴データ1010から取得する(S12)。監視部1000は、S12で取得した稼働履歴データと装置IDを関連付け、装置期待値確認部1001へ出力する(S13)。 The monitoring unit 1000 acquires operation history data after the expected value output date acquired in S11 from the operation history data 1010 for each device ID acquired in S10 (S12). The monitoring unit 1000 associates the operation history data acquired in S12 and the device ID, and outputs them to the device expected value confirmation unit 1001 (S13).
 図12に装置期待値確認部1001の処理フローを示す。便宜上、装置期待値確認部1001を確認部1001と略する場合がある。 FIG. 12 shows a processing flow of the device expected value confirmation unit 1001. For convenience, the device expected value confirmation unit 1001 may be abbreviated as the confirmation unit 1001 in some cases.
 まず最初に、確認部1001は、稼働履歴データ監視部1000から取得した各装置IDについて、装置タイプ及び装置クラスをキーとして、装置期待値データ1011から装置期待値データを取得する(S20)。 First, the confirmation unit 1001 acquires device expected value data from the device expected value data 1011 for each device ID acquired from the operation history data monitoring unit 1000, using the device type and device class as keys (S20).
 確認部1001は、稼働履歴データ監視部1000より取得した装置IDの数だけ、S22,S23またはS24の処理を繰り返す(S21)。 The confirmation unit 1001 repeats the processing of S22, S23, or S24 by the number of device IDs acquired from the operation history data monitoring unit 1000 (S21).
 確認部1001は、稼働履歴データ監視部1000から取得した稼働履歴データについて、S20で取得した装置期待値データの期待出力1011dに設定された条件(期待値)と不一致か否かを判定する(S22)。 The confirmation unit 1001 determines whether the operation history data acquired from the operation history data monitoring unit 1000 does not match the condition (expected value) set in the expected output 1011d of the device expected value data acquired in S20 (S22). ).
 例えば、処理対象となっている装置IDについて、S20で取得した装置期待値データの期待出力1011dに「有効電力≧100kW」と設定されている場合、その装置IDに関する稼働履歴データについて、有効電力1010eが100kW以上ではないデータ、つまり、有効電力が100kW未満のデータが有るか否か検索する。 For example, when “effective power ≧ 100 kW” is set in the expected output 1011d of the device expected value data acquired in S20 for the device ID to be processed, the active power 1010e for the operation history data related to the device ID. Is not 100 kW or more, that is, whether there is data having an active power of less than 100 kW.
 期待値未満のデータが存在する場合(S22:YES)S23へ、期待値未満のデータが存在しない場合(S22:NO)S24へ進む。 When there is data less than the expected value (S22: YES), the process proceeds to S23, and when data less than the expected value does not exist (S22: NO), the process proceeds to S24.
 S23では、確認部1001は、対象となった稼働履歴データのうち、期待出力1011dに設定されている項目について、その最大値を取得し、装置IDと関連付けてメモリに保持しておく。さらに、確認部1001は、装置IDと最大値と上記項目とについて、稼働保証値データ1012へ登録する(S23)。つまり、確認部1001は、期待値以上の性能を発揮していないエネルギ供給装置500を発見すると、そのエネルギ供給装置500が実際に出力している最大値を保証値として、稼働保証値データ1012に登録させる。 In S23, the confirmation unit 1001 acquires the maximum value of the items set in the expected output 1011d among the target operation history data, and stores the maximum value in the memory in association with the device ID. Furthermore, the confirmation unit 1001 registers the device ID, the maximum value, and the above items in the operation guarantee value data 1012 (S23). In other words, when the confirmation unit 1001 finds an energy supply device 500 that does not exhibit performance exceeding the expected value, the confirmation unit 1001 sets the maximum value actually output by the energy supply device 500 as a guaranteed value in the operation guaranteed value data 1012. Let me register.
 S24では、確認部1001は、期待値の条件に合致する稼働履歴データのうち、最新日時の値を、その装置IDと共に、期待値出力日時データ1013へ登録する。 In S24, the confirmation unit 1001 registers the value of the latest date and time in the expected value output date and time data 1013 together with the device ID of the operation history data that matches the expected value condition.
 上記処理を、稼働履歴データ監視部1000から取得した装置IDの数だけ繰り返し実施する。確認部1001は、S23においてメモリ103上に保持された、装置IDと最大値と該項目の一覧とを、運転計画修正部1002へ出力する(S25)。 The above processing is repeated for the number of device IDs acquired from the operation history data monitoring unit 1000. The confirmation unit 1001 outputs the device ID, the maximum value, and a list of the items held on the memory 103 in S23 to the operation plan correction unit 1002 (S25).
 以上の処理により、期待する出力で所定の期間以上稼働していないエネルギ供給装置500を検査対象の装置として特定することができる。これにより、後述のように、特定されたエネルギ供給装置500が期待する出力で稼働するように、運転計画を修正させることができる。 Through the above processing, the energy supply device 500 that has not been operated for a predetermined period or more with an expected output can be specified as a device to be inspected. Thereby, as will be described later, the operation plan can be corrected so that the specified energy supply apparatus 500 operates at an expected output.
 図13に運転計画修正部1002の処理フローを示す。便宜上、修正部1002と略記する場合がある。 FIG. 13 shows a processing flow of the operation plan correction unit 1002. For convenience, the correction unit 1002 may be abbreviated.
 修正部1002は、運転計画作成装置200から運転計画を取得する(S30)。修正部1002は、取得した運転計画を最小時間単位に分割し、各最小時間毎に、S32~S36の処理を繰り返し実行する。例えば、運転計画作成部200が作成する運転計画が、1時間単位毎の1日(24時間)分の計画となっている場合、S31における分割数は24である。 The correction unit 1002 acquires an operation plan from the operation plan creation device 200 (S30). The correcting unit 1002 divides the acquired operation plan into minimum time units, and repeatedly executes the processes of S32 to S36 for each minimum time. For example, when the operation plan created by the operation plan creation unit 200 is a plan for one day (24 hours) every hour unit, the number of divisions in S31 is 24.
 修正部1002は、取得した運転計画が想定しているエネルギ消費装置600の需要(以下、総需要とも呼ぶ)を、常稼働装置のみで満たすことができるか否かを判定する(S32)。常稼働装置とは、各エネルギ供給装置500のうち、装置期待値確認部1001にて稼働率の低いエネルギ供給装置であると判断されていない装置を意味する。つまり、期待値以上の稼働能力を常時発揮しているエネルギ装置である。なお、便宜上、稼働率の低いエネルギ供給装置を、低稼働装置と呼ぶことがある。低稼働装置とは、検査対象のエネルギ供給装置500であり、「所定のエネルギ供給装置」に対応する。 The correction unit 1002 determines whether or not the demand of the energy consuming apparatus 600 assumed by the acquired operation plan (hereinafter also referred to as total demand) can be satisfied only by the normal operation apparatus (S32). The normal operation device means a device that is not determined to be an energy supply device having a low operation rate by the device expected value confirmation unit 1001 among the energy supply devices 500. In other words, it is an energy device that always exhibits an operating capacity that is greater than or equal to the expected value. For convenience, an energy supply device with a low operating rate may be referred to as a low operating device. The low operation device is an energy supply device 500 to be inspected, and corresponds to a “predetermined energy supply device”.
 例えば、修正部1002は、総需要の値が600kWの場合、常稼働装置の出力合計値が600kW以上となるか判断する。常稼働装置が動作可能な出力値は、装置期待値データ1011の期待出力1011dから取得できる。常稼働装置の出力合計が前記総需要を満たす場合は(S32:YES)S33へ、満たせない場合は(S32:NO)S34へ進む。 For example, when the total demand value is 600 kW, the correction unit 1002 determines whether the total output value of the normally operating device is 600 kW or more. The output value at which the normally operating device can operate can be acquired from the expected output 1011d of the device expected value data 1011. When the total output of the normally operating device satisfies the total demand (S32: YES), the process proceeds to S33, and when it cannot be satisfied (S32: NO), the process proceeds to S34.
 修正部1002は、低稼働装置が、装置期待値データ1011の期待出力1011dに設定された値で動作するように運転計画を修正する(S33)。さらに、修正部1002は、常稼働装置を待機状態として、いつでも稼働できるように運転計画を修正する(S33)。低稼働装置が期待値以上の稼働能力を発揮できず、エネルギ需要を満たせない事態が生じるのを防止するためである。 The correction unit 1002 corrects the operation plan so that the low operation device operates with the value set in the expected output 1011d of the device expected value data 1011 (S33). Further, the correction unit 1002 corrects the operation plan so that the normal operation device can be operated at any time with the normally operating device in a standby state (S33). This is to prevent a situation in which the low operating device cannot exhibit an operating capacity higher than the expected value and the energy demand cannot be satisfied.
 一方、S34において、修正部1002は、低稼働装置について、稼働保証値データ1012から保証値1012bを取得する。修正部1002は、常稼働装置の出力値と低稼働装置の稼働保証値との合計が総需要を満たすことのできる、低稼働装置の選出パターンを探索する(S34)。 On the other hand, in S34, the correction unit 1002 acquires the guaranteed value 1012b from the guaranteed operating value data 1012 for the low operating device. The correction unit 1002 searches for a selection pattern of the low operating device in which the sum of the output value of the normal operating device and the operation guarantee value of the low operating device can satisfy the total demand (S34).
 修正部1002は、前記パターンにおいて、出力が0となる低稼働装置が存在するか否かを判定する(S35)。出力が0となる低稼働装置とは、稼働させる必要のないエネルギ装置であり、検査対象として選択可能なエネルギ供給装置である。 The correction unit 1002 determines whether or not there is a low operation device whose output is 0 in the pattern (S35). The low operation device whose output is 0 is an energy device that does not need to be operated, and is an energy supply device that can be selected as an inspection target.
 検査対象となる低稼働装置が複数存在する場合、修正部1002は、候補となる各エネルギ供給装置について、装置テスト待機回数データ1015を参照する。修正部1002は、テスト待機回数1015bの値が大きいエネルギ供給装置が選ばれているパターンを優先する。 When there are a plurality of low-operation devices to be inspected, the correction unit 1002 refers to the device test standby frequency data 1015 for each candidate energy supply device. The correction unit 1002 gives priority to a pattern in which an energy supply device having a large value of the test standby count 1015b is selected.
 もしも、テスト待機回数1015bの値が等しい場合、修正部1002は、重要度1015cの値が大きいエネルギ供給装置が選ばれているパターンを優先する。なお、総需要を満たすために全ての低稼働装置が必要な場合は、次の繰り返し処理へ進む。テスト稼働させるだけの余裕がシステムに無いためである。 If the value of the test standby count 1015b is equal, the correction unit 1002 gives priority to the pattern in which the energy supply device having the large importance 1015c value is selected. If all the low operating devices are necessary to satisfy the total demand, the process proceeds to the next iterative process. This is because the system does not have enough room for test operation.
 修正部1002は、出力が0となるエネルギ供給装置(低稼働装置)について、装置期待値データ1011の期待出力1011dに設定された値で稼働するように、運転計画を修正する(S36)。修正部1002は、その低稼働装置をバックアップするための常稼働装置を選択し、その常稼働装置を待機させるように、運転計画を修正する。全ての時間単位について上記処理S32-S36を実施する。 The correction unit 1002 corrects the operation plan so that the energy supply device (low operation device) whose output is 0 operates with the value set in the expected output 1011d of the device expected value data 1011 (S36). The correction unit 1002 selects a normal operation device for backing up the low operation device, and corrects the operation plan so that the normal operation device is put on standby. The above processes S32 to S36 are performed for all time units.
 修正部1002は、上記の運転計画修正において、テスト稼働させることができなかった低稼働装置について、装置テスト待機回数データ1015のテスト待機回数1015bの値を一つ増加させる(S37)。 The correction unit 1002 increases the value of the test standby frequency 1015b of the device test standby frequency data 1015 by one for the low operation device that could not be operated in the test in the above operation plan correction (S37).
 修正部1002は、修正後の運転計画に組み込まれた低稼働装置については、テスト待機回数1015bの値を0に更新する(S37)。修正部1002は、修正された運転計画を集中制御装置300へ出力する(S38)。 The correction unit 1002 updates the value of the test standby count 1015b to 0 for the low operation device incorporated in the corrected operation plan (S37). The correction unit 1002 outputs the corrected operation plan to the central control apparatus 300 (S38).
 以上の処理により、稼働能力保証装置100は、稼働率が低いエネルギ供給装置を実際に稼働させることができ、かつ、常稼働装置をバックアップとして待機させることができる所定の検査可能タイミングを、運転計画の中に見つけ出す。稼働能力保証装置100は、検査可能タイミングにおいて、稼働率が低いエネルギ供給装置が期待される出力で稼働するように運転計画を修正する。これにより、稼働率の低いエネルギ供給装置を、適宜稼働させながら、その稼働能力の実力(保証値)を確認することができる。従って、システムを停止させて各エネルギ供給装置500を個別にテストする必要はなく、システムを停止させずにエネルギ供給系統の信頼性を維持できる。 With the above processing, the operation capability assurance device 100 can actually operate the energy supply device with a low operation rate, and set a predetermined testable timing at which the normal operation device can be put on standby as a backup. Find out in the inside. The operation capability guarantee device 100 corrects the operation plan so that the energy supply device having a low operation rate operates at an expected output at the inspectable timing. Thereby, the capability (guaranteed value) of the operation capability can be confirmed while appropriately operating an energy supply device having a low operation rate. Therefore, it is not necessary to stop the system and test each energy supply device 500 individually, and the reliability of the energy supply system can be maintained without stopping the system.
 本実施例では、テスト待機回数または重要度のような指標を用いて、複数の修正案が出た場合に、いずれか一つの修正案に絞ることができる。例えば、長期間稼働率が低いエネルギ供給装置を優先する、または、エネルギ供給系統における重要度の高いエネルギ供給装置を優先する、等の場合である。 In this embodiment, when a plurality of correction proposals are made using an index such as the number of test waiting times or importance, it is possible to narrow down to any one of the correction proposals. For example, priority is given to an energy supply device having a low long-term operating rate, or priority is given to an energy supply device having high importance in the energy supply system.
 図14は、運転計画が修正される様子を模式的に示す。図14(a)に示すように、4台のエネルギ供給装置(#1-#4)が有るとする。説明の便宜のため、各エネルギ供給装置の期待値EPは同一であるとする。 FIG. 14 schematically shows how the operation plan is corrected. Assume that there are four energy supply devices (# 1- # 4) as shown in FIG. For convenience of explanation, it is assumed that the expected value EP of each energy supply device is the same.
 図14(b)に示すように、3台のエネルギ供給装置(#1-#3)は、期待値以上の稼働能力を発揮する常稼働装置である。常稼働装置(#1-#3)の保証値GP1は、期待値EPに等しい。残りのエネルギ供給装置(#4)は、低稼働装置であり、その保証値GP2は期待値EPよりも小さい。期待値EPと保証値GP2の差をΔPとする。 As shown in FIG. 14 (b), the three energy supply devices (# 1- # 3) are normal operation devices that exhibit an operation capability that exceeds the expected value. The guaranteed value GP1 of the normally operating device (# 1- # 3) is equal to the expected value EP. The remaining energy supply device (# 4) is a low operating device, and its guaranteed value GP2 is smaller than the expected value EP. Let ΔP be the difference between the expected value EP and the guaranteed value GP2.
 図14(c)に示すように、最初の運転計画OP1では、2台の常稼働装置(#1,#2)だけで総需要を満たすようになっている。エネルギの総需要を太い黒枠で示す。図中点線で示されるエネルギ供給装置(#3,#4)は、停止されている。 As shown in FIG. 14 (c), in the first operation plan OP1, the total demand is satisfied with only two normal operation devices (# 1, # 2). The total energy demand is indicated by a thick black frame. The energy supply devices (# 3, # 4) indicated by dotted lines in the figure are stopped.
 図14(d)に示すように、修正された運転計画OP2では、1台の常稼働装置(#1)と1台の低稼働装置(#4)とにより、総需要を満たすようにしている。さらに、修正後の運転計画OP2では、1台の常稼働装置(#2)がバックアップ用の装置として待機している。 As shown in FIG. 14 (d), in the modified operation plan OP2, the total demand is satisfied by one normal operation device (# 1) and one low operation device (# 4). . Further, in the corrected operation plan OP2, one normal operation device (# 2) stands by as a backup device.
 修正後の運転計画OP2では、検査対象の低稼働装置(#4)をその期待値以上で働かせる。そして、低稼働装置(#4)の実際の出力値を、保証値GP2として記憶する。万が一、低稼働装置(#4)の出力が低く、総需要を満たせない場合、直ちにバックアップ用の常稼働装置(#2)が稼働してエネルギを供給する。 運 転 In the revised operation plan OP2, the low operation device (# 4) to be inspected is operated at or above its expected value. Then, the actual output value of the low operating device (# 4) is stored as the guaranteed value GP2. In the unlikely event that the output of the low operation device (# 4) is low and the total demand cannot be met, the backup normal operation device (# 2) immediately operates and supplies energy.
 図15は、運転計画が修正される他の例を示す。図15(a)に示すように、同一の期待値EPを有する4台のエネルギ供給装置(#1-#4)があると仮定する。図15(b)に示すように、4台のうち2台のエネルギ供給装置(#1,#2)は常稼働装置であり、他の2台は低稼働装置(#3,#4)であるとする。 FIG. 15 shows another example in which the operation plan is corrected. As shown in FIG. 15A, it is assumed that there are four energy supply devices (# 1- # 4) having the same expected value EP. As shown in FIG. 15B, two of the four energy supply devices (# 1, # 2) are normal operation devices, and the other two are low operation devices (# 3, # 4). Suppose there is.
 図15(c)に示すように、最初の運転計画OP3では、2台の常稼働装置(#1,#2)と1台の低稼働装置(#3)とで、エネルギ需要を満たすようになっている。つまり、需要が大きいために、常稼働装置(#1,#2)だけではその需要を満たすことができない場合である。この場合、低稼働装置(#3)を、その保証値GP2で使用する。 As shown in FIG. 15 (c), in the first operation plan OP3, the energy demand is satisfied by two normal operation devices (# 1, # 2) and one low operation device (# 3). It has become. That is, since the demand is large, the demand cannot be satisfied only by the normal operation devices (# 1, # 2). In this case, the low operating device (# 3) is used with its guaranteed value GP2.
 図15(d)に示すように、修正された運転計画OP4では、他の低稼働装置(#4)を検査対象として運転計画に含め、その期待値以上で動作するように設定する。常稼働装置(#2)は、検査対象の低稼働装置(#4)のバックアップとして待機する。 As shown in FIG. 15 (d), in the modified operation plan OP4, other low operation devices (# 4) are included in the operation plan as inspection targets and set to operate at or above the expected value. The normal operation device (# 2) stands by as a backup of the low operation device (# 4) to be inspected.
 なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。 In addition, this invention is not limited to the Example mentioned above. A person skilled in the art can make various additions and changes within the scope of the present invention.
 100:稼働能力保証装置、200
運転計画作成装置、300:集中制御装置、400:装置保全管理装置、500:エネルギ供給装置、600:エネルギ消費装置
100: Operation capability guarantee device, 200
Operation plan creation device, 300: Centralized control device, 400: Device maintenance management device, 500: Energy supply device, 600: Energy consumption device

Claims (11)

  1.  エネルギ供給装置の稼働能力を管理するシステムであって、
     運転計画に従ってエネルギを供給する複数のエネルギ供給装置の稼働実績を管理する稼働実績管理部と、
     前記各エネルギ供給装置に期待されている稼働能力を示す期待値を管理する期待値管理部と、
     前記稼働実績管理部により管理される前記各稼働実績と前記期待値管理部により管理される前記各期待値とに基づいて、前記各エネルギ供給装置の中から、前記期待値よりも前記稼働実績の方が低い所定のエネルギ供給装置を抽出する抽出部と、
     抽出された前記所定のエネルギ供給装置をその期待値以上で作動させるように前記運転計画を修正する修正部と、
    を備えるエネルギ供給装置の稼働能力管理システム。
    A system for managing the operating capacity of an energy supply device,
    An operation result management unit for managing operation results of a plurality of energy supply devices that supply energy according to an operation plan;
    An expected value management unit for managing an expected value indicating an operation capability expected for each energy supply device;
    Based on the respective operation results managed by the operation result management unit and the respective expected values managed by the expected value management unit, the operation results are more than the expected value out of the energy supply devices. An extraction unit for extracting a predetermined lower energy supply device;
    A correction unit that corrects the operation plan so as to operate the extracted predetermined energy supply device at or above its expected value;
    An operating capability management system for an energy supply device.
  2.  前記修正部は、さらに、前記所定のエネルギ供給装置がその期待値以上の稼働能力を発揮しない場合に備えて、前記各エネルギ供給装置の中からバックアップ用のエネルギ供給装置を選択し、選択された前記バックアップ用のエネルギ供給装置を待機させるように前記運転計画に含めさせる、
    請求項1に記載のエネルギ供給装置の稼働能力管理システム。
    The correction unit further selects and selects a backup energy supply device from among the energy supply devices, in preparation for the case where the predetermined energy supply device does not exhibit an operation capability higher than its expected value. The backup energy supply device is included in the operation plan so as to be on standby.
    The operating capability management system of the energy supply apparatus according to claim 1.
  3.  前記抽出部は、前記所定のエネルギ供給装置の前記期待値及び前記稼働実績に基づいて、前記所定のエネルギ供給装置の稼働能力の下限値を検出し、その下限値を前記所定のエネルギ供給装置の稼働能力の保証値として前記修正部に出力し、
     前記修正部は、前記所定のエネルギ供給装置の前記保証値を考慮して、前記運転計画を修正する、
    請求項2に記載のエネルギ供給装置の稼働能力管理システム。
    The extraction unit detects a lower limit value of the operation capability of the predetermined energy supply device based on the expected value and the operation result of the predetermined energy supply device, and the lower limit value is detected by the predetermined energy supply device. Output to the corrector as a guarantee value of operating capacity,
    The correction unit corrects the operation plan in consideration of the guaranteed value of the predetermined energy supply device.
    The operating capacity management system of the energy supply apparatus according to claim 2.
  4.  前記修正部は、
      抽出された前記所定のエネルギ供給装置のうち前記運転計画に含まれなかった所定のエネルギ供給装置に、運転計画から漏れた回数を示す待機回数を関連付けて、待機回数管理部により管理させ、
      次回の運転計画修正時には、前記待機回数に基づいて、前記運転計画に含める所定のエネルギ供給装置を決定する、
    請求項3に記載のエネルギ供給装置の稼働能力管理システム。
    The correction unit is
    Of the extracted predetermined energy supply devices, the predetermined energy supply device that was not included in the operation plan is associated with a standby number indicating the number of times the operation plan has been leaked, and is managed by the standby number management unit,
    At the time of the next operation plan correction, a predetermined energy supply device to be included in the operation plan is determined based on the number of standby times.
    The operating capability management system of the energy supply apparatus according to claim 3.
  5.  前記待機回数管理部は、前記運転計画に含まれなかった前記所定のエネルギ供給装置毎に、前記運転計画から連続して漏れた回数を示す待機回数と、前記所定のエネルギ供給装置の重要度とを対応付けて管理しており、
     前記修正部は、次回の運転計画修正時に、前記待機回数と前記重要度とに基づいて、前記運転計画に含める所定のエネルギ供給装置を決定する、
    請求項4に記載のエネルギ供給装置の稼働能力管理システム。
    The standby number management unit, for each of the predetermined energy supply devices not included in the operation plan, a standby number indicating the number of times of continuous leakage from the operation plan, and the importance of the predetermined energy supply device, Are associated and managed,
    The correction unit determines a predetermined energy supply device to be included in the operation plan based on the number of standby times and the importance when the next operation plan is corrected.
    The operating capacity management system of the energy supply apparatus according to claim 4.
  6.  前記運転計画は、複数の単位時間帯に分割可能であり、
     前記修正部は、前記各単位時間帯毎に、前記運転計画を修正する、
    請求項5に記載のエネルギ供給装置の稼働能力管理システム。
    The operation plan can be divided into a plurality of unit time zones,
    The correction unit corrects the operation plan for each unit time zone,
    The operating capability management system of the energy supply apparatus according to claim 5.
  7.  前記期待値管理部は、前記各エネルギ供給装置毎に、前記期待値と、時間閾値とを対応付けて管理しており、
     前記抽出部は、前記各エネルギ供給装置の中から、前記稼働実績が前記期待値に達しない時間が前記各前記時間閾値以上になったエネルギ供給装置を、前記所定のエネルギ供給装置として抽出する、
    請求項1に記載のエネルギ供給装置の稼働能力管理システム。
    The expected value management unit manages the expected value and a time threshold value in association with each energy supply device,
    The extraction unit extracts, as the predetermined energy supply device, the energy supply device in which the time during which the operation result does not reach the expected value is equal to or more than the time threshold value, from the energy supply devices.
    The operating capability management system of the energy supply apparatus according to claim 1.
  8.  前記各エネルギ供給装置がその期待値以上の稼働能力を発揮した最新の所定日時を管理するための所定日時管理部をさらに設け、
     前記稼働実績管理部は、前記各エネルギ供給装置の稼働実績のうち、前記所定日時以降の稼働実績を前記抽出部に出力する、
    請求項1に記載のエネルギ供給装置の稼働能力管理システム。
    A predetermined date and time management unit for managing the latest predetermined date and time when each of the energy supply devices exerted an operating capability equal to or higher than its expected value;
    The operation result management unit outputs the operation results after the predetermined date and time to the extraction unit among the operation results of the energy supply devices.
    The operating capability management system of the energy supply apparatus according to claim 1.
  9.  エネルギ供給装置の稼働能力を管理するコンピュータシステムであって、
     マイクロプロセッサと、
     前記マイクロプロセッサにより実行される所定のコンピュータプログラムと、
     前記マイクロプロセッサにより使用される記憶装置と、
     前記マイクロプロセッサにより使用される入出力装置とを備え、
     前記マイクロプロセッサが前記所定のコンピュータプログラムを読み込んで実行することにより、
     (S1)運転計画に従ってエネルギを供給する複数のエネルギ供給装置から前記入出力装置を介して稼働実績を取得し、その稼働実績を前記記憶装置に記憶させ、
     (S2)前記各エネルギ供給装置に期待されている稼働能力を示す期待値を前記入出力装置を介して取得し、その期待値を前記記憶装置に記憶させ、
     (S3)前記各稼働実績と前記各期待値とに基づいて、前記各エネルギ供給装置の中から、前記期待値よりも前記稼働実績の方が低い所定のエネルギ供給装置を抽出し、
     (S4)前記運転計画を前記入出力装置を介して取得し、
     (S5)抽出された前記所定のエネルギ供給装置をその期待値以上で作動させるように前記運転計画を修正し、
     (S6)修正された前記運転計画を、前記各エネルギ供給装置を制御するための制御システムに出力する、
    エネルギ供給装置の稼働能力を管理するコンピュータシステム。
    A computer system for managing the operating capacity of an energy supply device,
    A microprocessor;
    A predetermined computer program executed by the microprocessor;
    A storage device used by the microprocessor;
    An input / output device used by the microprocessor;
    By reading and executing the predetermined computer program by the microprocessor,
    (S1) Acquire operation results from the plurality of energy supply devices that supply energy according to the operation plan via the input / output device, and store the operation results in the storage device;
    (S2) Obtaining an expected value indicating the operating capability expected for each energy supply device via the input / output device, and storing the expected value in the storage device;
    (S3) Based on each operation result and each expected value, a predetermined energy supply device having a lower operation result than the expected value is extracted from each energy supply device,
    (S4) obtaining the operation plan via the input / output device;
    (S5) Modify the operation plan so as to operate the extracted predetermined energy supply device above its expected value,
    (S6) The corrected operation plan is output to a control system for controlling the energy supply devices.
    A computer system that manages the operating capability of an energy supply device.
  10.  前記(S5)では、さらに、
      前記所定のエネルギ供給装置がその期待値以上の稼働能力を発揮しない場合に備えて、前記各エネルギ供給装置の中からバックアップ用のエネルギ供給装置を選択し、
      選択された前記バックアップ用のエネルギ供給装置を待機させるように前記運転計画に含めさせる、
    請求項9に記載のエネルギ供給装置の稼働能力を管理するコンピュータシステム。
    In (S5) above,
    In preparation for the case where the predetermined energy supply device does not exhibit an operating capacity higher than its expected value, a backup energy supply device is selected from the energy supply devices.
    Causing the selected energy supply device for backup to be included in the operation plan to stand by,
    The computer system which manages the operating capability of the energy supply apparatus of Claim 9.
  11.  前記(S3)では、さらに、
      前記所定のエネルギ供給装置の前記期待値及び前記稼働実績に基づいて、前記所定のエネルギ供給装置の稼働能力の下限値を検出し、
      その下限値を前記所定のエネルギ供給装置の稼働能力の保証値として前記修正部に出力し、
     前記(S5)では、さらに、
      前記所定のエネルギ供給装置の前記保証値を考慮して、前記運転計画を修正する、
    請求項10に記載のエネルギ供給装置の稼働能力を管理するコンピュータシステム。
    In (S3) above,
    Based on the expected value and the operation result of the predetermined energy supply device, a lower limit value of the operation capability of the predetermined energy supply device is detected,
    The lower limit value is output to the correction unit as a guaranteed value of the operation capability of the predetermined energy supply device,
    In (S5) above,
    Correcting the operation plan in consideration of the guaranteed value of the predetermined energy supply device;
    The computer system which manages the operating capability of the energy supply apparatus of Claim 10.
PCT/JP2010/069370 2010-10-29 2010-10-29 Operating capacity management system for energy-supplying devices WO2012056581A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/069370 WO2012056581A1 (en) 2010-10-29 2010-10-29 Operating capacity management system for energy-supplying devices
JP2012540634A JPWO2012056581A1 (en) 2010-10-29 2010-10-29 Energy supply system operating capacity management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069370 WO2012056581A1 (en) 2010-10-29 2010-10-29 Operating capacity management system for energy-supplying devices

Publications (1)

Publication Number Publication Date
WO2012056581A1 true WO2012056581A1 (en) 2012-05-03

Family

ID=45993334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069370 WO2012056581A1 (en) 2010-10-29 2010-10-29 Operating capacity management system for energy-supplying devices

Country Status (2)

Country Link
JP (1) JPWO2012056581A1 (en)
WO (1) WO2012056581A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016052339A1 (en) * 2014-10-03 2017-07-06 三菱日立パワーシステムズ株式会社 Management target operation support apparatus, management target operation support method and program thereof
WO2017150140A1 (en) * 2016-03-04 2017-09-08 日本電気株式会社 Terminal device, control device, server, evaluation method, and program
WO2017150139A1 (en) * 2016-03-04 2017-09-08 日本電気株式会社 Terminal device, control device, server, evaluation method, and program
JP6725086B1 (en) * 2019-07-03 2020-07-15 三菱電機株式会社 Control plan correction device and control plan correction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178156A (en) * 2002-11-26 2004-06-24 Yokogawa Electric Corp Operation plan decision support system
JP2005130550A (en) * 2003-10-21 2005-05-19 Nippon Telegr & Teleph Corp <Ntt> Method and system for generating distributed energy system operation plan
JP2010226879A (en) * 2009-03-24 2010-10-07 Yamatake Corp Method and device for generating operation plan of energy supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178156A (en) * 2002-11-26 2004-06-24 Yokogawa Electric Corp Operation plan decision support system
JP2005130550A (en) * 2003-10-21 2005-05-19 Nippon Telegr & Teleph Corp <Ntt> Method and system for generating distributed energy system operation plan
JP2010226879A (en) * 2009-03-24 2010-10-07 Yamatake Corp Method and device for generating operation plan of energy supply system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016052339A1 (en) * 2014-10-03 2017-07-06 三菱日立パワーシステムズ株式会社 Management target operation support apparatus, management target operation support method and program thereof
WO2017150140A1 (en) * 2016-03-04 2017-09-08 日本電気株式会社 Terminal device, control device, server, evaluation method, and program
WO2017150139A1 (en) * 2016-03-04 2017-09-08 日本電気株式会社 Terminal device, control device, server, evaluation method, and program
JPWO2017150139A1 (en) * 2016-03-04 2018-12-27 日本電気株式会社 Terminal device, control device, server, evaluation method and program
JPWO2017150140A1 (en) * 2016-03-04 2018-12-27 日本電気株式会社 Terminal device, control device, server, evaluation method and program
US10644505B2 (en) 2016-03-04 2020-05-05 Nec Corporation Technique for evaluating an output performance of an electric power output apparatus connected to an electric power distribution network
US11205903B2 (en) 2016-03-04 2021-12-21 Nec Corporation Apparatus, evaluation method, and non-transitory storage medium
JP6725086B1 (en) * 2019-07-03 2020-07-15 三菱電機株式会社 Control plan correction device and control plan correction method
WO2021001963A1 (en) * 2019-07-03 2021-01-07 三菱電機株式会社 Control plan correcting device and control plan correcting method
CN114072833A (en) * 2019-07-03 2022-02-18 三菱电机株式会社 Control plan correction device and control plan correction method

Also Published As

Publication number Publication date
JPWO2012056581A1 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
US10243396B2 (en) Control device, power control system, and power control method
EP1850440B1 (en) Building energy management system
US9651971B2 (en) Control device, power control system, and power control method
US8841797B2 (en) Wireless annunciator for an electrical generator
US9397520B2 (en) Intelligent adaptive power supply
WO2012056581A1 (en) Operating capacity management system for energy-supplying devices
US20200044461A1 (en) Battery management system
JP6693545B2 (en) Power management system, storage battery mounted device, EMS controller and power management server
US20150057823A1 (en) Control apparatus, control system, and control method
WO2019045262A1 (en) Device and method for simulating power consumption by power load
KR20210079261A (en) Abnormal condition detection system using battery voltage data
JP2020020654A (en) Capacity estimating system, capacity estimating method, communication device, and computer program
JP2019033605A (en) Storage battery deterioration diagnosis method of power control system and power control system
WO2019221361A1 (en) Power management system
JP7230257B1 (en) Management system
KR20180129399A (en) Photovoltaic system
JP2011135644A (en) Dead zone avoidance system, dead zone avoiding device, and method of avoiding dead zone
AU2017101651A4 (en) Systems for supplying power to a grid
JP2016103890A (en) Power control unit and power control system
WO2023176953A1 (en) Management system
CN104701850B (en) A kind of electric control system
KR102307096B1 (en) Uninterruptible power supply capable of selective power outage compensation and power outage compensation method
JP7512442B2 (en) Battery control device and battery control method
KR102111060B1 (en) Vessel UPS Energy Storage System
KR102525107B1 (en) Oxide fuel cell distributed generation power control monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012540634

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858968

Country of ref document: EP

Kind code of ref document: A1