JP2005130550A - Method and system for generating distributed energy system operation plan - Google Patents

Method and system for generating distributed energy system operation plan Download PDF

Info

Publication number
JP2005130550A
JP2005130550A JP2003360604A JP2003360604A JP2005130550A JP 2005130550 A JP2005130550 A JP 2005130550A JP 2003360604 A JP2003360604 A JP 2003360604A JP 2003360604 A JP2003360604 A JP 2003360604A JP 2005130550 A JP2005130550 A JP 2005130550A
Authority
JP
Japan
Prior art keywords
operation plan
energy
amount
power
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003360604A
Other languages
Japanese (ja)
Other versions
JP4087774B2 (en
Inventor
Akira Nakazawa
朗 中澤
Yasushi Hiraoka
靖史 平岡
Akira Takeuchi
章 竹内
Mitsuru Kudo
満 工藤
Masahito Maruyama
雅人 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003360604A priority Critical patent/JP4087774B2/en
Publication of JP2005130550A publication Critical patent/JP2005130550A/en
Application granted granted Critical
Publication of JP4087774B2 publication Critical patent/JP4087774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To minimize a running cost, taking into consideration the balance among accumulation and release of energy and black out, when controlling operation by interconnecting a power grid with a distributed energy system. <P>SOLUTION: An facility data storage part 22 stores facility data such as nominal output and efficiency of equipment. An initial operation plan generating part 21 generates initial operation plan, based on the operation plan of the previous day. An operation plan correcting part 23 takes a demand prediction data from a demand predicting device 4, which predicts the amount of demanded electric power of the energy load on the day and corrects the operation plan to satisfy the demanded electric power amount. Further, the initial operation plan is so corrected as to minimize a running cost, while satisfying energy accumulation device restraints based, on the facility data of the facility data storage part 22, and the corrected initial operation plan is outputted as an optimum operation plan. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、1つまたは複数のエネルギー発生装置とエネルギー蓄積装置を有し、電力系統とエネルギー負荷に接続された分散エネルギーシステムに関する。   The present invention relates to a distributed energy system having one or more energy generators and energy storage devices and connected to a power system and an energy load.

現在、このような制御を行うシステムとしては特許文献1に記載されている電力需要供給制御システムがある。これは所定地域(コミュニティ)内の分散電源を備えた電力需要家を含む複数の電力需要家への配電とこれらの需要家間の電力需給を行う際に、所定地域内において低コストな発電を行う需要家の発電装置のような分散電源とエネルギーを貯蔵するエネルギー貯蔵設備を最大限に利用することによって例えば電気事業者からの高価な購入電力量を抑制し、需給制御を行うことによってコスト低減を図るものである。
特開平2002−010506号公報
Currently, there is a power demand supply control system described in Patent Document 1 as a system that performs such control. This is because low-cost power generation is performed in a given area when distributing power to a plurality of power consumers including a power consumer with a distributed power source in a given area (community) and supplying and supplying power between these consumers. Reduce the cost by controlling the supply and demand by suppressing the amount of expensive purchased power from the electric utility, for example, by maximizing the use of the distributed power source and the energy storage equipment that stores energy, such as the power generation device of the customer Is intended.
Japanese Patent Laid-Open No. 2002-010506

ここでエネルギー蓄積装置としては充電装置や水素タンク、貯湯槽等があるが、エネルギーのバランスを取らないでランニングコストを最小にする運転計画を作成すると、エネルギー蓄積装置のエネルギーを全て使い果たした方がランニングコストが下がるため、運転計画の最後の時間帯にはエネルギー蓄積装置にはエネルギーが残らない計画が作成される。この状態で次の運転計画を作成しようとすると、初期の時間帯に多くのエネルギー需要があったとしても、エネルギー蓄積装置にはエネルギーが蓄積されていないため、系統電力コストが割高な時間帯の場合でも系統電力を購入しなければならないという問題が生じる。   Here, there are charging devices, hydrogen tanks, hot water tanks, etc. as energy storage devices, but if you create an operation plan that minimizes running costs without balancing energy, you should use up all the energy in the energy storage device. Since the running cost is reduced, a plan in which no energy remains in the energy storage device is created in the last time zone of the operation plan. If an attempt is made to create the next operation plan in this state, even if there is a lot of energy demand in the initial time zone, energy is not stored in the energy storage device. Even in this case, there arises a problem that grid power must be purchased.

また、所定地域内における電力系統が突然停電し、発電装置が停止していた場合、エネルギー蓄積装置がある一定の容量を確保していなければ、後述する重要負荷に電力を供給できない場合が存在する。   In addition, when the power system in a predetermined area suddenly loses power and the power generation device is stopped, there is a case where power cannot be supplied to an important load described later unless an energy storage device has a certain capacity. .

本発明は上記の問題点に鑑みなされたもので、その目的とするところは、電力系統に分散エネルギーシステムを連系して運転制御する際に、エネルギーの蓄積や放出のバランスや停電を考慮してランニングコストを最小化する分散エネルギーシステム運転計画作成装置および作成方法を提供することにある。   The present invention has been made in view of the above-described problems, and the object of the present invention is to take into account the balance of energy storage and discharge and power outages when operating a distributed energy system linked to a power system. Another object of the present invention is to provide a distributed energy system operation plan creation apparatus and creation method that minimizes running costs.

本発明のエネルギーシステム運転計画作成装置は、過去の運転データを用いて初期運転計画を作成する初期運転計画作成手段と、初期運転計画を、ランニングコストを最小にするように修正し、修正された初期運転計画を最適運転計画として出力する運転計画修正手段を有している。   The energy system operation plan creation device of the present invention has been modified by correcting the initial operation plan so as to minimize the running cost, and the initial operation plan creation means for creating an initial operation plan using past operation data. Operation plan correction means for outputting the initial operation plan as the optimum operation plan is provided.

最適運転計画修正手段は、具体的には初期運転計画作成手段で作成された初期運転計画を、組合せ最適化問題を解く手法を用いて、全ての時間帯においてエネルギー発生装置およびエネルギー蓄積装置と電力系統からのエネルギー供給量が前記エネルギー負荷のエネルギー需要量を満足しながらエネルギー発生装置がエネルギーを発生させる際にかかる費用である燃料コストと、電力系統の電力価格で売買した金額の積算値である系統電力コストとの和であるランニングコストを最小化するように修正し、さらに一定期間内のエネルギー蓄積装置のエネルギーの蓄積量と放出量が等しくなるように修正し、なおかつエネルギー蓄積装置はある一定値以上のエネルギー蓄積装置容量を常に確保するように修正して、最適運転計画を作成する。   Specifically, the optimum operation plan correction means uses the method of solving the combination optimization problem for the initial operation plan created by the initial operation plan creation means, and the energy generator, the energy storage device, and the power in all time zones. The amount of energy supplied from the grid is the integrated value of the fuel cost, which is the cost for the energy generator to generate energy while satisfying the energy demand of the energy load, and the amount bought and sold at the power price of the power grid Correction is made to minimize the running cost, which is the sum of the grid power cost, and further, the energy storage device is corrected so that the amount of energy stored in the energy storage device is equal to the amount released, and the energy storage device is a certain amount. Make an optimal operation plan by modifying the energy storage device capacity to be always larger than the value.

したがって、ランニングコストを最小化する最適運転計画が作成される。   Therefore, an optimum operation plan that minimizes the running cost is created.

ここで、一定期間内のエネルギーの放出量が蓄積量よりも多い運転計画が作成された場合には、エネルギー蓄積装置の容量範囲内で蓄積量を増加させていくことによって、一定期間内のエネルギー蓄積装置のエネルギーの蓄積量と放出量が等しくなるように初期運転計画を修正しながら、最適運転計画を作成していく。エネルギーの蓄積量を増加させていく過程において、エネルギー蓄積装置として蓄電池を用いた場合には、系統電力コストが最小となるようにするため、電力価格が最も安い時間帯から順次、蓄電池制約条件を満足しながら、充電電力量を増加させていくように初期運転計画を更新しながら最適運転計画を作成していく。   Here, when an operation plan is created in which the amount of energy released within a certain period is greater than the accumulated amount, the amount of energy within the certain period is increased by increasing the accumulated amount within the capacity range of the energy storage device. The optimum operation plan is created while correcting the initial operation plan so that the energy storage amount and the discharge amount of the storage device become equal. In the process of increasing the amount of energy stored, when a storage battery is used as an energy storage device, the storage battery constraint conditions are set in order from the time when the power price is the lowest, in order to minimize the grid power cost. While satisfying, the optimum operation plan is created while updating the initial operation plan so as to increase the amount of charging power.

一定期間内のエネルギーの蓄積量が放出量よりも多い運転計画が作成された場合には、エネルギー蓄積装置容量範囲内で放出量を増加させていくことによって、一定期間内のエネルギー蓄積装置の蓄積量と放出量が等しくなるように初期運転計画を修正しながら、最適運転計画を作成していく。放出量を増加させていく過程において、エネルギー蓄積装置として蓄電池を用いた場合には、系統電力コストが最小となるようにするため、電力価格が最も高い時間帯から順次、蓄電池制約条件を満足しながら、放電電力量を増加させていくように初期運転計画を更新しながら最適運転計画を作成していく。   When an operation plan is created in which the amount of energy stored in a certain period is greater than the amount released, the amount of energy stored in the specified period is increased by increasing the amount released in the energy storage device capacity range. The optimal operation plan is created while correcting the initial operation plan so that the amount and the discharge amount are equal. When a storage battery is used as an energy storage device in the process of increasing the released amount, the storage battery constraints are satisfied in order from the time when the power price is highest in order to minimize the grid power cost. However, the optimum operation plan is created while updating the initial operation plan so as to increase the discharge electric energy.

常時エネルギー供給を必要とする重要負荷のエネルギー需要をエネルギー蓄積装置からの供給エネルギーのみで必要なバックアップ時間以上満足できるように、あらかじめその前記重要負荷のエネルギー量分のエネルギー蓄積容量を計算しておき、どの時間帯においてもそのエネルギー蓄積容量を確保するように最適運転計画を作成する。   The energy storage capacity for the amount of energy of the important load is calculated in advance so that the energy demand of the important load that requires constant energy supply can be satisfied for more than the required backup time using only the energy supplied from the energy storage device. The optimal operation plan is created so as to secure the energy storage capacity in any time zone.

このように、重要エネルギー負荷分を常に確保しておくことで停電のような非常時にも対応できる。   In this way, it is possible to cope with an emergency such as a power failure by always securing an important energy load.

以上説明したように本発明は、エネルギーのバランスを考慮してランニングコストを最小化してエネルギーを蓄積した状態を保つことができ、その蓄積したエネルギー利用することにより、次の運転計画を立てる際に、様々な状況に対してコスト低減を図ることができる。   As described above, the present invention can keep the accumulated state by minimizing the running cost in consideration of the balance of energy, and when making the next operation plan by using the accumulated energy. The cost can be reduced for various situations.

次に、本発明の実施の形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

以下の実施形態では、最適化問題を解く手法として、遺伝的アルゴリズム(Genetic Algorithm 以下GAと称す)を用いるが、タブサーチやシミュレーティッド・アニーソング等、他の手法を用いてもよい。   In the following embodiment, a genetic algorithm (hereinafter referred to as GA) is used as a technique for solving the optimization problem, but other techniques such as tab search and simulated annealing may be used.

図1は本発明の一実施形態の分散エネルギーシステム運転計画作成装置を含む分散エネルギーシステムの構成を示している。   FIG. 1 shows a configuration of a distributed energy system including a distributed energy system operation plan creation device according to an embodiment of the present invention.

この分散エネルギーシステム1は、エネルギー発生装置としての発電装置11および熱発生装置12と、エネルギー蓄積装置13(熱用)と、エネルギー蓄積装置14(電力用)と、電力変換装置15と、サーバ16と、分散エネルギーシステム運転計画作成装置17と、制御装置18を有している。   The distributed energy system 1 includes a power generation device 11 and a heat generation device 12 as energy generation devices, an energy storage device 13 (for heat), an energy storage device 14 (for power), a power conversion device 15, and a server 16. And a distributed energy system operation plan creation device 17 and a control device 18.

エネルギー蓄積装置14(電力用)に例えば蓄電池を用いた場合、放電時には発電装置11とエネルギー蓄積装置14(電力用)からの直流を電力変換装置15によって交流に変換し、電力系統3と連系してエネルギー負荷2に電力が供給される。また、充電時には発電装置11からの電力と電力系統3からの交流を電力変換装置15によって直流に変換してできる電力によってエネルギー蓄積装置14(電力用)へ充電される。ここで発電装置11としては燃料電池の他、ガスタービン等を用いてもよく、エネルギー蓄積装置14(電力用)としては鉛蓄電池やニッケル水素電池等を用いるとよい。電力のエネルギー負荷2としては照明や空調、ホームサーバ等がある。また、発電装置の排熱を有効利用するために、エネルギー蓄積装置13(熱用)として貯湯槽等が設けられている。その貯湯槽で蓄積された熱を熱のエネルギー負荷2である風呂などで利用するものとする。制御装置18は上記の制御を行い、その制御値は、サーバ16から需要予測データや前日の運転データ等を、ランニングコストの最小化を行う運転計画を作成する分散エネルギーシステム運転計画作成装置17に取り込み、そこで作成された最適運転計画値によって決定される。サーバ16は需要予測データや前日の運転データ等の保存を行なう。   When a storage battery is used for the energy storage device 14 (for power), for example, a direct current from the power generation device 11 and the energy storage device 14 (for power) is converted into an alternating current by the power conversion device 15 and connected to the power system 3 when discharging. Thus, electric power is supplied to the energy load 2. Further, at the time of charging, the energy storage device 14 (for electric power) is charged by the power generated by converting the power from the power generation device 11 and the alternating current from the power system 3 into direct current by the power conversion device 15. Here, a gas turbine or the like may be used as the power generation device 11 in addition to a fuel cell, and a lead storage battery or a nickel hydrogen battery may be used as the energy storage device 14 (for power). Examples of the energy load 2 of electric power include lighting, air conditioning, and a home server. Further, in order to effectively use the exhaust heat of the power generation device, a hot water storage tank or the like is provided as the energy storage device 13 (for heat). It is assumed that the heat accumulated in the hot water storage tank is used in a bath or the like that is the heat energy load 2. The control device 18 performs the above-described control, and the control value is supplied from the server 16 to the distributed energy system operation plan creation device 17 that creates an operation plan for minimizing the running cost based on the demand prediction data and the operation data for the previous day. It is determined by the optimum operation plan value taken in. The server 16 stores demand forecast data, operation data for the previous day, and the like.

図2は分散エネルギーシステム運転計画作成装置17の構成例を示すブロック図である。この分散エネルギーシステム運転計画作成装置17は初期運転計画作成部21と設備データ記憶部22と運転計画修正部23で構成されている。   FIG. 2 is a block diagram illustrating a configuration example of the distributed energy system operation plan creation device 17. The distributed energy system operation plan creation device 17 includes an initial operation plan creation unit 21, an equipment data storage unit 22, and an operation plan correction unit 23.

設備データ記憶部22は機器の定格出力、効率等の設備データを記憶している。初期運転計画作成部21は前日の運転計画を元に初期運転計画を作成する。運転計画修正部23は当日のエネルギー負荷の需要電力量を予測する需要予測装置4から需要予測データを取り込み、その需用電力量を満足するように初期運転計画を修正し、さらに設備データ記憶部22の設備データによってエネルギー蓄積装置制約条件(エネルギー蓄積装置の容量が下限値に達した時にエネルギー放出しないなどといった条件)を満たしながら初期運転計画をランニングコストを最小にするように修正し、修正された初期運転計画を最適運転計画として制御装置18に出力する。   The equipment data storage unit 22 stores equipment data such as the rated output and efficiency of the equipment. The initial operation plan creation unit 21 creates an initial operation plan based on the previous day's operation plan. The operation plan correction unit 23 takes in the demand prediction data from the demand prediction device 4 that predicts the demand power amount of the energy load of the day, corrects the initial operation plan so as to satisfy the demand power amount, and further, the equipment data storage unit The initial operation plan was revised to minimize the running cost while satisfying the energy storage device constraint conditions (conditions such as not releasing energy when the capacity of the energy storage device reached the lower limit) based on the 22 equipment data. The initial operation plan is output to the control device 18 as the optimum operation plan.

運転計画を例えば1時間単位で行なうとすると、図6のように24個の運転指令値の組合せが考えられる。この指令値を電力価格とか、負荷電力を満たすようにするにはどうすれば一番安い組合せになるのかということを考える時、その組合せは膨大な数になるため、ある程度良さそうな解を効率よく探していかなければならない。メタヒューリスティクスとは、その組合せをそれぞれの手法がもつアルゴリズムでうまく探していく方法であり、例えばGAでは、運転計画を遺伝子配列に例える。図6が遺伝子配列であるが、自然界ではいい個体(運転計画)が生き残り、悪いものは淘汰される(自然淘汰)。同じ世代には異なる個体がいくつか存在し、自然淘汰によっていい個体を選び出す。そのいい固体を次の世代に残し、次はそのいい個体を参考に新しい個体を生み出したり(交叉、図7)、突然変異によっていい個体が生まれる(図8)といった遺伝的なアルゴリズムで最適解を求める。   If the operation plan is performed in units of one hour, for example, combinations of 24 operation command values can be considered as shown in FIG. When thinking about how to make this command value the power price or how to satisfy the load power, there are a huge number of combinations, so efficiently search for a solution that seems to be good to some extent. I have to go. Metaheuristics is a method of finding the combination with an algorithm of each method. For example, in GA, an operation plan is compared to a gene sequence. Although FIG. 6 shows a gene arrangement, a good individual (driving plan) survives in nature, and a bad one is deceived (natural selection). There are several different individuals in the same generation, and a good individual is selected by natural selection. Leave the good solid in the next generation, and then create a new individual with reference to the good individual (crossover, Fig. 7), or create a good individual by mutation (Fig. 8). Ask.

次に、初期運転計画作成部21における初期運転計画作成のフローチャートを図3に示す。この例では、前日の運転パターンをサーバ16から読み込み(ステップ101)、初期遺伝子を作成して(ステップ102)、初期運転計画を作成するものであるが、前日の運転パターンの他に過去一週間、一ヶ月間の平均値や過去の曜日ごとの平均値等を用いてもよい。   Next, FIG. 3 shows a flowchart of initial operation plan creation in the initial operation plan creation unit 21. In this example, the driving pattern of the previous day is read from the server 16 (step 101), an initial gene is created (step 102), and an initial driving plan is created. Alternatively, an average value for one month, an average value for each past day of the week, or the like may be used.

また、図2の運転計画修正部23における運転計画更新のフローチャートを図4に示す。この例では前日の運転データを元に初期運転計画作成部21において得られた初期遺伝子作成データから当日のエネルギー負荷の予測である予測需用電力量を満たすように、遺伝子を交叉や突然変異によって操作し(ステップ201)、この操作によって一定期間内の充放電電力量(充電電力量をマイナス、放電電力量をプラスとする)の積算値が0になっていなかった場合、0になるようにする(ステップ202)(これを充放電のバランスを取ると言い、このバランス取りの具体例については後述する)。充放電のバランスを取った後、各遺伝子の適合度を計算し(ステップ203)、その適合度に応じて自然淘汰していく(ステップ204)。ここで適合度は例えば(1)式のように定義する。   FIG. 4 shows a flowchart of the operation plan update in the operation plan correction unit 23 of FIG. In this example, genes are crossed or mutated so as to satisfy the predicted power demand for the energy load of the day from the initial gene creation data obtained in the initial operation plan creation unit 21 based on the previous day's operation data. If the integrated value of the charge / discharge power amount (with the charge power amount minus and the discharge power amount plus) within a certain period is not 0 by this operation, it is set to 0. (Step 202) (This is said to balance charging and discharging, and a specific example of balancing will be described later). After balancing the charge and discharge, the fitness of each gene is calculated (step 203), and natural selection is made according to the fitness (step 204). Here, the degree of conformity is defined as in equation (1), for example.

適合度=1/ランニングコスト (1)
また、ランニングコストは例えば(2)式のように定義する。なお、Σは一日にかかるランニングコストを積算することを意味し、発電電力や充放電電力は効率を考慮して出力されたものとし、売買電単価の例は図10、11に示す。
Goodness of fit = 1 / running cost (1)
Also, the running cost is defined as shown in equation (2), for example. Note that Σ means that the running cost for one day is integrated, and generated power and charge / discharge power are output in consideration of efficiency, and examples of unit prices for buying and selling are shown in FIGS.

ランニングコスト=Σ[(負荷電力−発電電力−充放電電力)×売買電単価+電力と熱を発生するための燃料費] (2)
これらの操作を行った後、収束判定(ステップ205)において一定世代において最小ランニングコストである解が更新されなかったり、一定時間が経過するとそれらは収束したものとし、得られた解の中で最もランニングコストが安い運転計画を最適運転計画として選定する(ステップ206)。
Running cost = Σ [(load power−generated power−charge / discharge power) × unit price for buying and selling power + fuel cost for generating power and heat] (2)
After performing these operations, in the convergence determination (step 205), the solutions that have the minimum running cost in a certain generation are not updated, or they have converged after a certain period of time. An operation plan with a low running cost is selected as the optimum operation plan (step 206).

ここで、図4におけるエネルギーのバランス取り(ステップ202)について説明する。その一例として蓄電池における充放電のバランス取りの処理フローについて図5に示す。交叉や突然変異などの遺伝子操作を行った後は、一定期間内の充放電のバランスが崩れていることがある。ステップ301において、放電電力量が多い場合には系統電力の最も価格の安い時間帯から順次、充電電力量を増加させ、さらに電力系統が停電した場合に重要負荷電力に供給できるように最低負荷電力容量を確保し(後述する図13において説明)、一定期間内の充放電バランスが取れるように充放電電力量を計算する(ステップ302〜304)。充放電バランスが取れれば、蓄電池容量と照らし合わせ、過充電や過放電が起こらないようにする。過充電や過放電が起こっていれば、充放電量が蓄電池容量範囲内に収まるように充放電電力量を再計算し(ステップ308〜310)、起こっていなければ、収束判定(ステップ205)に移るものとする。放電電力量が少ない場合にも同様に系統電力の最も価格の高い時間帯から順次、放電電力量を増加させ、最低負荷容量、充放電バランス、過充電や過放電を考慮しながら収束判定に移るものとする(ステップ305〜310)。ここで、充放電電力量とは1時間単位の蓄電池からの出力を示し、充放電量とは充放電電力量の24時間分の積算値を示す。   Here, the energy balancing (step 202) in FIG. 4 will be described. As an example, FIG. 5 shows a processing flow for balancing charge and discharge in a storage battery. After genetic manipulation such as crossover and mutation, the balance of charge and discharge within a certain period may be lost. In step 301, when the amount of discharge power is large, the charge power amount is increased sequentially from the time zone with the lowest price of the system power, and the minimum load power is supplied so that it can be supplied to the important load power when the power system fails. The capacity is secured (described in FIG. 13 described later), and the charge / discharge electric energy is calculated so that the charge / discharge balance within a certain period can be achieved (steps 302 to 304). If charge / discharge balance is achieved, the battery capacity should be checked against overcharge and overdischarge. If overcharge or overdischarge has occurred, the charge / discharge power amount is recalculated so that the charge / discharge amount falls within the storage battery capacity range (steps 308 to 310). If not, the convergence determination (step 205) is performed. Shall move. Similarly, when the amount of discharge power is small, increase the discharge power sequentially from the time when the grid power is most expensive, and move to convergence judgment while considering the minimum load capacity, charge / discharge balance, overcharge and overdischarge. (Steps 305 to 310). Here, the charge / discharge power amount indicates an output from the storage battery in units of one hour, and the charge / discharge amount indicates an integrated value for 24 hours of the charge / discharge power amount.

次に、運転計画を遺伝子配列にする方法の一例について説明する。図6は発電装置11として燃料電池の出力を1〜6として6段階、蓄電池14の出力を充電−1〜−8、放電1〜8、充放電なしを0と出力して17段階としたときの例である。このように一日を24等分し、各時間帯ごとに発電装置11、蓄電池14の運転計画を出力するものとする。   Next, an example of a method for making an operation plan a gene sequence will be described. FIG. 6 shows the output of the fuel cell as the power generation apparatus 11 in 6 stages, 1 to 6 and the output of the storage battery 14 in charge 1 to -8, discharge 1 to 8, and no charge / discharge as 0 to 17 stages. It is an example. In this way, the day is divided into 24 equal parts, and the operation plan of the power generator 11 and the storage battery 14 is output for each time zone.

次に、交叉の一例について説明する。例えば図7は図6の運転計画を0〜12時、12〜24時の二つに分けたものである。0〜12時の運転計画がA、12〜24時の運転計画がBのものを個体1、0〜12時の運転計画がC、12〜24時の運転計画がDのものを個体2とする。ここで個体1のB、個体2のDを入れ替えてできたものを新たな個体3、個体4とする。このようにして交叉を行うものとする。   Next, an example of crossover will be described. For example, FIG. 7 divides the operation plan of FIG. 6 into two, 0-12 o'clock and 12-24 o'clock. The operation plan at 0-12 o'clock is A, the operation plan at 12-24 o'clock is B, the individual 1, the operation plan at 0-12 o'clock is C, the operation plan at 12-24 o'clock is D, and the individual 2 To do. Here, a new individual 3 and an individual 4 are obtained by exchanging B of the individual 1 and D of the individual 2. Crossover is performed in this way.

次に、突然変異の一例について説明する。例えば図8は図6の燃料電池の運転計画であり、この中から出力を変える時間帯をランダムにひとつ選び、ランダムに出力を増減する。図8では0時から1時の出力を6から4にした。ここで突然変異させた結果、燃料電池の出力範囲内に収まらない運転計画値が作成された場合、削除するものとする。   Next, an example of mutation will be described. For example, FIG. 8 is an operation plan of the fuel cell of FIG. 6, and one time zone in which the output is changed is selected at random, and the output is increased or decreased at random. In FIG. 8, the output from 0 o'clock to 1 o'clock is changed from 6 to 4. If an operation plan value that does not fall within the output range of the fuel cell is created as a result of the mutation, it is deleted.

これらの交叉や突然変異で出力を変えただけでは、燃料電池は問題ないが、蓄電池において一定期間内の充放電バランスが取れていない。そこで、放電の出力を+(プラス)、充電の出力を−(マイナス)として一定期間内の充放電の積算値が0(ゼロ)になるように修正する。例えば修正された例である図9では0〜12時の運転計画が出力1、12〜24時の運転計画が−1とした。これらエネルギー蓄積装置14の各時間帯ごとの出力値を合計すると0になる。   Even if the output is changed only by these crossovers and mutations, there is no problem with the fuel cell, but the charge / discharge balance within a certain period is not achieved in the storage battery. Therefore, the discharge output is + (plus) and the charge output is-(minus), and the charge / discharge integrated value within a certain period is corrected to 0 (zero). For example, in FIG. 9, which is a modified example, the operation plan at 0-12 o'clock is output 1, and the operation plan at 12-24 o'clock is -1. The sum of the output values for each time zone of these energy storage devices 14 is zero.

価格帯を考慮した蓄電池の充放電について説明する。例えば、電力系統3から買い取る価格である買電単価が図10、逆潮流させて電力を売る価格である売電単価が図11のような場合、どちらも15時付近に最大値がきているので、15時付近にはなるべく系統電力を買わず、燃料電池や蓄電池から出力することによってランニングコストは低下する。また、深夜3時付近に最小値がきているので燃料電池や蓄電池から出力せず、系統電力を買い、エネルギー負荷2に供給するかあるいは蓄電池に充電することによってランニングコストは低下する。このときに、過放電のような制約範囲外の運転計画は除外し、制約範囲内でランニングコストが最小になるものを最適運転計画として選択するものとする。また、図10、11は例として正弦波のような価格設定になっているが、どのような価格設定でもよい。   The charging / discharging of the storage battery in consideration of the price range will be described. For example, when the power purchase unit price, which is the price purchased from the power system 3, is as shown in FIG. 10, and the power sale unit price, which is the price for selling power by reverse flow, is as shown in FIG. In the vicinity of 15:00, system power is not purchased as much as possible, and output from the fuel cell or storage battery reduces the running cost. In addition, since the minimum value is around 3 o'clock in the middle of the night, the running cost is reduced by purchasing the grid power and supplying it to the energy load 2 or charging the storage battery without outputting from the fuel cell or storage battery. At this time, an operation plan outside the constraint range such as overdischarge is excluded, and an operation plan having a minimum running cost within the constraint range is selected as the optimum operation plan. 10 and 11 are priced like a sine wave as an example, but any price can be set.

図12にこれらを元に計算した結果例である燃料電池と蓄電池の運転計画を示す。上段は燃料電池の運転計画であり、下段はエネルギー蓄積装置14の運転計画である。縦軸は各出力電力値を示し、横軸は時間軸を示す。なお、エネルギー蓄積装置14の充放電電力のプラスは放電電力量を示し、マイナスは充電電力量を示す。この例では電力需要の多い昼間は発電装置11、エネルギー蓄積装置14から共に発電し、電力需要の少ない深夜では発電装置11からは発電せず、エネルギー蓄積装置14に充電するようになっている。   FIG. 12 shows an operation plan of the fuel cell and the storage battery, which is a result example calculated based on these. The upper part is an operation plan for the fuel cell, and the lower part is an operation plan for the energy storage device 14. The vertical axis represents each output power value, and the horizontal axis represents the time axis. In addition, the plus of charging / discharging power of the energy storage device 14 indicates the amount of discharging power, and the minus indicates the amount of charging power. In this example, both the power generation device 11 and the energy storage device 14 generate power during the daytime when the power demand is high, and the energy storage device 14 is charged without generating power from the power generation device 11 at midnight when the power demand is low.

図5における電力系統が停電した場合に重要負荷電力に供給できるように最低負荷電力容量を確保する方法について説明する。図13にその系統電力の停電が発生した場合の制御フローチャートを示す。一部の照明やホームサーバといった常時給電しなければならない重要負荷に供給する重要負荷電力量をあらかじめ入力する(ステップ401)。その重要負荷電力量というのは停電してから発電装置が起動するまでの時間(バックアップ時間)において、蓄電池14のみで重要負荷の電力量をまかなえる電力量であり、蓄電池14はこの電力量を常に確保しておくように計算する。これにより停電が発生後、発電装置11が起動していれば発電装置11から重要負荷に電力を供給する(ステップ402〜404)ので問題ないが、起動していない場合にも蓄電池14より重要負荷に電力を供給することができ(ステップ402,403,405)、発電装置11の起動後(ステップ406)、発電装置11から重要負荷へ電力を供給する(ステップ407)ことによって重要負荷には常時給電ができる。停電復旧後は通常通り、電力系統3、発電装置11、蓄電池14から負荷に供給する。このとき停電時の発電装置11や蓄電池14からの電力供給先である重要負荷はあらかじめ設定しておくものとする。   A method of securing the minimum load power capacity so that important load power can be supplied when the power system in FIG. FIG. 13 shows a control flowchart when a power failure occurs in the system power. An important load power amount to be supplied to an important load that must be constantly supplied, such as some lights and home servers, is input in advance (step 401). The important load electric energy is the electric energy that can cover the electric energy of the important load only by the storage battery 14 in the time (backup time) from the power failure to the start of the power generation device, and the storage battery 14 always uses this electric energy. Calculate to keep. As a result, if the power generation device 11 is activated after a power failure occurs, power is supplied from the power generation device 11 to the important load (steps 402 to 404). Can be supplied (steps 402, 403, and 405), and after the power generation device 11 is started (step 406), power is supplied from the power generation device 11 to the important load (step 407). Power can be supplied. After the power failure recovery, the power is supplied from the power system 3, the power generator 11, and the storage battery 14 to the load as usual. At this time, an important load that is a power supply destination from the power generation device 11 and the storage battery 14 at the time of a power failure is set in advance.

本発明の一実施形態の分散エネルギーシステム運転計画作成装置を有する分散エネルギーシステムの構成図である。It is a lineblock diagram of a distributed energy system which has a distributed energy system operation plan creation device of one embodiment of the present invention. 図1中の分散エネルギーシステム運転計画作成装置17の構成を示すブロック図である。It is a block diagram which shows the structure of the distributed energy system operation plan preparation apparatus 17 in FIG. 図2中の初期運転計画作成部21の処理を示すフローチャートである。It is a flowchart which shows the process of the initial stage operation plan preparation part 21 in FIG. 図2中の運転計画修正部23の処理を示すフローチャートである。It is a flowchart which shows the process of the driving plan correction part 23 in FIG. 図4中におけるエネルギーのバランス取りの詳細を示すフローチャートである。5 is a flowchart showing details of energy balancing in FIG. 4. 燃料電池、蓄電池の運転計画を遺伝子配列にした例を示す。The example which made the arrangement | sequence of the fuel cell and the storage battery the operation plan is shown. 交叉の一例を示す図である。It is a figure which shows an example of crossover. 図7の燃料電池の運転計画の一部を突然変異させた例を示す。8 shows an example in which a part of the operation plan of the fuel cell in FIG. 7 is mutated. 一定期間内の充放電の積算値を0にした例を示す。An example in which the integrated value of charge / discharge within a certain period is set to 0 is shown. 買電単価の例を時系列ごとに示す。An example of power purchase unit price is shown for each time series. 売電単価の例を時系列ごとに示す。An example of the power selling unit price is shown for each time series. 燃料電池と蓄電池の運転計画を計算した結果例を示す。The example of the result of having calculated the operation plan of a fuel cell and a storage battery is shown. 図5における電力系統が停電した場合に重要負荷電力に供給できるように最低負荷電力容量を確保する処理のフローチャートである。FIG. 6 is a flowchart of a process for securing a minimum load power capacity so that important load power can be supplied when the power system in FIG. 5 fails.

符号の説明Explanation of symbols

1 分散エネルギーシステム
2 エネルギー負荷
3 電力系統
4 需要予測装置
11 発電装置
12 熱発生装置
13 エネルギー蓄積装置(熱用)
14 エネルギー蓄積装置(電力用)
15 電力変換装置
16 サーバ
17 分散エネルギーシステム運転計画作成装置
18 制御装置
21 初期運転計画作成部
22 設備データ記憶部
23 運転計画修正部
101〜102,201〜207,301〜310,401〜407 ステップ
DESCRIPTION OF SYMBOLS 1 Distributed energy system 2 Energy load 3 Electric power system 4 Demand prediction apparatus 11 Electric power generation apparatus 12 Heat generating apparatus 13 Energy storage apparatus (for heat)
14 Energy storage device (for electric power)
DESCRIPTION OF SYMBOLS 15 Power converter 16 Server 17 Distributed energy system operation plan preparation apparatus 18 Control apparatus 21 Initial operation plan preparation part 22 Equipment data storage part 23 Operation plan correction part 101-102, 201-207, 301-310, 401-407 Step

Claims (12)

1つまたは複数のエネルギー発生装置とエネルギー蓄積装置を有し、電力系統とエネルギー負荷に接続された分散エネルギーシステムにおいて、
初期運転計画を過去の運転データを用いて作成する初期運転計画作成手段と、
該初期運転計画作成手段で作成された初期運転計画を、組合せ最適化問題を解く手法を用いて、全ての時間帯において前記エネルギー発生装置およびエネルギー蓄積装置と電力系統からのエネルギー供給量が前記エネルギー負荷のエネルギー需要量を満足しながら、前記エネルギー発生装置がエネルギーを発生させる際にかかる費用である燃料コストと、電力系統の電力価格で売買した金額の積算値である系統電力コストとの和であるランニングコストを最小化するように修正し、さらに一定期間内の前記エネルギー蓄積装置のエネルギーの蓄積量と放出量が等しくなるように修正し、なおかつ前記エネルギー蓄積装置はある一定値以上のエネルギー蓄積装置容量を常に確保するように修正して、最適運転計画を作成する運転計画修正手段を有する分散エネルギーシステム運転計画作成装置。
In a distributed energy system having one or more energy generators and energy storage devices and connected to a power system and an energy load,
An initial operation plan creation means for creating an initial operation plan using past operation data;
The initial operation plan created by the initial operation plan creation means is converted into the energy supply amount from the energy generation device, the energy storage device, and the power system in all time zones by using a method for solving a combination optimization problem. While satisfying the energy demand of the load, the sum of the fuel cost, which is the cost that the energy generating device generates when generating energy, and the grid power cost, which is the integrated value of the amount bought and sold at the power price of the grid The energy storage device is modified so as to minimize a running cost, and is further modified so that the energy storage amount and the discharge amount of the energy storage device are equal within a certain period, and the energy storage device stores energy exceeding a certain value. Modify the operation plan so that the equipment capacity is always secured, and create an optimal operation plan. Distributed energy system operation plan creating apparatus for.
前記運転計画修正手段は、前記ランニングコストを最小化する運転計画の探索過程において、一定期間内のエネルギーの放出量が蓄積量よりも多い運転計画が作成された場合には、前記エネルギー蓄積装置の容量範囲内で前記蓄積量を増加させていくことによって、一定期間内の前記エネルギー蓄積装置のエネルギーの蓄積量と放出量が等しくなるように前記初期運転計画を修正しながら、最適運転計画を作成していく、請求項1に記載の分散エネルギーシステム運転計画作成装置。   In the operation plan search process for minimizing the running cost, the operation plan correction means, when an operation plan in which the amount of released energy within a certain period is greater than the accumulated amount is created, Create an optimal operation plan while modifying the initial operation plan so that the energy storage amount and the discharge amount of the energy storage device within a certain period become equal by increasing the storage amount within the capacity range. The distributed energy system operation plan creation device according to claim 1. 前記運転計画修正手段は、エネルギーの蓄積量を増加させていく過程において、エネルギー蓄積装置として蓄電池を用いた場合には、前記系統電力コストが最小となるようにするため、前記電力価格が最も安い時間帯から順次、蓄電池制約条件を満足しながら、充電電力量を増加させていくように前記初期運転計画を更新しながら最適運転計画を作成していく、請求項2に記載の分散エネルギーシステム運転計画作成装置。   When the storage plan is used as an energy storage device in the process of increasing the amount of stored energy, the operation plan correcting means has the lowest power price in order to minimize the system power cost. 3. The distributed energy system operation according to claim 2, wherein the optimum operation plan is created while updating the initial operation plan so as to increase the amount of charging electric power while sequentially satisfying the storage battery constraint condition from the time zone. Planning device. 前記運転計画修正手段は、前記ランニングコストを最小化する運転計画の探索過程において、一定期間内のエネルギーの蓄積量が放出量よりも多い運転計画が作成された場合には、エネルギー蓄積装置容量範囲内で放出量を増加させていくことによって、一定期間内の前記エネルギー蓄積装置の蓄積量と放出量が等しくなるように前記初期運転計画を修正しながら、最適運転計画を作成していく、請求項1に記載の分散エネルギーシステム運転計画作成装置。   In the operation plan search process for minimizing the running cost, the operation plan correction means is configured such that when an operation plan in which the amount of accumulated energy in a certain period is larger than the released amount is created, the energy storage device capacity range The optimal operation plan is created while correcting the initial operation plan so that the stored amount and the released amount of the energy storage device within a certain period become equal by increasing the released amount within Item 2. The distributed energy system operation plan creation device according to Item 1. 前記運転計画修正手段は、前記放出量を増加させていく過程において、エネルギー蓄積装置として蓄電池を用いた場合には、前記系統電力コストが最小となるようにするため、前記電力価格が最も高い時間帯から順次、蓄電池制約条件を満足しながら、放電電力量を増加させていくように前記初期運転計画を更新しながら最適運転計画を作成していく、請求項4に記載の分散エネルギーシステム運転計画作成装置。   When the storage plan is used as an energy storage device in the process of increasing the release amount, the operation plan correcting means is configured to minimize the grid power cost so that the time when the power price is the highest. 5. The distributed energy system operation plan according to claim 4, wherein the optimum operation plan is created while updating the initial operation plan so as to increase the discharge electric energy while satisfying the storage battery constraint condition sequentially from the belt. Creation device. 前記運転計画修正手段は、前記ランニングコストを最小化する運転計画の探索過程において、常時エネルギー供給を必要とする重要負荷のエネルギー需要を前記エネルギー蓄積装置からの供給エネルギーのみで必要なバックアップ時間以上満足できるように、あらかじめその前記重要負荷のエネルギー量分のエネルギー蓄積容量を計算しておき、どの時間帯においてもそのエネルギー蓄積容量を確保するように最適運転計画を作成する、請求項1に記載の分散エネルギーシステム運転計画作成装置。   The operation plan correction means satisfies an energy demand of an important load that always requires energy supply for the operation plan search process for minimizing the running cost for more than the backup time required only by the energy supplied from the energy storage device. The energy storage capacity corresponding to the energy amount of the important load is calculated in advance so that the energy storage capacity can be ensured in any time zone, and an optimal operation plan is created. Distributed energy system operation plan creation device. 1つまたは複数のエネルギー発生装置とエネルギー蓄積装置を有し、電力系統とエネルギー負荷に接続された分散エネルギーシステムにおいて、
初期運転計画を過去の運転データを用いて作成する初期運転計画作成段階と、
この初期運転計画作成段階で作成された初期運転計画を、組合せ最適化問題を解く手法を用いて、全ての時間帯において前記エネルギー発生装置およびエネルギー蓄積装置と電力系統からのエネルギー供給量が前記エネルギー負荷のエネルギー需要量を満足しながら、前記エネルギー発生装置がエネルギーを発生させる際にかかる費用である燃料コストと電力系統の電力価格で売買した金額の積算値である系統電力コストとの和であるランニングコストを最小化するように修正し、さらに一定期間内の前記エネルギー蓄積装置のエネルギーの蓄積量と放出量が等しくなるように修正し、なおかつ前記エネルギー蓄積装置はある一定値以上のエネルギー蓄積装置容量を常に確保するように修正して、最適運転計画を作成する運転計画修正段階を有する分散エネルギーシステム運転計画作成方法。
In a distributed energy system having one or more energy generators and energy storage devices and connected to a power system and an energy load,
An initial operation plan creation stage for creating an initial operation plan using past operation data;
The initial operation plan created in this initial operation plan creation stage uses the method of solving the combinatorial optimization problem, and the energy supply amount from the energy generator, energy storage device, and power system in all time zones is the energy supply amount. It is the sum of the fuel cost, which is the cost of the energy generating device generating energy while satisfying the energy demand of the load, and the grid power cost, which is the integrated value of the amount bought and sold at the power price of the grid The energy storage device is modified so as to minimize the running cost, and is further modified so that the energy storage amount and the discharge amount of the energy storage device are equal to each other within a certain period. The operation plan modification stage, in which the capacity is constantly secured and the optimum operation plan is created Distributed energy system operation planning how to.
前記運転計画修正段階は、前記ランニングコストを最小化する運転計画の探索過程において、一定期間内のエネルギーの放出量が蓄積量よりも多い運転計画が作成された場合には、前記エネルギー蓄積装置の容量範囲内で前記蓄積量を増加させていくことによって、一定期間内の前記エネルギー蓄積装置のエネルギーの蓄積量と放出量が等しくなるように前記初期運転計画を修正しながら、最適運転計画を作成していく、請求項7に記載の分散エネルギーシステム運転計画作成方法。   In the operation plan correction step, in the operation plan search process that minimizes the running cost, when an operation plan in which the amount of released energy within a certain period is larger than the accumulated amount is created, the energy storage device Create an optimal operation plan while modifying the initial operation plan so that the energy storage amount and the discharge amount of the energy storage device within a certain period become equal by increasing the storage amount within the capacity range. The distributed energy system operation plan creation method according to claim 7. 前記運転計画修正段階は、エネルギーの蓄積量を増加させていく過程において、エネルギー蓄積装置として蓄電池を用いた場合には、前記系統電力コストが最小となるようにするため、前記電力価格が最も安い時間帯から順次、蓄電池制約条件を満足しながら、充電電力量を増加させていくように前記初期運転計画を更新しながら最適運転計画を作成していく、請求項8に記載の分散エネルギーシステム運転計画作成方法。   In the operation plan correction stage, when a storage battery is used as an energy storage device in the process of increasing the amount of stored energy, the power price is the lowest so that the system power cost is minimized. The distributed energy system operation according to claim 8, wherein the optimum operation plan is created while updating the initial operation plan so as to increase the amount of charging power while satisfying the storage battery constraint condition sequentially from the time zone. Planning method. 前記運転計画修正段階は、前記ランニングコストを最小化する運転計画の探索過程において、一定期間内のエネルギーの蓄積量が放出量よりも多い運転計画が作成された場合には、エネルギー蓄積装置容量範囲内で放出量を増加させていくことによって、一定期間内の前記エネルギー蓄積装置の蓄積量と放出量が等しくなるように前記初期運転計画を修正しながら、最適運転計画を作成していく、請求項7に記載の分散エネルギーシステム運転計画作成方法。   In the operation plan correction stage, in an operation plan search process that minimizes the running cost, when an operation plan in which the amount of accumulated energy in a certain period is larger than the released amount is created, the energy storage device capacity range The optimal operation plan is created while correcting the initial operation plan so that the stored amount and the released amount of the energy storage device within a certain period become equal by increasing the released amount within Item 8. A distributed energy system operation plan creation method according to Item 7. 前記運転計画修正段階は、前記放出量を増加させていく過程において、エネルギー蓄積装置として蓄電池を用いた場合には、前記系統電力コストが最小となるようにするため、前記電力価格が最も高い時間帯から順次、蓄電池制約条件を満足しながら、放電電力量を増加させていくように前記初期運転計画を更新しながら最適運転計画を作成していく、請求項10に記載の分散エネルギーシステム運転計画作成方法。   In the process of correcting the operation plan, in the process of increasing the release amount, when a storage battery is used as an energy storage device, the time when the power price is the highest in order to minimize the grid power cost. The distributed energy system operation plan according to claim 10, wherein the optimum operation plan is created while updating the initial operation plan so as to increase the discharge electric energy while satisfying the storage battery constraint condition sequentially from the band. How to make. 前記運転計画修正段階は、前記ランニングコストを最小化する運転計画の探索過程において、常時エネルギー供給を必要とする重要負荷のエネルギー需要を前記エネルギー蓄積装置からの供給エネルギーのみで必要なバックアップ時間以上満足できるように、あらかじめその前記重要負荷のエネルギー量分のエネルギー蓄積容量を計算しておき、どの時間帯においてもそのエネルギー蓄積容量を確保するように最適運転計画を作成する、請求項7に記載の分散エネルギーシステム運転計画作成方法。   In the operation plan correction stage, in the process of searching for an operation plan that minimizes the running cost, the energy demand of an important load that always requires energy supply is satisfied more than the backup time required only by the energy supplied from the energy storage device. The energy storage capacity corresponding to the amount of energy of the important load is calculated in advance so that the energy storage capacity can be secured in any time zone, and an optimal operation plan is created. Decentralized energy system operation plan creation method.
JP2003360604A 2003-10-21 2003-10-21 Distributed energy system operation plan creation device and creation method Expired - Fee Related JP4087774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003360604A JP4087774B2 (en) 2003-10-21 2003-10-21 Distributed energy system operation plan creation device and creation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003360604A JP4087774B2 (en) 2003-10-21 2003-10-21 Distributed energy system operation plan creation device and creation method

Publications (2)

Publication Number Publication Date
JP2005130550A true JP2005130550A (en) 2005-05-19
JP4087774B2 JP4087774B2 (en) 2008-05-21

Family

ID=34640866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360604A Expired - Fee Related JP4087774B2 (en) 2003-10-21 2003-10-21 Distributed energy system operation plan creation device and creation method

Country Status (1)

Country Link
JP (1) JP4087774B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316948A (en) * 2006-05-25 2007-12-06 Chugoku Electric Power Co Inc:The Power generation plant operation support system
WO2009128475A1 (en) * 2008-04-16 2009-10-22 株式会社明電舎 Device and method for creating operation plan of distributed power supply system
JP2011015521A (en) * 2009-07-01 2011-01-20 Hitachi Ltd System and method for charge control of electric vehicle, server, and smart meter
WO2011040656A1 (en) * 2009-09-29 2011-04-07 한국전력공사 System and method for operating a microgrid
JP2011114919A (en) * 2009-11-26 2011-06-09 Fuji Electric Systems Co Ltd Economical load distribution control device and economical load distribution control method
JP2011139585A (en) * 2009-12-28 2011-07-14 Fuji Electric Co Ltd Apparatus and method for power system planning
WO2012056581A1 (en) * 2010-10-29 2012-05-03 株式会社日立製作所 Operating capacity management system for energy-supplying devices
JP2013027136A (en) * 2011-07-20 2013-02-04 Seiko Electric Co Ltd Stored power control apparatus, stored power control method and program
WO2013047842A1 (en) * 2011-09-28 2013-04-04 京セラ株式会社 Energy management system, energy management device, and power management method
JP2013132195A (en) * 2011-11-25 2013-07-04 Fujitsu Ltd Control plan generation method, control plan generation device, and program
JP2014195363A (en) * 2013-03-28 2014-10-09 Fujitsu Ltd Control plan developing method, control plan developing device, and control plan developing program
JP2014228873A (en) * 2013-05-17 2014-12-08 株式会社明電舎 Method for creating optimum energy plan and optimum controller
KR101619335B1 (en) * 2014-07-31 2016-05-11 서울과학기술대학교 산학협력단 Method for managing peak shaving in large scale battery energy storage system
KR20160128781A (en) * 2015-04-29 2016-11-08 서강대학교산학협력단 Apparatus and method for charge and discharge scheduling in energy storage device
WO2017159982A1 (en) * 2016-03-14 2017-09-21 부산대학교 산학협력단 Microgrid operation system and method
JP2022511043A (en) * 2018-12-03 2022-01-28 ヘイラ テクノロジーズ インク. Decentralized and decentralized DER system optimization
CN114725971A (en) * 2022-06-10 2022-07-08 北京大学 Operation decision method and system based on hybrid energy storage system
US11942782B2 (en) 2017-08-03 2024-03-26 Heila Technologies, Inc. Grid asset manager

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316948A (en) * 2006-05-25 2007-12-06 Chugoku Electric Power Co Inc:The Power generation plant operation support system
WO2009128475A1 (en) * 2008-04-16 2009-10-22 株式会社明電舎 Device and method for creating operation plan of distributed power supply system
JP2011015521A (en) * 2009-07-01 2011-01-20 Hitachi Ltd System and method for charge control of electric vehicle, server, and smart meter
WO2011040656A1 (en) * 2009-09-29 2011-04-07 한국전력공사 System and method for operating a microgrid
KR101045326B1 (en) * 2009-09-29 2011-06-30 한국전력공사 The System and Planning Method for Maximizing the Operation Benefit of Microgrid
JP2011114919A (en) * 2009-11-26 2011-06-09 Fuji Electric Systems Co Ltd Economical load distribution control device and economical load distribution control method
JP2011139585A (en) * 2009-12-28 2011-07-14 Fuji Electric Co Ltd Apparatus and method for power system planning
WO2012056581A1 (en) * 2010-10-29 2012-05-03 株式会社日立製作所 Operating capacity management system for energy-supplying devices
JP2013027136A (en) * 2011-07-20 2013-02-04 Seiko Electric Co Ltd Stored power control apparatus, stored power control method and program
WO2013047842A1 (en) * 2011-09-28 2013-04-04 京セラ株式会社 Energy management system, energy management device, and power management method
JP2013074759A (en) * 2011-09-28 2013-04-22 Kyocera Corp Energy management system, energy management device and power management method
US9594362B2 (en) 2011-09-28 2017-03-14 Kyocera Corporation Energy management system, energy management apparatus, and power management method
JP2013132195A (en) * 2011-11-25 2013-07-04 Fujitsu Ltd Control plan generation method, control plan generation device, and program
JP2014195363A (en) * 2013-03-28 2014-10-09 Fujitsu Ltd Control plan developing method, control plan developing device, and control plan developing program
JP2014228873A (en) * 2013-05-17 2014-12-08 株式会社明電舎 Method for creating optimum energy plan and optimum controller
KR101619335B1 (en) * 2014-07-31 2016-05-11 서울과학기술대학교 산학협력단 Method for managing peak shaving in large scale battery energy storage system
KR20160128781A (en) * 2015-04-29 2016-11-08 서강대학교산학협력단 Apparatus and method for charge and discharge scheduling in energy storage device
KR101712944B1 (en) * 2015-04-29 2017-03-07 서강대학교산학협력단 Apparatus and method for charge and discharge scheduling in energy storage device
WO2017159982A1 (en) * 2016-03-14 2017-09-21 부산대학교 산학협력단 Microgrid operation system and method
KR101793149B1 (en) * 2016-03-14 2017-11-02 부산대학교 산학협력단 System and Method of operating Microgrid
US11942782B2 (en) 2017-08-03 2024-03-26 Heila Technologies, Inc. Grid asset manager
JP2022511043A (en) * 2018-12-03 2022-01-28 ヘイラ テクノロジーズ インク. Decentralized and decentralized DER system optimization
JP7432602B2 (en) 2018-12-03 2024-02-16 ヘイラ テクノロジーズ インク. Optimization of distributed and decentralized DER systems
CN114725971A (en) * 2022-06-10 2022-07-08 北京大学 Operation decision method and system based on hybrid energy storage system

Also Published As

Publication number Publication date
JP4087774B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP4087774B2 (en) Distributed energy system operation plan creation device and creation method
Hatata et al. An optimization method for sizing a solar/wind/battery hybrid power system based on the artificial immune system
Tan et al. Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques
Huang et al. Optimal configuration planning of multi-energy systems considering distributed renewable energy
Kalavani et al. Optimal stochastic scheduling of cryogenic energy storage with wind power in the presence of a demand response program
Zhao et al. Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island
Rahmani-Andebili et al. Cooperative distributed energy scheduling for smart homes applying stochastic model predictive control
Qiu et al. Tri-level mixed-integer optimization for two-stage microgrid dispatch with multi-uncertainties
JP5959783B1 (en) Power management equipment
Khani et al. Real-time optimal dispatch and economic viability of cryogenic energy storage exploiting arbitrage opportunities in an electricity market
CN109523065B (en) Micro energy network optimization scheduling method based on improved quantum particle swarm algorithm
JP4203602B2 (en) Operation support method and apparatus for power supply equipment
CN111355265B (en) Micro-grid energy two-stage robust optimization method and system
EP2830184B1 (en) Energy management device, method for managing energy, and program
WO2011039610A1 (en) Energy management system and power feed control device
Cheng et al. A particle swarm optimization based power dispatch algorithm with roulette wheel re-distribution mechanism for equality constraint
US20130253719A1 (en) Energy management apparatus, energy management method and medium
Taha et al. Robust MPC-based energy management system of a hybrid energy source for remote communities
Kamdem et al. Optimal commitment strategies for distributed generation systems under regulation and multiple uncertainties
CN109992818A (en) The Unit Combination model and method for solving of large-scale wind power participation primary frequency modulation
Taghikhani Renewable resources and storage systems stochastic multi-objective optimal energy scheduling considering load and generation uncertainties
CN115375344A (en) Microgrid two-stage robust optimization low-carbon economic dispatching method considering ladder carbon transaction mechanism
JP2006275473A (en) Cogeneration system and its control method
CN113112141A (en) Energy optimization scheduling method and device for comprehensive energy system
CN111325423A (en) Regional multi-energy interconnection operation optimization method and computing equipment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees