WO2012055958A1 - Synchrocyclotron - Google Patents

Synchrocyclotron Download PDF

Info

Publication number
WO2012055958A1
WO2012055958A1 PCT/EP2011/068844 EP2011068844W WO2012055958A1 WO 2012055958 A1 WO2012055958 A1 WO 2012055958A1 EP 2011068844 W EP2011068844 W EP 2011068844W WO 2012055958 A1 WO2012055958 A1 WO 2012055958A1
Authority
WO
WIPO (PCT)
Prior art keywords
height
radius
poles
cavity
synchrocyclotron
Prior art date
Application number
PCT/EP2011/068844
Other languages
French (fr)
Inventor
Jérôme MANDRILLON
Matthieu Conjat
Original Assignee
Ion Beam Applications S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Beam Applications S.A. filed Critical Ion Beam Applications S.A.
Priority to CN201180058890.6A priority Critical patent/CN103493603A/en
Priority to JP2013535435A priority patent/JP2013541170A/en
Priority to EP11776428.2A priority patent/EP2633741B1/en
Publication of WO2012055958A1 publication Critical patent/WO2012055958A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/02Synchrocyclotrons, i.e. frequency modulated cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof

Definitions

  • the present invention relates to a synchrocyclotron. DESCRIPTION OF THE STATE OF THE ART
  • Synchrocyclotrons like cyclotrons, are particle accelerators comprising a magnet structure comprising two magnetic induction coils radially surrounding a cavity intended for particle acceleration, between two poles, the cavity comprising a central axis and in which extends a median plane perpendicular to said central axis.
  • the particles are produced in a source of particles located in the cavity in the vicinity of the central axis, and are extracted from the source to be accelerated, in the median plane along a spiral-shaped path, by accelerating electrodes fed by a high frequency alternating voltage generator.
  • Such synchrocyclotrons are increasingly used for hadron therapy.
  • the frequency of the electric field applied to the accelerating electrodes is modulated so as to compensate for the increase in relativistic mass when the particle velocity increases.
  • synchrocyclotrons To reduce the size of a cyclotron, it is necessary to increase the magnetic field that guides the ions during acceleration.
  • isochronous cyclotrons where the vertical focusing of the beam is obtained by magnetic sectors placed in the gap, it is difficult to increase the average magnetic field above 5 Tesla, because the vertical focus becomes insufficient.
  • synchrocyclotrons the magnetic field level can in principle be increased without limits. Synchrocyclotrons are also more compact than cyclotrons, the size of a synchrocyclotron decreasing proportionally with respect to to the magnetic field generated between the two poles.
  • a second disadvantage of magnetic fields greater than 6 Tesla is that the realization of the extraction device becomes very complex.
  • a third disadvantage of magnetic fields greater than 6 Tesla in the center of the cyclotron is that, for such magnetic fields, the magnetic field in the coils exceeds the magnetic field for which a Niobium-Titanium alloy can be used for the coils. One must then use a Nb 3 Sn alloy, which is much more expensive.
  • the synchrocyclotron described above comprises two poles whose profile allows a low focusing of accelerated particles in the median plane and a phase stability so that the charged particles acquire enough energy to maintain the acceleration in the air gap of the poles.
  • a charged and accelerated particle oscillates radially and axially around an equilibrium orbit.
  • r is the radius of the particle's orbit, the origin of the ray passing through a point of the central axis, and B is the magnetic field in this radius.
  • the synchrocyclotron must therefore have a scalable field profile that decreases with the radius so as to satisfy the conditions set by the field focusing index.
  • it is arranged to have a pole profile whose field focusing index is less than 0.2 in the cavity for accelerating particles.
  • the magnetic field decreases more rapidly as a function of the radius, the magnetic field index increases, the radial frequency v r decreases and the axial frequency v z increases.
  • the energy of radial oscillations can be transferred to axial oscillations.
  • This increases the axial size of the beam and generally causes the loss of the majority of the accelerated ions.
  • the synchrocyclotron includes pole wings located on the edge of the poles, causing a reduction of the air gap before the field index is equal to 0.2, so as to locally increase the magnetic field and to prevent the loss of particles.
  • the profile of the poles must evolve from a region around the central axis where the air gap is sufficiently narrow to produce enough magnetic field, to a region located near the pole wings where the air gap is maximum and whose height is at least twice greater than that of the zone of the air gap near the central axis.
  • the poles comprise beveled surfaces so as to progressively widen the gap of the poles, the region of the poles where the gap is maximum is between two surfaces forming an acute angle between them.
  • the junction between flange 134 and surface 130 has an acute angle.
  • Such a pole profile including a deep and narrow region is quite difficult to machine accurately.
  • a synchrocyclotron comprising an air gap in which a 5.5 Tesla magnetic field is generated is described in the Wu X document. "Conceptual Design and Orbit Dynamics in a 250 MeV Superconducting Synchrocyclotron” (PhD dissertation, Michigan State University, 1990). The losses of particles at the outlet of the source are less important for such a magnetic field. Nevertheless, the gap between the poles of this synchrocyclotron is relatively narrow, as in the previously described synchrocyclotron, which requires the drilling of a hole in the cylinder head along the central axis of the cylinder head for the introduction of a source of particles in the central region.
  • the hole in the bolt hole locally changes the magnetic field at the center of the accelerating cavity, where the magnetic field in the vicinity of the source initially increases with the radius to a maximum, then falls slightly with the radius.
  • the field focusing index is therefore initially negative, which causes a defocusing of the trajectory of the particles over a short radius. This effect increases with the radius of the source, hence the need to minimize the diameter of the hole in the cylinder head and the diameter of the source, which reduces the particle production capacity. Also, it is necessary to insert coins circular metal magnetic field compensation, commonly called "shims".
  • synchrocyclotron whose gap between the two poles allows the easy insertion of a source and a high frequency oscillation circuit so as to avoid problems as encountered in synchrocyclotrons of the prior art.
  • the present invention relates to a synchrocyclotron comprising a ferromagnetic structure, a cold mass structure and a source of particles.
  • the ferromagnetic structure generally comprises: two disc-shaped cylinder heads located coaxially with respect to a central axis, parallel and substantially symmetrical with respect to a median plane; a pair of poles that have a section of generally circular shape, of radius R, which are arranged on either side of said median plane, centered on the central axis and separated from an air gap forming a cavity; flux returns that surround the poles and join the two plates of the cylinder heads.
  • the cold mass structure generally comprises at least two magnetic induction coils, and is surrounded by flux returns and surrounds the poles.
  • the source of particles is generally located in the cavity in a first circular zone of radius R1, less than the radius R of the cavity, its origin being a point of the central axis.
  • the gap of the cavity normally has a substantially symmetrical profile with respect to the median plane, its height varying radially.
  • the profile of the air gap comprises successively from said central axis: a first portion, of circular section with a radius R2, centered on the central axis, the height of the air gap in the center is equal to H this ntre, and which comprises an annular sub-portion (also called: first annular zone) in which the height increases gradually to a maximum height H max at the radius R2; and a second portion of annular section (also called: second annular zone), which surrounds the first portion, and wherein the height of the air gap gradually decreases to a height H b ords at the edges of the poles.
  • the height H of this etween the air gap is greater than 10 cm, and the ratio of the maximum height H max of the height H that etween is between 1, 1 and 1, 5, advantageously between 1, 2 and 1, 5, and preferably between 1, 2 and 1, 4. It will be noted that with this profile of the gap, the average magnetic field produced in the cavity by the coils and the ferromagnetic structure can be between 4 and 7 Tesla.
  • the first portion comprises a central sub-portion (also called central zone 6) of radius R1 less than R2, centered on the central axis, where the height of the air gap is constant and of height H this ntre-
  • the poles advantageously comprise a succession of beveled annular surfaces centered on the central axis, each of these surfaces forming with its adjacent surface an angle a strictly greater than 90 °, preferably greater than 120 °, and even more preferably greater than 140 °.
  • the central sub-portion extends over a radius R1 less than 20% of the radius R of the cavity
  • the annular sub-portion extends between the radius R1 and a radius R2 less than 95% of the radius R of the cavity 9.
  • the central sub-portion extends over a radius R1 of the order of 10% of the radius R of the cavity and the first annular sub-portion extends between the radius R1 and a radius R2 of the order of 70% of the radius R of the cavity.
  • the source is advantageously located in the central sub-portion and held by a support inserted into the cavity substantially parallel to said median plane.
  • the poles can be advantageously full, because the source of particles can be introduced radially in the central zone of the air gap.
  • the magnetic induction coils can be made in NbTi.
  • the present invention relates to a method for producing a synchrocyclotron comprising the steps of: fixing the height of the air gap between the poles in the vicinity of the central axis H that etween such that the height It is greater than 10 cm;
  • FIG. 1 is a simplified section of a synchrocyclotron according to an embodiment of the present invention; the section plane containing the central axis of the synchrocyclotron, and the section illustrating above all a ferromagnetic structure of the synchrocyclotron;
  • FIG. 2 is a section identical to the section of FIG. 1, also schematically showing a source of particles.
  • Figs. 1 and 2 schematically show a synchrocyclotron according to the present invention. It should be noted that some parts of the synchrocyclotron are not shown so as not to clutter the figures.
  • the synchrocyclotron shown in the figures to illustrate the invention in a non-limiting manner comprises:
  • a ferromagnetic structure 4 comprising: o two base plates, also called disc-shaped cylinder head plates 16, 16 'arranged coaxially with respect to a central axis 1 of the synchrocyclotron, parallel and substantially symmetrical with respect to a median plane 2; a pair of poles 5, 5 ', having a section of generally circular shape, of radius R, arranged on either side of the median plane 2 of the synchrocyclotron, centered on the central axis 1 and separated from a gap forming a cavity 9; and
  • a cold mass structure comprising at least two magnetic induction coils 3, surrounded by the flux returns 17 and surrounding the poles 5, 5 ';
  • a source of particles 1 1 located in the cavity 9 in a first zone 6 of circular section, of radius R1 less than the radius R of the cavity 9 and whose origin is a point of said axis central 1;
  • a high frequency voltage generator 14 located outside the flow returns 17;
  • this accelerating electrode (see FIG 2) coupled to the high frequency voltage generator 14; this accelerating electrode comprising a pair of parallel plates, substantially semicircular and separated from one another by a gap, located inside the cavity 9, extending parallel and symmetrically on both sides the middle plane 2 facing the source; and
  • a transmission line 13 surrounding the accelerating electrode 12 and located at a distance from the electrode 12.
  • the magnetic field generated in the gap between the poles 5, 5 'of the synchrocyclotron is chosen:
  • the magnetic field generated in the gap between the poles is advantageously between 4 and 7 Tesla, preferably between 4 and 6 Tesla. It will be appreciated that the production of such a magnetic field does not require the use of Nb 3 Sn superconducting coils. Indeed, NbTi superconducting coils are suitable for the production of a field between 3 and 5 Tesla, which is combined the magnetic field generated by the ferromagnetic structure 4, which is generally of the order of 2 Tesla. NbTi superconducting coils are less expensive and easier to implement than Nb 3 Sn coils.
  • the cavity 9 formed by the poles 5 has a radius R whose origin passes through a point of the central axis 1 and whose end coincides with the edges 10 of the poles 5.
  • the height of the gap varies according to the radius so as to satisfy the conditions set by the field focusing index n.
  • the gap comprises three zones 6, 7 and 8, starting from the central axis towards the edge of the poles:
  • a second annular zone 8 between a circle of radius R2 and the edges 10 of the poles, in which the gap between the poles decreases progressively to a minimum height H min at the edges of the poles, so as to increase again the magnetic field and decrease the field focusing index n before the field focusing index n reaches a limit value at which the particles oscillating axially around an equilibrium orbit resonate with the particles oscillating radially around the same equilibrium orbit.
  • the ratio between the maximum height H max of the air gap and the height H that etween the air gap in the vicinity of the central axis is strictly greater than 1 and less than 1, 5, of in order to facilitate the machining of the inside of the poles, while satisfying the conditions set by the field focusing index. More preferably, the ratio H max / Hcentre is between 1, 2 and 1, 5.
  • the zone comprising the first annular zone 7 and the second annular zone 8 is characterized by a succession of bevelled annular surfaces, centered on the central axis 1, each of these surfaces forming with its adjacent surface an angle a strictly greater than 90 °, preferably greater than 120 °, and even more preferably greater than 140 °.
  • the height H of this etween the air gap in the vicinity of the central axis 1 is greater than 10 cm, more preferably greater than 15 cm, more preferably greater than 18.4 cm. It will be appreciated that the height H of this etween the air gap in the vicinity of the central axis higher relative to synchrocyclotrons of the prior art, allows an easier insertion of the source and the high-frequency oscillation circuit comprising the accelerating electrodes and the transmission line. The widening of the gap allows for example to increase the gap between the two plates 12 of the accelerating electrode so as to avoid a collision of particles with the plates 12. The widening of the air gap also allows to increase the distance between the accelerating electrode and the transmission line 13, which reduces the capacitance between these two components and allows the voltage generator 14 to supply a high frequency alternating voltage to the accelerating electrode with less power.
  • the height H that etween high in the region of the air gap surrounding the central axis 1, allows the insertion of a source 1 1 laterally rather than axially (cf. Fig. 2).
  • the insertion of the source 1 1 can be done, for example, by means of a support 15 coming from outside the cavity 9 and comprising conduits for the circulation of the gas in the source, as well as electrical connections for ignition of the source.
  • the insertion of a source laterally makes it possible to dispense with the drilling of a hole in the cylinder head 16, 16 'and the poles 5, 5', which eliminates the negative variation of the field focusing index in the region of the air gap near the central axis 1 and also allows the use of a source of larger diameter than in the prior art synchrocyclotrons. In this way, the source can produce a higher particle current. Also, with the suppression of the negative variation of the field index in the region of the air gap near the central axis, the defocusing problems of the particles at the exit of the source are minimized, and the field compensation rings as used in the prior art synchrocyclotrons become optional, simplifying this region of the gap.
  • the average magnetic field in the air gap between the two poles is 5.6 Tesla.
  • the height of the gap between the poles in the region near the central axis H that etween is 18.4 cm and the height of the maximum gap H max is 25.3 cm.
  • the ratio H max / Hcentre is therefore equal to 1 .375.
  • the distance z (cm) separating the poles of the median plane as a function of the radius of the poles r (cm) is given in Table 1.
  • the external radius and the height of the synchrocyclotron are respectively 125 cm and 156 cm.
  • the dimensions of this embodiment according to the present invention are lower than the cyclotron described by Wu (magnetic field produced in the cavity: 5.53 Teslas, height of the synchrocyclotron: 173.4 cm, external radius of the synchrocyclotron: 132 , 3 cm). Still in this same embodiment according to the present invention, the gap between the plates of the accelerating electrode is 2 cm, and the gap between these plates and the transmission line is 7.4 cm.
  • the skilled person can optimize the profile of the poles as a function of the position of the coils relative to the median plane, as well as the dimensions and shape of this coil, while placing itself in conditions where the height of the gap between the two poles in the first zone is greater than 10 cm, where the maximum air gap height ratio H max of the height of the minimum gap H ours that in the central zone (6) is between 1, 1 and 1, 5 more preferably between 1, 2 and 1.5.
  • the coils have an inner radius of 55.4 cm centered on the central axis 1, a width of 13 cm and a height of 28.1 cm, and are spaced one from the another 20 cm.
  • the present invention also relates to a method for manufacturing a synchrocyclotron comprising two poles separated by an air gap, the method comprising the following steps: fixing the height of the air gap in the vicinity of the central axis H such that such that the height H etween this is greater than 10 cm, preferably greater than 15 cm, preferably greater than 18.4 cm and less than 37 cm;

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Particle Accelerators (AREA)

Abstract

A synchrocyclotron comprises a ferromagnetic structure (4) with a pair of poles (5, 5'), which have a generally circular cross section of radius R which are placed on either side of a mid-plane (2) and centred on a central axis (1). These poles (5, 5') are separated by a gap forming a cavity (9) having a profile substantially symmetrical with respect to the mid-plane (2). The height of this gap varies radially and the profile of the gap comprises, in succession, starting from the central axis (1): a first portion (6, 7) of circular section with a radius R2, which is centred on the central axis (1), the height of the gap at the centre thereof being equal to Hcentre, and which includes an annular subportion (7) in which the height of the gap progressively increases up to a maximum height Hmax at the radius R2, and a second portion, of annular section (8), which surrounds the first portion (6, 7) and in which the height of the gap progressively decreases down to a height Hedge at the edges of the poles (5, 5'). The height Hcentre is greater than 10 cm and the ratio of the maximum height Hmax to the height Hcentre is between 1.1 and 1.5.

Description

SYNCHROCYCLOTRON  synchrocyclotron
DOMAINE TECHNIQUE  TECHNICAL AREA
[0001] La présente invention concerne un synchrocyclotron. DESCRIPTION DE L'ÉTAT DE LA TECHNIQUE  The present invention relates to a synchrocyclotron. DESCRIPTION OF THE STATE OF THE ART
[0002] Les synchrocyclotrons, tout comme les cyclotrons, sont des accélérateurs de particules comprenant une structure d'aimant comprenant deux bobines d'induction magnétique entourant radialement une cavité destinée à l'accélération de particules, comprise entre deux pôles, la cavité comprenant un axe central et dans laquelle s'étend un plan médian perpendiculairement audit axe central. Les particules sont produites dans une source de particules située dans la cavité au voisinage de l'axe central, et sont extraites de la source pour être accélérées, dans le plan médian suivant une trajectoire en forme de spirale, par des électrodes accélératrices alimentées par un générateur de tension alternative haute fréquence. De tels synchrocyclotrons sont de plus en plus utilisés pour l'hadron-thérapie.  [0002] Synchrocyclotrons, like cyclotrons, are particle accelerators comprising a magnet structure comprising two magnetic induction coils radially surrounding a cavity intended for particle acceleration, between two poles, the cavity comprising a central axis and in which extends a median plane perpendicular to said central axis. The particles are produced in a source of particles located in the cavity in the vicinity of the central axis, and are extracted from the source to be accelerated, in the median plane along a spiral-shaped path, by accelerating electrodes fed by a high frequency alternating voltage generator. Such synchrocyclotrons are increasingly used for hadron therapy.
[0003] À la différence des cyclotrons, où les particules sont accélérées à la même fréquence, dans un synchrocyclotron, la fréquence du champ électrique appliqué aux électrodes accélératrices est modulée de manière à compenser l'accroissement de masse relativiste lorsque la vitesse des particules augmente.  Unlike cyclotrons, where the particles are accelerated at the same frequency, in a synchrocyclotron, the frequency of the electric field applied to the accelerating electrodes is modulated so as to compensate for the increase in relativistic mass when the particle velocity increases. .
[0004] Pour réduire la taille d'un cyclotron, il faut augmenter le champ magnétique qui guide les ions durant l'accélération. Pour les cyclotrons isochrones, où la focalisation verticale du faisceau est obtenue par des secteurs magnétiques placés dans l'entrefer, il est difficile d'augmenter le champ magnétique moyen au-dessus de 5 Tesla, car la focalisation verticale devient insuffisante. Au contraire, dans les synchrocyclotrons, on peut, en principe, augmenter sans limites le niveau de champ magnétique. Les synchrocyclotrons sont également plus compacts que les cyclotrons, la taille d'un synchrocyclotron diminuant proportionnellement par rapport au champ magnétique généré entre les deux pôles. To reduce the size of a cyclotron, it is necessary to increase the magnetic field that guides the ions during acceleration. For isochronous cyclotrons, where the vertical focusing of the beam is obtained by magnetic sectors placed in the gap, it is difficult to increase the average magnetic field above 5 Tesla, because the vertical focus becomes insufficient. On the contrary, in synchrocyclotrons the magnetic field level can in principle be increased without limits. Synchrocyclotrons are also more compact than cyclotrons, the size of a synchrocyclotron decreasing proportionally with respect to to the magnetic field generated between the two poles.
[0005] Les document US 7 541 905 et US 7 696 847 décrivent un synchrocyclotron dont les bobines d'induction sont réalisées en un matériau supraconducteur, refroidies à une température de 4,5K, et capables de produire un champ magnétique compris entre 5 Tesia et 1 1 Tesla. Des champs magnétiques de 14 Tesla peuvent être produits en diminuant la température jusqu'à 2K pour des bobines d'induction réalisées en Nb3Sn. La culasse réalisée en fer doux fournit un champ additionnel d'environ 2 Tesla. Afin de réduire la taille d'un synchrocyclotron, les documents susmentionnés suggèrent de produire un champ magnétique élevé dans l'entrefer des pôles. Néanmoins, en augmentant le champ magnétique au-dessus de 6 Tesla, comme suggéré dans les brevets précités, des effets indésirables apparaissent. Ainsi, il devient impossible ou très difficile de dessiner la région centrale du cyclotron, car le champ magnétique très élevé entraine une diminution du rayon des premières orbites prises par les particules, de manière telle que les particules n'arrivent pas à contourner la source d'ion au premier tour. Un deuxième inconvénient des champs magnétiques supérieurs à 6 Tesla est que la réalisation du dispositif d'extraction devient très complexe. Un troisième inconvénient des champs magnétiques supérieurs à 6 Tesla au centre du cyclotron est que, pour de tels champs magnétiques, le champ magnétique dans les bobines excède le champ magnétique pour lequel on peut utiliser un alliage de Niobium-Titane pour les bobines. On doit utiliser alors utiliser un alliage Nb3Sn, qui est beaucoup plus coûteux. US 7,541,905 and US 7,696,847 describe a synchrocyclotron whose induction coils are made of a superconducting material, cooled to a temperature of 4.5K, and capable of producing a magnetic field between 5 Tesia and 1 1 Tesla. Magnetic fields of 14 Tesla can be produced by decreasing the temperature up to 2K for induction coils made of Nb 3 Sn. The cylinder head made of soft iron provides an additional field of about 2 Tesla. In order to reduce the size of a synchrocyclotron, the aforementioned documents suggest producing a high magnetic field in the pole gap. Nevertheless, by increasing the magnetic field above 6 Tesla, as suggested in the aforementioned patents, undesirable effects occur. Thus, it becomes impossible or very difficult to draw the central region of the cyclotron, because the very high magnetic field causes a decrease in the radius of the first orbits taken by the particles, in such a way that the particles do not succeed in bypassing the source of the cyclotron. ion in the first round. A second disadvantage of magnetic fields greater than 6 Tesla is that the realization of the extraction device becomes very complex. A third disadvantage of magnetic fields greater than 6 Tesla in the center of the cyclotron is that, for such magnetic fields, the magnetic field in the coils exceeds the magnetic field for which a Niobium-Titanium alloy can be used for the coils. One must then use a Nb 3 Sn alloy, which is much more expensive.
[0006] Le synchrocyclotron décrit plus haut comprend deux pôles dont le profil permet une faible focalisation des particules accélérées dans le plan médian et une stabilité de phase de façon-à-ce que les particules chargées acquièrent suffisamment d'énergie pour maintenir l'accélération dans l'entrefer des pôles. Dans le champ magnétique produit dans l'entrefer d'un synchrocyclotron, une particule chargée et accélérée oscille de manière radiale et axiale autour d'une orbite d'équilibre. La fréquence d'oscillation radiale vr est donnée par : vr = Vl - n (oscillations par révolution) (I) la fréquence d'oscillation axiale vz est donnée par : vz = V (oscillations par révolution) (II) avec n l'indice de focalisation de champ donné par : The synchrocyclotron described above comprises two poles whose profile allows a low focusing of accelerated particles in the median plane and a phase stability so that the charged particles acquire enough energy to maintain the acceleration in the air gap of the poles. In the magnetic field produced in the air gap of a synchrocyclotron, a charged and accelerated particle oscillates radially and axially around an equilibrium orbit. The radial oscillation frequency v r is given by: v r = Vl - n (oscillations per revolution) (I) the axial oscillation frequency v z is given by: v z = V (oscillations per revolution) (II) with n the field focusing index given by:
r dB .....  r dB .....
n =—— (III)  n = - (III)
B dr '  B dr '
où r est le rayon de l'orbite de la particule, l'origine du rayon passant par un point de l'axe central, et B est le champ magnétique en ce rayon. where r is the radius of the particle's orbit, the origin of the ray passing through a point of the central axis, and B is the magnetic field in this radius.
[0007] On peut montrer théoriquement qu'il existe une force de focalisation axiale lorsque n>0, ce qui implique que dB/dr soit négatif. Le synchrocyclotron doit donc avoir un profil de champ évolutif qui décroit en fonction du rayon de manière à satisfaire aux conditions posées par l'indice de focalisation de champ. Généralement, on s'arrange pour avoir un profil de pôle dont l'indice de focalisation de champ est inférieur à 0,2 dans la cavité destiné à l'accélération des particules. Lorsque l'on s'approche du rayon maximum du pôle, le champ magnétique diminue plus rapidement en fonction du rayon, l'indice de champ magnétique augmente, la fréquence radiale vr diminue et la fréquence axiale vz augmente. Lorsque n = 0,2, on a une condition particulière où vr = 2 vz. Dans cette condition particulière, connue comme résonance de Walkinshaw, l'énergie des oscillations radiales peut être transférée aux oscillations axiales. Ceci fait augmenter la taille axiale du faisceau et cause généralement la perte de la majorité des ions accélérés. Pour éviter ce phénomène, le synchrocyclotron comprend des ailes de pôles situées sur le bord des pôles, causant une réduction de l'entrefer avant que l'indice de champ ne soit égal à 0,2, de manière à augmenter localement le champ magnétique et à empêcher la perte de particules. It can theoretically be shown that there is an axial focusing force when n> 0, which implies that dB / dr is negative. The synchrocyclotron must therefore have a scalable field profile that decreases with the radius so as to satisfy the conditions set by the field focusing index. Generally, it is arranged to have a pole profile whose field focusing index is less than 0.2 in the cavity for accelerating particles. When approaching the maximum radius of the pole, the magnetic field decreases more rapidly as a function of the radius, the magnetic field index increases, the radial frequency v r decreases and the axial frequency v z increases. When n = 0.2, we have a special condition where v r = 2 v z . In this particular condition, known as Walkinshaw resonance, the energy of radial oscillations can be transferred to axial oscillations. This increases the axial size of the beam and generally causes the loss of the majority of the accelerated ions. To avoid this phenomenon, the synchrocyclotron includes pole wings located on the edge of the poles, causing a reduction of the air gap before the field index is equal to 0.2, so as to locally increase the magnetic field and to prevent the loss of particles.
[0008] Dans le cas d'un synchrocyclotron à champ magnétique élevé, tel que décrit dans les deux documents US cités ci-dessus, pour satisfaire aux conditions posées par l'indice de focalisation de champ n et permettre la focalisation des particules dans le plan médian, le profil des pôles doit évoluer d'une région avoisinant l'axe central où l'entrefer est suffisamment étroit pour produire suffisamment de champ magnétique, vers une région située proche des ailes de pôles où l'entrefer est maximum et dont la hauteur est au moins deux fois supérieure à celle de la zone de l'entrefer avoisinant l'axe central. Les pôles comprennent des surfaces biseautées de façon à élargir progressivement l'entrefer des pôles, la région des pôles où le gap est maximum étant comprise entre deux surfaces formant un angle aigu entre elles. Dans la Fig. 2 du document US 7 696 847, la jonction entre l'aile 134 et la surface 130 présente un angle aigu. Un tel profil de pôle comprenant une région profonde et étroite est assez difficile à usiner avec précision. In the case of a high magnetic field synchrocyclotron, as described in the two US documents cited above, to satisfy the conditions set by the field focusing index n and allow the focus of the particles in the median plane, the profile of the poles must evolve from a region around the central axis where the air gap is sufficiently narrow to produce enough magnetic field, to a region located near the pole wings where the air gap is maximum and whose height is at least twice greater than that of the zone of the air gap near the central axis. The poles comprise beveled surfaces so as to progressively widen the gap of the poles, the region of the poles where the gap is maximum is between two surfaces forming an acute angle between them. In FIG. 2 of US 7,696,847, the junction between flange 134 and surface 130 has an acute angle. Such a pole profile including a deep and narrow region is quite difficult to machine accurately.
[0009] Un synchrocyclotron comprenant un entrefer dans lequel est généré un champ magnétique de 5,5 Tesla est décrit dans le document de Wu X. « Conceptual Design and Orbit Dynamics in a 250 MeV Superconducting Synchrocyclotron » (PhD dissertation, Michigan State University, 1990). Les pertes de particules à la sortie de la source sont moins importantes pour un tel champ magnétique. Néanmoins, l'entrefer entre les pôles de ce synchrocyclotron est relativement étroit, tout comme dans le synchrocyclotron décrit précédemment, ce qui nécessite le forage d'un trou dans la culasse selon l'axe central de la culasse pour l'introduction d'une source de particules dans la région centrale. Le forage du trou dans la culasse modifie localement le champ magnétique au centre de la cavité accélératrice, où le champ magnétique au voisinage de la source s'accroît initialement avec le rayon jusqu'à un maximum, puis retombe légèrement avec le rayon. L'index de focalisation de champ est donc initialement négatif ce qui provoque une défocalisation de la trajectoire des particules sur un court rayon. Cet effet augmente avec le rayon de la source, d'où la nécessité de minimiser le diamètre du trou dans la culasse et le diamètre de la source, ce qui réduit la capacité de production de particules. Aussi, il est nécessaire d'insérer des pièces métalliques circulaires de compensation de champ magnétique, couramment appelées « shims ». [0009] A synchrocyclotron comprising an air gap in which a 5.5 Tesla magnetic field is generated is described in the Wu X document. "Conceptual Design and Orbit Dynamics in a 250 MeV Superconducting Synchrocyclotron" (PhD dissertation, Michigan State University, 1990). The losses of particles at the outlet of the source are less important for such a magnetic field. Nevertheless, the gap between the poles of this synchrocyclotron is relatively narrow, as in the previously described synchrocyclotron, which requires the drilling of a hole in the cylinder head along the central axis of the cylinder head for the introduction of a source of particles in the central region. The hole in the bolt hole locally changes the magnetic field at the center of the accelerating cavity, where the magnetic field in the vicinity of the source initially increases with the radius to a maximum, then falls slightly with the radius. The field focusing index is therefore initially negative, which causes a defocusing of the trajectory of the particles over a short radius. This effect increases with the radius of the source, hence the need to minimize the diameter of the hole in the cylinder head and the diameter of the source, which reduces the particle production capacity. Also, it is necessary to insert coins circular metal magnetic field compensation, commonly called "shims".
[0010] Un autre inconvénient des synchrocyclotrons décrits précédemment est le peu d'espace disponible pour l'insertion d'un circuit d'oscillation haute fréquence comprenant des électrodes accélératrices et une ligne de transmission. Ce manque d'espace impose une distance réduite entre les électrodes accélératrices et la ligne de transmission, ce qui a pour effet d'augmenter la capacité entre ces deux éléments. Une augmentation de la capacité nécessite plus de puissance au niveau du générateur de tension pour produire la fréquence de courant alternatif désirée dans les électrodes accélératrices.  Another disadvantage of the synchrocyclotrons described above is the limited space available for the insertion of a high frequency oscillation circuit comprising accelerating electrodes and a transmission line. This lack of space imposes a reduced distance between the accelerating electrodes and the transmission line, which has the effect of increasing the capacity between these two elements. An increase in capacity requires more power at the voltage generator to produce the desired AC frequency in the accelerating electrodes.
[0011] Afin de minimiser les problèmes d'extraction des particules de la source, et de réduire les coûts de production d'un synchrocyclotron, il est nécessaire de minimiser le champ magnétique dans l'entrefer compris entre les deux pôles du synchrocyclotron tout en minimisant la taille du synchrocyclotron.  In order to minimize the problems of extraction of the particles from the source, and to reduce the production costs of a synchrocyclotron, it is necessary to minimize the magnetic field in the gap between the two poles of the synchrocyclotron while minimizing the size of the synchrocyclotron.
[0012] Il est également souhaitable de réaliser un synchrocyclotron dont les profils de pôles satisfont aux conditions posées par l'indice de focalisation de champ et sont plus faciles à usiner.  It is also desirable to produce a synchrocyclotron whose pole profiles satisfy the conditions set by the field focusing index and are easier to machine.
[0013] Il est aussi souhaitable de réaliser un synchrocyclotron dont l'entrefer entre les deux pôles permet l'insertion aisée d'une source et d'un circuit d'oscillation haute fréquence de manière à éviter les problèmes tels que rencontrés dans les synchrocyclotrons de l'art antérieur.  It is also desirable to make a synchrocyclotron whose gap between the two poles allows the easy insertion of a source and a high frequency oscillation circuit so as to avoid problems as encountered in synchrocyclotrons of the prior art.
RESUME DE L'INVENTION SUMMARY OF THE INVENTION
[0014] La présente invention concerne un synchrocyclotron comprenant une structure ferromagnétique, une structure à masse froide et une source de particules. La structure ferromagnétique comprend généralement : deux plaques de culasses, en forme de disques situées de manière coaxiale par rapport à un axe central, parallèles et substantiellement symétriques par rapport à un plan médian ; une paire de pôles qui présentent une section de forme généralement circulaire, de rayon R, qui sont agencés de part et d'autre dudit plan médian, centrés sur l'axe central et séparés d'un entrefer formant une cavité; des retours de flux qui entourent les pôles et joignent les deux plaques de culasses. La structure à masse froide comporte généralement au moins deux bobines d'induction magnétique, et elle est entourée par les retours de flux et entoure les pôles. La source de particules est généralement située dans la cavité dans une première zone circulaire de rayon R1 , inférieur au rayon R de la cavité, son origine étant un point de l'axe central. L'entrefer de la cavité présente normalement un profil substantiellement symétrique par rapport au plan médian, sa hauteur variant radialement. Le profil de l'entrefer comporte successivement à partir dudit axe central : une première portion, de section circulaire avec un rayon R2, centrée sur l'axe central, dont la hauteur de l'entrefer au centre est égale à Hcentre, et qui comprend une sous-portion annulaire (encore appelée : première zone annulaire) dans laquelle la hauteur croît progressivement jusqu'à une hauteur maximale Hmax au niveau du rayon R2; et une seconde portion de section annulaire (encore appelée : deuxième zone annulaire), qui entoure la première portion, et dans laquelle la hauteur de l'entrefer décroît progressivement jusqu'à une hauteur Hbords aux bords des pôles. Selon un premier aspect de l'invention, la hauteur Hcentre de l'entrefer est supérieure à 10 cm, et le rapport de la hauteur maximale Hmax sur la hauteur Hcentre est compris entre 1 , 1 et 1 ,5, avantageusement entre 1 ,2 et 1 ,5, et de préférence entre 1 ,2 et 1 ,4. Il sera noté qu'avec ce profil de l'entrefer, le champ magnétique moyen produit dans la cavité par les bobines et la structure ferromagnétique peut être compris entre 4 et 7 Tesla. The present invention relates to a synchrocyclotron comprising a ferromagnetic structure, a cold mass structure and a source of particles. The ferromagnetic structure generally comprises: two disc-shaped cylinder heads located coaxially with respect to a central axis, parallel and substantially symmetrical with respect to a median plane; a pair of poles that have a section of generally circular shape, of radius R, which are arranged on either side of said median plane, centered on the central axis and separated from an air gap forming a cavity; flux returns that surround the poles and join the two plates of the cylinder heads. The cold mass structure generally comprises at least two magnetic induction coils, and is surrounded by flux returns and surrounds the poles. The source of particles is generally located in the cavity in a first circular zone of radius R1, less than the radius R of the cavity, its origin being a point of the central axis. The gap of the cavity normally has a substantially symmetrical profile with respect to the median plane, its height varying radially. The profile of the air gap comprises successively from said central axis: a first portion, of circular section with a radius R2, centered on the central axis, the height of the air gap in the center is equal to H this ntre, and which comprises an annular sub-portion (also called: first annular zone) in which the height increases gradually to a maximum height H max at the radius R2; and a second portion of annular section (also called: second annular zone), which surrounds the first portion, and wherein the height of the air gap gradually decreases to a height H b ords at the edges of the poles. According to a first aspect of the invention, the height H of this etween the air gap is greater than 10 cm, and the ratio of the maximum height H max of the height H that etween is between 1, 1 and 1, 5, advantageously between 1, 2 and 1, 5, and preferably between 1, 2 and 1, 4. It will be noted that with this profile of the gap, the average magnetic field produced in the cavity by the coils and the ferromagnetic structure can be between 4 and 7 Tesla.
[0015] De préférence, la première portion comprend une sous-portion centrale (encore appelée zone centrale 6) de rayon R1 inférieur à R2, centrée sur l'axe central, où la hauteur de l'entrefer est constante et de hauteur Hcentre-Preferably, the first portion comprises a central sub-portion (also called central zone 6) of radius R1 less than R2, centered on the central axis, where the height of the air gap is constant and of height H this ntre-
[0016] Les pôles comprennent avantageusement une succession de surfaces annulaires biseautées et centrées sur l'axe central, chacune de ces surfaces formant avec sa surface voisine un angle a strictement supérieur à 90°, préférentiellement supérieur à 120°, et encore plus préférentiellement supérieur à 140°. The poles advantageously comprise a succession of beveled annular surfaces centered on the central axis, each of these surfaces forming with its adjacent surface an angle a strictly greater than 90 °, preferably greater than 120 °, and even more preferably greater than 140 °.
[0017] De préférence, la sous-portion centrale (zone centrale) s'étend sur un rayon R1 inférieure à 20 % du rayon R de la cavité, et la sous-portion annulaire (première zone annulaire) s'étend entre le rayon R1 et un rayon R2 inférieur à 95% du rayon R de la cavité 9.  Preferably, the central sub-portion (central zone) extends over a radius R1 less than 20% of the radius R of the cavity, and the annular sub-portion (first annular zone) extends between the radius R1 and a radius R2 less than 95% of the radius R of the cavity 9.
[0018] Dans une exécution préférée, la sous-portion centrale (zone centrale) s'étend sur un rayon R1 de l'ordre de 10 % du rayon R de la cavité et la première sous-portion annulaire s'étend entre le rayon R1 et un rayon R2 de l'ordre de 70% du rayon R de la cavité.  In a preferred embodiment, the central sub-portion (central zone) extends over a radius R1 of the order of 10% of the radius R of the cavity and the first annular sub-portion extends between the radius R1 and a radius R2 of the order of 70% of the radius R of the cavity.
[0019] La source est avantageusement située dans la sous-portion centrale et maintenue par un support inséré dans la cavité de manière substantiellement parallèle audit plan médian.  The source is advantageously located in the central sub-portion and held by a support inserted into the cavity substantially parallel to said median plane.
[0020] Il sera apprécié que, grâce à une hauteur Hcentre assez importante de l'entrefer, les pôles peuvent être avantageusement pleins, car la source de particules peut être introduite radialement dans la zone centrale de l'entrefer. It will be appreciated that, thanks to a height H this is quite important to the air gap, the poles can be advantageously full, because the source of particles can be introduced radially in the central zone of the air gap.
[0021 ] Il sera encore apprécié que, grâce au champ magnétique assez faible, les bobines d'induction magnétique peuvent être réalisées en NbTi.  It will be appreciated that, thanks to the magnetic field quite low, the magnetic induction coils can be made in NbTi.
[0022] Selon un autre aspect, la présente invention concerne une méthode de réalisation d'un synchrocyclotron comprenant les étapes suivantes : fixation de la hauteur de l'entrefer entre les pôles au voisinage de l'axe central Hcentre telle que la hauteur Hcentre soit supérieure à 10 cm ; [0022] According to another aspect, the present invention relates to a method for producing a synchrocyclotron comprising the steps of: fixing the height of the air gap between the poles in the vicinity of the central axis H that etween such that the height It is greater than 10 cm;
fixation d'une hauteur maximale de l'entrefer Hmax telle que celle-ci soit supérieure à au moins 1 ,1 fois la hauteur Hcentre et inférieure à 1 ,5 fois la hauteur Hcentre ; fix a maximum height H max of the air gap such that the latter is greater than at least 1, 1 times the height H that etween and less than 1, 5 times the height H of this etween;
fixation d'un champ magnétique dans des bobines d'induction magnétique entourant les pôles formant la cavité accélératrice de particules ; fixing a magnetic field in induction coils magnetic surrounding the poles forming the accelerating particle cavity;
optimisation du profil des pôles et des dimensions et position des bobines d'induction magnétique 3 en tenant compte de Hcentre et Hmax ainsi que du champ magnétique dans les bobines, de manière à obtenir une cavité accélératrice de particules comprise entre les pôles dont l'entrefer entre les pôles satisfait aux conditions posées par l'indice de focalisation de champ n =—— , où r est le rayon de l'orbite d'une particule, l'origine du rayon passant par un point de l'axe central, et B est le champ magnétique en ce rayon, n devant être strictement compris entre 0 et 0,2. optimization of the profile of the poles and the size and position of the magnetic induction coils 3 taking into account this etween H and H max and the magnetic field in the coils, so as to obtain a particle accelerating cavity between the poles, the gap between the poles satisfies the conditions set by the field focusing index n = -, where r is the radius of the orbit of a particle, the origin of the ray passing through a point of the axis central, and B is the magnetic field in this radius, n to be strictly between 0 and 0.2.
DESCRIPTION DES FIGURES DESCRIPTION OF THE FIGURES
[0023] Des modes de réalisation de la présente invention vont maintenant être décrits, à titre d'exemple, en se référant aux dessins annexés, dans lesquels :  Embodiments of the present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
- la Fig. 1 est une coupe simplifiée d'un synchrocyclotron selon un mode de réalisation de la présente invention ; le plan de coupe contenant l'axe central du synchrocyclotron, et la coupe illustrant avant tout une structure ferromagnétique du synchrocyclotron ;  FIG. 1 is a simplified section of a synchrocyclotron according to an embodiment of the present invention; the section plane containing the central axis of the synchrocyclotron, and the section illustrating above all a ferromagnetic structure of the synchrocyclotron;
- la Fig. 2 est une coupe identique à la coupe de la Fig. 1 , montrant également de façon schématique une source de particules.  FIG. 2 is a section identical to the section of FIG. 1, also schematically showing a source of particles.
DESCRIPTION DÉTAILLÉE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
[0024] Les Fig. 1 et 2 représentent de façon schématique un synchrocyclotron selon la présente invention. Il est à noter que certaines pièces du synchrocyclotron ne sont pas représentées afin de ne pas encombrer les figures.  Figs. 1 and 2 schematically show a synchrocyclotron according to the present invention. It should be noted that some parts of the synchrocyclotron are not shown so as not to clutter the figures.
[0025] Le synchrocyclotron représenté sur les figures pour illustrer l'invention de façon non-limitative comprend :  The synchrocyclotron shown in the figures to illustrate the invention in a non-limiting manner comprises:
- une structure ferromagnétique 4 comprenant : o deux plaques de base, appelées encore plaques de culasses 16, 16', en forme de disques agencées de manière coaxiale par rapport à un axe central 1 du synchrocyclotron, parallèles et substantiellement symétriques par rapport à un plan médian 2 ; o une paire de pôles 5, 5', présentant une section de forme généralement circulaire, de rayon R, agencés de part et d'autre du plan médian 2 du synchrocyclotron, centrés sur l'axe central 1 et séparés d'un entrefer formant une cavité 9 ; et a ferromagnetic structure 4 comprising: o two base plates, also called disc-shaped cylinder head plates 16, 16 'arranged coaxially with respect to a central axis 1 of the synchrocyclotron, parallel and substantially symmetrical with respect to a median plane 2; a pair of poles 5, 5 ', having a section of generally circular shape, of radius R, arranged on either side of the median plane 2 of the synchrocyclotron, centered on the central axis 1 and separated from a gap forming a cavity 9; and
o des retours de flux 17 entourant les pôles 5,5' et joignant les deux des culasses 16, 16' ;  flow returns 17 surrounding the poles 5,5 'and joining the two of the yokes 16, 16';
- une structure à masse froide comportant au moins deux bobines d'induction magnétique 3, entourée par les retours de flux 17 et entourant les pôles 5, 5' ;  a cold mass structure comprising at least two magnetic induction coils 3, surrounded by the flux returns 17 and surrounding the poles 5, 5 ';
- une source de particules 1 1 (cf. Fig. 2), située dans la cavité 9 dans une première zone 6 de section circulaire, de rayon R1 inférieur au rayon R de la cavité 9 et dont l'origine est un point dudit axe central 1 ; a source of particles 1 1 (see FIG 2), located in the cavity 9 in a first zone 6 of circular section, of radius R1 less than the radius R of the cavity 9 and whose origin is a point of said axis central 1;
- un générateur 14 de tension haute fréquence (cf. Fig. 2) situé en dehors des retours de flux 17 ; a high frequency voltage generator 14 (see FIG.2) located outside the flow returns 17;
- une électrode accélératrice (cf. Fig. 2) couplée au générateur 14 de tension haute fréquence ; cette électrode accélératrice comprenant une paire de plaques 12 parallèles, substantiellement semi-circulaires et séparées l'une de l'autre par un gap, situées à l'intérieur de la cavité 9, s'étendant parallèlement et symétriquement de part et d'autre du plan médian 2 et faisant face à la source ; et  an accelerating electrode (see FIG 2) coupled to the high frequency voltage generator 14; this accelerating electrode comprising a pair of parallel plates, substantially semicircular and separated from one another by a gap, located inside the cavity 9, extending parallel and symmetrically on both sides the middle plane 2 facing the source; and
- une ligne de transmission 13 entourant l'électrode accélératrice 12 et située à une certaine distance de l'électrode 12.  a transmission line 13 surrounding the accelerating electrode 12 and located at a distance from the electrode 12.
[0026] Selon un aspect préféré, le champ magnétique généré dans l'entrefer entre les pôles 5, 5' du synchrocyclotron est choisi :  In a preferred aspect, the magnetic field generated in the gap between the poles 5, 5 'of the synchrocyclotron is chosen:
de manière à ce qu'il soit suffisamment élevé pour accélérer des particules à une énergie comprise entre 200 et 250 MeV ; pour éviter que les particules sortant de la source ne retombent sur celle-ci sous l'action d'un champ magnétique trop élevé ; et so that it is high enough to accelerate particles at an energy of between 200 and 250 MeV; to prevent the particles leaving the source from falling back on it under the action of a magnetic field too high; and
pour minimiser la taille du synchrocyclotron.  to minimize the size of the synchrocyclotron.
[0027] Le champ magnétique généré dans l'entrefer entre les pôles est avantageusement compris entre 4 et 7 Teslas, préférentiellement entre 4 et 6 Teslas. Il sera apprécié que la production d'un tel champ magnétique ne requiert pas l'utilisation de bobines supraconductrices en Nb3Sn. En effet, des bobines supraconductrices en NbTi sont adaptées à la production d'un champ compris entre 3 et 5 Tesla, auquel est combiné le champ magnétique généré par la structure ferromagnétique 4, qui est généralement de l'ordre de 2 Teslas. Les bobines supraconductrices en NbTi sont moins coûteuses et plus faciles à mettre en œuvre que les bobines en Nb3Sn. The magnetic field generated in the gap between the poles is advantageously between 4 and 7 Tesla, preferably between 4 and 6 Tesla. It will be appreciated that the production of such a magnetic field does not require the use of Nb 3 Sn superconducting coils. Indeed, NbTi superconducting coils are suitable for the production of a field between 3 and 5 Tesla, which is combined the magnetic field generated by the ferromagnetic structure 4, which is generally of the order of 2 Tesla. NbTi superconducting coils are less expensive and easier to implement than Nb 3 Sn coils.
[0028] Selon un aspect préféré, la cavité 9 formée par les pôles 5 a un rayon R, dont l'origine passe par un point de l'axe central 1 , et dont l'extrémité coïncide avec les bords 10 des pôles 5. La hauteur de l'entrefer varie en fonction du rayon de manière à satisfaire aux conditions posées par l'indice de focalisation de champ n. Préférablement, l'entrefer comprend trois zones 6, 7 et 8, en partant de l'axe central vers le bord des pôles :  In a preferred aspect, the cavity 9 formed by the poles 5 has a radius R whose origin passes through a point of the central axis 1 and whose end coincides with the edges 10 of the poles 5. The height of the gap varies according to the radius so as to satisfy the conditions set by the field focusing index n. Preferably, the gap comprises three zones 6, 7 and 8, starting from the central axis towards the edge of the poles:
une zone centrale 6, avantageusement plane (bien que cela ne soit pas nécessairement une limitation de la présente invention) et circulaire de rayon R1 inférieur au rayon R de la cavité et dont l'origine coïncide avec un point de l'axe central 1 , située au voisinage de l'axe central 1 et dont l'entrefer entre les pôles 5 est de hauteur Hcentre ; une première zone annulaire 7, comprise entre un cercle dudit rayon R1 et un second cercle de rayon R2, inférieur également au rayon R de la cavité et dont l'origine coïncide avec celle du rayon R1 , dans laquelle la hauteur de l'entrefer entre les pôles 5 augmente progressivement jusqu'à une hauteur maximum Hmax, de manière à diminuer progressivement le champ magnétique pour assurer une focalisation des particules dans le plan médian 2 ; a central zone 6, preferably flat (although this is not necessarily a limitation of the present invention) and circular radius R1 less than the radius R of the cavity and whose origin coincides with a point of the central axis 1, located in the vicinity of the central axis 1 and whose air gap between the poles 5 is of height H this is ; a first annular zone 7, between a circle of said radius R1 and a second circle of radius R2, also smaller than the radius R of the cavity and whose origin coincides with that of radius R1, in which the height of the gap between the poles 5 progressively increases up to a maximum height H max , so as to gradually reduce the magnetic field to ensure a focusing of the particles in the median plane 2;
une deuxième zone annulaire 8, comprise entre un cercle de rayon R2 et les bords 10 des pôles, dans laquelle l'entrefer entre les pôles diminue progressivement jusqu'à une hauteur minimum Hmin aux bords 10 des pôles, de manière à faire augmenter de nouveau le champ magnétique et diminuer l'indice focalisation de champ n avant que l'indice de focalisation de champ n n'arrive à une valeur limite à laquelle les particules oscillant axialement autour d'une orbite d'équilibre entrent en résonance avec les particules oscillant radialement autour de la même orbite d'équilibre. a second annular zone 8, between a circle of radius R2 and the edges 10 of the poles, in which the gap between the poles decreases progressively to a minimum height H min at the edges of the poles, so as to increase again the magnetic field and decrease the field focusing index n before the field focusing index n reaches a limit value at which the particles oscillating axially around an equilibrium orbit resonate with the particles oscillating radially around the same equilibrium orbit.
[0029] Selon un aspect préféré, le rapport entre la hauteur maximum Hmax de l'entrefer et la hauteur Hcentre de l'entrefer au voisinage de l'axe central est strictement supérieur à 1 et inférieur à 1 ,5, de manière à faciliter l'usinage de l'intérieur des pôles, tout en satisfaisant aux conditions posées par l'indice de focalisation de champ. Plus préférablement, le rapport Hmax/Hcentre est compris entre 1 ,2 et 1 ,5. [0029] In a preferred aspect, the ratio between the maximum height H max of the air gap and the height H that etween the air gap in the vicinity of the central axis is strictly greater than 1 and less than 1, 5, of in order to facilitate the machining of the inside of the poles, while satisfying the conditions set by the field focusing index. More preferably, the ratio H max / Hcentre is between 1, 2 and 1, 5.
[0030] Selon un autre aspect préféré, toujours dans le but de faciliter l'usinage des pôles 5, la zone comprenant la première zone annulaire 7 et la deuxième zone annulaire 8, est caractérisée par une succession de surfaces annulaires biseautées, centrées sur l'axe central 1 , chacune de ces surfaces formant avec sa surface voisine un angle a strictement supérieur à 90°, préférentiellement supérieur à 120°, et encore plus préférentiellement supérieur à 140°.  According to another preferred aspect, still with the aim of facilitating the machining of the poles 5, the zone comprising the first annular zone 7 and the second annular zone 8, is characterized by a succession of bevelled annular surfaces, centered on the central axis 1, each of these surfaces forming with its adjacent surface an angle a strictly greater than 90 °, preferably greater than 120 °, and even more preferably greater than 140 °.
[0031 ] Selon encore un autre aspect préféré, la hauteur Hcentre de l'entrefer au voisinage de l'axe central 1 est supérieure à 10 cm, plus préférablement supérieure à 15 cm, plus préférablement supérieure à 18,4 cm. Il sera apprécié que la hauteur Hcentre de l'entrefer au voisinage de l'axe central, plus élevée par rapport aux synchrocyclotrons de l'art antérieur, permet une insertion plus aisée de la source et du circuit d'oscillation haute fréquence comprenant les électrodes accélératrices et la ligne de transmission. [0032] L'élargissement de l'entrefer permet par exemple d'augmenter le gap entre les deux plaques 12 de l'électrode accélératrice de manière à éviter une collision des particules avec les plaques 12. L'élargissement de l'entrefer permet également d'augmenter la distance entre l'électrode accélératrice et la ligne de transmission 13, ce qui réduit la capacité entre ces deux composants et permet au générateur de tension 14 de fournir une tension alternative haute fréquence à l'électrode accélératrice avec moins de puissance. [0031] According to yet another preferred aspect, the height H of this etween the air gap in the vicinity of the central axis 1 is greater than 10 cm, more preferably greater than 15 cm, more preferably greater than 18.4 cm. It will be appreciated that the height H of this etween the air gap in the vicinity of the central axis higher relative to synchrocyclotrons of the prior art, allows an easier insertion of the source and the high-frequency oscillation circuit comprising the accelerating electrodes and the transmission line. The widening of the gap allows for example to increase the gap between the two plates 12 of the accelerating electrode so as to avoid a collision of particles with the plates 12. The widening of the air gap also allows to increase the distance between the accelerating electrode and the transmission line 13, which reduces the capacitance between these two components and allows the voltage generator 14 to supply a high frequency alternating voltage to the accelerating electrode with less power.
[0033] Selon un aspect préféré additionnel, la hauteur Hcentre élevée dans la région de l'entrefer avoisinant l'axe central 1 , permet l'insertion d'une source 1 1 de manière latérale plutôt que de manière axiale (cf. Fig. 2). L'insertion de la source 1 1 peut se faire, par exemple, au moyen d'un support 15 provenant de l'extérieur de la cavité 9 et comprenant des conduits pour la circulation du gaz dans la source, ainsi que des connexions électriques pour l'allumage de la source. L'insertion d'une source de manière latérale permet de renoncer au forage d'un trou dans la culasse 16, 16' et les pôles 5, 5', ce qui supprime la variation négative de l'indice de focalisation de champ dans la région de l'entrefer avoisinant l'axe central 1 et permet aussi l'utilisation d'une source de diamètre plus grand que dans les synchrocyclotrons de l'art antérieur. De cette manière, la source peut produire un courant de particules plus élevé. Aussi, avec la suppression de la variation négative de l'indice de champ dans la région de l'entrefer avoisinant l'axe central, les problèmes de défocalisation des particules à la sortie de la source sont minimisés, et des anneaux de compensation de champ, tels qu'utilisés dans les synchrocyclotrons de l'art antérieur, deviennent facultatifs, ce qui simplifie cette région de l'entrefer. [0033] According to a preferred further aspect, the height H that etween high in the region of the air gap surrounding the central axis 1, allows the insertion of a source 1 1 laterally rather than axially (cf. Fig. 2). The insertion of the source 1 1 can be done, for example, by means of a support 15 coming from outside the cavity 9 and comprising conduits for the circulation of the gas in the source, as well as electrical connections for ignition of the source. The insertion of a source laterally makes it possible to dispense with the drilling of a hole in the cylinder head 16, 16 'and the poles 5, 5', which eliminates the negative variation of the field focusing index in the region of the air gap near the central axis 1 and also allows the use of a source of larger diameter than in the prior art synchrocyclotrons. In this way, the source can produce a higher particle current. Also, with the suppression of the negative variation of the field index in the region of the air gap near the central axis, the defocusing problems of the particles at the exit of the source are minimized, and the field compensation rings as used in the prior art synchrocyclotrons become optional, simplifying this region of the gap.
[0034] Dans un exemple, non limitatif, de réalisation d'un synchrocyclotron selon la présente invention, le champ magnétique moyen dans l'entrefer entre les deux pôles est de 5,6 Teslas. La hauteur de l'entrefer entre les pôles dans la région avoisinant l'axe central Hcentre est de 18,4 cm et la hauteur de l'entrefer maximum Hmax est de 25.3 cm. Dans ce synchrocyclotron, le rapport Hmax/Hcentre est par conséquent égal à 1 .375. La distance z (cm) séparant les pôles du plan médian en fonction du rayon des pôles r (cm) est renseignée dans le tableau 1 . Le rayon externe et la hauteur du synchrocyclotron sont respectivement de 125 cm et de 156cm. Pour un champ magnétique comparable, les dimensions de cette exécution selon la présente invention sont inférieures au cyclotron décrit par Wu (champ magnétique produit dans la cavité : 5,53 Teslas, hauteur du synchrocyclotron : 173,4 cm, rayon externe du synchrocyclotron : 132,3 cm). Toujours dans cette même exécution selon la présente invention, le gap entre les plaques de l'électrode accélératrice est de 2 cm, et le gap entre ces plaques et la ligne de transmission est de 7,4cm. In an example, not limiting, embodiment of a synchrocyclotron according to the present invention, the average magnetic field in the air gap between the two poles is 5.6 Tesla. The height of the gap between the poles in the region near the central axis H that etween is 18.4 cm and the height of the maximum gap H max is 25.3 cm. In this synchrocyclotron, the ratio H max / Hcentre is therefore equal to 1 .375. The distance z (cm) separating the poles of the median plane as a function of the radius of the poles r (cm) is given in Table 1. The external radius and the height of the synchrocyclotron are respectively 125 cm and 156 cm. For a comparable magnetic field, the dimensions of this embodiment according to the present invention are lower than the cyclotron described by Wu (magnetic field produced in the cavity: 5.53 Teslas, height of the synchrocyclotron: 173.4 cm, external radius of the synchrocyclotron: 132 , 3 cm). Still in this same embodiment according to the present invention, the gap between the plates of the accelerating electrode is 2 cm, and the gap between these plates and the transmission line is 7.4 cm.
Tableau 1 :  Table 1:
Figure imgf000015_0001
Figure imgf000015_0001
[0035] Il est à préciser que l'homme du métier peut optimiser le profil des pôles en fonction de la position des bobines par rapport au plan médian, ainsi que par les dimensions et la forme de cette bobine, tout en se plaçant dans des conditions où la hauteur de l'entrefer entre les deux pôles dans la première zone est supérieure à 10 cm, où le rapport de la hauteur de l'entrefer maximum Hmax sur la hauteur de l'entrefer minimum Hcentre dans la zone centrale (6) est compris entre 1 , 1 et 1 ,5, plus préférablement entre 1 ,2 et 1 ,5. Dans l'exemple ci-dessus, les bobines ont un rayon interne de 55,4 cm centré sur l'axe central 1 , une largeur de 13 cm et une hauteur de 28, 1 cm, et sont distantes l'une de l'autre de 20 cm. It should be noted that the skilled person can optimize the profile of the poles as a function of the position of the coils relative to the median plane, as well as the dimensions and shape of this coil, while placing itself in conditions where the height of the gap between the two poles in the first zone is greater than 10 cm, where the maximum air gap height ratio H max of the height of the minimum gap H ours that in the central zone (6) is between 1, 1 and 1, 5 more preferably between 1, 2 and 1.5. In the example above, the coils have an inner radius of 55.4 cm centered on the central axis 1, a width of 13 cm and a height of 28.1 cm, and are spaced one from the another 20 cm.
[0036] La présente invention concerne également une méthode de fabrication d'un synchrocyclotron comprenant deux pôles séparés par un entrefer, la méthode comprenant les étapes suivantes : fixation de la hauteur de l'entrefer au voisinage de l'axe central Hcentre telle que la hauteur Hcentre soit supérieure à 10 cm, préférablement supérieure à 15 cm, préférablement supérieure à 18,4 cm et inférieure à 37 cm ; The present invention also relates to a method for manufacturing a synchrocyclotron comprising two poles separated by an air gap, the method comprising the following steps: fixing the height of the air gap in the vicinity of the central axis H such that such that the height H etween this is greater than 10 cm, preferably greater than 15 cm, preferably greater than 18.4 cm and less than 37 cm;
fixation d'une hauteur maximale de l'entrefer Hmax telle que celle-ci soit strictement supérieure à la hauteur Hcentre et inférieure à 1 ,8 fois la hauteur Hcentre ; fix a maximum height H max of the air gap as it is strictly greater than the height H that etween and less than 1, 8 times the height H of this etween;
fixation d'un champ magnétique dans des bobines d'induction magnétique entourant les pôles formant la cavité accélératrice de particules ;  fixing a magnetic field in magnetic induction coils surrounding the poles forming the accelerating particle cavity;
optimisation du profil des pôles et des dimensions et position des bobines d'induction magnétique en tenant compte de Hcentre et Hmax, ainsi que du champ magnétique dans les bobines, de manière à obtenir une cavité accélératrice de particules comprise entre les pôles dont l'entrefer entre les pôles satisfait aux conditions posées par l'indice de focalisation de champ n. optimization of the profile of the poles and the size and position of the magnetic induction coils, taking into account this etween H and H max, and the magnetic field in the coils, so as to obtain a particle accelerating cavity between the poles, the air gap between the poles satisfies the conditions set by the field focusing index n.

Claims

REVENDICATIONS
Synchrocyclotron comprenant : Synchrocyclotron comprising:
- une structure ferromagnétique (4) comprenant :  a ferromagnetic structure (4) comprising:
o deux plaques de culasses (16, 16'), en forme de disques, agencées de manière coaxiale par rapport à un axe central (1 ) du synchrocyclotron, parallèles et substantiellement symétriques par rapport à un plan médian (2) ;  two disk-shaped cylinder head plates (16, 16 ') arranged coaxially with respect to a central axis (1) of the synchrocyclotron, parallel and substantially symmetrical with respect to a median plane (2);
o une paire de pôles (5, 5') présentant une section de forme généralement circulaire, de rayon R, agencés de part et d'autre dudit plan médian (2), centrés sur ledit axe central (1 ) et séparés d'un entrefer formant une cavité (9) ; et  a pair of poles (5, 5 ') having a section of generally circular shape, of radius R, arranged on either side of said median plane (2), centered on said central axis (1) and separated from one air gap forming a cavity (9); and
o des retours de flux (17) entourant lesdits pôles (5,5') et joignant les deux plaques de culasses (16, 16') ;  o flow returns (17) surrounding said poles (5,5 ') and joining the two yoke plates (16, 16');
- une structure à masse froide comportant au moins deux bobines d'induction magnétique (3), ladite structure à masse froide étant entourée par lesdits retours de flux (17) et entourant lesdits pôles (5,5') ;  a cold mass structure comprising at least two magnetic induction coils (3), said cold mass structure being surrounded by said flux returns (17) and surrounding said poles (5, 5 ');
- une source de particules (1 1 ) située dans ladite cavité (9) dans une première zone (6) de section circulaire de rayon R1 inférieur audit rayon R de ladite cavité (9) et dont l'origine est un point dudit axe central (1 ) ;  a source of particles (1 1) situated in said cavity (9) in a first zone (6) of circular cross-section of radius R1 less than said radius R of said cavity (9) and whose origin is a point of said central axis (1);
l'entrefer formant ladite cavité (9) présentant un profil substantiellement symétrique par rapport audit plan médian (2), dont la hauteur varie radialement, ledit profil de l'entrefer comportant successivement à partir dudit axe central (1 ) : the air gap forming said cavity (9) having a substantially symmetrical profile with respect to said median plane (2), the height of which varies radially, said profile of the air gap comprising successively from said central axis (1):
- une première portion (6, 7), de section circulaire de rayon R2, centrée sur ledit axe central (1 ), dont la hauteur de l'entrefer au centre est égale à Hcentre, et qui comprend une sous-portion annulaire (7) dans laquelle la hauteur de l'entrefer croît progressivement jusqu'à une hauteur maximale Hmax au niveau du rayon R2; - une seconde portion, de section annulaire (8), entourant ladite première portion (6, 7), où la hauteur de l'entrefer décroît progressivement jusqu'à une hauteur Hbords aux bords desdits pôles- a first portion (6, 7) of circular section of radius R2 centered on said central axis (1), the height of the air gap at the center is equal to this H ours, and that includes an annular sub-portion (7) wherein the height of the gap increases gradually to a maximum height H max at the radius R2; a second portion, of annular section (8), surrounding said first portion (6, 7), where the height of the air gap gradually decreases to a height H b at the edges of said poles
(5,5') ; (5.5 ');
caractérisé en ce que ladite hauteur Hcentre de l'entrefer est supérieure à 10 cm, et le rapport de ladite hauteur maximale Hmax sur ladite hauteur Hcentre est compris entre 1 , 1 et 1 ,5. characterized in that said height H that etween the air gap is greater than 10 cm, and the ratio of said maximum height H max of said height H etween this is between 1, 1 and 1, 5.
2. Synchrocyclotron selon la revendication 1 , caractérisé en ce que ladite première portion (6, 7) comprend une sous-portion centrale (6), de section circulaire de rayon R1 inférieur à R2, centrée sur ledit axe central (1 ), où la hauteur de l'entrefer est constante et égale à la hauteur Hcentre-2. Synchrocyclotron according to claim 1, characterized in that said first portion (6, 7) comprises a central sub-portion (6), of circular section of radius R1 less than R2, centered on said central axis (1), where the height of the gap is constant and equal to the height H this ntre-
3. Synchrocyclotron selon la revendication 1 ou 2, caractérisé en ce que le rapport de ladite hauteur maximale Hmax sur ladite hauteur Hcentre est compris entre 1 ,2 et 1 ,5. 3. Synchrocyclotron according to claim 1 or 2, characterized in that the ratio of said maximum height H max to said height H ce ntre is between 1, 2 and 1, 5.
4. Synchrocyclotron selon la revendication 1 ou 2 caractérisé en ce que le rapport de ladite hauteur maximale Hmax sur ladite hauteur Hcentre est compris entre 1 ,2 et 1 ,4. 4. Synchrocyclotron according to claim 1 or 2 characterized in that the ratio of said maximum height H max on said height H ce ntre is between 1, 2 and 1, 4.
5. Synchrocyclotron selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdits pôles (5,5') comprennent une succession de surfaces annulaires biseautées et centrées sur ledit axe central (1), chacune desdites surfaces formant avec sa surface voisine un angle a strictement supérieur à 90°, préférentiellement supérieur à 120°, et encore plus préférentiellement supérieur à 140°.  5. Synchrocyclotron according to any one of the preceding claims, characterized in that said poles (5,5 ') comprise a succession of beveled annular surfaces centered on said central axis (1), each of said surfaces forming with its adjacent surface a angle a strictly greater than 90 °, preferably greater than 120 °, and even more preferably greater than 140 °.
6. Synchrocyclotron selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite sous-portion centrale (6) s'étend sur un rayon R1 inférieur à 20 % du rayon R de ladite cavité, et ladite sous-portion annulaire (7) de ladite première portion (6,7) s'étend entre le rayon R1 et un rayon R2 inférieur à 95% du rayon R de ladite cavité (9).  6. Synchrocyclotron according to any one of the preceding claims, characterized in that said central sub-portion (6) extends over a radius R1 less than 20% of the radius R of said cavity, and said annular sub-portion (7 ) of said first portion (6,7) extends between the radius R1 and a radius R2 less than 95% of the radius R of said cavity (9).
7. Synchrocyclotron selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite sous-portion centrale (6) s'étend sur un rayon R1 de l'ordre de 10 % du rayon R de ladite cavité (9), et ladite sous-portion annulaire (7) de ladite première portion (7) s'étend entre le rayon R1 et un rayon R2 de l'ordre de 70% du rayon R de ladite cavité (9). 7. Synchrocyclotron according to any one of the preceding claims, characterized in that said central sub-portion (6) extends over a radius R1 of the order of 10% of the radius R of said cavity (9), and said annular sub-portion (7) of said first portion (7) extends between the radius R1 and a radius R2 of the order of 70 % of the radius R of said cavity (9).
8. Synchrocyclotron selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite source (1 1 )est située dans ladite sous-portion centrale (6) et maintenue par un support inséré dans ladite cavité (9) de manière substantiellement parallèle audit plan médian (2).  8. Synchrocyclotron according to any one of the preceding claims, characterized in that said source (1 1) is located in said central sub-portion (6) and held by a support inserted into said cavity (9) substantially parallel to said median plane (2).
9. Synchrocyclotron selon l'une quelconque des revendications précédentes, caractérisé en ce que chacun desdits pôles (5) est plein.  9. Synchrocyclotron according to any one of the preceding claims, characterized in that each of said poles (5) is full.
10. Synchrocyclotron selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdites bobines d'induction magnétique (3) sont réalisées en NbTi.  10. Synchrocyclotron according to any one of the preceding claims, characterized in that said magnetic induction coils (3) are made of NbTi.
1 1. Synchrocyclotron selon l'une quelconque des revendications précédentes, caractérisé en ce que le champ magnétique moyen produit dans ladite cavité (9) par lesdites bobines (3) et ladite structure ferromagnétique (4) est compris entre 4 et 7 Tesla.  1 1. A synchrocyclotron according to any one of the preceding claims, characterized in that the average magnetic field produced in said cavity (9) by said coils (3) and said ferromagnetic structure (4) is between 4 and 7 Tesla.
12. Méthode de réalisation d'un synchrocyclotron selon la revendication 1 , la méthode comprenant les étapes de :  12. Method of producing a synchrocyclotron according to claim 1, the method comprising the steps of:
- fixation de la hauteur de l'entrefer entre lesdits pôles au voisinage de l'axe central Hcentre telle que ladite hauteur Hcentre soit supérieure à 10 cm ; fixing the height of the gap between said poles in the vicinity of the central axis Hcentre such that said height Hcentre is greater than 10 cm;
- fixation d'une hauteur maximale de l'entrefer Hmax telle que celle-ci soit supérieure à au moins 1 ,1 fois la hauteur Hcentre et inférieure à 1 ,5 fois la hauteur Hcentre ; - Fixing a maximum height of the gap Hmax such that it is greater than at least 1, 1 times the height Hcentre and less than 1, 5 times the height Hcentre;
- fixation d'un champ magnétique dans des bobines d'induction magnétique (3) entourant les pôles formant la cavité accélératrice de particules ;  - Fixing a magnetic field in magnetic induction coils (3) surrounding the poles forming the accelerating particle cavity;
- optimisation du profil des pôles et des dimensions et position des bobines d'induction magnétique (3) en tenant compte de Hcentre et Hmax ainsi que du champ magnétique dans les bobines, de manière à obtenir une cavité accélératrice de particules comprise entre lesdits pôles dont l'entrefer entre lesdits pôles satisfait aux conditions posées par l'indice de focalisation de champ n =—— , avec r le rayon de l'orbite d'une particule, l'origine du dit rayon passant par un point de l'axe central, et B le champ magnétique en ce rayon, n devant être strictement compris entre 0 et 0,2. optimizing the profile of the poles and the dimensions and position of the magnetic induction coils (3) taking into account the center and the Hmax and the magnetic field in the coils, so as to obtain an accelerating particle cavity between said poles, the gap between said poles satisfies the conditions set by the field focusing index n = -, with r the radius of the orbit of a particle, the origin of said radius passing through a point of the axis central, and B the magnetic field at this radius, n to be strictly between 0 and 0.2.
PCT/EP2011/068844 2010-10-27 2011-10-27 Synchrocyclotron WO2012055958A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180058890.6A CN103493603A (en) 2010-10-27 2011-10-27 Synchrocyclotron
JP2013535435A JP2013541170A (en) 2010-10-27 2011-10-27 Synchro cyclotron
EP11776428.2A EP2633741B1 (en) 2010-10-27 2011-10-27 Synchrocyclotron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BEBE2010/0641 2010-10-27
BE2010/0641A BE1019557A3 (en) 2010-10-27 2010-10-27 Synchrocyclotron.

Publications (1)

Publication Number Publication Date
WO2012055958A1 true WO2012055958A1 (en) 2012-05-03

Family

ID=43990306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/068844 WO2012055958A1 (en) 2010-10-27 2011-10-27 Synchrocyclotron

Country Status (3)

Country Link
CN (1) CN103493603A (en)
BE (1) BE1019557A3 (en)
WO (1) WO2012055958A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038738A (en) * 2012-08-13 2014-02-27 Sumitomo Heavy Ind Ltd Cyclotron
US9271385B2 (en) 2010-10-26 2016-02-23 Ion Beam Applications S.A. Magnetic structure for circular ion accelerator
CN107835556A (en) * 2017-11-30 2018-03-23 合肥中科离子医学技术装备有限公司 The method of first harmonic regulation racetrack centering is utilized in a kind of cyclotron

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108551717B (en) * 2018-06-04 2020-04-28 合肥中科离子医学技术装备有限公司 Method for enhancing axial focusing of central area of cyclotron
CN108882498B (en) * 2018-07-04 2019-12-24 中国原子能科学研究院 High-intensity magnetic field synchrocyclotron and magnetic field shimming method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4641057A (en) * 1985-01-23 1987-02-03 Board Of Trustees Operating Michigan State University Superconducting synchrocyclotron
US20070171015A1 (en) * 2006-01-19 2007-07-26 Massachusetts Institute Of Technology High-Field Superconducting Synchrocyclotron

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA966893A (en) * 1973-06-19 1975-04-29 Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited Superconducting cyclotron
BE1005530A4 (en) * 1991-11-22 1993-09-28 Ion Beam Applic Sa Cyclotron isochronous
US6158209A (en) * 1997-05-23 2000-12-12 Societe Nationale D'etude Et De Construction De Moteurs D'aviation-S.N.E.C.M.A. Device for concentrating ion beams for hydromagnetic propulsion means and hydromagnetic propulsion means equipped with same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4641057A (en) * 1985-01-23 1987-02-03 Board Of Trustees Operating Michigan State University Superconducting synchrocyclotron
US20070171015A1 (en) * 2006-01-19 2007-07-26 Massachusetts Institute Of Technology High-Field Superconducting Synchrocyclotron
US7541905B2 (en) 2006-01-19 2009-06-02 Massachusetts Institute Of Technology High-field superconducting synchrocyclotron
US7696847B2 (en) 2006-01-19 2010-04-13 Massachusetts Institute Of Technology High-field synchrocyclotron

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A.GARONNA: "Synchrocyclotron Preliminary Design for a Dual Hadrontherapy Center", PROCEEDINGS OF IPAC '10, June 2010 (2010-06-01), Kyoto, Japan, pages 552 - 554, XP002638377 *
BIGHAM C B: "Magnetic trim rods for superconducting cyclotrons", NUCLEAR INSTRUMENTS AND METHODS, NORTH-HOLLAND, vol. 131, no. 2, 24 December 1975 (1975-12-24), pages 223 - 228, XP002436706, ISSN: 0029-554X, DOI: DOI:10.1016/0029-554X(75)90323-7 *
HOLM S: "Factors affecting beam intensity and quality in synchrocyclotrons", FIFTH INTERNATIONAL CYCLOTRON CONFERENCE BUTTERWORTHS LONDON, UK, 1971, pages 736 - 748, XP002638376 *
WU X.: "Conceptual Design and Orbit Dynamics in a 250 MeV Superconducting Synchrocyclotron", PHD DISSERTATION, 1990

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9271385B2 (en) 2010-10-26 2016-02-23 Ion Beam Applications S.A. Magnetic structure for circular ion accelerator
JP2014038738A (en) * 2012-08-13 2014-02-27 Sumitomo Heavy Ind Ltd Cyclotron
CN107835556A (en) * 2017-11-30 2018-03-23 合肥中科离子医学技术装备有限公司 The method of first harmonic regulation racetrack centering is utilized in a kind of cyclotron

Also Published As

Publication number Publication date
BE1019557A3 (en) 2012-08-07
CN103493603A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
BE1009669A3 (en) Method of extraction out of a charged particle isochronous cyclotron and device applying this method.
EP1566082B1 (en) Cyclotron
EP0613607B1 (en) Compact isochronic cyclotron
WO2012055958A1 (en) Synchrocyclotron
EP0222786B1 (en) Cyclotron
EP2798209B1 (en) Plasma thruster and method for generating propulsive plasma thrust
CA2804336C (en) Cyclotron comprising a means for modifying the magnetic field profile and associated method
JP2009524201A5 (en)
EP1848896A1 (en) Method for stabilising a magnetically levitated object
EP1385362A1 (en) Cyclotron provided with new particle beam sweeping means
CA2800290A1 (en) Cyclotron able to accelerate at least two types of particle
EP2633741B1 (en) Synchrocyclotron
EP0410880B1 (en) Free electron laser with improved electron accelerator
EP0128052B1 (en) Cyclotron with defocusing system
EP0499514B1 (en) Mode converter and power-dividing device for a microwave tube, and microwave tube with such a device
WO2014068477A1 (en) Cyclotron
WO2009077407A1 (en) Microwave structure for microwave tube beam confinement device with permanent magnets and enhanced cooling
EP0813223B1 (en) Magnetic field generation means and ECR ion source using the same
EP1080612A1 (en) Method for modulating a magnetic field configuration
FR3133513A1 (en) Separate bi-sector cyclotron
WO2016116440A1 (en) Particle accelerator with integrated stripper
Ramstein Heavy ion acceleration by a linear system with independent superconducting cavities. Study and application of a helical niobium cavity with two accelerating zones. Determination of the fields and description of ion movement in the accelerator system
Ramstein Design and construction of superconducting helix cavities for heavy-ion acceleration
FR2775415A1 (en) Infrared radiation obtained by synchrotron method
FR2815810A1 (en) Electron accelerator, for non-destructive testing or irradiation of products or substances, has cavity excited so that it presents maximum electric field in direction of cavity axis and zero magnetic field

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11776428

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011776428

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013535435

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE