WO2012055098A1 - 一种影像引导下的放射治疗设备 - Google Patents

一种影像引导下的放射治疗设备 Download PDF

Info

Publication number
WO2012055098A1
WO2012055098A1 PCT/CN2010/078148 CN2010078148W WO2012055098A1 WO 2012055098 A1 WO2012055098 A1 WO 2012055098A1 CN 2010078148 W CN2010078148 W CN 2010078148W WO 2012055098 A1 WO2012055098 A1 WO 2012055098A1
Authority
WO
WIPO (PCT)
Prior art keywords
slip ring
image
radiotherapy apparatus
radiation therapy
rotating slip
Prior art date
Application number
PCT/CN2010/078148
Other languages
English (en)
French (fr)
Inventor
邱炎雄
Original Assignee
玛西普医学科技发展(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 玛西普医学科技发展(深圳)有限公司 filed Critical 玛西普医学科技发展(深圳)有限公司
Priority to PCT/CN2010/078148 priority Critical patent/WO2012055098A1/zh
Publication of WO2012055098A1 publication Critical patent/WO2012055098A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source

Definitions

  • the present invention relates to radiotherapy apparatus in medical devices, and more particularly to an image guided radiotherapy apparatus.
  • Radiation therapy is well known as one of the most important and basic means of cancer treatment.
  • the main equipment for tumor radiotherapy is linear accelerator, cobalt 60 therapeutic machine and gamma knife.
  • the tumor tissue is surrounded by normal tissues, killing the tumor will damage the normal tissue.
  • how to eliminate the physiological movement of organs in radiotherapy such as respiratory movement, bladder filling, gastrointestinal motility, tumor enlargement and reduction, and elastic deformation of organs, placement error in fractional treatment. make it impossible to locate accurately.
  • the focus of the ray and the real-time localization of the target area of the tumor cannot be achieved in real time. Thereby directly affecting the effect of tumor treatment.
  • the technical problem to be solved by the present invention is to provide an image-guided radiotherapy apparatus for the defect that the X-ray imaging monitor cannot be installed or the 360° rapid scanning treatment cannot be performed on the existing gamma ray radiotherapy apparatus.
  • the technical solution adopted by the present invention to solve the above technical problem is to provide an image-guided radiotherapy apparatus comprising a radiotherapy apparatus main body and a treatment bed mounted on one side of the main body of the radiotherapy apparatus, wherein the treatment bed is The treatment is delivered to the body of the radiation therapy device; the body of the radiation therapy device further includes: a slip ring frame mechanism, and a radiation therapy device and a CT scanner mounted within the slip ring frame mechanism.
  • the slip ring frame structure includes a base, and a columnar outer shield mounted on the base;
  • the outer shield body is provided with a coaxial outer rotating slip ring and an inner rotating slip ring from the outside to the inside, the inner rotating slip ring is nested in the outer rotating slip ring, and the outer rotating slip ring and The inner rotating slip ring is mounted on the outer shield by a rotating ring bearing;
  • the outer shield is also provided with a conveyor for transporting the treatment couch in the axial direction of the outer rotating slip ring.
  • the radiation therapy apparatus includes a radiation source body, the radiation source body is mounted on the outer rotating slip ring, and the radiation source body has a radiation source channel pair a quasi-common point that coincides with the center of rotation of the outer rotating slip ring.
  • the source body is a linear accelerator
  • the radiation therapy apparatus further includes an automatic multi-leaf collimator mounted on the inner rotating slip ring.
  • the ray source body is a cobalt 60 isotope
  • the radiation therapy apparatus further includes a tungsten alloy cone-hole collimator mounted on the inner rotating slip ring .
  • the CT scanner includes an X-ray tube, an X-ray detector, and the X-ray tube and the X-ray detector are mounted on the outer rotating slip ring Above, the connection of the X-ray tube and the X-ray detector passes through the common point.
  • the X-ray tube and the X-ray detector are respectively disposed to advance and lag the radiation source body by 90°.
  • a shield block for shielding the radiation source body during non-treatment is provided below the inner rotating slip ring.
  • the slip ring frame structure has a rotation angle of 360° or more at a treatment and a rotation speed of 1 to 6 rotations per minute.
  • the image-guided radiotherapy apparatus embodying the present invention has the following beneficial effects: a CT scanner is installed on the treatment device, and the CT scanner is used as an X-ray image monitor to realize real-time positioning of the focus of the ray and the tumor target area. , to achieve real-time tracking.
  • the radiotherapy equipment equipped with the X-ray image monitor can perform 360° rapid scanning treatment, which can extract 2D images and display changes in the target area of the lesion in real time.
  • FIG. 1 is a front view showing the principle structure of a radiotherapy apparatus under image guidance according to the present invention
  • Figure 2 is an enlarged cross-sectional view taken along line A-A of Figure 1;
  • FIG. 3 is a front view of an engineering design of a radiotherapy apparatus under image guidance according to the present invention.
  • Figure 4 is an enlarged cross-sectional view taken along line B-B of Figure 3;
  • the image-guided X ( ⁇ ) ray of the present embodiment a radiation therapy device comprising a body of a radiation therapy device and a treatment bed 4 mounted on a side of the body of the radiation therapy device, the treatment bed 4 being a three-dimensional exercise therapy bed delivered to the body of the radiation therapy device during treatment;
  • the radiation therapy device body further includes: a slip ring frame mechanism, and a radiation therapy device and a CT scanner installed in the slip ring frame mechanism.
  • the radiation therapy device comprises a source body 6.
  • the CT scanner includes an X-ray tube 5 and an X-ray detector 9 and electronic and electrical components, and the CT scanner can be used as an X-ray image monitor to perform a 360° fast scan.
  • the slip ring frame structure is an approximately cylindrical body having an outer diameter of about 2.0 meters, an inner diameter of about 0.8 meters, and a width of about 1.2 meters, and is composed of an outer shield body 1, a rotating ring bearing 2, an outer rotating slip ring 7, and an inner rotating slip ring. 8.
  • the base 10 and the transmission device 11 are configured.
  • the radiation source body 6 is incorporated in the outer rotating slip ring 7.
  • the radiation source body 6 may be a linear accelerator or a cobalt 60 isotope, a linear accelerator generates X-rays, and a cobalt 60 isotope generates gamma rays.
  • the shape and size of the source body 6 depends on the structure, but regardless of the shape of the source body 6, one or more of the source channels must be aligned with a common point 3.
  • the ray source body 6 uses a linear accelerator, and the inner rotating slip ring 8 is provided with an automatic multi-leaf collimator.
  • the ray source body 6 uses a cobalt 60 isotope, and the inner rotating slip ring 8 is provided with a tungsten alloy cone-hole collimator.
  • the shielding block 12 is disposed below the inside of the inner rotating slip ring 8 for shielding the source body 6 during non-treatment.
  • the X-ray tube 5 and the X-ray detector 9 and the electronic and electrical components, the X-ray tube 5 and the X-ray detector 9 and the electrons are respectively mounted on the outer side of the radiation source body 6 on the outer slip ring 7 at a time delay of 90°.
  • the electrical components constitute a CT scanner.
  • the conveying device 11 is disposed on one side of the slip ring frame structure for conveying the treatment bed 4 in the axial direction of the outer rotation slip ring 7.
  • the rotation angle of the slip ring frame structure is above 360°, the rotation speed is 1 to 6 rotations per minute, and the rotation center is the common point 3.
  • the treatment bed 4 has a width of about 500 mm and the treatment bed is positioned using a low temperature thermoplastic film.
  • the strokes of the treatment bed 4 in three directions were ⁇ 125 mm, ⁇ 100 mm, and ⁇ 1650 mm, respectively, and the outer shield stroke in the axial direction of the outer shield was 1,250 mm.
  • the image-guided X( ⁇ ) ray radiotherapy apparatus of the present embodiment can collect the patient-related image information in real time and determine the treatment target area, so that the three-dimensional exercise treatment bed can accurately image the patient's treatment target area and the ray source under image guidance. Radiotherapy is performed by a common point of body alignment. Throughout the whole process, the CT scanner collects the target location of the lesion in real time, and tracks the target area of the lesion in real time through the movement of the three-dimensional motion treatment bed, and the whole process of the treatment is visualized.
  • the image-guided gamma ray radiotherapy of the present embodiment includes a radiation therapy device body and a treatment bed 4 mounted on a side of the body of the radiation therapy device, the treatment bed 4 being a three-dimensional motion therapy bed that is delivered to the body of the radiation therapy device during treatment; the radiation therapy device
  • the body further includes: a slip ring frame mechanism, and a radiation therapy device and a CT scanner mounted within the slip ring frame mechanism.
  • the radiation therapy device comprises a source body 6.
  • the CT scanner includes an X-ray tube 5 and an X-ray detector 9 and electronic and electrical components, and the CT scanner can be used as an X-ray image monitor to perform a 360° fast scan.
  • the slip ring frame structure is an approximately cylindrical body having an outer diameter of about 2.0 meters, an inner diameter of about 0.8 meters, and a width of about 1.2 meters, and is composed of an outer shield body 1, a rotating ring bearing 2, an outer rotating slip ring 7, and an inner rotating slip ring. 8.
  • the base 10 and the transmission device 11 are configured.
  • the radiation source body 6 is loaded on the outer rotation slip ring 7.
  • the source body 6 uses a cobalt 60 isotope, which decays to produce gamma rays for treatment.
  • the ray source body 6 is a wedge-shaped block, and 42 to 55 cobalt 60 ray sources are arranged on the wedge block according to a certain regularity.
  • Each ray source has a channel on the ray source body 6, and the channel axis points to the common point 3, the ray source.
  • the body 6 is placed on the outer rotating slip ring 7.
  • the collimator of the ray source body 6 adopts a tungsten alloy cone-hole collimator, and the tungsten alloy cone-hole collimator is divided into three groups, and the collimation channel aperture of each group is different from the other two groups to change the size of the focus, the tungsten alloy cone
  • the hole collimator has an on-off valve for switching the collimator passage, and a tungsten alloy cone-hole collimator is placed on the inner rotary slip ring 8.
  • the illuminant source body 6 is placed under the slip ring frame structure during non-treatment and is shielded by moving the shield block 12.
  • the X-ray tube 5 and the X-ray detector 9 and the electronic and electrical components, the X-ray tube 5 and the X-ray detector 9 and the electrons are respectively mounted on the outer side of the radiation source body 6 on the outer slip ring 7 at a time delay of 90°.
  • the electrical components constitute a CT scanner.
  • the conveying device 11 is disposed on one side of the slip ring frame structure for conveying the treatment bed 4 in the axial direction of the outer rotation slip ring 7.
  • the slip ring frame structure has a rotation angle of 360° or more, a rotation speed of 1 to 6 rotations per minute, and a rotation center of a common point 3.
  • the treatment bed 4 has a width of about 500 mm and the treatment bed is positioned using a low temperature thermoplastic film.
  • the strokes of the treatment bed 4 in three directions were ⁇ 125 mm, ⁇ 100 mm, and ⁇ 1650 mm, respectively, and the outer shield stroke in the axial direction of the outer shield was 1,250 mm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

一种影像引导下的放射治疗设备 技术领域
本发明涉及医疗器械中的放射治疗设备,更具体地说,涉及一种影像引导下的放射治疗设备。
背景技术
众所周知放射治疗是肿瘤治疗的最重要、最基本的手段之一,目前,肿瘤放射治疗的主要设备是直线加速器、钴60治疗机和伽马刀。但由于肿瘤组织被正常组织所包绕,杀灭肿瘤的同时会损伤正常的组织。加之放射治疗中如何消除器官的受生理运动的影响,如呼吸运动、膀胱充盈、肠胃蠕动、肿瘤的增大和减小,以及器官的弹性形变、分次治疗中的摆位误差等。使之无法准确定位。在治疗过程中,射线的焦点与肿瘤靶区的实时定位,实时跟踪无法做到。从而直接影响到肿瘤治疗的效果。
现有的钴60治疗机和伽马刀,由于结构和治疗空间的限制无法安装X射线影像监视器(Digital Radiography,DR)。国外加速器上已有安装X射线影像监视器,但是由于加速器在治疗过程中,不能实施360°快速扫描治疗,因此X线射影像监视器的二维影像无法提取,无法实时显示病灶靶区的变化。
发明内容
本发明要解决的技术问题在于,针对现有的γ射线放射治疗装置上无法安装X线射影像监视器或者不能实施360°快速扫描治疗的缺陷,提供一种影像引导下的放射治疗设备。
本发明解决上述技术问题所采用的技术方案是:提供一种影像引导下的放射治疗设备,包括放射治疗设备主体和安装在所述放射治疗设备主体的一侧的治疗床,所述治疗床在治疗时传送至所述放射治疗设备主体内;所述放射治疗设备主体进一步包括:滑环机架机构,以及安装在所述滑环机架机构内的放射治疗装置和CT扫描仪。
在本发明所述的影像引导下的放射治疗设备中,所述滑环机架结构包括机座,以及安装在所述机座上的柱状的外屏蔽体;
所述外屏蔽体内从外至内依次设有同轴的外转动滑环和内转动滑环,所述内转动滑环嵌套在所述外转动滑环内,且所述外转动滑环和内转动滑环通过转动环轴承安装在所述外屏蔽体上;
所述外屏蔽体还设有用于沿所述外转动滑环的轴线方向传送所述治疗床的传送装置。
在本发明所述的影像引导下的放射治疗设备中,所述放射治疗装置包括射线源体,所述射线源体安装在所述外转动滑环上,所述射线源体的射线源通道对准公共点,所述公共点与所述外转动滑环的旋转中心重合。
在本发明所述的影像引导下的放射治疗设备中,所述射线源体为直线加速器,且所述放射治疗装置还包括安装在所述内转动滑环上的自动多叶准直器。
在本发明所述的影像引导下的放射治疗设备中,所述射线源体为钴60同位素,且所述放射治疗装置还包括安装在所述内转动滑环上的钨合金锥孔准直器。
在本发明所述的影像引导下的放射治疗设备中,所述CT扫描仪包括X射线球管、X射线探测器,所述X射线球管和X射线探测器安装在所述外转动滑环上,所述X射线球管和X射线探测器的连线通过所述公共点。
在本发明所述的影像引导下的放射治疗设备中,所述X射线球管和X射线探测器分别设置成超前和滞后所述射线源体90°。
在本发明所述的影像引导下的放射治疗设备中,所述内转动滑环内部下方设有用于在非治疗时屏蔽所述射线源体的屏蔽块。
在本发明所述的影像引导下的放射治疗设备中,所述滑环机架结构在治疗时旋转角度在360°以上,旋转速度为每分钟1~6转可变速度。
实施本发明的影像引导下的放射治疗设备,具有以下有益效果:在治疗装置上安装CT扫描仪,该CT扫描仪作为X射线射影像监视器,可以实现射线的焦点与肿瘤靶区的实时定位,做到实时跟踪。同时,安装了X射线射影像监视器的放射治疗设备可以实施360°的快速扫描治疗,从而可以提取二维影像和实时显示病灶靶区的变化。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明影像引导下的放射治疗设备的原理结构主视图;
图2是图1中A-A方向剖面放大图;
图3是本发明影像引导下的放射治疗设备的工程设计方案主视图;
图4是图3中B-B方向剖面放大图。
具体实施方式
在图1示出的本发明影像引导下的放射治疗设备的原理结构主视图中,以及图2示出的图1中A-A方向剖面放大图中,本实施例的影像引导下X(γ)射线放射治疗设备,包括放射治疗设备主体和安装在所述放射治疗设备主体的一侧的治疗床4,治疗床4为三维运动治疗床,在治疗时传送至所述放射治疗设备主体内;所述放射治疗设备主体进一步包括:滑环机架机构,以及安装在所述滑环机架机构内的放射治疗装置和CT扫描仪。所述放射治疗装置包括射线源体6。所述CT扫描仪包括X射线球管5和X射线探测器9以及电子、电器元件,所述CT扫描仪可以作为X射线射影像监视器,实施360°的快速扫描。
所述滑环机架结构是一个外径约2.0米,内径约0.8米,宽度约1.2米的近似圆柱体,由外屏蔽体1、转动环轴承2、外转动滑环7、内转动滑环8、机座10、传动装置11构成。在外转动滑环7上装入射线源体6,射线源体6可以是直线加速器也可以是钴60同位素,直线加速器产生X射线,钴60同位素产生γ射线。射线源体6的形状和大小视结构而定,但是无论射线源体6是什么形体,其一个或多个射线源通道必须对准一个公共点3。如射线源体6使用直线加速器,内转动滑环8上则安装自动多叶准直器,如射线源体6使用钴60同位素,内转动滑环8上则安装钨合金锥孔准直器。屏蔽块12设置在内转动滑环8内部下方,用于在非治疗时屏蔽射线源体6。在外转动滑环7上的射线源体6超前和滞后90°处,分别安装X射线球管5和X射线探测器9以及电子、电器元件,X射线球管5和X射线探测器9以及电子、电器元件构成CT扫描仪。传送装置11设置在滑环机架结构一侧,用于沿外转动滑环7的轴线方向传送治疗床4。
滑环机架结构的旋转角度在360°以上,旋转速度为每分钟1~6转可变速度,旋转中心为公共点3。
治疗床4宽度约500毫米,治疗床定位采用低温热塑薄膜。治疗时,治疗床4在三个方向上的行程分别为±125毫米、±100毫米和±1650毫米,外屏蔽体轴线方向的外屏蔽行程为1250毫米。
本实施例的影像引导下X(γ)射线放射治疗设备可以实时采集患者有关的影像信息,确定治疗靶区,从而使三维运动治疗床在影像引导下将患者的治疗靶区准确的与射线源体准直的公共点吻合,实施放射治疗。整个过程CT扫描仪实时采集病灶靶区位置,通过三维运动治疗床的运动实时跟踪病灶靶区,治疗过程全程可视化。
在图3示出的本发明影像引导下的放射治疗设备的工程设计方案主视图中,以及图4示出的图3中B-B方向剖面放大图中,本实施例的影像引导下γ射线放射治疗设备包括放射治疗设备主体和安装在所述放射治疗设备主体的一侧的治疗床4,治疗床4为三维运动治疗床,在治疗时传送至所述放射治疗设备主体内;所述放射治疗设备主体进一步包括:滑环机架机构,以及安装在所述滑环机架机构内的放射治疗装置和CT扫描仪。所述放射治疗装置包括射线源体6。所述CT扫描仪包括X射线球管5和X射线探测器9以及电子、电器元件,所述CT扫描仪可以作为X射线射影像监视器,实施360°的快速扫描。
所述滑环机架结构是一个外径约2.0米,内径约0.8米,宽度约1.2米的近似圆柱体,由外屏蔽体1、转动环轴承2、外转动滑环7、内转动滑环8、机座10、传动装置11构成。在外转动滑环7上装入射线源体6。射线源体6采用钴60同位素,衰变产生γ射线用于治疗。射线源体6是一个楔形块,在楔形块上按一定规律布置42~55枚钴60射线源,每个射线源在射线源体6上均有通道,通道轴线均指向公共点3,射线源体6安放在外转动滑环7上。射线源体6的准直器采用钨合金锥孔准直器,该钨合金锥孔准直器分成三组,每组准直通道孔径与其他两组不同用以改变焦点的大小,钨合金锥孔准直器有开关阀用于开关准直器通道,钨合金锥孔准直器安放在内转动滑环8上。非治疗时射线源体6置于滑环机架结构的下方,由移动屏蔽块12将其屏蔽。在外转动滑环7上的射线源体6超前和滞后90°处,分别安装X射线球管5和X射线探测器9以及电子、电器元件,X射线球管5和X射线探测器9以及电子、电器元件构成CT扫描仪。传送装置11设置在滑环机架结构一侧,用于沿外转动滑环7的轴线方向传送治疗床4。
滑环机架结构旋转角度在360°以上,旋转速度为每分钟1~6转可变速度,旋转中心为公共点3。
治疗床4宽度约500毫米,治疗床定位采用低温热塑薄膜。治疗时,治疗床4在三个方向上的行程分别为±125毫米、±100毫米和±1650毫米,外屏蔽体轴线方向的外屏蔽行程为1250毫米。
在以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

1、一种影像引导下的放射治疗设备,其特征在于,包括放射治疗设备主体和安装在所述放射治疗设备主体的一侧的治疗床(4),所述治疗床(4)在治疗时传送至所述放射治疗设备主体内;所述放射治疗设备主体进一步包括:滑环机架机构,以及安装在所述滑环机架机构内的放射治疗装置和CT扫描仪。
2、如权利要求1所述的影像引导下的放射治疗设备,其特征在于,所述滑环机架结构包括机座(10),以及安装在所述机座(10)上的柱状的外屏蔽体(1);
所述外屏蔽体内从外至内依次设有同轴的外转动滑环(7)和内转动滑环(8),所述内转动滑环(8)嵌套在所述外转动滑环(7)内,且所述外转动滑环(7)和内转动滑环(8)通过转动环轴承(2)安装在所述外屏蔽体(1)上;
所述外屏蔽体(1)还设有用于沿所述外转动滑环(7)的轴线方向传送所述治疗床(4)的传送装置(11)。
3、如权利要求2所述的影像引导下的放射治疗设备,其特征在于,所述放射治疗装置包括射线源体(6),所述射线源体(6)安装在所述外转动滑环(7)上,所述射线源体(6)的射线源通道对准公共点(3),所述公共点(3)与所述外转动滑环(7)的旋转中心重合。
4、如权利要求3所述的影像引导下的放射治疗设备,其特征在于,所述射线源体(6)为直线加速器,且所述放射治疗装置还包括安装在所述内转动滑环(8)上的自动多叶准直器。
5、如权利要求3所述的影像引导下的放射治疗设备,其特征在于,所述射线源体(6)为钴60同位素,且所述放射治疗装置还包括安装在所述内转动滑环(8)上的钨合金锥孔准直器。
6、如权利要求1至5中任意一项所述的影像引导下的放射治疗设备,其特征在于,所述CT扫描仪包括X射线球管(5)、X射线探测器(9),所述X射线球管(5)和X射线探测器(9)安装在所述外转动滑环(7)上,所述X射线球管(5)和X射线探测器(9)的连线通过所述公共点(3)。
7、如权利要求6所述的影像引导下的放射治疗设备,其特征在于,所述X射线球管(5)和X射线探测器(9)分别设置成超前和滞后所述射线源体(6)90°。
8、如权利要求2所述的影像引导下的放射治疗设备,其特征在于,所述内转动滑环(8)内部下方设有用于在非治疗时屏蔽所述射线源体(6)的屏蔽块(12)。
9、如权利要求1所述的影像引导下的放射治疗设备,其特征在于,所述滑环机架结构在治疗时旋转角度在360°以上,旋转速度为每分钟1~6转可变速度。
PCT/CN2010/078148 2010-10-27 2010-10-27 一种影像引导下的放射治疗设备 WO2012055098A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/078148 WO2012055098A1 (zh) 2010-10-27 2010-10-27 一种影像引导下的放射治疗设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/078148 WO2012055098A1 (zh) 2010-10-27 2010-10-27 一种影像引导下的放射治疗设备

Publications (1)

Publication Number Publication Date
WO2012055098A1 true WO2012055098A1 (zh) 2012-05-03

Family

ID=45993058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078148 WO2012055098A1 (zh) 2010-10-27 2010-10-27 一种影像引导下的放射治疗设备

Country Status (1)

Country Link
WO (1) WO2012055098A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105167797A (zh) * 2015-10-16 2015-12-23 广东中能加速器科技有限公司 一种高能医用电子直线加速器与图像采集扫描同轴一体机
CN108785872A (zh) * 2017-10-24 2018-11-13 徐慧军 4π多模态影像引导精确放射治疗系统
CN108969900A (zh) * 2017-12-19 2018-12-11 袁光金 体部肿瘤精确放疗摆位装置
CN108969906A (zh) * 2018-06-15 2018-12-11 岑永娟 优化igrt图像引导一致性的头部放射治疗设备
CN109568814A (zh) * 2018-12-27 2019-04-05 菅金波 一种光学手术导航的肿瘤治疗系统
CN109701168A (zh) * 2018-12-27 2019-05-03 成植温 一种伽马放射的肿瘤治疗系统
WO2022127795A1 (en) * 2020-12-14 2022-06-23 Shanghai United Imaging Healthcare Co., Ltd. Slip ring assembly, medical system, and method thereof
US11951333B2 (en) 2020-09-08 2024-04-09 Shanghai United Imaging Healthcare Co., Ltd. X-ray imaging system for radiation therapy

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1355055A (zh) * 2000-11-24 2002-06-26 胡逸民 X(γ)射线调强治疗装置
JP2002210029A (ja) * 2001-01-19 2002-07-30 Mitsubishi Electric Corp 放射線治療装置
CN2728542Y (zh) * 2004-09-10 2005-09-28 宋世鹏 一种新型放射线治疗装置
CN1785454A (zh) * 2004-12-09 2006-06-14 深圳市益普生医疗设备发展有限公司 一种γ射线放射治疗系统
CN2815414Y (zh) * 2005-08-13 2006-09-13 宋世鹏 一种新型放射线治疗装置
JP2006297095A (ja) * 2005-04-20 2006-11-02 Siemens Ag 患者のコンピュータ断層撮影画像データセットの作成および照射システム
CN1919374A (zh) * 2005-08-25 2007-02-28 惠小兵 放射治疗辐射装置
CN2907754Y (zh) * 2006-05-24 2007-06-06 珠海市和佳医疗设备有限公司 螺旋断层放射治疗仪器
US20070221869A1 (en) * 2006-03-22 2007-09-27 Shi Peng Song Radiotherapy apparatus
CN201085856Y (zh) * 2007-09-06 2008-07-16 南方医科大学 功能图像引导放射治疗一体机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1355055A (zh) * 2000-11-24 2002-06-26 胡逸民 X(γ)射线调强治疗装置
JP2002210029A (ja) * 2001-01-19 2002-07-30 Mitsubishi Electric Corp 放射線治療装置
CN2728542Y (zh) * 2004-09-10 2005-09-28 宋世鹏 一种新型放射线治疗装置
CN1785454A (zh) * 2004-12-09 2006-06-14 深圳市益普生医疗设备发展有限公司 一种γ射线放射治疗系统
JP2006297095A (ja) * 2005-04-20 2006-11-02 Siemens Ag 患者のコンピュータ断層撮影画像データセットの作成および照射システム
CN2815414Y (zh) * 2005-08-13 2006-09-13 宋世鹏 一种新型放射线治疗装置
CN1919374A (zh) * 2005-08-25 2007-02-28 惠小兵 放射治疗辐射装置
US20070221869A1 (en) * 2006-03-22 2007-09-27 Shi Peng Song Radiotherapy apparatus
CN2907754Y (zh) * 2006-05-24 2007-06-06 珠海市和佳医疗设备有限公司 螺旋断层放射治疗仪器
CN201085856Y (zh) * 2007-09-06 2008-07-16 南方医科大学 功能图像引导放射治疗一体机

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105167797A (zh) * 2015-10-16 2015-12-23 广东中能加速器科技有限公司 一种高能医用电子直线加速器与图像采集扫描同轴一体机
CN108785872A (zh) * 2017-10-24 2018-11-13 徐慧军 4π多模态影像引导精确放射治疗系统
CN108785872B (zh) * 2017-10-24 2023-10-13 华瑞先锋医学科技(北京)有限公司 4π多模态影像引导精确放射治疗系统
CN108969900A (zh) * 2017-12-19 2018-12-11 袁光金 体部肿瘤精确放疗摆位装置
CN108969906A (zh) * 2018-06-15 2018-12-11 岑永娟 优化igrt图像引导一致性的头部放射治疗设备
CN109568814A (zh) * 2018-12-27 2019-04-05 菅金波 一种光学手术导航的肿瘤治疗系统
CN109701168A (zh) * 2018-12-27 2019-05-03 成植温 一种伽马放射的肿瘤治疗系统
CN109568814B (zh) * 2018-12-27 2022-03-18 菅金波 一种光学手术导航的肿瘤治疗系统
US11951333B2 (en) 2020-09-08 2024-04-09 Shanghai United Imaging Healthcare Co., Ltd. X-ray imaging system for radiation therapy
WO2022127795A1 (en) * 2020-12-14 2022-06-23 Shanghai United Imaging Healthcare Co., Ltd. Slip ring assembly, medical system, and method thereof

Similar Documents

Publication Publication Date Title
WO2012055098A1 (zh) 一种影像引导下的放射治疗设备
CN101961530B (zh) 一种影像引导下的放射治疗设备
US7239684B2 (en) Radiotherapy apparatus monitoring therapeutic field in real-time during treatment
EP2311528B1 (en) An imaging device for radiation treatment applications
AU2014409423B2 (en) Radiation therapy system
US7492858B2 (en) System and method for imaging and treatment of tumorous tissue in breasts using computed tomography and radiotherapy
US10188356B2 (en) Radiation systems
JP3746747B2 (ja) 放射線治療装置
US5008907A (en) Therapy x-ray scanner
US20070221869A1 (en) Radiotherapy apparatus
CN102553080B (zh) 一种放射治疗设备
JPWO2003018132A1 (ja) 放射線治療装置
KR101378447B1 (ko) Mri 기반 linac 시스템을 위한 자기장 차폐 구조
CN104971442A (zh) 一种影像引导下的放射治疗装置
WO2014183642A1 (zh) 放射治疗设备
WO2020038224A1 (zh) 载源体、放疗设备及其控制驱动方法
US20070032795A1 (en) Stereotactic upper body fixation and positioning device
KR101545171B1 (ko) 자기공명영상 유도 기반 선형가속기를 이용한 치료 시스템
US20230240633A1 (en) Three dimensional radiation image reconstruction
US11612370B2 (en) Three dimensional radiation image reconstruction
US10124191B2 (en) Hadron therapy installation comprising an imaging device
KR101540961B1 (ko) 이동형 자기공명영상 장치를 이용한 방사선 치료 시스템
JP6890606B2 (ja) ハイブリッドx線及びガンマ線撮像システム
US20220126119A1 (en) Radiation therapy apparatus and radiation therapy method
Scribner Imaging Innovations Lead to Advances in Radiation Therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858827

Country of ref document: EP

Kind code of ref document: A1