WO2012053655A1 - Structure coated with polysiloxane-containing nano structure complex, and process for production thereof - Google Patents

Structure coated with polysiloxane-containing nano structure complex, and process for production thereof Download PDF

Info

Publication number
WO2012053655A1
WO2012053655A1 PCT/JP2011/074376 JP2011074376W WO2012053655A1 WO 2012053655 A1 WO2012053655 A1 WO 2012053655A1 JP 2011074376 W JP2011074376 W JP 2011074376W WO 2012053655 A1 WO2012053655 A1 WO 2012053655A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
polymer
nanostructure
organopolysiloxane
coated
Prior art date
Application number
PCT/JP2011/074376
Other languages
French (fr)
Japanese (ja)
Inventor
金 仁華
建軍 袁
Original Assignee
一般財団法人川村理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人川村理化学研究所 filed Critical 一般財団法人川村理化学研究所
Priority to JP2012519825A priority Critical patent/JP5028549B2/en
Publication of WO2012053655A1 publication Critical patent/WO2012053655A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes

Definitions

  • a solid substrate surface having an arbitrary shape is densely coated with a nanostructure composite (composite nanofiber or composite nanoparticle) in which a polymer having a polyethyleneimine skeleton and an organopolysiloxane are combined on the nanometer order.
  • a nanostructure composite composite nanofiber or composite nanoparticle
  • the present invention relates to a polysiloxane-containing nanostructure composite-covered structure and a method for producing the structure.
  • Biosilica which inhabits the natural world, coats its cell surface with a silica shell patterned in nano and micro dimensions, and operates life in fresh water and seawater. Since the structure pattern of the silica shell is very complicated and sophisticated, research on imitating biosilica is active from the material viewpoint. In particular, since a polyamine plays an important role in the formation of a silica shell of biosilica, the construction of a structure that is covered with a thin film of silica or titanium oxide using polyamine has attracted attention.
  • Non-Patent Documents 1 and 2 and Patent Documents 1 and 2). disclose a structure of a silica or titanium oxide nanostructure composite coating using linear polyethyleneimine (see Non-Patent Documents 1 and 2 and Patent Documents 1 and 2).
  • the method is, for example, a simple method of forming a linear polyethyleneimine crystalline thin film on the surface of a substrate and then immersing it in a silica source or titanium oxide source solution to obtain the structure.
  • the object is a structure that is densely covered with a silica-based or titanium oxide-based nanostructure composite having a complicated hierarchical structure.
  • Silica is a hard and brittle inorganic material, but organopolysiloxane has many organic polymer properties, so it exhibits soft and tough physical properties.
  • organopolysiloxane itself contains an organic functional group, various functions can be expressed on the surface of the nanostructure. Therefore, developing a structure formed by coating an organopolysiloxane composite having a nanostructure is a challenging problem in the nanosurface / nanointerface technology.
  • the problem to be solved by the present invention is a structure in which a solid substrate surface of an arbitrary shape is coated with a nanostructure containing a polysiloxane, in particular, a polyamine and an organopolysiloxane are combined in a nanometer order.
  • the resulting nanostructure composite is spread over the entire surface of the substrate, forming a nanostructure with a complex structure on the substrate as a coating that completely covers the substrate.
  • An object of the present invention is to provide a covering structure and a simple and efficient method for manufacturing the structure.
  • the present inventors have already made use of the feature that a polymer having a polyethyleneimine skeleton forms a nanocrystalline thin film on the surface of an arbitrary substrate, and contacting the crystalline thin film with a silica source or a titanium oxide source solution.
  • a nanostructure composite of silica or titanium oxide was selectively deposited on the surface of the substrate, and a structure coated with a film having a complicated nanostructure and a method for producing the structure were provided (Patent Documents 1 to 5). 2).
  • Such a conventional silica or titanium oxide-coated structure by the present inventor uses a raw material such as tetraalkoxysilane, which undergoes hydrolysis and condensation reaction (sol-gel reaction) on the surface of the polyethyleneimine crystal film. And a completely inorganic composition, that is, an inorganic composition represented by SiO 2 and TiO 2 .
  • non-silica (non-inorganic) structure it is not tetraalkoxysilane or the like that is used as a raw material, but an organoalkoxy having a Si—C bond structure in which at least two carbon atoms are bonded to a silicon atom.
  • tetraalkoxysilane which is a silica source
  • silica is rapidly hydrolyzed and silica is rapidly formed. Therefore, in the manufacturing method provided in Patent Document 1, the silica structure is transferred on the nanocrystal thin film composed of the polyethyleneimine skeleton-containing polymer layer on the surface of the substrate without being damaged. In comparison, it grows slowly into a polymer composed of hydrolyzed organoalkoxysilane and a stable siloxane bond. Therefore, the nanocrystal thin film on the surface of the base material may be peeled off from the base material and dissolved in the medium, or the nanocrystal structure may be destroyed. As a result, the formation of the organopolysiloxane-containing nanostructure is likely to be greatly inhibited.
  • the hydrolytic condensation reaction of organoalkoxysilane efficiently proceeds on the surface of a crystalline thin film made of a polymer containing a polyethyleneimine skeleton, and it grows into a stable nanostructure of organopolysiloxane.
  • An optimum method for forming a nano-film structure completely covering the substrate surface has been established, and the present invention has been completed.
  • the present invention provides an organopolysiloxane and a polyethyleneimine skeleton-containing polymer by hydrolytic condensation of an organoalkoxysilane on a polymer thin film having a polyethyleneimine skeleton formed on the surface of a solid substrate.
  • the present invention provides a structure coated with a composite nanostructure and a method for producing the same.
  • the organopolysiloxane-containing nanostructure composite-coated structure of the present invention comprises a polymer having a polyethyleneimine skeleton and an organopolysiloxane on the surface of a solid substrate such as metal, glass, inorganic metal oxide, plastic, and cellulose of any shape.
  • a solid substrate such as metal, glass, inorganic metal oxide, plastic, and cellulose of any shape.
  • the structure itself may be in any form such as a complex plane, curved surface, rod, tube, etc., and in the tube, outside the tube, in the container Any of the outside of the container can be limitedly or comprehensively coated.
  • the nanostructure composite to be coated uses a polymer layer formed on the base material by contact between the polymer solution having a polyethyleneimine skeleton and the solid base material, only a part of the surface of the solid base material is used. It is easy to select and coat. Regardless of the size of the structure, since the nanostructure composite is formed on the surface, the surface area per unit area (specific surface area) becomes extremely large. In addition, since the nanostructure composite on the surface of the solid substrate is basically an organopolysiloxane, its heat resistance, solvent resistance, acid resistance, and alkali resistance are strong, and relatedly, the corrosion resistance is also strong.
  • the viscoelasticity of this nanostructure film is superior to that of silica, and it can withstand certain friction and wear from brittle silica.
  • a structure having a nano surface provided with such physical properties can immobilize functional sites such as catalysts, metal nanoparticles, drugs, and dyes.
  • various high / low refractive index materials, optical materials such as color developing properties and light emitting elements can be fixed on the surface.
  • a super water-repellent function on the surface of the nanostructure due to the hydrophobicity of the aliphatic and aromatic groups in the organopolysiloxane is also exhibited. Accordingly, the organopolysiloxane-containing nanostructure composite coating structure of the present invention can be widely applied industrially.
  • Example 1-1 It is a scanning electron micrograph of the structure obtained in Example 1-1. Left) Photo taken from above; Right) Photo taken from the side (interface between glass and composite). It is a scanning electron micrograph of the structure obtained in Example 1-2. Left) Photo taken from above; Right) Photo taken from the side (interface between glass and composite). It is a scanning electron micrograph of the structure obtained in Example 1-3. Left) Photo taken from above; Right) Photo taken from the side (interface between glass and composite). It is a scanning electron micrograph of the structure obtained in Example 2-1. a) Photograph with low resolution observed from above; b) Enlarged view of part of a; c) Photograph from lateral direction (interface between glass and composite). It is a scanning electron micrograph of the structure obtained in Example 2-2.
  • Example 3-1 a) Photograph with low resolution observed from above; b) Enlarged view of part of a; c) Photograph from lateral direction (interface between glass and composite). It is a scanning electron micrograph of the structure obtained in Example 2-3. a) Photograph with low resolution observed from above; b) Enlarged view of part of a; c) Photograph from lateral direction (interface between glass and composite). It is a scanning electron micrograph of the structure obtained in Example 2-4. a) Photograph with low resolution observed from above; b) Enlarged view of part of a; c) Photograph from lateral direction (interface between glass and composite). It is a scanning electron micrograph of the structure obtained in Example 3-1.
  • Example 4-1 a) Low-resolution photograph observed from above; b) Enlarged view of part of a; c) Enlarged view of part of b; d) Photograph from the lateral direction (interface between glass and composite). It is a scanning electron micrograph of the structure obtained in Example 4-2.
  • FIG. 2 is a scanning electron micrograph of the nanoturf structure of the silica / polymer composite produced in Comparative Example 1.
  • FIG. 6 is a scanning electron micrograph after the abrasion test of the structure surface obtained in Example 6.
  • the surface of the solid substrate (X) was coated with the nanostructure composite (Y) containing the polymer (A) having the polyethyleneimine skeleton (a) and the organopolysiloxane (B).
  • the structure of the present invention may contain metal ions, metal nanoparticles, or organic dye molecules in the nanostructure composite part. Therefore, the structure of the present invention essentially comprises a solid substrate, a polymer, and an organopolysiloxane, and other metal ions, metal nanoparticles, organic dye molecules, and the like as optional constituents.
  • the nanostructure composite (Y) means that the polymer (A) and the organopolysiloxane (B), and metal ions, metal nanoparticles, organic dye molecules, etc. used in combination as needed are in the nanometer order. This indicates that it is an organic-inorganic composite having a certain shape such as a fiber or particle.
  • the metal nanoparticles indicate that the metal fine particles are present in a size of the order of nanometers, and need not be completely spherical, but are described as “particles” for convenience. To do. The present invention will be described in detail below.
  • the solid substrate (X) used in the present invention is not particularly limited as long as the polymer (A) having a polyethyleneimine skeleton (a) described later can be adsorbed.
  • the polymer (A) having a polyethyleneimine skeleton (a) described later can be adsorbed.
  • glass, metal, metal oxide, etc. Inorganic material base material, resin (plastic), organic material base material such as cellulose, etc.
  • glass, metal, metal oxide surface etched substrate, resin substrate surface plasma treatment, ozone treatment Can be used.
  • glass such as heat resistant glass (borosilicate glass), soda-lime glass, crystal glass, optical glass which does not contain lead and arsenic, is used suitably.
  • heat resistant glass borosilicate glass
  • soda-lime glass soda-lime glass
  • crystal glass glass
  • optical glass which does not contain lead and arsenic
  • the surface can be used by etching with an alkaline solution such as sodium hydroxide, if necessary.
  • the inorganic material-based metal substrate is not particularly limited, but for example, a substrate made of iron, copper, aluminum, stainless steel, zinc, silver, gold, platinum, or an alloy thereof can be suitably used.
  • the inorganic material-based metal oxide substrate is not particularly limited.
  • ITO indium tin oxide
  • tin oxide copper oxide
  • titanium oxide titanium oxide
  • zinc oxide alumina, and the like
  • ITO indium tin oxide
  • tin oxide copper oxide
  • titanium oxide titanium oxide
  • zinc oxide alumina, and the like
  • the resin base material for example, processed products of various polymers such as polyethylene, polypropylene, polycarbonate, polyester, polystyrene, polymethacrylate, polyvinyl chloride, polyethylene alcohol, polyimide, polyamide, polyurethane, epoxy resin, and cellulose can be used. it can.
  • the surface may be treated with plasma or ozone, or treated with sulfuric acid or alkali, if necessary.
  • the shape of the solid substrate (X) is not particularly limited, and may be a flat or curved plate or a film.
  • a rod or a solid substrate in a fiber state can also be suitably used.
  • polymer having Polyethyleneimine Skeleton (a) (A) In the present invention, it is essential to use a polymer (A) having a polyethyleneimine skeleton (a) for the polymer layer formed on the solid substrate (X).
  • the polymer (A) having the polyethyleneimine skeleton (a) may be a linear, star-shaped or comb-shaped homopolymer, or a copolymer having other repeating units.
  • the molar ratio of the polyethyleneimine skeleton (a) in the polymer (A) is preferably 20% or more from the viewpoint of forming a stable polymer layer. It is more preferable that it is a block copolymer having 10 or more repeating units.
  • the polyethyleneimine skeleton (a) may be either branched or linear, but is more preferably a linear polyethyleneimine skeleton having a high ability to form crystalline aggregates. Whether the polymer is a homopolymer or a copolymer, if the molecular weight corresponding to the polyethyleneimine skeleton is in the range of 500 to 1,000,000, a stable polymer layer is formed on the substrate (X). It is preferable because it can be formed.
  • the polymer (A) having the polyethyleneimine skeleton (a) can be obtained from a commercially available product or a synthesis method already disclosed by the present inventors (for example, JP-A-2005-264421).
  • the polymer (A) can be used by dissolving in various solutions.
  • the polymer (A) in addition to the polymer (A) having the polyethyleneimine skeleton (a), the polymer (A) is compatible with the polymer (A). It can be used by mixing with other polymers.
  • examples of other polymers include polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylamide, poly (N-isopropylacrylamide), polyhydroxyethyl acrylate, polymethyloxazoline, polyethyloxazoline, and polypropyleneimine.
  • Organopolysiloxane (B) A major feature of the substrate surface of the structure obtained by the present invention is that it is a nanostructure composite containing the aforementioned polymer (A) and organopolysiloxane (B).
  • the organopolysiloxane (B) source needed to form, ⁇ R n Si (OCH 3 ) 4-n or R n Si (OCH 2 CH 3 ) 4-n, R may have a substituent And a hydrocarbon group, organoalkoxysilane (B ′) represented by n 1 or 2 ⁇ .
  • R in the formula examples include a mercaptopropyl group, a methyl group, a vinyl group, a glycidoxypropyl group, a phenyl group, and the like.
  • n in the general formula is 2, R is the same. Or it may be different.
  • n is 1, it is generally known as a silane coupling agent (b).
  • tetramethoxysilane, oligomer of methoxysilane condensate, tetraethoxysilane, oligomer of ethoxysilane condensate can be suitably used. .
  • alkyl-substituted alkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, iso-propyltrimethoxysilane, iso-propyltriethoxysilane, etc., 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycid Xylpropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercap
  • Metal ions The surface of the base material in the structure of the present invention is coated with a nanostructure composite (Y) composed of the above-described polymer (A) having a polyethyleneimine skeleton (a) and an organopolysiloxane (B). Metal ions can be stably taken into the nanostructure composite (Y), and therefore a nanostructure composite-coated structure containing metal ions can be obtained.
  • a nanostructure composite composed of the above-described polymer (A) having a polyethyleneimine skeleton (a) and an organopolysiloxane (B).
  • Metal ions can be stably taken into the nanostructure composite (Y), and therefore a nanostructure composite-coated structure containing metal ions can be obtained.
  • the metal ions coordinate with the ethyleneimine units in the skeleton to form a metal ion complex.
  • the metal ion complex is obtained by coordination of a metal ion to an ethyleneimine unit. Unlike a process such as ionic bonding, the metal ion is coordinated to an ethyleneimine unit regardless of whether the metal ion is a cation or an anion. Can form a complex.
  • the metal species of the metal ion is not limited as long as it can coordinate with the ethyleneimine unit in the polymer (A), and is not limited to alkali metal, alkaline earth metal, transition metal, metalloid, lanthanum metal, poly Any of metal compounds such as oxometalates may be used, and they may be used alone or in combination.
  • alkali metal examples include Li, Na, K, Cs and the like
  • counter ions of the alkali metal ions include Cl, Br, I, NO 3 , SO 4 , PO 4 , ClO 4 , PF 6
  • examples thereof include BF 4 and F 3 CSO 3 .
  • alkaline earth metals examples include Mg, Ba, Ca and the like.
  • transition metal-based metal ion even if it is a transition metal cation (M n + ), an acid group anion (MO x n ⁇ ) composed of a bond with oxygen, or an anion composed of a halogen bond ( ML x n ⁇ ) can also be suitably used.
  • the transition metal refers to Sc, Y in Group 3 of the periodic table and a transition metal element in Groups 4 to 12 in the 4th to 6th periods.
  • transition metal cations include cations of various transition metals (M n + ), such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Rh, Pd, and Ag. , Cd, W, Os, Ir, Pt, Au, Hg, monovalent, divalent, trivalent or tetravalent cations.
  • the counter anion of these metal cations may be any of Cl, NO 3 , SO 4 , polyoxometalates anions, or organic anions of carboxylic acids.
  • it is preferable to prepare an ionic complex by suppressing the reduction reaction for example, by adjusting the pH to an acidic condition.
  • transition metal anion examples include various transition metal anions (MO x n ⁇ ) such as MnO 4 , MoO 4 , ReO 4 , WO 3 , RuO 4 , CoO 4 , CrO 4 , VO 3 , NiO 4 , UO 2. Anions and the like.
  • the transition metal anion is a polyoxometalate immobilized in an organopolysiloxane (B) via a metal cation coordinated to an ethyleneimine unit in the polymer (A). It may be in the form of a metal compound.
  • the polyoxometalates include molybdate, tungstate and vanadate in combination with a transition metal cation.
  • anions (ML x n ⁇ ) containing various metals such as AuCl 4 , PtCl 6 , RhCl 4 , ReF 6 , NiF 6 , CuF 6 , RuCl 6 , In 2 Cl 6, etc.
  • the coordinated anion can also be suitably used for forming an ion complex.
  • examples of the metalloid ions include ions of Al, Ga, In, Tl, Ge, Sn, Pb, Sb, and Bi, and among them, ions of Al, Ga, In, Sn, Pb, and Tl are preferable.
  • Examples of the lanthanum metal ions include trivalent cations such as La, Eu, Gd, Yb, and Eu.
  • metal ions can be incorporated into the nanostructure composite (Y) in the structure. Therefore, among these metal ions, metal ions that are easily reduced by the reduction reaction can be converted into metal nanoparticles, whereby the metal nanoparticles can be contained in the composite (Y).
  • the metal species of the metal nanoparticles include copper, silver, gold, platinum, palladium, manganese, nickel, rhodium, cobalt, ruthenium, rhenium, molybdenum, iron, and the like, and the metal nanoparticle in the composite (Y)
  • the particles may be one kind or two or more kinds.
  • silver, gold, platinum, and palladium are particularly preferable because the metal ions are spontaneously reduced at room temperature or in a heated state after being coordinated to the ethyleneimine unit.
  • the size of the metal nanoparticles in the composite (Y) can be controlled in the range of 1 to 20 nm. Further, the metal nanoparticles can be fixed to the inside or the outer surface of the nanostructure composite (Y) of the polymer (A) and the organopolysiloxane (B).
  • the polyethyleneimine skeleton (a) in the nanostructure composite (Y) covering the structure is composed of a compound having an amino group, a hydroxy group, a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group, a hydrogen bond, and A physical coupling structure can be formed by electrostatic attraction. Therefore, organic dye molecules having these functional groups can be contained in the complex (Y).
  • organic dye molecule a monofunctional acidic compound or a bifunctional or higher polyfunctional acidic compound can be suitably used.
  • aromatic acids such as tetraphenylporphyrin tetracarboxylic acid and pyrene dicarboxylic acid, naphthalene disulfonic acid, pyrene disulfonic acid, pyrene tetrasulfonic acid, anthraquinone disulfonic acid, tetraphenyl porphyrin tetrasulfonic acid, phthalocyanine tetra Aromatic or aliphatic sulfonic acids such as sulfonic acid and pipes (PIPES), acid yellow, acid blue, acid red, direct blue, direct yellow, direct red series azo dyes and the like can be mentioned.
  • a dye having a xanthene skeleton for example, rhodamine, erythrosine, and eosin dyes can be used.
  • Nanostructure composite (Y) containing polymer (A) and organopolysiloxane (B) The nanostructure composite (Y) containing the polymer (A) and the organopolysiloxane (B) is basically a composite nanofiber (y1) of the polymer (A) and the organopolysiloxane (B). It is an aggregate of composite nanoparticles (y2), and forms various patterns or morphologies while constituting a state in which the aggregate covers the entire substrate surface.
  • a wide variety of hierarchical structures such as a sponge (nano sponge) in which the nanoparticles (y2) form a network on the entire surface of the substrate can be formed.
  • the thickness of the composite nanofiber (y1) of the basic unit in the higher-order structure such as the nano turf shape or the nano sponge shape is in the range of 10 to 100 nm.
  • the length (major axis direction) of the nanoturf-like composite nanofiber (y1) can be controlled in the range of 50 nm to 10 ⁇ m.
  • the basic structure is composed only of the composite nanofiber (y1).
  • the composite nanoparticle (y2) alone may be used, or both may be combined.
  • the average particle diameter of the composite nanoparticles (y2) is preferably controlled to 20 nm or less.
  • the thickness from the substrate when coating on the solid substrate is related to the aggregate structure of the composite nanofiber (y1) and / or the composite nanoparticle (y2), but can be varied in the range of about 50 nm to 20 ⁇ m. .
  • the composite nanofiber (y1) has a strong tendency to stand up straight, the length of the fiber basically constitutes the thickness, and the length of each individual fiber is fairly uniform. It is a feature.
  • the thickness of the nanosponge-like layer is characterized in that it is determined by the degree to which the composite nanofiber (y1) swells with a complex entanglement having regularity. When a network is formed, the thickness is determined by the overlapping state, the existence ratio of the composite nanofiber (y1) and the composite nanoparticle (y2), and the like.
  • the component of the polymer (A) can be adjusted at 5 to 30% by mass.
  • the aggregate structure higher order structure
  • the basic unit is the composite nanofiber (y1) and / or the composite nanoparticle (y2) as described above, which are combined to form a complex shape.
  • the amount of metal ions taken up when taking up metal ions is preferably adjusted within a range of 1/4 to 1/200 equivalents per 1 equivalent of ethyleneimine units in the polymer (A), and this ratio can be changed. Can change the thickness of the coating layer. In addition, the coating layer at this time may develop color depending on the metal species.
  • the amount of metal nanoparticles incorporated when incorporating metal nanoparticles is preferably adjusted within a range of 1/4 to 1/200 equivalent per 1 equivalent of ethyleneimine unit in the polymer (A).
  • the thickness of the coating layer can be changed.
  • the coating layer at this time may develop color depending on the metal species.
  • the organic dye molecule uptake amount when taking up the organic dye molecule is preferably prepared in the range of 1/2 to 1/1200 equivalent to 1 equivalent of the ethyleneimine unit in the polymer (A).
  • the thickness and shape pattern of the coating layer can be changed.
  • nanostructure composite (Y) two or more kinds of metal ions, metal nanoparticles and organic dye molecules can be simultaneously incorporated into the nanostructure composite (Y).
  • the structure production method of the present invention includes a solution of a polymer (A) having a polyethyleneimine skeleton (a), a mixed solution of a polymer (A) having a polyethyleneimine skeleton (a) and a metal ion, a polyethyleneimine skeleton (a ) And a polymer (A) having a polyethyleneimine skeleton (a), a mixed solution of a metal ion and an organic dye molecule on the surface of the solid substrate (X).
  • the substrate (X) is taken out, and consists of a polymer (A) having a polyethyleneimine skeleton (a) on the surface of the substrate (X), and a combined metal ion and / or organic dye molecule.
  • a step (1) for obtaining a base material on which the polymer layer is adsorbed, and the base material on which the polymer layer is adsorbed and an organoalkoxysilane (B ′) prepared at a constant concentration are brought into contact with each other for a long time.
  • the organopolysiloxane (B) is deposited thereon to form the nanostructure composite (Y) and coat the substrate.
  • a manufacturing method comprising the step (2).
  • the nanointerface consisting of polymer (A) and organopolysiloxane (B) the nanointerface consisting of polymer (A) / metal ion / organopolysiloxane (B), polymer ( A nano-interface coating layer comprising A) / organic dye molecule / organopolysiloxane (B) can be easily formed.
  • the polymer described above can be used as the polymer (A) having the polyethyleneimine skeleton (a) used in the step (1).
  • the solvent that can be used for obtaining the solution of the polymer (A) is not particularly limited as long as the polymer (A) can be dissolved, and examples thereof include water, organic solvents such as methanol and ethanol, These mixed solvents can be used as appropriate.
  • the concentration of the polymer (A) in the solution is not particularly limited as long as the polymer layer can be formed on the solid substrate (X), but the desired pattern formation and the density of the polymer adsorbed on the substrate surface are increased.
  • the range is preferably 0.05% by mass to 50% by mass, and more preferably 0.5% by mass to 10% by mass.
  • the above-mentioned other polymers that are soluble in the solvent and compatible with the polymer (A) can be mixed.
  • the mixing amount of the other polymer may be higher or lower than the concentration of the polymer (A) having the polyethyleneimine skeleton (a).
  • the metal ions are mixed in a solution of the polymer (A) having a polyethyleneimine skeleton (a).
  • concentration of the metal ion is preferably adjusted to 1 ⁇ 4 equivalent or less of the ethyleneimine unit in the polyethyleneimine skeleton (a).
  • the organic dye molecules are mixed in a solution of the polymer (A) having a polyethyleneimine skeleton (a).
  • concentration of the organic dye molecule is preferably adjusted to 1 ⁇ 2 equivalent or less of the ethyleneimine unit in the polyethyleneimine skeleton (a).
  • the solid substrate (X) is brought into contact with a solution of the polymer (A).
  • the contact method it is preferable to immerse the desired solid substrate (X) in the solution of the polymer (A).
  • the base material and the solution can be brought into contact with each other by putting the base material (non-container shape) into the solution or putting the solution into the base material (container shape) according to the base material state.
  • the temperature of the polymer (A) solution is preferably in a heated state, and a temperature of about 50 to 90 ° C. is suitable.
  • the time for bringing the solid substrate (X) into contact with the solution of the polymer (A) is not particularly limited, and is preferably selected within a few seconds to 1 hour according to the material of the substrate (X). If the material of the base material has a strong binding ability with polyethyleneimine, for example, it may be several seconds to several minutes for glass, metal, etc. If the material of the base material is weakly binding ability with polyethyleneimine, it may be several tens of minutes to one hour. good.
  • the substrate After contacting the solid substrate (X) with the polymer (A) solution, the substrate is taken out of the polymer (A) solution and allowed to stand at room temperature (around 25 ° C.). A body layer is formed on the surface of the substrate (X).
  • the base material (X) is taken out from the solution of the polymer (A) and then immediately put into distilled water at 4 to 30 ° C. or into an aqueous ammonia solution at room temperature to below freezing temperature, so that the spontaneous polymer (A) An aggregate layer may be formed.
  • a method for contacting the surface of the solid substrate (X) with the polymer (A) solution for example, in addition to coating with a spin coater, bar coater, applicator, etc., a method such as printing or printing with a jet printer can also be used. In particular, when the contact is made in a fine pattern, a method using a jet printer is suitable.
  • the polymer layer formed in the step (1) and the organoalkoxysilane (B ′) are brought into contact with each other to deposit the organopolysiloxane (B) on the surface of the polymer layer.
  • a nanostructure composite (Y) with siloxane (B) is formed. Even when the polymer layer contains metal ions and / or organic dye molecules, organopolysiloxane (B) can be deposited by the same method to form the target nanostructure composite (Y).
  • organoalkoxysilane (B ′) used at this time examples include aqueous solutions of the various silane coupling agents (b) described above, alcohol solvents such as aqueous organic solvent solutions such as methanol, ethanol, propanol, and the like. A mixed solvent solution with water can be used.
  • concentration of the organoalkoxysilane (B ′) is low, and the nanostructure composite (Y) without adversely affecting the nanostructure formed by the polymer (A) on the substrate.
  • the volume concentration is preferably in the range of 0.05% to 5%.
  • an immersion method can be preferably used as a method of bringing the solid substrate on which the polymer (A) layer is adsorbed into contact with the organoalkoxysilane (B ′).
  • the immersion time needs to be 5 hours or more, and preferably 5 to 24 hours, but the time can be appropriately lengthened as necessary.
  • the temperature of the organoalkoxysilane (B ′) may be room temperature (20 to 30 ° C.) or a heated state. In the case of heating, in order to regularly deposit organopolysiloxane (B) on the surface of the solid substrate (X), it is desirable to set the temperature to 70 ° C. or lower.
  • the structure of the nanostructure composite (Y) of the organopolysiloxane (B) and the polymer (A) to be deposited can be adjusted. Accordingly, it is preferable to appropriately select the type and concentration of the organoalkoxysilane (B ′).
  • organopolysiloxane (B) varies greatly depending on the type of organo group bonded to silicon. Accordingly, in order to derive an organopolysiloxane (B) nanostructure composite using organoalkoxysilane (B ′) having a different molecular structure, it is preferable to set conditions in accordance with the reaction characteristics of the structure.
  • the concentration of the reaction solution is set to 0.3 to 0.7% (volume concentration), and the substrate immersion time is set to 15 to 20 hours.
  • the complex can be effectively induced.
  • the reaction solution concentration is further reduced to 0.1 vol% or less and immersed in the solution for 15 hours or more, a film composed of a composite of nanofiber network structure can be induced.
  • the substrate immersion time should be 24 hours or longer using a low concentration solution of about 0.3 to 0.8 vol%. Required.
  • the nanoturf-like complex is efficiently induced by setting the substrate soaking time in the range of 7 to 10 hours in a solution of about 0.3 to 0.8 vol%. I can do it.
  • Polyethyleneimine can reduce noble metal ions such as gold, platinum, silver, palladium, etc. to metal nanoparticles. Accordingly, by passing the structure coated with the nanostructure composite (Y) obtained in the above step with the aqueous solution of the noble metal ion, the noble metal ion is brought into the nanostructure composite (Y). Can be converted into metal nanoparticles, and a nanostructure composite-coated structure having metal nanoparticles can be obtained.
  • the dipping method can be preferably used as the method of contacting with an aqueous solution of noble metal ions.
  • aqueous solution of noble metal ions aqueous solutions of chloroauric acid, sodium chloroaurate, chloroplatinic acid, sodium chloroplatinate, silver nitrate and the like can be suitably used, and the aqueous solution concentration of noble metal ions is 0.1 to 5 mol. % Is preferred.
  • the temperature of the aqueous solution of noble metal ions is not particularly limited and may be in the range of room temperature to 90 ° C. However, in order to promote the reduction reaction, it is preferable to use a heated aqueous solution of 50 to 90 ° C.
  • the time for immersing the structure in the aqueous solution of metal ions may be 0.5 to 3 hours, and about 30 minutes is sufficient when immersed in the heated aqueous solution.
  • a reducing agent particularly a low molecular weight reducing agent solution or hydrogen gas
  • Examples of the reducing agent that can be used at this time include ascorbic acid, aldehyde, hydrazine, sodium borohydride, ammonium borohydride, hydrogen, and the like.
  • the reaction can be carried out in an aqueous medium.
  • the structure containing the metal ions is immersed in the reducing agent solution or left in a hydrogen gas atmosphere. Can be used.
  • the temperature of the reducing agent aqueous solution may be in the range of room temperature to 90 ° C., and the concentration of the reducing agent is preferably 1 to 5 mol%.
  • the metal species of the metal ion that can be adapted to the above process is not particularly limited, but copper, manganese, chromium, nickel, tin, vanadium, and palladium are preferable because the reduction reaction proceeds promptly.
  • the reducing agent aqueous solution temperature is preferably room temperature or a heating state of 90 ° C. or less, and the concentration of the reducing agent is about 1 to 5%.
  • Synthesis example 1 ⁇ Synthesis of linear polyethyleneimine (L-PEI)> ⁇ Synthesis of linear polyethyleneimine hydrochloride (LPEI ⁇ HCl)> 240 g of commercially available polyethyloxazoline (number average molecular weight 50,000, average polymerization degree 500, manufactured by Aldrich) was dissolved in 1500 mL of 5M aqueous hydrochloric acid. The solution was heated to 90 ° C. in an oil bath and stirred at that temperature for 10 hours. Acetone 50 mL was added to the reaction solution to completely precipitate the polymer, which was filtered and washed three times with methanol to obtain white polyethyleneimine hydrochloride powder.
  • L-PEI linear polyethyleneimine
  • LPEI ⁇ HCl linear polyethyleneimine hydrochloride
  • the yield after drying at room temperature (20 to 25 ° C.) was 178 g.
  • the obtained powder was identified by 1 H-NMR (JEOL JNM-LA300 type nuclear magnetic resonance absorption spectrum measuring apparatus: heavy water), the peak derived from the side chain ethyl group of polyethyloxazoline was 1.2 ppm (CH 3 ). And 2.3 ppm (CH 2 ) were completely eliminated. That is, it was shown that polyethyloxazoline was completely hydrolyzed and converted to polyethyleneimine.
  • L-PEI linear polyethyleneimine
  • Examples 1-1 to 1-3 [Structure in which inner wall of glass tube is coated with polymer / organopolysiloxane nanostructure composite]
  • Polymer L-PEI obtained in Synthesis Example 1 was added to distilled water and heated to 80 ° C. to prepare a 3% aqueous solution.
  • a glass tube made of soda lime (inner diameter 6 mm, length 5 cm) and a syringe are connected with a rubber tube, and the heated polymer aqueous solution is sucked into the glass tube up to a certain standard, and then allowed to stand for 30 seconds.
  • the polymer aqueous solution was discharged by a pushing force of a syringe.
  • an L-PEI polymer layer was formed on the inner wall of the glass tube.
  • the glass tube was allowed to stand at room temperature for 5 minutes, and then immersed in an aqueous solution (room temperature: 25 to 30 ° C.) of mercaptopropyltrimethoxysilane (STMS), a silane coupling agent described in Table 1, for 15 hours. It was. After the glass tube was taken out and the inner wall of the glass tube was washed with water, it was dried at room temperature.
  • STMS mercaptopropyltrimethoxysilane
  • the glass tube end obtained through the above process was slightly crushed, and the fragments were observed with an SEM.
  • 1 to 3 show the results of SEM photographs of the inner surface of the produced glass tube.
  • a dense array film having nanofibers as a unit structure was formed on the inner wall.
  • a glass tube without a polymer layer was immersed in an aqueous solution of mercaptopropyltrimethoxysilane (STMS) for 10 hours or more, but nothing was observed.
  • STMS mercaptopropyltrimethoxysilane
  • Examples 2-1 to 2-4 Structure in which inner wall of glass tube is coated with polymer / organopolysiloxane nanostructure composite]
  • Example 1 except that the time for immersion in the STMS / water solution was changed, a structure in which the glass inner wall was coated was obtained in the same manner as in Example 1 (Table 2).
  • the glass tube end obtained through the above process was slightly crushed, and the fragments were observed with an SEM. 4 to 7 show the results of SEM photographs of the inner surface of the glass tube obtained under each condition.
  • the immersion for 3 hours there was a coating of organopolysiloxane, but there was no shape development and the surface was flat.
  • the immersion time was 6 hours, a network structure formed from entanglement of nanofibers was obtained.
  • the immersion time in the STMS aqueous solution was set to 10 hours or more, a nanoturf structure was developed. From this, it was found that, when the STMS concentration is slightly increased, it is necessary to increase the immersion time in order to form the surface structure characterized by nanofibers.
  • Examples 3-1 to 3-2 [Structure in which inner wall of glass tube is coated with polymer / organopolysiloxane nanostructure composite]
  • a structure in which the glass inner wall was coated was obtained in the same manner as in Example 1 except that methyltrimethoxysilane (MTMS) was used instead of STMS as the silane coupling agent (Table 3). .
  • MTMS methyltrimethoxysilane
  • Examples 4-1 to 4-2 [Structure in which inner wall of glass tube is coated with polymer / organopolysiloxane nanostructure composite]
  • Example 1 except that phenyltrimethoxysilane (PTMS) was used as a silane coupling agent, a structure having a glass inner wall coated was obtained in the same manner as in Example 1 (Table 4).
  • PTMS phenyltrimethoxysilane
  • Example 5 Structure in which inner wall of glass tube is coated with polymer / organopolysiloxane nanostructure composite
  • the glass inner wall was formed in the same manner as in Example 1 except that a mixture (equal molar mixture) of mercaptopropyltrimethoxysilane (STMS) and vinyltrimethoxysilane (VTMS) was used as the silane coupling agent.
  • STMS mercaptopropyltrimethoxysilane
  • VTMS vinyltrimethoxysilane
  • FIG. 12 shows the results of SEM photographs of the inner surface of the glass tube. Nano-turf structure was confirmed.
  • Example 6 and Comparative Example 1 [Structure of glass plate surface coated with polymer / organopolysiloxane nanostructure composite]
  • a thin film was prepared on the surface of a 3 ⁇ 2 cm soda glass plate using a spin coater (500 rpm / 2 seconds, 3000 rpm / 30 seconds) using a polystyrene sulfonic acid aqueous solution having a concentration of 0.5 wt%. After complete drying, it was immersed in an aqueous solution (80 ° C.) of 3 wt% L-PEI obtained in the above synthesis example and allowed to stand for 10 seconds.
  • the plate was taken out, washed with distilled water and then dried in air.
  • the surface of the film thus obtained was observed with an SEM (FIG. 13). It was confirmed that a dense nanoturf structure was formed as a whole.
  • the water contact angle and rubbing test of the surface of the two types of structures obtained in Example 6 and Comparative Example 1 were performed.
  • the water contact angle of the surface film obtained in Example 6 was 74 ° and the surface showed hydrophobicity, whereas the water contact angle of the structure surface obtained in Comparative Example 1 was 0 ° and was superhydrophilic. Showed sex.
  • a reciprocating rubbing test on the surface of the coating was performed under a 10 g load condition.
  • the structure surface (nano turf) containing the polysiloxane obtained in Example 6 was reciprocated 100 times, and then the aggregate part of the surface of the nano turf film was dropped and inserted into the turf layer surface.
  • the structure of the nano turf layer was not broken (FIGS. 15a, b, c).
  • the hydrophobicity after the rubbing test was not changed, and the water contact angle was 71.5 °.
  • the silica nanoturf film obtained in Comparative Example 1 the turf layer was completely crushed by rubbing 5 times and the water contact angle was improved to 34 °. This suggests that the two effects of silica nanoturf coating, silica absorption and lawn structure capillary effect, disappeared. From this comparison, it can be seen that, unlike silica brittleness, nanoturf containing organopolysiloxane exhibits sufficient toughness.

Abstract

Provided are: a structure coated with a polysiloxane-containing nano structure complex, which comprises a nano structure complex that is produced by complexing a polymer containing a linear polyethyleneimine skeleton with organopolysiloxane to form a structure unit having a nano-meter-order size and a base material that has a surface coated with the nano structure complex; and a process for producing the structure. The process is characterized by comprising the steps of: (1) immersing a solid base material (X) in a solution that contains a polymer (A) having a polyethyleneimine skeleton (a) and then removing the solid base material (X) from the solution to thereby form a polymer layer on the surface of the solid base material (X); and (2) bringing the solid base material (X) having the polymer layer, which is produced in step (1), into contact with a 0.05- to 0.5-vol% solution of an organoalkoxysilane (B') for 5 hours or longer to cause the precipitation of organopolysiloxane (B) in the polymer layer that has been formed on the surface of the solid base material (X) to thereby form a nano structure complex (Y).

Description

ポリシロキサン含有ナノ構造複合体被覆型構造物及びその製造方法Polysiloxane-containing nanostructure composite-coated structure and method for producing the same
 本発明は、任意形状の固体基材表面がポリエチレンイミン骨格を有するポリマーとオルガノポリシロキサンとがナノメートルオーダーで複合化されてなるナノ構造複合体(複合ナノファイバーまたは複合ナノ粒子)で緻密に被覆されていることを特徴とするポリシロキサン含有ナノ構造複合体被覆型構造物、及び該構造物の製造方法に関する。 In the present invention, a solid substrate surface having an arbitrary shape is densely coated with a nanostructure composite (composite nanofiber or composite nanoparticle) in which a polymer having a polyethyleneimine skeleton and an organopolysiloxane are combined on the nanometer order. The present invention relates to a polysiloxane-containing nanostructure composite-covered structure and a method for producing the structure.
 自然界に広く生息しているバイオシリカは、自身の細胞表面をナノとマイクロ次元でパターン化されたシリカシェルでコートし、淡水と海水中生命を営む。そのシリカシェルの構造パターンは非常に複雑かつ精巧であることから、材料的視点で、バイオシリカを模倣する研究が活発となっている。特に、バイオシリカのシリカシェル形成に、ポリアミンが重要の働きをすることから、ポリアミンを用いたシリカまたは酸化チタンの薄膜に被覆されてなる構造物構築が注目を集めている。 Biosilica, which inhabits the natural world, coats its cell surface with a silica shell patterned in nano and micro dimensions, and operates life in fresh water and seawater. Since the structure pattern of the silica shell is very complicated and sophisticated, research on imitating biosilica is active from the material viewpoint. In particular, since a polyamine plays an important role in the formation of a silica shell of biosilica, the construction of a structure that is covered with a thin film of silica or titanium oxide using polyamine has attracted attention.
 上記実情を背景とし、本発明者らは直鎖状ポリエチレンイミンを用いたシリカまたは酸化チタンのナノ構造複合体被覆の構造物を開示した(非特許文献1~2及び特許文献1~2参照)。その方法は、例えば、基材表面に直鎖状ポリエチレンイミンの結晶性薄膜を形成させた後、それをシリカソース或いは酸化チタンソース液中に浸漬して取り出すという簡便な手法であり、得られる構造物は、複雑な階層構造を有するシリカ系或いは酸化チタン系のナノ構造複合体で緻密に被覆された構造物である。 Against the background of the above circumstances, the present inventors disclosed a structure of a silica or titanium oxide nanostructure composite coating using linear polyethyleneimine (see Non-Patent Documents 1 and 2 and Patent Documents 1 and 2). . The method is, for example, a simple method of forming a linear polyethyleneimine crystalline thin film on the surface of a substrate and then immersing it in a silica source or titanium oxide source solution to obtain the structure. The object is a structure that is densely covered with a silica-based or titanium oxide-based nanostructure composite having a complicated hierarchical structure.
 一方、オルガノポリシロキサンを構成成分とするとする塗膜技術はこの20年飛躍的に発展し、低揮発性、高強度、強靭性、強耐性の有機/無機複合コーティングではずば抜けた技術として、産業的に広く応用され、関連特許も今も数多く出願されている(例えば、特許文献3~6参照)。また、オルガノポリシロキサンを主成分とするナノ空間的積層フィルム作製法も展開されている(例えば、非特許文献3参照)。しかしながら、オルガノポリシロキサンのナノ構造体、例えばナノファイバーを基本構造ユニットとするナノ表面構築技術、ナノ構造薄膜構築技術は開発されてない。 On the other hand, coating technology that uses organopolysiloxane as a component has developed dramatically over the past 20 years, and it has become an industrial technology as an outstanding technology with low volatility, high strength, toughness, and strong organic / inorganic composite coating. Many related patents have been filed (see, for example, Patent Documents 3 to 6). In addition, a method for producing a nanospatial laminated film containing organopolysiloxane as a main component has also been developed (see, for example, Non-Patent Document 3). However, nano-surface construction technology and nano-structure thin film construction technology using organopolysiloxane nanostructures, for example, nanofibers as basic structural units, have not been developed.
 シリカは硬くて脆い無機材質であるが、オルガノポリシロキサンは有機ポリマー的性質を多く備えるため、ソフトで強靭な物性を示す。また、オルガノポリシロキサンそのものが有機官能基を含むので、それによるナノ構造表面での様々な機能性発現も可能となる。従って、ナノ構造を備えたオルガノポリシロキサン複合体に被覆されてなる構造物を開発することは、ナノ表面・ナノ界面技術における挑戦的な課題である。 Silica is a hard and brittle inorganic material, but organopolysiloxane has many organic polymer properties, so it exhibits soft and tough physical properties. In addition, since the organopolysiloxane itself contains an organic functional group, various functions can be expressed on the surface of the nanostructure. Therefore, developing a structure formed by coating an organopolysiloxane composite having a nanostructure is a challenging problem in the nanosurface / nanointerface technology.
特開2009−057263号公報JP 2009-057263 A 特開2009−203120号公報JP 2009-203120 A 特開2010−083946号公報JP 2010-083946 A 特開2010−065182号公報JP 2010-066518 A 特開2009−042422号公報JP 2009-042422 A 特開2008−285651号公報JP 2008-285651 A
 本発明が解決しようとする課題は、任意形状の固体基材表面がポリシロキサンを含有するナノ構造体で被覆されている構造物、特には、ポリアミンとオルガノポリシロキサンとがナノメートルオーダーで複合化されてなるナノ構造複合体が基材表面全体に広がり、それが基材を完全に被覆するほどの皮膜として基材上に複雑構造のナノ界面を形成している、ポリシロキサン含有ナノ構造複合体被覆型構造物、及び当該構造物の簡便且つ効率的な製造方法を提供することにある。 The problem to be solved by the present invention is a structure in which a solid substrate surface of an arbitrary shape is coated with a nanostructure containing a polysiloxane, in particular, a polyamine and an organopolysiloxane are combined in a nanometer order. The resulting nanostructure composite is spread over the entire surface of the substrate, forming a nanostructure with a complex structure on the substrate as a coating that completely covers the substrate. An object of the present invention is to provide a covering structure and a simple and efficient method for manufacturing the structure.
 本発明者らは既に、ポリエチレンイミン骨格を有するポリマーが、任意の基材表面上でナノ結晶薄膜が形成する特徴を利用し、その結晶性薄膜をシリカソースや酸化チタンソース溶液と接触させることにより、基材表面に選択的にシリカ又は酸化チタンのナノ構造複合体体が析出し、複雑なナノ構造を有する皮膜で被覆された構造物及びその構造物の製法を提供した(前記特許文献1~2参照。)。 The present inventors have already made use of the feature that a polymer having a polyethyleneimine skeleton forms a nanocrystalline thin film on the surface of an arbitrary substrate, and contacting the crystalline thin film with a silica source or a titanium oxide source solution. In addition, a nanostructure composite of silica or titanium oxide was selectively deposited on the surface of the substrate, and a structure coated with a film having a complicated nanostructure and a method for producing the structure were provided (Patent Documents 1 to 5). 2).
 本発明者によるこのような従来のシリカまたは酸化チタン被覆構造物は、テトラアルコキシシランのような原料を用い、それがポリエチレンイミンの結晶膜表面で加水分解と縮合反応(ゾルゲル反応)をすることで、完全無機系組成、即ち、SiO、TiOで表される無機系組成を有することを特徴とする。 Such a conventional silica or titanium oxide-coated structure by the present inventor uses a raw material such as tetraalkoxysilane, which undergoes hydrolysis and condensation reaction (sol-gel reaction) on the surface of the polyethyleneimine crystal film. And a completely inorganic composition, that is, an inorganic composition represented by SiO 2 and TiO 2 .
 一方、非シリカ系(非無機系)構造物の構築には、原料として用いるのはテトラアルコキシシラン等ではなく、ケイ素原子に少なくとも2個以内の炭素が結合したSi−C結合構造を有するオルガノアルコキシシラン{RSi(OCH4−nまたはRSi(OCHCH4−n、Rは置換基を有していても良い炭化水素基、n=1または2}を用いることが必要と考えられる。 On the other hand, for the construction of a non-silica (non-inorganic) structure, it is not tetraalkoxysilane or the like that is used as a raw material, but an organoalkoxy having a Si—C bond structure in which at least two carbon atoms are bonded to a silicon atom. silane {R n Si (OCH 3) 4-n or R n Si (OCH 2 CH 3 ) 4-n, R is a hydrocarbon group which may have a substituent group, n = 1 or 2} using the Is considered necessary.
 通常、シリカソースであるテトラアルコキシシランは加水分解が速く、シリカ形成も速い。従って、前記特許文献1で提供した製造方法においては、基材表面のポリエチレンイミン骨格含有ポリマー層からなるナノ結晶薄膜はダメージを受けることなく、その上でシリカ構造が転写される。それに比べ、オルガノアルコキシシランの加水分解及び安定なシロキサン結合からなるポリマーに成長するのも遅い。そのため、基材表面のナノ結晶薄膜は基材から剥がれて媒体中に溶解したり、ナノ結晶構造が破壊されたりする虞がある。その結果、オルガノポリシロキサン含有ナノ構造体の形成は大きく阻害される可能性が高い。 Usually, tetraalkoxysilane, which is a silica source, is rapidly hydrolyzed and silica is rapidly formed. Therefore, in the manufacturing method provided in Patent Document 1, the silica structure is transferred on the nanocrystal thin film composed of the polyethyleneimine skeleton-containing polymer layer on the surface of the substrate without being damaged. In comparison, it grows slowly into a polymer composed of hydrolyzed organoalkoxysilane and a stable siloxane bond. Therefore, the nanocrystal thin film on the surface of the base material may be peeled off from the base material and dissolved in the medium, or the nanocrystal structure may be destroyed. As a result, the formation of the organopolysiloxane-containing nanostructure is likely to be greatly inhibited.
 本発明では、オルガノアルコキシシランの加水分解的縮合反応を効率的にポリエチレンイミン骨格含有ポリマーからなる結晶薄膜表面で進行させ、それが安定なオルガノポリシロキサンのナノ構造に成長し、結果的にそれが基材表面を完全に被覆したナノ皮膜の構造物になるための最適手法を確立し、本発明を完成するに至った。 In the present invention, the hydrolytic condensation reaction of organoalkoxysilane efficiently proceeds on the surface of a crystalline thin film made of a polymer containing a polyethyleneimine skeleton, and it grows into a stable nanostructure of organopolysiloxane. An optimum method for forming a nano-film structure completely covering the substrate surface has been established, and the present invention has been completed.
 即ち、本発明は、固体基材表面に形成されたポリエチレンイミン骨格を有するポリマーの結晶薄膜上で、オルガノアルコキシシランを加水分解的に縮合させることにより、オルガノポリシロキサンとポリエチレンイミン骨格含有ポリマーとが複合されてなるナノ構造複合体で被覆された構造物及びその製法を提供するものである。 That is, the present invention provides an organopolysiloxane and a polyethyleneimine skeleton-containing polymer by hydrolytic condensation of an organoalkoxysilane on a polymer thin film having a polyethyleneimine skeleton formed on the surface of a solid substrate. The present invention provides a structure coated with a composite nanostructure and a method for producing the same.
 本発明のオルガノポリシロキサン含有ナノ構造複合体被覆型構造物は、任意形状の金属、ガラス、無機金属酸化物、プラスチック、セルロースなどの固体基材表面に、ポリエチレンイミン骨格を有するポリマーとオルガノポリシロキサンとを含有する複合体が形成されているものであり、該構造物自体は、複雑な平面、曲面、棒状、管状等のいずれの形態であってもよく、また、管内、管外、容器内、容器外のいずれにも限定的または包括的に被覆させることができる。また、被覆するナノ構造複合体は、ポリエチレンイミン骨格を有するポリマー溶液と固体基材との接触によって該基材上に形成されるポリマー層をテンプレートとすることから、固体基材表面の一部のみを選択して被覆することも容易である。構造物の大小にかかわらず、その表面にはナノ構造複合体が形成されていることから、単位面積あたりの表面積(比表面積)は極めて大きくなる。また、固体基材表面のナノ構造複合体は基本的にオルガノポリシロキサンであるため、それの耐熱性、耐溶剤性、耐酸性、耐アルカリ性が強く、それと関連し、耐腐食性も強くなる。また、オルガノポリシロキサンであることから、このナノ構造皮膜の粘弾性はシリカより優れ、脆いシリカより、一定の摩擦、摩耗にも耐えることができる。このような物性を備え付けたナノ表面を有する構造物は、機能性サイト、例えば、触媒、金属ナノ粒子、薬剤、色素などを固定することができる。また、様々な高・低屈折率の材料、発色性、発光性素子などの光学材料を表面に固定することもできる。さらに、オルガノポリシロキサン中の脂肪族、芳香族基の疎水性によるナノ構造表面での超撥水機能も発現する。従って、本発明のオルガノポリシロキサン含有ナノ構造複合体被覆の構造物は産業的に広く応用出来る。 The organopolysiloxane-containing nanostructure composite-coated structure of the present invention comprises a polymer having a polyethyleneimine skeleton and an organopolysiloxane on the surface of a solid substrate such as metal, glass, inorganic metal oxide, plastic, and cellulose of any shape. And the structure itself may be in any form such as a complex plane, curved surface, rod, tube, etc., and in the tube, outside the tube, in the container Any of the outside of the container can be limitedly or comprehensively coated. In addition, since the nanostructure composite to be coated uses a polymer layer formed on the base material by contact between the polymer solution having a polyethyleneimine skeleton and the solid base material, only a part of the surface of the solid base material is used. It is easy to select and coat. Regardless of the size of the structure, since the nanostructure composite is formed on the surface, the surface area per unit area (specific surface area) becomes extremely large. In addition, since the nanostructure composite on the surface of the solid substrate is basically an organopolysiloxane, its heat resistance, solvent resistance, acid resistance, and alkali resistance are strong, and relatedly, the corrosion resistance is also strong. Further, since it is an organopolysiloxane, the viscoelasticity of this nanostructure film is superior to that of silica, and it can withstand certain friction and wear from brittle silica. A structure having a nano surface provided with such physical properties can immobilize functional sites such as catalysts, metal nanoparticles, drugs, and dyes. Also, various high / low refractive index materials, optical materials such as color developing properties and light emitting elements can be fixed on the surface. Furthermore, a super water-repellent function on the surface of the nanostructure due to the hydrophobicity of the aliphatic and aromatic groups in the organopolysiloxane is also exhibited. Accordingly, the organopolysiloxane-containing nanostructure composite coating structure of the present invention can be widely applied industrially.
実施例1−1で得た構造物の走査型電子顕微鏡写真である。左)上方向から観察の写真;右)横方向からの写真(ガラスと複合体との界面)。It is a scanning electron micrograph of the structure obtained in Example 1-1. Left) Photo taken from above; Right) Photo taken from the side (interface between glass and composite). 実施例1−2で得た構造物の走査型電子顕微鏡写真である。左)上方向から観察の写真;右)横方向からの写真(ガラスと複合体との界面)。It is a scanning electron micrograph of the structure obtained in Example 1-2. Left) Photo taken from above; Right) Photo taken from the side (interface between glass and composite). 実施例1−3で得た構造物の走査型電子顕微鏡写真である。左)上方向から観察の写真;右)横方向からの写真(ガラスと複合体との界面)。It is a scanning electron micrograph of the structure obtained in Example 1-3. Left) Photo taken from above; Right) Photo taken from the side (interface between glass and composite). 実施例2−1で得た構造物の走査型電子顕微鏡写真である。a)上方向から観察の低分解率の写真;b)aの一部分の拡大図;c)横方向からの写真(ガラスと複合体との界面)。It is a scanning electron micrograph of the structure obtained in Example 2-1. a) Photograph with low resolution observed from above; b) Enlarged view of part of a; c) Photograph from lateral direction (interface between glass and composite). 実施例2−2で得た構造物の走査型電子顕微鏡写真である。a)上方向から観察の低分解率の写真;b)aの一部分の拡大図;c)横方向からの写真(ガラスと複合体との界面)。It is a scanning electron micrograph of the structure obtained in Example 2-2. a) Photograph with low resolution observed from above; b) Enlarged view of part of a; c) Photograph from lateral direction (interface between glass and composite). 実施例2−3で得た構造物の走査型電子顕微鏡写真である。a)上方向から観察の低分解率の写真;b)aの一部分の拡大図;c)横方向からの写真(ガラスと複合体との界面)。It is a scanning electron micrograph of the structure obtained in Example 2-3. a) Photograph with low resolution observed from above; b) Enlarged view of part of a; c) Photograph from lateral direction (interface between glass and composite). 実施例2−4で得た構造物の走査型電子顕微鏡写真である。a)上方向から観察の低分解率の写真;b)aの一部分の拡大図;c)横方向からの写真(ガラスと複合体との界面)。It is a scanning electron micrograph of the structure obtained in Example 2-4. a) Photograph with low resolution observed from above; b) Enlarged view of part of a; c) Photograph from lateral direction (interface between glass and composite). 実施例3−1で得た構造物の走査型電子顕微鏡写真である。a)上方向から観察の低分解率の写真;b)aの一部分の拡大図。It is a scanning electron micrograph of the structure obtained in Example 3-1. a) Photograph of low resolution observed from above; b) Enlarged view of part of a. 実施例3−2で得た構造物の走査型電子顕微鏡写真である。a)上方向から観察の低分解率の写真;b)aの一部分の拡大図;c)bの一部分の拡大図;d)横方向からの写真(ガラスと複合体との界面)。It is a scanning electron micrograph of the structure obtained in Example 3-2. a) Low-resolution photograph observed from above; b) Enlarged view of part of a; c) Enlarged view of part of b; d) Photograph from the lateral direction (interface between glass and composite). 実施例4−1で得た構造物の走査型電子顕微鏡写真である。a)上方向から観察の低分解率の写真;b)aの一部分の拡大図;c)bの一部分の拡大図;d)横方向からの写真(ガラスと複合体との界面)。It is a scanning electron micrograph of the structure obtained in Example 4-1. a) Low-resolution photograph observed from above; b) Enlarged view of part of a; c) Enlarged view of part of b; d) Photograph from the lateral direction (interface between glass and composite). 実施例4−2で得た構造物の走査型電子顕微鏡写真である。a)上方向から観察の低分解率の写真;b)aの一部分の拡大図;c)bの一部分の拡大図;d)横方向からの写真(ガラスと複合体との界面)。It is a scanning electron micrograph of the structure obtained in Example 4-2. a) Low-resolution photograph observed from above; b) Enlarged view of part of a; c) Enlarged view of part of b; d) Photograph from the lateral direction (interface between glass and composite). 実施例5で得た構造物の走査型電子顕微鏡写真である。a)上方向から観察の低分解率の写真;b)aの一部分の拡大図;c)bの一部分の拡大図;d)横方向からの写真(ガラスと複合体との界面)。6 is a scanning electron micrograph of the structure obtained in Example 5. FIG. a) Low-resolution photograph observed from above; b) Enlarged view of part of a; c) Enlarged view of part of b; d) Photograph from the lateral direction (interface between glass and composite). 実施例6で得た構造物の走査型電子顕微鏡写真である。a)上方向から観察の低分解率の写真;b)aの一部分の拡大図;c)bの一部分の拡大図。6 is a scanning electron micrograph of the structure obtained in Example 6. FIG. a) Photograph of low resolution observed from above; b) Enlarged view of part of a; c) Enlarged view of part of b. 比較例1で作製したシリカ/ポリマー複合体のナノ芝構造の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the nanoturf structure of the silica / polymer composite produced in Comparative Example 1. FIG. 実施例6で得た構造物表面の摩耗試験後の走査型電子顕微鏡写真である。a)上方向から観察の低分解率の写真;b)aの一部分の拡大図;c)bの一部分の拡大図。6 is a scanning electron micrograph after the abrasion test of the structure surface obtained in Example 6. FIG. a) Photograph of low resolution observed from above; b) Enlarged view of part of a; c) Enlarged view of part of b.
 本発明の構造物は、固体基材(X)の表面がポリエチレンイミン骨格(a)を有するポリマー(A)とオルガノポリシロキサン(B)とを含有するナノ構造複合体(Y)によって被覆されたものである。さらに、本発明の構造物は、該ナノ構造複合体部分に、金属イオン、金属ナノ粒子、又は有機色素分子が含まれていても良い。従って、本発明の構造物は、固体基材、ポリマー、オルガノポリシロキサンを必須とし、その他金属イオン、金属ナノ粒子、有機色素分子等を任意の構成成分とするものである。本発明において、ナノ構造複合体(Y)とは、ポリマー(A)とオルガノポリシロキサン(B)、更に必要に応じて併用される金属イオン、金属ナノ粒子、有機色素分子等が、ナノメートルオーダーで複合化され、それがファイバー状・粒子状等の一定の形状を有する有機無機複合体となっていることを示すものである。また、金属ナノ粒子は後述するように、金属微粒子がナノメートルオーダーの大きさで存在しているものを示すものであって、必ずしも完全な球形である必要はないが、便宜上「粒子」と記載するものである。以下、本発明を詳細に述べる。 In the structure of the present invention, the surface of the solid substrate (X) was coated with the nanostructure composite (Y) containing the polymer (A) having the polyethyleneimine skeleton (a) and the organopolysiloxane (B). Is. Furthermore, the structure of the present invention may contain metal ions, metal nanoparticles, or organic dye molecules in the nanostructure composite part. Therefore, the structure of the present invention essentially comprises a solid substrate, a polymer, and an organopolysiloxane, and other metal ions, metal nanoparticles, organic dye molecules, and the like as optional constituents. In the present invention, the nanostructure composite (Y) means that the polymer (A) and the organopolysiloxane (B), and metal ions, metal nanoparticles, organic dye molecules, etc. used in combination as needed are in the nanometer order. This indicates that it is an organic-inorganic composite having a certain shape such as a fiber or particle. In addition, as described later, the metal nanoparticles indicate that the metal fine particles are present in a size of the order of nanometers, and need not be completely spherical, but are described as “particles” for convenience. To do. The present invention will be described in detail below.
[固体基材]
 本発明において使用する固体基材(X)としては、後述するポリエチレンイミン骨格(a)を有するポリマー(A)が吸着できるものであれば特に限定されず、例えば、ガラス、金属、金属酸化物などの無機材料系基材、樹脂(プラスチック)、セルロースなどの有機材料系基材等、更にはガラス、金属、金属酸化物表面をエッチング処理した基材、樹脂基材の表面をプラズマ処理、オゾン処理した基材などを使用できる。
[Solid substrate]
The solid substrate (X) used in the present invention is not particularly limited as long as the polymer (A) having a polyethyleneimine skeleton (a) described later can be adsorbed. For example, glass, metal, metal oxide, etc. Inorganic material base material, resin (plastic), organic material base material such as cellulose, etc. Furthermore, glass, metal, metal oxide surface etched substrate, resin substrate surface plasma treatment, ozone treatment Can be used.
 無機材料系ガラス基材としては、特に限定することではないが、例えば、耐熱ガラス(ホウケイ酸ガラス)、ソーダライムガラス、クリスタルガラス、鉛や砒素を含まない光学ガラスなどのガラスを好適に用いることができる。ガラス基材の使用においては、必要に応じ、表面を水酸化ナトリウムなどのアルカリ溶液でエッチングして用いることができる。 Although it does not specifically limit as an inorganic material type glass substrate, For example, glass, such as heat resistant glass (borosilicate glass), soda-lime glass, crystal glass, optical glass which does not contain lead and arsenic, is used suitably. Can do. In the use of a glass substrate, the surface can be used by etching with an alkaline solution such as sodium hydroxide, if necessary.
 無機材料系金属基材としては特に限定しないが、例えば、鉄、銅、アルミ、ステンレス、亜鉛、銀、金、白金、またはこれらの合金などからなる基材を好適に用いることができる。 The inorganic material-based metal substrate is not particularly limited, but for example, a substrate made of iron, copper, aluminum, stainless steel, zinc, silver, gold, platinum, or an alloy thereof can be suitably used.
 無機材料系金属酸化物基材としては、特に限定することではないが、例えば、ITO(インジウムティンオキシド)、酸化スズ、酸化銅、酸化チタン、酸化亜鉛、アルミナなどを好適に用いることができる。 The inorganic material-based metal oxide substrate is not particularly limited. For example, ITO (indium tin oxide), tin oxide, copper oxide, titanium oxide, zinc oxide, alumina, and the like can be suitably used.
 樹脂基材としては、例えば、ポリエチレン、ポリプロピレン、ポリカボナート、ポリエステル、ポリスチレン、ポリメタクリレート、ポリ塩化ビニール、ポリエチレンアルコール、ポリイミド、ポリアミド、ポリウレタン、エポキシ樹脂、セルロースなどの各種ポリマーの加工品を用いることができる。各種ポリマーの使用においては、必要に応じ、表面をプラズマまたはオゾン処理したものであっても、硫酸またはアルカリ等で処理したものであっても良い。 As the resin base material, for example, processed products of various polymers such as polyethylene, polypropylene, polycarbonate, polyester, polystyrene, polymethacrylate, polyvinyl chloride, polyethylene alcohol, polyimide, polyamide, polyurethane, epoxy resin, and cellulose can be used. it can. In the use of various polymers, the surface may be treated with plasma or ozone, or treated with sulfuric acid or alkali, if necessary.
 固体基材(X)の形状については、特に限定されるものではなく、平面状若しくは曲面状板、またはフィルムでも良い。特に、複雑形状加工品の管状チューブ、管状チューブのらせん体、マイクロチューブ;また、任意形状の(例えば、球形、四角形、三角形、円柱形等)容器;また、任意形状の(例えば、円柱形、四角形、三角形等)棒または繊維状態の固体基材でも好適に用いることができる。 The shape of the solid substrate (X) is not particularly limited, and may be a flat or curved plate or a film. In particular, a tubular tube, a spiral tube of a tubular tube, a microtube; a container having an arbitrary shape (for example, a spherical shape, a square shape, a triangular shape, a cylindrical shape); an arbitrary shape (for example, a cylindrical shape, (Rectangle, triangle, etc.) A rod or a solid substrate in a fiber state can also be suitably used.
[ポリエチレンイミン骨格(a)を有するポリマー(A)]
 本発明において、固体基材(X)上に形成するポリマー層には、ポリエチレンイミン骨格(a)を有するポリマー(A)を用いることを必須とする。該ポリエチレンイミン骨格(a)を有するポリマー(A)としては、線状、星状、櫛状構造の単独重合体であっても、他の繰り返し単位を有する共重合体であっても良い。共重合体の場合には、該ポリマー(A)中のポリエチレンイミン骨格(a)のモル比が20%以上であることが、安定なポリマー層を形成できる点から好ましく、該ポリエチレンイミン骨格(a)の繰り返し単位数が10以上である、ブロック共重合体であることがより好ましい。
[Polymer having Polyethyleneimine Skeleton (a) (A)]
In the present invention, it is essential to use a polymer (A) having a polyethyleneimine skeleton (a) for the polymer layer formed on the solid substrate (X). The polymer (A) having the polyethyleneimine skeleton (a) may be a linear, star-shaped or comb-shaped homopolymer, or a copolymer having other repeating units. In the case of a copolymer, the molar ratio of the polyethyleneimine skeleton (a) in the polymer (A) is preferably 20% or more from the viewpoint of forming a stable polymer layer. It is more preferable that it is a block copolymer having 10 or more repeating units.
 前記ポリエチレンイミン骨格(a)としては、分岐状または直鎖状のいずれでも良いが、結晶性会合体形成能が高い直鎖状ポリエチレンイミン骨格であることがより好ましい。また単独重合体であっても共重合体であっても、ポリエチレンイミン骨格部分に相当する分子量が500~1,000,000の範囲であると、安定なポリマー層を基材(X)上に形成することができる点から好ましい。これらポリエチレンイミン骨格(a)を有するポリマー(A)は市販品または本発明者らがすでに開示した合成法(例えば、特開2005−264421号公報)により得ることができる。 The polyethyleneimine skeleton (a) may be either branched or linear, but is more preferably a linear polyethyleneimine skeleton having a high ability to form crystalline aggregates. Whether the polymer is a homopolymer or a copolymer, if the molecular weight corresponding to the polyethyleneimine skeleton is in the range of 500 to 1,000,000, a stable polymer layer is formed on the substrate (X). It is preferable because it can be formed. The polymer (A) having the polyethyleneimine skeleton (a) can be obtained from a commercially available product or a synthesis method already disclosed by the present inventors (for example, JP-A-2005-264421).
 後述するように、前記ポリマー(A)は様々な溶液に溶解して用いることができるが、この時、ポリエチレンイミン骨格(a)を有するポリマー(A)以外に、該ポリマー(A)と相溶するその他のポリマーと混合して用いることができる。その他のポリマーとしては、例えば、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリ(N−イソプロピルアクリルアミド)、ポリヒドロキシエチルアクリレート、ポリメチルオキサゾリン、ポリエチルオキサゾリン、ポリプロピレンイミンなどを挙げることができる。これらのその他のポリマーを用いることにより、得られる構造物中の表面にあるナノ構造複合体層の厚み等を容易に調整することが可能となる。 As will be described later, the polymer (A) can be used by dissolving in various solutions. At this time, in addition to the polymer (A) having the polyethyleneimine skeleton (a), the polymer (A) is compatible with the polymer (A). It can be used by mixing with other polymers. Examples of other polymers include polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylamide, poly (N-isopropylacrylamide), polyhydroxyethyl acrylate, polymethyloxazoline, polyethyloxazoline, and polypropyleneimine. By using these other polymers, the thickness of the nanostructure composite layer on the surface of the resulting structure can be easily adjusted.
[オルガノポリシロキサン(B)]
 本発明で得られる構造物の基材表面は、前述のポリマー(A)とオルガノポリシロキサン(B)を含有するナノ構造複合体であることが大きな特徴である。オルガノポリシロキサン(B)形成に必要なソースとしては、{RSi(OCH4−nまたはRSi(OCHCH4−n、Rは置換基を有していても良い炭化水素基、n=1または2}で表されるオルガノアルコキシシラン(B’)が挙げられる。式中のRとしては、例えば、メルカプトプロピル基、メチル基、ビニル基、グリシドキシプロピル基、フェニル基等が挙げられ、前記一般式中のnが2の場合のRとしては、同一のものであっても、異なるものであっても良い。nが1の場合は通常シランカップリング剤(b)として知られており、例えば、テトラメトキシシラン、メトキシシラン縮合体のオリゴマー、テトラエトキシシラン、エトキシシラン縮合体のオリゴマーを好適に用いることができる。さらに、アルキル置換アルコキシシラン類の、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、iso−プロピルトリメトキシシラン、iso−プロピルトリエトキシシラン等、更に、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトトリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、3,3,3−トリフルオロプロピルトリエトキシシラン、3−メタクリルオキシプロピルトリメトキシシラン、3−メタクリルオキシプロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p−クロロメチルフェニルトリメトキシシラン、p−クロロメチルフェニルトリエトキシシラン等が挙げられ、又前記一般式中のnが2の化合物としてはジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン等を挙げることができる。これらのオルガノアルコキシシラン(B’)は、単一で、又は混合して用いることができる。
[Organopolysiloxane (B)]
A major feature of the substrate surface of the structure obtained by the present invention is that it is a nanostructure composite containing the aforementioned polymer (A) and organopolysiloxane (B). The organopolysiloxane (B) source needed to form, {R n Si (OCH 3 ) 4-n or R n Si (OCH 2 CH 3 ) 4-n, R may have a substituent And a hydrocarbon group, organoalkoxysilane (B ′) represented by n = 1 or 2}. Examples of R in the formula include a mercaptopropyl group, a methyl group, a vinyl group, a glycidoxypropyl group, a phenyl group, and the like. In the case where n in the general formula is 2, R is the same. Or it may be different. When n is 1, it is generally known as a silane coupling agent (b). For example, tetramethoxysilane, oligomer of methoxysilane condensate, tetraethoxysilane, oligomer of ethoxysilane condensate can be suitably used. . Further, alkyl-substituted alkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, iso-propyltrimethoxysilane, iso-propyltriethoxysilane, etc., 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycid Xylpropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptotriethoxysilane, 3,3 -Trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, p -Chloromethylphenyltrimethoxysilane, p-chloromethylphenyltriethoxysilane, etc., and the compounds in which n is 2 in the above general formula include dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxy A silane etc. can be mentioned. These organoalkoxysilanes (B ′) can be used alone or in combination.
[金属イオン]
 本発明の構造体における基材表面は、前述のポリエチレンイミン骨格(a)を有するポリマー(A)とオルガノポリシロキサン(B)とからなるナノ構造複合体(Y)で被覆されている。このナノ構造複合体(Y)中には金属イオンを安定に取り込むことができ、従って、金属イオンを含むナノ構造複合体被覆型構造物を得ることができる。
[Metal ions]
The surface of the base material in the structure of the present invention is coated with a nanostructure composite (Y) composed of the above-described polymer (A) having a polyethyleneimine skeleton (a) and an organopolysiloxane (B). Metal ions can be stably taken into the nanostructure composite (Y), and therefore a nanostructure composite-coated structure containing metal ions can be obtained.
 前記ポリマー(A)中のポリエチレンイミン骨格(a)は金属イオンに対して強い配位能力を有するため、金属イオンは該骨格中のエチレンイミン単位と配位結合して金属イオン錯体を形成する。該金属イオン錯体は金属イオンがエチレンイミン単位に配位されることにより得られるものであり、イオン結合等の過程と異なり、該金属イオンがカチオンでも、またはアニオンでも、エチレンイミン単位への配位により錯体を形成することができる。従って、金属イオンの金属種は、ポリマー(A)中のエチレンイミン単位と配位結合できるものであれば制限されず、アルカリ金属、アルカリ土類金属、遷移金属、半金属、ランタン系金属、ポリオキソメタレート類の金属化合物等のいずれでも良く、単独種であっても複数種が混合されていても良い。 Since the polyethyleneimine skeleton (a) in the polymer (A) has a strong coordination ability with respect to metal ions, the metal ions coordinate with the ethyleneimine units in the skeleton to form a metal ion complex. The metal ion complex is obtained by coordination of a metal ion to an ethyleneimine unit. Unlike a process such as ionic bonding, the metal ion is coordinated to an ethyleneimine unit regardless of whether the metal ion is a cation or an anion. Can form a complex. Accordingly, the metal species of the metal ion is not limited as long as it can coordinate with the ethyleneimine unit in the polymer (A), and is not limited to alkali metal, alkaline earth metal, transition metal, metalloid, lanthanum metal, poly Any of metal compounds such as oxometalates may be used, and they may be used alone or in combination.
 上記アルカリ金属としては、Li,Na,K,Cs等が挙げられ、該アルカリ金属のイオンの対アニオンとしては、Cl,Br,I,NO,SO,PO,ClO,PF,BF,FCSOなどが挙げられる。 Examples of the alkali metal include Li, Na, K, Cs and the like, and examples of counter ions of the alkali metal ions include Cl, Br, I, NO 3 , SO 4 , PO 4 , ClO 4 , PF 6 , Examples thereof include BF 4 and F 3 CSO 3 .
 アルカリ土類金属としては、Mg,Ba,Ca等が挙げられる。 Examples of alkaline earth metals include Mg, Ba, Ca and the like.
 遷移金属系の金属イオンとしては、それが遷移金属カチオン(Mn+)であっても、または遷移金属が酸素との結合からなる酸根アニオン(MO n−)、またはハロゲン類結合からなるアニオン(ML n−)であっても、好適に用いることができる。なお、本明細書において遷移金属とは、周期表第3族のSc,Y、及び、第4~12族で第4~6周期にある遷移金属元素を指す。 As a transition metal-based metal ion, even if it is a transition metal cation (M n + ), an acid group anion (MO x n− ) composed of a bond with oxygen, or an anion composed of a halogen bond ( ML x n− ) can also be suitably used. In the present specification, the transition metal refers to Sc, Y in Group 3 of the periodic table and a transition metal element in Groups 4 to 12 in the 4th to 6th periods.
 遷移金属カチオンとしては、各種の遷移金属のカチオン(Mn+)、例えば、Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Y,Zr,Mo,Ru,Rh,Pd,Ag,Cd,W,Os,Ir,Pt,Au,Hgの一価、二価、三価または四価のカチオンなどが挙げられる。これら金属カチオンの対アニオンは、Cl,NO,SO、またはポリオキソメタレート類アニオン、あるいはカルボン酸類の有機アニオンのいずれであってもよい。ただし、Ag,Au,Ptなど、エチレンイミン骨格により還元されやすいものは、pHを酸性条件にする等、還元反応を抑制してイオン錯体を調製することが好ましい。 Examples of transition metal cations include cations of various transition metals (M n + ), such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Rh, Pd, and Ag. , Cd, W, Os, Ir, Pt, Au, Hg, monovalent, divalent, trivalent or tetravalent cations. The counter anion of these metal cations may be any of Cl, NO 3 , SO 4 , polyoxometalates anions, or organic anions of carboxylic acids. However, for those that are easily reduced by the ethyleneimine skeleton, such as Ag, Au, and Pt, it is preferable to prepare an ionic complex by suppressing the reduction reaction, for example, by adjusting the pH to an acidic condition.
 また遷移金属アニオンとしては、各種の遷移金属アニオン(MO n−)、例えば、MnO,MoO,ReO,WO,RuO,CoO,CrO,VO,NiO,UOのアニオン等が挙げられる。 Examples of the transition metal anion include various transition metal anions (MO x n− ) such as MnO 4 , MoO 4 , ReO 4 , WO 3 , RuO 4 , CoO 4 , CrO 4 , VO 3 , NiO 4 , UO 2. Anions and the like.
 また、前記金属イオンとしては、前記遷移金属アニオンが、ポリマー(A)中のエチレンイミン単位に配位した金属カチオンを介してオルガノポリシロキサン(B)中に固定された、ポリオキソメタレート類の金属化合物の形態であってもよい。該ポリオキソメタレート類の具体例としては、遷移金属カチオンと組み合わせられたモリブデン酸塩、タングステン酸塩、バナジン酸塩類等をあげることができる。 In addition, as the metal ion, the transition metal anion is a polyoxometalate immobilized in an organopolysiloxane (B) via a metal cation coordinated to an ethyleneimine unit in the polymer (A). It may be in the form of a metal compound. Specific examples of the polyoxometalates include molybdate, tungstate and vanadate in combination with a transition metal cation.
 さらに、各種の金属が含まれたアニオン(ML n−)、例えば、AuCl,PtCl,RhCl,ReF,NiF,CuF,RuCl,InCl等、金属がハロゲンに配位されたアニオンもイオン錯体形成に好適に用いることができる。 Furthermore, anions (ML x n− ) containing various metals, such as AuCl 4 , PtCl 6 , RhCl 4 , ReF 6 , NiF 6 , CuF 6 , RuCl 6 , In 2 Cl 6, etc. The coordinated anion can also be suitably used for forming an ion complex.
 また、半金属系イオンとしては、Al,Ga,In,Tl,Ge,Sn,Pb,Sb,Biのイオンが挙げられ、なかでもAl,Ga,In,Sn,Pb,Tlのイオンが好ましい。 Further, examples of the metalloid ions include ions of Al, Ga, In, Tl, Ge, Sn, Pb, Sb, and Bi, and among them, ions of Al, Ga, In, Sn, Pb, and Tl are preferable.
 ランタン系金属イオンとしては、例えば、La,Eu,Gd,Yb,Euなどの3価のカチオンが挙げられる。 Examples of the lanthanum metal ions include trivalent cations such as La, Eu, Gd, Yb, and Eu.
[金属ナノ粒子]
 上記した通り、本発明では金属イオンを構造体中のナノ構造複合体(Y)中に取り込むことができる。従って、これらの金属イオンのなかでも、還元反応により還元されやすい金属イオンは、金属ナノ粒子に変換させることで、該複合体(Y)中に金属ナノ粒子を含有させることができる。
[Metal nanoparticles]
As described above, in the present invention, metal ions can be incorporated into the nanostructure composite (Y) in the structure. Therefore, among these metal ions, metal ions that are easily reduced by the reduction reaction can be converted into metal nanoparticles, whereby the metal nanoparticles can be contained in the composite (Y).
 金属ナノ粒子の金属種としては、例えば、銅、銀、金、白金、パラジウム、マンガン、ニッケル、ロジウム、コバルト、ルテニウム、レニウム、モリブデン、鉄等が挙げられ、複合体(Y)中の金属ナノ粒子は一種であっても、二種以上であってもよい。これら金属種の中でも、特に、銀、金、白金、パラジウムは、その金属イオンがエチレンイミン単位に配位された後、室温または加熱状態で自発的に還元されるため特に好ましい。 Examples of the metal species of the metal nanoparticles include copper, silver, gold, platinum, palladium, manganese, nickel, rhodium, cobalt, ruthenium, rhenium, molybdenum, iron, and the like, and the metal nanoparticle in the composite (Y) The particles may be one kind or two or more kinds. Among these metal species, silver, gold, platinum, and palladium are particularly preferable because the metal ions are spontaneously reduced at room temperature or in a heated state after being coordinated to the ethyleneimine unit.
 複合体(Y)中の金属ナノ粒子の大きさは、1~20nmの範囲に制御できる。また、金属ナノ粒子は、ポリマー(A)とオルガノポリシロキサン(B)とのナノ構造複合体(Y)の内部、または外表面に固定することができる。 The size of the metal nanoparticles in the composite (Y) can be controlled in the range of 1 to 20 nm. Further, the metal nanoparticles can be fixed to the inside or the outer surface of the nanostructure composite (Y) of the polymer (A) and the organopolysiloxane (B).
[有機色素分子]
 本発明において、構造物を被覆するナノ構造複合体(Y)中のポリエチレンイミン骨格(a)はアミノ基、ヒドロキシ基、カルボン酸基、スルホン酸基、リン酸基を有する化合物と、水素結合及び/又は静電気引力により、物理的な結合構造を構成することができる。従って、これらの官能基を有する有機色素分子を該複合体(Y)中に含有させることが可能である。
[Organic dye molecules]
In the present invention, the polyethyleneimine skeleton (a) in the nanostructure composite (Y) covering the structure is composed of a compound having an amino group, a hydroxy group, a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group, a hydrogen bond, and A physical coupling structure can be formed by electrostatic attraction. Therefore, organic dye molecules having these functional groups can be contained in the complex (Y).
 前記有機色素分子としては、単官能酸性化合物、または二官能以上の多官能酸性化合物を好適に用いることができる。 As the organic dye molecule, a monofunctional acidic compound or a bifunctional or higher polyfunctional acidic compound can be suitably used.
 具体的には、例えば、テトラフェニルポルフィリンテトラカルボン酸、ピレンジカルボン酸などの芳香族酸類、ナフタレンジスルホン酸、ピレンジスルホン酸、ピレンテトラスルホン酸、アンスラキノンジスルホン酸、テトラフェニルポルフィリンテトラスルホン酸、フタロシアニンテトラスルホン酸、ピペス(PIPES)などの芳香族または脂肪族のスルホン酸類、acid yellow,acid blue,acid red,direct blue,direct yellow,direct red系列のアゾ系染料等を挙げることができる。また、キサンテン骨格を有する色素、例えば、ローダミン、エリスロシン、エオシン系列の色素を用いることができる。 Specifically, for example, aromatic acids such as tetraphenylporphyrin tetracarboxylic acid and pyrene dicarboxylic acid, naphthalene disulfonic acid, pyrene disulfonic acid, pyrene tetrasulfonic acid, anthraquinone disulfonic acid, tetraphenyl porphyrin tetrasulfonic acid, phthalocyanine tetra Aromatic or aliphatic sulfonic acids such as sulfonic acid and pipes (PIPES), acid yellow, acid blue, acid red, direct blue, direct yellow, direct red series azo dyes and the like can be mentioned. In addition, a dye having a xanthene skeleton, for example, rhodamine, erythrosine, and eosin dyes can be used.
[ポリマー(A)とオルガノポリシロキサン(B)とを含有するナノ構造複合体(Y)]
 ポリマー(A)とオルガノポリシロキサン(B)とを含有するナノ構造複合体(Y)は、基本的には前述のポリマー(A)とオルガノポリシロキサン(B)との複合ナノファイバー(y1)または複合ナノ粒子(y2)の集合体であり、その集合体が基材表面全体を覆った状態を構成しながら、様々なパターンまたはモルフォロジーを形成する。例えば、複合ナノファイバー(y1)が固体基材上の全面に該ファイバーの長軸が略垂直方向を向いて生えているような芝状(ナノ芝)または複合ナノファイバー(y1)及び/又は複合ナノ粒子(y2)が基材上の全面でネットワークを形成しているスポンジ状(ナノスポンジ)など、多様多種の階層構造を構成することができる。
[Nanostructure composite (Y) containing polymer (A) and organopolysiloxane (B)]
The nanostructure composite (Y) containing the polymer (A) and the organopolysiloxane (B) is basically a composite nanofiber (y1) of the polymer (A) and the organopolysiloxane (B). It is an aggregate of composite nanoparticles (y2), and forms various patterns or morphologies while constituting a state in which the aggregate covers the entire substrate surface. For example, turf-like (nano turf) or composite nano fiber (y1) and / or composite in which the composite nanofiber (y1) grows on the entire surface of the solid substrate with the long axis of the fiber facing substantially vertical direction A wide variety of hierarchical structures such as a sponge (nano sponge) in which the nanoparticles (y2) form a network on the entire surface of the substrate can be formed.
 上記ナノ芝状またはナノスポンジ状等の高次構造における、基本ユニットの複合ナノファイバー(y1)の太さは10~100nmの範囲である。ナノ芝状複合ナノファイバー(y1)の長さ(長軸方向)は50nm~10μm範囲に制御することができる。 The thickness of the composite nanofiber (y1) of the basic unit in the higher-order structure such as the nano turf shape or the nano sponge shape is in the range of 10 to 100 nm. The length (major axis direction) of the nanoturf-like composite nanofiber (y1) can be controlled in the range of 50 nm to 10 μm.
 また、固体基材上でネットワークを形成する場合、即ち、被覆層全体にわたって三次元の網目構造を構築している場合には、基本構造が前記複合ナノファイバー(y1)のみからなるものであっても、複合ナノ粒子(y2)のみからなるものであっても、あるいは両者が組み合わさって形成されていても良い。この時、複合ナノ粒子(y2)の平均粒子径としては20nm以下に制御することが好ましい。 When a network is formed on a solid substrate, that is, when a three-dimensional network structure is constructed over the entire coating layer, the basic structure is composed only of the composite nanofiber (y1). Alternatively, the composite nanoparticle (y2) alone may be used, or both may be combined. At this time, the average particle diameter of the composite nanoparticles (y2) is preferably controlled to 20 nm or less.
 固体基材上を被覆する際の基板からの厚みは、複合ナノファイバー(y1)及び/又は複合ナノ粒子(y2)の集合体構造とも関連するが、概ね50nm~20μm範囲で変化させることができる。ナノ芝状では、複合ナノファイバー(y1)が真っすぐ立ち伸びる傾向が強く、ファイバーの長さが基本的に厚みを構成し、一本一本のファイバーの長さはかなり揃った状態であることが特徴である。ナノスポンジ状の層の厚さは複合ナノファイバー(y1)が規則性を有する複雑な絡みで盛り上がる度合いにより決まることが特徴である。ネットワークを形成している場合には、その重なり状態、複合ナノファイバー(y1)と複合ナノ粒子(y2)との存在割合等によって厚みが決定される。 The thickness from the substrate when coating on the solid substrate is related to the aggregate structure of the composite nanofiber (y1) and / or the composite nanoparticle (y2), but can be varied in the range of about 50 nm to 20 μm. . In the nano-turf shape, the composite nanofiber (y1) has a strong tendency to stand up straight, the length of the fiber basically constitutes the thickness, and the length of each individual fiber is fairly uniform. It is a feature. The thickness of the nanosponge-like layer is characterized in that it is determined by the degree to which the composite nanofiber (y1) swells with a complex entanglement having regularity. When a network is formed, the thickness is determined by the overlapping state, the existence ratio of the composite nanofiber (y1) and the composite nanoparticle (y2), and the like.
 ナノ構造複合体(Y)中、ポリマー(A)の成分は5~30質量%で調整可能である。ポリマー(A)成分の含有量を変えることで、集合体構造(高次構造)を変えることもできる。 In the nanostructure composite (Y), the component of the polymer (A) can be adjusted at 5 to 30% by mass. By changing the content of the polymer (A) component, the aggregate structure (higher order structure) can be changed.
 また、該ナノ構造複合体(Y)中に金属イオン、金属ナノ粒子又は有機色素分子を含有させる場合には、その種類によって高次構造を制御することも可能である。この場合においても、基本ユニットは前記したような複合ナノファイバー(y1)及び/又は複合ナノ粒子(y2)であり、これらが、組み合わさって複雑形状を形成する。 Further, when a metal ion, metal nanoparticle or organic dye molecule is contained in the nanostructure composite (Y), it is possible to control the higher order structure depending on the type. Even in this case, the basic unit is the composite nanofiber (y1) and / or the composite nanoparticle (y2) as described above, which are combined to form a complex shape.
 金属イオンを取り込む際の該金属イオン取り込み量としては、ポリマー(A)中のエチレンイミン単位1当量に対し、1/4~1/200当量の範囲で調製することが好ましく、この比率を変えることによって、被覆層の厚みを変化させることができる。また、この時の被覆層は金属種に応じた発色をすることもある。 The amount of metal ions taken up when taking up metal ions is preferably adjusted within a range of 1/4 to 1/200 equivalents per 1 equivalent of ethyleneimine units in the polymer (A), and this ratio can be changed. Can change the thickness of the coating layer. In addition, the coating layer at this time may develop color depending on the metal species.
 金属ナノ粒子を取り込む際の該金属ナノ粒子取り込み量としては、ポリマー(A)中のエチレンイミン単位1当量に対し、1/4~1/200当量の範囲で調製することが好ましく、この比率を変えることによって、被覆層の厚みを変化させることができる。また、この時の被覆層は金属種に応じた発色をすることもある。 The amount of metal nanoparticles incorporated when incorporating metal nanoparticles is preferably adjusted within a range of 1/4 to 1/200 equivalent per 1 equivalent of ethyleneimine unit in the polymer (A). By changing the thickness, the thickness of the coating layer can be changed. In addition, the coating layer at this time may develop color depending on the metal species.
 有機色素分子を取り込む際の該有機色素分子取り込み量としては、ポリマー(A)中のエチレンイミン単位1当量に対し、1/2~1/1200当量の範囲で調製することが好ましく、この比率を変化させることにより、被覆層の厚みや形状パターンを変えることもできる。 The organic dye molecule uptake amount when taking up the organic dye molecule is preferably prepared in the range of 1/2 to 1/1200 equivalent to 1 equivalent of the ethyleneimine unit in the polymer (A). By changing the thickness, the thickness and shape pattern of the coating layer can be changed.
 また、ナノ構造複合体(Y)には、金属イオン、金属ナノ粒子及び有機色素分子の2種以上を同時に取り込ませることもできる。 Also, two or more kinds of metal ions, metal nanoparticles and organic dye molecules can be simultaneously incorporated into the nanostructure composite (Y).
[ナノ構造複合体被覆型構造物の製造方法]
 本発明の構造物の製造方法は、ポリエチレンイミン骨格(a)を有するポリマー(A)の溶液、ポリエチレンイミン骨格(a)を有するポリマー(A)と金属イオンとの混合溶液、ポリエチレンイミン骨格(a)を有するポリマー(A)と有機色素分子との混合溶液、またはポリエチレンイミン骨格(a)を有するポリマー(A)と金属イオンと有機色素分子との混合溶液を固体基材(X)の表面に接触させた後、該基材(X)を取り出し、基材(X)の表面にポリエチレンイミン骨格(a)を有するポリマー(A)と、併用された金属イオン及び/又は有機色素分子とからなるポリマー層が吸着した基材を得る工程(1)と、前記ポリマー層が吸着した基材と一定濃度に調製したオルガノアルコキシシラン(B’)とを長時間接触させ、基材表面に吸着したポリマー層中のポリエチレンイミン骨格(a)が有する触媒機能により、オルガノポリシロキサン(B)をその上に析出させて、ナノ構造複合体(Y)を形成すると共に基材を被覆する工程(2)、とを有する製造方法である。この手法により固体基材(X)の表面にポリマー(A)とオルガノポリシロキサン(B)とからなるナノ界面、ポリマー(A)/金属イオン/オルガノポリシロキサン(B)からなるナノ界面、ポリマー(A)/有機色素分子/オルガノポリシロキサン(B)からなるナノ界面の被覆層を容易に形成することができる。
[Method for producing nanostructure composite-coated structure]
The structure production method of the present invention includes a solution of a polymer (A) having a polyethyleneimine skeleton (a), a mixed solution of a polymer (A) having a polyethyleneimine skeleton (a) and a metal ion, a polyethyleneimine skeleton (a ) And a polymer (A) having a polyethyleneimine skeleton (a), a mixed solution of a metal ion and an organic dye molecule on the surface of the solid substrate (X). After the contact, the substrate (X) is taken out, and consists of a polymer (A) having a polyethyleneimine skeleton (a) on the surface of the substrate (X), and a combined metal ion and / or organic dye molecule. A step (1) for obtaining a base material on which the polymer layer is adsorbed, and the base material on which the polymer layer is adsorbed and an organoalkoxysilane (B ′) prepared at a constant concentration are brought into contact with each other for a long time. By the catalytic function of the polyethyleneimine skeleton (a) in the polymer layer adsorbed on the surface, the organopolysiloxane (B) is deposited thereon to form the nanostructure composite (Y) and coat the substrate. A manufacturing method comprising the step (2). By this method, the nanointerface consisting of polymer (A) and organopolysiloxane (B), the nanointerface consisting of polymer (A) / metal ion / organopolysiloxane (B), polymer ( A nano-interface coating layer comprising A) / organic dye molecule / organopolysiloxane (B) can be easily formed.
 工程(1)において使用するポリエチレンイミン骨格(a)を有するポリマー(A)は前述のポリマーを使用できる。また、該ポリマー(A)の溶液を得る際に使用可能な溶媒としては、該ポリマー(A)が溶解するものであれば特に制限されず、例えば、水、メタノールやエタノールなどの有機溶剤、あるいはこれらの混合溶媒などを適宜使用できる。 The polymer described above can be used as the polymer (A) having the polyethyleneimine skeleton (a) used in the step (1). In addition, the solvent that can be used for obtaining the solution of the polymer (A) is not particularly limited as long as the polymer (A) can be dissolved, and examples thereof include water, organic solvents such as methanol and ethanol, These mixed solvents can be used as appropriate.
 溶液中における該ポリマー(A)の濃度としては、固体基材(X)上にポリマー層を形成できる濃度であれば良いが、所望のパターン形成や、基材表面へ吸着するポリマー密度を高くする場合には、0.05質量%~50質量%の範囲であることが好ましく、0.5質量%~10質量%の範囲であるとより好ましい。 The concentration of the polymer (A) in the solution is not particularly limited as long as the polymer layer can be formed on the solid substrate (X), but the desired pattern formation and the density of the polymer adsorbed on the substrate surface are increased. In this case, the range is preferably 0.05% by mass to 50% by mass, and more preferably 0.5% by mass to 10% by mass.
 ポリエチレンイミン骨格(a)を有するポリマー(A)の溶液中には、該溶剤に可溶でポリマー(A)と相溶可能な前述のその他のポリマーを混合することもできる。その他のポリマーの混合量としては、ポリエチレンイミン骨格(a)を有するポリマー(A)の濃度より高くても低くても良い。 In the solution of the polymer (A) having a polyethyleneimine skeleton (a), the above-mentioned other polymers that are soluble in the solvent and compatible with the polymer (A) can be mixed. The mixing amount of the other polymer may be higher or lower than the concentration of the polymer (A) having the polyethyleneimine skeleton (a).
 金属イオンを含有するナノ構造複合体(Y)からなる被覆層を形成させる場合には、ポリエチレンイミン骨格(a)を有するポリマー(A)の溶液中に、当該金属イオンを混合する。該金属イオンの濃度はポリエチレンイミン骨格(a)中のエチレンイミン単位の1/4当量以下で調整することが好ましい。 When forming a coating layer composed of a nanostructure composite (Y) containing metal ions, the metal ions are mixed in a solution of the polymer (A) having a polyethyleneimine skeleton (a). The concentration of the metal ion is preferably adjusted to ¼ equivalent or less of the ethyleneimine unit in the polyethyleneimine skeleton (a).
 また、有機色素分子を含有するナノ構造複合体(Y)からなる被覆層を形成させる場合には、ポリエチレンイミン骨格(a)を有するポリマー(A)の溶液中に当該有機色素分子を混合する。該有機色素分子の濃度はポリエチレンイミン骨格(a)中のエチレンイミン単位の1/2当量以下で調整することが好ましい。 Further, when forming a coating layer composed of a nanostructure complex (Y) containing organic dye molecules, the organic dye molecules are mixed in a solution of the polymer (A) having a polyethyleneimine skeleton (a). The concentration of the organic dye molecule is preferably adjusted to ½ equivalent or less of the ethyleneimine unit in the polyethyleneimine skeleton (a).
 また、工程(1)においてポリマー層を作製するには、固体基材(X)をポリマー(A)の溶液と接触させる。接触法としては、所望の固体基材(X)をポリマー(A)の溶液に浸漬することが好適である。 Further, in order to produce a polymer layer in the step (1), the solid substrate (X) is brought into contact with a solution of the polymer (A). As the contact method, it is preferable to immerse the desired solid substrate (X) in the solution of the polymer (A).
 浸漬法では、基材状態により、基材(非容器状)を溶液中に入れる、または溶液を基材(容器状)中に入れる方式で、基材と溶液を接触させることができる。浸漬の際、ポリマー(A)の溶液の温度は加熱状態であることが好ましく、概ね50~90℃の温度であれば好適である。固体基材(X)をポリマー(A)の溶液と接触させる時間は特に制限されず、基材(X)の材質に合わせて、数秒から1時間で選択することが好ましい。基材の材質がポリエチレンイミンと強い結合能力を有する場合、例えば、ガラス、金属などでは数秒~数分でよく、基材の材質がポリエチレンイミンと結合能力が弱い場合は数十分から1時間でも良い。 In the dipping method, the base material and the solution can be brought into contact with each other by putting the base material (non-container shape) into the solution or putting the solution into the base material (container shape) according to the base material state. At the time of immersion, the temperature of the polymer (A) solution is preferably in a heated state, and a temperature of about 50 to 90 ° C. is suitable. The time for bringing the solid substrate (X) into contact with the solution of the polymer (A) is not particularly limited, and is preferably selected within a few seconds to 1 hour according to the material of the substrate (X). If the material of the base material has a strong binding ability with polyethyleneimine, for example, it may be several seconds to several minutes for glass, metal, etc. If the material of the base material is weakly binding ability with polyethyleneimine, it may be several tens of minutes to one hour. good.
 固体基材(X)とポリマー(A)の溶液を接触した後、該基材をポリマー(A)の溶液から取り出し、室温(25℃前後)に放置すると、自発的にポリマー(A)の集合体層が該基材(X)の表面に形成される。あるいは、該基材(X)をポリマー(A)の溶液から取り出してから、ただちに4~30℃の蒸留水中、または室温~氷点下温度のアンモニア水溶液中に入れることにより、自発的なポリマー(A)の集合体層を形成させても良い。 After contacting the solid substrate (X) with the polymer (A) solution, the substrate is taken out of the polymer (A) solution and allowed to stand at room temperature (around 25 ° C.). A body layer is formed on the surface of the substrate (X). Alternatively, the base material (X) is taken out from the solution of the polymer (A) and then immediately put into distilled water at 4 to 30 ° C. or into an aqueous ammonia solution at room temperature to below freezing temperature, so that the spontaneous polymer (A) An aggregate layer may be formed.
 固体基材(X)の表面とポリマー(A)の溶液との接触方法では、例えば、スピンコータ、バーコータ、アプリケータなどによる塗布の他、ジェットプリンタによるプリントや印刷などの方法も使用できる。特に、微細なパターン状に接触させる場合には、ジェットプリンタよる方法が好適である。 As the method for contacting the surface of the solid substrate (X) with the polymer (A) solution, for example, in addition to coating with a spin coater, bar coater, applicator, etc., a method such as printing or printing with a jet printer can also be used. In particular, when the contact is made in a fine pattern, a method using a jet printer is suitable.
 工程(2)においては、工程(1)において形成したポリマー層とオルガノアルコキシシラン(B’)とを接触させ、ポリマー層表面にオルガノポリシロキサン(B)を析出し、ポリマー(A)とオルガノポリシロキサン(B)とのナノ構造複合体(Y)を形成させる。ポリマー層に金属イオン及び/又は有機色素分子が含まれる場合でも、同様な方法でオルガノポリシロキサン(B)を析出させ、目的のナノ構造複合体(Y)を形成させることができる。 In the step (2), the polymer layer formed in the step (1) and the organoalkoxysilane (B ′) are brought into contact with each other to deposit the organopolysiloxane (B) on the surface of the polymer layer. A nanostructure composite (Y) with siloxane (B) is formed. Even when the polymer layer contains metal ions and / or organic dye molecules, organopolysiloxane (B) can be deposited by the same method to form the target nanostructure composite (Y).
 この時用いる、オルガノアルコキシシラン(B’)としては、前述した各種のシランカップリング剤(b)の水溶液や、アルコール類溶剤、例えば、メタノール、エタノール、プロパノールなどの水性有機溶剤溶液、またはこれらと水との混合溶剤溶液を用いることができる。このとき、オルガノアルコキシシラン(B’)の濃度としては、低濃度であることが必須であり、ポリマー(A)が基材上で形成したナノ構造に悪影響を与えずにナノ構造複合体(Y)とするためには、体積濃度として0.05%~5%範囲であることが好ましい。 Examples of the organoalkoxysilane (B ′) used at this time include aqueous solutions of the various silane coupling agents (b) described above, alcohol solvents such as aqueous organic solvent solutions such as methanol, ethanol, propanol, and the like. A mixed solvent solution with water can be used. At this time, it is essential that the concentration of the organoalkoxysilane (B ′) is low, and the nanostructure composite (Y) without adversely affecting the nanostructure formed by the polymer (A) on the substrate. ), The volume concentration is preferably in the range of 0.05% to 5%.
 ポリマー(A)の層が吸着した固体基材をオルガノアルコキシシラン(B’)と接触させる方法としては、浸漬法を好ましく用いることができる。浸漬する時間は5時間以上であることが必要であり、好ましくは、5~24時間であるが、必要に応じ時間を適宜長くすることもできる。オルガノアルコキシシラン(B’)の温度は室温(20~30℃)でもよく、加熱状態でも良い。加熱の場合、オルガノポリシロキサン(B)を固体基材(X)の表面にて規則的に析出させるため、温度を70℃以下に設定することが望ましい。 As a method of bringing the solid substrate on which the polymer (A) layer is adsorbed into contact with the organoalkoxysilane (B ′), an immersion method can be preferably used. The immersion time needs to be 5 hours or more, and preferably 5 to 24 hours, but the time can be appropriately lengthened as necessary. The temperature of the organoalkoxysilane (B ′) may be room temperature (20 to 30 ° C.) or a heated state. In the case of heating, in order to regularly deposit organopolysiloxane (B) on the surface of the solid substrate (X), it is desirable to set the temperature to 70 ° C. or lower.
 オルガノアルコキシシラン(B’)の種類、濃度などの選定により、析出されるオルガノポリシロキサン(B)とポリマー(A)とのナノ構造複合体(Y)の構造を調整することができ、目的に応じて、オルガノアルコキシシラン(B’)の種類や濃度を適宜に選定することが好ましい。 By selecting the type and concentration of the organoalkoxysilane (B ′), the structure of the nanostructure composite (Y) of the organopolysiloxane (B) and the polymer (A) to be deposited can be adjusted. Accordingly, it is preferable to appropriately select the type and concentration of the organoalkoxysilane (B ′).
 オルガノポリシロキサン(B)の形成は、ケイ素に結合しているオルガノ基の種類により大きく異なる。従って、分子構造が異なるオルガノアルコキシシラン(B’)を用い、オルガノポリシロキサン(B)のナノ構造複合体を誘導するには、その構造の反応特徴に合わせた条件設定が好ましい。 The formation of organopolysiloxane (B) varies greatly depending on the type of organo group bonded to silicon. Accordingly, in order to derive an organopolysiloxane (B) nanostructure composite using organoalkoxysilane (B ′) having a different molecular structure, it is preferable to set conditions in accordance with the reaction characteristics of the structure.
 例えば、オルガノ基がメルカプトプロピル基の場合、それの反応液濃度を0.3~0.7%(体積濃度)に設定し、基材浸漬時間を15~20時間にすることで、ナノ芝状の複合体を効果的に誘導することができる。反応液濃度をさらに0.1vol%以下まで低下させ、その液中に15時間以上浸漬した場合、ナノファイバーのネットワーク構造の複合体からなる皮膜を誘導できる。 For example, when the organo group is a mercaptopropyl group, the concentration of the reaction solution is set to 0.3 to 0.7% (volume concentration), and the substrate immersion time is set to 15 to 20 hours. The complex can be effectively induced. When the reaction solution concentration is further reduced to 0.1 vol% or less and immersed in the solution for 15 hours or more, a film composed of a composite of nanofiber network structure can be induced.
 オルガノ基がメチル基の場合、ナノ芝状構造複合体を誘導するには、0.3~0.8vol%程度の低濃度の溶液を用いて、基材浸漬時間を24時間以上にすることが要求される。 When the organo group is a methyl group, in order to induce a nanoturf-like structure composite, the substrate immersion time should be 24 hours or longer using a low concentration solution of about 0.3 to 0.8 vol%. Required.
 また、オルガノ基がフェニル基の場合、0.3~0.8vol%程度の溶液に、基材浸漬時間を7~10時間の範囲にすることで、ナノ芝状の複合体を効率的に誘導出来る。 In addition, when the organo group is a phenyl group, the nanoturf-like complex is efficiently induced by setting the substrate soaking time in the range of 7 to 10 hours in a solution of about 0.3 to 0.8 vol%. I can do it.
 ポリエチレンイミンは貴金属イオン、例えば、金、白金、銀、パラジウムなどを金属ナノ粒子に還元することができる。従って、上記工程で得られた、ナノ構造複合体(Y)によって被覆された構造物を、当該貴金属イオンの水溶液と接触させる工程を経ることにより、該貴金属イオンをナノ構造複合体(Y)中で金属ナノ粒子に変換させることができ、金属ナノ粒子を有するナノ構造複合体被覆型構造物を得ることができる。 Polyethyleneimine can reduce noble metal ions such as gold, platinum, silver, palladium, etc. to metal nanoparticles. Accordingly, by passing the structure coated with the nanostructure composite (Y) obtained in the above step with the aqueous solution of the noble metal ion, the noble metal ion is brought into the nanostructure composite (Y). Can be converted into metal nanoparticles, and a nanostructure composite-coated structure having metal nanoparticles can be obtained.
 前記工程において貴金属イオンの水溶液と接触させる方法は浸漬法を好ましく用いることができる。貴金属イオンの水溶液としては、塩化金酸、塩化金酸ナトリウム、塩化白金酸、塩化白金酸ナトリウム、硝酸銀等の水溶液を好適に用いることができ、貴金属イオンの水溶液濃度としては0.1~5モル%であることが好ましい。 In the above step, the dipping method can be preferably used as the method of contacting with an aqueous solution of noble metal ions. As the aqueous solution of noble metal ions, aqueous solutions of chloroauric acid, sodium chloroaurate, chloroplatinic acid, sodium chloroplatinate, silver nitrate and the like can be suitably used, and the aqueous solution concentration of noble metal ions is 0.1 to 5 mol. % Is preferred.
 貴金属イオンの水溶液の温度は特に限定されず、室温~90℃の範囲であれば良いが、還元反応を促進するためであれば、50~90℃の加熱された水溶液を用いることが好ましい。また、構造物を金属イオンの水溶液中に浸漬する時間は0.5~3時間であればよく、加熱された水溶液に浸漬する場合は30分程度で十分である。 The temperature of the aqueous solution of noble metal ions is not particularly limited and may be in the range of room temperature to 90 ° C. However, in order to promote the reduction reaction, it is preferable to use a heated aqueous solution of 50 to 90 ° C. The time for immersing the structure in the aqueous solution of metal ions may be 0.5 to 3 hours, and about 30 minutes is sufficient when immersed in the heated aqueous solution.
 ポリエチレンイミン単独では還元されにくい金属イオンの場合には、前記で得られた金属イオンを有する構造物中の当該金属イオンを、還元剤、特に低分子量の還元剤溶液または水素ガスと接触させる工程を併用して、該金属イオンを還元することにより、当該金属ナノ粒子を含有するナノ構造複合体被覆型構造物を得ることができる。 In the case of a metal ion that is difficult to reduce with polyethyleneimine alone, a step of bringing the metal ion in the structure having the metal ion obtained above into contact with a reducing agent, particularly a low molecular weight reducing agent solution or hydrogen gas, In combination, by reducing the metal ions, a nanostructure composite-covered structure containing the metal nanoparticles can be obtained.
 この時使用できる還元剤としては、例えば、アスコルビン酸、アルデヒド、ヒドラジン、水素化硼素ナトリウム、水素化硼素アンモニウム、水素などが例として挙げられる。還元剤を用いて金属イオンを還元する際には、その反応は水性媒体中で行うことができ、金属イオンが含まれた構造物を還元剤溶液中に浸漬する方法、または水素ガス雰囲気中放置させる方法を用いることができる。この時、還元剤水溶液の温度は室温~90℃以下の範囲であればよく、また還元剤の濃度としては1~5モル%であることが好ましい。 Examples of the reducing agent that can be used at this time include ascorbic acid, aldehyde, hydrazine, sodium borohydride, ammonium borohydride, hydrogen, and the like. When reducing metal ions using a reducing agent, the reaction can be carried out in an aqueous medium. The structure containing the metal ions is immersed in the reducing agent solution or left in a hydrogen gas atmosphere. Can be used. At this time, the temperature of the reducing agent aqueous solution may be in the range of room temperature to 90 ° C., and the concentration of the reducing agent is preferably 1 to 5 mol%.
 前記工程に適応できる金属イオンの金属種としては、特に限定されないが、還元反応が速やかに進行する点から、銅、マンガン、クロム、ニッケル、錫、バナジウム、パラジウムであることが好ましい。 The metal species of the metal ion that can be adapted to the above process is not particularly limited, but copper, manganese, chromium, nickel, tin, vanadium, and palladium are preferable because the reduction reaction proceeds promptly.
 被覆型構造物を還元剤水溶液に浸漬する際、還元剤水溶液温度は室温または90℃以下の加熱状態でも好適であり、還元剤の濃度は1~5%程度で十分である。 When the coated structure is immersed in the reducing agent aqueous solution, the reducing agent aqueous solution temperature is preferably room temperature or a heating state of 90 ° C. or less, and the concentration of the reducing agent is about 1 to 5%.
 前述の方法で得られた様々な構造物は、室温(25℃)~60℃程度に放置することにより、溶剤や水を除去して、前記した様々な用途に用いることができる。 The various structures obtained by the above-mentioned method can be used for the various applications described above by removing the solvent and water by leaving them at room temperature (25 ° C.) to about 60 ° C.
 以下、実施例により本発明をさらに詳しく説明する。なお、特に断わりがない限り、「%」は「質量%」を表わす。 Hereinafter, the present invention will be described in more detail with reference to examples. Unless otherwise specified, “%” represents “mass%”.
[走査電子顕微鏡によるナノ構造体の形状分析]
 単離乾燥したナノ構造体を両面テープにてサンプル支持台に固定し、それをキーエンス製表面観察装置VE−9800にて観察した。
[Shape analysis of nanostructures by scanning electron microscope]
The isolated and dried nanostructure was fixed to a sample support with a double-sided tape, and observed with a surface observation device VE-9800 manufactured by Keyence.
 合成例1
<直鎖状のポリエチレンイミン(L−PEI)の合成>
 <直鎖状ポリエチレンイミン塩酸塩(LPEI・HCl)の合成>
 市販のポリエチルオキサゾリン(数平均分子量50,000、平均重合度500、Aldrich社製)240gを、5Mの塩酸水溶液1500mLに溶解させた。その溶液をオイルバスにて90℃に加熱し、その温度で10時間攪拌した。反応液にアセトン50mLを加え、ポリマーを完全に沈殿させ、それを濾過し、メタノールで3回洗浄し、白色のポリエチレンイミンの塩酸塩粉末を得た。室温(20~25℃)乾燥後の収量は178gであった。得られた粉末をH−NMR(JEOL JNM−LA300型核磁気共鳴吸収スペクトル測定装置:重水)にて同定したところ、ポリエチルオキサゾリンの側鎖エチル基に由来したピーク1.2ppm(CH)と2.3ppm(CH)が完全に消失していることが確認された。即ち、ポリエチルオキサゾリンが完全に加水分解され、ポリエチレンイミンに変換されたことが示された。
Synthesis example 1
<Synthesis of linear polyethyleneimine (L-PEI)>
<Synthesis of linear polyethyleneimine hydrochloride (LPEI · HCl)>
240 g of commercially available polyethyloxazoline (number average molecular weight 50,000, average polymerization degree 500, manufactured by Aldrich) was dissolved in 1500 mL of 5M aqueous hydrochloric acid. The solution was heated to 90 ° C. in an oil bath and stirred at that temperature for 10 hours. Acetone 50 mL was added to the reaction solution to completely precipitate the polymer, which was filtered and washed three times with methanol to obtain white polyethyleneimine hydrochloride powder. The yield after drying at room temperature (20 to 25 ° C.) was 178 g. When the obtained powder was identified by 1 H-NMR (JEOL JNM-LA300 type nuclear magnetic resonance absorption spectrum measuring apparatus: heavy water), the peak derived from the side chain ethyl group of polyethyloxazoline was 1.2 ppm (CH 3 ). And 2.3 ppm (CH 2 ) were completely eliminated. That is, it was shown that polyethyloxazoline was completely hydrolyzed and converted to polyethyleneimine.
 上記で得た粉末10gを15mLの蒸留水に溶解し、攪拌しながら、その溶液に15%のアンモニア水100mLを滴下した。その混合液を一晩放置した後、沈殿したポリマー会合体粉末を濾過し、そのポリマー会合体粉末を冷水で3回洗浄した。洗浄後の結晶粉末をデシケータ中で室温乾燥し、直鎖状のポリエチレンイミン(L−PEI)を得た。収量は8.7g(結晶水含有)であった。ポリオキサゾリンの加水分解により得られるポリエチレンイミンは、側鎖だけが反応し、主鎖には変化がない。従って、L−PEIの重合度は加水分解前の5,000と同様である。 10 g of the powder obtained above was dissolved in 15 mL of distilled water, and 100 mL of 15% aqueous ammonia was added dropwise to the solution while stirring. The mixture was allowed to stand overnight, and then the precipitated polymer aggregate powder was filtered, and the polymer aggregate powder was washed three times with cold water. The washed crystal powder was dried at room temperature in a desiccator to obtain linear polyethyleneimine (L-PEI). The yield was 8.7 g (including crystal water). In polyethyleneimine obtained by hydrolysis of polyoxazoline, only the side chain reacts and the main chain does not change. Therefore, the polymerization degree of L-PEI is the same as 5,000 before hydrolysis.
 実施例1−1~1−3
[ガラス管内壁がポリマー/オルガノポリシロキサンのナノ構造複合体で被覆された構造物]
 上記合成例1で得たポリマーL−PEIを蒸留水中に加え、80℃まで加熱し、3%の水溶液を調製した。ソーダライム材質のガラス管(内径6mm、長さ5cm)とシリンジをゴム管で連結し、該ガラス管中に一定目安のところまで前記加温したポリマー水溶液を吸い取ってから、30秒間静置した後、該ポリマー水溶液をシリンジの押し力で排出した。この操作でガラス管内壁にL−PEIポリマー層が形成された。該ガラス管を室温にて5分間静置したのち、ガラス管を表1記載のシランカップリング剤であるメルカプトプロピルトリメトキシシラン(STMS)の水溶液(室温:25~30℃)中に15時間浸けた。ガラス管を取り出し、ガラス管内壁を水で洗浄した後、それを室温で乾燥した。
Examples 1-1 to 1-3
[Structure in which inner wall of glass tube is coated with polymer / organopolysiloxane nanostructure composite]
Polymer L-PEI obtained in Synthesis Example 1 was added to distilled water and heated to 80 ° C. to prepare a 3% aqueous solution. A glass tube made of soda lime (inner diameter 6 mm, length 5 cm) and a syringe are connected with a rubber tube, and the heated polymer aqueous solution is sucked into the glass tube up to a certain standard, and then allowed to stand for 30 seconds. The polymer aqueous solution was discharged by a pushing force of a syringe. By this operation, an L-PEI polymer layer was formed on the inner wall of the glass tube. The glass tube was allowed to stand at room temperature for 5 minutes, and then immersed in an aqueous solution (room temperature: 25 to 30 ° C.) of mercaptopropyltrimethoxysilane (STMS), a silane coupling agent described in Table 1, for 15 hours. It was. After the glass tube was taken out and the inner wall of the glass tube was washed with water, it was dried at room temperature.
 上記過程を経て得られたガラス管末端を少々潰し、その破片をSEMにて観察した。図1~3には作製したガラス管内壁表面のSEM写真の結果を示した。いずれの場合でも、内壁には、ナノファイバーをユニット構造とする緻密な配列膜が形成した。なお、比較として、ポリマー層なしのガラス管をメルカプトプロピルトリメトキシシラン(STMS)の水溶液中に10時間以上浸けてみたが、何も観察できなかった。SEM写真からわかるように、STMS濃度を低下させることにつれて、表面構造はナノ芝からネットワーク構造に変化した。 The glass tube end obtained through the above process was slightly crushed, and the fragments were observed with an SEM. 1 to 3 show the results of SEM photographs of the inner surface of the produced glass tube. In either case, a dense array film having nanofibers as a unit structure was formed on the inner wall. For comparison, a glass tube without a polymer layer was immersed in an aqueous solution of mercaptopropyltrimethoxysilane (STMS) for 10 hours or more, but nothing was observed. As can be seen from the SEM picture, the surface structure changed from nano turf to network structure with decreasing STMS concentration.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例2−1~2−4
[ガラス管内壁がポリマー/オルガノポリシロキサンのナノ構造複合体で被覆された構造物]
 実施例1において、STMS/水溶液中浸漬する時間を変えた以外は、実施例1と同様な方法にしてガラス内壁を被覆した構造物を得た(表2)。
Examples 2-1 to 2-4
[Structure in which inner wall of glass tube is coated with polymer / organopolysiloxane nanostructure composite]
In Example 1, except that the time for immersion in the STMS / water solution was changed, a structure in which the glass inner wall was coated was obtained in the same manner as in Example 1 (Table 2).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記過程を経て得られたガラス管末端を少々潰し、その破片をSEMにて観察した。図4~7にはそれぞれの条件下で得たガラス管内壁表面のSEM写真の結果を示した。浸漬3時間では、オルガノポリシロキサンの被覆はあるが、形状発現は全くなく、平の表面であった。浸漬時間を6時間にした場合、ナノファイバーの絡み合いから形成したネットワーク構造が得られた。STMS水溶液中浸漬時間を10時間以上にしたところ、ナノ芝構造が発現した。このことから、STMS濃度をやや高めにした場合、ナノファイバーを特徴とする表面構造を形成させるには、浸漬時間を長くすることが必要条件であることが明らかとなった。 The glass tube end obtained through the above process was slightly crushed, and the fragments were observed with an SEM. 4 to 7 show the results of SEM photographs of the inner surface of the glass tube obtained under each condition. In the immersion for 3 hours, there was a coating of organopolysiloxane, but there was no shape development and the surface was flat. When the immersion time was 6 hours, a network structure formed from entanglement of nanofibers was obtained. When the immersion time in the STMS aqueous solution was set to 10 hours or more, a nanoturf structure was developed. From this, it was found that, when the STMS concentration is slightly increased, it is necessary to increase the immersion time in order to form the surface structure characterized by nanofibers.
 実施例3−1~3−2
[ガラス管内壁がポリマー/オルガノポリシロキサンのナノ構造複合体で被覆された構造物]
 実施例1において、シランカップリング剤として、STMSの替わりにメチルトリメトキシシラン(MTMS)を用いた以外、実施例1と同様な方法にしてガラス内壁を被覆した構造物を得た(表3)。
Examples 3-1 to 3-2
[Structure in which inner wall of glass tube is coated with polymer / organopolysiloxane nanostructure composite]
In Example 1, a structure in which the glass inner wall was coated was obtained in the same manner as in Example 1 except that methyltrimethoxysilane (MTMS) was used instead of STMS as the silane coupling agent (Table 3). .
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記過程を経て得られたガラス管末端を少々潰し、その破片をSEMにて観察した。図8~9にはそれぞれの条件下で得たガラス管内壁表面のSEM写真の結果を示した。浸漬13時間では、オルガノポリシロキサンの被覆はあるが、形状発現は全くなかった(図8a−b)。しかし、浸漬時間を36時間にした系では、緻密なナノ芝構造が発現した(図9a−d)。このことから、MTMSからのオルガノポリシロキサンのナノ構造誘導には、長い浸漬時間が必要条件であることが示唆された。 The glass tube end obtained through the above process was slightly crushed, and the fragments were observed with an SEM. 8 to 9 show the results of SEM photographs of the inner surface of the glass tube obtained under each condition. At 13 hours of immersion, there was an organopolysiloxane coating but no shape development (FIGS. 8a-b). However, in the system in which the immersion time was 36 hours, a dense nanoturf structure was expressed (FIGS. 9a-d). This suggests that a long soaking time is a necessary condition for the induction of the organopolysiloxane nanostructure from MTMS.
 実施例4−1~4−2
[ガラス管内壁がポリマー/オルガノポリシロキサンのナノ構造複合体で被覆された構造物]
 実施例1において、シランカップリング剤としてフェニルトリメトキシシラン(PTMS)を用いた以外、実施例1と同様な方法にしてガラス内壁を被覆した構造物を得た(表4)。
Examples 4-1 to 4-2
[Structure in which inner wall of glass tube is coated with polymer / organopolysiloxane nanostructure composite]
In Example 1, except that phenyltrimethoxysilane (PTMS) was used as a silane coupling agent, a structure having a glass inner wall coated was obtained in the same manner as in Example 1 (Table 4).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記過程を経て得られたガラス管末端を少々潰し、その破片をSEMにて観察した。図10~11にはそれぞれの条件下で得たガラス管内壁表面のSEM写真の結果を示した。浸漬7時間で、明確なナノ芝状の構造が発現した(図10)。浸漬時間を22時間にした系では、芝の「草葉」構造の真っ先が尖った構造ではなく、ロッドの半球状になる傾向であることを確認した(図11)。 The glass tube end obtained through the above process was slightly crushed, and the fragments were observed with an SEM. 10 to 11 show the results of SEM photographs of the inner surface of the glass tube obtained under each condition. A clear nanoturf-like structure was developed after 7 hours of immersion (FIG. 10). In the system in which the immersion time was 22 hours, it was confirmed that the “grass leaf” structure of the turf had a tendency to become a hemispherical rod rather than a pointed structure (FIG. 11).
 実施例5
 [ガラス管内壁がポリマー/オルガノポリシロキサンのナノ構造複合体で被覆された構造物]
 実施例1において、シランカップリング剤をメルカプトプロピルトリメトキシシラン(STMS)とビニルトリメトキシシラン(VTMS)の混合物(等モル混合)を用いた以外、実施例1と同様な方法にしてガラス内壁を被覆した構造物を得た(表5)。
Example 5
[Structure in which inner wall of glass tube is coated with polymer / organopolysiloxane nanostructure composite]
In Example 1, the glass inner wall was formed in the same manner as in Example 1 except that a mixture (equal molar mixture) of mercaptopropyltrimethoxysilane (STMS) and vinyltrimethoxysilane (VTMS) was used as the silane coupling agent. A coated structure was obtained (Table 5).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記過程を経て得られたガラス管末端を少々潰し、その破片をSEMにて観察した。図12にはガラス管内壁表面のSEM写真の結果を示した。ナノ芝状構造が確認された。 The glass tube end obtained through the above process was slightly crushed, and the fragments were observed with an SEM. FIG. 12 shows the results of SEM photographs of the inner surface of the glass tube. Nano-turf structure was confirmed.
 実施例6及び比較例1
[ガラス板表面にポリマー/オルガノポリシロキサンのナノ構造複合体で被覆された構造物]
 濃度が0.5wt%のポリスチレンスルホン酸水溶液を用い、3×2cmのソーダガラス板上にスピンコーター(500rpm/2秒、3000rpm/30秒)にて表面に薄膜を調製した。それを完全乾燥後、上記合成例で得られた3wt%のL−PEIの水溶液(80℃液)に浸け、10秒間静置した。板を取り出し、それを室温状態で5分間静置させた後、STMSの水溶液(STMS/水=0.25mL/50mL)中に15時間浸漬した。板を取り出し、蒸留水で表面洗浄後、空気中乾燥した。これで得た膜の表面をSEMにて観察した(図13)。全体的に緻密なナノ芝構造が形成したことが確認された。
Example 6 and Comparative Example 1
[Structure of glass plate surface coated with polymer / organopolysiloxane nanostructure composite]
A thin film was prepared on the surface of a 3 × 2 cm soda glass plate using a spin coater (500 rpm / 2 seconds, 3000 rpm / 30 seconds) using a polystyrene sulfonic acid aqueous solution having a concentration of 0.5 wt%. After complete drying, it was immersed in an aqueous solution (80 ° C.) of 3 wt% L-PEI obtained in the above synthesis example and allowed to stand for 10 seconds. The plate was taken out, allowed to stand at room temperature for 5 minutes, and then immersed in an aqueous solution of STMS (STMS / water = 0.25 mL / 50 mL) for 15 hours. The plate was taken out, washed with distilled water and then dried in air. The surface of the film thus obtained was observed with an SEM (FIG. 13). It was confirmed that a dense nanoturf structure was formed as a whole.
 比較例1として、実施例6のSTMSのかわりに、テトラメトキシシランを用い、水との混合液(10mLシラン/50mL水)を調製し、その混合液に実施例6と同様な方法でL−PEI吸着のガラススライドを浸漬し、室温で30分保持した。ガラス板を取り出し、蒸留水で表面洗浄後、空気中乾燥した。これで得た膜表面SEMイメージを図14に示した。全体的にナノ芝状シリカ/ポリマー複合皮膜であることが確認された。 As Comparative Example 1, instead of STMS of Example 6, tetramethoxysilane was used to prepare a mixed solution with water (10 mL silane / 50 mL water), and L- PEI adsorption glass slides were immersed and held at room temperature for 30 minutes. The glass plate was taken out, washed with distilled water and then dried in air. The film surface SEM image thus obtained is shown in FIG. It was confirmed to be a nano turf-like silica / polymer composite film as a whole.
 実施例6と比較例1で得られた2種類の構造物の表面の水接触角と擦りテストを行なった。実施例6で得られた表面の膜の水接触角は74°となり、表面は疎水性を示したに対し、比較例1で得られた構造物表面の水接触角は0°で、超親水性を示した。さらに、不織布を用いて、10g加重条件下、皮膜表面の往復擦り試験(HEIDON社製 往復磨耗試験機 TYPE30S)を行なった。実施例6で得られたポリシロキサンを含有する構造物表面(ナノ芝)は、100回往復後、ナノ芝皮膜表層の会合体部分が脱落され、それが芝層表面に差し込まれた様子はあるが、ナノ芝層の構造は壊れることなかった(図15a,b,c)。また、擦りテスト後の疎水性は変らず、水接触角は71.5°であった。それとは反対に、比較例1で得られたシリカナノ芝皮膜の場合、擦り5回往復で、芝層は完全につぶされてしまい、水接触角は34°まで向上した。これは、シリカナノ芝皮膜のシリカ吸水性と芝構造毛細管効果といった二つの効果が消失したことを示唆する。この比較から、シリカの脆さと違って、オルガノポリシロキサンを含有するナノ芝は十分な強靱性を示すことがわかる。 The water contact angle and rubbing test of the surface of the two types of structures obtained in Example 6 and Comparative Example 1 were performed. The water contact angle of the surface film obtained in Example 6 was 74 ° and the surface showed hydrophobicity, whereas the water contact angle of the structure surface obtained in Comparative Example 1 was 0 ° and was superhydrophilic. Showed sex. Furthermore, using a non-woven fabric, a reciprocating rubbing test on the surface of the coating (reciprocating abrasion tester TYPE30S manufactured by HEIDON) was performed under a 10 g load condition. The structure surface (nano turf) containing the polysiloxane obtained in Example 6 was reciprocated 100 times, and then the aggregate part of the surface of the nano turf film was dropped and inserted into the turf layer surface. However, the structure of the nano turf layer was not broken (FIGS. 15a, b, c). Further, the hydrophobicity after the rubbing test was not changed, and the water contact angle was 71.5 °. On the contrary, in the case of the silica nanoturf film obtained in Comparative Example 1, the turf layer was completely crushed by rubbing 5 times and the water contact angle was improved to 34 °. This suggests that the two effects of silica nanoturf coating, silica absorption and lawn structure capillary effect, disappeared. From this comparison, it can be seen that, unlike silica brittleness, nanoturf containing organopolysiloxane exhibits sufficient toughness.

Claims (6)

  1. 固体基材(X)の表面がナノ構造複合体(Y)で被覆されているナノ構造複合体被覆型構造物であって、該ナノ構造複合体(Y)がポリエチレンイミン骨格(a)を有するポリマー(A)とオルガノポリシロキサン(B)とを含有することを特徴とするポリシロキサン含有ナノ構造複合体被覆型構造物。 A nanostructure composite-coated structure in which the surface of a solid substrate (X) is coated with a nanostructure composite (Y), the nanostructure composite (Y) having a polyethyleneimine skeleton (a) A polysiloxane-containing nanostructure composite-covered structure comprising a polymer (A) and an organopolysiloxane (B).
  2. 前記ナノ構造複合体(Y)が複合ナノファイバー(y1)を基本ユニットとし、該複合ナノファイバーが固体基材(X)の表面に対して略垂直の方向を向いている請求項1記載のポリシロキサン含有ナノ構造複合体被覆型構造物。 The poly according to claim 1, wherein the nanostructure composite (Y) has a composite nanofiber (y1) as a basic unit, and the composite nanofiber is oriented substantially perpendicular to the surface of the solid substrate (X). Siloxane-containing nanostructure composite coated structure.
  3. 前記ナノ構造複合体(Y)が複合ナノファイバー(y1)及び/又は複合ナノ粒子(y2)を基本ユニットとし、該複合ナノファイバー(y1)及び/又は複合ナノ粒子(y2)がネットワークを形成して固体基材(Y)を被覆する請求項1記載のポリシロキサン含有ナノ構造複合体被覆型構造物。 The nanostructure composite (Y) has composite nanofiber (y1) and / or composite nanoparticle (y2) as a basic unit, and the composite nanofiber (y1) and / or composite nanoparticle (y2) forms a network. The polysiloxane-containing nanostructure composite-coated structure according to claim 1, wherein the solid substrate (Y) is coated.
  4. ポリエチレンイミン骨格(a)を有するポリマー(A)を含有する溶液中に固体基材(X)を浸漬させた後取り出し、該固体基材(X)の表面にポリマー層を形成させる工程(1)と、
    前記工程(1)で得られたポリマー層を有する固体基材(X)と、オルガノアルコキシシラン(B’)の0.05~0.5体積%溶液とを5時間以上接触させて、固体基材(X)表面のポリマー層中にオルガノポリシロキサン(B)を析出させ、ナノ構造複合体(Y)を形成させる工程(2)と、
    を有することを特徴とするポリシロキサン含有ナノ構造複合体被覆型構造物の製造方法。
    Step (1) of immersing the solid substrate (X) in a solution containing the polymer (A) having a polyethyleneimine skeleton (a) and then taking it out to form a polymer layer on the surface of the solid substrate (X) When,
    The solid substrate (X) having the polymer layer obtained in the step (1) is brought into contact with a 0.05 to 0.5% by volume solution of the organoalkoxysilane (B ′) for 5 hours or more to obtain a solid group. A step (2) of depositing an organopolysiloxane (B) in the polymer layer on the surface of the material (X) to form a nanostructure composite (Y);
    A process for producing a polysiloxane-containing nanostructure composite-covered structure, comprising:
  5. 前記工程(2)で用いるオルガノアルコキシシラン(B’)がシランカップリング剤(b)である請求項4記載のポリシロキサン含有ナノ構造複合体被覆型構造物の製造方法。 The method for producing a polysiloxane-containing nanostructure composite-coated structure according to claim 4, wherein the organoalkoxysilane (B ') used in the step (2) is a silane coupling agent (b).
  6. 前記オルガノアルコキシシラン(B’)中のオルガノ基がメルカプトプロピル基、メチル基、ビニル基、グリシドキシプロピル基又はフェニル基である請求項5記載のポリシロキサン含有ナノ構造複合体被覆型構造物の製造方法。 6. The polysiloxane-containing nanostructure composite-coated structure according to claim 5, wherein the organoalkoxysilane (B ′) has an organo group that is a mercaptopropyl group, a methyl group, a vinyl group, a glycidoxypropyl group, or a phenyl group. Production method.
PCT/JP2011/074376 2010-10-20 2011-10-18 Structure coated with polysiloxane-containing nano structure complex, and process for production thereof WO2012053655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012519825A JP5028549B2 (en) 2010-10-20 2011-10-18 Polysiloxane-containing nanostructure composite-coated structure and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010235418 2010-10-20
JP2010-235418 2010-10-20

Publications (1)

Publication Number Publication Date
WO2012053655A1 true WO2012053655A1 (en) 2012-04-26

Family

ID=45975360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074376 WO2012053655A1 (en) 2010-10-20 2011-10-18 Structure coated with polysiloxane-containing nano structure complex, and process for production thereof

Country Status (2)

Country Link
JP (1) JP5028549B2 (en)
WO (1) WO2012053655A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043584A1 (en) * 2014-09-16 2016-03-24 Zorg Innovaties Nederland B.V. Method for providing a substrate with an antimicrobial coating, and coated substrates obtainable thereby
CN107661780A (en) * 2016-07-29 2018-02-06 中国科学院大连化学物理研究所 A kind of hydrophobic solid base catalyst and its applied in alcohol ester 12 is prepared
JP2019035082A (en) * 2018-09-27 2019-03-07 味の素株式会社 Resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084657A (en) * 2005-09-21 2007-04-05 Dainippon Ink & Chem Inc Organic inorganic composite containing organic inorganic composite nano-fiber
JP2010162788A (en) * 2009-01-16 2010-07-29 Kawamura Inst Of Chem Res Tubular structure for transferring aqueous solution, and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673171B2 (en) * 2011-02-09 2015-02-18 Jfeスチール株式会社 Method for producing high carbon high Mn steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084657A (en) * 2005-09-21 2007-04-05 Dainippon Ink & Chem Inc Organic inorganic composite containing organic inorganic composite nano-fiber
JP2010162788A (en) * 2009-01-16 2010-07-29 Kawamura Inst Of Chem Res Tubular structure for transferring aqueous solution, and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043584A1 (en) * 2014-09-16 2016-03-24 Zorg Innovaties Nederland B.V. Method for providing a substrate with an antimicrobial coating, and coated substrates obtainable thereby
CN107661780A (en) * 2016-07-29 2018-02-06 中国科学院大连化学物理研究所 A kind of hydrophobic solid base catalyst and its applied in alcohol ester 12 is prepared
CN107661780B (en) * 2016-07-29 2020-08-14 中国科学院大连化学物理研究所 Hydrophobic solid base catalyst and application thereof in preparation of alcohol ester dodecahydrate
JP2019035082A (en) * 2018-09-27 2019-03-07 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
JPWO2012053655A1 (en) 2014-02-24
JP5028549B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
US8017234B2 (en) Structural object coated with superhydrophobic nanostructure composite and process for producing the same
WO2010018744A1 (en) Ultrahydrophobic powder, structure with ultrahydrophobic surface, and processes for producing these
Priebe et al. Nanorattles or yolk–shell nanoparticles—what are they, how are they made, and what are they good for?
US7670509B2 (en) Composite nanofiber, composite nanofiber association, complex structure, and production method thereof
JP4503086B2 (en) Superhydrophobic powder, structure having superhydrophobic surface using the same, and production method thereof
KR101066898B1 (en) Method for producing nanostructured composite cladding structure, nanostructured composite cladding structure and reactor using the same
TWI518190B (en) Core - shell type nano - particles and its manufacturing method
JP5563303B2 (en) Mesostructured coatings for the aircraft and aerospace industry
JP3978440B2 (en) Silica / polymer / metal composite material and method for producing the same
WO2014057976A1 (en) Core-shell silica nanoparticles and production method thereof, hollow silica nanoparticle production method using same, and hollow silica nanoparticles obtained by said production method
JP5028549B2 (en) Polysiloxane-containing nanostructure composite-coated structure and method for producing the same
JP4413252B2 (en) Nanostructure composite-coated structure and method for producing the same
Kumar et al. Functionalized nanoparticles: Tailoring properties through surface energetics and coordination chemistry for advanced biomedical applications
JP4469002B2 (en) Structure coated with superhydrophobic nanostructure composite and its production method
JP4101271B2 (en) Acicular surface fine particles and method for producing the same
CN104870386A (en) Transparent substrate, in particular a glass substrate, coated with at least one at least bifunctional porous layer, manufacturing method and uses thereof
JP4510105B2 (en) Titania nanostructure composite-coated structure and method for producing the same
JP3978443B2 (en) Silica / metal complex composite material and method for producing the same
JP4491037B1 (en) Tubular structure for moving aqueous solution and manufacturing method thereof
Guo et al. Fabrication of Co3O4 hierarchically superhydrophobic boat-like hollow cages at the silicon surface
JP2011225694A (en) Water-in-oil type emulsion using super hydrophobic powder as dispersant and method for producing the same
WO2010031877A1 (en) Hybrid silica -polycarbonate porous membranes and porous polycarbonate replicas obtained thereof
JP2010196097A (en) Method for producing structure coated with metal oxide, and structure coated with metal oxide
WO2007010937A1 (en) Microparticle having needle-like surface and process for production thereof
JP2011020327A (en) Structure with aqueous ink repellent surface and method for manufacturing this structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012519825

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834493

Country of ref document: EP

Kind code of ref document: A1