JP5673171B2 - Method for producing high carbon high Mn steel - Google Patents

Method for producing high carbon high Mn steel Download PDF

Info

Publication number
JP5673171B2
JP5673171B2 JP2011025703A JP2011025703A JP5673171B2 JP 5673171 B2 JP5673171 B2 JP 5673171B2 JP 2011025703 A JP2011025703 A JP 2011025703A JP 2011025703 A JP2011025703 A JP 2011025703A JP 5673171 B2 JP5673171 B2 JP 5673171B2
Authority
JP
Japan
Prior art keywords
steel
cracks
slab
less
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011025703A
Other languages
Japanese (ja)
Other versions
JP2012162788A (en
Inventor
寿之 伊藤
寿之 伊藤
上原 博英
博英 上原
俊朗 石毛
俊朗 石毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011025703A priority Critical patent/JP5673171B2/en
Publication of JP2012162788A publication Critical patent/JP2012162788A/en
Application granted granted Critical
Publication of JP5673171B2 publication Critical patent/JP5673171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、高炭素高Mn鋼材の製造方法に関し、鋼板を曲げて溶接し、鋼管にする場合などに生ずる底割れや、溶接部に生ずるフッククラックを防止し、鋳造の際のスラブ等の割れを防止することができる、高炭素高Mn鋼材の製造方法に関する。   The present invention relates to a method for producing a high carbon high Mn steel material, and prevents cracks such as bottom cracks that occur when a steel plate is bent and welded to form a steel pipe, hook cracks that occur in a welded portion, and cracks such as slabs during casting. It is related with the manufacturing method of the high carbon high Mn steel materials which can prevent.

耐磨耗性が要求される鋼板、鋼管等の鋼材として、例えば、質量%で、炭素:0.40%以上、Mn:1.5%以上に、炭素やMnを高めた高炭素高Mn鋼材がある。このような高炭素高Mn鋼材では、特にMnが、鋼中に不可避的に混入するSと結びつき、MnSとして析出して、鋼中介在物となりやすい。このMnSは、圧延により延ばされると、同介在物の形状が先鋭化するため、鋼板に曲げの力が作用したときに、鋼板に割れが生じる問題を惹き起こす。   As steel materials such as steel plates and steel pipes that require wear resistance, for example, there are high carbon and high Mn steel materials in which carbon and Mn are increased to mass%, carbon: 0.40% or more, Mn: 1.5% or more. In such a high-carbon high-Mn steel material, Mn is particularly associated with S inevitably mixed in the steel, and precipitates as MnS, which tends to be inclusions in the steel. When this MnS is extended by rolling, the shape of the inclusions sharpens, so that when a bending force acts on the steel plate, it causes a problem that the steel plate is cracked.

しかしながら、従来、高炭素高Mn鋼材を対象とした、割れを防止できる方法は知られておらず、対象が本発明と異なる特許文献1や、目的が本発明と異なる特許文献2などがわずかに知られているにすぎない。
特許文献1には、Mn含有率が0.20〜0.65%とさほど高くない高炭素鋼(炭素:0.25〜0.60%)を対象として、連続鋳造してスラブを製造するに際し、モールド注湯時の温度から鋳片断面の平均温度が1100℃までの平均冷却速度を5℃/min以上とし、引き続いて、1150℃以上の温度に加熱して熱間圧延することで、鋼中に残留する水素に起因する割れを防止し、靭性を確保する方法が提案されている。
However, conventionally, there is no known method capable of preventing cracking for high carbon and high Mn steel materials, and Patent Document 1 whose object is different from the present invention, Patent Document 2 whose object is different from the present invention, and the like are slightly. It is only known.
In Patent Document 1, when manufacturing a slab by continuously casting a high carbon steel (carbon: 0.25 to 0.60%) whose Mn content is not so high as 0.20 to 0.65%, the temperature from the mold pouring temperature is used. Due to the residual hydrogen in the steel, the average cooling rate until the average temperature of the slab cross section reaches 1100 ° C is 5 ° C / min or higher, followed by hot rolling at a temperature of 1150 ° C or higher. A method for preventing cracking and ensuring toughness has been proposed.

また、特許文献2には、低炭素鋼などを対象として、鋼中に残留する水素に起因する内質欠陥を防止することを目的に、溶鋼中の水素濃度のほか、加熱前(スラブ段階)の脱水素率や加熱終了時の脱水素率、さらに熱間圧延後の脱水素率などから、鋼板中に残留する水素濃度を計算により推定し、同水素濃度がある一定の値より大きければ、ピット式またはカバー式の徐冷炉にてスラブを徐冷する方法が提案されている。   In addition, in Patent Document 2, for low carbon steel and the like, in order to prevent internal defects caused by hydrogen remaining in the steel, in addition to the hydrogen concentration in the molten steel, before heating (slab stage) Estimate the hydrogen concentration remaining in the steel sheet from the dehydrogenation rate of the steel sheet, the dehydrogenation rate at the end of heating, and the dehydrogenation rate after hot rolling, and if the hydrogen concentration is greater than a certain value, A method of slowly cooling a slab in a pit type or cover type annealing furnace has been proposed.

特開2005−344195号公報JP 2005-344195 A 特開2005−23413号公報JP 2005-23413 A

これら特許文献1や特許文献2に記載された方法は、本発明と対象や目的が異なるため、先述のような、鋼板に曲げの力が作用したときに、鋼板に割れが生じる問題を解決するのにはつながらない。鋼板を曲げることに加え、さらに溶接して、鋼管にする場合は、図5に示すように、曲げの底部に局部的に大きな力が作用し、底割れと呼ばれる割れが生じやすいという問題もある。この底割れを防止するためには、鋼中にCaを添加する方法が有効と考えられる。MnSのような圧延によって先鋭化する介在物ではなく、CaSのような丸みのある介在物を生成させることができるからである。   These methods described in Patent Document 1 and Patent Document 2 are different in object and purpose from the present invention, and thus solve the problem of cracking in a steel sheet when bending force is applied to the steel sheet as described above. It does not lead to. In addition to bending a steel plate, when further welding to make a steel pipe, as shown in FIG. 5, there is a problem that a large force acts locally on the bottom of the bending, and a crack called a bottom crack is likely to occur. . In order to prevent this bottom cracking, it is considered effective to add Ca to the steel. This is because it is possible to generate inclusions having roundness such as CaS, not inclusions sharpened by rolling such as MnS.

しかしながら、鋼中にCaを添加しすぎると、今度は、図6に示すように、鋼管の溶接部に割れが生じやすくなる。この溶接部の割れはCaOの析出に起因しており、溶接の際に鋼板両端を圧着させたときに近傍のメタルフローが急峻に立ち上がり、これに伴って偏析介在物が隆起して表面に割れとなって現れるものであるが、割れた破面の形状が鉤形をしていることから、フッククラックと呼ばれる。   However, if too much Ca is added to the steel, this time, cracks are likely to occur in the welded portion of the steel pipe, as shown in FIG. This weld crack is caused by the precipitation of CaO, and when the both ends of the steel plate are crimped during welding, the nearby metal flow rises sharply, accompanied by the segregation inclusions rising and cracking on the surface. However, it is called a hook crack because the shape of the fractured surface has a hook shape.

また、鋼中にCaを添加しすぎると、CaOが析出して(CaO)AlOを生成させ、これがクラスター化して、結晶粒を粗大化させるため、鋳造後の鋳片(スラブ等)が割れて破断しやすくなるという問題もある。
よって、このような高炭素高Mn鋼材の製造にあたり、スラブ等の割れを防止するための適切な製造方法が望まれる。
If too much Ca is added to the steel, CaO precipitates to form (CaO) Al 2 O 3, which forms clusters and coarsens the crystal grains. There is also a problem that the cracks are easily broken.
Therefore, in manufacturing such a high carbon high Mn steel material, an appropriate manufacturing method for preventing cracking of a slab or the like is desired.

本発明は、従来技術のこのような問題を解決するためになされたものである。すなわち、本発明は、鋼板を曲げて溶接し、鋼管にする場合などに生ずる底割れや、溶接部に生ずるフッククラックを防止し、鋳造の際のスラブ等の割れを防止することができる、高炭素高Mn鋼材の製造方法を提供することを目的とする。   The present invention has been made to solve such problems of the prior art. That is, the present invention prevents bottom cracks that occur when bending and welding a steel plate to form a steel pipe, hook cracks that occur in the welded portion, and prevents cracks such as slabs during casting. It aims at providing the manufacturing method of carbon high Mn steel materials.

発明者らは、高炭素高Mn鋼材を対象に、鋼中のCaをSとの関係(Ca/S)で適切な範囲とした上、鋳造後の鋼素材を所定温度まで徐冷することにより、上記課題を解決した。
図1は、質量%で、C:0.40〜0.50%、Si:0.10〜0.30%、Mn:1.50〜1.70%、P:0.08%以下、S:0.01%以下、Al:0.010〜0.030%、Ca:0.0015〜0.0035%とし、Ca/Sが変動するよう各成分の含有比率を調整したものについて、フッククラックの発生率を調べたものである。Ca/Sを0.6以下とした領域にて、フッククラックの発生率が減少していることがわかる。
The inventors set the Ca in the steel to an appropriate range in relation to S (Ca / S), and gradually cool the steel material after casting to a predetermined temperature for high carbon high Mn steel materials. The above problem has been solved.
FIG. 1 shows mass%, C: 0.40 to 0.50%, Si: 0.10 to 0.30%, Mn: 1.50 to 1.70%, P: 0.08% or less, S: 0.01% or less, Al: 0.010 to 0.030%, Ca: The occurrence rate of hook cracks was examined for those in which the content ratio of each component was adjusted to 0.0015 to 0.0035% and Ca / S varied. It can be seen that the occurrence rate of hook cracks decreases in the region where Ca / S is 0.6 or less.

すなわち、本発明は、以下の通りである。
(1) 質量%で、C:0.40〜0.50%、
Si:0.10〜0.30%、
Mn:1.50〜1.70%、
P:0.08%以下、
S:0.01%以下、
Al:0.010〜0.030%
を含有し、さらにCaを、Ca:0.0015〜0.0035%で、しかも、Ca/Sが0.3〜0.6となるように含有し、残部がFeおよび不可避的不純物からなる組成の
鋼素材を鋳造した後、
該鋼素材を、該鋼素材の表面温度が700℃〜450℃の範囲にて、該鋼素材の冷却速度が、前記鋼素材の表面温度で測定して時間的な平均が10℃/h以下となるように、450℃以下になるまで徐冷し、
しかる後、熱間圧延する
ことを特徴とする高炭素高Mn鋼材の製造方法。
That is, the present invention is as follows.
(1) By mass%, C: 0.40 to 0.50%,
Si: 0.10-0.30%
Mn: 1.50 to 1.70%
P: 0.08% or less,
S: 0.01% or less,
Al: 0.010 to 0.030%
In addition, after casting a steel material having a composition of Ca: 0.0015 to 0.0035% and Ca / S of 0.3 to 0.6, with the balance being Fe and inevitable impurities,
When the steel material has a surface temperature of 700 ° C. to 450 ° C., the cooling rate of the steel material is measured at the surface temperature of the steel material, and the temporal average is 10 ° C./h or less. Slowly cool to 450 ° C or lower so that
Thereafter, hot rolling is performed, and a method for producing a high carbon high Mn steel material.

本発明によれば、高炭素高Mn鋼材の製造にあたり、例えば鋼板を曲げて溶接し、鋼管にする場合などに生ずる底割れや、溶接部に生ずるフッククラックを防止し、鋳造の際のスラブ等の割れを防止することができる。   According to the present invention, in the production of high carbon high Mn steel material, for example, when bending and welding a steel plate to form a steel pipe, it prevents bottom cracks and hook cracks generated in a welded portion, slabs during casting, etc. Can be prevented.

本発明の効果について説明するためのグラフである。It is a graph for demonstrating the effect of this invention. 本発明の実施形態について説明するための説明図である。It is explanatory drawing for demonstrating embodiment of this invention. 本発明の実施形態について説明するための説明図である。It is explanatory drawing for demonstrating embodiment of this invention. 本発明の実施形態について説明するための説明図である。It is explanatory drawing for demonstrating embodiment of this invention. 従来技術の問題について説明するための説明図である。It is explanatory drawing for demonstrating the problem of a prior art. 従来技術の問題について説明するための説明図である。It is explanatory drawing for demonstrating the problem of a prior art.

以下、本発明の各構成要件を規定した理由について説明する。成分における%表示は、質量%を意味する。
C:0.40〜0.50%
Cは、鋼の降伏強度、引張強さなどの強度を確保する目的で、0.40%以上に規定する。一方、0.50%を超える過剰な含有は靭性が低下するため、0.50%以下に規定する。
Hereinafter, the reason for defining each component of the present invention will be described. % Indication in a component means the mass%.
C: 0.40 to 0.50%
C is specified to be 0.40% or more for the purpose of ensuring the yield strength and tensile strength of the steel. On the other hand, excessive content exceeding 0.50% decreases the toughness, so it is specified to be 0.50% or less.

Si:0.10〜0.30%
Siは、鋼の固溶強化に有効な元素であり、鋼の降伏強度、引張強さなどの強度を確保する目的で、0.10%以上に規定する。一方、0.30%を超える過剰な含有は製品鋼板の表面品質を悪化させるため、0.30%以下に規定する。
Mn:1.50〜1.70%
Mnは、鋼の固溶強化、焼入性の向上、組織強化に有効な元素であり、鋼の降伏強度、引張強さなどの強度を確保し、耐摩耗性を確保する目的で、1.50%以上に規定する。焼入性が低下すると、組織強化に有効なマルテンサイトが得にくくなるとともに、パーライトの生成が助長される。一方、1.70%を超える過剰な含有は、鋳造する際に、スラブ等の鋼素材の表面やコーナー部に割れを生じやすくするとともに、偏析を助長するため、1.70%以下に規定する。
Si: 0.10 to 0.30%
Si is an element effective for solid solution strengthening of steel, and is specified to be 0.10% or more for the purpose of securing strength such as yield strength and tensile strength of steel. On the other hand, excessive content exceeding 0.30% deteriorates the surface quality of the product steel plate, so it is specified to be 0.30% or less.
Mn: 1.50 to 1.70%
Mn is an element effective for solid solution strengthening of steel, improvement of hardenability and structure strengthening, 1.50% for the purpose of ensuring the strength of steel such as yield strength and tensile strength and ensuring wear resistance. This is specified above. When the hardenability is lowered, it becomes difficult to obtain martensite effective for strengthening the structure, and generation of pearlite is promoted. On the other hand, an excessive content exceeding 1.70% is specified to 1.70% or less in order to facilitate the occurrence of cracks in the surface and corners of steel materials such as slabs during casting and to promote segregation.

P:0.08%以下
Pは、鋼の固溶強化に有効な元素であり、このような効果を得るためには0.01%以上含有することが望ましいが、0.08%を超える過剰な含有は、偏析を助長するため、0.08%以下に規定する。好ましくは0.05%以下にする。
S:0.01%以下
Sは、鋼中では硫化物系介在物として存在し、鋼材の延性、曲げ性を低下させる。このような悪影響は、Sを0.01%以下に低減することにより、許容できる程度となる。このため、0.01%以下に規定する。
P: 0.08% or less
P is an element effective for solid solution strengthening of steel, and it is desirable to contain 0.01% or more in order to obtain such an effect, but an excessive content exceeding 0.08% promotes segregation. It is prescribed below%. Preferably it is made 0.05% or less.
S: 0.01% or less
S exists as sulfide inclusions in steel, and lowers the ductility and bendability of the steel material. Such an adverse effect can be tolerated by reducing S to 0.01% or less. For this reason, it is specified to be 0.01% or less.

Al:0.010〜0.030%
Alは、鋼の溶製段階で脱酸剤として用いられることが多い。この脱酸剤としての効果を発揮するためには、0.010%以上含有するよう規定する。一方、0.030%を超える過剰な含有は、不要な介在物の形成、溶接性の低下などをもたらすため、0.030%以下に規定する。
Ca:0.0015〜0.0035%
Caは、鋼板を曲げて溶接し、鋼管にする場合などに生ずる底割れを防止するため、0.0015%以上含有するように規定する。一方、0.0035%を超える過剰な含有は、上記したCaOの析出を助長するため、フッククラックが生じやすくなるほか、CaOが析出して(CaO)AlOを生成させ、これがクラスター化して、結晶粒を粗大化させるため、スラブ等の鋼素材が割れて破断しやすくなる。このため、0.0035%以下に規定する。
Al: 0.010 to 0.030%
Al is often used as a deoxidizer in the melting stage of steel. In order to exert the effect as the deoxidizer, the content is specified to be 0.010% or more. On the other hand, an excessive content exceeding 0.030% leads to the formation of unnecessary inclusions and a decrease in weldability.
Ca: 0.0015 to 0.0035%
Ca is specified to be contained in an amount of 0.0015% or more in order to prevent bottom cracking that occurs when a steel plate is bent and welded to form a steel pipe. On the other hand, an excessive content exceeding 0.0035% promotes the precipitation of CaO described above, so that hook cracks are easily generated, and CaO is precipitated to form (CaO) Al 2 O 3 , which is clustered, Since the crystal grains are coarsened, a steel material such as a slab is easily broken and broken. For this reason, it is specified to be 0.0035% or less.

Ca/S:0.3〜0.6
鋼中にCaを添加することで、MnSのような圧延によって先鋭化する介在物を、CaSのような丸みのある介在物とすることができる。このような効果を得るためには、Ca/Sを0.3以上にする必要がある。一方、Ca/Sが0.6を超えると、先述のように、フッククラックが生じやすくなるほか、スラブ等の鋼素材が割れて破断しやすくなる。このため、0.6以下に規定する。
Ca / S: 0.3 to 0.6
By adding Ca to the steel, inclusions sharpened by rolling such as MnS can be made round inclusions such as CaS. In order to obtain such an effect, Ca / S needs to be 0.3 or more. On the other hand, if Ca / S exceeds 0.6, hook cracks are likely to occur as described above, and steel materials such as slabs are easily broken and broken. For this reason, it is defined as 0.6 or less.

鋳造
本発明では、上記した組成を有する溶鋼を鋳造してスラブ等の鋼素材とするが、鋳造は連続鋳造によるほか、造塊によってもよい。連続鋳造した場合は直接スラブに鋳造することができるが、造塊した場合は分塊圧延し、熱間圧延してスラブ等の鋼素材とする。なお、ここにいうスラブ等は、ビレットやブルーム等も含む意味とする。
Casting In the present invention, molten steel having the above-described composition is cast into a steel material such as a slab, but the casting may be performed by ingot forming in addition to continuous casting. When it is continuously cast, it can be cast directly on the slab, but when it is ingoted, it is rolled into pieces and hot-rolled into a steel material such as slab. In addition, the slab etc. here are meant to include billets and blooms.

徐冷
本発明では、上記成分範囲の溶鋼を鋳造してスラブ等の鋼素材とした後、鋼素材の表面温度が450℃以下になるまで、カバー式の徐冷炉にて徐冷する。これにより、スラブ等の鋼素材の割れを防止できる。
徐冷停止温度が450℃を超えると、スラブ等の鋼素材の割れが発生する場合があるため、スラブ等の表面温度が700℃〜450℃における冷却速度が、スラブ等の表面温度で測定して時間的な平均が10℃/h以下となるように、450℃以下になるまで徐冷する。例えば、図2に示すように、カバー式の徐冷炉にて徐冷する。
Slow cooling In the present invention, molten steel having the above component ranges is cast into a steel material such as a slab, and then slowly cooled in a cover-type slow cooling furnace until the surface temperature of the steel material becomes 450 ° C. or lower. Thereby, the crack of steel materials, such as a slab, can be prevented.
If the slow cooling stop temperature exceeds 450 ° C, cracking of steel materials such as slabs may occur, so the cooling rate when the surface temperature of slabs is 700 ° C to 450 ° C is measured at the surface temperature of slabs etc. And gradually cool to 450 ° C. or lower so that the temporal average is 10 ° C./h or lower. For example, as shown in FIG. 2, it is slowly cooled in a cover-type slow cooling furnace.

スラブ化した高炭素高Mn鋼材は、例えば、図3に示すような熱間圧延ラインや、図4に示す厚板圧延ラインにて所定の加熱温度1100℃〜1300℃に加熱した後、熱間圧延することで、所望の寸法形状の鋼板にすることができる。あるいは、ここには例を図示しないが、形鋼圧延ラインにて熱間圧延することで、形鋼にすることなどもでき、熱間圧延することで、所望の寸法形状の鋼材にすることができる。   The slabified high carbon high Mn steel is heated to a predetermined heating temperature of 1100 ° C. to 1300 ° C. in a hot rolling line as shown in FIG. 3 or a thick plate rolling line as shown in FIG. By rolling, a steel plate having a desired size and shape can be obtained. Or although an example is not illustrated here, it can also be made into a shape steel by hot rolling in a shape steel rolling line, and can be made into a steel material of a desired size and shape by hot rolling. it can.

表1に示す鋼を溶製し、連続鋳造にてスラブ(厚さ250mm)とした。鋳造後、表2に示す条件にて冷却した。得られたスラブ各100本について目視にて割れの有無を調査した。次いで、これらスラブ各100本を1100〜1300℃に加熱して熱間圧延し、厚さ20〜40mm、幅1450〜1800mmの鋼板とした。次に、これら鋼板の幅方向を円形に変形させ、結合部を電気溶接し、外径450〜550mmの鋼管とした。得られた鋼管について、超音波探傷によりフッククラック、底割れについて調査した。   The steel shown in Table 1 was melted and made into a slab (thickness 250 mm) by continuous casting. After casting, it was cooled under the conditions shown in Table 2. Each 100 slabs obtained were visually examined for cracks. Next, each of these 100 slabs was heated to 1100-1300 ° C. and hot-rolled to obtain a steel plate having a thickness of 20-40 mm and a width of 1450-1800 mm. Next, the width direction of these steel plates was deformed into a circle, and the joints were electrically welded to form steel pipes having an outer diameter of 450 to 550 mm. The obtained steel pipe was examined for hook cracks and bottom cracks by ultrasonic flaw detection.

Figure 0005673171
Figure 0005673171

なお、スラブ徐冷「有」の場合は、カバー式の徐冷炉にスラブを装入して冷却した。カバー式の徐冷炉内では、スラブの表面温度で測定して時間的な平均が10℃/h以下となるように徐冷した。
なお、スラブ割れ発生率は、鋳造後に目視によりスラブの破断が観察されたスラブの本数が、鋳造したスラブの本数に占める比率とした。底割れ発生率は、コイル状に巻かれた鋼板を、溶接管の製造ラインの入側に装入し供給していく際の目視確認により割れがないかを確認して、割れが発生した鋼管の本数が、鋳造したスラブから製造した鋼管の本数に占める比率とした。フッククラック発生率は、超音波探傷により、鋼管表面にて、一箇所でも観察された鋼管の本数が、鋳造したスラブから製造した鋼管の本数に占める比率とした。得られた結果を表2に示す。
In the case of slab slow cooling “Yes”, the slab was charged into a cover-type slow cooling furnace and cooled. In the cover type slow cooling furnace, the cooling was performed so that the average over time was 10 ° C./h or less as measured at the surface temperature of the slab.
The occurrence rate of slab cracking was the ratio of the number of slabs in which slab breakage was visually observed after casting to the number of cast slabs. The rate of occurrence of bottom cracks is determined by checking the presence of cracks by visual inspection when loading and supplying the coiled steel sheet to the inlet side of the welded pipe production line. Is the ratio of the number of steel pipes manufactured from the cast slab. The incidence of hook cracks was defined as the ratio of the number of steel pipes observed at one location on the steel pipe surface to the number of steel pipes manufactured from the cast slab by ultrasonic flaw detection. The obtained results are shown in Table 2.

Figure 0005673171
Figure 0005673171

表2から、本発明例はいずれも、スラブ割れの発生は認められず、鋼管に加工後の底割れ、フッククラックの発生は、従来例に比べて減少している。これに対し、本発明の範囲を外れる比較例は、スラブ割れが発生したり、底割れ、フッククラックが発生したりしている。   From Table 2, the occurrence of slab cracks is not observed in any of the examples of the present invention, and the occurrence of bottom cracks and hook cracks after being processed in the steel pipe is reduced as compared with the conventional example. On the other hand, in the comparative examples that are outside the scope of the present invention, slab cracks occur, bottom cracks, and hook cracks occur.

Claims (1)

質量%で、C:0.40〜0.50%、
Si:0.10〜0.30%、
Mn:1.50〜1.70%、
P:0.08%以下、
S:0.01%以下、
Al:0.010〜0.030%
を含有し、さらにCaを、Ca:0.0015〜0.0035%で、しかも、Ca/Sが0.3〜0.6となるように含有し、残部がFeおよび不可避的不純物からなる組成の
鋼素材を鋳造した後、
該鋼素材を、該鋼素材の表面温度が700℃〜450℃の範囲にて、該鋼素材の冷却速度が、前記鋼素材の表面温度で測定して時間的な平均が10℃/h以下となるように、450℃以下になるまで徐冷し、
しかる後、熱間圧延する
ことを特徴とする高炭素高Mn鋼材の製造方法。
% By mass, C: 0.40 to 0.50%,
Si: 0.10-0.30%
Mn: 1.50 to 1.70%
P: 0.08% or less,
S: 0.01% or less,
Al: 0.010 to 0.030%
In addition, after casting a steel material having a composition of Ca: 0.0015 to 0.0035% and Ca / S of 0.3 to 0.6, with the balance being Fe and inevitable impurities,
When the steel material has a surface temperature of 700 ° C. to 450 ° C., the cooling rate of the steel material is measured at the surface temperature of the steel material, and the temporal average is 10 ° C./h or less. Slowly cool to 450 ° C or lower so that
Thereafter, hot rolling is performed, and a method for producing a high carbon high Mn steel material.
JP2011025703A 2011-02-09 2011-02-09 Method for producing high carbon high Mn steel Active JP5673171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011025703A JP5673171B2 (en) 2011-02-09 2011-02-09 Method for producing high carbon high Mn steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011025703A JP5673171B2 (en) 2011-02-09 2011-02-09 Method for producing high carbon high Mn steel

Publications (2)

Publication Number Publication Date
JP2012162788A JP2012162788A (en) 2012-08-30
JP5673171B2 true JP5673171B2 (en) 2015-02-18

Family

ID=46842454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025703A Active JP5673171B2 (en) 2011-02-09 2011-02-09 Method for producing high carbon high Mn steel

Country Status (1)

Country Link
JP (1) JP5673171B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053655A1 (en) * 2010-10-20 2012-04-26 一般財団法人川村理化学研究所 Structure coated with polysiloxane-containing nano structure complex, and process for production thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3156525B2 (en) * 1994-09-09 2001-04-16 日本鋼管株式会社 Manufacturing method of steel plate for welded structure with excellent cross weld joint characteristics
JP4358807B2 (en) * 2005-09-21 2009-11-04 株式会社神戸製鋼所 Method for preventing cracks in continuous cast pieces of high-strength steel
JP4905031B2 (en) * 2006-09-29 2012-03-28 Jfeスチール株式会社 Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5540646B2 (en) * 2009-10-20 2014-07-02 Jfeスチール株式会社 Low yield ratio high strength ERW steel pipe and method for producing the same

Also Published As

Publication number Publication date
JP2012162788A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
TWI392748B (en) Pipeline steel and steel pipe
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
JP5633594B2 (en) Cold-rolled steel sheet excellent in punchability and heat-strain resistance and method for producing the same
JP6728455B1 (en) Highly corrosion resistant Ni-Cr-Mo steel excellent in weldability and surface properties and method for producing the same
JP2013032584A (en) Thick-walled high-strength seamless steel pipe for linepipe having excellent sour resistance, and process for producing same
JP5671400B2 (en) Steel wire for springs excellent in wire drawing workability and fatigue properties after wire drawing, and steel wire for springs excellent in fatigue properties and spring workability
WO2014192251A1 (en) Seamless steel pipe for line pipe used in sour environment
JP6086086B2 (en) Ultra-thick steel plate with excellent HIC resistance and manufacturing method thereof
JP2013095928A (en) High tensile strength steel sheet excellent in toughness and manufacturing method thereof
JPH08176750A (en) Ferritic stainless steel for working bellows
JP2009074123A (en) METHOD FOR MANUFACTURING Ni-CONTAINING STEEL HAVING EXCELLENT SURFACE QUALITY
JP5357439B2 (en) Linear steel or bar steel that can omit spheroidizing annealing
JP6222041B2 (en) Ultra-thick steel plate with excellent HIC resistance and manufacturing method thereof
JP2021181624A (en) Steel sheet, member subject and manufacturing method of them
JP5673171B2 (en) Method for producing high carbon high Mn steel
JP7206907B2 (en) Rolled H-section steel and its manufacturing method
JP5254130B2 (en) Slab handling method during cooling of slab slab with ductile brittle transition temperature of 160 ° C or higher
JP4709568B2 (en) UO steel pipe with excellent sour resistance
JP5195802B2 (en) Billet manufacturing method
JP4922971B2 (en) Composite roll for hot rolling and manufacturing method thereof
JP2019081929A (en) Nickel-containing steel plate and method for manufacturing the same
JP6347164B2 (en) Low carbon aluminum killed steel manufacturing method
JP2018168460A (en) Ferritic stainless steel pipe and ferritic stainless steel pipe for automotive exhaust system parts
JP2010174293A (en) Steel sheet to be die-quenched superior in hot-punchability

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130617

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5673171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250