WO2012053572A1 - Method for producing 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing compositions - Google Patents

Method for producing 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing compositions Download PDF

Info

Publication number
WO2012053572A1
WO2012053572A1 PCT/JP2011/074094 JP2011074094W WO2012053572A1 WO 2012053572 A1 WO2012053572 A1 WO 2012053572A1 JP 2011074094 W JP2011074094 W JP 2011074094W WO 2012053572 A1 WO2012053572 A1 WO 2012053572A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
trimethyl
dihydroquinoline
rubber
Prior art date
Application number
PCT/JP2011/074094
Other languages
French (fr)
Japanese (ja)
Inventor
佳余子 阿部
ひろし 前田
竹内 謙一
太田 義輝
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN2011800609512A priority Critical patent/CN103261166A/en
Publication of WO2012053572A1 publication Critical patent/WO2012053572A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/04Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
    • C07D215/06Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F26/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F26/06Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3437Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone

Definitions

  • the present invention relates to a process for producing a 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition.
  • JP-A-53-145854 discloses a condensation reaction product of aniline and acetone as an anti-aging agent for vulcanized rubber used in the manufacture of automobile tires.
  • JP-A-6-228375 discloses a 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition having a primary amine content of 1% by mass or less based on the total amount of the composition. Furthermore, as a production method thereof, 2,2,4-trimethyl-1,2-dihydroquinoline and 2,2,4-trimethyl-1,2-dihydroquinoline are distilled from a mixture containing 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof. A method comprising a step of removing and a step of polymerizing 2,2,4-trimethyl-1,2-dihydroquinoline removed in the previous step is also disclosed.
  • the present invention [1] 2,2,4-Trimethyl-1,2-dihydroquinoline and a polymer thereof, a mixture containing 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass in total, and 1 mol of the primary amine 2,2,4-trimethyl-1,2-dihydro having a primary amine content of 1% by mass or less based on the total amount of the composition, comprising a step of contacting 3 to 10 mol of carboxylic acid anhydride with respect to Method for producing quinoline polymer-containing composition; [2] Acetone and aniline are reacted to produce 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof, and 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass in total.
  • Obtaining a mixture comprising: Contacting the resulting mixture with 3 to 10 moles of carboxylic anhydride per mole of primary amine;
  • the production method according to [1], comprising: [3] A 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition obtained by the production method according to [1] or [2], wherein a molded product is obtained by the following preparation method. 2,2,4-trimethyl-1,2-dihydroquinoline polymerization characterized in that the transmittance of light at 600 nm after the molded product is kept at 100 ° C. for 1 hour is 0.5% or less.
  • a blend is obtained by blending 2 parts by weight of a 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition and 2 parts by weight of insoluble sulfur with 100 parts by weight of butadiene rubber.
  • Preparing a 2 mm thick molding [4] 2 to 10 parts by mass of insoluble sulfur with respect to 100 parts by mass of raw rubber selected from the group consisting of natural rubber and diene rubber, and obtained by the production method according to [1] or [2] A rubber composition obtained by blending 0.5 to 5 parts by mass of a 2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition; [5] Use of a 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition obtained by the production method according to [1] or [2] as an anti-aging agent for tires; [6] Use of a composition obtained by mixing a condensation reaction product of aniline and acetone and a carboxylic acid anhydride to improve the heat resistance of the vulcanized rubber; [7] A method for improving the heat resistance of a vulcanized rubber, comprising the following steps (1), (2) and (3): (1) 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof, a mixture containing
  • step (1) Vulcanizing the kneaded product to obtain a vulcanized rubber; [8] The improvement method according to [7], wherein step (1) is performed in the absence of a rubber component; [9] The improvement method according to [7] or [8], wherein step (1) is performed in the absence of a sulfur component; [10] The amount of the carboxylic acid anhydride used in the step (1) is 0.6 to 5 mol with respect to 1 kg of the condensation reaction product of aniline and acetone.
  • a heat resistance improver for vulcanized rubber obtained by mixing a condensation reaction product of aniline and acetone and a carboxylic acid anhydride;
  • a condensation reaction product of aniline and acetone is a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline, 2,2,4-trimethyl-1,2-dihydroquinoline, and primary The heat resistance improving agent for vulcanized rubber according to [11], which is a mixture containing an amine;
  • the condensation reaction product of aniline and acetone is a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline, 2,2,4-trimethyl-1,2-dihydroquinoline, and 2 , 2,4-Trimethyl-1,2-dihydroquinoline and 2,2,4-trimethyl-1,2-dihydroquinoline in a total of 100 parts by mass, a mixture containing 2 to 6 parts by mass of a primary amine [11] or [12], wherein the heat resistance improver for
  • Such a production method includes 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof, and a mixture containing 2 to 6 parts by mass of a primary amine with respect to a total of 100 parts by mass (hereinafter referred to as “not yet”).
  • a purified mixture ”) and a step of contacting 3 to 10 mol of carboxylic acid anhydride with respect to 1 mol of the primary amine are examples of 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof.
  • 2,2,4-Trimethyl-1,2-dihydroquinoline and a polymer thereof have a structure mainly represented by the following formula (I).
  • 2,2,4-Trimethyl-1,2-dihydroquinoline and a polymer thereof are preferably produced by reacting acetone and aniline, and reacting aniline and acetone in the presence of an acidic catalyst in a heated state. More preferably, it is produced by a dehydration polycondensation reaction. In such a reaction, it is preferable to use 2 to 20 mol of acetone with respect to 1 mol of aniline.
  • the reaction between acetone and aniline is usually carried out in the presence of an acidic catalyst.
  • the acidic catalyst include hydrogen halides such as hydrogen chloride, hydrogen bromide, and hydrogen fluoride, organic acids such as organic sulfonic acid, and Lewis acids such as boron fluoride. Hydrogen halide is preferable, and hydrogen chloride is more preferable.
  • the acidic catalyst may be used as an aqueous solution, may be used as a liquid other than the aqueous solution, may be used as a solid, or may be introduced as a gas into the reaction system.
  • a hydrogen halide it is preferable to use an aqueous solution thereof.
  • hydrochloric acid the concentration is preferably 15 to 35% by mass.
  • the amount of the acidic catalyst used is preferably 0.05 to 0.5 mol with respect to 1 mol of aniline. If the amount of the acidic catalyst used is 0.05 mol or more, the reaction time is short, and if it is 0.5 mol or less, the amount of the polymer having n of 2 or more in the above formula (I) decreases. Aging prevention performance is improved.
  • the reaction between acetone and aniline may be carried out in the presence of an organic solvent inert to the reaction between acetone and aniline, but is preferably carried out without substantially using an organic solvent.
  • the reaction temperature is preferably in the range of 100 to 150 ° C. When the reaction temperature is 100 ° C. or higher, the amount of unreacted aniline decreases, and the amount of 2,2,4-trimethyl-1,2-dihydroquinoline and its polymer increases. When the reaction temperature is 150 ° C. or lower, the amount of acetone used is small, which is economically preferable. Such a reaction is usually completed in a reaction time of 2 to 16 hours. When a relatively large amount of acidic catalyst is used, the reaction time is relatively short.
  • the reaction end point may be appropriately determined by analyzing the aniline content in the reaction mixture by a general analysis means such as high performance liquid chromatography or gas chromatography. After completion of the reaction, it is preferable to remove the catalyst in the reaction mixture by a method such as neutralization, and then remove the organic solvent and unreacted aniline by distillation under reduced pressure to remove the unpurified mixture.
  • the resulting reaction mixture usually contains 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof, and 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass in total.
  • primary amine means a primary amine produced mainly due to aniline, and such primary amine can have various structures, but representative examples thereof include the following formulas (II) and (III ). Two compounds having a structure represented by Thus, “primary amine” in the present specification is a general term for a plurality of kinds of compounds, and the content of primary amine is an amount expressed by considering all primary amines as aniline (molecular weight: 93.13).
  • an amino group (—NH 2 ) 1 mol is converted as 93.13 g of primary amine.
  • the primary amine content is determined by dissolving the mixture in chloroform, adding hydrochloric acid and p-dimethylaminobenzaldehyde to prepare a sample solution, measuring the absorbance of the obtained sample solution, It is obtained from the calibration curve used.
  • composition after purification A 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition having a primary amine content of 1% by mass or less based on the total amount of the composition (hereinafter also referred to as “the composition after purification”) And manufacturing method thereof>
  • a composition after purification is obtained by bringing the crude mixture into contact with 3 to 10 moles of carboxylic acid anhydride per mole of the primary amine contained in the mixture.
  • an intramolecular anhydride of an aromatic dicarboxylic acid such as phthalic anhydride or pyromellitic anhydride
  • an intramolecular anhydride of an aliphatic dicarboxylic acid such as succinic anhydride, glutaric anhydride or maleic anhydride
  • Examples include intermolecular anhydrides of aliphatic carboxylic acids such as acetic anhydride, and intermolecular anhydrides of aromatic carboxylic acids such as benzoic anhydride.
  • an intramolecular anhydride of an aromatic dicarboxylic acid or an intramolecular anhydride of an aliphatic dicarboxylic acid is preferable, an intramolecular anhydride of an aromatic dicarboxylic acid is more preferable, and phthalic anhydride is particularly preferable.
  • the amount of the carboxylic anhydride used is 3 to 10 mol, preferably 3 to 5 mol, per 1 mol of the primary amine contained in the unpurified mixture.
  • the contact between the crude mixture and the carboxylic acid anhydride may be carried out in the presence of a solvent inert to the reaction between the crude mixture and the carboxylic acid anhydride, or substantially without using such a solvent. May be.
  • a solvent examples include aromatic hydrocarbon solvents such as xylene and toluene, and aliphatic hydrocarbon solvents such as heptane, octane, and dimethylhexane.
  • aromatic hydrocarbon solvents such as xylene and toluene
  • aliphatic hydrocarbon solvents such as heptane, octane, and dimethylhexane.
  • the amount used is usually 0.5 to 10 parts by mass, preferably 0.5 to 2 parts by mass with respect to 1 part by mass of the unpurified mixture.
  • the contact between the crude mixture and the carboxylic acid anhydride is preferably carried out in the absence of a sulfur component.
  • the contact between the crude mixture and the carboxylic anhydride is preferably carried out in the absence of the rubber component.
  • the contact temperature between the crude mixture and the carboxylic acid anhydride is preferably 100 to 150 ° C.
  • the reaction end point can be determined, for example, by analyzing the reaction mixture by high-speed chromatography or the like.
  • the composition after purification can be taken out by subjecting the obtained mixture to treatments such as neutralization, washing, and concentration as necessary.
  • the rubber composition of the present invention comprises 2 to 10 parts by weight of insoluble sulfur and 0.5 to 5 parts by weight of the composition after purification with respect to 100 parts by weight of raw rubber selected from the group consisting of natural rubber and diene rubber. It is obtained by blending.
  • natural rubber include unmodified natural rubber, epoxidized natural rubber, deproteinized natural rubber, and other modified natural rubber.
  • the diene rubber examples include highly unsaturated rubbers such as styrene / butadiene copolymer rubber and polybutadiene rubber.
  • Insoluble sulfur is amorphous polymeric sulfur that is insoluble in carbon disulfide, and the amount used is usually 2 to 10 parts by mass, preferably 3 to 6 parts by mass with respect to 100 parts by mass of the raw rubber. It is.
  • the amount of the purified composition used is usually 0.5 to 5 parts by mass, preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the raw rubber.
  • the rubber composition of the present invention may further contain a filler, a vulcanization accelerator, zinc oxide, fatty acids, cobalt salt and the like.
  • Examples of the filler include carbon black, silica, talc, clay, aluminum hydroxide, titanium oxide and the like that are usually used in the rubber field. Carbon black and silica are preferably used, and carbon black is more preferably used.
  • the amount of the filler used is not limited, but is preferably in the range of 5 to 100 parts by mass, particularly preferably in the range of 30 to 80 parts by mass, per 100 parts by mass of the raw rubber. Examples of the carbon black include those described on page 494 of the “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association. HAF (High Ablation Furnace), SAF (Super Ablation Furnace), ISAF (Intermediate SAF).
  • Carbon blacks such as FEF (Fast Extension Furnace), MAF, GPF (General Purpose Furnace), SRF (Semi-Reinforming Furnace) are preferable.
  • Silica has a CTAB specific surface area of 50 to 180 m. 2 / G silica and nitrogen adsorption specific surface area 50-300m 2 / G of silica, Tosoh Silica Co., Ltd.
  • silica having a pH of 6 to 8 silica containing 0.2 to 1.5% by mass of sodium, true spherical silica having a roundness of 1 to 1.3, silicone oil such as dimethyl silicone oil, and ethoxysilyl group
  • silicone oil such as dimethyl silicone oil
  • a silica having a surface treatment with an alcohol such as ethanol or polyethylene glycol or a silica having two or more different nitrogen adsorption specific surface areas.
  • silica is blended, it is preferable to blend 5 to 50 parts by mass of carbon black per 100 parts by mass of the raw rubber, and the blending ratio of silica / carbon black is particularly preferably 0.7 / 1 to 1 / 0.1.
  • silica When silica is used as the filler, bis (3-triethoxysilylpropyl) tetrasulfide (“Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (“Si-75 manufactured by Degussa) It is preferable to add a compound having an element such as silicon or a functional group such as alkoxysilane which can be bonded to silica such as “)”, a so-called silane coupling agent.
  • silane coupling agent As aluminum hydroxide, nitrogen adsorption specific surface area 5 ⁇ 250m 2 / G aluminum hydroxide and aluminum hydroxide having a DOP oil supply amount of 50 to 100 mL / 100 g.
  • vulcanization accelerators examples include thiazole vulcanization accelerators and sulfenamides described on pages 412 to 413 of Rubber Industry Handbook ⁇ Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994). And guanidine vulcanization accelerators.
  • N-cyclohexyl-2-benzothiazolylsulfenamide CBS
  • N-tert-butyl-2-benzothiazolylsulfenamide BSS
  • N N-dicyclohexyl-2-benzothiazoli
  • DCBS rusulfenamide
  • MBT 2-mercaptobenzothiazole
  • MBTS dibenzothiazyl disulfide
  • DPG diphenylguanidine
  • morpholine disulfide which is a known vulcanizing agent, can be used.
  • N-cyclohexyl-2-benzothiazolylsulfenamide CBS
  • N-tert-butyl-2-benzothiazolylsulfenamide BSS
  • N N-dicyclohexyl
  • DCBS 2-benzothiazolylsulfenamide
  • MBTS dibenzothiazyl disulfide
  • N-cyclohexyl-2-benzothiazolylsulfenamide CBS
  • N-tert-butyl-2-benzothiazolylsulfenamide BBS
  • N N-dicyclohexyl-2-benzothiazolylsulfenamide
  • MBTS dibenzothiazyl disulfide
  • DPG diphenylguanidine
  • the amount of the vulcanization accelerator used is not limited, but is preferably 0.5 to 5 parts by mass, particularly preferably 0.5 to 2 parts by mass per 100 parts by mass of the raw rubber.
  • the amount of zinc oxide used is preferably 1 to 15 parts by mass and more preferably 3 to 8 parts by mass per 100 parts by mass of the raw rubber.
  • the fatty acids are preferably stearic acid, and the amount used is preferably 1 to 15 parts by mass, more preferably 1 to 7 parts by mass, per 100 parts by mass of the raw rubber.
  • a cobalt salt includes cobalt naphthenate. The amount used is preferably 0.02 to 2 parts by mass, more preferably 0.1 to 0.5 parts by mass, per 100 parts by mass of the raw rubber as the cobalt content.
  • rubber chemicals commonly used in the rubber industry such as anti-degradation agents, crosslinking agents, retarders, peptizers, softeners, petroleum resins, lubricants, plasticizers, tackifiers, resorcins and resorcin resins
  • an adhesive may be used in combination as necessary.
  • rubber compounding is performed in two steps. That is, a first step of blending raw rubber, filler, refined composition and, if necessary, zinc oxide, etc. at a relatively high temperature, and insoluble sulfur and, if necessary, a vulcanization accelerator, etc. at a relatively low temperature. It is the 2nd process mix
  • the compounding temperature in the first step is preferably 80 to 200 ° C, more preferably 110 to 160 ° C.
  • the compounding temperature in the second step is preferably 60 to 110 ° C.
  • the rubber composition of the present invention thus blended is particularly preferably used for an internal member of an automobile tire. Examples of the internal member of the automobile tire include a belt, a carcass, an inner liner, and an under tread.
  • the composition after purification is used as an anti-aging agent for tires.
  • the rubber composition of the present invention becomes a target product by being vulcanized after being processed into a specific state. Vulcanization conditions vary depending on the target product, but are usually selected from a range of about 120 to 200 ° C. and a range of about 1 minute to 2 hours.
  • the composition after purification has a primary amine content of 1% by mass or less with respect to the total amount of the composition, so that insoluble sulfur is not uniformly dissolved in the rubber composition in the second step and is vulcanized. Therefore, sulfur is not unevenly distributed on the surface of the rubber composition (hereinafter sometimes referred to as “bloom”), and as a result, there is an advantage that a sufficient vulcanization effect is easily obtained inside the rubber composition. is there.
  • ⁇ Evaluation of solubility of insoluble sulfur> The solubility of insoluble sulfur is greatly influenced by the composition after purification, and can be evaluated as follows. That is, when a molded product is obtained by the following preparation method, if the molded product is kept at 100 ° C.
  • a blend is obtained by blending 2 parts by weight of the composition after purification and 2 parts by weight of insoluble sulfur with 100 parts by weight of butadiene rubber, and a molded product having a thickness of 2 mm is prepared from the blend. Subsequently, use of a composition obtained by mixing a condensation reaction product of aniline and acetone and a carboxylic anhydride to improve the heat resistance of the vulcanized rubber, and improvement of the heat resistance of the vulcanized rubber The method will be described.
  • the method for improving the heat resistance of the vulcanized rubber of the present invention includes the following steps (1), (2) and (3).
  • “to improve the heat resistance of vulcanized rubber” means to change the tensile properties (JIS K6251) of the test piece in the heat resistance test (JIS K6257) of the vulcanized rubber.
  • step (1) that is, 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof, and a mixture containing 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass in total.
  • step (2) that is, 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof, and a mixture containing 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass in total.
  • step (2) bringing 3 to 10 moles of carboxylic acid anhydride into contact with 1 mole of the primary amine
  • the condensation reaction product of aniline and acetone contains a condensation reaction product of aniline and acetone represented by the above formula (I) (usually a mixture of compounds having different n in the above formula (I)) as a main component.
  • the condensation reaction product of aniline and acetone is preferably obtained by reacting 2 to 20 moles of acetone with respect to 1 mole of aniline. In the presence of an acidic catalyst, aniline and acetone are heated.
  • the reaction between acetone and aniline is usually carried out in the presence of an acidic catalyst.
  • the acidic catalyst include hydrogen halides such as hydrogen chloride, hydrogen bromide, and hydrogen fluoride, organic acids such as organic sulfonic acid, and Lewis acids such as boron fluoride. Hydrogen halide is preferable, and hydrogen chloride is more preferable.
  • the acidic catalyst may be used as an aqueous solution, may be used as a liquid other than the aqueous solution, may be used as a solid, or may be introduced as a gas into the reaction system.
  • a hydrogen halide it is preferable to use an aqueous solution thereof.
  • hydrochloric acid the concentration is preferably 15 to 35% by mass.
  • the amount of the acidic catalyst used is preferably 0.05 to 0.5 mol with respect to 1 mol of aniline. If the amount of the acidic catalyst used is 0.05 mol or more, the reaction time is short, and if it is 0.5 mol or less, the amount of the polymer having n of 2 or more in the above formula (I) decreases. Aging prevention performance is improved.
  • the reaction between acetone and aniline may be carried out in the presence of an organic solvent inert to the reaction between acetone and aniline, or may be carried out without substantially using an organic solvent.
  • the reaction temperature is preferably in the range of 100 to 150 ° C. When the reaction temperature is 100 ° C. or higher, the amount of unreacted aniline decreases, and the amount of 2,2,4-trimethyl-1,2-dihydroquinoline and its polymer increases. When the reaction temperature is 150 ° C. or lower, the amount of acetone used is small, which is economically preferable. Such a reaction is usually completed in a reaction time of 2 to 16 hours. When a relatively large amount of acidic catalyst is used, the reaction time is relatively short.
  • the reaction end point may be appropriately determined by analyzing the aniline content in the reaction mixture by a general analysis means such as high performance liquid chromatography or gas chromatography.
  • the catalyst in the reaction mixture is removed by a method such as neutralization, and then the reaction product of the condensation reaction product of aniline and acetone is reacted by distillation under reduced pressure to remove the organic solvent and unreacted aniline. It is preferable to remove from the mixture.
  • the resulting reaction mixture may be directly mixed with a carboxylic acid anhydride as a condensation reaction product of aniline and acetone, or a mixture obtained by removing the acidic catalyst by post-treatment such as neutralization, washing, and concentration.
  • condensation reaction products May be mixed with a carboxylic acid anhydride as a condensation reaction product of aniline and acetone.
  • These condensation reaction products contain 2,6 parts by weight of primary amines with respect to 2,2,4-trimethyl-1,2-dihydroquinoline and its polymer, and a total of 100 parts by weight thereof.
  • an intramolecular anhydride of an aromatic dicarboxylic acid such as phthalic anhydride or pyromellitic anhydride
  • an intramolecular anhydride of an aliphatic dicarboxylic acid such as succinic anhydride, glutaric anhydride or maleic anhydride
  • Examples include intermolecular anhydrides of aliphatic carboxylic acids such as acetic anhydride, and intermolecular anhydrides of aromatic carboxylic acids such as benzoic anhydride.
  • an intramolecular anhydride of an aromatic dicarboxylic acid or an intramolecular anhydride of an aliphatic dicarboxylic acid is preferable, an intramolecular anhydride of an aromatic dicarboxylic acid is more preferable, and phthalic anhydride is more preferable.
  • the amount of the carboxylic acid anhydride used is preferably 3 to 10 mol, more preferably 3 to 5 mol, per 1 mol of the primary amine.
  • the amount of carboxylic anhydride used is preferably 0.6 to 5 moles, more preferably 0.6 to 2 moles, per 1 kg of the condensation reaction product of aniline and acetone.
  • the amount of the carboxylic acid anhydride used is in the above range, the composition obtained by mixing the condensation reaction product of aniline and acetone and the carboxylic acid anhydride, the rubber component and the sulfur component are kneaded, and then The heat resistance of the vulcanized rubber obtained by vulcanization tends to be improved, which is preferable.
  • Mixing of the condensation reaction product of aniline and acetone and the carboxylic acid anhydride may be carried out in the presence of a solvent inert to the reaction of the condensation reaction product and the carboxylic acid anhydride. You may implement without using it.
  • Such a solvent examples include aromatic hydrocarbon solvents such as xylene and toluene, and aliphatic hydrocarbon solvents such as heptane, octane, and dimethylhexane.
  • the amount used is usually 0.5 to 10 parts by mass, preferably 0.5 to 2 parts by mass with respect to 1 part by mass of the condensation reaction product of aniline and acetone.
  • Mixing of the condensation reaction product of aniline and acetone and the carboxylic anhydride is preferably carried out in the absence of a sulfur component.
  • the sulfur component will be described in detail in step (2).
  • Mixing of the condensation reaction product of aniline and acetone and the carboxylic anhydride is preferably carried out in the absence of the rubber component.
  • the mixing temperature of the condensation reaction product of aniline and acetone and the carboxylic acid anhydride is preferably 100 to 150 ° C.
  • the obtained composition may be used in the step (2) as it is, or may be used in the step (2) after being subjected to post-treatment such as neutralization, washing and concentration as necessary.
  • the composition thus obtained may be hereinafter referred to as “the present composition”.
  • the step (2) that is, the step of kneading the composition (the present composition) obtained in the step (1), the rubber component and the sulfur component will be described.
  • the kneaded product obtained in this step may be referred to as “the rubber composition”.
  • the rubber component include rubber selected from the group consisting of natural rubber and diene rubber.
  • Examples of natural rubber include unmodified natural rubber, epoxidized natural rubber, deproteinized natural rubber, and other modified natural rubber.
  • Examples of the diene rubber include highly unsaturated rubbers such as styrene / butadiene copolymer rubber and polybutadiene rubber.
  • Sulfur components include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur. Powdered sulfur is preferable, and insoluble sulfur is preferable when the rubber composition is used for a tire member having a large amount of sulfur such as a belt member.
  • the amount used is not limited, but is preferably 2 to 10 parts by mass, more preferably 3 to 6 parts by mass with respect to 100 parts by mass of the rubber component.
  • the amount of the composition used is preferably 0.5 to 5 parts by mass, more preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition may further contain a filler, a vulcanization accelerator, zinc oxide, fatty acids, cobalt salt and the like.
  • the filler include those similar to those described above, and carbon black and silica are preferably used, and carbon black is more preferably used.
  • the amount of the filler used is not limited, but is preferably 5 to 100 parts by mass, more preferably 30 to 80 parts by mass with respect to 100 parts by mass of the rubber component.
  • Examples of the carbon black include those similar to those described above, HAF (High Absorption Furnace), SAF (Super Absorption Furnace), ISAF (Intermediate SAF), FEF (Fast Extraction Furnace), MAFce, PF ), Carbon black such as SRF (Semi-Reinforcing Furnace) is preferable.
  • Examples of the silica include those similar to those described above.
  • silica having a pH of 6 to 8 silica containing 0.2 to 1.5% by mass of sodium, true spherical silica having a roundness of 1 to 1.3, silicone oil such as dimethyl silicone oil, and ethoxysilyl group
  • silicone oil such as dimethyl silicone oil
  • a silica having a surface treatment with an alcohol such as ethanol or polyethylene glycol or a silica having two or more different nitrogen adsorption specific surface areas.
  • silica is blended, it is preferable to blend 5 to 50 parts by mass of carbon black per 100 parts by mass of the rubber component, and the blending ratio of silica / carbon black is particularly preferably 0.7 / 1 to 1 / 0.1.
  • silica When silica is used as the filler, bis (3-triethoxysilylpropyl) tetrasulfide (“Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (“Si-75 manufactured by Degussa) It is preferable to add a compound having an element such as silicon or a functional group such as alkoxysilane which can be bonded to silica such as “)”, a so-called silane coupling agent.
  • the aluminum hydroxide include the same ones as described above.
  • the vulcanization accelerator include the same ones as described above.
  • N-cyclohexyl-2-benzothiazolylsulfenamide CBS
  • N-tert-butyl-2-benzothiazolylsulfenamide BSS
  • N, N-dicyclohexyl 2-Benzothiazolylsulfenamide DCBS
  • MBTS dibenzothiazyl disulfide
  • N-cyclohexyl-2-benzothiazolylsulfenamide CBS
  • N-tert-butyl-2-benzothiazolylsulfenamide BBS
  • N N-dicyclohexyl-2-benzothiazolylsulfenamide
  • DCBS dibenzothiazyl disulfide
  • MBTS de
  • DPG diphenyl guanidine
  • the amount of the vulcanization accelerator used is not limited, but is preferably 0.5 to 5 parts by mass and more preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the rubber component.
  • the amount of zinc oxide used is preferably 1 to 15 parts by mass and more preferably 3 to 8 parts by mass with respect to 100 parts by mass of the rubber component.
  • As the fatty acids stearic acid is preferable, and the amount used is preferably 1 to 15 parts by mass, more preferably 1 to 7 parts by mass with respect to 100 parts by mass of the rubber component.
  • a cobalt salt includes cobalt naphthenate. The amount used is preferably 0.02 to 2 parts by mass, more preferably 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the rubber component as a cobalt content.
  • a rubber component and a filler are kneaded (hereinafter sometimes referred to as “procedure 1”), and then the composition obtained in procedure 1 and a sulfur component are kneaded. (Hereinafter also referred to as “procedure 2”).
  • the composition is preferably kneaded in the procedure 1.
  • the kneading temperature in Procedure 1 is preferably 80 to 200 ° C, more preferably 110 to 160 ° C.
  • the kneading temperature in step 2 is preferably 60 to 110 ° C.
  • the rubber composition thus obtained is particularly preferably used for an internal member of an automobile tire. Examples of the internal member of the automobile tire include a belt, a carcass, an inner liner, and an under tread.
  • the step (3) that is, the step of vulcanizing the kneaded product (present rubber composition) obtained in the step (2) to obtain a vulcanized rubber will be described.
  • the rubber composition is processed into a specific state and then vulcanized to obtain a target product.
  • Vulcanization conditions vary depending on the target product, but are usually selected from a range of about 120 to 200 ° C. and a range of about 1 minute to 2 hours.
  • a rubber composition is obtained by blending a condensation reaction product of aniline and acetone (not mixed with a carboxylic acid anhydride), and this rubber composition is added in comparison with a vulcanized rubber obtained by vulcanizing the rubber composition. The heat resistance of the vulcanized rubber obtained by vulcanization is improved.
  • TMDQ 2,2,4-trimethyl-1,2-dihydroquinoline
  • TMDQ dimer Eclipse XDB-C18A as a column and water as A liquid.
  • Methanol was used as liquid B, respectively, and analyzed by high performance liquid chromatography using a gradient method.
  • the primary amine content is determined by dissolving the unpurified mixture or the purified composition in chloroform, adding hydrochloric acid and p-dimethylaminobenzaldehyde to prepare a sample solution, and measuring the absorbance of this sample solution with a spectrophotometer (measurement wavelength: 440 nm). And obtained from a calibration curve using aniline.
  • Production Example 1 A 300 mL round bottom flask equipped with a thermometer, a stirrer and a distillation apparatus was charged with 46.5 g of aniline and 4.4 g of 35 mass% hydrochloric acid, and the resulting mixture was heated to 110 ° C. Thereto, 290.4 g of acetone was added dropwise at 110 ° C. to 140 ° C.
  • the obtained mixture was kept at 135 ° C. to 140 ° C. for 4 hours.
  • the obtained reaction mixture was cooled to 90 ° C., diluted with toluene, neutralized with an aqueous sodium hydroxide solution, and allowed to stand for liquid separation to remove the aqueous layer.
  • the low boiling point component was further distilled off by distillation at an internal temperature of 200 ° C. and a reduced pressure of 2 mmHg to obtain 80.3 g of an unpurified mixture.
  • the obtained crude mixture was substantially composed of a condensation reaction product of aniline and acetone, and contained 0.1% by mass of TMDQ and 14% by mass of TMDQ dimer, respectively.
  • the primary amine content was 3.2% by mass.
  • Example 1 A 100 mL four-necked round bottom flask equipped with a thermometer, a stirrer, a Dean-Stark tube and a condenser was charged with 20.0 g of the crude mixture obtained in Production Example 1, 4.83 g of phthalic anhydride and 100 mL of xylene. After the obtained mixture was kept at 140 ° C. for 5 hours, the solvent was distilled off to obtain a composition after purification. The resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone. The amine content was 0.1% by mass.
  • Example 2 In Example 1, instead of 4.83 g of phthalic anhydride, 3.26 g of succinic anhydride was used and the temperature was kept at 140 ° C. for 3 hours. Obtained.
  • the resulting purified composition consists essentially of phthalic anhydride and a reaction product of primary amine and phthalic anhydride, except for the component derived from the condensate of aniline and acetone. It was 0.1 mass%.
  • Example 3 In Example 1, in place of 20.0 g of the crude mixture obtained in Production Example 1, 10.0 g of the crude mixture obtained according to Production Example 1 (primary amine content: 2.9% by mass) was used.
  • Example 2 Purified in the same manner as in Example 1 except that 1.75 g of phthalic anhydride was used instead of 4.83 g of acid, 20 mL of xylene was used instead of 100 mL of xylene, and the temperature was kept at 140 ° C. for 4 hours. A post-composition was obtained.
  • the resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone. The amine content was 0.3% by mass.
  • Example 4 In Example 3, 20 mL of toluene was used in place of 20 mL of xylene, and the same procedure was performed as in Example 3 except that the temperature was kept at 110 ° C. to obtain a purified composition.
  • the resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone.
  • the amine content was 0.2% by mass.
  • Example 5 In Example 1, instead of 20.0 g of the unpurified mixture obtained in Production Example 1, 20.0 g of the unpurified mixture (primary amine content: 3.5% by mass) obtained according to Production Example 1 was used.
  • the resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone.
  • the amine content was 0.1% by mass.
  • Example 6 In Example 5, 40 g of toluene was used in place of 40 g of xylene, and the same procedure was performed as in Example 5 except that the temperature was kept at 110 ° C. to obtain a purified composition.
  • the resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone.
  • the amine content was 0.1% by mass.
  • Example 7 In a 100 mL four-necked round bottom flask equipped with a thermometer, stirrer, Dean-Stark tube and condenser, 20.0 g of an unpurified mixture (primary amine content: 2.9% by mass) obtained according to Production Example 1 and anhydrous phthalate 3.46 g of acid was charged. The obtained mixture was kept at 140 ° C. for 2 hours to obtain a composition after purification.
  • the resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone. The amine content was 0.1% by mass.
  • Example 8 In Example 7, it carried out similarly to Example 7 except having carried out heat retention conditions at 120 degreeC for 4 hours, and obtained the composition after refinement
  • the resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone.
  • the amine content was 0.2% by mass.
  • Example 9 In Example 7, the crude mixture (primary amine content: 3) obtained according to Production Example 1 instead of 20.0 g of the crude mixture obtained according to Production Example 1 (primary amine content: 2.9% by mass).
  • the resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone.
  • the amine content was 0.0% by mass.
  • Test example 1 A blend is obtained by blending 2 parts by weight of the purified composition obtained in Example 1 and 2 parts by weight of insoluble sulfur with respect to 100 parts by weight of butadiene rubber, and the blend is sandwiched between polyethylene terephthalate films and 2 mm. Molded to a thickness of The obtained molded product was kept at 100 ° C. for 1 hour. The transmittance of 600 nm light of the molded product after the heat retention was 0.00%.
  • Test examples 2-9 In Test Example 1, in place of the purified composition obtained in Example 1, the molded product after heat insulation was obtained in the same manner as in Test Example 1 except that the purified compositions obtained in Examples 2 to 9 were used. Obtained.
  • Table 2 below shows the transmittance of 600 nm light of the molded product after the heat retention together with Test Example 1.
  • Reference test example 1 In Test Example 1, in place of the purified composition obtained in Example 1, the molded product after heat retention was obtained in the same manner as in Test Example 1 except that the unpurified mixture obtained in Production Example 1 was used. The transmittance of 600 nm light was 20.07%.
  • Reference test example 2 In Test Example 1, in place of the composition after purification obtained in Example 1, a molded article after heat retention was obtained in the same manner as in Test Example 1 except that the composition obtained in Reference Example was used. The transmittance of 600 nm light was 6.39%.
  • Example 10 Production of rubber composition ⁇ First step> Using a Banbury mixer (600 ml Labo Plast Mill manufactured by Toyo Seiki Co., Ltd.), 100 parts by mass of natural rubber (RSS # 1), 45 parts by mass of carbon black (N330), 10 parts by mass of hydrous silica (Nipsil AQ), 3 parts by mass of stearic acid Then, 5 parts by mass of zinc oxide and 2 parts by mass of the purified composition obtained in Example 1 were blended and kneaded to obtain a kneaded product.
  • RSS # 1 natural rubber
  • N330 carbon black
  • Neipsil AQ hydrous silica
  • ⁇ Second step> The kneaded product obtained in the first step and 0.7 parts by mass of a vulcanization accelerator (N, N-dicyclohexyl-2-benzothiazolylsulfenamide) at a temperature of 60 to 80 ° C. in an open roll machine. Then, 6 parts by mass of insoluble sulfur (as sulfur component) and 2 parts by mass of cobalt naphthenate were blended and kneaded to obtain a rubber composition of the present invention.
  • ⁇ Third step> The rubber composition obtained in the second step was vulcanized at 150 ° C. to obtain a vulcanized rubber.
  • Examples 11 and 12 The rubber of the present invention was carried out in the same manner as in Example 10 except that the purified composition obtained in Examples 7 and 8 was used in place of the purified composition obtained in Example 1 in Example 10. A composition and vulcanized rubber were obtained. Test examples 10-12 The following tests were conducted on the rubber compositions and vulcanized rubbers obtained in Examples 10 to 12, respectively. The results are shown in Table 3 below. 1) Rebound resilience: According to JIS K 6255, the rebound resilience of the vulcanized rubber was measured at 25 ° C. 2) Hardness: According to JIS K 6253, the durometer type A was used to measure the hardness of the vulcanized rubber at 25 ° C.
  • Production Example 2 A 300 mL round bottom flask equipped with a thermometer, a stirrer and a distillation apparatus was charged with 46.5 g of aniline and 4.4 g of 35 mass% hydrochloric acid, and the resulting mixture was heated to 110 ° C. Thereto, 290.4 g of acetone was added dropwise at 110 ° C. to 140 ° C. over 16 hours. The obtained mixture was kept at 135 ° C. to 140 ° C. for 4 hours. The obtained reaction mixture was cooled to 90 ° C., diluted with toluene, neutralized with an aqueous sodium hydroxide solution, and allowed to stand for liquid separation to remove the aqueous layer.
  • Step (1) In a 100 mL four-necked round bottom flask equipped with a thermometer, a stirrer, a Dean-Stark apparatus and a condenser, 25.0 g of a condensation reaction product of aniline and acetone obtained according to Production Example 2 and 3.46 g of phthalic anhydride were added. Prepared. The obtained mixture was kept at 140 ° C. for 2 hours to obtain the present composition.
  • Production Example 4 Step (1) In Production Example 3, the present composition was obtained in the same manner as in Production Example 3 except that the temperature was kept at 120 ° C. for 4 hours.
  • Production Example 5 Step (1) In a 100 mL four-necked round bottom flask equipped with a thermometer, stirrer, Dean Stark apparatus and condenser, 20.0 g of the condensation reaction product of aniline and acetone obtained in Production Example 2, 11.2 g of phthalic anhydride and xylene 40 0.0 mL was charged. The obtained mixture was kept at 140 ° C. for 3 hours to obtain the present composition.
  • Production Example 6 Step (1) The same composition as in Production Example 5 was obtained except that 22.3 g of phthalic anhydride was used instead of 11.2 g of phthalic anhydride in Production Example 5.
  • Example 13 ⁇ Step (2) Procedure 1> Using a Banbury mixer (600 mL Lab Plast Mill manufactured by Toyo Seiki Co., Ltd.), 100 parts by mass of natural rubber (RSS # 1), 45 parts by mass of carbon black (N330), 10 parts by mass of hydrous silica (Nipsil AQ), 3 parts by mass of stearic acid Then, 5 parts by mass of zinc oxide and 2 parts by mass of the present composition obtained in Production Example 3 were blended and kneaded to obtain a composition.
  • a vulcanization accelerator N, N-dicyclohexyl-2-benzothiazolylsulfenamide
  • 6 parts by mass of insoluble sulfur (as sulfur component) and 2 parts by mass of cobalt naphthenate were blended and kneaded to obtain the rubber composition.
  • Example 13 this rubber composition and vulcanized rubber were used in the same manner as in Example 13 except that the compositions obtained in Production Examples 4 and 5 were used in place of the compositions obtained in Production Example 3. Got. Comparative Example 1 In Example 13, the rubber composition and vulcanization were carried out in the same manner as in Example 13 except that the condensation reaction product of aniline and acetone obtained in Production Example 2 was used instead of the present composition obtained in Production Example 3. Got rubber. Comparative Example 2 In Example 13, a rubber composition and a vulcanized rubber were obtained in the same manner as in Example 13 except that the present composition obtained in Production Example 6 was used instead of the present composition obtained in Production Example 3.
  • Test Examples 13-15, Comparative Test Examples 1 and 2 The following heat resistance tests were performed on the rubber compositions and vulcanized rubbers obtained in Examples 13 to 15 and Comparative Examples 1 and 2, respectively.
  • Heat resistance test A heat resistance test at 100 ° C. for 48 hours was performed by a JIS K6257 B-1 method using a dumbbell No. 3 test piece according to JIS K6251. The elongation at break (EB) was measured according to JIS K6251 using the test piece after the heat resistance test. The relative EB when the value using the rubber composition and vulcanized rubber obtained in Comparative Example 1 is taken as 100 is shown. It can be said that the greater the relative EB, the better the heat resistance. Therefore, if this composition is used, the heat resistance which the vulcanized rubber used for manufacture of a tire has can be improved more easily.
  • a 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition having a primary amine content of 1% by mass or less based on the total amount of the composition is more easily produced.
  • the 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition is useful as an anti-aging agent for tires.
  • the primary amine content is 1% by mass or less with respect to the total amount of such a composition
  • sulfur in the tire rubber composition is less likely to be unevenly distributed on the surface of the rubber composition, and as a result, sufficient addition inside the rubber composition.
  • the method of improving the heat resistance which the vulcanized rubber used for manufacture of a tire has more simply can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)

Abstract

A method for producing 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing compositions, wherein the content of primary amine with respect to the total weight of the composition is 1 mass% or less, the method comprising a process of bringing a mixture containing 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof and, with respect to 100 parts by mass of the total of same, 2-6 parts by mass of a primary amine, into contact with 3-10 moles of a carboxylic acid anhydride with respect to 1 mole of the primary amine.

Description

2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物の製造方法Method for producing composition containing 2,2,4-trimethyl-1,2-dihydroquinoline polymer
 本発明は、2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物の製造方法に関する。 The present invention relates to a process for producing a 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition.
 特開昭53−145854号公報には、自動車用タイヤの製造に用いられる加硫ゴム用の老化防止剤として、アニリンとアセトンとの縮合反応生成物が開示されている。
 特開平6−228375号公報には、一級アミン含量が、組成物の全量に対して1質量%以下である2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物が開示されており、さらに、その製造方法として、2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物を含む混合物から、2,2,4−トリメチル−1,2−ジヒドロキノリンを蒸留により取り出す工程と、前工程で取り出された2,2,4−トリメチル−1,2−ジヒドロキノリンを重合させる工程とを含む方法も開示されている。
JP-A-53-145854 discloses a condensation reaction product of aniline and acetone as an anti-aging agent for vulcanized rubber used in the manufacture of automobile tires.
JP-A-6-228375 discloses a 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition having a primary amine content of 1% by mass or less based on the total amount of the composition. Furthermore, as a production method thereof, 2,2,4-trimethyl-1,2-dihydroquinoline and 2,2,4-trimethyl-1,2-dihydroquinoline are distilled from a mixture containing 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof. A method comprising a step of removing and a step of polymerizing 2,2,4-trimethyl-1,2-dihydroquinoline removed in the previous step is also disclosed.
 本発明は、
[1] 2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物、ならびに、これらの合計100質量部に対して一級アミンを2~6質量部含む混合物と、該一級アミン1モルに対して3~10モルのカルボン酸無水物とを接触させる工程を含む、一級アミン含量が組成物の全量に対して1質量%以下である2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物の製造方法;
[2] アセトンとアニリンとを反応させて、2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物、ならびに、これらの合計100質量部に対して一級アミン2~6質量部を含む混合物を得る工程と、
得られた混合物と、該一級アミン1モルに対して3~10モルのカルボン酸無水物とを接触させる工程と、
を含む、[1]に記載の製造方法;
[3] [1]または[2]に記載の製造方法により得られる2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物であって、以下の調製方法により成形物を得たとき、当該成形物を100℃で1時間保温した後の600nmの光の透過率が0.5%以下となることを特徴とする2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物;
<成形物の調製方法>
ブタジエンゴム100質量部に2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物2質量部と不溶性イオウ2質量部とを配合することにより配合物を得、該配合物から厚さ2mmの成形物を調製する;
[4] 天然ゴムおよびジエン系ゴムからなる群より選ばれる原料ゴム100質量部に対して、不溶性イオウ2~10質量部と、[1]または[2]に記載の製造方法により得られる2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物0.5~5質量部とを配合して得られるゴム組成物;
[5] [1]または[2]に記載の製造方法により得られる2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物のタイヤ用老化防止剤としての使用;
[6] 加硫ゴムが有する耐熱性を改善させるための、アニリンとアセトンとの縮合反応生成物およびカルボン酸無水物を混合して得られる組成物の使用;
[7] 下記の工程(1)、(2)および(3)を含む、加硫ゴムが有する耐熱性の改善方法;
(1)2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物、ならびに、これらの合計100質量部に対して一級アミンを2~6質量部含む混合物と、該一級アミン1モルに対して3~10モルのカルボン酸無水物とを接触させる工程
(2)工程(1)で得られた混合物とゴム成分と硫黄成分とを混練する工程
(3)工程(2)で得られた混練物を加硫し、加硫ゴムを得る工程;
[8] 工程(1)が、ゴム成分の非存在下で実施される[7]に記載の改善方法;
[9] 工程(1)が、硫黄成分の非存在下で実施される[7]または[8]に記載の改善方法;
[10]    工程(1)におけるカルボン酸無水物の使用量が、アニリンとアセトンとの縮合反応生成物1kgに対して、0.6~5モルである[7]~[9]のいずれかに記載の改善方法;
[11]    アニリンとアセトンとの縮合反応生成物およびカルボン酸無水物を混合して得られる加硫ゴム用耐熱性改善剤;
[12]    アニリンとアセトンとの縮合反応生成物が、2,2,4−トリメチル−1,2−ジヒドロキノリン、2,2,4−トリメチル−1,2−ジヒドロキノリンの重合物、および、一級アミンを含む混合物である[11]に記載の加硫ゴム用耐熱性改善剤;
[13]    アニリンとアセトンとの縮合反応生成物が、2,2,4−トリメチル−1,2−ジヒドロキノリン、2,2,4−トリメチル−1,2−ジヒドロキノリンの重合物、ならびに、2,2,4−トリメチル−1,2−ジヒドロキノリンおよび2,2,4−トリメチル−1,2−ジヒドロキノリンの重合物の合計100質量部に対して、一級アミンを2~6質量部含む混合物である[11]または[12]に記載の加硫ゴム用耐熱性改善剤;
[14]    アニリンとアセトンとの縮合反応生成物と、アニリンとアセトンとの縮合反応生成物に含まれる一級アミン1モルに対して3~10モルのカルボン酸無水物とを混合して得られる[12]または[13]に記載の加硫ゴム用耐熱性改善剤;
[15]    アニリンとアセトンとの縮合反応生成物が、硫黄成分の非存在下でアニリンとアセトンとを縮合反応させることにより製造される生成物である[11]~[14]のいずれかに記載の加硫ゴム用耐熱性改善剤;を提供するものである。
The present invention
[1] 2,2,4-Trimethyl-1,2-dihydroquinoline and a polymer thereof, a mixture containing 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass in total, and 1 mol of the primary amine 2,2,4-trimethyl-1,2-dihydro having a primary amine content of 1% by mass or less based on the total amount of the composition, comprising a step of contacting 3 to 10 mol of carboxylic acid anhydride with respect to Method for producing quinoline polymer-containing composition;
[2] Acetone and aniline are reacted to produce 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof, and 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass in total. Obtaining a mixture comprising:
Contacting the resulting mixture with 3 to 10 moles of carboxylic anhydride per mole of primary amine;
The production method according to [1], comprising:
[3] A 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition obtained by the production method according to [1] or [2], wherein a molded product is obtained by the following preparation method. 2,2,4-trimethyl-1,2-dihydroquinoline polymerization characterized in that the transmittance of light at 600 nm after the molded product is kept at 100 ° C. for 1 hour is 0.5% or less. Product-containing composition;
<Method for preparing molded product>
A blend is obtained by blending 2 parts by weight of a 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition and 2 parts by weight of insoluble sulfur with 100 parts by weight of butadiene rubber. Preparing a 2 mm thick molding;
[4] 2 to 10 parts by mass of insoluble sulfur with respect to 100 parts by mass of raw rubber selected from the group consisting of natural rubber and diene rubber, and obtained by the production method according to [1] or [2] A rubber composition obtained by blending 0.5 to 5 parts by mass of a 2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition;
[5] Use of a 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition obtained by the production method according to [1] or [2] as an anti-aging agent for tires;
[6] Use of a composition obtained by mixing a condensation reaction product of aniline and acetone and a carboxylic acid anhydride to improve the heat resistance of the vulcanized rubber;
[7] A method for improving the heat resistance of a vulcanized rubber, comprising the following steps (1), (2) and (3):
(1) 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof, a mixture containing 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass in total, and 1 mol of the primary amine Obtained by the step (2) of kneading the mixture obtained in the step (2) and the step (1) with the rubber component and the sulfur component. Vulcanizing the kneaded product to obtain a vulcanized rubber;
[8] The improvement method according to [7], wherein step (1) is performed in the absence of a rubber component;
[9] The improvement method according to [7] or [8], wherein step (1) is performed in the absence of a sulfur component;
[10] The amount of the carboxylic acid anhydride used in the step (1) is 0.6 to 5 mol with respect to 1 kg of the condensation reaction product of aniline and acetone. Improvement method as described;
[11] A heat resistance improver for vulcanized rubber obtained by mixing a condensation reaction product of aniline and acetone and a carboxylic acid anhydride;
[12] A condensation reaction product of aniline and acetone is a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline, 2,2,4-trimethyl-1,2-dihydroquinoline, and primary The heat resistance improving agent for vulcanized rubber according to [11], which is a mixture containing an amine;
[13] The condensation reaction product of aniline and acetone is a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline, 2,2,4-trimethyl-1,2-dihydroquinoline, and 2 , 2,4-Trimethyl-1,2-dihydroquinoline and 2,2,4-trimethyl-1,2-dihydroquinoline in a total of 100 parts by mass, a mixture containing 2 to 6 parts by mass of a primary amine [11] or [12], wherein the heat resistance improver for vulcanized rubber is
[14] A product obtained by mixing a condensation reaction product of aniline and acetone with 3 to 10 moles of carboxylic acid anhydride per mole of primary amine contained in the condensation reaction product of aniline and acetone. 12] or [13], a heat resistance improver for vulcanized rubber;
[15] The product according to any one of [11] to [14], wherein the condensation reaction product of aniline and acetone is a product produced by condensation reaction of aniline and acetone in the absence of a sulfur component. A heat resistance improver for vulcanized rubber.
 まず、一級アミン含量が組成物の全量に対して1質量%以下である2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物の製造方法について説明する。かかる製造方法は、2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物、ならびに、これらの合計100質量部に対して一級アミンを2~6質量部含む混合物(以下、「未精製混合物」と記載することがある。)と、該一級アミン1モルに対して3~10モルのカルボン酸無水物とを接触させる工程を含む。
<未精製混合物>
 2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物は、主に下式(I)で示される構造を有するものである。
Figure JPOXMLDOC01-appb-I000001
 2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物は、好ましくは、アセトンとアニリンとを反応させることにより製造され、酸性触媒の存在下、アニリンとアセトンとを加熱状態で反応させる脱水重縮合反応によって製造されることがより好ましい。かかる反応において、アニリン1モルに対してアセトン2~20モルを使用することが好ましい。アニリンおよび酸性触媒を混合した後、ついで過剰のアセトンを、得られた混合物に連続的に供給し、未反応のアセトンは生成した水と共に蒸留により回収することが、常圧下での反応温度の保持の点で好ましい。
 アセトンとアニリンとの反応は、通常、酸性触媒の存在下で実施される。酸性触媒としては、塩化水素、臭化水素、フッ化水素等のハロゲン化水素、有機スルホン酸等の有機酸、および、フッ化ホウ素等のルイス酸が挙げられる。好ましくはハロゲン化水素であり、より好ましくは塩化水素である。酸性触媒は、水溶液として使用してもよいし、水溶液以外の液体として用いてもよいし、固体として用いてもよいし、気体として反応系中に導入してもよい。ハロゲン化水素を用いる場合は、その水溶液を用いることが好ましい。塩酸を用いる場合は、その濃度が15~35質量%であることが好ましい。酸性触媒の使用量は、アニリン1モルに対して0.05~0.5モルが好ましい。酸性触媒の使用量が0.05モル以上であれば、反応時間が短くてすみ、0.5モル以下であれば、上記式(I)においてnが2以上の重合物の量が少なくなるため老化防止性能が向上する。
 アセトンとアニリンとの反応は、アセトンとアニリンとの反応に不活性な有機溶媒の存在下で実施してもよいが、有機溶媒を実質的に用いることなく実施することが好ましい。反応温度は100~150℃の範囲が好ましい。反応温度が100℃以上であると、未反応のアニリンの量が少なくなり、2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物の量が増加する。反応温度が150℃以下であると、アセトンの使用量が少なくてすみ、経済的に好ましい。
 かかる反応は、通常は2~16時間の反応時間で完結する。比較的大量の酸性触媒を用いると反応時間が比較的短くなる。
 反応終点は、反応混合物中のアニリン含量を高速液体クロマトグラフィー、ガスクロマトグラフィー等の通常の分析手段により分析して、適宜決定すればよい。
 反応終了後、中和等の方法によって反応混合物中の触媒を除去し、次いで減圧下に蒸留して有機溶媒と未反応のアニリンを除去することによって、未精製混合物を取り出すことが好ましい。
 得られる反応混合物には、通常、2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物、ならびに、これらの合計100質量部に対して一級アミンが2~6質量部含まれており、これをそのまま未精製混合物として本発明の製造方法に使用してもよいし、中和、洗浄、濃縮等の後処理により上記酸性触媒を除去して得られる混合物を、未精製混合物として本発明の製造方法に使用してもよい。
 本明細書において、”一級アミン”は、主としてアニリンに起因して生成する一級アミンを意味し、かかる一級アミンは、各種の構造をとりうるが、代表例としては下式(II)および(III)で示される構造の二つの化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
 このように、本明細書における”一級アミン”は複数種の化合物の総称であり、一級アミンの含有量は、全ての一級アミンをアニリン(分子量:93.13)と見なすことにより表される量である。すなわち、アミノ基(−NH)1モルを一級アミン93.13gとして換算する。かかる一級アミンの含有量は、具体的には、混合物をクロロホルムに溶解させ、さらに塩酸およびp−ジメチルアミノベンズアルデヒドを加えて試料溶液を調製し、得られた試料溶液の吸光度を測定し、アニリンを用いた検量線により求められる。
<一級アミン含量が組成物の全量に対して1質量%以下である2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物(以下「精製後組成物」と記載することもある。)およびその製造方法>
 未精製混合物と、該混合物に含まれる一級アミン1モルに対して3~10モルのカルボン酸無水物とを接触させることにより、精製後組成物が得られる。
 カルボン酸無水物としては、無水フタル酸、無水ピロメリット酸等の芳香族ジカルボン酸の分子内無水物、無水コハク酸、無水グルタル酸、無水マレイン酸等の脂肪族ジカルボン酸の分子内無水物、無水酢酸等の脂肪族カルボン酸の分子間無水物、および、無水安息香酸等の芳香族カルボン酸の分子間無水物が挙げられる。これらのなかでも、芳香族ジカルボン酸の分子内無水物または脂肪族ジカルボン酸の分子内無水物が好ましく、芳香族ジカルボン酸の分子内無水物がより好ましく、無水フタル酸が特に好ましい。
 カルボン酸無水物の使用量は、未精製混合物に含まれる一級アミン1モルに対して3~10モルであり、好ましくは3~5モルである。
 未精製混合物とカルボン酸無水物との接触は、未精製混合物とカルボン酸無水物との反応に不活性な溶媒の存在下で実施してもよいし、かかる溶媒を実質的に用いることなく実施してもよい。かかる溶媒としては、キシレン、トルエン等の芳香族炭化水素溶媒、および、ヘプタン、オクタン、ジメチルヘキサン等の脂肪族炭化水素溶媒が挙げられる。溶媒を使用する場合、その使用量は、未精製混合物1質量部に対して、通常0.5~10質量部であり、好ましくは0.5~2質量部である。
 未精製混合物とカルボン酸無水物との接触は、硫黄成分の非存在下で実施することが好ましい。
 未精製混合物とカルボン酸無水物との接触は、ゴム成分の非存在下で実施することが好ましい。
 未精製混合物とカルボン酸無水物との接触温度は、100~150℃が好ましい。反応終点は、例えば、高速クロマトグラフィー等により反応混合物を分析することにより決定することができる。
 得られた混合物に、必要に応じて中和、洗浄、濃縮等の処理を施すことにより、精製後組成物を取り出すことができる。
<ゴム組成物>
 本発明のゴム組成物は、天然ゴムおよびジエン系ゴムからなる群より選ばれる原料ゴム100質量部に対して、不溶性イオウ2~10質量部と、精製後組成物0.5~5質量部とを配合することにより得られる。
 天然ゴムとしては、未変性の天然ゴム、エポキシ化天然ゴム、脱蛋白天然ゴム、および、その他の変性天然ゴムが挙げられる。
 ジエン系ゴムとしては、スチレン・ブタジエン共重合ゴム、ポリブタジエンゴム等の高不飽和性ゴムが挙げられる。
 不溶性イオウとは、二硫化炭素に不溶な無定形の高分子状の硫黄であり、その使用量は、原料ゴム100質量部に対して、通常2~10質量部、好ましくは3~6質量部である。
 精製後組成物の使用量は、原料ゴム100質量部に対して、通常0.5~5質量部、好ましくは0.5~2質量部である。
 本発明のゴム組成物は、さらに、充填剤、加硫促進剤、酸化亜鉛、脂肪酸類、コバルト塩等を含んでいてもよい。
 充填剤としては、ゴム分野で通常使用されているカーボンブラック、シリカ、タルク、クレイ、水酸化アルミニウム、酸化チタン等が挙げられるが、カーボンブラックおよびシリカが好ましく用いられ、カーボンブラックがより好ましく使用される。かかる充填剤の使用量は限定されないが、原料ゴム100質量部あたり5~100質量部の範囲が好ましく、30~80質量部の範囲が特に好ましい。
 カーボンブラックとしては、日本ゴム協会編「ゴム工業便覧<第四版>」の494頁に記載されるものが挙げられ、HAF(High Abrasion Furnace)、SAF(Super Abrasion Furnace)、ISAF(Intermediate SAF)、FEF(Fast Extrusion Furnace)、MAF、GPF(General Purpose Furnace)、SRF(Semi−Reinforcing Furnace)等のカーボンブラックが好ましい。
 シリカとしては、CTAB比表面積50~180m/gのシリカや、窒素吸着比表面積50~300m/gのシリカが挙げられ、東ソー・シリカ(株)社製「AQ」、「AQ−N」、デグッサ社製「ウルトラジル(登録商標)VN3」、「ウルトラジル(登録商標)360」、「ウルトラジル(登録商標)7000」、ローディア社製「ゼオシル(登録商標)115GR」、「ゼオシル(登録商標)1115MP」、「ゼオシル(登録商標)1205MP」、「ゼオシル(登録商標)Z85MP」、日本シリカ社製「ニップシール(登録商標)AQ」等の市販品が好ましい。また、pHが6~8であるシリカやナトリウムを0.2~1.5質量%含むシリカ、真円度が1~1.3の真球状シリカ、ジメチルシリコーンオイル等のシリコーンオイルやエトキシシリル基を含有する有機ケイ素化合物、エタノールやポリエチレングリコール等のアルコールで表面処理したシリカ、二種類以上の異なった窒素吸着比表面積を有するシリカを配合することも好ましい。
 シリカを配合する場合、原料ゴム100質量部あたり、カーボンブラックを5~50質量部配合することが好ましく、シリカ/カーボンブラックの配合比率は0.7/1~1/0.1が特に好ましい。充填剤としてシリカを用いる場合には、ビス(3−トリエトキシシリルプロピル)テトラスルフィド(デグッサ社製「Si−69」)、ビス(3−トリエトキシシリルプロピル)ジスルフィド(デグッサ社製「Si−75」)等のシリカと結合可能なケイ素等の元素またはアルコシキシラン等の官能基を有する化合物、いわゆるシランカップリング剤を添加することが好ましい。
 水酸化アルミニウムとしては、窒素吸着比表面積5~250m/gの水酸化アルミニウムや、DOP給油量50~100mL/100gの水酸化アルミニウムが挙げられる。
 加硫促進剤としては、ゴム工業便覧<第四版>(平成6年1月20日社団法人 日本ゴム協会発行)の412~413ページに記載されているチアゾール系加硫促進剤、スルフェンアミド系加硫促進剤およびグアニジン系加硫促進剤が挙げられる。
 具体的には、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(BBS)、N,N−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(DCBS)、2−メルカプトベンゾチアゾール(MBT)、ジベンゾチアジルジスルフィド(MBTS)およびジフェニルグアニジン(DPG)が挙げられる。また、公知の加硫剤であるモルフォリンジスルフィドを用いることもできる。充填剤としてカーボンブラックを用いる場合には、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(BBS)、N,N−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(DCBS)およびジベンゾチアジルジスルフィド(MBTS)のいずれかとジフェニルグアニジン(DPG)とを併用することが好ましい。充填剤としてシリカとカーボンブラックとを併用する場合には、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(BBS)、N,N−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(DCBS)およびジベンゾチアジルジスルフィド(MBTS)のいずれかとジフェニルグアニジン(DPG)とを併用することが好ましい。
 かかる加硫促進剤の使用量は限定されないが、原料ゴム100質量部あたり0.5~5質量部であることが好ましく、0.5~2質量部であることが特に好ましい。
 酸化亜鉛の使用量は、原料ゴム100質量部あたり1~15質量部であることが好ましく、3~8質量部であることがより好ましい。
 脂肪酸類としてはステアリン酸が好ましく、その使用量は、原料ゴム100質量部あたり1~15質量部であることが好ましく、1~7質量部であることがより好ましい。
 コバルト塩としてはナフテン酸コバルトが挙げられる。その使用量は、コバルト分として原料ゴム100質量部あたり0.02~2質量部であることが好ましく、0.1~0.5質量部であることがより好ましい。
 さらには、ゴム工業で通常使用されている各種ゴム薬品、例えば劣化防止剤、架橋剤、リターダー、しゃく解剤、軟化剤、石油樹脂、滑剤、可塑剤、粘着付与剤、レゾルシンやレゾルシン系樹脂のような接着剤等、を必要に応じて併用してもよい。
 一般に、ゴムの配合は2つの工程で行われる。すなわち、原料ゴム、充填剤、精製後組成物および必要に応じて酸化亜鉛等を比較的高温で配合する第1の工程、および、不溶性イオウおよび必要に応じて加硫促進剤等を比較的低温で配合する第2の工程である。
 第1の工程の配合温度は80~200℃が好ましく、より好ましくは110~160℃である。
 第2の工程の配合温度は60~110℃が好ましい。
 かくして配合された本発明のゴム組成物は、特に自動車用タイヤの内部部材に好適に用いられる。自動車用タイヤの内部部材としては、ベルト、カーカス、インナーライナーおよびアンダートレッドが挙げられる。
 本発明のゴム組成物において、精製後組成物はタイヤ用老化防止剤として使用される。
 本発明のゴム組成物は、特定の状態に加工された後、加硫することにより目的とする製品となる。
 加硫の条件は目的とする製品により異なるが、通常は、120~200℃程度の範囲、1分~2時間程度の範囲から選択される。
 精製後組成物は、組成物全量に対する一級アミン含量が1質量%以下であることにより、上記第2の工程において不溶性イオウは溶解せずにゴム組成物中に均一に分散し、加硫の段階で初めて溶解するため、イオウがゴム組成物表面に偏在(以下「ブルーム」と記載することもある。)し難く、その結果、ゴム組成物内部で十分な加硫効果が得られ易いという利点がある。
<不溶性イオウの溶解性評価>
 不溶性イオウの溶解性は、精製後組成物による影響が大きく、次のようにして評価できる。すなわち、以下の調製方法により成形物を得たとき、当該成形物を100℃で1時間保温した後の600nmの光の透過率が0.5%以下であれば、不溶性イオウは殆ど溶解しておらず、そのような精製後組成物が好ましい。
<成形物の調製方法>
 ブタジエンゴム100質量部に精製後組成物2質量部と不溶性イオウ2質量部とを配合することにより配合物を得、該配合物から厚さ2mmの成形物を調製する。
 続いて、加硫ゴムが有する耐熱性を改善させるための、アニリンとアセトンとの縮合反応生成物及びカルボン酸無水物を混合して得られる組成物の使用および加硫ゴムが有する耐熱性の改善方法について、説明する。
 本発明の加硫ゴムが有する耐熱性の改善方法は、下記の工程(1)、(2)および(3)を含む。
(1)2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物、ならびに、これらの合計100質量部に対して一級アミンを2~6質量部含む混合物と、該一級アミン1モルに対して3~10モルのカルボン酸無水物とを接触させる工程
(2)工程(1)で得られた混合物とゴム成分と硫黄成分とを混練する工程
(3)工程(2)で得られた混練物を加硫し、加硫ゴムを得る工程
 本明細書において、「加硫ゴムが有する耐熱性を改善させる」とは、加硫ゴムの耐熱試験(JIS K6257)において、試験片の引張特性(JIS K6251)を改変させることを意味する。
 以下、上記の各工程(1)、(2)および(3)について、それぞれ説明する。また、かかる説明により、加硫ゴムが有する耐熱性を改善させるための、アニリンとアセトンとの縮合反応生成物およびカルボン酸無水物を混合して得られる組成物の使用に係る発明についても説明する。
 まず、上記工程(1)、すなわち、2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物、ならびに、これらの合計100質量部に対して一級アミンを2~6質量部含む混合物と、該一級アミン1モルに対して3~10モルのカルボン酸無水物とを接触させる工程について説明する。
 2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物、ならびに、これらの合計100質量部に対して一級アミンを2~6質量部含む混合物は、アニリンとアセトンとの縮合反応生成物であることが好ましい。
 アニリンとアセトンとの縮合反応生成物は、上記式(I)で示されるアニリンとアセトンとの縮合反応生成物(通常、上記式(I)において、nが異なる化合物の混合物)を主成分として含む。
 アニリンとアセトンとの縮合反応生成物は、アニリン1モルに対してアセトン2~20モルを使用し、それらを反応させて得ることが好ましく、酸性触媒の存在下、アニリンとアセトンとを加熱状態で反応させる脱水重縮合反応によって製造されることがより好ましい。アニリンおよび酸性触媒を混合した後、ついで過剰のアセトンを、得られた混合物に連続的に供給し、未反応のアセトンは生成した水と共に蒸留により回収することが、常圧下での反応温度の保持の点で好ましい。
 アセトンとアニリンとの反応は、通常、酸性触媒の存在下で実施される。酸性触媒としては、塩化水素、臭化水素、フッ化水素等のハロゲン化水素、有機スルホン酸等の有機酸、および、フッ化ホウ素等のルイス酸が挙げられる。好ましくはハロゲン化水素であり、より好ましくは塩化水素である。酸性触媒は、水溶液として使用してもよいし、水溶液以外の液体として用いてもよいし、固体として用いてもよいし、気体として反応系中に導入してもよい。ハロゲン化水素を用いる場合は、その水溶液を用いることが好ましい。塩酸を用いる場合は、その濃度が15~35質量%であることが好ましい。酸性触媒の使用量は、アニリン1モルに対して0.05~0.5モルが好ましい。酸性触媒の使用量が0.05モル以上であれば、反応時間が短くてすみ、0.5モル以下であれば、上記式(I)におけるnが2以上の重合物の量が少なくなるため老化防止性能が向上する。
 アセトンとアニリンとの反応は、アセトンとアニリンとの反応に不活性な有機溶媒の存在下で実施してもよいし、有機溶媒を実質的に用いることなく実施してもよい。反応温度は100~150℃の範囲が好ましい。反応温度が100℃以上であると、未反応のアニリンの量が少なくなり、2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物の量が増加する。反応温度が150℃以下であると、アセトンの使用量が少なくてすみ、経済的に好ましい。
 かかる反応は、通常は2~16時間の反応時間で完結する。比較的大量の酸性触媒を用いると反応時間が比較的短くなる。
 反応終点は、反応混合物中のアニリン含量を高速液体クロマトグラフィー、ガスクロマトグラフィー等の通常の分析手段により分析して、適宜決定すればよい。
 反応終了後、中和等の方法によって反応混合物中の触媒を除去し、次いで減圧下に蒸留して有機溶媒と未反応のアニリンを除去することによって、アニリンとアセトンとの縮合反応生成物を反応混合物より取り出すことが好ましい。
 得られる反応混合物は、そのままアニリンとアセトンとの縮合反応生成物としてカルボン酸無水物と混合してもよいし、中和、洗浄、濃縮等の後処理により上記酸性触媒を除去して得られる混合物をアニリンとアセトンとの縮合反応生成物としてカルボン酸無水物と混合してもよい。これらの縮合反応生成物は、2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物、ならびに、これらの合計100質量部に対して一級アミンを2~6質量部含む。
 カルボン酸無水物としては、無水フタル酸、無水ピロメリット酸等の芳香族ジカルボン酸の分子内無水物、無水コハク酸、無水グルタル酸、無水マレイン酸等の脂肪族ジカルボン酸の分子内無水物、無水酢酸等の脂肪族カルボン酸の分子間無水物、および、無水安息香酸等の芳香族カルボン酸の分子間無水物が挙げられる。これらのなかでも、芳香族ジカルボン酸の分子内無水物または脂肪族ジカルボン酸の分子内無水物が好ましく、芳香族ジカルボン酸の分子内無水物がより好ましく、無水フタル酸がさらに好ましい。
 カルボン酸無水物の使用量は、一級アミン1モルに対して、3~10モルが好ましく、より好ましくは3~5モルである。
 カルボン酸無水物の使用量は、アニリンとアセトンとの縮合反応生成物1kgに対して、0.6~5モルが好ましく、より好ましくは0.6~2モルである。カルボン酸無水物の使用量が上記の範囲であれば、アニリンとアセトンとの縮合反応生成物およびカルボン酸無水物を混合して得られる組成物と、ゴム成分と硫黄成分とを混練し、次いで加硫することにより得られる加硫ゴムが有する耐熱性が改善される傾向にあり、好ましい。
 アニリンとアセトンとの縮合反応生成物およびカルボン酸無水物の混合は、該縮合反応生成物およびカルボン酸無水物の反応に不活性な溶媒の存在下で実施してもよいし、かかる溶媒を実質的に用いることなく実施してもよい。かかる溶媒としては、キシレン、トルエン等の芳香族炭化水素溶媒、および、ヘプタン、オクタン、ジメチルヘキサン等の脂肪族炭化水素溶媒が挙げられる。溶媒を使用する場合、その使用量は、アニリンとアセトンとの縮合反応生成物1質量部に対して、通常0.5~10質量部、好ましくは0.5~2質量部である。
 アニリンとアセトンとの縮合反応生成物およびカルボン酸無水物の混合は、硫黄成分の非存在下で実施することが好ましい。かかる硫黄成分については工程(2)で詳述する。
 アニリンとアセトンとの縮合反応生成物およびカルボン酸無水物の混合は、ゴム成分の非存在下で実施することが好ましい。
 アニリンとアセトンとの縮合反応生成物とカルボン酸無水物との混合温度は、100~150℃が好ましい。
 得られた組成物を、そのまま工程(2)に使用してもよいし、必要に応じて中和、洗浄、濃縮等の後処理を施した後に工程(2)に使用してもよい。かくして得られた組成物を、以下「本組成物」と記載することがある。
 次に工程(2)、すなわち、工程(1)で得られた組成物(本組成物)とゴム成分と硫黄成分とを混練する工程について説明する。以下、本工程で得られる混練物を「本ゴム組成物」と記載することがある。
 ゴム成分としては、天然ゴムおよびジエン系ゴムからなる群より選ばれるゴムが挙げられる。
 天然ゴムとしては、未変性の天然ゴム、エポキシ化天然ゴム、脱蛋白天然ゴム、および、その他の変性天然ゴムが挙げられる。
 ジエン系ゴムとしては、スチレン・ブタジエン共重合ゴム、ポリブタジエンゴム等の高不飽和性ゴムが挙げられる。
 硫黄成分としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、および、高分散性硫黄が挙げられる。粉末硫黄が好ましく、ベルト用部材等の硫黄量が多いタイヤ部材に本ゴム組成物を用いる場合には不溶性硫黄が好ましい。その使用量は限定されないが、ゴム成分100質量部に対して、好ましくは2~10質量部、より好ましくは3~6質量部である。
 本組成物の使用量は、ゴム成分100質量部に対して、好ましくは0.5~5質量部、より好ましくは0.5~2質量部である。
 本ゴム組成物は、さらに、充填剤、加硫促進剤、酸化亜鉛、脂肪酸類、コバルト塩等を含んでいてもよい。
 充填剤としては、前記したものと同様のものが挙げられるが、カーボンブラックおよびシリカが好ましく使用され、より好ましくはカーボンブラックが使用される。かかる充填剤の使用量は限定されないが、ゴム成分100質量部に対して、5~100質量部が好ましく、30~80質量部がより好ましい。
 カーボンブラックとしては、前記したものと同様のものが挙げられ、HAF(High Abrasion Furnace)、SAF(Super Abrasion Furnace)、ISAF(Intermediate SAF)、FEF(Fast Extrusion Furnace)、MAF、GPF(General Purpose Furnace)、SRF(Semi−Reinforcing Furnace)等のカーボンブラックが好ましい。
 シリカとしては、前記したものと同様のものが挙げられ、東ソー・シリカ(株)社製「AQ」、「AQ−N」、デグッサ社製「ウルトラジル(登録商標)VN3」、「ウルトラジル(登録商標)360」、「ウルトラジル(登録商標)7000」、ローディア社製「ゼオシル(登録商標)115GR」、「ゼオシル(登録商標)1115MP」、「ゼオシル(登録商標)1205MP」、「ゼオシル(登録商標)Z85MP」、日本シリカ社製「ニップシール(登録商標)AQ」等の市販品が好ましい。また、pHが6~8であるシリカやナトリウムを0.2~1.5質量%含むシリカ、真円度が1~1.3の真球状シリカ、ジメチルシリコーンオイル等のシリコーンオイルやエトキシシリル基を含有する有機ケイ素化合物、エタノールやポリエチレングリコール等のアルコールで表面処理したシリカ、二種類以上の異なった窒素吸着比表面積を有するシリカを配合することも好ましい。
 シリカを配合する場合、ゴム成分100質量部あたり、カーボンブラックを5~50質量部配合することが好ましく、シリカ/カーボンブラックの配合比率は0.7/1~1/0.1が特に好ましい。充填剤としてシリカを用いる場合には、ビス(3−トリエトキシシリルプロピル)テトラスルフィド(デグッサ社製「Si−69」)、ビス(3−トリエトキシシリルプロピル)ジスルフィド(デグッサ社製「Si−75」)等のシリカと結合可能なケイ素等の元素またはアルコシキシラン等の官能基を有する化合物、いわゆるシランカップリング剤を添加することが好ましい。
 水酸化アルミニウムとしては、前記したものと同様のものが挙げられる。
 加硫促進剤としては、前記したものと同様のものが挙げられる。充填剤としてカーボンブラックを用いる場合には、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(BBS)、N,N−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(DCBS)、ジベンゾチアジルジスルフィド(MBTS)のいずれかとジフェニルグアニジン(DPG)とを併用することが好ましく、充填剤としてシリカとカーボンブラックとを併用する場合には、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(BBS)、N,N−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(DCBS)、ジベンゾチアジルジスルフィド(MBTS)のいずれかとジフェニルグアニジン(DPG)とを併用することが好ましい。
 かかる加硫促進剤の使用量は限定されないが、ゴム成分100質量部に対し、0.5~5質量部が好ましく、0.5~2質量部がより好ましい。
 酸化亜鉛の使用量は、ゴム成分100質量部に対し、1~15質量部であることが好ましく、3~8質量部であることがより好ましい。
 脂肪酸類としてはステアリン酸が好ましく、その使用量は、ゴム成分100質量部に対し、1~15質量部が好ましく、1~7質量部がより好ましい。
 コバルト塩としてはナフテン酸コバルトが挙げられる。その使用量は、コバルト分としてゴム成分100質量部に対して、0.02~2質量部が好ましく、0.1~0.5質量部がより好ましい。
 さらには、ゴム工業で通常使用されている各種ゴム薬品、例えば劣化防止剤、架橋剤、リターダー、しゃく解剤、軟化剤、石油樹脂、滑剤、可塑剤、粘着付与剤、レゾルシンやレゾルシン系樹脂のような接着剤等、を必要に応じて併用してもよい。
 各成分を混練する手順としては、ゴム成分と充填剤とを混練し(以下、「手順1」と記載することもある。)、次いで、手順1で得られた組成物と硫黄成分とを混練する(以下、「手順2」と記載することもある。)という手順が挙げられる。本組成物は、手順1で混練することが好ましい。
 手順1の混練温度は80~200℃が好ましく、より好ましくは110~160℃である。
 手順2の混練温度は60~110℃が好ましい。
 かくして得られた本ゴム組成物は、特に自動車用タイヤの内部部材に好適に用いられる。自動車用タイヤの内部部材としては、ベルト、カーカス、インナーライナーおよびアンダートレッドが挙げられる。
 最後に工程(3)、すなわち、工程(2)により得られた混練物(本ゴム組成物)を加硫し、加硫ゴムを得る工程について説明する。
 本ゴム組成物は、特定の状態に加工された後、加硫することにより目的とする製品となる。
 加硫の条件は目的とする製品により異なるが、通常は120~200℃程度の範囲、1分~2時間程度の範囲から選択される。
 アニリンとアセトンとの縮合反応生成物(カルボン酸無水物と混合しない)を配合してゴム組成物を得、これを加硫して得られる加硫ゴムと比較して、本ゴム組成物を加硫することにより得られる加硫ゴムは耐熱性が改善される。
First, a method for producing a 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition having a primary amine content of 1% by mass or less based on the total amount of the composition will be described. Such a production method includes 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof, and a mixture containing 2 to 6 parts by mass of a primary amine with respect to a total of 100 parts by mass (hereinafter referred to as “not yet”). A purified mixture ”) and a step of contacting 3 to 10 mol of carboxylic acid anhydride with respect to 1 mol of the primary amine.
<Unpurified mixture>
2,2,4-Trimethyl-1,2-dihydroquinoline and a polymer thereof have a structure mainly represented by the following formula (I).
Figure JPOXMLDOC01-appb-I000001
2,2,4-Trimethyl-1,2-dihydroquinoline and a polymer thereof are preferably produced by reacting acetone and aniline, and reacting aniline and acetone in the presence of an acidic catalyst in a heated state. More preferably, it is produced by a dehydration polycondensation reaction. In such a reaction, it is preferable to use 2 to 20 mol of acetone with respect to 1 mol of aniline. After mixing the aniline and the acidic catalyst, excess acetone is then continuously fed to the resulting mixture, and unreacted acetone is recovered by distillation together with the water formed to maintain the reaction temperature under normal pressure. This is preferable.
The reaction between acetone and aniline is usually carried out in the presence of an acidic catalyst. Examples of the acidic catalyst include hydrogen halides such as hydrogen chloride, hydrogen bromide, and hydrogen fluoride, organic acids such as organic sulfonic acid, and Lewis acids such as boron fluoride. Hydrogen halide is preferable, and hydrogen chloride is more preferable. The acidic catalyst may be used as an aqueous solution, may be used as a liquid other than the aqueous solution, may be used as a solid, or may be introduced as a gas into the reaction system. When using a hydrogen halide, it is preferable to use an aqueous solution thereof. When hydrochloric acid is used, the concentration is preferably 15 to 35% by mass. The amount of the acidic catalyst used is preferably 0.05 to 0.5 mol with respect to 1 mol of aniline. If the amount of the acidic catalyst used is 0.05 mol or more, the reaction time is short, and if it is 0.5 mol or less, the amount of the polymer having n of 2 or more in the above formula (I) decreases. Aging prevention performance is improved.
The reaction between acetone and aniline may be carried out in the presence of an organic solvent inert to the reaction between acetone and aniline, but is preferably carried out without substantially using an organic solvent. The reaction temperature is preferably in the range of 100 to 150 ° C. When the reaction temperature is 100 ° C. or higher, the amount of unreacted aniline decreases, and the amount of 2,2,4-trimethyl-1,2-dihydroquinoline and its polymer increases. When the reaction temperature is 150 ° C. or lower, the amount of acetone used is small, which is economically preferable.
Such a reaction is usually completed in a reaction time of 2 to 16 hours. When a relatively large amount of acidic catalyst is used, the reaction time is relatively short.
The reaction end point may be appropriately determined by analyzing the aniline content in the reaction mixture by a general analysis means such as high performance liquid chromatography or gas chromatography.
After completion of the reaction, it is preferable to remove the catalyst in the reaction mixture by a method such as neutralization, and then remove the organic solvent and unreacted aniline by distillation under reduced pressure to remove the unpurified mixture.
The resulting reaction mixture usually contains 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof, and 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass in total. However, this may be used as it is as an unpurified mixture in the production method of the present invention, or a mixture obtained by removing the acidic catalyst by post-treatment such as neutralization, washing, concentration, etc. is used as an unpurified mixture. You may use for the manufacturing method of invention.
In the present specification, “primary amine” means a primary amine produced mainly due to aniline, and such primary amine can have various structures, but representative examples thereof include the following formulas (II) and (III ). Two compounds having a structure represented by
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Thus, “primary amine” in the present specification is a general term for a plurality of kinds of compounds, and the content of primary amine is an amount expressed by considering all primary amines as aniline (molecular weight: 93.13). It is. That is, an amino group (—NH 2 ) 1 mol is converted as 93.13 g of primary amine. Specifically, the primary amine content is determined by dissolving the mixture in chloroform, adding hydrochloric acid and p-dimethylaminobenzaldehyde to prepare a sample solution, measuring the absorbance of the obtained sample solution, It is obtained from the calibration curve used.
<A 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition having a primary amine content of 1% by mass or less based on the total amount of the composition (hereinafter also referred to as “the composition after purification”) And manufacturing method thereof>
A composition after purification is obtained by bringing the crude mixture into contact with 3 to 10 moles of carboxylic acid anhydride per mole of the primary amine contained in the mixture.
As the carboxylic acid anhydride, an intramolecular anhydride of an aromatic dicarboxylic acid such as phthalic anhydride or pyromellitic anhydride, an intramolecular anhydride of an aliphatic dicarboxylic acid such as succinic anhydride, glutaric anhydride or maleic anhydride, Examples include intermolecular anhydrides of aliphatic carboxylic acids such as acetic anhydride, and intermolecular anhydrides of aromatic carboxylic acids such as benzoic anhydride. Among these, an intramolecular anhydride of an aromatic dicarboxylic acid or an intramolecular anhydride of an aliphatic dicarboxylic acid is preferable, an intramolecular anhydride of an aromatic dicarboxylic acid is more preferable, and phthalic anhydride is particularly preferable.
The amount of the carboxylic anhydride used is 3 to 10 mol, preferably 3 to 5 mol, per 1 mol of the primary amine contained in the unpurified mixture.
The contact between the crude mixture and the carboxylic acid anhydride may be carried out in the presence of a solvent inert to the reaction between the crude mixture and the carboxylic acid anhydride, or substantially without using such a solvent. May be. Examples of such a solvent include aromatic hydrocarbon solvents such as xylene and toluene, and aliphatic hydrocarbon solvents such as heptane, octane, and dimethylhexane. When a solvent is used, the amount used is usually 0.5 to 10 parts by mass, preferably 0.5 to 2 parts by mass with respect to 1 part by mass of the unpurified mixture.
The contact between the crude mixture and the carboxylic acid anhydride is preferably carried out in the absence of a sulfur component.
The contact between the crude mixture and the carboxylic anhydride is preferably carried out in the absence of the rubber component.
The contact temperature between the crude mixture and the carboxylic acid anhydride is preferably 100 to 150 ° C. The reaction end point can be determined, for example, by analyzing the reaction mixture by high-speed chromatography or the like.
The composition after purification can be taken out by subjecting the obtained mixture to treatments such as neutralization, washing, and concentration as necessary.
<Rubber composition>
The rubber composition of the present invention comprises 2 to 10 parts by weight of insoluble sulfur and 0.5 to 5 parts by weight of the composition after purification with respect to 100 parts by weight of raw rubber selected from the group consisting of natural rubber and diene rubber. It is obtained by blending.
Examples of natural rubber include unmodified natural rubber, epoxidized natural rubber, deproteinized natural rubber, and other modified natural rubber.
Examples of the diene rubber include highly unsaturated rubbers such as styrene / butadiene copolymer rubber and polybutadiene rubber.
Insoluble sulfur is amorphous polymeric sulfur that is insoluble in carbon disulfide, and the amount used is usually 2 to 10 parts by mass, preferably 3 to 6 parts by mass with respect to 100 parts by mass of the raw rubber. It is.
The amount of the purified composition used is usually 0.5 to 5 parts by mass, preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the raw rubber.
The rubber composition of the present invention may further contain a filler, a vulcanization accelerator, zinc oxide, fatty acids, cobalt salt and the like.
Examples of the filler include carbon black, silica, talc, clay, aluminum hydroxide, titanium oxide and the like that are usually used in the rubber field. Carbon black and silica are preferably used, and carbon black is more preferably used. The The amount of the filler used is not limited, but is preferably in the range of 5 to 100 parts by mass, particularly preferably in the range of 30 to 80 parts by mass, per 100 parts by mass of the raw rubber.
Examples of the carbon black include those described on page 494 of the “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. HAF (High Ablation Furnace), SAF (Super Ablation Furnace), ISAF (Intermediate SAF). Carbon blacks such as FEF (Fast Extension Furnace), MAF, GPF (General Purpose Furnace), SRF (Semi-Reinforming Furnace) are preferable.
Silica has a CTAB specific surface area of 50 to 180 m. 2 / G silica and nitrogen adsorption specific surface area 50-300m 2 / G of silica, Tosoh Silica Co., Ltd. “AQ”, “AQ-N”, Degussa “Ultrasil (registered trademark) VN3”, “Ultrasil (registered trademark) 360”, “ "Ultrasil (registered trademark) 7000", Rhodia's "Zeosil (registered trademark) 115GR", "Zeosil (registered trademark) 1115MP", "Zeosil (registered trademark) 1205MP", "Zeosil (registered trademark) Z85MP", Nippon Silica Commercial products such as “Nip Seal (registered trademark) AQ” manufactured by the company are preferable. Further, silica having a pH of 6 to 8, silica containing 0.2 to 1.5% by mass of sodium, true spherical silica having a roundness of 1 to 1.3, silicone oil such as dimethyl silicone oil, and ethoxysilyl group It is also preferable to blend a silica having a surface treatment with an alcohol such as ethanol or polyethylene glycol, or a silica having two or more different nitrogen adsorption specific surface areas.
When silica is blended, it is preferable to blend 5 to 50 parts by mass of carbon black per 100 parts by mass of the raw rubber, and the blending ratio of silica / carbon black is particularly preferably 0.7 / 1 to 1 / 0.1. When silica is used as the filler, bis (3-triethoxysilylpropyl) tetrasulfide (“Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (“Si-75 manufactured by Degussa) It is preferable to add a compound having an element such as silicon or a functional group such as alkoxysilane which can be bonded to silica such as “)”, a so-called silane coupling agent.
As aluminum hydroxide, nitrogen adsorption specific surface area 5 ~ 250m 2 / G aluminum hydroxide and aluminum hydroxide having a DOP oil supply amount of 50 to 100 mL / 100 g.
Examples of vulcanization accelerators include thiazole vulcanization accelerators and sulfenamides described on pages 412 to 413 of Rubber Industry Handbook <Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994). And guanidine vulcanization accelerators.
Specifically, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclohexyl-2-benzothiazoli Examples include rusulfenamide (DCBS), 2-mercaptobenzothiazole (MBT), dibenzothiazyl disulfide (MBTS) and diphenylguanidine (DPG). Also, morpholine disulfide, which is a known vulcanizing agent, can be used. When carbon black is used as the filler, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclohexyl It is preferable to use either 2-benzothiazolylsulfenamide (DCBS) or dibenzothiazyl disulfide (MBTS) in combination with diphenylguanidine (DPG). When silica and carbon black are used in combination as fillers, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N , N-dicyclohexyl-2-benzothiazolylsulfenamide (DCBS) or dibenzothiazyl disulfide (MBTS) is preferably used in combination with diphenylguanidine (DPG).
The amount of the vulcanization accelerator used is not limited, but is preferably 0.5 to 5 parts by mass, particularly preferably 0.5 to 2 parts by mass per 100 parts by mass of the raw rubber.
The amount of zinc oxide used is preferably 1 to 15 parts by mass and more preferably 3 to 8 parts by mass per 100 parts by mass of the raw rubber.
The fatty acids are preferably stearic acid, and the amount used is preferably 1 to 15 parts by mass, more preferably 1 to 7 parts by mass, per 100 parts by mass of the raw rubber.
A cobalt salt includes cobalt naphthenate. The amount used is preferably 0.02 to 2 parts by mass, more preferably 0.1 to 0.5 parts by mass, per 100 parts by mass of the raw rubber as the cobalt content.
Furthermore, various rubber chemicals commonly used in the rubber industry, such as anti-degradation agents, crosslinking agents, retarders, peptizers, softeners, petroleum resins, lubricants, plasticizers, tackifiers, resorcins and resorcin resins Such an adhesive may be used in combination as necessary.
Generally, rubber compounding is performed in two steps. That is, a first step of blending raw rubber, filler, refined composition and, if necessary, zinc oxide, etc. at a relatively high temperature, and insoluble sulfur and, if necessary, a vulcanization accelerator, etc. at a relatively low temperature. It is the 2nd process mix | blended with.
The compounding temperature in the first step is preferably 80 to 200 ° C, more preferably 110 to 160 ° C.
The compounding temperature in the second step is preferably 60 to 110 ° C.
The rubber composition of the present invention thus blended is particularly preferably used for an internal member of an automobile tire. Examples of the internal member of the automobile tire include a belt, a carcass, an inner liner, and an under tread.
In the rubber composition of the present invention, the composition after purification is used as an anti-aging agent for tires.
The rubber composition of the present invention becomes a target product by being vulcanized after being processed into a specific state.
Vulcanization conditions vary depending on the target product, but are usually selected from a range of about 120 to 200 ° C. and a range of about 1 minute to 2 hours.
The composition after purification has a primary amine content of 1% by mass or less with respect to the total amount of the composition, so that insoluble sulfur is not uniformly dissolved in the rubber composition in the second step and is vulcanized. Therefore, sulfur is not unevenly distributed on the surface of the rubber composition (hereinafter sometimes referred to as “bloom”), and as a result, there is an advantage that a sufficient vulcanization effect is easily obtained inside the rubber composition. is there.
<Evaluation of solubility of insoluble sulfur>
The solubility of insoluble sulfur is greatly influenced by the composition after purification, and can be evaluated as follows. That is, when a molded product is obtained by the following preparation method, if the molded product is kept at 100 ° C. for 1 hour and the light transmittance at 600 nm is 0.5% or less, insoluble sulfur is almost dissolved. Such a post-purification composition is preferred.
<Method for preparing molded product>
A blend is obtained by blending 2 parts by weight of the composition after purification and 2 parts by weight of insoluble sulfur with 100 parts by weight of butadiene rubber, and a molded product having a thickness of 2 mm is prepared from the blend.
Subsequently, use of a composition obtained by mixing a condensation reaction product of aniline and acetone and a carboxylic anhydride to improve the heat resistance of the vulcanized rubber, and improvement of the heat resistance of the vulcanized rubber The method will be described.
The method for improving the heat resistance of the vulcanized rubber of the present invention includes the following steps (1), (2) and (3).
(1) 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof, a mixture containing 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass in total, and 1 mol of the primary amine Contacting 3 to 10 moles of carboxylic acid anhydride with respect to
(2) Kneading the mixture obtained in step (1), the rubber component and the sulfur component
(3) Step of vulcanizing the kneaded product obtained in step (2) to obtain vulcanized rubber
In the present specification, “to improve the heat resistance of vulcanized rubber” means to change the tensile properties (JIS K6251) of the test piece in the heat resistance test (JIS K6257) of the vulcanized rubber.
Hereinafter, each of the steps (1), (2) and (3) will be described. In addition, such an explanation will also explain an invention relating to the use of a composition obtained by mixing a condensation reaction product of aniline and acetone and a carboxylic acid anhydride to improve the heat resistance of the vulcanized rubber. .
First, the above step (1), that is, 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof, and a mixture containing 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass in total. And a step of bringing 3 to 10 moles of carboxylic acid anhydride into contact with 1 mole of the primary amine will be described.
2,2,4-Trimethyl-1,2-dihydroquinoline and a polymer thereof, and a mixture containing 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass in total are formed by condensation reaction of aniline and acetone. It is preferable that it is a thing.
The condensation reaction product of aniline and acetone contains a condensation reaction product of aniline and acetone represented by the above formula (I) (usually a mixture of compounds having different n in the above formula (I)) as a main component. .
The condensation reaction product of aniline and acetone is preferably obtained by reacting 2 to 20 moles of acetone with respect to 1 mole of aniline. In the presence of an acidic catalyst, aniline and acetone are heated. More preferably, it is produced by a dehydration polycondensation reaction. After mixing the aniline and the acidic catalyst, excess acetone is then continuously fed to the resulting mixture, and unreacted acetone is recovered by distillation together with the water formed to maintain the reaction temperature under normal pressure. This is preferable.
The reaction between acetone and aniline is usually carried out in the presence of an acidic catalyst. Examples of the acidic catalyst include hydrogen halides such as hydrogen chloride, hydrogen bromide, and hydrogen fluoride, organic acids such as organic sulfonic acid, and Lewis acids such as boron fluoride. Hydrogen halide is preferable, and hydrogen chloride is more preferable. The acidic catalyst may be used as an aqueous solution, may be used as a liquid other than the aqueous solution, may be used as a solid, or may be introduced as a gas into the reaction system. When using a hydrogen halide, it is preferable to use an aqueous solution thereof. When hydrochloric acid is used, the concentration is preferably 15 to 35% by mass. The amount of the acidic catalyst used is preferably 0.05 to 0.5 mol with respect to 1 mol of aniline. If the amount of the acidic catalyst used is 0.05 mol or more, the reaction time is short, and if it is 0.5 mol or less, the amount of the polymer having n of 2 or more in the above formula (I) decreases. Aging prevention performance is improved.
The reaction between acetone and aniline may be carried out in the presence of an organic solvent inert to the reaction between acetone and aniline, or may be carried out without substantially using an organic solvent. The reaction temperature is preferably in the range of 100 to 150 ° C. When the reaction temperature is 100 ° C. or higher, the amount of unreacted aniline decreases, and the amount of 2,2,4-trimethyl-1,2-dihydroquinoline and its polymer increases. When the reaction temperature is 150 ° C. or lower, the amount of acetone used is small, which is economically preferable.
Such a reaction is usually completed in a reaction time of 2 to 16 hours. When a relatively large amount of acidic catalyst is used, the reaction time is relatively short.
The reaction end point may be appropriately determined by analyzing the aniline content in the reaction mixture by a general analysis means such as high performance liquid chromatography or gas chromatography.
After completion of the reaction, the catalyst in the reaction mixture is removed by a method such as neutralization, and then the reaction product of the condensation reaction product of aniline and acetone is reacted by distillation under reduced pressure to remove the organic solvent and unreacted aniline. It is preferable to remove from the mixture.
The resulting reaction mixture may be directly mixed with a carboxylic acid anhydride as a condensation reaction product of aniline and acetone, or a mixture obtained by removing the acidic catalyst by post-treatment such as neutralization, washing, and concentration. May be mixed with a carboxylic acid anhydride as a condensation reaction product of aniline and acetone. These condensation reaction products contain 2,6 parts by weight of primary amines with respect to 2,2,4-trimethyl-1,2-dihydroquinoline and its polymer, and a total of 100 parts by weight thereof.
As the carboxylic acid anhydride, an intramolecular anhydride of an aromatic dicarboxylic acid such as phthalic anhydride or pyromellitic anhydride, an intramolecular anhydride of an aliphatic dicarboxylic acid such as succinic anhydride, glutaric anhydride or maleic anhydride, Examples include intermolecular anhydrides of aliphatic carboxylic acids such as acetic anhydride, and intermolecular anhydrides of aromatic carboxylic acids such as benzoic anhydride. Among these, an intramolecular anhydride of an aromatic dicarboxylic acid or an intramolecular anhydride of an aliphatic dicarboxylic acid is preferable, an intramolecular anhydride of an aromatic dicarboxylic acid is more preferable, and phthalic anhydride is more preferable.
The amount of the carboxylic acid anhydride used is preferably 3 to 10 mol, more preferably 3 to 5 mol, per 1 mol of the primary amine.
The amount of carboxylic anhydride used is preferably 0.6 to 5 moles, more preferably 0.6 to 2 moles, per 1 kg of the condensation reaction product of aniline and acetone. If the amount of the carboxylic acid anhydride used is in the above range, the composition obtained by mixing the condensation reaction product of aniline and acetone and the carboxylic acid anhydride, the rubber component and the sulfur component are kneaded, and then The heat resistance of the vulcanized rubber obtained by vulcanization tends to be improved, which is preferable.
Mixing of the condensation reaction product of aniline and acetone and the carboxylic acid anhydride may be carried out in the presence of a solvent inert to the reaction of the condensation reaction product and the carboxylic acid anhydride. You may implement without using it. Examples of such a solvent include aromatic hydrocarbon solvents such as xylene and toluene, and aliphatic hydrocarbon solvents such as heptane, octane, and dimethylhexane. When the solvent is used, the amount used is usually 0.5 to 10 parts by mass, preferably 0.5 to 2 parts by mass with respect to 1 part by mass of the condensation reaction product of aniline and acetone.
Mixing of the condensation reaction product of aniline and acetone and the carboxylic anhydride is preferably carried out in the absence of a sulfur component. The sulfur component will be described in detail in step (2).
Mixing of the condensation reaction product of aniline and acetone and the carboxylic anhydride is preferably carried out in the absence of the rubber component.
The mixing temperature of the condensation reaction product of aniline and acetone and the carboxylic acid anhydride is preferably 100 to 150 ° C.
The obtained composition may be used in the step (2) as it is, or may be used in the step (2) after being subjected to post-treatment such as neutralization, washing and concentration as necessary. The composition thus obtained may be hereinafter referred to as “the present composition”.
Next, the step (2), that is, the step of kneading the composition (the present composition) obtained in the step (1), the rubber component and the sulfur component will be described. Hereinafter, the kneaded product obtained in this step may be referred to as “the rubber composition”.
Examples of the rubber component include rubber selected from the group consisting of natural rubber and diene rubber.
Examples of natural rubber include unmodified natural rubber, epoxidized natural rubber, deproteinized natural rubber, and other modified natural rubber.
Examples of the diene rubber include highly unsaturated rubbers such as styrene / butadiene copolymer rubber and polybutadiene rubber.
Sulfur components include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur. Powdered sulfur is preferable, and insoluble sulfur is preferable when the rubber composition is used for a tire member having a large amount of sulfur such as a belt member. The amount used is not limited, but is preferably 2 to 10 parts by mass, more preferably 3 to 6 parts by mass with respect to 100 parts by mass of the rubber component.
The amount of the composition used is preferably 0.5 to 5 parts by mass, more preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the rubber component.
The rubber composition may further contain a filler, a vulcanization accelerator, zinc oxide, fatty acids, cobalt salt and the like.
Examples of the filler include those similar to those described above, and carbon black and silica are preferably used, and carbon black is more preferably used. The amount of the filler used is not limited, but is preferably 5 to 100 parts by mass, more preferably 30 to 80 parts by mass with respect to 100 parts by mass of the rubber component.
Examples of the carbon black include those similar to those described above, HAF (High Absorption Furnace), SAF (Super Absorption Furnace), ISAF (Intermediate SAF), FEF (Fast Extraction Furnace), MAFce, PF ), Carbon black such as SRF (Semi-Reinforcing Furnace) is preferable.
Examples of the silica include those similar to those described above. “AQ” and “AQ-N” manufactured by Tosoh Silica Co., Ltd., “Ultrazil (registered trademark) VN3” manufactured by Degussa, “Ultrazil ( (Registered trademark) 360 "," Ultrasil (registered trademark) 7000 "," Zeosil (registered trademark) 115GR "," Zeosil (registered trademark) 1115MP "," Zeosil (registered trademark) 1205MP "," Zeosil (registered) "manufactured by Rhodia (Trademark) Z85MP "and" Nip Seal (registered trademark) AQ "manufactured by Nippon Silica Co., Ltd. are preferable. Further, silica having a pH of 6 to 8, silica containing 0.2 to 1.5% by mass of sodium, true spherical silica having a roundness of 1 to 1.3, silicone oil such as dimethyl silicone oil, and ethoxysilyl group It is also preferable to blend a silica having a surface treatment with an alcohol such as ethanol or polyethylene glycol, or a silica having two or more different nitrogen adsorption specific surface areas.
When silica is blended, it is preferable to blend 5 to 50 parts by mass of carbon black per 100 parts by mass of the rubber component, and the blending ratio of silica / carbon black is particularly preferably 0.7 / 1 to 1 / 0.1. When silica is used as the filler, bis (3-triethoxysilylpropyl) tetrasulfide (“Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (“Si-75 manufactured by Degussa) It is preferable to add a compound having an element such as silicon or a functional group such as alkoxysilane which can be bonded to silica such as “)”, a so-called silane coupling agent.
Examples of the aluminum hydroxide include the same ones as described above.
Examples of the vulcanization accelerator include the same ones as described above. When carbon black is used as the filler, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclohexyl 2-Benzothiazolylsulfenamide (DCBS) or dibenzothiazyl disulfide (MBTS) is preferably used in combination with diphenylguanidine (DPG). When silica and carbon black are used in combination as fillers N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclohexyl-2-benzothiazolylsulfenamide ( DCBS), dibenzothiazyl disulfide It is preferred that either the de (MBTS) in combination with diphenyl guanidine (DPG).
The amount of the vulcanization accelerator used is not limited, but is preferably 0.5 to 5 parts by mass and more preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the rubber component.
The amount of zinc oxide used is preferably 1 to 15 parts by mass and more preferably 3 to 8 parts by mass with respect to 100 parts by mass of the rubber component.
As the fatty acids, stearic acid is preferable, and the amount used is preferably 1 to 15 parts by mass, more preferably 1 to 7 parts by mass with respect to 100 parts by mass of the rubber component.
A cobalt salt includes cobalt naphthenate. The amount used is preferably 0.02 to 2 parts by mass, more preferably 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the rubber component as a cobalt content.
Furthermore, various rubber chemicals commonly used in the rubber industry, such as anti-degradation agents, crosslinking agents, retarders, peptizers, softeners, petroleum resins, lubricants, plasticizers, tackifiers, resorcins and resorcin resins Such an adhesive may be used in combination as necessary.
As a procedure for kneading each component, a rubber component and a filler are kneaded (hereinafter sometimes referred to as “procedure 1”), and then the composition obtained in procedure 1 and a sulfur component are kneaded. (Hereinafter also referred to as “procedure 2”). The composition is preferably kneaded in the procedure 1.
The kneading temperature in Procedure 1 is preferably 80 to 200 ° C, more preferably 110 to 160 ° C.
The kneading temperature in step 2 is preferably 60 to 110 ° C.
The rubber composition thus obtained is particularly preferably used for an internal member of an automobile tire. Examples of the internal member of the automobile tire include a belt, a carcass, an inner liner, and an under tread.
Finally, the step (3), that is, the step of vulcanizing the kneaded product (present rubber composition) obtained in the step (2) to obtain a vulcanized rubber will be described.
The rubber composition is processed into a specific state and then vulcanized to obtain a target product.
Vulcanization conditions vary depending on the target product, but are usually selected from a range of about 120 to 200 ° C. and a range of about 1 minute to 2 hours.
A rubber composition is obtained by blending a condensation reaction product of aniline and acetone (not mixed with a carboxylic acid anhydride), and this rubber composition is added in comparison with a vulcanized rubber obtained by vulcanizing the rubber composition. The heat resistance of the vulcanized rubber obtained by vulcanization is improved.
 以下、実施例、試験例、製造例等を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 以下の製造例において、2,2,4−トリメチル−1,2−ジヒドロキノリン(以下「TMDQ」という場合がある)量およびTMDQダイマー量は、カラムとしてEclipse XDB−C18Aを、A液として水を、B液としてメタノールを、それぞれ用い、グラジエント法による高速液体クロマトグラフィーにより分析した。
 一級アミン含量は、未精製混合物または精製後組成物をクロロホルムに溶解させ、さらに塩酸およびp−ジメチルアミノベンズアルデヒドを加えて試料溶液を調製し、この試料溶液の吸光度を分光光度計(測定波長440nm)にて測定し、アニリンを用いた検量線より求めた。
製造例1
 温度計、攪拌機および蒸留装置を装備した300mL丸底フラスコに、アニリン46.5gおよび35質量%塩酸4.4gを仕込み、得られた混合物を110℃に昇温した。そこに、アセトン290.4gを110℃~140℃で16時間かけて滴下した。得られた混合物を135℃~140℃で4時間保温した。得られた反応混合物を90℃まで冷却した後、トルエンで希釈し、水酸化ナトリウム水溶液で中和した後、静置分液して水層を除去した。油層中のトルエンを留去した後、さらに内温200℃、減圧度2mmHgで蒸留して低沸点成分を留去することにより、未精製混合物80.3gを得た。得られた未精製混合物は、実質的にアニリンとアセトンとの縮合反応生成物からなり、TMDQ0.1質量%、TMDQダイマー14質量%をそれぞれ含有していた。また、一級アミン含量は3.2質量%であった。
実施例1
 温度計、攪拌機、ディーンスターク管およびコンデンサーを備えた100mL四つ口丸底フラスコに、製造例1で得た未精製混合物20.0g、無水フタル酸4.83gおよびキシレン100mLを仕込んだ。得られた混合物を140℃で5時間保温した後、溶媒を留去し、精製後組成物を得た。得られた精製後組成物は、アニリンとアセトンとの縮合反応生成物に由来する成分以外は、実質的に、無水フタル酸、および、一級アミンと無水フタル酸との反応生成物からなり、一級アミン含量は0.1質量%であった。
実施例2
 実施例1において、無水フタル酸4.83gに代えて無水コハク酸3.26gを用い、保温条件を140℃で3時間にした以外は実施例1と同様に実施して、精製後組成物を得た。得られた精製後組成物は、アニリンとアセトンとの縮合物に由来する成分以外は、実質的に、無水フタル酸、および、一級アミンと無水フタル酸との反応物からなり、一級アミン含量は0.1質量%であった。
実施例3
 実施例1において、製造例1で得た未精製混合物20.0gに代えて製造例1に準じて得た未精製混合物(一級アミン含量:2.9質量%)10.0gを用い、無水フタル酸4.83gに代えて無水フタル酸1.75gを用い、キシレン100mLに代えてキシレン20mLを用い、保温条件を140℃で4時間にした以外は、実施例1と同様に実施して、精製後組成物を得た。得られた精製後組成物は、アニリンとアセトンとの縮合反応生成物に由来する成分以外は、実質的に、無水フタル酸、および、一級アミンと無水フタル酸との反応生成物からなり、一級アミン含量は0.3質量%であった。
実施例4
 実施例3において、キシレン20mLに代えてトルエン20mLを用い、保温条件を110℃にした以外は、実施例3と同様に実施して、精製後組成物を得た。得られた精製後組成物は、アニリンとアセトンとの縮合反応生成物に由来する成分以外は、実質的に、無水フタル酸、および、一級アミンと無水フタル酸との反応生成物からなり、一級アミン含量は0.2質量%であった。
実施例5
 実施例1において、製造例1で得た未精製混合物20.0gに代えて製造例1に準じて得た未精製混合物(一級アミン含量:3.5質量%)20.0gを用い、無水フタル酸4.83gに代えて無水フタル酸4.24gを用い、キシレン100mLに代えてキシレン40gを用い、保温時間を140℃で3時間にした以外は、実施例1と同様に実施して、精製後組成物を得た。得られた精製後組成物は、アニリンとアセトンとの縮合反応生成物に由来する成分以外は、実質的に、無水フタル酸、および、一級アミンと無水フタル酸との反応生成物からなり、一級アミン含量は0.1質量%であった。
実施例6
 実施例5において、キシレン40gに代えてトルエン40gを用い、保温条件を110℃にした以外は、実施例5と同様に実施して、精製後組成物を得た。得られた精製後組成物は、アニリンとアセトンとの縮合反応生成物に由来する成分以外は、実質的に、無水フタル酸、および、一級アミンと無水フタル酸との反応生成物からなり、一級アミン含量は0.1質量%であった。
実施例7
 温度計、攪拌機、ディーンスターク管およびコンデンサーを備えた100mL四つ口丸底フラスコに、製造例1に準じて得た未精製混合物(一級アミン含量:2.9質量%)20.0gおよび無水フタル酸3.46gを仕込んだ。得られた混合物を140℃で2時間保温し、精製後組成物を得た。得られた精製後組成物は、アニリンとアセトンとの縮合反応生成物に由来する成分以外は、実質的に、無水フタル酸、および、一級アミンと無水フタル酸との反応生成物からなり、一級アミン含量は0.1質量%であった。
実施例8
 実施例7において、保温条件を120℃で4時間にした以外は実施例7と同様に実施して、精製後組成物を得た。得られた精製後組成物は、アニリンとアセトンとの縮合反応生成物に由来する成分以外は、実質的に、無水フタル酸、および、一級アミンと無水フタル酸との反応生成物からなり、一級アミン含量は0.2質量%であった。
実施例9
 実施例7において、製造例1に準じて得た未精製混合物(一級アミン含量:2.9質量%)20.0gに代えて製造例1に準じて得た未精製混合物(一級アミン含量:3.5質量%)20.0gを用い、無水フタル酸3.46gに代えて無水フタル酸4.24gを用いた以外は実施例7と同様に実施して、精製後組成物を得た。得られた精製後組成物は、アニリンとアセトンとの縮合反応生成物に由来する成分以外は、実質的に、無水フタル酸、および、一級アミンと無水フタル酸との反応生成物からなり、一級アミン含量は0.0質量%であった。
参考例
 温度計、攪拌機、ディーンスターク管およびコンデンサーを備えた100mL四つ口丸底フラスコに、製造例1に準じて得た未精製混合物(一級アミン含量:2.9質量%)25.0gおよび無水フタル酸1.25gを仕込んだ。得られた混合物を140℃で3時間保温した後、溶媒を留去し、組成物を得た。得られた組成物は、アニリンとアセトンとの縮合反応生成物に由来する成分以外は、実質的に、無水フタル酸、および、一級アミンと無水フタル酸との反応生成物からなり、一級アミン含量は1.8質量%であった。
Figure JPOXMLDOC01-appb-T000004
試験例1
 ブタジエンゴム100質量部に対して実施例1で得た精製後組成物2質量部と不溶性イオウ2質量部とを配合することにより配合物を得、該配合物をポリエチレンテレフタレート製フィルムに挟んで2mmの厚さに成形した。得られた成形物を100℃で1時間保温した。保温後の成形物の600nmの光の透過率は0.00%であった。
試験例2~9
 試験例1において、実施例1で得た精製後組成物に代えて、実施例2~9でそれぞれ得た精製後組成物を用いた以外は試験例1と同様にして保温後の成形物を得た。保温後の成形物の600nmの光の透過率を試験例1とともに下記表2に示す。
Figure JPOXMLDOC01-appb-T000005
参考試験例1
 試験例1において、実施例1で得た精製後組成物に代えて、製造例1で得た未精製混合物を用いる以外は試験例1と同様にして保温後の成形物を得た。その600nmの光の透過率は20.07%であった。
参考試験例2
 試験例1において、実施例1で得た精製後組成物に代えて、参考例で得た組成物を用いる以外は試験例1と同様にして保温後の成形物を得た。その600nmの光の透過率は6.39%であった。
実施例10:ゴム組成物の製造
<第1の工程>
 バンバリーミキサー(東洋精機製600mlラボプラストミル)を用いて、天然ゴム(RSS#1)100質量部、カーボンブラック(N330)45質量部、含水シリカ(Nipsil AQ)10質量部、ステアリン酸3質量部、酸化亜鉛5質量部および実施例1で得た精製後組成物2質量部を配合、混練し、混練物を得た。
<第2の工程>
 オープンロール機で60~80℃の温度にて、第1の工程により得られた混練物と、加硫促進剤(N,N−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド)0.7質量部、不溶性イオウ6質量部(イオウ分として)およびナフテン酸コバルト2質量部とを配合、混練し、本発明のゴム組成物を得た。
<第3の工程>
 第2の工程で得たゴム組成物を150℃で加硫処理することにより加硫ゴムを得た。
実施例11および12
 実施例10において、実施例1で得た精製後組成物に代えて実施例7、8で得た精製後組成物をそれぞれ用いた以外は実施例10と同様に実施して、本発明のゴム組成物および加硫ゴムを得た。
試験例10~12
 実施例10~12でそれぞれ得られたゴム組成物および加硫ゴムについて、以下の試験を実施した。結果を下記表3に示す。
1)反発弾性:JIS K 6255に従い、加硫ゴムの反発弾性を25℃で測定した。
2)硬度:JIS K 6253に従い、デュロメータータイプAを用いて、加硫ゴムの硬度を25℃で測定した。
Figure JPOXMLDOC01-appb-T000006
製造例2
 温度計、攪拌機および蒸留装置を装備した300mL丸底フラスコに、アニリン46.5gおよび35質量%塩酸4.4gを仕込み、得られた混合物を110℃に昇温した。そこにアセトン290.4gを110℃~140℃で16時間かけて滴下した。得られた混合物を135℃~140℃で4時間保温した。得られた反応混合物を90℃まで冷却し、トルエンで希釈し、水酸化ナトリウム水溶液で中和した後、静置分液して水層を除去した。油層中のトルエンを留去した後、内温200℃、減圧度2mmHgで蒸留して低沸点成分を留去することにより、アニリンとアセトンとの縮合反応生成物80.3gを得た。
製造例3:工程(1)
 温度計、攪拌機、ディーンスターク装置およびコンデンサーを備えた100mL四つ口丸底フラスコに、製造例2に準じて得たアニリンとアセトンとの縮合反応生成物25.0gおよび無水フタル酸3.46gを仕込んだ。得られた混合物を140℃で2時間保温し、本組成物を得た。
製造例4:工程(1)
 製造例3において、保温条件を120℃で4時間にした以外は製造例3と同様に実施して、本組成物を得た。
製造例5:工程(1)
 温度計、攪拌機、ディーンスターク装置およびコンデンサーを備えた100mL四つ口丸底フラスコに、製造例2で得たアニリンとアセトンとの縮合反応生成物20.0g、無水フタル酸11.2gおよびキシレン40.0mLを仕込んだ。得られた混合物を140℃で3時間保温し、本組成物を得た。
製造例6:工程(1)
 製造例5において、無水フタル酸11.2gに代えて無水フタル酸22.3gを用いた以外は製造例5と同様に実施して、本組成物を得た。
Figure JPOXMLDOC01-appb-T000007
実施例13
<工程(2)手順1>
 バンバリーミキサー(東洋精機製600mLラボプラストミル)を用いて、天然ゴム(RSS#1)100質量部、カーボンブラック(N330)45質量部、含水シリカ(Nipsil AQ)10質量部、ステアリン酸3質量部、酸化亜鉛5質量部および製造例3で得た本組成物2質量部を配合、混練し、組成物を得た。
<工程(2)手順2>
 オープンロール機で60~80℃で、工程(2)手順1により得られた組成物と、加硫促進剤(N,N−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド)0.7質量部、不溶性イオウ6質量部(イオウ分として)およびナフテン酸コバルト2質量部とを配合、混練し、本ゴム組成物を得た。
<工程(3)>
 工程(2)手順2で得た本ゴム組成物を150℃で加硫することにより加硫ゴムを得た。
実施例14および15
 実施例13において、製造例3で得た本組成物に代えて、製造例4、5でそれぞれ得た本組成物を用いた以外は実施例13と同様にして本ゴム組成物および加硫ゴムを得た。
比較例1
 実施例13において、製造例3で得た本組成物に代えて製造例2で得たアニリンとアセトンとの縮合反応生成物を用いた以外は実施例13と同様にしてゴム組成物および加硫ゴムを得た。
比較例2
 実施例13において、製造例3で得た本組成物に代えて製造例6で得た本組成物を用いた以外は実施例13と同様にしてゴム組成物および加硫ゴムを得た。
試験例13~15、比較試験例1、2
 実施例13~15、比較例1、2でそれぞれ得られたゴム組成物および加硫ゴムについて、以下の耐熱試験を実施した。
耐熱試験:JIS K6251によるダンベル3号の試験片を用いて、JIS K6257 B−1法により、100℃、48時間の耐熱試験を実施した。耐熱試験後の試験片を用いてJIS K6251により切断時伸び(EB)を測定した。比較例1で得たゴム組成物および加硫ゴムを用いた値を100としたときの相対EBを示す。
Figure JPOXMLDOC01-appb-T000008
 相対EBが大きいほど耐熱性に優れているといえる。したがって、本組成物を使用すれば、タイヤの製造に用いられる加硫ゴムが有する耐熱性を、より簡便に改善させることができる。
EXAMPLES Hereinafter, although an Example, a test example, a manufacture example, etc. are given and this invention is demonstrated concretely, this invention is not limited to these.
In the following production examples, the amount of 2,2,4-trimethyl-1,2-dihydroquinoline (hereinafter sometimes referred to as “TMDQ”) and the amount of TMDQ dimer are Eclipse XDB-C18A as a column and water as A liquid. Methanol was used as liquid B, respectively, and analyzed by high performance liquid chromatography using a gradient method.
The primary amine content is determined by dissolving the unpurified mixture or the purified composition in chloroform, adding hydrochloric acid and p-dimethylaminobenzaldehyde to prepare a sample solution, and measuring the absorbance of this sample solution with a spectrophotometer (measurement wavelength: 440 nm). And obtained from a calibration curve using aniline.
Production Example 1
A 300 mL round bottom flask equipped with a thermometer, a stirrer and a distillation apparatus was charged with 46.5 g of aniline and 4.4 g of 35 mass% hydrochloric acid, and the resulting mixture was heated to 110 ° C. Thereto, 290.4 g of acetone was added dropwise at 110 ° C. to 140 ° C. over 16 hours. The obtained mixture was kept at 135 ° C. to 140 ° C. for 4 hours. The obtained reaction mixture was cooled to 90 ° C., diluted with toluene, neutralized with an aqueous sodium hydroxide solution, and allowed to stand for liquid separation to remove the aqueous layer. After the toluene in the oil layer was distilled off, the low boiling point component was further distilled off by distillation at an internal temperature of 200 ° C. and a reduced pressure of 2 mmHg to obtain 80.3 g of an unpurified mixture. The obtained crude mixture was substantially composed of a condensation reaction product of aniline and acetone, and contained 0.1% by mass of TMDQ and 14% by mass of TMDQ dimer, respectively. The primary amine content was 3.2% by mass.
Example 1
A 100 mL four-necked round bottom flask equipped with a thermometer, a stirrer, a Dean-Stark tube and a condenser was charged with 20.0 g of the crude mixture obtained in Production Example 1, 4.83 g of phthalic anhydride and 100 mL of xylene. After the obtained mixture was kept at 140 ° C. for 5 hours, the solvent was distilled off to obtain a composition after purification. The resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone. The amine content was 0.1% by mass.
Example 2
In Example 1, instead of 4.83 g of phthalic anhydride, 3.26 g of succinic anhydride was used and the temperature was kept at 140 ° C. for 3 hours. Obtained. The resulting purified composition consists essentially of phthalic anhydride and a reaction product of primary amine and phthalic anhydride, except for the component derived from the condensate of aniline and acetone. It was 0.1 mass%.
Example 3
In Example 1, in place of 20.0 g of the crude mixture obtained in Production Example 1, 10.0 g of the crude mixture obtained according to Production Example 1 (primary amine content: 2.9% by mass) was used. Purified in the same manner as in Example 1 except that 1.75 g of phthalic anhydride was used instead of 4.83 g of acid, 20 mL of xylene was used instead of 100 mL of xylene, and the temperature was kept at 140 ° C. for 4 hours. A post-composition was obtained. The resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone. The amine content was 0.3% by mass.
Example 4
In Example 3, 20 mL of toluene was used in place of 20 mL of xylene, and the same procedure was performed as in Example 3 except that the temperature was kept at 110 ° C. to obtain a purified composition. The resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone. The amine content was 0.2% by mass.
Example 5
In Example 1, instead of 20.0 g of the unpurified mixture obtained in Production Example 1, 20.0 g of the unpurified mixture (primary amine content: 3.5% by mass) obtained according to Production Example 1 was used. Purified in the same manner as in Example 1 except that 4.24 g of phthalic anhydride was used instead of 4.83 g of acid, 40 g of xylene was used instead of 100 mL of xylene, and the incubation time was changed to 140 ° C. for 3 hours. A post-composition was obtained. The resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone. The amine content was 0.1% by mass.
Example 6
In Example 5, 40 g of toluene was used in place of 40 g of xylene, and the same procedure was performed as in Example 5 except that the temperature was kept at 110 ° C. to obtain a purified composition. The resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone. The amine content was 0.1% by mass.
Example 7
In a 100 mL four-necked round bottom flask equipped with a thermometer, stirrer, Dean-Stark tube and condenser, 20.0 g of an unpurified mixture (primary amine content: 2.9% by mass) obtained according to Production Example 1 and anhydrous phthalate 3.46 g of acid was charged. The obtained mixture was kept at 140 ° C. for 2 hours to obtain a composition after purification. The resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone. The amine content was 0.1% by mass.
Example 8
In Example 7, it carried out similarly to Example 7 except having carried out heat retention conditions at 120 degreeC for 4 hours, and obtained the composition after refinement | purification. The resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone. The amine content was 0.2% by mass.
Example 9
In Example 7, the crude mixture (primary amine content: 3) obtained according to Production Example 1 instead of 20.0 g of the crude mixture obtained according to Production Example 1 (primary amine content: 2.9% by mass). 0.5 mass%) 20.0 g was used, and the same procedure as in Example 7 was carried out except that 4.24 g of phthalic anhydride was used instead of 3.46 g of phthalic anhydride to obtain a purified composition. The resulting purified composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the components derived from the condensation reaction product of aniline and acetone. The amine content was 0.0% by mass.
Reference Example In a 100 mL four-necked round bottom flask equipped with a thermometer, stirrer, Dean-Stark tube and condenser, 25.0 g of an unpurified mixture (primary amine content: 2.9% by mass) obtained according to Production Example 1 and 1.25 g of phthalic anhydride was charged. After the obtained mixture was kept at 140 ° C. for 3 hours, the solvent was distilled off to obtain a composition. The resulting composition consists essentially of phthalic anhydride and the reaction product of primary amine and phthalic anhydride, except for the component derived from the condensation reaction product of aniline and acetone, and has a primary amine content. Was 1.8% by mass.
Figure JPOXMLDOC01-appb-T000004
Test example 1
A blend is obtained by blending 2 parts by weight of the purified composition obtained in Example 1 and 2 parts by weight of insoluble sulfur with respect to 100 parts by weight of butadiene rubber, and the blend is sandwiched between polyethylene terephthalate films and 2 mm. Molded to a thickness of The obtained molded product was kept at 100 ° C. for 1 hour. The transmittance of 600 nm light of the molded product after the heat retention was 0.00%.
Test examples 2-9
In Test Example 1, in place of the purified composition obtained in Example 1, the molded product after heat insulation was obtained in the same manner as in Test Example 1 except that the purified compositions obtained in Examples 2 to 9 were used. Obtained. Table 2 below shows the transmittance of 600 nm light of the molded product after the heat retention together with Test Example 1.
Figure JPOXMLDOC01-appb-T000005
Reference test example 1
In Test Example 1, in place of the purified composition obtained in Example 1, the molded product after heat retention was obtained in the same manner as in Test Example 1 except that the unpurified mixture obtained in Production Example 1 was used. The transmittance of 600 nm light was 20.07%.
Reference test example 2
In Test Example 1, in place of the composition after purification obtained in Example 1, a molded article after heat retention was obtained in the same manner as in Test Example 1 except that the composition obtained in Reference Example was used. The transmittance of 600 nm light was 6.39%.
Example 10: Production of rubber composition <First step>
Using a Banbury mixer (600 ml Labo Plast Mill manufactured by Toyo Seiki Co., Ltd.), 100 parts by mass of natural rubber (RSS # 1), 45 parts by mass of carbon black (N330), 10 parts by mass of hydrous silica (Nipsil AQ), 3 parts by mass of stearic acid Then, 5 parts by mass of zinc oxide and 2 parts by mass of the purified composition obtained in Example 1 were blended and kneaded to obtain a kneaded product.
<Second step>
The kneaded product obtained in the first step and 0.7 parts by mass of a vulcanization accelerator (N, N-dicyclohexyl-2-benzothiazolylsulfenamide) at a temperature of 60 to 80 ° C. in an open roll machine. Then, 6 parts by mass of insoluble sulfur (as sulfur component) and 2 parts by mass of cobalt naphthenate were blended and kneaded to obtain a rubber composition of the present invention.
<Third step>
The rubber composition obtained in the second step was vulcanized at 150 ° C. to obtain a vulcanized rubber.
Examples 11 and 12
The rubber of the present invention was carried out in the same manner as in Example 10 except that the purified composition obtained in Examples 7 and 8 was used in place of the purified composition obtained in Example 1 in Example 10. A composition and vulcanized rubber were obtained.
Test examples 10-12
The following tests were conducted on the rubber compositions and vulcanized rubbers obtained in Examples 10 to 12, respectively. The results are shown in Table 3 below.
1) Rebound resilience: According to JIS K 6255, the rebound resilience of the vulcanized rubber was measured at 25 ° C.
2) Hardness: According to JIS K 6253, the durometer type A was used to measure the hardness of the vulcanized rubber at 25 ° C.
Figure JPOXMLDOC01-appb-T000006
Production Example 2
A 300 mL round bottom flask equipped with a thermometer, a stirrer and a distillation apparatus was charged with 46.5 g of aniline and 4.4 g of 35 mass% hydrochloric acid, and the resulting mixture was heated to 110 ° C. Thereto, 290.4 g of acetone was added dropwise at 110 ° C. to 140 ° C. over 16 hours. The obtained mixture was kept at 135 ° C. to 140 ° C. for 4 hours. The obtained reaction mixture was cooled to 90 ° C., diluted with toluene, neutralized with an aqueous sodium hydroxide solution, and allowed to stand for liquid separation to remove the aqueous layer. After the toluene in the oil layer was distilled off, the low boiling point component was distilled off by distillation at an internal temperature of 200 ° C. and a reduced pressure of 2 mmHg to obtain 80.3 g of a condensation reaction product of aniline and acetone.
Production Example 3: Step (1)
In a 100 mL four-necked round bottom flask equipped with a thermometer, a stirrer, a Dean-Stark apparatus and a condenser, 25.0 g of a condensation reaction product of aniline and acetone obtained according to Production Example 2 and 3.46 g of phthalic anhydride were added. Prepared. The obtained mixture was kept at 140 ° C. for 2 hours to obtain the present composition.
Production Example 4: Step (1)
In Production Example 3, the present composition was obtained in the same manner as in Production Example 3 except that the temperature was kept at 120 ° C. for 4 hours.
Production Example 5: Step (1)
In a 100 mL four-necked round bottom flask equipped with a thermometer, stirrer, Dean Stark apparatus and condenser, 20.0 g of the condensation reaction product of aniline and acetone obtained in Production Example 2, 11.2 g of phthalic anhydride and xylene 40 0.0 mL was charged. The obtained mixture was kept at 140 ° C. for 3 hours to obtain the present composition.
Production Example 6: Step (1)
The same composition as in Production Example 5 was obtained except that 22.3 g of phthalic anhydride was used instead of 11.2 g of phthalic anhydride in Production Example 5.
Figure JPOXMLDOC01-appb-T000007
Example 13
<Step (2) Procedure 1>
Using a Banbury mixer (600 mL Lab Plast Mill manufactured by Toyo Seiki Co., Ltd.), 100 parts by mass of natural rubber (RSS # 1), 45 parts by mass of carbon black (N330), 10 parts by mass of hydrous silica (Nipsil AQ), 3 parts by mass of stearic acid Then, 5 parts by mass of zinc oxide and 2 parts by mass of the present composition obtained in Production Example 3 were blended and kneaded to obtain a composition.
<Step (2) Procedure 2>
The composition obtained by the step (2) procedure 1 in an open roll machine at 60 to 80 ° C., 0.7 parts by mass of a vulcanization accelerator (N, N-dicyclohexyl-2-benzothiazolylsulfenamide), 6 parts by mass of insoluble sulfur (as sulfur component) and 2 parts by mass of cobalt naphthenate were blended and kneaded to obtain the rubber composition.
<Step (3)>
Step (2) The rubber composition obtained in the procedure 2 was vulcanized at 150 ° C. to obtain a vulcanized rubber.
Examples 14 and 15
In Example 13, this rubber composition and vulcanized rubber were used in the same manner as in Example 13 except that the compositions obtained in Production Examples 4 and 5 were used in place of the compositions obtained in Production Example 3. Got.
Comparative Example 1
In Example 13, the rubber composition and vulcanization were carried out in the same manner as in Example 13 except that the condensation reaction product of aniline and acetone obtained in Production Example 2 was used instead of the present composition obtained in Production Example 3. Got rubber.
Comparative Example 2
In Example 13, a rubber composition and a vulcanized rubber were obtained in the same manner as in Example 13 except that the present composition obtained in Production Example 6 was used instead of the present composition obtained in Production Example 3.
Test Examples 13-15, Comparative Test Examples 1 and 2
The following heat resistance tests were performed on the rubber compositions and vulcanized rubbers obtained in Examples 13 to 15 and Comparative Examples 1 and 2, respectively.
Heat resistance test: A heat resistance test at 100 ° C. for 48 hours was performed by a JIS K6257 B-1 method using a dumbbell No. 3 test piece according to JIS K6251. The elongation at break (EB) was measured according to JIS K6251 using the test piece after the heat resistance test. The relative EB when the value using the rubber composition and vulcanized rubber obtained in Comparative Example 1 is taken as 100 is shown.
Figure JPOXMLDOC01-appb-T000008
It can be said that the greater the relative EB, the better the heat resistance. Therefore, if this composition is used, the heat resistance which the vulcanized rubber used for manufacture of a tire has can be improved more easily.
 本発明によれば、一級アミン含量が組成物の全量に対して1質量%以下である2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物を、より簡便に製造することができる。2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物は、タイヤ用老化防止剤として有用である。かかる組成物の全量に対して一級アミン含量が1質量%以下であることにより、タイヤ用ゴム組成物中のイオウがゴム組成物表面に偏在し難く、その結果、ゴム組成物内部で十分な加硫効果が得られ易いという利点がある。
 また、本発明によれば、タイヤの製造に用いられる加硫ゴムが有する耐熱性を、より簡便に改善させる方法が提供可能となる。
According to the present invention, a 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition having a primary amine content of 1% by mass or less based on the total amount of the composition is more easily produced. Can do. The 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition is useful as an anti-aging agent for tires. When the primary amine content is 1% by mass or less with respect to the total amount of such a composition, sulfur in the tire rubber composition is less likely to be unevenly distributed on the surface of the rubber composition, and as a result, sufficient addition inside the rubber composition. There is an advantage that a sulfur effect is easily obtained.
Moreover, according to this invention, the method of improving the heat resistance which the vulcanized rubber used for manufacture of a tire has more simply can be provided.

Claims (15)

  1.  2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物、ならびに、これらの合計100質量部に対して一級アミンを2~6質量部含む混合物と、該一級アミン1モルに対して3~10モルのカルボン酸無水物とを接触させる工程を含む、一級アミン含量が組成物の全量に対して1質量%以下である2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物の製造方法。 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof, and a mixture containing 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass of these in total, and with respect to 1 mol of the primary amine A 2,2,4-trimethyl-1,2-dihydroquinoline polymer having a primary amine content of 1% by mass or less based on the total amount of the composition, comprising a step of contacting with 3 to 10 moles of carboxylic acid anhydride A method for producing a composition.
  2.  アセトンとアニリンとを反応させて、2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物、ならびに、これらの合計100質量部に対して一級アミン2~6質量部を含む混合物を得る工程と、
    得られた混合物と、該一級アミン1モルに対して3~10モルのカルボン酸無水物とを接触させる工程と、
    を含む、請求項1に記載の製造方法。
    Acetone and aniline are reacted to produce 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof, and a mixture containing 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass in total. Obtaining a step;
    Contacting the resulting mixture with 3 to 10 moles of carboxylic anhydride per mole of primary amine;
    The manufacturing method of Claim 1 containing this.
  3.  請求項1または請求項2に記載の製造方法により得られる2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物であって、以下の調製方法により成形物を得たとき、当該成形物を100℃で1時間保温した後の600nmの光の透過率が0.5%以下となることを特徴とする2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物。
    <成形物の調製方法>
    ブタジエンゴム100質量部に2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物2質量部と不溶性イオウ2質量部とを配合することにより配合物を得、該配合物から厚さ2mmの成形物を調製する。
    A 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition obtained by the production method according to claim 1 or 2, wherein when a molded product is obtained by the following preparation method, 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition characterized in that the transmittance of light at 600 nm after holding the molded article at 100 ° C. for 1 hour is 0.5% or less object.
    <Method for preparing molded product>
    A blend is obtained by blending 2 parts by weight of a 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition and 2 parts by weight of insoluble sulfur with 100 parts by weight of butadiene rubber. A molded product having a thickness of 2 mm is prepared.
  4.  天然ゴムおよびジエン系ゴムからなる群より選ばれる原料ゴム100質量部に対して、不溶性イオウ2~10質量部と、請求項1または請求項2に記載の製造方法により得られる2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物0.5~5質量部とを配合して得られるゴム組成物。 The insoluble sulfur is 2 to 10 parts by mass with respect to 100 parts by mass of a raw rubber selected from the group consisting of natural rubber and diene rubber, and 2, 2, 4 obtained by the production method according to claim 1 or 2. -A rubber composition obtained by blending 0.5 to 5 parts by mass of a composition containing trimethyl-1,2-dihydroquinoline polymer.
  5.  請求項1または請求項2に記載の製造方法により得られる2,2,4−トリメチル−1,2−ジヒドロキノリン重合物含有組成物のタイヤ用老化防止剤としての使用。 Use of a 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing composition obtained by the production method according to claim 1 or 2 as an anti-aging agent for tires.
  6.  加硫ゴムが有する耐熱性を改善させるための、アニリンとアセトンとの縮合反応生成物およびカルボン酸無水物を混合して得られる組成物の使用。 Use of a composition obtained by mixing a condensation reaction product of aniline and acetone and a carboxylic acid anhydride to improve the heat resistance of the vulcanized rubber.
  7.  下記の工程(1)、(2)および(3)を含む、加硫ゴムが有する耐熱性の改善方法。
    (1)2,2,4−トリメチル−1,2−ジヒドロキノリンおよびその重合物、ならびに、これらの合計100質量部に対して一級アミンを2~6質量部含む混合物と、該一級アミン1モルに対して3~10モルのカルボン酸無水物とを接触させる工程
    (2)工程(1)で得られた混合物とゴム成分と硫黄成分とを混練する工程
    (3)工程(2)で得られた混練物を加硫し、加硫ゴムを得る工程
    A method for improving the heat resistance of a vulcanized rubber, comprising the following steps (1), (2) and (3).
    (1) 2,2,4-trimethyl-1,2-dihydroquinoline and a polymer thereof, a mixture containing 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass in total, and 1 mol of the primary amine Obtained by the step (2) of kneading the mixture obtained in the step (2) and the step (1) with the rubber component and the sulfur component. Of vulcanizing the kneaded material to obtain vulcanized rubber
  8.  工程(1)が、ゴム成分の非存在下で実施される請求項7に記載の改善方法。 The improvement method according to claim 7, wherein step (1) is performed in the absence of a rubber component.
  9.  工程(1)が、硫黄成分の非存在下で実施される請求項7または請求項8に記載の改善方法。 The improvement method according to claim 7 or claim 8, wherein step (1) is performed in the absence of a sulfur component.
  10.  工程(1)におけるカルボン酸無水物の使用量が、アニリンとアセトンとの縮合反応生成物1kgに対して、0.6~5モルである請求項7~9のいずれかに記載の改善方法。 10. The improvement method according to any one of claims 7 to 9, wherein the amount of the carboxylic acid anhydride used in step (1) is 0.6 to 5 mol with respect to 1 kg of the condensation reaction product of aniline and acetone.
  11.  アニリンとアセトンとの縮合反応生成物およびカルボン酸無水物を混合して得られる加硫ゴム用耐熱性改善剤。 A heat resistance improver for vulcanized rubber obtained by mixing a condensation reaction product of aniline and acetone and a carboxylic acid anhydride.
  12.  アニリンとアセトンとの縮合反応生成物が、2,2,4−トリメチル−1,2−ジヒドロキノリン、2,2,4−トリメチル−1,2−ジヒドロキノリンの重合物、および、一級アミンを含む混合物である請求項11に記載の加硫ゴム用耐熱性改善剤。 The condensation reaction product of aniline and acetone contains 2,2,4-trimethyl-1,2-dihydroquinoline, a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline, and a primary amine The heat resistance improver for vulcanized rubber according to claim 11, which is a mixture.
  13.  アニリンとアセトンとの縮合反応生成物が、2,2,4−トリメチル−1,2−ジヒドロキノリン、2,2,4−トリメチル−1,2−ジヒドロキノリンの重合物、ならびに、2,2,4−トリメチル−1,2−ジヒドロキノリンおよび2,2,4−トリメチル−1,2−ジヒドロキノリンの重合物の合計100質量部に対して、一級アミンを2~6質量部含む混合物である請求項11または請求項12に記載の加硫ゴム用耐熱性改善剤。 The condensation reaction product of aniline and acetone is a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline, 2,2,4-trimethyl-1,2-dihydroquinoline, and 2,2,4- A mixture containing 2 to 6 parts by mass of a primary amine with respect to 100 parts by mass in total of a polymer of 4-trimethyl-1,2-dihydroquinoline and 2,2,4-trimethyl-1,2-dihydroquinoline. Item 13. The heat resistance improver for vulcanized rubber according to Item 11 or 12.
  14.  アニリンとアセトンとの縮合反応生成物と、アニリンとアセトンとの縮合反応生成物に含まれる一級アミン1モルに対して3~10モルのカルボン酸無水物とを混合して得られる請求項12または請求項13に記載の加硫ゴム用耐熱性改善剤。 13. A product obtained by mixing a condensation reaction product of aniline and acetone with 3 to 10 moles of carboxylic acid anhydride per mole of primary amine contained in the condensation reaction product of aniline and acetone. The heat resistance improving agent for vulcanized rubber according to claim 13.
  15.  アニリンとアセトンとの縮合反応生成物が、硫黄成分の非存在下でアニリンとアセトンとを縮合反応させることにより製造される生成物である請求項11~14のいずれかに記載の加硫ゴム用耐熱性改善剤。 15. The product for a vulcanized rubber according to claim 11, wherein the condensation reaction product of aniline and acetone is a product produced by a condensation reaction of aniline and acetone in the absence of a sulfur component. Heat resistance improver.
PCT/JP2011/074094 2010-10-18 2011-10-13 Method for producing 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing compositions WO2012053572A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800609512A CN103261166A (en) 2010-10-18 2011-10-13 Method for producing 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing compositions

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010233302 2010-10-18
JP2010-233302 2010-10-18
JP2011-047440 2011-03-04
JP2011047440 2011-03-04

Publications (1)

Publication Number Publication Date
WO2012053572A1 true WO2012053572A1 (en) 2012-04-26

Family

ID=45975282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074094 WO2012053572A1 (en) 2010-10-18 2011-10-13 Method for producing 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing compositions

Country Status (3)

Country Link
JP (2) JP2012197415A (en)
CN (1) CN103261166A (en)
WO (1) WO2012053572A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103694169A (en) * 2012-09-28 2014-04-02 中国石油化工股份有限公司 Method for synthesis of 2,2,4-trimethyl-1,2-dihydroquinoline and polymer thereof by utilizing microchannel reactors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060588A1 (en) * 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin RUBBER COMPOSITION COMPRISING A SPECIFIC RUBBER POWDER
CN114315712A (en) * 2020-09-27 2022-04-12 中石化南京化工研究院有限公司 Method for purifying 2,2, 4-trimethyl-1, 2-dihydroquinoline polymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423650A (en) * 1977-07-22 1979-02-22 Bridgestone Corp Antiaging agent for rubber
JPS58126868A (en) * 1982-01-25 1983-07-28 Sumitomo Chem Co Ltd Purification of 2,2,4-trimethyl-1,2-dihydroquinoline
JPH0236174A (en) * 1988-06-10 1990-02-06 Bayer Ag Production of 2, 2, 4-trimethyl-1, 2- dihydroquinoline oligomer
JPH06228374A (en) * 1993-02-03 1994-08-16 Sumitomo Chem Co Ltd Rubber article reinforced with organic fiber and its production
JPH06228375A (en) * 1993-02-03 1994-08-16 Sumitomo Chem Co Ltd Rubber composition and method for bonding to steel cord

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2113743C (en) * 1993-02-03 2005-06-28 Naoki Inui Reinforced rubber article, production thereof and rubber composition suitable therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423650A (en) * 1977-07-22 1979-02-22 Bridgestone Corp Antiaging agent for rubber
JPS58126868A (en) * 1982-01-25 1983-07-28 Sumitomo Chem Co Ltd Purification of 2,2,4-trimethyl-1,2-dihydroquinoline
JPH0236174A (en) * 1988-06-10 1990-02-06 Bayer Ag Production of 2, 2, 4-trimethyl-1, 2- dihydroquinoline oligomer
JPH06228374A (en) * 1993-02-03 1994-08-16 Sumitomo Chem Co Ltd Rubber article reinforced with organic fiber and its production
JPH06228375A (en) * 1993-02-03 1994-08-16 Sumitomo Chem Co Ltd Rubber composition and method for bonding to steel cord

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103694169A (en) * 2012-09-28 2014-04-02 中国石油化工股份有限公司 Method for synthesis of 2,2,4-trimethyl-1,2-dihydroquinoline and polymer thereof by utilizing microchannel reactors
CN103694169B (en) * 2012-09-28 2016-04-06 中国石油化工股份有限公司 Micro passage reaction is utilized to synthesize the method for 2,2,4-trimethylammonium-1,2-dihydroquinoline and polymkeric substance thereof

Also Published As

Publication number Publication date
JP2012197416A (en) 2012-10-18
JP2012197415A (en) 2012-10-18
CN103261166A (en) 2013-08-21

Similar Documents

Publication Publication Date Title
KR101960988B1 (en) Coupling agent for rubber/carbon black, and rubber composition containing same for use in tires
WO2012147984A1 (en) Rubber composition
WO2014065438A1 (en) Carbon black
JP5476741B2 (en) Diene rubber composition
CN108368310B (en) Additive for rubber, rubber composition, and pneumatic tire using same
WO2012053572A1 (en) Method for producing 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing compositions
US11905391B2 (en) Rubber composition and tire
US10822432B2 (en) Rubber composition, modified diene polymer and method for producing modified diene polymer
CN113490607A (en) Vulcanized rubber composition
WO2012053573A1 (en) Method for producing 2,2,4-trimethyl-1,2-dihydroquinoline polymer-containing compositions
JP2012144710A (en) Method for producing composition containing polycondensate of aniline with acetone
JP3446346B2 (en) Rubber composition with excellent processability
JP2012214439A (en) Method for producing composition containing oligomer of 2,2,4-trimethyl-1,2-dihydroquinoline
JP2012214437A (en) Method for producing composition containing oligomer of 2,2,4-trimethyl-1,2-dihydroquinoline
JP2014080535A (en) Coupling agent for rubber-carbon black and rubber composition for tire
JP2012214436A (en) Method for producing composition containing oligomer of 2,2,4-trimethyl-1,2-dihydroquinoline
JP2010196030A (en) Rubber composition
JP2012214438A (en) Method for producing composition containing oligomer of 2,2,4-trimethyl-1,2-dihydroquinoline
JP3414869B2 (en) Method for improving moisture resistance of vulcanization accelerator and moisture-resistant vulcanization accelerator
JP2014118526A (en) Coupling agent for rubber and carbon black and rubber composition
JP2012144711A (en) Method for producing composition containing polycondensate of aniline with acetone
WO2013015425A1 (en) Coupling agent for rubber/carbon black, and rubber composition containing same for use in tires
US10081724B2 (en) Sidewall rubber composition and pneumatic tire
CN117693429A (en) Compound, rubber mixture containing said compound, vehicle tyre having at least one component comprising said rubber mixture, method for producing said compound and use of said compound as an ageing-protecting agent and/or antiozonant and/or colorant
JP2021195493A (en) Rubber composition, rubber composition for tire, crosslinked rubber for tire, tire and additive for rubber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834411

Country of ref document: EP

Kind code of ref document: A1