WO2012053400A1 - Production method for photoelectric conversion element - Google Patents

Production method for photoelectric conversion element Download PDF

Info

Publication number
WO2012053400A1
WO2012053400A1 PCT/JP2011/073388 JP2011073388W WO2012053400A1 WO 2012053400 A1 WO2012053400 A1 WO 2012053400A1 JP 2011073388 W JP2011073388 W JP 2011073388W WO 2012053400 A1 WO2012053400 A1 WO 2012053400A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion element
ink
organic layer
ink film
Prior art date
Application number
PCT/JP2011/073388
Other languages
French (fr)
Japanese (ja)
Inventor
一 桑原
崇広 清家
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012053400A1 publication Critical patent/WO2012053400A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F3/00Cylinder presses, i.e. presses essentially comprising at least one cylinder co-operating with at least one flat type-bed
    • B41F3/18Cylinder presses, i.e. presses essentially comprising at least one cylinder co-operating with at least one flat type-bed of special construction or for particular purposes
    • B41F3/20Cylinder presses, i.e. presses essentially comprising at least one cylinder co-operating with at least one flat type-bed of special construction or for particular purposes with fixed type-beds and travelling impression cylinders
    • B41F3/22Cylinder presses, i.e. presses essentially comprising at least one cylinder co-operating with at least one flat type-bed of special construction or for particular purposes with fixed type-beds and travelling impression cylinders with more than one type-bed
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion element and a method for producing the same, and a solar cell module and an organic photosensor provided with the photoelectric conversion element.
  • the photoelectric conversion element includes a pair of electrodes and one or more organic layers provided between the electrodes.
  • There are various methods for forming the organic layer one of which is a coating method.
  • a coating method an ink containing a material for forming an organic layer is applied and formed on a substrate by a predetermined method, and the formed ink is solidified to form an organic layer.
  • a flexographic printing method has been proposed as a method for coating and forming the ink (see, for example, Patent Document 1).
  • an ink is formed on a printing plate made of polycarbonate, and the formed ink is transferred to a predetermined substrate to form an organic layer.
  • an object of the present invention is to provide a method for producing a photoelectric conversion element capable of forming a flat organic layer by a printing method.
  • the present invention provides the following [1] to [12].
  • [1] A method for producing a photoelectric conversion element comprising a pair of electrodes and one or more organic layers provided between the pair of electrodes, Preparing a substrate provided with one of the pair of electrodes; An ink containing the material of the organic layer is applied to a transfer body provided with a member made of silicone rubber on the surface portion, an ink film is formed on the transfer body, and the ink film is transferred to the substrate. Forming the organic layer; Forming a second electrode of the pair of electrodes.
  • a method for manufacturing a photoelectric conversion element comprising a pair of electrodes and one or more organic layers provided between the pair of electrodes, Preparing a substrate provided with one of the pair of electrodes; An ink containing the material of the organic layer is applied to a transfer body provided with a member made of silicone rubber on the surface portion, an ink film is formed on the transfer body, and the ink film is transferred to the substrate. Forming the organic layer; Forming a second
  • step of forming the organic layer further includes a step of drying the ink film before transferring the ink film formed on the transfer body to the substrate.
  • the step of forming the organic layer further includes a step of patterning the ink film by removing a predetermined portion of the ink film before transferring the ink film to the substrate.
  • the manufacturing method of the photoelectric conversion element of description is a step of patterning the ink film by removing a predetermined portion of the ink film before transferring the ink film to the substrate.
  • the photoelectric conversion element has an active layer as the organic layer, and the active layer is formed by the step of forming the organic layer. 6] The manufacturing method of the photoelectric conversion element as described in any one of.
  • the active layer has a thin film containing an electron donating compound material and a thin film containing an electron accepting compound material,
  • the photoelectric conversion element has two or more active layers as one or more organic layers, and an intermediate electrode layer provided between the active layers, Each of the active layers is formed by the step of forming the organic layer, and the intermediate electrode layer is formed between the steps of forming the active layer, according to any one of [1] to [8] The manufacturing method of the photoelectric conversion element of description.
  • a photoelectric conversion element that can be manufactured by the manufacturing method according to any one of [1] to [9].
  • a photovoltaic power generation module including the photoelectric conversion element according to [10].
  • a photoelectric conversion element including an organic layer having a flat surface can be formed.
  • FIG. 1 is a schematic diagram of a printing apparatus.
  • FIG. 2 is a schematic cross-sectional view of the blanket cylinder and the coating unit.
  • a method for producing a photoelectric conversion element according to the present invention is a method for producing a photoelectric conversion element comprising a pair of electrodes and one or more organic layers provided between the pair of electrodes, the method comprising: A step of preparing a substrate on which one electrode is provided; and a transfer body provided with a member made of silicone rubber on the surface thereof, an ink containing the material of the organic layer is applied to form a film, and the ink is applied to the transfer body. Forming a film, transferring the ink film to the substrate to form the organic layer, and forming the other electrode of the pair of electrodes.
  • the photoelectric conversion element includes a pair of electrodes composed of an anode and a cathode, and one or more organic layers provided between the pair of electrodes.
  • a photoelectric conversion element can be manufactured by sequentially laminating each layer constituting these photoelectric conversion elements on a predetermined substrate.
  • the photoelectric conversion element includes at least one active layer as an organic layer.
  • the photoelectric conversion element may further include a predetermined layer as necessary. Examples of layers provided as necessary include so-called hole transport layers and electron transport layers.
  • An example of the element structure of a photoelectric conversion element provided with one active layer is shown below.
  • Anode / active layer / cathode (2) Anode / hole transport layer / active layer / cathode (3) Anode / hole transport layer / active layer / electron transport layer / cathode (4) Anode / active layer / electron Transport layer / cathode (here, the symbol “/” indicates that the layers sandwiching the symbol “/” are stacked adjacent to each other. The same applies hereinafter).
  • the photoelectric conversion element may include two or more active layers. In this case, an intermediate electrode layer is usually provided between the active layer and the active layer.
  • An example of an element structure of a photoelectric conversion element including two active layers is shown below.
  • (layer structural unit A) is any one of the structures (1) to (4) above. In other words, it means a laminate sandwiched between an anode and a cathode. Note that the layer configuration of the two (layer structural unit A) may be different from each other.
  • (layer structural unit B) means “(layer structural unit A) / intermediate electrode layer” and symbol “x” Represents an integer of 2 or more
  • (layer structural unit B) x represents a laminate in which the layer structural unit B is laminated in x stages. Further, a plurality of (layer structural units B) may have different layer configurations.
  • an organic layer a layer containing an organic substance is referred to as an organic layer.
  • the photoelectric conversion element includes a plurality of organic layers, at least one of them is formed by the organic layer forming step of the present invention. That is, an ink containing a material that becomes the organic layer is applied to a transfer body provided with a member made of silicone rubber on the surface portion, an ink film is formed on the transfer body, and the ink film of the transfer body is formed. Is transferred to the substrate to form an organic layer.
  • the specific aspect of the organic layer forming step of the present invention is not particularly limited as long as the organic layer forming step is performed by a printing method using a transfer body in which a member made of silicone rubber is provided on the surface portion.
  • the organic layer forming step is performed using, for example, a printing apparatus such as a reverse printing apparatus or a relief printing apparatus described below.
  • FIG. 1 is a schematic diagram of a printing apparatus.
  • FIG. 2 is a schematic cross-sectional view of the blanket cylinder and the coating unit.
  • the printing apparatus 5 is an apparatus for forming an organic layer 73 on a substrate 60.
  • the printing apparatus 5 includes a gantry 1, a blanket cylinder 11, a blanket 10 that is wound around the blanket cylinder 11, and a coating unit 20 that applies ink 28 to the blanket 10 and applies an ink film 70.
  • a drying device 30 that dries the coated ink film 70 to form a dried ink film 71, a plate 50 used for patterning by removing a predetermined portion from the dried ink film 71, and A platen platen 51 that supports the plate 50, a substrate platen 61 that supports a substrate 60 on which the patterned ink film is to be transferred, and the blanket cylinder 11 are supported on the gantry 1 and the blanket cylinder 11 is disposed in the horizontal direction. And a blanket cylinder support portion 40 that moves to the center.
  • the coating unit 20, the platen surface plate 51, and the substrate surface plate 61 are arranged in a line in this order on the top of the gantry 1 (from right to left in FIG. 1).
  • the coating unit 20, the plate surface plate 51, and the substrate surface plate 61 are fixed to the gantry 1, and the blanket cylinder support unit 40 and the blanket cylinder 11 supported by the same are moved in the horizontal direction.
  • the coating unit 20, the plate surface plate 51, and the substrate surface plate 61 move in the horizontal direction, and the blanket cylinder support portion 40 and the blanket cylinder 11 supported thereby are fixed to the gantry 1. May be.
  • the blanket cylinder 11 included in the printing apparatus 5 and the blanket 10 wound around the blanket cylinder 11 correspond to a transfer body in which a member made of silicone rubber is provided on the surface portion.
  • the blanket 10 included in the printing apparatus 5 corresponds to a member made of silicone rubber provided on the surface portion of the transfer body.
  • the blanket cylinder 11 has a cylindrical shape, and the central shaft 12 is rotatably supported by the blanket cylinder support portion 40. As a result, the blanket cylinder 11 can rotate about the horizontal axis (center axis 12) (in the direction of the white arrow in FIG. 2).
  • the blanket 10 is wound around the circumferential surface of the blanket cylinder 11.
  • the blanket 10 has a flat peripheral surface and has a predetermined elasticity.
  • the blanket 10 can be formed using any kind of silicone rubber, such as thermosetting millable silicone rubber, addition-type liquid silicone rubber, and condensation-type liquid silicone rubber.
  • thermosetting millable silicone rubber examples include “KE555U” manufactured by Shin-Etsu Chemical Co., Ltd.
  • Examples of the addition type liquid silicone rubber include KE1600 and KE1606 manufactured by Shin-Etsu Chemical Co., Ltd.
  • condensation type liquid silicone rubber examples include KE-17 manufactured by Shin-Etsu Chemical Co., Ltd.
  • SIM-260 and SIM-360 manufactured by Shin-Etsu Chemical Co., Ltd. can also be used.
  • the peripheral surface of the blanket 10 is subjected to water repellent treatment.
  • the blanket cylinder support unit 40 supports the blanket cylinder 11 so as to be rotatable about the horizontal axis on the gantry 1 and moves the blanket cylinder 11 in the horizontal direction (left and right direction in FIG. 1). Specifically, the blanket cylinder support unit 40 in FIG. 1 moves the blanket cylinder 11 from above the coating unit 20 to the left to move above the plate 50 and further to the left, thereby moving the substrate 60. Can be passed above. At the time of this movement, the blanket 10 is brought into contact with the surface of the plate 50 with a predetermined pressure to roll the blanket 10, and the blanket 10 is brought into contact with the surface of the substrate 60 with a predetermined pressure. The blanket cylinder 11 can reach the left end of the substrate 60 by rolling. Thereafter, the blanket cylinder 11 can be moved again above the coating unit 20. Moreover, this blanket cylinder support part 40 can rotate the blanket cylinder 11 at a predetermined speed.
  • the plate 50 is fixed and supported on a plate surface plate 51.
  • the plate 50 is made of, for example, glass or metal. Concavities and convexities are formed on the surface portion of the plate 50.
  • the uneven pattern is formed so as to correspond to the pattern of the organic layer 73 to be formed.
  • the shape and size of the recess (pattern) of the organic layer 73 when viewed from one side in the thickness direction of the substrate 60 depends on the pattern of the organic layer 73, but is rectangular, for example. In this case, it is 20 ⁇ m ⁇ 200 mm to 50 mm ⁇ 200 mm.
  • the type of the coating unit 20 for applying and forming the ink 28 containing the material of the organic layer 73 on the transfer body is not particularly limited.
  • an anilox roll may be used as the coating unit 20, and a nozzle having a slit-like discharge port may be used.
  • FIG. 2 shows a coating unit 20 having a nozzle having a slit-like discharge port as an example of the coating unit.
  • the coating unit 20 shown in FIG. 2 includes a coating die 21, an ink tank 22, a line 23 that connects the ink tank 22 and the coating die 21, a coating die lifting unit 24 that lifts and lowers the coating die 21, and an ink.
  • An ink tank raising / lowering unit 25 for raising and lowering the tank 22 is provided.
  • the coating die 21 is a so-called capillary coater having a capillary passage 21a.
  • One end 21 b of the capillary passage 21 a of the coating die 21 communicates with the ink tank 22 through a line 23.
  • the ink 28 supplied from the ink tank 22 is supplied to the capillary passage 21a through the line 23, and is further discharged upward from the elongated rectangular slit 21c which is the other end of the capillary passage 21a.
  • the coating die 21 is arranged so that the length direction of the slit 21 c is parallel to the central axis 12 of the blanket cylinder 11.
  • the width of the slit 21c is not particularly limited.
  • the width of the slit 21c is preferably about 0.05 mm to 0.5 mm.
  • the coating unit 20 is not limited to a configuration having a capillary coater like the coating die 21 shown in FIG.
  • the coater provided in the coating unit 20 may be any coater that can coat the blanket 10 with the ink film 70 having a relatively uniform thickness.
  • a wire bar coater, a slit coater, a die coater, or the like may be used.
  • these coaters since the uniformity of the ink film 70 can be improved, a die coater, a capillary coater, and a slit coater are preferable.
  • the ink 28 is discharged from the slit 21c and the blanket cylinder 11 is rotated (in the direction of the white arrow in FIG. 2).
  • the blanket cylinder 11 is rotated (in the direction of the white arrow in FIG. 2).
  • an ink film 70 having a certain thickness is applied to the surface of the blanket 10.
  • the ink tank 22 is a tank that stores the ink 28.
  • This ink 28 is an ink used for forming an organic layer such as an active layer and a charge transport layer on the substrate 60.
  • the ink tank lifting / lowering unit 25 moves the ink tank 22 in the vertical direction (the vertical direction in FIGS. 1 and 2).
  • the coating die lifting / lowering unit 24 moves the coating die 21 in the vertical direction (the vertical direction in FIGS. 1 and 2).
  • the discharge speed of the ink 28 discharged from the slit 21c can be controlled by adjusting the relative position of the ink tank 22 and the blanket 10 in the vertical direction. Further, the thickness of the ink film 70 applied to the blanket 10 can be controlled by adjusting the discharge speed of the ink 28 from the slit 21 c and the rotation speed of the blanket cylinder 11. The thickness of the ink film 70 can be set to 2 ⁇ m to 20 ⁇ m, for example.
  • the ink film formed on the blanket it is preferable to dry the ink film formed on the blanket.
  • the method for drying the ink film is not particularly limited, but in the present embodiment shown in FIG. 2, the ink film 70 is dried by the drying device 30 to obtain the dried ink film 71.
  • the drying device 30 can dry the ink film 70 applied to the blanket 10 by spraying a gas 8 having a flow rate of 1 ⁇ 10 4 L / min ⁇ m 2 to 50 ⁇ 10 4 L / min ⁇ m 2.
  • the gas 8 sprayed from the drying device 30 onto the ink film 70 can be heated from room temperature to 40 ° C., for example. However, if the temperature of the gas 8 is too high, the temperature of the device rises and adversely affects the transfer accuracy. There is a fear. Therefore, the temperature of the gas 8 is preferably room temperature.
  • the flow rate of the gas 8 is preferably 5 ⁇ 10 4 L / min ⁇ m 2 to 20 ⁇ 10 4 L / min ⁇ m 2 .
  • the gas 8 include air, nitrogen, oxygen and the like.
  • the gas 8 is preferably air.
  • the example in which the gas 8 is sprayed on the ink film 70 in order to make the ink film 70 the dried ink film 71 has been described.
  • the ink film 70 formed by coating may be naturally dried for a certain period of time to form a dried ink film 71 and then transferred to the substrate 60.
  • the natural drying time is, for example, 10 seconds to 120 seconds.
  • an ink containing a material that becomes the organic layer is applied to a transfer body provided with a member made of silicone rubber on the surface portion, and an ink film is formed on the transfer body. And the ink film is transferred to the substrate to form the organic layer.
  • the blanket 10 made of silicone rubber by using the blanket 10 made of silicone rubber, it is possible to remove substantially all portions of the dried ink film 71 to be removed. Also, when the dried ink film 71 is transferred to the substrate 60, substantially all the dried ink film 71 is transferred to the substrate 60. Since the dried ink film 71 is transferred to the substrate 60 substantially without crying, the organic layer 73 having a flat surface can be formed.
  • the ink film 70 on the transfer body is preferably dried under predetermined conditions. That is, when a predetermined portion of the ink film 70 on the transfer body is removed by bringing the blanket 10 into contact with the surface of the plate 50 with a predetermined pressure, the portion to be removed of the ink film 70 is transferred to the transfer body. It is preferable to dry to such an extent that substantially all can be removed. Further, when transferring the ink film to the substrate 60, it is preferable to dry the ink film to such an extent that substantially all the ink film is transferred from the transfer body.
  • the reverse printing method in which the ink film 70 is transferred to the substrate 60 using the reverse printing device as the printing device 5 has been described.
  • the relief printing apparatus used in the relief printing method removes the plate 50 and the plate surface plate 51 from the printing apparatus 5 shown in FIG. 1, for example, and replaces the blanket 10 with a flat surface wound around the blanket cylinder 11.
  • a configuration using a letterpress wound around the blanket cylinder 11 may be used.
  • the letterpress wound around the blanket cylinder in the letterpress printing apparatus can be formed of, for example, the same material as the blanket 10 of the printing apparatus 5 already described.
  • the relief printing plate can form a plurality of projections by pouring a silicone rubber material into a mold on which a predetermined pattern is formed and curing the material.
  • the shape and size of each convex portion in plan view depends on the pattern of the organic layer formed on the substrate, but is 20 ⁇ m ⁇ 200 mm to 50 mm ⁇ 200 mm in the case of a rectangular shape, for example.
  • a stripe-shaped convex part may be formed by arranging these rectangular convex parts in parallel in a plan view. For example, 10 to 100 convex portions are arranged.
  • substantially all of the ink film is transferred to the substrate when the ink film is transferred to the substrate. Therefore, substantially all the ink film is transferred to the substrate without causing the ink film to cry, so that an organic layer having a flat surface can be formed.
  • the ink 28 used in the coating unit 20 contains the material of the organic layer 73 to be formed and a solvent. After forming the ink film 70 having a predetermined pattern, the organic layer 73 can be formed by drying.
  • the viscosity of the ink 28 supplied to the transfer body is preferably 2 mPa ⁇ s to 50 mPa ⁇ s, and the yield value is preferably 10 mPa or less.
  • the viscosity of the ink 28 within this range, the ink film on the transfer body can be sufficiently flattened by the surface tension of the ink 28 and the uniformity of the thickness of the ink film can be made extremely high. . If the viscosity and yield value of the ink 28 exceed the above ranges, it tends to be difficult to sufficiently increase the uniformity of the thickness of the ink film on the transfer body before the ink film is dried and solidified.
  • the ink 28 is obtained by dissolving or dispersing the material to be the organic layer 73 in a solvent, and the solvent is not particularly limited as long as the material to be the organic layer 73 is dissolved or dispersed.
  • solvents include monochlorobenzene, p-dichlorobenzene, o-dichlorobenzene, chloroform, toluene, xylene, tetralin; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, and ethylene glycol monobutyl ether.
  • Ethylene glycol monoalkyl ethers such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, and diethylene glycol dialkyl ethers such as diethylene glycol dibutyl ether; ethylene glycol alkyl ether acetates such as methyl cellosolve acetate and ethyl cellosolve acetate; Alkylene glycol alkyl ether acetates such as methyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, methoxybutyl acetate and methoxypentyl acetate; aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene; anisole Aromatic ketones such as phenetole and methylanisole; ketones such as acetone, 2-butanone, 2-heptanone, 3-heptanone
  • the content of the solvent in the ink 28 is usually 50% by mass or more and 99% by mass or less, and preferably 80% by mass or more and 98% by mass or less, by mass fraction.
  • the ink 28 may further contain other additives.
  • the additive include a filler, a polymer compound other than the binder polymer, a surfactant, an adhesion promoter, an aggregation inhibitor, an organic acid, and a curing agent.
  • surfactant examples include nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants.
  • a substrate provided with one of the pair of electrodes is prepared.
  • a substrate on which one electrode is provided in advance may be obtained from the market, or one electrode of a pair of electrodes may be formed on the substrate in this step.
  • a predetermined inorganic layer may be formed on one of the pair of electrodes as necessary after the substrate preparation step.
  • Organic layer formation process In this step, an organic layer is formed. This step is performed at least once, but is performed a plurality of times as necessary.
  • the organic layer forming step of the present invention When a plurality of organic layers are provided between a pair of electrodes, at least one of the organic layers is formed by the organic layer forming step of the present invention. That is, an ink containing a material that becomes the organic layer is applied to a transfer body provided with a member made of silicone rubber on the surface, and an ink film is formed on the transfer body, and the ink film is applied to the substrate. By transferring and forming the organic layer, at least one organic layer is formed.
  • This step is performed using, for example, the above-described reverse printing apparatus and letterpress printing apparatus.
  • another organic layer may be formed by a method other than the organic layer forming step of the present invention.
  • Another organic layer may be formed by coating by a printing method, an offset printing method, an ink jet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method, or the like.
  • a step of forming the inorganic layer is performed between the organic layer forming step and the organic layer forming step.
  • the other electrode forming step In this step, the other electrode of the pair of electrodes is formed. Thereby, a photoelectric conversion element is produced.
  • the organic layer forming step described above it is preferable to dry the ink film on the transfer body.
  • Ink for forming a plurality of organic layers by a coating method wherein the organic layer formed earlier forms a subsequent organic layer in the step of forming another organic layer on the predetermined organic layer
  • the function of the previously formed organic layer may be impaired.
  • the composition which comprises the organic layer formed previously may mix in the organic layer formed later, and the function of the organic layer formed later may be impaired.
  • the ink film dried to some extent is laminated on the substrate, it is possible to prevent the previously formed organic layer from being redissolved in the ink for forming the subsequent organic layer.
  • the plurality of organic layers can be stacked as intended without impairing the functions of the plurality of organic layers.
  • the active layer has a single layer structure and a multi-layer structure in which a plurality of thin films are stacked.
  • the active layer of 1 layer structure can be formed by performing the above-mentioned organic layer formation process once.
  • an active layer having a multi-layer structure can be formed by repeating the organic layer forming step by the number of layers. For example, one of a thin film containing an electron donating compound material and a thin film containing an electron accepting compound material, which will be described later, is formed in the organic layer forming step, followed by the thin film containing the electron donating compound material and the electron accepting material.
  • An active layer having a multilayer structure can be formed by forming the other thin film among the thin films containing the organic compound material in a separate organic layer forming step.
  • each layer can be laminated
  • a photoelectric conversion element including a plurality of active layers can also be produced.
  • a configuration example of a photoelectric conversion element including a plurality of active layers is as follows.
  • Photoelectric conversion element comprising two active layers (5) Anode / (layer structural unit A) / intermediate electrode layer / (layer structural unit A) / cathode Photoelectric conversion element comprising three or more active layers (6) Anode / (Layer structural unit B) x / (Layer structural unit A) / Cathode
  • two or more active layers are formed in the organic layer forming step already described, and between each step of forming two or more photoelectric active layers. It can be produced by forming an intermediate electrode layer.
  • an intermediate electrode layer is formed by a coating method, as in the organic layer forming step already described, an ink containing a material that becomes the intermediate electrode layer is formed on a transfer body provided with a member made of silicone rubber on the surface portion. May be applied to form an ink film on the transfer body, and the ink film may be transferred to the substrate to form an intermediate electrode layer.
  • the photoelectric conversion element of the present invention is usually formed on a substrate.
  • the substrate may be any substrate that does not change chemically when the photoelectric conversion element is formed.
  • Examples of the material for the substrate include glass, plastic, polymer film, and silicon.
  • a substrate that exhibits light transmittance is used.
  • a pair of electrodes Since a photoelectric conversion element needs to take in light inside, at least one of a pair of electrodes needs to be comprised by the electrode which shows a light transmittance.
  • Examples of the electrode exhibiting light transmittance include a conductive metal oxide film and a translucent metal thin film.
  • the electrode exhibiting light transmittance is formed using a conductive material such as indium oxide, zinc oxide, tin oxide, indium tin oxide (ITO), indium zinc oxide (IZO), NESA, gold, platinum, silver, copper, and the like.
  • a film made of ITO, IZO, or tin oxide is preferable.
  • Examples of the electrode manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
  • the electrode material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like.
  • Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminum alloy and the like.
  • Predetermined layers other than the active layer are provided as predetermined layers in order to improve photoelectric conversion efficiency.
  • the material of these predetermined layers include alkali metal such as lithium fluoride, halide or oxide of alkaline earth metal, fine particles of inorganic semiconductor such as titanium oxide, PEDOT (poly-3,4-ethylenedioxide). Oxythiophene) and the like.
  • the active layer contains an electron donating compound and an electron accepting compound, and further contains an ultraviolet absorber, inorganic semiconductor fine particles, an antioxidant for the ultraviolet absorber, and the like as necessary.
  • the electron donating compound and the electron accepting compound are relatively determined from the energy level of the energy level of these compounds.
  • the active layer has a single layer structure and a multi-layer structure in which a plurality of thin films are stacked.
  • the active layer having a single layer structure contains an electron donating compound and an electron accepting compound in one active layer.
  • the active layer having a multilayer structure is formed by laminating, for example, a thin film containing an electron donating compound material and a thin film containing an electron accepting compound material.
  • the photoelectric conversion element has a plurality of active layers, it is preferable that the photoelectric conversion elements have active layers having different light absorption regions.
  • Electrode donating compound p-type semiconductor polymer
  • the electron donating compound include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amines in side chains or main chains.
  • p-type semiconductor polymers such as polysiloxane derivatives, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, and polythienylene vinylene and derivatives thereof.
  • an organic polymer compound having at least one structural unit of a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2): Can be mentioned.
  • Ar 1 and Ar 2 each independently represent a trivalent heterocyclic group.
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, aryl Alkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide group, acid imide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group It represents a monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, arylalkenyl group, arylalkynyl group, carboxyl group or cyano group.
  • R 50 is a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide Group, acid imide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, aryl An alkenyl group, an arylalkynyl group, a carboxyl group or a cyano group is represented.
  • R 51 is an alkyl group having 6 to 20 carbon atoms, an alkyloxy group having 6 to 20 carbon atoms, an alkylthio group having 6 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, or 6 to 6 carbon atoms.
  • An acyl group having 6 to 60 carbon atoms or an acyloxy group having 6 to 60 carbon atoms is represented.
  • X 1 and Ar 2 are bonded to the adjacent position of the heterocyclic ring contained in Ar 1
  • C (R 50 ) (R 51 ) and Ar 1 are bonded to the adjacent position of the heterocyclic ring contained in Ar 2. ing.
  • organic polymer compound a compound containing both the structural unit represented by the formula (1) and the structural unit represented by the formula (2) is more preferable.
  • suitable p-type semiconductor polymers include organic polymer compounds containing an arylene group as a structural unit from the viewpoint of solubility in an organic solvent and ease of raising the degree of polymerization.
  • the arylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon, and a group having a condensed ring, two or more independent benzene rings or condensed rings are directly or via a group such as vinylene. Group bonded together.
  • the arylene group may have a substituent.
  • the substituent include linear or branched alkyl groups having 1 to 20 carbon atoms or cycloalkyl groups having 1 to 20 carbon atoms, linear or branched groups having 1 to 20 carbon atoms. Examples thereof include an alkoxy group having an alkyl group or a cycloalkyl group having 1 to 20 carbon atoms in its structure.
  • the number of carbon atoms in the arylene group excluding the substituent is usually about 6 to 60, and preferably 6 to 20.
  • the total number of carbon atoms including the substituent of the arylene group is usually about 6 to 100.
  • arylene groups include phenylene groups, naphthalenediyl groups, anthracene-diyl groups, biphenyl-diyl groups, terphenyl-diyl groups, fluorenediyl groups (preferably 9,9'-dialkyl-fluorene-2,7- A diyl group), a benzofluorenediyl group, and the like.
  • the organic polymer compound containing the arylene group as a structural unit is preferably a copolymer further containing a structural unit other than the arylene group.
  • Examples of the structural unit other than the arylene group include a structural unit that is a thienylene group that may have a substituent (preferably a 2,5-thienylene group that may have a substituent), in the above formula (1).
  • the structural unit represented and the structural unit which combined these are mentioned.
  • Examples of the substituent that the thienylene group may have include a linear or branched alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 1 to 20 carbon atoms.
  • As the compound containing the arylene group as a structural unit for example, polymer compound A represented by the following formula (3) and polymer compound B represented by the following formula (4) are used.
  • Electrode-accepting compound n-type semiconductor such as n-type semiconductor polymer
  • the electron-accepting compound include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, fullerenes and derivatives thereof such as C 60 fullerene, bathocuproine And phenanthrene derivatives such as titanium oxide, metal oxides such as titanium oxide, and carbon nanotubes.
  • titanium oxide, carbon nanotubes, fullerenes titanium oxide, carbon nanotubes, fuller
  • fullerene examples include C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, such as C 84 fullerene, and the like.
  • fullerene and fullerene derivatives include C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, C 84 fullerene and derivatives thereof.
  • Specific examples of the fullerene derivative include the following compounds.
  • fullerene derivatives include [6,6] phenyl-C 61 butyric acid methyl ester (C 60 PCBM, [6,6] -Phenyl C 61 butyric acid methyl ester), and [6,6] phenyl-C 71.
  • Butyric acid methyl ester (C 70 PCBM, [6,6] -Phenyl C 71 butyric acid methyl ester), [6,6] Phenyl-C 85 butyric acid methyl ester (C 84 PCBM, [6,6] -Phenyl C 85 butyric acid methyl ester), [6,6] thienyl -C 61 butyric acid methyl ester ([6,6] -Thienyl C 61 butyric acid methyl ester) and the like.
  • the ratio of the fullerene derivative is preferably 10 parts by weight to 1000 parts by weight and preferably 20 parts by weight to 500 parts by weight with respect to 100 parts by weight of the electron donating compound. It is more preferable.
  • the thickness of the active layer is usually preferably 1 nm to 100 ⁇ m, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, more preferably 20 nm to 200 nm.
  • the active layer may contain other components as necessary.
  • other components include ultraviolet absorbers, antioxidants, sensitizers for sensitizing the function of generating charges by absorbed light, and light stabilizers for increasing stability from ultraviolet rays. .
  • Components other than the electron donating compound and the electron accepting compound constituting the active layer are each usually 5 parts by weight or less with respect to 100 parts by weight of the total amount of the electron donating compound and the electron accepting compound, and 0.01 wt. It is effective to blend in an amount of from 3 to 3 parts by weight.
  • the active layer may contain a polymer compound other than the electron donating compound and the electron accepting compound of the present invention as a polymer binder in order to enhance mechanical properties.
  • a polymer binder those that do not inhibit the electron transport property or hole transport property are preferable, and those that do not strongly absorb visible light are preferably used.
  • polymer binder examples include poly (N-vinylcarbazole), polyaniline and its derivatives, polythiophene and its derivatives, poly (p-phenylene vinylene) and its derivatives, poly (2,5-thienylene vinylene) and its Derivatives, polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like can be mentioned.
  • an intermediate electrode layer is provided between the active layers as necessary.
  • the material for the intermediate electrode layer metals such as gold, platinum, chromium, nickel, lithium, magnesium, calcium, tin, silver, and aluminum are used.
  • the intermediate electrode layer may be composed of metal particles having an average particle diameter of 50 nm or less.
  • the intermediate electrode layer preferably has a high light transmittance so that the plurality of active layers can absorb light.
  • the intermediate electrode layer can be formed by a method of coating a film in which metal particles are dispersed or a vacuum deposition method.
  • the intermediate electrode layer can also be formed by a printing method similar to the organic layer forming step as described above.
  • the photoelectric conversion element of the present invention can be operated as an organic thin film solar cell by generating a photoelectromotive force between the electrodes by irradiating light such as sunlight from an electrode exhibiting optical transparency. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
  • the organic thin film solar cell module can basically have the same module structure as a conventional solar cell module.
  • the organic thin film solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, the cell is covered with a filling resin, protective glass, or the like, and light is taken in from the opposite side of the support substrate.
  • the organic thin film solar cell module may have a structure in which cells are formed on a transparent support substrate using a transparent material such as tempered glass and light is taken in from the transparent support substrate side.
  • a module structure called a super straight type, a substrate type, or a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, or the like is known. Even in the organic thin film solar cell module to which the photoelectric conversion element of the present invention is applied, these module structures can be appropriately selected in consideration of the purpose of use, the place of use and the environment of use.
  • cells are arranged at regular intervals between support substrates that are transparent on one or both sides and subjected to antireflection treatment, and adjacent cells are metal leads or It is connected by flexible wiring or the like, and a collecting electrode is arranged on the outer edge portion, so that the generated power is taken out to the outside.
  • plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filled resin in order to protect the cell and improve current collection efficiency.
  • EVA ethylene vinyl acetate
  • the surface protective layer is made of a transparent plastic film or the above filling resin is cured.
  • the periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and the support substrate and the frame are hermetically sealed with a sealing material.
  • a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
  • a solar cell using a flexible support such as a polymer film
  • cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material.
  • the battery body can be produced.
  • it can also have a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391.
  • SCAF solar Energy Materials and Solar Cells, 48, p383-391.
  • a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
  • the photoelectric conversion element of the present invention can be operated as an organic photosensor by irradiating light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes, so that a photocurrent flows. Furthermore, the organic photosensor is used as a light receiving unit, a drive circuit unit that detects an output due to a signal current generated by the organic photosensor and reads the signal charge, and a wiring that connects the organic photosensor and the drive circuit are provided. It can be used as an organic image sensor.
  • the organic light sensor can be used with a color filter on the light incident surface side to provide color selectivity of light to be detected, or light absorption with high selectivity for each of the three primary colors of light.
  • a plurality of types of organic photosensors having characteristics can also be used.
  • the driving circuit an IC chip formed of a transistor using single crystal silicon, or a thin film transistor using a compound semiconductor such as polycrystalline silicon, amorphous silicon, or cadmium selenide, and a conjugated organic compound semiconductor such as pentacene.
  • the organic image sensor has a lower manufacturing cost than an existing image sensor using a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) as an imaging element for a scanner, digital camera, digital video, etc. Advantages such as a small installation area can be expected.
  • organic photosensors having various photosensitivity characteristics can be used due to the diversity of conjugated compounds. Therefore, it is possible to provide an organic image sensor having performance according to the application.
  • Dichlorobis (triphenylphosphine) palladium (II) (0.02 g) was added, the temperature was raised to 105 ° C., and 42.2 mL of a 2 mol / L sodium carbonate aqueous solution was added dropwise with stirring. After completion of the dropwise addition, the mixture was reacted for 5 hours, phenylboronic acid (2.6 g) and 1.8 mL of toluene were added, and the mixture was stirred at 105 ° C. for 16 hours. Thereafter, 700 mL of toluene and 200 mL of an aqueous 7.5% sodium diethyldithiocarbamate trihydrate solution were added, and the mixture was stirred at 85 ° C.
  • the organic layer was washed twice with 300 mL of ion exchanged water at 60 ° C., once with 300 mL of 3% acetic acid at 60 ° C., and further washed with 300 mL of ion exchanged water at 60 ° C. three times.
  • the organic layer was passed through a column filled with celite, alumina, and silica, and the column was washed with 800 mL of hot toluene.
  • the solution was concentrated to 700 mL, poured into 2 L of methanol, and reprecipitated.
  • the polymer was recovered by filtration and washed with 500 mL of methanol, acetone, and methanol.
  • OPV ink (ink for active layer)
  • the polymer A as an electron donating compound and PCBM as an electron accepting compound were dissolved in orthodichlorobenzene to prepare an OPV ink.
  • the concentration of polymer A in the OPV ink was 0.5% by weight, and the concentration of PCBM in the OPV ink was 1.5% by weight.
  • the viscosity of the OPV ink was 12 cP and the yield value was 1.37 dyn / cm 2 .
  • a blanket made of silicone rubber having a flat surface was prepared, and a predetermined surface portion of this blanket was cut out to form a plurality of convex portions on the surface portion of the blanket, thereby producing a relief plate.
  • the shape of the convex part in plan view is a rectangle, and the dimension is 10 mm ⁇ 180 mm.
  • the produced relief was wound around a blanket cylinder to obtain a transfer body.
  • OPV ink was applied to the relief plate with a CAP coater (capillary coater) to form an ink film on the surface of the projection. Thereafter, the ink film was naturally dried for 60 seconds.
  • CAP coater capillary coater
  • a PET (Polyethylene terephthalate) film was set on the substrate platen, the blanket cylinder was rotated by moving the substrate platen while the relief plate was pressed against the PET film, and the ink film on the relief plate was transferred to the PET film.
  • the letterpress was visually confirmed. As a result, substantially all of the ink film was transferred from the letterpress to the PET film, and no ink film remained on the letterpress.
  • the active layer formed on the PET film had a thickness of 170 nm ⁇ 5 nm. As a result, an organic layer (active layer) excellent in flatness was formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A method for producing photoelectric conversion elements capable of forming a flat organic layer using a printing method is provided. The production method is a method for producing photoelectric conversion elements comprising a pair of electrodes and one or more organic layers (73) disposed between the pair of electrodes and comprises: a step for preparing a substrate (60) whereon one of the pair of electrodes is disposed; a step wherein ink that includes the material for the organic layers is applied to a transfer body (10), which has a member comprising silicone rubber disposed on a surface section thereof, to film-form ink films (70, 71) on the transfer body, and the ink films are transferred to the substrate to form the organic layers; and a step for forming the other of the pair electrodes.

Description

光電変換素子の製造方法Method for manufacturing photoelectric conversion element
 本発明は光電変換素子およびその製造方法、並びに該光電変換素子を備えた太陽電池モジュールおよび有機光センサーに関する。 The present invention relates to a photoelectric conversion element and a method for producing the same, and a solar cell module and an organic photosensor provided with the photoelectric conversion element.
 光電変換素子は一対の電極と、電極間に設けられる一層以上の有機層とを含む。有機層の形成方法には種々の方法があるが、そのひとつに塗布法がある。塗布法では有機層となる材料を含むインキを所定の方法で基板上に塗布成膜し、さらに成膜されたインキを固化することによって有機層を形成する。 The photoelectric conversion element includes a pair of electrodes and one or more organic layers provided between the electrodes. There are various methods for forming the organic layer, one of which is a coating method. In the coating method, an ink containing a material for forming an organic layer is applied and formed on a substrate by a predetermined method, and the formed ink is solidified to form an organic layer.
 上記インキを塗布成膜する方法として、フレキソ印刷法が提案されている(例えば特許文献1参照)。この従来の技術では、ポリカーボネートからなる印刷版にインキを成膜し、さらに成膜されたインキを所定の基板に転写することによって有機層を形成している。 A flexographic printing method has been proposed as a method for coating and forming the ink (see, for example, Patent Document 1). In this conventional technique, an ink is formed on a printing plate made of polycarbonate, and the formed ink is transferred to a predetermined substrate to form an organic layer.
特開2010-27763号公報JP 2010-27763 A
 従来の技術のようにポリカーボネートからなる印刷版を用いると、基板にインキ膜を転写する際に、いわゆる泣き別れが生じる。すなわち印刷版上のインキ膜が全て基板に転写されるのではなく、インキ膜が印刷版側と基板側とに分離し、一部が印刷版上に残留し、その残りが基板に転写されることになる。このような泣き別れが生じると、表面が平坦な有機層を形成することができないという問題がある。 When a printing plate made of polycarbonate is used as in the prior art, so-called tearing occurs when the ink film is transferred to the substrate. That is, not all the ink film on the printing plate is transferred to the substrate, but the ink film is separated into the printing plate side and the substrate side, a part remains on the printing plate, and the rest is transferred to the substrate. It will be. When such crying occurs, there is a problem that an organic layer having a flat surface cannot be formed.
 したがって本発明の目的は、印刷法によって平坦な有機層を形成することが可能な光電変換素子の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a method for producing a photoelectric conversion element capable of forming a flat organic layer by a printing method.
 本発明は、下記[1]~[12]を提供する。
 [1]一対の電極と、該一対の電極間に設けられる1層以上の有機層とを備える光電変換素子の製造方法であって、
 前記一対の電極のうちの一方の電極が設けられた基板を準備する工程と、
 シリコーンゴムからなる部材が表面部に設けられた転写体に、前記有機層の材料を含むインキを塗布成膜して、前記転写体にインキ膜を形成し、該インキ膜を前記基板に転写して、前記有機層を形成する工程と、
 前記一対の電極のうちの他方の電極を形成する工程と
を含む、光電変換素子の製造方法。
The present invention provides the following [1] to [12].
[1] A method for producing a photoelectric conversion element comprising a pair of electrodes and one or more organic layers provided between the pair of electrodes,
Preparing a substrate provided with one of the pair of electrodes;
An ink containing the material of the organic layer is applied to a transfer body provided with a member made of silicone rubber on the surface portion, an ink film is formed on the transfer body, and the ink film is transferred to the substrate. Forming the organic layer;
Forming a second electrode of the pair of electrodes. A method for manufacturing a photoelectric conversion element.
 [2]前記有機層を形成する工程では、前記転写体に形成された前記インキ膜を前記基板に転写する前に、該インキ膜を乾燥させる工程をさらに含む、[1]に記載の光電変換素子の製造方法。 [2] The photoelectric conversion according to [1], wherein the step of forming the organic layer further includes a step of drying the ink film before transferring the ink film formed on the transfer body to the substrate. Device manufacturing method.
 [3]前記インキ膜を乾燥させる工程を、ガスを該インキ膜に吹き付けることによって行う、[2]に記載の光電変換素子の製造方法。 [3] The method for producing a photoelectric conversion element according to [2], wherein the step of drying the ink film is performed by spraying a gas on the ink film.
 [4]前記有機層を形成する工程では、前記インキ膜を基板に転写する前に、前記インキ膜の所定の部位を除去して、インキ膜をパターニングする工程をさらに含む、[1]または[2]に記載の光電変換素子の製造方法。 [4] The step of forming the organic layer further includes a step of patterning the ink film by removing a predetermined portion of the ink film before transferring the ink film to the substrate. 2] The manufacturing method of the photoelectric conversion element of description.
 [5]スリット状吐出口を有するノズルを用いて前記インキを転写体に塗布成膜する、[1]~[4]のいずれか一つに記載の光電変換素子の製造方法。 [5] The method for producing a photoelectric conversion element according to any one of [1] to [4], wherein the ink is applied and formed on a transfer body using a nozzle having a slit-like discharge port.
 [6]アニロックスロールを用いて前記インキを転写体に塗布成膜する、[1]~[4]のいずれか一つに記載の光電変換素子の製造方法。 [6] The method for producing a photoelectric conversion element according to any one of [1] to [4], wherein the ink is applied to a transfer body using an anilox roll to form a film.
 [7]前記基板に有機層を形成する工程では、前記光電変換素子が前記有機層として活性層を有し、前記活性層が前記有機層を形成する工程により形成される、[1]~[6]のいずれか一つに記載の光電変換素子の製造方法。 [7] In the step of forming the organic layer on the substrate, the photoelectric conversion element has an active layer as the organic layer, and the active layer is formed by the step of forming the organic layer. 6] The manufacturing method of the photoelectric conversion element as described in any one of.
 [8] 前記活性層が、電子供与性化合物材料を含む薄膜と、電子受容性化合物材料を含む薄膜とを有しており、
 前記薄膜それぞれが、前記有機層を形成する工程により形成される、[7]に記載の光電変換素子の製造方法。
[8] The active layer has a thin film containing an electron donating compound material and a thin film containing an electron accepting compound material,
The method for producing a photoelectric conversion element according to [7], wherein each of the thin films is formed by a step of forming the organic layer.
 [9]前記光電変換素子が、1層以上の有機層として2層以上の活性層と、活性層同士の間に設けられる中間電極層とを有し、
 前記活性層それぞれは、前記有機層を形成する工程により形成され、前記中間電極層は前記活性層を形成する工程同士の間で形成される、[1]~[8]のいずれか一つに記載の光電変換素子の製造方法。
[9] The photoelectric conversion element has two or more active layers as one or more organic layers, and an intermediate electrode layer provided between the active layers,
Each of the active layers is formed by the step of forming the organic layer, and the intermediate electrode layer is formed between the steps of forming the active layer, according to any one of [1] to [8] The manufacturing method of the photoelectric conversion element of description.
 [10][1]~[9]のいずれか一つに記載の製造方法によって製造されうる光電変換素子。 [10] A photoelectric conversion element that can be manufactured by the manufacturing method according to any one of [1] to [9].
 [11][10]に記載の光電変換素子を備える太陽光発電モジュール。 [11] A photovoltaic power generation module including the photoelectric conversion element according to [10].
 [12][10]に記載の光電変換素子を備える有機光センサー。 [12] An organic photosensor comprising the photoelectric conversion element according to [10].
 本発明によれば、表面が平坦な有機層を備える光電変換素子を形成することができる。 According to the present invention, a photoelectric conversion element including an organic layer having a flat surface can be formed.
図1は、印刷装置の概略的な図である。FIG. 1 is a schematic diagram of a printing apparatus. 図2は、ブランケット胴およびコーティングユニットの概略的な断面図である。FIG. 2 is a schematic cross-sectional view of the blanket cylinder and the coating unit.
 本発明の光電変換素子の製造方法は、一対の電極と、該一対の電極間に設けられる1層以上の有機層とを備える光電変換素子の製造方法であって、前記一対の電極のうちの一方の電極が設けられた基板を準備する工程と、シリコーンゴムからなる部材が表面部に設けられた転写体に、前記有機層の材料を含むインキを塗布成膜して、前記転写体にインキ膜を形成し、該インキ膜を前記基板に転写して、前記有機層を形成する工程と、前記一対の電極のうち他方の電極を形成する工程とを含む。 A method for producing a photoelectric conversion element according to the present invention is a method for producing a photoelectric conversion element comprising a pair of electrodes and one or more organic layers provided between the pair of electrodes, the method comprising: A step of preparing a substrate on which one electrode is provided; and a transfer body provided with a member made of silicone rubber on the surface thereof, an ink containing the material of the organic layer is applied to form a film, and the ink is applied to the transfer body. Forming a film, transferring the ink film to the substrate to form the organic layer, and forming the other electrode of the pair of electrodes.
 光電変換素子は、陽極と陰極とからなる一対の電極と、これら一対の電極間に設けられる1層以上の有機層とを備える。これら光電変換素子を構成する各層を所定の基板に順次積層することによって光電変換素子を製造することができる。 The photoelectric conversion element includes a pair of electrodes composed of an anode and a cathode, and one or more organic layers provided between the pair of electrodes. A photoelectric conversion element can be manufactured by sequentially laminating each layer constituting these photoelectric conversion elements on a predetermined substrate.
 光電変換素子は有機層として少なくとも1層の活性層を備える。光電変換素子は、必要に応じて所定の層をさらに備えていてもよい。必要に応じて設けられる層の例としては、いわゆる正孔輸送層、電子輸送層などが挙げられる。 The photoelectric conversion element includes at least one active layer as an organic layer. The photoelectric conversion element may further include a predetermined layer as necessary. Examples of layers provided as necessary include so-called hole transport layers and electron transport layers.
 一層の活性層を備える光電変換素子の素子構成の一例を以下に示す。
(1)陽極/活性層/陰極
(2)陽極/正孔輸送層/活性層/陰極
(3)陽極/正孔輸送層/活性層/電子輸送層/陰極
(4)陽極/活性層/電子輸送層/陰極
(ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。以下同じ。)
 なお光電変換素子は2層以上の活性層を備えていてもよい。この場合、活性層と活性層との間には通常、中間電極層が設けられる。
An example of the element structure of a photoelectric conversion element provided with one active layer is shown below.
(1) Anode / active layer / cathode (2) Anode / hole transport layer / active layer / cathode (3) Anode / hole transport layer / active layer / electron transport layer / cathode (4) Anode / active layer / electron Transport layer / cathode (here, the symbol “/” indicates that the layers sandwiching the symbol “/” are stacked adjacent to each other. The same applies hereinafter).
Note that the photoelectric conversion element may include two or more active layers. In this case, an intermediate electrode layer is usually provided between the active layer and the active layer.
 2層の活性層を備える光電変換素子の素子構成の一例を以下に示す。
(5)陽極/(層構造単位A)/中間電極層/(層構造単位A)/陰極
 ここで(層構造単位A)は、上記(1)~(4)の構成のうちのいずれか1つにおいて、陽極と陰極とに挟持された積層体を意味する。なお2つある(層構造単位A)の層構成は互いに異なっていてもよい。
An example of an element structure of a photoelectric conversion element including two active layers is shown below.
(5) Anode / (layer structural unit A) / intermediate electrode layer / (layer structural unit A) / cathode Here, (layer structural unit A) is any one of the structures (1) to (4) above. In other words, it means a laminate sandwiched between an anode and a cathode. Note that the layer configuration of the two (layer structural unit A) may be different from each other.
 3層以上の活性層を備える光電変換素子の素子構成の一例を以下に示す。
(6)陽極/(層構造単位B)x/(層構造単位A)/陰極
 ここで(層構造単位B)は「(層構造単位A)/中間電極層」を意味し、記号「x」は、2以上の整数を表し、(層構造単位B)xは、層構造単位Bがx段積層された積層体を表す。また複数ある(層構造単位B)の層構成は異なっていてもよい。
An example of an element structure of a photoelectric conversion element including three or more active layers is shown below.
(6) Anode / (layer structural unit B) x / (layer structural unit A) / cathode Here, (layer structural unit B) means “(layer structural unit A) / intermediate electrode layer” and symbol “x” Represents an integer of 2 or more, and (layer structural unit B) x represents a laminate in which the layer structural unit B is laminated in x stages. Further, a plurality of (layer structural units B) may have different layer configurations.
 電極および電極間に設けられる各層の材料などについては後述する。 The material of each layer provided between the electrodes will be described later.
 本発明では電極間に設けられる複数の層のうちで、有機物を含む層を有機層という。光電変換素子が複数の有機層を含む場合、そのうちの少なくとも一層を本発明の有機層形成工程によって形成する。すなわちシリコーンゴムからなる部材が表面部に設けられた転写体に、前記有機層となる材料を含むインキを塗布成膜して、前記転写体にインキ膜を形成し、前記転写体の前記インキ膜を前記基板に転写し、有機層を形成する。 In the present invention, among a plurality of layers provided between electrodes, a layer containing an organic substance is referred to as an organic layer. When the photoelectric conversion element includes a plurality of organic layers, at least one of them is formed by the organic layer forming step of the present invention. That is, an ink containing a material that becomes the organic layer is applied to a transfer body provided with a member made of silicone rubber on the surface portion, an ink film is formed on the transfer body, and the ink film of the transfer body is formed. Is transferred to the substrate to form an organic layer.
 本発明の有機層形成工程は、シリコーンゴムからなる部材が表面部に設けられた転写体を使用する印刷法によって行われる限りその具体的な態様は特に限定されない。有機層形成工程は、たとえば以下に説明する反転印刷装置、凸版印刷装置などの印刷装置を用いて行われる。 The specific aspect of the organic layer forming step of the present invention is not particularly limited as long as the organic layer forming step is performed by a printing method using a transfer body in which a member made of silicone rubber is provided on the surface portion. The organic layer forming step is performed using, for example, a printing apparatus such as a reverse printing apparatus or a relief printing apparatus described below.
 上記各層の詳細については後述し、以下ではまず有機層形成工程において使用される装置について説明する。 Details of each of the above layers will be described later, and hereinafter, an apparatus used in the organic layer forming step will be described first.
 (印刷装置)
 本実施形態の光電変換素子の製造に用いられる印刷装置について説明する。図1は、印刷装置の概略的な図である。図2は、ブランケット胴およびコーティングユニットの概略的な断面図である。
(Printer)
A printing apparatus used for manufacturing the photoelectric conversion element of this embodiment will be described. FIG. 1 is a schematic diagram of a printing apparatus. FIG. 2 is a schematic cross-sectional view of the blanket cylinder and the coating unit.
 図1及び図2に示されるように、印刷装置5は、基板60に有機層73を形成するための装置である。印刷装置5は、架台1と、ブランケット胴11と、このブランケット胴11に巻き回されるブランケット10と、ブランケット10に対してインキ28を塗工してインキ膜70を塗布成膜するコーティングユニット20と、塗工されたインキ膜70を乾燥させて乾燥したインキ膜71とする乾燥装置30と、乾燥したインキ膜71から所定の部位を除去してパターニングするために使用される版50と、当該版50を支持する版定盤51と、パターニングされたインキ膜が転写されるべき基板60を支持する基板定盤61と、ブランケット胴11を架台1に支持するとともに、このブランケット胴11を水平方向に移動するブランケット胴支持部40とを主として備える。 As shown in FIGS. 1 and 2, the printing apparatus 5 is an apparatus for forming an organic layer 73 on a substrate 60. The printing apparatus 5 includes a gantry 1, a blanket cylinder 11, a blanket 10 that is wound around the blanket cylinder 11, and a coating unit 20 that applies ink 28 to the blanket 10 and applies an ink film 70. A drying device 30 that dries the coated ink film 70 to form a dried ink film 71, a plate 50 used for patterning by removing a predetermined portion from the dried ink film 71, and A platen platen 51 that supports the plate 50, a substrate platen 61 that supports a substrate 60 on which the patterned ink film is to be transferred, and the blanket cylinder 11 are supported on the gantry 1 and the blanket cylinder 11 is disposed in the horizontal direction. And a blanket cylinder support portion 40 that moves to the center.
 コーティングユニット20、版定盤51、および基板定盤61は、架台1の上部にこの順に一列に(図1では右から左に)並んで設けられている。 The coating unit 20, the platen surface plate 51, and the substrate surface plate 61 are arranged in a line in this order on the top of the gantry 1 (from right to left in FIG. 1).
 印刷装置5において、コーティングユニット20、版定盤51および基板定盤61が架台1に固定され、かつブランケット胴支持部40およびこれに支持されるブランケット胴11が水平方向に移動するように構成されていてよく、又はコーティングユニット20、版定盤51および基板定盤61が水平方向に移動し、かつブランケット胴支持部40およびこれに支持されるブランケット胴11が架台1に固定されるように構成されていてもよい。 In the printing apparatus 5, the coating unit 20, the plate surface plate 51, and the substrate surface plate 61 are fixed to the gantry 1, and the blanket cylinder support unit 40 and the blanket cylinder 11 supported by the same are moved in the horizontal direction. Alternatively, the coating unit 20, the plate surface plate 51, and the substrate surface plate 61 move in the horizontal direction, and the blanket cylinder support portion 40 and the blanket cylinder 11 supported thereby are fixed to the gantry 1. May be.
 (ブランケット及びブランケット胴)
 本実施形態では、印刷装置5が有するブランケット胴11及びブランケット胴11に巻き回されるブランケット10が、シリコーンゴムからなる部材が表面部に設けられた転写体に相当する。また印刷装置5が有するブランケット10が、転写体の表面部に設けられるシリコーンゴムからなる部材に相当する。
(Blanket and blanket cylinder)
In this embodiment, the blanket cylinder 11 included in the printing apparatus 5 and the blanket 10 wound around the blanket cylinder 11 correspond to a transfer body in which a member made of silicone rubber is provided on the surface portion. The blanket 10 included in the printing apparatus 5 corresponds to a member made of silicone rubber provided on the surface portion of the transfer body.
 ブランケット胴11は、円柱形状を有しており、その中心軸12がブランケット胴支持部40に回転可能に軸支される。これによりブランケット胴11は水平軸(中心軸12)回り(図2中の白抜き矢印方向)に回転可能となっている。 The blanket cylinder 11 has a cylindrical shape, and the central shaft 12 is rotatably supported by the blanket cylinder support portion 40. As a result, the blanket cylinder 11 can rotate about the horizontal axis (center axis 12) (in the direction of the white arrow in FIG. 2).
 ブランケット10は、ブランケット胴11の周面上に巻き回されている。このブランケット10はその周面が平坦状であり、所定の弾性を有する。ブランケット10は、熱硬化型ミラブルシリコーンゴム、付加型の液状シリコーンゴム、縮合型の液状シリコーンゴム等、あらゆる種類のシリコーンゴムを用いて形成し得る。 The blanket 10 is wound around the circumferential surface of the blanket cylinder 11. The blanket 10 has a flat peripheral surface and has a predetermined elasticity. The blanket 10 can be formed using any kind of silicone rubber, such as thermosetting millable silicone rubber, addition-type liquid silicone rubber, and condensation-type liquid silicone rubber.
 熱硬化型ミラブルシリコーンゴムとしては、例えば、信越化学工業社製の「KE555U」が挙げられる。 Examples of the thermosetting millable silicone rubber include “KE555U” manufactured by Shin-Etsu Chemical Co., Ltd.
 付加型の液状シリコーンゴムとしては、例えば、信越化学工業社製のKE1600、KE1606が挙げられる。 Examples of the addition type liquid silicone rubber include KE1600 and KE1606 manufactured by Shin-Etsu Chemical Co., Ltd.
 縮合型の液状シリコーンゴムとしては、例えば、信越化学工業社製のKE-17が挙げられる。 Examples of the condensation type liquid silicone rubber include KE-17 manufactured by Shin-Etsu Chemical Co., Ltd.
 さらには、信越化学工業社製のSIM-260、SIM-360も使用することができる。 Furthermore, SIM-260 and SIM-360 manufactured by Shin-Etsu Chemical Co., Ltd. can also be used.
 ブランケット10の周面には撥水処理などを施しておくことが好ましい。 It is preferable that the peripheral surface of the blanket 10 is subjected to water repellent treatment.
 (ブランケット胴支持部)
 ブランケット胴支持部40は、ブランケット胴11を架台1上で水平軸回りに回転可能に軸支するとともに、このブランケット胴11を水平方向(図1の左右方向)に移動させる。具体的にはブランケット胴支持部40は、図1においてブランケット胴11を、コーティングユニット20の上方から左方向に移動して、版50の上方に移動させ、さらに左方向に移動させて、基板60の上方を通過させることができる。この移動の際に、ブランケット10を版50の表面に所定の圧力で当接させてブランケット10を転動させ、さらに、基板60の表面にブランケット10を所定の圧力で当接させてブランケット10を転動させ、ブランケット胴11を基板60の左端まで到達させることができる。その後、再びブランケット胴11をコーティングユニット20の上方まで移動させることができる。また、このブランケット胴支持部40は、ブランケット胴11を所定の速度で回転させることができる。
(Blanket trunk support)
The blanket cylinder support unit 40 supports the blanket cylinder 11 so as to be rotatable about the horizontal axis on the gantry 1 and moves the blanket cylinder 11 in the horizontal direction (left and right direction in FIG. 1). Specifically, the blanket cylinder support unit 40 in FIG. 1 moves the blanket cylinder 11 from above the coating unit 20 to the left to move above the plate 50 and further to the left, thereby moving the substrate 60. Can be passed above. At the time of this movement, the blanket 10 is brought into contact with the surface of the plate 50 with a predetermined pressure to roll the blanket 10, and the blanket 10 is brought into contact with the surface of the substrate 60 with a predetermined pressure. The blanket cylinder 11 can reach the left end of the substrate 60 by rolling. Thereafter, the blanket cylinder 11 can be moved again above the coating unit 20. Moreover, this blanket cylinder support part 40 can rotate the blanket cylinder 11 at a predetermined speed.
 (版)
 版50は版定盤51に固定して支持される。版50は例えばガラス、金属などからなる。版50の表面部には凹凸が形成されている。この凹凸のパターンは、形成されるべき有機層73のパターンに対応するように形成される。版50に形成された凸部にブランケット10上のインキ膜71が当接することにより、凸部に接触したインキ膜71の部位がブランケット10から除去される。これによって、版50の凹部に対応するパターンのインキ膜がブランケット上に形成され、これがさらに基板60に転写される。なお基板60の厚さ方向の一方からみた場合(平面視という場合がある)における有機層73の凹部(パターン)の形状およびその大きさは、有機層73のパターンにもよるが、例えば矩形状の場合、20μm×200mm~50mm×200mmである。
(Version)
The plate 50 is fixed and supported on a plate surface plate 51. The plate 50 is made of, for example, glass or metal. Concavities and convexities are formed on the surface portion of the plate 50. The uneven pattern is formed so as to correspond to the pattern of the organic layer 73 to be formed. When the ink film 71 on the blanket 10 comes into contact with the convex portion formed on the plate 50, the portion of the ink film 71 in contact with the convex portion is removed from the blanket 10. As a result, an ink film having a pattern corresponding to the concave portion of the plate 50 is formed on the blanket, and this is further transferred to the substrate 60. The shape and size of the recess (pattern) of the organic layer 73 when viewed from one side in the thickness direction of the substrate 60 (sometimes referred to as a plan view) depends on the pattern of the organic layer 73, but is rectangular, for example. In this case, it is 20 μm × 200 mm to 50 mm × 200 mm.
 (コーティングユニット)
 有機層73の材料を含むインキ28を転写体に塗布成膜するためのコーティングユニット20の種類は特に限定されない。コーティングユニット20として例えばアニロックスロールを用いてもよく、またスリット状吐出口を有するノズルを用いてもよい。
(Coating unit)
The type of the coating unit 20 for applying and forming the ink 28 containing the material of the organic layer 73 on the transfer body is not particularly limited. For example, an anilox roll may be used as the coating unit 20, and a nozzle having a slit-like discharge port may be used.
 図2にはコーティングユニットの一例として、スリット状吐出口を有するノズルを有するコーティングユニット20が示されている。図2に示されるコーティングユニット20は、コーティングダイ21と、インキ槽22と、このインキ槽22とコーティングダイ21とを連通するライン23と、コーティングダイ21を昇降させるコーティングダイ昇降部24と、インキ槽22を昇降させるインキ槽昇降部25を有する。 FIG. 2 shows a coating unit 20 having a nozzle having a slit-like discharge port as an example of the coating unit. The coating unit 20 shown in FIG. 2 includes a coating die 21, an ink tank 22, a line 23 that connects the ink tank 22 and the coating die 21, a coating die lifting unit 24 that lifts and lowers the coating die 21, and an ink. An ink tank raising / lowering unit 25 for raising and lowering the tank 22 is provided.
 コーティングダイ21は、毛管通路21aを有するいわゆるキャピラリコータである。コーティングダイ21の毛管通路21aの一端21bは、ライン23を介してインキ槽22と連通している。インキ槽22から供給されるインキ28は、ライン23を介して毛管通路21aに供給され、さらに毛管通路21aの他端である細長矩形形状のスリット21cから上方に向けて排出されて、ブランケット10上に供給される。このコーティングダイ21は、スリット21cの長さ方向がブランケット胴11の中心軸12と平行になるように配置されている。スリット21cの幅は、特に限定されない。スリット21cの幅は、0.05mm~0.5mm程度が好ましい。なおコーティングユニット20は、図2に示されるコーティングダイ21のようなキャピラリコータを有する構成に限定されない。コーティングユニット20が備えるコータは、比較的均一な厚さのインキ膜70をブランケット10に塗工できるコータであればよく、たとえばワイヤバーコータ、スリットコータ、ダイコータなどを用いることも可能である。これらコータのなかでもインキ膜70の均一性を良好にできるので、ダイコータ、キャピラリコータ、スリットコータが好ましい。 The coating die 21 is a so-called capillary coater having a capillary passage 21a. One end 21 b of the capillary passage 21 a of the coating die 21 communicates with the ink tank 22 through a line 23. The ink 28 supplied from the ink tank 22 is supplied to the capillary passage 21a through the line 23, and is further discharged upward from the elongated rectangular slit 21c which is the other end of the capillary passage 21a. To be supplied. The coating die 21 is arranged so that the length direction of the slit 21 c is parallel to the central axis 12 of the blanket cylinder 11. The width of the slit 21c is not particularly limited. The width of the slit 21c is preferably about 0.05 mm to 0.5 mm. The coating unit 20 is not limited to a configuration having a capillary coater like the coating die 21 shown in FIG. The coater provided in the coating unit 20 may be any coater that can coat the blanket 10 with the ink film 70 having a relatively uniform thickness. For example, a wire bar coater, a slit coater, a die coater, or the like may be used. Among these coaters, since the uniformity of the ink film 70 can be improved, a die coater, a capillary coater, and a slit coater are preferable.
 転写体にインキ膜を形成する際には、スリット21cからインキ28を排出させるとともに、ブランケット胴11を回転させる(図2においては白抜き矢印方向)。ブランケット胴の回転により、ブランケット10の表面に一定の厚さのインキ膜70が塗工される。 When the ink film is formed on the transfer body, the ink 28 is discharged from the slit 21c and the blanket cylinder 11 is rotated (in the direction of the white arrow in FIG. 2). By the rotation of the blanket cylinder, an ink film 70 having a certain thickness is applied to the surface of the blanket 10.
 インキ槽22は、インキ28を貯留するタンクである。このインキ28は、基板60に活性層、電荷輸送層などの有機層を形成するために使用されるインキである。 The ink tank 22 is a tank that stores the ink 28. This ink 28 is an ink used for forming an organic layer such as an active layer and a charge transport layer on the substrate 60.
 インキ槽昇降部25は、インキ槽22を上下方向(図1及び図2の上下方向)に移動させる。またコーティングダイ昇降部24は、コーティングダイ21を上下方向(図1及び図2の上下方向)に移動する。 The ink tank lifting / lowering unit 25 moves the ink tank 22 in the vertical direction (the vertical direction in FIGS. 1 and 2). The coating die lifting / lowering unit 24 moves the coating die 21 in the vertical direction (the vertical direction in FIGS. 1 and 2).
 スリット21cから排出されるインキ28の排出速度は、インキ槽22とブランケット10との上下方向の相対位置を調節することにより制御することができる。また、スリット21cからのインキ28の排出速度と、ブランケット胴11の回転速度とを調節することにより、ブランケット10に塗工されるインキ膜70の厚さを制御できる。インキ膜70の厚さは、例えば2μm~20μmとすることができる。 The discharge speed of the ink 28 discharged from the slit 21c can be controlled by adjusting the relative position of the ink tank 22 and the blanket 10 in the vertical direction. Further, the thickness of the ink film 70 applied to the blanket 10 can be controlled by adjusting the discharge speed of the ink 28 from the slit 21 c and the rotation speed of the blanket cylinder 11. The thickness of the ink film 70 can be set to 2 μm to 20 μm, for example.
 本実施形態では、ブランケットに塗布成膜したインキ膜を乾燥させることが好ましい。インキ膜を乾燥させる方法は特に限定されないが、図2に示される本実施形態では、乾燥装置30によってインキ膜70を乾燥させることにより、乾燥したインキ膜71とする。 In this embodiment, it is preferable to dry the ink film formed on the blanket. The method for drying the ink film is not particularly limited, but in the present embodiment shown in FIG. 2, the ink film 70 is dried by the drying device 30 to obtain the dried ink film 71.
 乾燥装置30は、ブランケット10に塗工されたインキ膜70を、1×10L/分・m~50×10L/分・mの流量のガス8を吹き付けることによって乾燥させ得る装置である。乾燥装置30からインキ膜70に吹き付けられるガス8は、室温から例えば40℃まで加温することもできるが、ガス8の温度が高すぎると、装置の温度が上昇し、転写精度に悪影響を与えるおそれがある。よってガス8の温度は室温が好ましい。またガス8の流量が多すぎるとブランケット10およびインキ膜70に周辺の異物が吹き付けられ、インキ膜70に異物が混入するおそれが高くなる。よってガス8の流量は5×10L/分・m~20×10L/分・mとするのが好ましい。ガス8の例としては、空気、窒素、酸素などが挙げられる。ガス8としては、空気が好ましい。 The drying device 30 can dry the ink film 70 applied to the blanket 10 by spraying a gas 8 having a flow rate of 1 × 10 4 L / min · m 2 to 50 × 10 4 L / min · m 2. Device. The gas 8 sprayed from the drying device 30 onto the ink film 70 can be heated from room temperature to 40 ° C., for example. However, if the temperature of the gas 8 is too high, the temperature of the device rises and adversely affects the transfer accuracy. There is a fear. Therefore, the temperature of the gas 8 is preferably room temperature. On the other hand, if the flow rate of the gas 8 is excessive, peripheral foreign matters are sprayed on the blanket 10 and the ink film 70, and there is a high possibility that the foreign matters are mixed into the ink film 70. Therefore, the flow rate of the gas 8 is preferably 5 × 10 4 L / min · m 2 to 20 × 10 4 L / min · m 2 . Examples of the gas 8 include air, nitrogen, oxygen and the like. The gas 8 is preferably air.
 本実施形態では、インキ膜70を乾燥したインキ膜71とするために、インキ膜70にガス8を吹き付ける例を説明した。例えばインキ膜70の近傍の空気を吸い込むことによってインキ膜70の表面近傍に気流を発生させ、インキ膜70の余分な溶剤を除去して乾燥させ、乾燥したインキ膜71を得ることもできる。その他、有機層73を得るための方法としては、塗布成膜されたインキ膜70を一定時間、自然乾燥させて乾燥したインキ膜71とした後に基板60に転写してもよい。自然乾燥する時間は例えば10秒間~120秒間である。 In the present embodiment, the example in which the gas 8 is sprayed on the ink film 70 in order to make the ink film 70 the dried ink film 71 has been described. For example, by sucking air in the vicinity of the ink film 70, an air flow is generated in the vicinity of the surface of the ink film 70, and the excess solvent in the ink film 70 is removed and dried to obtain the dried ink film 71. In addition, as a method for obtaining the organic layer 73, the ink film 70 formed by coating may be naturally dried for a certain period of time to form a dried ink film 71 and then transferred to the substrate 60. The natural drying time is, for example, 10 seconds to 120 seconds.
 以上説明した印刷装置5を使用することにより、シリコーンゴムからなる部材が表面部に設けられた転写体に、前記有機層となる材料を含むインキを塗布成膜して、前記転写体にインキ膜を形成し、該インキ膜を前記基板に転写して、前記有機層を形成することができる。 By using the printing apparatus 5 described above, an ink containing a material that becomes the organic layer is applied to a transfer body provided with a member made of silicone rubber on the surface portion, and an ink film is formed on the transfer body. And the ink film is transferred to the substrate to form the organic layer.
 本実施形態の印刷装置5では、シリコーンゴムからなるブランケット10を使用することにより、乾燥したインキ膜71のうちの除去されるべき部位を実質的に全て除去することができる。また乾燥したインキ膜71を基板60に転写する際にも、実質的に全ての乾燥したインキ膜71が基板60に転写される。このように乾燥したインキ膜71がいわゆる泣き別れすることなく実質的に全て基板60に転写されるため、表面が平坦な有機層73を形成することができる。 In the printing apparatus 5 of the present embodiment, by using the blanket 10 made of silicone rubber, it is possible to remove substantially all portions of the dried ink film 71 to be removed. Also, when the dried ink film 71 is transferred to the substrate 60, substantially all the dried ink film 71 is transferred to the substrate 60. Since the dried ink film 71 is transferred to the substrate 60 substantially without crying, the organic layer 73 having a flat surface can be formed.
 印刷装置5による有機層73の形成工程においては、前記転写体上のインキ膜70を所定の条件で乾燥させることが好ましい。すなわちブランケット10を版50の表面に所定の圧力で当接させて前記転写体上のインキ膜70の所定の部位を除去する際に、インキ膜70のうちの除去されるべき部位を、転写体から実質的に全て除去できる程度に乾燥させることが好ましい。またインキ膜を基板60に転写する際に、転写体から実質的に全てのインキ膜が転写される程度にインキ膜を乾燥させることが好ましい。 In the step of forming the organic layer 73 by the printing device 5, the ink film 70 on the transfer body is preferably dried under predetermined conditions. That is, when a predetermined portion of the ink film 70 on the transfer body is removed by bringing the blanket 10 into contact with the surface of the plate 50 with a predetermined pressure, the portion to be removed of the ink film 70 is transferred to the transfer body. It is preferable to dry to such an extent that substantially all can be removed. Further, when transferring the ink film to the substrate 60, it is preferable to dry the ink film to such an extent that substantially all the ink film is transferred from the transfer body.
 このように、転写体に塗布成膜したインキ膜70を所定の条件で乾燥することによって、いわゆる泣き別れをより確実に防ぐことができ、乾燥したインキ膜71を実質的に全て基板60に転写することができる。よって表面が平坦な有機層73を形成することができる。 In this way, by drying the ink film 70 applied and formed on the transfer body under predetermined conditions, so-called tearing can be prevented more reliably, and substantially all the dried ink film 71 is transferred to the substrate 60. be able to. Therefore, the organic layer 73 having a flat surface can be formed.
 以上の説明では印刷装置5として反転印刷装置を用いてインキ膜70を基板60に転写する反転印刷法について説明した。しかしながら反転印刷法に限らず、例えば凸版印刷法も適用することができる。凸版印刷法に用いられる凸版印刷装置は、例えば図1に示される印刷装置5から、版50および版定盤51を取り除き、さらにはブランケット胴11に巻き回した表面が平坦なブランケット10に代えて、ブランケット胴11に巻き回した凸版を用いる構成とすればよい。 In the above description, the reverse printing method in which the ink film 70 is transferred to the substrate 60 using the reverse printing device as the printing device 5 has been described. However, not only the reverse printing method but also a relief printing method can be applied. The relief printing apparatus used in the relief printing method removes the plate 50 and the plate surface plate 51 from the printing apparatus 5 shown in FIG. 1, for example, and replaces the blanket 10 with a flat surface wound around the blanket cylinder 11. A configuration using a letterpress wound around the blanket cylinder 11 may be used.
 上述のような凸版印刷装置を用いた場合、有機層となる材料を含むインキを転写体に塗布成膜すると、ブランケット胴に巻き回された凸版の凸部にのみインキ膜が形成される。このインキ膜を基板に転写することによって、凸版の凸部のパターンに対応するインキ膜が基板に形成される。 In the case of using the relief printing apparatus as described above, when an ink containing a material that becomes an organic layer is applied to the transfer body, an ink film is formed only on the relief of the relief that is wound around the blanket cylinder. By transferring this ink film to the substrate, an ink film corresponding to the pattern of the convex portions of the relief printing plate is formed on the substrate.
 凸版印刷装置においてブランケット胴に巻き回される凸版は、例えば既に説明した印刷装置5のブランケット10と同じ材料により形成することができる。凸版は、所定のパターンが形成された型にシリコーンゴムの材料を流しこみ、当該材料を硬化することにより複数の凸部を形成することができる。なお平面視における各凸部の形状及び大きさは、基板に形成される有機層のパターンにもよるが、例えば矩形状の場合、20μm×200mm~50mm×200mmである。なおこれらを平面視で矩形状の凸部を平行に配置することによってストライプ状の凸部を形成してもよい。例えば10本~100本の凸部が配置される。 The letterpress wound around the blanket cylinder in the letterpress printing apparatus can be formed of, for example, the same material as the blanket 10 of the printing apparatus 5 already described. The relief printing plate can form a plurality of projections by pouring a silicone rubber material into a mold on which a predetermined pattern is formed and curing the material. Note that the shape and size of each convex portion in plan view depends on the pattern of the organic layer formed on the substrate, but is 20 μm × 200 mm to 50 mm × 200 mm in the case of a rectangular shape, for example. In addition, a stripe-shaped convex part may be formed by arranging these rectangular convex parts in parallel in a plan view. For example, 10 to 100 convex portions are arranged.
 このように、シリコーンゴムからなる凸版を使用することで、インキ膜を基板に転写する際に、実質的に全てのインキ膜が基板に転写される。よってインキ膜がいわゆる泣き別れすることなく実質的に全てのインキ膜が基板に転写されるため、表面が平坦な有機層を形成することができる。 Thus, by using a relief printing plate made of silicone rubber, substantially all of the ink film is transferred to the substrate when the ink film is transferred to the substrate. Therefore, substantially all the ink film is transferred to the substrate without causing the ink film to cry, so that an organic layer having a flat surface can be formed.
 (インキ)
 コーティングユニット20で使用されるインキ28は形成すべき有機層73の材料と溶剤とを含む。所定のパターンのインキ膜70を形成した後、乾燥させることにより有機層73を形成できる。
(ink)
The ink 28 used in the coating unit 20 contains the material of the organic layer 73 to be formed and a solvent. After forming the ink film 70 having a predetermined pattern, the organic layer 73 can be formed by drying.
 転写体に供給されるインキ28の粘度は、2mPa・s~50mPa・sが好ましく、降伏値は10mPa以下であることが好ましい。インキ28の粘度をこの範囲とすることで、インキ28の表面張力等によって転写体上のインキ膜を十分に平坦化することができ、インキ膜の厚さの均一性を極めて高くすることができる。インキ28の粘度、降伏値が上述の範囲を超えると、インキ膜を乾燥、固化する前に転写体上のインキ膜の厚さの均一性を十分に高めにくくなる傾向がある。 The viscosity of the ink 28 supplied to the transfer body is preferably 2 mPa · s to 50 mPa · s, and the yield value is preferably 10 mPa or less. By setting the viscosity of the ink 28 within this range, the ink film on the transfer body can be sufficiently flattened by the surface tension of the ink 28 and the uniformity of the thickness of the ink film can be made extremely high. . If the viscosity and yield value of the ink 28 exceed the above ranges, it tends to be difficult to sufficiently increase the uniformity of the thickness of the ink film on the transfer body before the ink film is dried and solidified.
 (溶剤)
 インキ28は、有機層73となる材料を溶剤に溶解させるか、または分散させたものであり、溶剤としては、有機層73となる材料を溶解させるか、または分散させるものであれば特に限定されない。このような溶剤としては、例えばモノクロルベンゼン、p-ジクロロベンゼン、o-ジクロロベンゼン、クロロホルム、トルエン、キシレン、テトラリン;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル及びエチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル等のジエチレングリコールジアルキルエーテル類;メチルセロソルブアセテート、エチルセロソルブアセテート等のエチレングリコールアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、メトキシブチルアセテート、メトキシペンチルアセテート等のアルキレングリコールアルキルエーテルアセテート類;ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素類;アニソール、フェネトール、メチルアニソール等の芳香族脂肪族エーテル類;アセトン、2-ブタノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、4-メチル-2-ペンタノン、シクロヘキサノン等のケトン類;エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、エチレングリコール、グリセリン等のアルコール類;3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸メチル、乳酸エチル、2-ヒドロキシイソ酪酸メチル等のエステル類;γ-ブチロラクトン等の環状エステル類が挙げられる。こうした溶剤は、それぞれ単独でまたは2種類以上を組み合わせて用いることができる。
(solvent)
The ink 28 is obtained by dissolving or dispersing the material to be the organic layer 73 in a solvent, and the solvent is not particularly limited as long as the material to be the organic layer 73 is dissolved or dispersed. . Examples of such solvents include monochlorobenzene, p-dichlorobenzene, o-dichlorobenzene, chloroform, toluene, xylene, tetralin; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, and ethylene glycol monobutyl ether. Ethylene glycol monoalkyl ethers such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, and diethylene glycol dialkyl ethers such as diethylene glycol dibutyl ether; ethylene glycol alkyl ether acetates such as methyl cellosolve acetate and ethyl cellosolve acetate; Alkylene glycol alkyl ether acetates such as methyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, methoxybutyl acetate and methoxypentyl acetate; aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene; anisole Aromatic ketones such as phenetole and methylanisole; ketones such as acetone, 2-butanone, 2-heptanone, 3-heptanone, 4-heptanone, 4-methyl-2-pentanone and cyclohexanone; ethanol, propanol, Alcohols such as butanol, hexanol, cyclohexanol, ethylene glycol, glycerin; ethyl 3-ethoxypropionate, 3-methoxypro Methyl propionic acid, ethyl lactate, esters such as methyl 2-hydroxyisobutyrate; cyclic esters γ- butyrolactone. These solvents can be used alone or in combination of two or more.
 インキ28における溶剤の含有量は質量分率で通常50質量%以上99質量%以下であり、好ましくは80質量%以上98質量%以下である。 The content of the solvent in the ink 28 is usually 50% by mass or more and 99% by mass or less, and preferably 80% by mass or more and 98% by mass or less, by mass fraction.
 (その他の添加剤)
 インキ28は、その他の添加剤をさらに含有していてもよい。添加剤としては例えば、充填剤、バインダーポリマー以外の高分子化合物、界面活性剤、密着促進剤、凝集防止剤、有機酸、硬化剤などが挙げられる。
(Other additives)
The ink 28 may further contain other additives. Examples of the additive include a filler, a polymer compound other than the binder polymer, a surfactant, an adhesion promoter, an aggregation inhibitor, an organic acid, and a curing agent.
 界面活性剤としては、例えばノニオン界面活性剤、カチオン界面活性剤、アニオン界面活性剤および両性界面活性剤などが挙げられる。 Examples of the surfactant include nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants.
 次に、光電変換素子の製造方法について説明する。
 (基板準備工程)
 本工程では一対の電極のうちの一方の電極が設けられた基板を準備する。本工程では予め一方の電極が設けられた基板を市場から入手してもよく、また本工程において基板に一対の電極のうちの一方の電極を形成してもよい。
Next, the manufacturing method of a photoelectric conversion element is demonstrated.
(Board preparation process)
In this step, a substrate provided with one of the pair of electrodes is prepared. In this step, a substrate on which one electrode is provided in advance may be obtained from the market, or one electrode of a pair of electrodes may be formed on the substrate in this step.
 なお基板準備工程の後、必要に応じて所定の無機層を一対の電極のうちの一方の電極上に形成してもよい。 Note that a predetermined inorganic layer may be formed on one of the pair of electrodes as necessary after the substrate preparation step.
 (有機層形成工程)
 本工程では有機層を形成する。本工程は少なくとも1回行われるが、必要に応じて複数回行われる。
(Organic layer formation process)
In this step, an organic layer is formed. This step is performed at least once, but is performed a plurality of times as necessary.
 一対の電極の間に複数の有機層が設けられる場合、そのうちの少なくとも一層の有機層は本発明の有機層形成工程によって形成される。すなわちシリコーンゴムからなる部材が表面部に設けられた転写体に、前記有機層となる材料を含むインキを塗布成膜して、前記転写体にインキ膜を形成し、該インキ膜を前記基板に転写して、有機層を形成することによって、少なくとも1層の有機層が形成される。 When a plurality of organic layers are provided between a pair of electrodes, at least one of the organic layers is formed by the organic layer forming step of the present invention. That is, an ink containing a material that becomes the organic layer is applied to a transfer body provided with a member made of silicone rubber on the surface, and an ink film is formed on the transfer body, and the ink film is applied to the substrate. By transferring and forming the organic layer, at least one organic layer is formed.
 本工程は例えば前述した反転印刷装置、凸版印刷装置を用いて行われる。 This step is performed using, for example, the above-described reverse printing apparatus and letterpress printing apparatus.
 なお、少なくとも1層の有機層を本発明の有機層形成工程によって形成する限りにおいて、他の有機層を、本発明の有機層形成工程以外の方法によって形成してもよい。例えばスプレーコート法、スピンコート法、キャスティング法、マイクログラビアコート法、ダイコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法などによって他の有機層を塗布成膜してもよい。 In addition, as long as at least one organic layer is formed by the organic layer forming step of the present invention, another organic layer may be formed by a method other than the organic layer forming step of the present invention. For example, spray coating method, spin coating method, casting method, micro gravure coating method, die coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, screen printing method, gravure printing method, flexographic method Another organic layer may be formed by coating by a printing method, an offset printing method, an ink jet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method, or the like.
 なお有機層形成工程の後、必要に応じて所定の無機層を有機層上に形成してもよい。 In addition, you may form a predetermined | prescribed inorganic layer on an organic layer as needed after an organic layer formation process.
 また有機層と有機層との間に無機層を形成する場合、有機層形成工程と有機層形成工程との間に、無機層を形成する工程を実施する。 Further, when an inorganic layer is formed between the organic layer and the organic layer, a step of forming the inorganic layer is performed between the organic layer forming step and the organic layer forming step.
 (他方の電極形成工程)
 本工程では一対の電極のうちの他方の電極を形成する。これによって光電変換素子が作製される。
(The other electrode forming step)
In this step, the other electrode of the pair of electrodes is formed. Thereby, a photoelectric conversion element is produced.
 前述の有機層形成工程では、転写体上のインキ膜を乾燥させることが好ましい。このようにインキ膜を乾燥させることによって、前述したように泣き別れをより確実に防ぐことができ、表面が平坦な有機層を形成することができる。さらに有機層形成工程を連続して行う場合、転写体上でインキ膜を乾燥させることによって以下のような効果も得られる。 In the organic layer forming step described above, it is preferable to dry the ink film on the transfer body. By drying the ink film in this manner, it is possible to more reliably prevent crying separation as described above, and an organic layer having a flat surface can be formed. Furthermore, when performing an organic layer formation process continuously, the following effects are acquired by drying an ink film on a transfer body.
 複数の有機層を塗布法によって形成する場合であって、所定の有機層上にさらに別の有機層を形成する工程において、先に形成された有機層が後の有機層を形成するためのインキに再溶解するなどしてしまい、先に形成された有機層の機能が損なわれることがある。また後に形成する有機層にも、先に形成された有機層を構成する組成物が混入することがあり、後に形成される有機層の機能も損なわれることがある。しかしながら本実施形態では、ある程度乾燥したインキ膜を基板に積層するため、先に形成された有機層が後の有機層を形成するためのインキに再溶解することを防ぐことができる。これによって複数の有機層の機能を損なうことなく、意図したとおりに複数の有機層を積層することができる。 Ink for forming a plurality of organic layers by a coating method, wherein the organic layer formed earlier forms a subsequent organic layer in the step of forming another organic layer on the predetermined organic layer In some cases, the function of the previously formed organic layer may be impaired. Moreover, the composition which comprises the organic layer formed previously may mix in the organic layer formed later, and the function of the organic layer formed later may be impaired. However, in this embodiment, since the ink film dried to some extent is laminated on the substrate, it is possible to prevent the previously formed organic layer from being redissolved in the ink for forming the subsequent organic layer. Thus, the plurality of organic layers can be stacked as intended without impairing the functions of the plurality of organic layers.
 後述するように、活性層については1層構成のものと、複数の薄膜が積層された多層構成のものとがある。そして1層構成の活性層は上述の有機層形成工程を1回行うことによって形成することができる。また多層構成の活性層は、有機層形成工程を層の数だけ繰り返すことによって形成することができる。例えば後述する電子供与性化合物材料を含む薄膜および電子受容性化合物材料を含む薄膜のうちの一方の薄膜を、有機層形成工程で形成し、つづいて、電子供与性化合物材料を含む薄膜および電子受容性化合物材料を含む薄膜のうちの他方の薄膜を、別の有機層形成工程で形成することによって、多層構成の活性層を形成することができる。このように多層構成の活性層であっても、インキ膜をある程度乾燥することによって、各層の機能を損なうことなく、意図したとおりに各層を積層することができる。 As will be described later, the active layer has a single layer structure and a multi-layer structure in which a plurality of thin films are stacked. And the active layer of 1 layer structure can be formed by performing the above-mentioned organic layer formation process once. In addition, an active layer having a multi-layer structure can be formed by repeating the organic layer forming step by the number of layers. For example, one of a thin film containing an electron donating compound material and a thin film containing an electron accepting compound material, which will be described later, is formed in the organic layer forming step, followed by the thin film containing the electron donating compound material and the electron accepting material. An active layer having a multilayer structure can be formed by forming the other thin film among the thin films containing the organic compound material in a separate organic layer forming step. Thus, even if it is an active layer of a multilayer structure, each layer can be laminated | stacked as intended, without impairing the function of each layer by drying an ink film to some extent.
 さらに本実施形態の光電変換素子の製造方法では、複数の活性層を備える光電変換素子も作製することができる。複数の活性層を備える光電変換素子の構成例は、以下のとおりである。 Furthermore, in the method for manufacturing a photoelectric conversion element of this embodiment, a photoelectric conversion element including a plurality of active layers can also be produced. A configuration example of a photoelectric conversion element including a plurality of active layers is as follows.
 2層の活性層を備える光電変換素子
(5)陽極/(層構造単位A)/中間電極層/(層構造単位A)/陰極
 3層以上の活性層を備える光電変換素子
(6)陽極/(層構造単位B)x/(層構造単位A)/陰極
Photoelectric conversion element comprising two active layers (5) Anode / (layer structural unit A) / intermediate electrode layer / (layer structural unit A) / cathode Photoelectric conversion element comprising three or more active layers (6) Anode / (Layer structural unit B) x / (Layer structural unit A) / Cathode
 上記(5)または(6)の構成の光電変換素子は、2層以上の活性層をそれぞれ既に説明した有機層形成工程で形成し、2層以上の光電活性層を形成する各工程の間に、中間電極層を形成することによって、作製することができる。なお中間電極層を塗布法で形成する場合には、既に説明した有機層形成工程と同様に、シリコーンゴムからなる部材が表面部に設けられた転写体に、中間電極層となる材料を含むインキを塗布成膜して、前記転写体にインキ膜を形成し、インキ膜を前記基板に転写し、中間電極層を形成してもよい。 In the photoelectric conversion element having the configuration of (5) or (6), two or more active layers are formed in the organic layer forming step already described, and between each step of forming two or more photoelectric active layers. It can be produced by forming an intermediate electrode layer. When the intermediate electrode layer is formed by a coating method, as in the organic layer forming step already described, an ink containing a material that becomes the intermediate electrode layer is formed on a transfer body provided with a member made of silicone rubber on the surface portion. May be applied to form an ink film on the transfer body, and the ink film may be transferred to the substrate to form an intermediate electrode layer.
 このように複数の活性層を備える光電変換素子であっても、既に説明した有機層形成工程によって各活性層を形成することにより、各活性層の機能を損なうことなく、意図したとおりに複数の活性層を積層することができる。 Thus, even if it is a photoelectric conversion element provided with a some active layer, it does not impair the function of each active layer by forming each active layer by the organic layer formation process already explained, but a plurality of as intended An active layer can be laminated.
 以下では光電変換素子を構成する各層の具体的な構成についてより詳細に説明する。 Hereinafter, the specific configuration of each layer constituting the photoelectric conversion element will be described in more detail.
 (基板)
 本発明の光電変換素子は通常、基板に形成される。この基板は、光電変換素子を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えばガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。基板から光電変換素子に光を取り込む構成の場合、光透過性を示す基板が用いられる。
(substrate)
The photoelectric conversion element of the present invention is usually formed on a substrate. The substrate may be any substrate that does not change chemically when the photoelectric conversion element is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of a structure in which light is taken into the photoelectric conversion element from the substrate, a substrate that exhibits light transmittance is used.
 (一対の電極)
 光電変換素子は光を内部に取り込む必要があるため、一対の電極のうちの少なくともいずれか一方は光透過性を示す電極により構成される必要がある。
(A pair of electrodes)
Since a photoelectric conversion element needs to take in light inside, at least one of a pair of electrodes needs to be comprised by the electrode which shows a light transmittance.
 前記光透過性を示す電極の例としては、導電性の金属酸化物膜、半透明の金属薄膜などが挙げられる。光透過性を示す電極としては、酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズオキサイド(ITO)、インジウム亜鉛オキサイド(IZO)、NESA、金、白金、銀、銅などの導電性材料を用いて形成された膜、ITO、IZO、酸化スズからなる膜が好ましい。電極の作製方法の例としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。 Examples of the electrode exhibiting light transmittance include a conductive metal oxide film and a translucent metal thin film. The electrode exhibiting light transmittance is formed using a conductive material such as indium oxide, zinc oxide, tin oxide, indium tin oxide (ITO), indium zinc oxide (IZO), NESA, gold, platinum, silver, copper, and the like. A film made of ITO, IZO, or tin oxide is preferable. Examples of the electrode manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode.
 不透明な電極の材料の例としては、金属、導電性高分子等を用いることができる。電極材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2つ以上の合金、又は、1種以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。 As examples of opaque electrode materials, metals, conductive polymers, and the like can be used. Specific examples of the electrode material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like. And one or more alloys selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin. Examples include alloys with metals, graphite, graphite intercalation compounds, polyaniline and derivatives thereof, and polythiophene and derivatives thereof. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminum alloy and the like.
 (活性層以外の所定の層)
 前述したように光電変換素子は、例えば光電変換効率を向上させるために、正孔輸送層、電子輸送層などが所定の層として設けられる。これらの所定の層の材料の例としては、フッ化リチウム等のアルカリ金属、アルカリ土類金属のハロゲン化物または酸化物、酸化チタンなどの無機半導体の微粒子、PEDOT(ポリ-3,4-エチレンジオキシチオフェン)などが挙げられる。
(Predetermined layers other than the active layer)
As described above, in the photoelectric conversion element, for example, a hole transport layer, an electron transport layer, and the like are provided as predetermined layers in order to improve photoelectric conversion efficiency. Examples of the material of these predetermined layers include alkali metal such as lithium fluoride, halide or oxide of alkaline earth metal, fine particles of inorganic semiconductor such as titanium oxide, PEDOT (poly-3,4-ethylenedioxide). Oxythiophene) and the like.
 (活性層)
 活性層は、電子供与性化合物と電子受容性化合物とを含み、さらに必要に応じて紫外線吸収剤、無機半導体微粒子、紫外線吸収剤の酸化防止剤などを含有する。電子供与性化合物、前記電子受容性化合物は、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定される。
(Active layer)
The active layer contains an electron donating compound and an electron accepting compound, and further contains an ultraviolet absorber, inorganic semiconductor fine particles, an antioxidant for the ultraviolet absorber, and the like as necessary. The electron donating compound and the electron accepting compound are relatively determined from the energy level of the energy level of these compounds.
 活性層は前述したように1層構成のものと、複数の薄膜が積層された多層構成のものとがある。1層構成の活性層は、1層の活性層中に電子供与性化合物と電子受容性化合物とを含有する。また多層構成の活性層は、例えば電子供与性化合物材料を含む薄膜と、電子受容性化合物材料を含む薄膜とを積層することによって構成される。 As described above, the active layer has a single layer structure and a multi-layer structure in which a plurality of thin films are stacked. The active layer having a single layer structure contains an electron donating compound and an electron accepting compound in one active layer. The active layer having a multilayer structure is formed by laminating, for example, a thin film containing an electron donating compound material and a thin film containing an electron accepting compound material.
 また光電変換素子が複数の活性層を有する場合、光電変換素子はそれぞれ光吸収域の異なる活性層を有することが好ましい。 When the photoelectric conversion element has a plurality of active layers, it is preferable that the photoelectric conversion elements have active layers having different light absorption regions.
 (電子供与性化合物:p型半導体ポリマー)
 前記電子供与性化合物としては、例えばピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体等のp型半導体ポリマーが挙げられる。
(Electron donating compound: p-type semiconductor polymer)
Examples of the electron donating compound include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amines in side chains or main chains. And p-type semiconductor polymers such as polysiloxane derivatives, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, and polythienylene vinylene and derivatives thereof.
 さらに、好適なp型半導体ポリマーの例として、下記式(1)で表される構造単位及び下記式(2)で表される構造単位のうちの少なくとも一方の構造単位を有する有機高分子化合物を挙げることができる。 Furthermore, as an example of a suitable p-type semiconductor polymer, an organic polymer compound having at least one structural unit of a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2): Can be mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)中、Ar及びArは、互いに独立に、3価の複素環基を表す。Xは、-O-で表される基、-S-で表される基、-C(=O)-で表される基、-S(=O)-で表される基、-SO-で表される基、-Si(R)(R)-で表される基、-N(R)-で表される基、-B(R)-で表される基、-P(R)-で表される基又は-P(=O)(R)-で表される基を表す。R、R、R、R、R及びRは、互いに独立に、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。
 R50は、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。
 R51は、炭素原子数6~20のアルキル基、炭素原子数6~20のアルキルオキシ基、炭素原子数6~60のアルキルチオ基、炭素原子数6~60のアリール基、炭素原子数6~60のアリールオキシ基、炭素原子数6~60のアリールチオ基、炭素原子数7~60のアリールアルキル基、炭素原子数7~60のアリールアルキルオキシ基、炭素原子数7~60のアリールアルキルチオ基、炭素原子数6~60のアシル基又は炭素原子数6~60のアシルオキシ基を表す。XとArとは、Arに含まれる複素環の隣接位に結合し、C(R50)(R51)とArとは、Arに含まれる複素環の隣接位に結合している。
In formula (2), Ar 1 and Ar 2 each independently represent a trivalent heterocyclic group. X 1 represents a group represented by —O—, a group represented by —S—, a group represented by —C (═O) —, a group represented by —S (═O) —, —SO A group represented by 2 —, a group represented by —Si (R 3 ) (R 4 ) —, a group represented by —N (R 5 ) —, a group represented by —B (R 6 ) — , -P (R 7 )-or a group represented by -P (= O) (R 8 )-. R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, aryl Alkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide group, acid imide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group It represents a monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, arylalkenyl group, arylalkynyl group, carboxyl group or cyano group.
R 50 is a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide Group, acid imide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, aryl An alkenyl group, an arylalkynyl group, a carboxyl group or a cyano group is represented.
R 51 is an alkyl group having 6 to 20 carbon atoms, an alkyloxy group having 6 to 20 carbon atoms, an alkylthio group having 6 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, or 6 to 6 carbon atoms. 60 aryloxy groups, arylthio groups having 6 to 60 carbon atoms, arylalkyl groups having 7 to 60 carbon atoms, arylalkyloxy groups having 7 to 60 carbon atoms, arylalkylthio groups having 7 to 60 carbon atoms, An acyl group having 6 to 60 carbon atoms or an acyloxy group having 6 to 60 carbon atoms is represented. X 1 and Ar 2 are bonded to the adjacent position of the heterocyclic ring contained in Ar 1 , and C (R 50 ) (R 51 ) and Ar 1 are bonded to the adjacent position of the heterocyclic ring contained in Ar 2. ing.
 上記有機高分子化合物としては、上記式(1)で表される構造単位と、上記式(2)で表される構造単位の両方の構造単位を含む化合物がより好ましい。
 また、好適なp型半導体ポリマーの例として、有機溶媒への溶解性および重合度の上げやすさの観点からは、アリーレン基を構造単位として含む有機高分子化合物を挙げることができる。
As the organic polymer compound, a compound containing both the structural unit represented by the formula (1) and the structural unit represented by the formula (2) is more preferable.
Examples of suitable p-type semiconductor polymers include organic polymer compounds containing an arylene group as a structural unit from the viewpoint of solubility in an organic solvent and ease of raising the degree of polymerization.
 ここでアリーレン基とは、芳香族炭化水素から、水素原子2個を除いた原子団であり、縮合環を持つ基、独立したベンゼン環又は縮合環2個以上が直接又はビニレン等の基を介して結合した基も含まれる。アリーレン基は置換基を有していてもよい。この置換基の例としては、炭素原子数1~20の直鎖状、分岐状のアルキル基又は炭素原子数1~20のシクロアルキル基、炭素原子数1~20の直鎖状、分岐状のアルキル基又は炭素原子数1~20のシクロアルキル基をその構造中に含むアルコキシ基等が挙げられる。アリーレン基における置換基を除いた部分の炭素原子数は通常6~60程度であり、好ましくは6~20である。また、アリーレン基の置換基を含めた全炭素原子数は、通常6~100程度である。 Here, the arylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon, and a group having a condensed ring, two or more independent benzene rings or condensed rings are directly or via a group such as vinylene. Group bonded together. The arylene group may have a substituent. Examples of the substituent include linear or branched alkyl groups having 1 to 20 carbon atoms or cycloalkyl groups having 1 to 20 carbon atoms, linear or branched groups having 1 to 20 carbon atoms. Examples thereof include an alkoxy group having an alkyl group or a cycloalkyl group having 1 to 20 carbon atoms in its structure. The number of carbon atoms in the arylene group excluding the substituent is usually about 6 to 60, and preferably 6 to 20. The total number of carbon atoms including the substituent of the arylene group is usually about 6 to 100.
 アリーレン基の例としては、フェニレン基、ナフタレンジイル基、アントラセン-ジイル基、ビフェニル-ジイル基、ターフェニル-ジイル基、フルオレンジイル基(好ましくは9,9’-ジアルキル-フルオレン-2,7-ジイル基)、ベンゾフルオレンジイル基等が挙げられる。 Examples of arylene groups include phenylene groups, naphthalenediyl groups, anthracene-diyl groups, biphenyl-diyl groups, terphenyl-diyl groups, fluorenediyl groups (preferably 9,9'-dialkyl-fluorene-2,7- A diyl group), a benzofluorenediyl group, and the like.
 上記アリーレン基を構造単位として含む有機高分子化合物は、アリーレン基以外の構成単位をさらに含む共重合体であることが好ましい。 The organic polymer compound containing the arylene group as a structural unit is preferably a copolymer further containing a structural unit other than the arylene group.
 アリーレン基以外の構造単位としては、例えば、置換基を有してもよいチエニレン基(好ましくは置換基を有してもよい2,5-チエニレン基)である構造単位、上記式(1)で表される構造単位、およびこれらを組み合わせた構造単位が挙げられる。チエニレン基が有してもよい置換基としては、例えば炭素原子数1~20の直鎖状、分岐状のアルキル基又は炭素原子数1~20のシクロアルキル基があげられる。
 上記アリーレン基を構造単位として含む化合物としては、例えば下記式(3)で表される高分子化合物A、下記式(4)で表される高分子化合物Bが用いられる。
Examples of the structural unit other than the arylene group include a structural unit that is a thienylene group that may have a substituent (preferably a 2,5-thienylene group that may have a substituent), in the above formula (1). The structural unit represented and the structural unit which combined these are mentioned. Examples of the substituent that the thienylene group may have include a linear or branched alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 1 to 20 carbon atoms.
As the compound containing the arylene group as a structural unit, for example, polymer compound A represented by the following formula (3) and polymer compound B represented by the following formula (4) are used.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (電子受容性化合物:n型半導体ポリマーなどのn型半導体)
 前記電子受容性化合物としては、例えばオキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60フラーレン等のフラーレン類及びその誘導体、バソクプロイン等のフェナントレン誘導体、酸化チタンなどの金属酸化物、カーボンナノチューブ等が挙げられる。電子受容性化合物としては、好ましくは、酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体であり、特に好ましくはフラーレン、フラーレン誘導体である。
(Electron-accepting compound: n-type semiconductor such as n-type semiconductor polymer)
Examples of the electron-accepting compound include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, fullerenes and derivatives thereof such as C 60 fullerene, bathocuproine And phenanthrene derivatives such as titanium oxide, metal oxides such as titanium oxide, and carbon nanotubes. As the electron-accepting compound, titanium oxide, carbon nanotubes, fullerenes, and fullerene derivatives are preferable, and fullerenes and fullerene derivatives are particularly preferable.
 フラーレンの例としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレンなどが挙げられる。 Examples of fullerene, C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, such as C 84 fullerene, and the like.
 フラーレン、フラーレン誘導体の例としてはC60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレン及びその誘導体が挙げられる。フラーレン誘導体の具体例としては、以下のような化合物が挙げられる。 Examples of fullerene and fullerene derivatives include C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, C 84 fullerene and derivatives thereof. Specific examples of the fullerene derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 また、フラーレン誘導体の例としては、[6,6]フェニル-C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]フェニル-C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6]フェニル-C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、[6,6]チエニル-C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)等が挙げられる。 Examples of fullerene derivatives include [6,6] phenyl-C 61 butyric acid methyl ester (C 60 PCBM, [6,6] -Phenyl C 61 butyric acid methyl ester), and [6,6] phenyl-C 71. Butyric acid methyl ester (C 70 PCBM, [6,6] -Phenyl C 71 butyric acid methyl ester), [6,6] Phenyl-C 85 butyric acid methyl ester (C 84 PCBM, [6,6] -Phenyl C 85 butyric acid methyl ester), [6,6] thienyl -C 61 butyric acid methyl ester ([6,6] -Thienyl C 61 butyric acid methyl ester) and the like.
 電子受容性化合物としてフラーレン誘導体を用いる場合、フラーレン誘導体の割合が、電子供与性化合物100重量部に対して、10重量部~1000重量部であることが好ましく、20重量部~500重量部であることがより好ましい。 When a fullerene derivative is used as the electron accepting compound, the ratio of the fullerene derivative is preferably 10 parts by weight to 1000 parts by weight and preferably 20 parts by weight to 500 parts by weight with respect to 100 parts by weight of the electron donating compound. It is more preferable.
 活性層の厚さは、通常、1nm~100μmが好ましく、より好ましくは2nm~1000nmであり、さらに好ましくは5nm~500nmであり、より好ましくは20nm~200nmである。 The thickness of the active layer is usually preferably 1 nm to 100 μm, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, more preferably 20 nm to 200 nm.
 (その他の成分)
 種々の機能を発現させるために、活性層には必要に応じて他の成分を含有させてもよい。他の成分としては、例えば紫外線吸収剤、酸化防止剤、吸収した光により電荷を発生させる機能を増感するための増感剤、紫外線からの安定性を増すための光安定剤等が挙げられる。
(Other ingredients)
In order to express various functions, the active layer may contain other components as necessary. Examples of other components include ultraviolet absorbers, antioxidants, sensitizers for sensitizing the function of generating charges by absorbed light, and light stabilizers for increasing stability from ultraviolet rays. .
 活性層を構成する電子供与性化合物及び電子受容性化合物以外の成分は、電子供与性化合物及び電子受容性化合物の合計量100重量部に対し、それぞれ通常5重量部以下であり、0.01重量部~3重量部の割合で配合するのが効果的である。 Components other than the electron donating compound and the electron accepting compound constituting the active layer are each usually 5 parts by weight or less with respect to 100 parts by weight of the total amount of the electron donating compound and the electron accepting compound, and 0.01 wt. It is effective to blend in an amount of from 3 to 3 parts by weight.
 また活性層は、機械的特性を高めるため、本発明の電子供与性化合物及び電子受容性化合物以外の高分子化合物を高分子バインダーとして含んでいてもよい。高分子バインダーとしては、電子輸送性又はホール輸送性を阻害しないものが好ましく、また可視光に対する吸収が強くないものが好ましく用いられる。前記高分子バインダーの例としては、ポリ(N-ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体、ポリカーポネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。 The active layer may contain a polymer compound other than the electron donating compound and the electron accepting compound of the present invention as a polymer binder in order to enhance mechanical properties. As the polymer binder, those that do not inhibit the electron transport property or hole transport property are preferable, and those that do not strongly absorb visible light are preferably used. Examples of the polymer binder include poly (N-vinylcarbazole), polyaniline and its derivatives, polythiophene and its derivatives, poly (p-phenylene vinylene) and its derivatives, poly (2,5-thienylene vinylene) and its Derivatives, polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like can be mentioned.
 (中間電極層)
 光電変換素子が複数の活性層を備える場合、活性層と活性層との間に必要に応じて中間電極層が設けられる。中間電極層の材料としては、金、白金、クロム、ニッケル、リチウム、マグネシウム、カルシウム、錫、銀、アルミニウムなどの金属が用いられる。中間電極層は例えば平均粒径が50nm以下の金属粒子によって構成してもよい。なお複数の活性層が光を吸収できるように、中間電極層の光透過率は高い方が好ましい。
(Intermediate electrode layer)
When the photoelectric conversion element includes a plurality of active layers, an intermediate electrode layer is provided between the active layers as necessary. As the material for the intermediate electrode layer, metals such as gold, platinum, chromium, nickel, lithium, magnesium, calcium, tin, silver, and aluminum are used. For example, the intermediate electrode layer may be composed of metal particles having an average particle diameter of 50 nm or less. The intermediate electrode layer preferably has a high light transmittance so that the plurality of active layers can absorb light.
 中間電極層は、金属粒子が分散した溶液を塗布成膜する方法、真空蒸着法によって形成することができる。塗布法によって中間電極層を形成する場合には、前述したように有機層形成工程と同様の印刷法によって中間電極層を形成することもできる。 The intermediate electrode layer can be formed by a method of coating a film in which metal particles are dispersed or a vacuum deposition method. When the intermediate electrode layer is formed by a coating method, the intermediate electrode layer can also be formed by a printing method similar to the organic layer forming step as described above.
 (素子の用途)
 本発明の光電変換素子は、光透過性を示す電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
(Application of the element)
The photoelectric conversion element of the present invention can be operated as an organic thin film solar cell by generating a photoelectromotive force between the electrodes by irradiating light such as sunlight from an electrode exhibiting optical transparency. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
 (有機薄膜太陽電池モジュール)
 有機薄膜太陽電池モジュールは、従来の太陽電池モジュールと基本的には同様のモジュール構造をとり得る。有機薄膜太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上にセルが構成され、セルを充填樹脂、保護ガラス等で覆い、支持基板の反対側から光を取り込む構造をとる。有機薄膜太陽電池モジュールは、強化ガラス等の透明材料を用いた透明な支持基板にセルを構成して透明な支持基板側から光を取り込む構造としてもよい。有機薄膜太陽電池モジュールの構造としては、具体的には、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプと呼ばれるモジュール構造、アモルファスシリコン太陽電池などで用いられる基板一体型モジュール構造等が知られている。本発明の光電変換素子を適用した有機薄膜太陽電池モジュールでも使用目的、使用場所および使用環境を勘案して、適宜これらのモジュール構造を選択できる。
(Organic thin film solar cell module)
The organic thin film solar cell module can basically have the same module structure as a conventional solar cell module. The organic thin film solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, the cell is covered with a filling resin, protective glass, or the like, and light is taken in from the opposite side of the support substrate. The organic thin film solar cell module may have a structure in which cells are formed on a transparent support substrate using a transparent material such as tempered glass and light is taken in from the transparent support substrate side. As the structure of the organic thin film solar cell module, specifically, a module structure called a super straight type, a substrate type, or a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, or the like is known. Even in the organic thin film solar cell module to which the photoelectric conversion element of the present invention is applied, these module structures can be appropriately selected in consideration of the purpose of use, the place of use and the environment of use.
 代表的なスーパーストレートタイプあるいはサブストレートタイプの有機薄膜太陽電池モジュールは、片側または両側が透明で反射防止処理を施された支持基板の間に一定間隔にセルが配置され、隣り合うセル同士が金属リードまたはフレキシブル配線等によって接続され、外縁部に集電電極が配置されており、発生した電力を外部に取り出す構造となっている。基板とセルとの間には、セルの保護、集電効率向上のため、目的に応じエチレンビニルアセテート(EVA)等様々な種類のプラスチック材料をフィルムまたは充填樹脂の形で用いてもよい。また、有機薄膜太陽電池モジュールを外部からの衝撃が少ないところなど表面を硬い素材で覆う必要のない場所において使用する場合には、表面保護層を透明プラスチックフィルムで構成し、または上記充填樹脂を硬化させることによって保護機能を付与し、片側の支持基板をなくすことが可能である。支持基板の周囲は、内部の密封およびモジュールの剛性を確保するため金属製のフレームでサンドイッチ状に固定し、支持基板とフレームとの間は封止材料で密封シールする。また、セル自体、支持基板、充填材料および封止材料に可撓性の素材を用いれば、曲面の上に太陽電池を構成することもできる。 In a typical super straight type or substrate type organic thin film solar cell module, cells are arranged at regular intervals between support substrates that are transparent on one or both sides and subjected to antireflection treatment, and adjacent cells are metal leads or It is connected by flexible wiring or the like, and a collecting electrode is arranged on the outer edge portion, so that the generated power is taken out to the outside. Various types of plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filled resin in order to protect the cell and improve current collection efficiency. In addition, when using the organic thin film solar cell module in a place where it is not necessary to cover the surface with a hard material such as a place where there is little impact from the outside, the surface protective layer is made of a transparent plastic film or the above filling resin is cured. Thus, it is possible to provide a protective function and eliminate the support substrate on one side. The periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and the support substrate and the frame are hermetically sealed with a sealing material. In addition, when a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
 ポリマーフィルム等のフレキシブル支持体を用いた太陽電池の場合、ロール状の支持体を送り出しながら順次セルを形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより電池本体を作製できる。また、Solar Energy Materials and Solar Cells, 48, p383-391記載の「SCAF」とよばれるモジュール構造とすることもできる。更に、フレキシブル支持体を用いた太陽電池は曲面ガラス等に接着固定して使用することもできる。 In the case of a solar cell using a flexible support such as a polymer film, cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material. Thus, the battery body can be produced. Moreover, it can also have a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391. Furthermore, a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
 (有機光センサー)
 本発明の光電変換素子は、電極間に電圧を印加した状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。さらに、前記有機光センサーを受光部とし、前記有機光センサーが生成する信号電流による出力を検知し、その信号電荷を読み出す駆動回路部と、前記有機光センサーと前記駆動回路とを結ぶ配線を備える、有機イメージセンサーとして用いることができる。前記有機光センサーは、検出する光の色選択性を持たせるため、光入射面側にカラーフィルターを具備させて用いることができ、あるいは光の3原色の各々に対して選択性の強い光吸収特性を有する複数種の有機光センサーを用いることもできる。前記駆動回路としては、単結晶シリコンを用いたトランジスタで形成されたICチップ、又は多結晶シリコン、アモルファスシリコン、セレン化カドミウムなどの化合物半導体、及びペンタセンなどの共役系有機化合物半導体などを用いた薄膜トランジスタで構成される駆動回路を用いることができる。前記有機イメージセンサーは、スキャナ、デジタルカメラ、デジタルビデオなどの撮影素子として、電荷結合素子(CCD)、相補性金属酸化膜半導体(CMOS)を用いた既存のイメージセンサーに比べ、製造コストが安い、設置面積が小さいなどの利点が期待できる。また、共役系化合物の多様性より、様々な光感度特性をもつ有機光センサーを用いることができる。よって用途に応じた性能をもつ有機イメージセンサーを提供することができる。
(Organic light sensor)
The photoelectric conversion element of the present invention can be operated as an organic photosensor by irradiating light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes, so that a photocurrent flows. Furthermore, the organic photosensor is used as a light receiving unit, a drive circuit unit that detects an output due to a signal current generated by the organic photosensor and reads the signal charge, and a wiring that connects the organic photosensor and the drive circuit are provided. It can be used as an organic image sensor. The organic light sensor can be used with a color filter on the light incident surface side to provide color selectivity of light to be detected, or light absorption with high selectivity for each of the three primary colors of light. A plurality of types of organic photosensors having characteristics can also be used. As the driving circuit, an IC chip formed of a transistor using single crystal silicon, or a thin film transistor using a compound semiconductor such as polycrystalline silicon, amorphous silicon, or cadmium selenide, and a conjugated organic compound semiconductor such as pentacene. Can be used. The organic image sensor has a lower manufacturing cost than an existing image sensor using a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) as an imaging element for a scanner, digital camera, digital video, etc. Advantages such as a small installation area can be expected. In addition, organic photosensors having various photosensitivity characteristics can be used due to the diversity of conjugated compounds. Therefore, it is possible to provide an organic image sensor having performance according to the application.
 以下、本発明の実施例を説明する。以下に示す実施例は、本発明を説明するための好適な例示であり、本発明は下記の実施例に限定されない。 Hereinafter, examples of the present invention will be described. The following examples are preferred examples for explaining the present invention, and the present invention is not limited to the following examples.
 (ポリマーA:ペンタチエニル-フルオレンコポリマーの合成) (Polymer A: Synthesis of pentathienyl-fluorene copolymer)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 内部の雰囲気をアルゴン置換した容量2Lの四つ口フラスコに、上記式(A)で表される化合物(7.928g、16.72mmol)及び式(B)で表される化合物(13.00g、17.60mmol)、メチルトリオクチルアンモニウムクロライド(商品名:aliquat336、Aldrich製、CH3N[(CH2)7CH3]3Cl、density 0.884g/mL,25℃、trademark of Henkel Corporation)(4.979g)、及びトルエン405mLを入れ、撹拌しながら系内を30分間アルゴンバブリングした。ジクロロビス(トリフェニルホスフィン)パラジウム(II)(0.02g)を加え、105℃に昇温して、撹拌しながら2mol/Lの炭酸ナトリウム水溶液42.2mLを滴下した。滴下終了後5時間反応させ、フェニルボロン酸(2.6g)とトルエン1.8mLを加えて105℃で16時間撹拌した。その後、トルエン700mL及び7.5%ジエチルジチオカルバミン酸ナトリウム三水和物水溶液200mLを加えて85℃で3時間撹拌した。反応液の水層を除去後、有機層を60℃のイオン交換水300mLで2回、60℃の3%酢酸300mLで1回、さらに60℃のイオン交換水300mLで3回洗浄した。有機層をセライト、アルミナ、シリカを充填したカラムに通し、熱トルエン800mLでカラムを洗浄した。溶液を700mLまで濃縮した後、2Lのメタノールに注加、再沈殿させた。重合体をろ過して回収し、500mLのメタノール、アセトン、メタノールで洗浄した。50℃で一晩真空乾燥することにより、下記式で表されるペンタチエニル-フルオレンコポリマー(ポリマーA) 12.21gを得た。ポリマーAのポリスチレン換算の数平均分子量は5.4×104であり、重量平均分子量は1.1×105であった。 In a 2 L four-necked flask with the inside atmosphere replaced with argon, the compound represented by the above formula (A) (7.928 g, 16.72 mmol) and the compound represented by the formula (B) (13.00 g, 17.60 mmol) , Methyltrioctylammonium chloride (trade name: aliquat336, manufactured by Aldrich, CH 3 N [(CH 2 ) 7 CH 3 ] 3 Cl, density 0.884 g / mL, 25 ° C., trademark of Henkel Corporation) (4.979 g), and 405 mL of toluene was added, and argon was bubbled through the system for 30 minutes while stirring. Dichlorobis (triphenylphosphine) palladium (II) (0.02 g) was added, the temperature was raised to 105 ° C., and 42.2 mL of a 2 mol / L sodium carbonate aqueous solution was added dropwise with stirring. After completion of the dropwise addition, the mixture was reacted for 5 hours, phenylboronic acid (2.6 g) and 1.8 mL of toluene were added, and the mixture was stirred at 105 ° C. for 16 hours. Thereafter, 700 mL of toluene and 200 mL of an aqueous 7.5% sodium diethyldithiocarbamate trihydrate solution were added, and the mixture was stirred at 85 ° C. for 3 hours. After removing the aqueous layer from the reaction solution, the organic layer was washed twice with 300 mL of ion exchanged water at 60 ° C., once with 300 mL of 3% acetic acid at 60 ° C., and further washed with 300 mL of ion exchanged water at 60 ° C. three times. The organic layer was passed through a column filled with celite, alumina, and silica, and the column was washed with 800 mL of hot toluene. The solution was concentrated to 700 mL, poured into 2 L of methanol, and reprecipitated. The polymer was recovered by filtration and washed with 500 mL of methanol, acetone, and methanol. By vacuum drying overnight at 50 ° C., 12.21 g of pentathienyl-fluorene copolymer (Polymer A) represented by the following formula was obtained. The polystyrene equivalent number average molecular weight of the polymer A was 5.4 × 10 4 , and the weight average molecular weight was 1.1 × 10 5 .
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (OPVインキ(活性層用インキ)の作製)
 次に電子供与性化合物である前記ポリマーAと電子受容性化合物であるPCBMとをオルトジクロロベンゼンに溶解してOPVインキを調製した。OPVインキにおけるポリマーAの濃度は0.5重量%であり、OPVインキにおけるPCBMの濃度は1.5重量%であった。OPVインキの粘度は12cPであり、降伏値は1.37dyn/cmであった。
(Preparation of OPV ink (ink for active layer))
Next, the polymer A as an electron donating compound and PCBM as an electron accepting compound were dissolved in orthodichlorobenzene to prepare an OPV ink. The concentration of polymer A in the OPV ink was 0.5% by weight, and the concentration of PCBM in the OPV ink was 1.5% by weight. The viscosity of the OPV ink was 12 cP and the yield value was 1.37 dyn / cm 2 .
 (インキの塗布)
 表面が平坦なシリコーンゴムからなるブランケットを用意し、このブランケットの所定の表面部を切り出すことによって、ブランケットの表面部に複数の凸部を形成し、凸版を作製した。平面視における凸部の形状は矩形であり、その寸法は10mm×180mmである。作製した凸版をブランケット胴に巻き回して転写体とした。
(Ink application)
A blanket made of silicone rubber having a flat surface was prepared, and a predetermined surface portion of this blanket was cut out to form a plurality of convex portions on the surface portion of the blanket, thereby producing a relief plate. The shape of the convex part in plan view is a rectangle, and the dimension is 10 mm × 180 mm. The produced relief was wound around a blanket cylinder to obtain a transfer body.
 2mm/secの速度でブランケット胴を回転させながら、CAPコータ(キャピラリーコータ)で凸版にOPVインキを塗布し、凸部の表面にインキ膜を形成した。その後、インキ膜を60秒間自然乾燥した。 While rotating the blanket cylinder at a speed of 2 mm / sec, OPV ink was applied to the relief plate with a CAP coater (capillary coater) to form an ink film on the surface of the projection. Thereafter, the ink film was naturally dried for 60 seconds.
 基板定盤にPET(Polyethylene terephthalate)フィルムをセットし、凸版をPETフィルムに押圧した状態で基板定盤を移動させることによりブランケット胴を回転させ、凸版上のインキ膜をPETフィルムに転写した。 A PET (Polyethylene terephthalate) film was set on the substrate platen, the blanket cylinder was rotated by moving the substrate platen while the relief plate was pressed against the PET film, and the ink film on the relief plate was transferred to the PET film.
 転写後、凸版を目視により確認したところ、インキ膜は実質的に全て凸版からPETフィルムに転写されており、凸版にはインキ膜が残留していなかった。 After the transfer, the letterpress was visually confirmed. As a result, substantially all of the ink film was transferred from the letterpress to the PET film, and no ink film remained on the letterpress.
 PETフィルムに形成された活性層は、厚さが170nm±5nmであった。結果として平坦性に優れた有機層(活性層)が形成された。 The active layer formed on the PET film had a thickness of 170 nm ± 5 nm. As a result, an organic layer (active layer) excellent in flatness was formed.
 1  架台
 5  印刷装置
 10  ブランケット
 11  ブランケット胴
 12  中心軸
 20  コーティングユニット
 21  コーティングダイ
 22  インキ槽
 23  ライン
 24  コーティングダイ昇降部
 25  インキ槽昇降部
 28  インキ
 30  乾燥装置
 40  支持部
 50  版
 51  版定盤
 60  基板
 61  基板定盤
 70、71  インキ膜
 73  有機層
 21a  通路(毛管通路)
 21b  通路の一端
 21c  スリット
DESCRIPTION OF SYMBOLS 1 Stand 5 Printing apparatus 10 Blanket 11 Blanket cylinder 12 Central axis 20 Coating unit 21 Coating die 22 Ink tank 23 Line 24 Coating die raising / lowering part 25 Ink tank raising / lowering part 28 Ink 30 Drying device 40 Support part 50 Plate 51 Platen plate 60 Substrate 61 Substrate surface plate 70, 71 Ink film 73 Organic layer 21a Passage (capillary passage)
21b One end of passage 21c Slit

Claims (12)

  1.  一対の電極と、該一対の電極間に設けられる1層以上の有機層とを備える光電変換素子の製造方法であって、
     前記一対の電極のうちの一方の電極が設けられた基板を準備する工程と、
     シリコーンゴムからなる部材が表面部に設けられた転写体に、前記有機層の材料を含むインキを塗布成膜して、前記転写体にインキ膜を形成し、該インキ膜を前記基板に転写して、前記有機層を形成する工程と、
     前記一対の電極のうちの他方の電極を形成する工程と
    を含む、光電変換素子の製造方法。
    A method for producing a photoelectric conversion element comprising a pair of electrodes and one or more organic layers provided between the pair of electrodes,
    Preparing a substrate provided with one of the pair of electrodes;
    An ink containing the material of the organic layer is applied to a transfer body provided with a member made of silicone rubber on the surface portion, an ink film is formed on the transfer body, and the ink film is transferred to the substrate. Forming the organic layer;
    Forming a second electrode of the pair of electrodes. A method for manufacturing a photoelectric conversion element.
  2.  前記有機層を形成する工程では、前記転写体に形成された前記インキ膜を前記基板に転写する前に、該インキ膜を乾燥させる工程をさらに含む、請求項1に記載の光電変換素子の製造方法。 The process for forming the organic layer further includes the step of drying the ink film before transferring the ink film formed on the transfer body to the substrate. Method.
  3.  前記インキ膜を乾燥させる工程を、ガスを該インキ膜に吹き付けることによって行う、請求項2に記載の光電変換素子の製造方法。 The method for producing a photoelectric conversion element according to claim 2, wherein the step of drying the ink film is performed by spraying a gas on the ink film.
  4.  前記有機層を形成する工程では、前記インキ膜を基板に転写する前に、前記インキ膜の所定の部位を除去して、インキ膜をパターニングする工程をさらに含む、請求項1に記載の光電変換素子の製造方法。 The photoelectric conversion according to claim 1, wherein the step of forming the organic layer further includes a step of patterning the ink film by removing a predetermined portion of the ink film before transferring the ink film to the substrate. Device manufacturing method.
  5.  スリット状吐出口を有するノズルを用いて前記インキを転写体に塗布成膜する、請求項1に記載の光電変換素子の製造方法。 The method for producing a photoelectric conversion element according to claim 1, wherein the ink is applied and formed on a transfer body using a nozzle having a slit-like discharge port.
  6.  アニロックスロールを用いて前記インキを転写体に塗布成膜する、請求項1に記載の光電変換素子の製造方法。 The method for producing a photoelectric conversion element according to claim 1, wherein the ink is applied and formed on a transfer body using an anilox roll.
  7.  前記有機層を形成する工程では、前記光電変換素子が前記有機層として活性層を有し、前記活性層が前記有機層を形成する工程により形成される、請求項1に記載の光電変換素子の製造方法。 The photoelectric conversion element according to claim 1, wherein in the step of forming the organic layer, the photoelectric conversion element has an active layer as the organic layer, and the active layer is formed by the step of forming the organic layer. Production method.
  8.  前記活性層が、電子供与性化合物材料を含む薄膜と、電子受容性化合物材料を含む薄膜とを有しており、
     前記薄膜それぞれが、前記有機層を形成する工程により形成される、請求項7に記載の光電変換素子の製造方法。
    The active layer has a thin film containing an electron donating compound material and a thin film containing an electron accepting compound material;
    The method for producing a photoelectric conversion element according to claim 7, wherein each of the thin films is formed by a step of forming the organic layer.
  9.  前記光電変換素子が、1層以上の有機層として2層以上の活性層と、活性層同士の間に設けられる中間電極層とを有し、
     前記活性層それぞれは、前記有機層を形成する工程により形成され、前記中間電極層は前記活性層を形成する工程同士の間で形成される、請求項1に記載の光電変換素子の製造方法。
    The photoelectric conversion element has two or more active layers as one or more organic layers, and an intermediate electrode layer provided between the active layers,
    Each of the said active layer is formed by the process of forming the said organic layer, The said intermediate electrode layer is a manufacturing method of the photoelectric conversion element of Claim 1 formed between the processes of forming the said active layer.
  10.  請求項1に記載の製造方法によって製造されうる光電変換素子。 A photoelectric conversion element that can be manufactured by the manufacturing method according to claim 1.
  11.  請求項10に記載の光電変換素子を備える太陽光発電モジュール。 A solar power generation module comprising the photoelectric conversion element according to claim 10.
  12.  請求項10に記載の光電変換素子を備える有機光センサー。 An organic optical sensor comprising the photoelectric conversion element according to claim 10.
PCT/JP2011/073388 2010-10-19 2011-10-12 Production method for photoelectric conversion element WO2012053400A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010234218A JP2012089637A (en) 2010-10-19 2010-10-19 Method of manufacturing photoelectric conversion element
JP2010-234218 2010-10-19

Publications (1)

Publication Number Publication Date
WO2012053400A1 true WO2012053400A1 (en) 2012-04-26

Family

ID=45975117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073388 WO2012053400A1 (en) 2010-10-19 2011-10-12 Production method for photoelectric conversion element

Country Status (3)

Country Link
JP (1) JP2012089637A (en)
TW (1) TW201232860A (en)
WO (1) WO2012053400A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095343A (en) * 2005-09-27 2007-04-12 Toppan Printing Co Ltd Method of manufacturing printed material, and printed material
WO2008078699A1 (en) * 2006-12-26 2008-07-03 Asahi Kasei E-Materials Corporation Resin composition for printing plate
JP2009206273A (en) * 2008-02-27 2009-09-10 National Institute Of Advanced Industrial & Technology Laminated organic solar battery
WO2010113931A1 (en) * 2009-03-31 2010-10-07 Dic株式会社 Organic semiconductor ink composition and method for forming organic semiconductor pattern using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095343A (en) * 2005-09-27 2007-04-12 Toppan Printing Co Ltd Method of manufacturing printed material, and printed material
WO2008078699A1 (en) * 2006-12-26 2008-07-03 Asahi Kasei E-Materials Corporation Resin composition for printing plate
JP2009206273A (en) * 2008-02-27 2009-09-10 National Institute Of Advanced Industrial & Technology Laminated organic solar battery
WO2010113931A1 (en) * 2009-03-31 2010-10-07 Dic株式会社 Organic semiconductor ink composition and method for forming organic semiconductor pattern using same

Also Published As

Publication number Publication date
TW201232860A (en) 2012-08-01
JP2012089637A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP6020463B2 (en) ORGANIC PHOTOELECTRIC CONVERSION DEVICE, SOLAR CELL USING SAME, AND OPTICAL SENSOR ARRAY
WO2011052570A1 (en) Organic photoelectric conversion element and process for production thereof
JP2013179181A (en) Organic photoelectric conversion element
WO2012132828A1 (en) Process for producing organic photoelectric conversion element
JP2012255098A (en) Conjugated polymer, and organic photoelectric converter using the same
WO2011052568A1 (en) Organic photoelectric conversion element
JP2009302522A (en) Photoelectric conversion element
JPWO2017061361A1 (en) Perovskite photoelectric conversion element
JP2010272619A (en) Organic electronics element, organic photoelectric conversion element, solar cell using the same, optical sensor array, and organic electroluminescent element
WO2011052569A1 (en) Organic photoelectric conversion element
WO2010024157A1 (en) Organic photoelectric conversion element and fabrication method therefor
JP2010192863A (en) Organic photoelectric conversion element and method of manufacturing the same
JP5553728B2 (en) Organic photoelectric conversion element
WO2011052580A1 (en) Organic photoelectric conversion element and production method therefor
JP6641692B2 (en) Photoelectric conversion element
WO2016063781A1 (en) Organic photoelectric conversion element and method for manufacturing same
US20170365417A1 (en) Photoelectric conversion device and production method thereof
JP5715796B2 (en) Manufacturing method of organic photoelectric conversion element
WO2012121274A1 (en) Production method for photoelectric conversion element
WO2011052579A1 (en) Organic photoelectric conversion element and production method therefor
WO2012053400A1 (en) Production method for photoelectric conversion element
JP6032284B2 (en) Manufacturing method of organic photoelectric conversion element
JP2011246594A (en) Polymer compound, and photoelectric conversion element using the same
JP6104973B2 (en) Photoelectric conversion element and manufacturing method thereof
RU2686860C1 (en) Charging-transporting layer for solar batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834240

Country of ref document: EP

Kind code of ref document: A1