WO2012053373A1 - Conductive adhesive composition, electronic device, and production method for electronic device - Google Patents

Conductive adhesive composition, electronic device, and production method for electronic device Download PDF

Info

Publication number
WO2012053373A1
WO2012053373A1 PCT/JP2011/073143 JP2011073143W WO2012053373A1 WO 2012053373 A1 WO2012053373 A1 WO 2012053373A1 JP 2011073143 W JP2011073143 W JP 2011073143W WO 2012053373 A1 WO2012053373 A1 WO 2012053373A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
electronic device
adhesive composition
photoelectric conversion
Prior art date
Application number
PCT/JP2011/073143
Other languages
French (fr)
Japanese (ja)
Inventor
豪志 武藤
和恵 上村
邦久 加藤
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2012539671A priority Critical patent/JPWO2012053373A1/en
Publication of WO2012053373A1 publication Critical patent/WO2012053373A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof

Definitions

  • the present invention relates to a conductive pressure-sensitive adhesive composition, an electronic device, and a method for producing an electronic device.
  • an organic photoelectric conversion or electro-optic conversion device represented by an organic thin film solar cell is usually produced by laminating an organic semiconductor material on an electrode made of a transparent conductive film.
  • Various conductive films such as metal thin films, metal oxide thin films, and conductive nitride thin films have been studied as transparent conductive films, but at present, both transparency and conductivity can be achieved and durability is excellent. Therefore, metal oxide thin films are the mainstream.
  • indium oxide (ITO) doped with tin is well-balanced between transparency and conductivity, and is widely used (Patent Document 1).
  • Patent Document 2 there is a sheet in which a fine metal mesh or grid is formed on a transparent substrate such as polyethylene terephthalate (PET) (Patent Document 2). Since these sheets can be controlled in transparency and conductivity depending on the mesh design (opening ratio determined by pitch and line width), they can be used as transparent electrodes.
  • electronic devices such as organic thin film devices have been conventionally laminated with a layer made of an organic element material, such as a vacuum deposition method and a wet process represented by a dry process or coating similar thereto, or a laminate via an adhesive layer. It has been manufactured by a process (Patent Document 3).
  • a transparent conductive film having adhesiveness is desired, but in the conventional transparent conductive film, balance of transparency, adhesiveness and conductivity is a problem. Therefore, as a conductive component, a layer composed of a conductive polymer such as a conductive organic polymer compound such as polythiophene or a derivative thereof and a conductive polymer adhesive containing an organic additive is used as a transparent conductive film. It has been proposed to manufacture an electronic device by a laminating process (see Patent Document 4 and Non-Patent Document 1). However, the above-described method has a problem that the performance of the electronic device is deteriorated, for example, the carrier injection efficiency at the laminate interface is lowered or the adhesive force at the interface is low.
  • a method of using an aqueous conductive resin emulsion obtained by polymerizing an aromatic monomer having a hetero atom in the presence of polyvinyl alcohol containing a sulfonic acid group as an adhesive conductive film is disclosed.
  • the conductive film formed from this emulsion has a high surface resistivity for use as an electronic device, and may not provide sufficient performance as an electronic device.
  • This invention is made
  • the objective of this invention is providing the manufacturing method of the electroconductive adhesive composition which solved the above problems, an electronic device, and an electronic device. .
  • the present invention provides the following (1) a conductive adhesive composition comprising a conductive organic polymer compound and an aqueous emulsion adhesive, (2) The conductive adhesive composition according to (1), wherein the conductive organic polymer compound is at least one selected from polyanilines, polypyrroles, polythiophenes, and derivatives thereof, (3) The conductive adhesive composition according to (1), wherein the conductive organic polymer compound is a derivative of polythiophene, (4) The conductive pressure-sensitive adhesive composition according to any one of (1) to (3), wherein the water-based emulsion pressure-sensitive adhesive is an acrylic emulsion pressure-sensitive adhesive.
  • the conductive pressure-sensitive adhesive composition is the above ( 1) An electronic device characterized by being a conductive adhesive composition according to any one of (4), (6) The method for producing an electronic device according to (5), wherein a step of forming an anode laminate by forming a conductive layer on the anode layer using the conductive adhesive composition, on the cathode layer Forming a cathode laminate by forming the photoelectric conversion layer on the substrate, and bonding the surface of the cathode conversion layer of the cathode laminate and the conductive layer of the anode laminate.
  • a manufacturing method is provided.
  • the conductive pressure-sensitive adhesive composition of the present invention has excellent transparency by adding a conductive organic polymer compound to a water-based emulsion pressure-sensitive adhesive, and the conductive layer formed from the conductive pressure-sensitive adhesive composition has excellent transparency. Since the surface resistivity is low, it can be used as a conductive layer of an electronic device. In addition, since the conductive layer itself has adhesiveness, it is possible to manufacture an electronic device by a laminating process. In the method for producing an electronic device of the present invention, since the conductive layer formed from the conductive adhesive composition and the photoelectric conversion layer are bonded together, the electronic device can be easily produced by a laminating process.
  • the metal layer becomes uneven or a metal layer is formed.
  • the photoelectric conversion layer is not damaged by the energy of time, and the performance of the electronic device is not deteriorated.
  • FIG. 1A is a schematic view showing a cross section of an example of an electronic device having a conductive layer of the present invention.
  • FIG. 1B is a schematic view showing the production of the electronic device of the present invention.
  • 2 is a current-voltage curve measured for the electronic device 1 obtained in Example 1.
  • FIG. 6 is a current-voltage curve measured for the electronic device 2 obtained in Example 2.
  • 6 is a current-voltage curve measured for the electronic device 3 obtained in Example 3.
  • ⁇ Conductive organic polymer compound As the conductive organic polymer compound, at least one selected from polyanilines, polypyrroles, polythiophenes, and derivatives thereof, which are conductive organic polymer compounds having conductivity by ⁇ -electron conjugation, is used.
  • Polyanilines are high molecular weight compounds of compounds in which the 2-position, 3-position or N-position of aniline is substituted with an alkyl group having 1 to 18 carbon atoms, an alkoxy group, an aryl group, a sulfonic acid group or the like.
  • Methyl aniline poly 3-methyl aniline, poly 2-ethyl aniline, poly 3-ethyl aniline, poly 2-methoxy aniline, poly 3-methoxy aniline, poly 2-ethoxy aniline, poly 3-ethoxy aniline, poly N-methyl aniline Poly N-propyl aniline, poly N-phenyl-1-naphthyl aniline, poly 8-anilino-1-naphthalene sulfonic acid, poly 2-aminobenzene sulfonic acid, poly 7-anilino-4-hydroxy-2-naphthalene sulfonic acid Etc.
  • the polyaniline derivatives include those obtained by doping or mixing the above-mentioned polyanilines with a dopant.
  • halide ions such as chloride ion, bromide ion and iodide ion; perchlorate ion; tetrafluoroborate ion; hexafluoroarsenate ion; sulfate ion; nitrate ion; thiocyanate ion; hexafluoride Silicate ion; Phosphate ion such as phosphate ion, phenyl phosphate ion, hexafluorophosphate ion; trifluoroacetate ion; alkylbenzenesulfonate ion such as tosylate ion, ethylbenzenesulfonate ion, dodecylbenzenesulfonate ion; methylsulfone Alkyl sulfonate ions such as acid ions and ethyl sulfonate ions; or poly
  • polyacrylic acid ion polyvinyl sulfonic acid ion
  • polyvinyl sulfonic acid ion from the point that high conductivity can be obtained and it has a hydrophilic skeleton useful for retaining water molecules and is easily dispersed in water.
  • Polymer ions such as polystyrene sulfonate ion (PSS) and poly (2-acrylamido-2-methylpropane sulfonate) ion are preferred, and polystyrene sulfonate ion (PSS) which is a water-soluble and strongly acidic polymer is more preferred.
  • Polypyrroles are high molecular weight compounds of compounds in which 1-position, 3-position or 4-position of pyrrole is substituted with an alkyl group or alkoxy group having 1 to 18 carbon atoms, such as poly 1-methyl pyrrole, poly 3 -Methyl pyrrole, poly 1-ethyl pyrrole, poly 3-ethyl pyrrole, poly 1-methoxy pyrrole, 3-methoxy pyrrole, poly 1-ethoxy pyrrole, poly 3-ethoxy pyrrole, etc.).
  • Examples of the derivatives of polypyrroles include those obtained by doping or mixing the aforementioned polypyrroles with a dopant. As the dopant, those described above can be used.
  • Polythiophenes are high molecular weight compounds of compounds in which the 3-position or 4-position of thiophene is substituted with an alkyl group or alkoxy group having 1 to 18 carbon atoms, such as poly-3-methylthiophene, poly-3-ethylthiophene, poly Examples thereof include polymers such as 3-methoxythiophene, poly-3-ethoxythiophene, and poly (3,4-ethylenedioxythiophene) (PEDOT).
  • Examples of the derivatives of polythiophenes include those obtained by doping or mixing the above polythiophenes with a dopant. As a dopant, what was illustrated by the above-mentioned [0009] can be used.
  • poly (thiophene) derivatives include poly (3) from the viewpoint that high conductivity can be obtained, a hydrophilic skeleton useful for retaining water molecules, and easy dispersion in water.
  • PEDOT 4-ethylene oxide thiophene
  • PSS polystyrene sulfonate ions
  • the water-based emulsion pressure-sensitive adhesive is not particularly limited as long as it has film-forming properties and has pressure-sensitive adhesive properties, such as acrylic emulsion pressure-sensitive adhesive, vinyl acetate-based emulsion pressure-sensitive adhesive, and ethylene-vinyl acetate copolymer-based emulsion pressure-sensitive adhesive. Is mentioned. Among these, an acrylic emulsion pressure-sensitive adhesive is preferable from the viewpoint that weatherability, heat resistance, oil resistance and the like can be imparted in addition to tackiness and transparency.
  • Acrylic emulsion pressure-sensitive adhesive is composed mainly of an acrylic copolymer, uses water as a dispersion medium, and is usually unsaturated (meth) acrylic acid alkyl ester etc. using various emulsifiers.
  • a monomer and, if desired, a functional group-containing monomer and other monomers can be produced by emulsion polymerization.
  • the (meth) acrylic acid alkyl ester is preferably a (meth) acrylic acid ester having an alkyl group having 1 to 20 carbon atoms, specifically, methyl (meth) acrylate, ethyl (meth) acrylate, ( (Meth) propyl acrylate, (meth) butyl acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, Examples include decyl (meth) acrylate, dodecyl (meth) acrylate, myristyl (meth) acrylate, palmityl (meth) acrylate, stearyl (meth) acrylate, and the like. These may be used alone or in combination of two or more.
  • Examples of the functional group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, ( (Meth) acrylic acid hydroxyalkyl esters such as 3-hydroxybutyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; acetoacetoxymethyl (meth) acrylate; acrylamide, methacrylamide, N-methylacrylamide, N, Acrylamides such as N-dimethylacrylamide, N-methylmethacrylamide, N, N-dimethylmethacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, diacetoneacrylamide; (meth) acrylic acid mono or dimethyl Aminoethyl, (meth) a Mono- or dialkylaminoalkyl (meth) acrylates such as mono- or diethylaminoethyl crylate
  • the functional group-containing monomers may be used alone or in combination of two or more.
  • the functional group-containing monomer is usually preferably 0.1 to 5.0% by mass, preferably 0.3 to 5.0% by mass, and preferably 0.5 to 3.0% by mass with respect to the total amount of monomers. It is further preferable to include it. Within this range, the stability of the conductive pressure-sensitive adhesive composition and the adhesion between the conductive layer formed from the conductive pressure-sensitive adhesive composition and the photoelectric conversion layer described later are good.
  • Examples of other monomers include vinyl esters such as vinyl acetate and vinyl propionate; olefins such as ethylene, propylene, and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; styrene, ⁇ -methylstyrene, and the like. Styrene monomers; diene monomers such as butadiene, isoprene and chloroprene; nitrile monomers such as acrylonitrile and methacrylonitrile. These may be used alone or in combination of two or more.
  • the other monomer is usually preferably 0.1 to 5.0% by mass, preferably 0.3 to 5.0% by mass, and preferably 1.0 to 3.0% by mass with respect to the total amount of monomers. % Is more preferable.
  • emulsifier those usually used for emulsion polymerization can be used, and are not particularly limited.
  • an anion having a radical polymerizable functional group such as vinyl group, propenyl group, isopropenyl group, vinyl ether group, allyl ether group, etc.
  • Known emulsifiers such as type, nonionic type reactive emulsifier, or non-reactive emulsifier are used.
  • non-reactive emulsifier examples include sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecylbenzenesulfonate, polyoxyethylene sodium lauryl sulfate, polyoxyethylene alkyl ether sodium sulfate, polyoxyethylene alkylphenyl ether ammonium sulfate, and polyoxyethylene alkylphenyl Anionic emulsifiers such as sodium ether sulfate and sodium polyoxyethylene alkyl sulfosuccinate, for example, nonionic systems such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, polyoxyethylene polyoxypropylene block polymer And emulsifiers.
  • anionic reactive emulsifier examples include commercially available products such as “ADEKA rear soap SE-20N”, but are not particularly limited as long as they have reactivity.
  • nonionic reactive emulsifier examples include commercially available products such as “ADEKA rear soap NE-10”. However, the nonionic reactive emulsifier is not particularly limited as long as it has reactivity.
  • the amount of these emulsifiers used is preferably 0.1 to 8.0 parts by weight, preferably 0.5 to 5.0 parts by weight, based on 100 parts by weight of the monomer mixture as an active ingredient (a component excluding solvents and various additives). Part is more preferable.
  • the amount used is within this range, the emulsion polymerization stability, the storage stability of the resulting aqueous emulsion adhesive, and the mechanical stability are good.
  • the conditions for emulsion polymerization are not particularly limited, and the conditions applied in normal emulsion polymerization can be applied as they are.
  • the temperature is increased while stirring under reflux, and the polymerization is carried out in the temperature range of about 40 to 100 ° C. for about 1 to 8 hours.
  • a polymerization initiator is usually used.
  • azo compounds such as 2,2′-azobis (2-methylpropionamidine) dihydrochloride, persulfates such as potassium persulfate, and peroxides such as benzoyl peroxide can be used. .
  • the concentration of the acrylic copolymer in the acrylic emulsion adhesive is usually preferably 30 to 70% by mass.
  • the weight average molecular weight of the acrylic copolymer is preferably 100,000 to 3,000,000, more preferably 400,000 to 2,000,000 in terms of adhesive performance.
  • the water-based emulsion pressure-sensitive adhesive is not strongly basic.
  • the conductive organic polymer compound may be deposited when the conductive organic polymer compound is blended.
  • the liquid property of the water-based emulsion pressure-sensitive adhesive is preferably less than pH 13.
  • the average particle diameter of the emulsion particles of the water-based emulsion pressure-sensitive adhesive is about 100 to 500 nm, preferably 100 to 300 nm.
  • an adhesive having an excellent balance of emulsion polymerization stability, storage stability of the resulting emulsion, and mechanical stability can be obtained. If the average particle diameter is within this range, stable emulsion particles can be obtained, and the amount of emulsifier used can be prevented from increasing.
  • the average particle size of the emulsion particles can be controlled by the type and concentration of the emulsifier added during polymerization, the concentration of the polymerization initiator, and the like.
  • the water-based emulsion pressure-sensitive adhesive is, as necessary, an antifoaming agent, an antiseptic, a rust-proofing agent, a solvent, a tackifier, a stabilizer, and a thickener, as long as the effects of the present invention are not impaired.
  • Various known additives such as a crosslinking agent, a plasticizer, a wetting agent, a filler such as an inorganic powder or a metal powder, a pigment, a colorant, and an ultraviolet absorber can be added.
  • the conductive adhesive composition of the present invention is a composition containing the conductive organic polymer compound and an aqueous emulsion adhesive.
  • the blending ratio is 1 to 300 parts by weight, preferably 10 to 250 parts, more preferably 15 to 150 parts by weight for the conductive organic polymer compound with respect to 100 parts by weight (in terms of solid content) of the water-based emulsion adhesive.
  • the glass transition temperature of the conductive pressure-sensitive adhesive composition of the present invention is preferably in the range of ⁇ 50 to 50 ° C. from the viewpoint of easy production of an electronic device described later.
  • the electronic device of the present invention has a conductive layer formed from a conductive pressure-sensitive adhesive composition.
  • the thickness of the conductive layer is preferably 5 to 500 nm, more preferably 30 to 300 nm. If it is less than 5 nm, adhesiveness does not appear, and if it exceeds 500 nm, the conductivity is lowered.
  • the surface resistivity of the conductive layer is preferably 1 to 1.0 ⁇ 10 9 ⁇ / ⁇ . More preferably, it is 1 to 1.0 ⁇ 10 4 ⁇ / ⁇ . When the surface resistivity is 1.0 ⁇ 10 9 ⁇ / ⁇ or more, the conductivity is lowered, and the performance as an electronic device is deteriorated.
  • the surface resistivity can be measured by a known method.
  • the transparency of the conductive layer can be evaluated by the total light transmittance of the anode laminate.
  • the total light transmittance of the anode laminate is a value of the total light transmittance of the conductive layer for convenience.
  • the total light transmittance of the conductive layer is preferably 70 to 100%. When the total light transmittance is within this range, transparency as an electronic device is sufficient.
  • the total light transmittance can be measured by a known method.
  • the electronic device of this invention arrange
  • organic devices such as an organic transistor, organic memory, and organic EL; Liquid crystal display; Electronic paper; Thin-film transistor; Electrochromic; Electrochemiluminescence device; Touch panel; Display; Solar cell; Piezoelectric conversion device; electricity storage device; and the like.
  • FIG. 1 (a) each layer which comprises the electronic device of this invention is demonstrated in order with FIG. 1 (a).
  • 1 is an anode layer
  • 4 is a conductive layer
  • 3 is a photoelectric conversion layer
  • 2 is a cathode layer.
  • the material of the anode layer 1 is preferably a material having a small energy barrier and a relatively large work function with respect to the HOMO level of a p-type organic semiconductor or intrinsic semiconductor layer described later.
  • a conductive metal oxide can be used as a material of the anode layer 1.
  • the conductive metal oxide include tin-doped indium oxide (ITO), iridium oxide (IrO 2 ), indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), fluorine-doped tin oxide (FTO), and indium oxide.
  • conductive metal oxides can be preferably formed by sputtering.
  • the thickness of the anode layer 1 is preferably 10 to 300 nm, and particularly preferably 30 to 150 nm, from the viewpoint that both transparency and conductivity can be achieved.
  • the photoelectric conversion layer 3 is a layer that performs photoelectric conversion, and is formed from an organic semiconductor from the viewpoints of cost reduction, flexibility, ease of formation, high extinction coefficient, weight reduction, impact resistance, and the like of raw materials. A layer is preferred.
  • the photoelectric conversion layer 3 may be composed of a single layer or a plurality of layers. In the case of a single layer, the photoelectric conversion layer 3 is usually formed from an intrinsic semiconductor layer (i-type semiconductor). In the case of a plurality of layers, a stack of (p-type semiconductor layer / n-type semiconductor layer) or (p-type semiconductor layer / intrinsic semiconductor layer / n-type semiconductor layer) is used.
  • the thickness of the photoelectric conversion layer 3 differs depending on whether it is a single layer or a plurality of layers, but it is generally preferably 30 nm to 2 ⁇ m from the viewpoint of not inhibiting efficient light absorption and carrier movement. In particular, the thickness is preferably 40 nm to 300 nm.
  • An intrinsic semiconductor layer is an organic layer having a pn junction interface made of a p-type semiconductor material and an n-type semiconductor material.
  • the material of the intrinsic semiconductor layer include a first material composed of at least one of fullerene, fullerene derivatives, semiconducting carbon nanotubes (CNT) and CNT compounds, a polyphenylene vinylene (PPV) derivative, or a polythiophene-based material. It is possible to use a mixture in which the second material made of a molecular material is mixed so that the obtained semiconductor becomes an intrinsic semiconductor.
  • fullerene derivative for example, [6,6] -phenyl-C61-butyric acid methyl ester (PCBM) can be used, and a fullerene dimer or an alkali metal or alkaline earth metal is introduced.
  • PCBM phenyl-C61-butyric acid methyl ester
  • a fullerene compound or the like can also be used.
  • CNT carbon nanotubes or the like including fullerene or metal-encapsulated fullerene can be used.
  • a CNT compound in which various molecules are added to the side wall or tip of the CNT can also be used.
  • polyphenylene vinylene poly [2-methoxy, 5- (2′-ethyl-hexyloxy) -p-phenylene-vinylene] (MEH-PPV) or the like can be used.
  • polythiophene polymer material Poly (3-alkylthiophene) such as poly-3-hexylthiophene (P3HT), dioctylfluorene-bithiophene copolymer (F8T2), and the like can be used.
  • a particularly preferable intrinsic semiconductor is a mixture of PCBM and P3HT mixed at a mass ratio of 1: 0.3 to 1: 4.
  • the material of the p-type semiconductor layer is not particularly limited as long as it is an electron-donating material.
  • polyalkylthiophene and derivatives thereof, polyphenylene and derivatives thereof, polyphenylene vinylene and derivatives thereof, polysilane and Examples thereof include porphyrin derivatives, phthalocyanine derivatives, and organometallic polymers.
  • polyalkylthiophene and its derivatives are preferable.
  • these organic materials may be used independently and the mixture which combined 2 or more types may be sufficient.
  • n-type semiconductor layer The material of the n-type semiconductor layer is not particularly limited as long as it is an electron-accepting material.
  • NTCDA 1,4,5,8-naphthalenetetracarboxylic dianhydride
  • PTCDA 3, 4,9,10-perylenetetracarboxylic dianhydride
  • PTCBI 3,4,9,10-perylenetetracarboxylic bisbenzimidazole
  • PTCBI 3, N′-dioctyl-3,4,9,10- Naphthyltetracarboxydiimide
  • PPD 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole
  • PPD 2,5-di (1- Oxazole derivatives such as naphthyl) -1,3,4-oxadiazole (BND), 3- (4-biphenylyl) -4-phenyl-5
  • NTCDA 1,4,5,8-
  • fullerene derivatives are particularly preferable because they are n-type semiconductor materials that are stable and have high carrier mobility. In addition, you may use these materials individually or in combination of 2 or more types.
  • the fullerene derivative is not particularly limited, and for example, [6,6] -phenyl-C61-butyric acid methyl ester (PCBM) can be used. [6,6] -Phenyl-C61-butyric acid methyl ester (PCBM) or the like can be used, and a fullerene dimer or a fullerene compound into which an alkali metal or an alkaline earth metal is introduced may be used. it can.
  • a material of the cathode layer 2 As a material of the cathode layer 2, a material having a small energy barrier and a relatively small work function with respect to the LUMO level of the n-type semiconductor or the intrinsic semiconductor layer is preferable.
  • metals such as platinum, gold, aluminum, iridium, chromium, and zinc oxide, metal oxides or alloys, carbon nanotubes, or composites of carbon nanotubes and the above metals, metal oxides, or alloys can be given.
  • the thickness of the cathode layer 2 is preferably 20 nm to 1 ⁇ m, particularly preferably 30 to 200 nm.
  • both the anode layer 1 and the cathode layer 2 are preferably provided on a substrate.
  • the substrate glass (plate) or plastic (plate or film) is generally used.
  • the plastic film include films made of resins such as polyethylene terephthalate, polyethylene naphthalate, tetraacetylcellulose, syndiotactic polystyrene, polyphenylene sulfide, polycarbonate, polyarylate, polysulfone, polyestersulfone, polyetherimide, and cyclic polyolefin. Among them, those excellent in mechanical strength, durability, transparency and the like are preferable.
  • the thickness of the substrate is generally 3 ⁇ m to 5 mm, preferably 5 ⁇ m to 1 mm, particularly preferably 10 ⁇ m to 300 ⁇ m, from the viewpoint of mechanical strength, durability and transparency.
  • the method for producing an electronic device of the present invention includes a step of forming an anode laminate by forming a conductive layer made of the conductive adhesive composition on the anode layer, and forming the photoelectric conversion layer on the cathode layer.
  • FIG. 1B 1 is an anode layer
  • 4 is a conductive layer
  • 3 is a photoelectric conversion layer
  • 2 is a cathode layer.
  • a structure in which the anode layer 1 and the conductive layer 4 are integrated is referred to as an anode laminate.
  • What integrated the cathode layer 2 and the photoelectric converting layer 3 is called a cathode laminated body.
  • the downward arrow indicates that the anode laminate and the cathode laminate are bonded and integrated to form an electronic device.
  • the anode laminate is formed by forming the conductive layer 4 made of the conductive adhesive composition of the present invention on the anode layer 1.
  • the anode layer 1 is preferably provided on a substrate. Examples of the substrate include those described above.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • thermal CVD thermal CVD
  • atomic layer deposition ALD
  • dry processes such as dip coating, spin coating, spray coating, bar coating, gravure coating, die coating, doctor blade and other wet processes such as electrochemical deposition, etc. It is selected as appropriate.
  • the formation method for forming the conductive layer 4 on the anode layer 1 includes various processes such as dip coating, spin coating, spray coating, bar coating, gravure coating, die coating, and doctor blade, and wet processes such as electrochemical deposition. Are selected as appropriate.
  • the cathode laminate is formed by forming the photoelectric conversion layer 3 on the cathode layer 2.
  • the cathode layer 2 is preferably provided on a substrate.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • thermal CVD thermal CVD
  • atomic layer deposition A dry process or the like can be used, and is appropriately selected depending on the material of the cathode layer 2.
  • the formation method for forming the photoelectric conversion layer 3 on the cathode layer 2 is PVD (physical vapor deposition) such as vacuum deposition, sputtering, ion plating, or CVD (chemical vapor deposition) such as thermal CVD or atomic layer deposition (ALD).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • thermal CVD thermal CVD
  • atomic layer deposition ALD
  • the material of the photoelectric conversion layer 3 includes a dry process such as phase deposition) or a wet process such as various coatings such as dip coating, spin coating, spray coating, gravure coating, and bar coating doctor blade, and electrochemical deposition. It is appropriately selected depending on.
  • the surface of the photoelectric conversion layer 3 of the cathode laminate and the surface of the conductive layer 4 of the anode laminate are bonded together to manufacture an electronic device. Since the conductive layer 4 of the anode laminate has excellent adhesiveness, the conductive layer 4 and the photoelectric conversion layer 3 can be favorably bonded together by bonding to the surface of the photoelectric conversion layer 3.
  • the surface of the photoelectric conversion layer 3 and the surface of the conductive layer 4 are bonded together, they may be bonded at room temperature, and are bonded while being heated to a temperature higher than the temperature at which the conductive adhesive composition is softened. You may combine them.
  • the photoelectric conversion layer 3 and the conductive layer 4 are preferably bonded to each other while being heated from the viewpoint that the photoelectric conversion layer 3 and the conductive layer 4 can be bonded well and good rectification characteristics for functioning as an electronic device can be obtained.
  • the temperature at which the conductive pressure-sensitive adhesive composition is softened is a temperature equal to or higher than the glass transition temperature (Tg) of the conductive pressure-sensitive adhesive composition. Specifically, it is about 80 to 150 ° C. from the viewpoint of easy production.
  • Tg glass transition temperature
  • a known laminating method can be used as a known laminating method.
  • the electronic device can be easily produced by a laminating process. it can. Further, in this method, there is no step of forming the cathode layer 2 on the photoelectric conversion layer 3 after the photoelectric conversion layer 3 is formed, and the cathode layer 2 becomes non-uniform or the cathode layer 2 is formed. Since the photoelectric conversion layer 3 is not damaged by the energy of time, the performance of the electronic device is not deteriorated.
  • a conductive organic polymer compound a mixture of poly (3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonate ion (PSS) (hereinafter referred to as PEDOT: PSS) water 10 parts by weight of a dispersion (manufactured by Japan Agfa Material Co., Ltd., product name: HBS-5, solid content: 1.1% by mass) was added and stirred at room temperature to make uniform, thereby preparing a conductive adhesive composition 1. .
  • PEDOT polystyrene sulfonate ion
  • ITO glass manufactured by Technoprint Co., Ltd., surface resistivity 14 ⁇ / ⁇ ] was prepared by sputtering on a glass plate so that tin-doped indium oxide (ITO) had a thickness of 150 nm. .
  • ITO tin-doped indium oxide
  • the surface of the ITO glass was immersed in a neutral detergent for ultrasonic cleaning, boiled in 2-propanol, and further cleaned with a UV-ozone cleaner (manufactured by Filgen, product name “UV253E”). .
  • the conductive pressure-sensitive adhesive composition 1 is dropped on the anode layer of ITO glass, spin-coated (rotation speed: 1500 rpm, time: 60 seconds), and then dried at 100 ° C. for 10 minutes to conduct electricity.
  • a conductive layer made of an adhesive composition was formed.
  • the film thickness of the conductive layer was measured by the product name “F20” manufactured by Filmetrics.
  • the film thickness of the conductive layer was 160 nm.
  • the film thickness of an Example and a comparative example is the value measured using said apparatus.
  • PCBM poly-3-hexylthiophene
  • P3HT poly-3-hexylthiophene
  • a solution photoelectric conversion layer forming solution in which C61-butyric acid methyl ester was dissolved to 0.75% by mass was prepared.
  • this liquid was filtered through a filter having a pore diameter of 0.45 ⁇ m, dropped onto the cathode layer (aluminum layer) of the PET film, spin-coated at 2500 rpm for 60 seconds, allowed to stand at room temperature for 30 minutes, and then at 100 ° C.
  • a heat treatment was performed for 10 minutes to form a photoelectric conversion layer having a thickness of 120 nm.
  • the temperature of the roller was set to 120 ° C. with the surface of the conductive layer of the obtained anode laminate and the surface of the photoelectric conversion layer of the cathode laminate.
  • the electronic device 1 was obtained by pressure bonding while heating.
  • Example 2 A conductive pressure-sensitive adhesive composition 2 was prepared in the same procedure as in Example 1 except that the water-based emulsion pressure-sensitive adhesive was changed to 0.5 parts by mass and the PEDOT: PSS aqueous dispersion was changed to 10 parts by mass. Obtained (the thickness of the conductive layer was 140 nm).
  • Example 3 A conductive pressure-sensitive adhesive composition 3 was prepared in the same procedure as in Example 1 except that the water-based emulsion pressure-sensitive adhesive was changed to 0.25 parts by mass and the PEDOT: PSS aqueous dispersion was changed to 10 parts by mass. Obtained (the thickness of the conductive layer was 165 nm).
  • Example 4 A conductive pressure-sensitive adhesive composition 4 was prepared in the same procedure as in Example 1 except that the water-based emulsion pressure-sensitive adhesive was changed to 0.1 parts by mass and the PEDOT: PSS aqueous dispersion was changed to 10 parts by mass. Obtained (the thickness of the conductive layer was 145 nm).
  • Example 5 Instead of PEDOT: PSS aqueous dispersion, 1.0 part by mass of an aqueous emulsion adhesive, instead of PEDOT: PSS aqueous dispersion, polyaniline aqueous dispersion [manufactured by Nissan Chemical Industries, product name: D1033W, solid content 2.5 [Mass%]
  • a conductive pressure-sensitive adhesive composition 5 was prepared in the same procedure as in Example 1 except that 4 parts by mass were added, to obtain an electronic device 5 (the thickness of the conductive layer was 170 nm).
  • aqueous emulsion adhesive is added to 1.0 part by mass, and as a conductive organic polymer compound, instead of PEDOT: PSS aqueous dispersion, a polypyrrole aqueous dispersion (manufactured by Sigma-Aldrich, product name: 482552, solid content 5 mass%)
  • a conductive pressure-sensitive adhesive composition 6 was prepared in the same procedure as in Example 1 except that 2 parts by mass were added, and an electronic device 6 was obtained (the film thickness of the conductive layer was 190 nm).
  • a water-based emulsion pressure-sensitive adhesive was not added, and only 10 parts by mass of PEDOT: PSS as a conductive organic polymer was used as a comparative composition 1 and compared in the same procedure as in Example 1.
  • An electronic device 1 was obtained (the film thickness of the layer made of the composition 1 for comparison was 40 nm).
  • PEDOT: PSS was not added as the conductive organic polymer, and only the water-based emulsion pressure-sensitive adhesive was used as the comparative composition 2, and the comparative electrons were prepared in the same procedure as in Example 1.
  • Device 2 was obtained (the film thickness of the layer made of Comparative Composition 2 was 100 nm).
  • Compositions of conductive adhesive compositions 1 to 6 obtained in Examples 1 to 6, comparative compositions obtained in Comparative Examples 1 and 2, and electronic devices 1 to 6 obtained in Examples 1 to 6 The characteristics of the comparative electronic devices 1 and 2 obtained in Example 6 and Comparative Examples 1 and 2 were measured and shown in Table 1.
  • the conductive layer of the example has excellent adhesiveness, bonding of the conductive layer and the photoelectric conversion layer can be obtained by bonding the adhesive conductive layer to the photoelectric conversion layer by a laminating process. , Confirmed to function as an electronic device.
  • the layer composed of the comparative composition 1 of Comparative Example 1 is excellent in transparency, conductivity, and film formability, but has no adhesiveness, so that the bonding property of the photoelectric conversion layer is poor and rectifying. An electronic device could not be obtained.
  • the layer which consists of the composition 2 for a comparison of the comparative example 2 was able to join with a photoelectric converting layer, when it was used as an electronic device with a high surface resistivity, a favorable rectification characteristic was acquired. There wasn't.
  • the conductive adhesive composition of the present invention has excellent adhesiveness and low surface resistivity, organic devices such as organic transistors, organic memories, and organic ELs; liquid crystal displays; electronic paper; thin film transistors; electrochromic An electrochemiluminescence device; a touch panel; a display; a solar cell; a thermoelectric conversion device; a piezoelectric conversion device; an electricity storage device; Furthermore, it is useful in the field of electronic devices by a laminating process.
  • Anode layer 2 Cathode layer 3: Photoelectric conversion layer 4: Conductive layer

Abstract

The present invention addresses the problem of providing an electronic device in which a conductive layer has excellent adhesiveness and low surface resistivity, and a production method therefor. The problem is solved by a conductive adhesive composition, an electronic device, and a production method for the electronic device. The conductive adhesive composition contains a conductive organic polymer compound and a water-based emulsion adhesive. The electronic device comprises an anodic layer, a conductive layer formed from the conductive adhesive composition, a photoelectric conversion layer, and a cathode layer arranged in said order, and is characterized in that the conductive adhesive composition is a water-based emulsion adhesive composition containing a conductive organic polymer compound. The production method for the electronic device is characterized by including: a step of forming an anode laminate by forming, on an anodic layer, a conductive layer using the conductive adhesive composition; a step of forming a cathode laminate by forming the photoelectric conversion layer on a cathode layer; and a step of adhering the surface of the photoelectric conversion layer of the cathode laminate to the surface of the conductive layer of the anode laminate.

Description

導電性粘着剤組成物、電子デバイス及び電子デバイスの製造方法Conductive adhesive composition, electronic device and method for producing electronic device
 本発明は導電性粘着剤組成物、電子デバイス及び電子デバイスの製造方法に関する。 The present invention relates to a conductive pressure-sensitive adhesive composition, an electronic device, and a method for producing an electronic device.
 近年、有機エレクトロルミネッセンス、各種太陽電池、タッチパネルや携帯電話、電子ペーパー等において、透明導電膜を用いた透明電極が盛んに検討されている。
 例えば、有機薄膜太陽電池に代表される有機光電変換あるいは電光変換デバイスは、通常、透明導電膜よりなる電極に有機半導体材料を積層して作製される。透明導電膜としては金属薄膜、金属酸化物薄膜、導電性窒化物薄膜等の各種導電膜が検討されているが、現在は主に透明性と導電性との両立が可能で耐久性にも優れるため金属酸化物薄膜が主流である。中でも特に錫をドープした酸化インジウム(ITO)は、透明性と導電性とのバランスが良く、広く使用されている(特許文献1)。一方、ポリエチレンテレフタレート(PET)等の透明基材に金属製の微細なメッシュあるいはグリッドを形成したシートがある(特許文献2)。これらのシートは透明性および導電性がメッシュの設計(ピッチ、線幅で決まる開口率)次第で制御できるので、透明電極としての利用可能性がある。
 ところで、従来から有機薄膜デバイス等の電子デバイスは、有機素子材料からなる層を積層する場合には、真空蒸着法およびそれに類するドライプロセスあるいは塗布に代表されるウェットプロセスや、粘着層を介したラミネートプロセスにより製造されてきた(特許文献3)。このようなラミネートプロセスにおいては、粘着性を有する透明導電膜が望まれているが、従来の透明導電膜では、透明性、粘着性及び導電性のバランスが課題となっている。
 そこで、導電性成分として、ポリチオフェンやその誘導体のような導電性有機高分子化合物等の導電性ポリマーと、有機添加剤を含む導電性ポリマー接着剤からなる層を透明導電膜として、この透明導電膜を介したラミネートプロセス(特許文献4、非特許文献1参照)により電子デバイスを製造することが提案されている。
 しかしながら、上記方法では、ラミネート界面でのキャリア注入効率が低下したり、界面の接着力が低かったりする等、電子デバイスの性能が低下するという問題があった。
 また、粘着性を有する導電膜として、スルホン酸基を含有するポリビニルアルコールの存在下において、ヘテロ原子を有する芳香族モノマーを重合させて得られる水性導電性樹脂エマルションを使用する方法が開示されている(特許文献5参照)。
 しかしながら、このエマルションから形成された導電膜の表面抵抗率は、電子デバイス用として使用するには高く、電子デバイスとして十分な性能が得られない可能性がある。
In recent years, transparent electrodes using a transparent conductive film have been actively studied in organic electroluminescence, various solar cells, touch panels, mobile phones, electronic papers, and the like.
For example, an organic photoelectric conversion or electro-optic conversion device represented by an organic thin film solar cell is usually produced by laminating an organic semiconductor material on an electrode made of a transparent conductive film. Various conductive films such as metal thin films, metal oxide thin films, and conductive nitride thin films have been studied as transparent conductive films, but at present, both transparency and conductivity can be achieved and durability is excellent. Therefore, metal oxide thin films are the mainstream. In particular, indium oxide (ITO) doped with tin is well-balanced between transparency and conductivity, and is widely used (Patent Document 1). On the other hand, there is a sheet in which a fine metal mesh or grid is formed on a transparent substrate such as polyethylene terephthalate (PET) (Patent Document 2). Since these sheets can be controlled in transparency and conductivity depending on the mesh design (opening ratio determined by pitch and line width), they can be used as transparent electrodes.
By the way, electronic devices such as organic thin film devices have been conventionally laminated with a layer made of an organic element material, such as a vacuum deposition method and a wet process represented by a dry process or coating similar thereto, or a laminate via an adhesive layer. It has been manufactured by a process (Patent Document 3). In such a laminating process, a transparent conductive film having adhesiveness is desired, but in the conventional transparent conductive film, balance of transparency, adhesiveness and conductivity is a problem.
Therefore, as a conductive component, a layer composed of a conductive polymer such as a conductive organic polymer compound such as polythiophene or a derivative thereof and a conductive polymer adhesive containing an organic additive is used as a transparent conductive film. It has been proposed to manufacture an electronic device by a laminating process (see Patent Document 4 and Non-Patent Document 1).
However, the above-described method has a problem that the performance of the electronic device is deteriorated, for example, the carrier injection efficiency at the laminate interface is lowered or the adhesive force at the interface is low.
In addition, a method of using an aqueous conductive resin emulsion obtained by polymerizing an aromatic monomer having a hetero atom in the presence of polyvinyl alcohol containing a sulfonic acid group as an adhesive conductive film is disclosed. (See Patent Document 5).
However, the conductive film formed from this emulsion has a high surface resistivity for use as an electronic device, and may not provide sufficient performance as an electronic device.
特開2007-305351号公報JP 2007-305351 A 特開2008-288102号公報JP 2008-288102 A 特開2006-352073号公報JP 2006-352073 A 特表2009-500832号公報Special table 2009-500832 特開2007-204689号公報Japanese Patent Laid-Open No. 2007-204689
 本発明はこのような事情に鑑みてなされたもので、本発明の目的は、上記のような問題を解決した導電性粘着剤組成物、電子デバイス及び電子デバイスの製造方法を提供することにある。 This invention is made | formed in view of such a situation, The objective of this invention is providing the manufacturing method of the electroconductive adhesive composition which solved the above problems, an electronic device, and an electronic device. .
 上記のような問題を解決するため、本発明者らは鋭意検討した結果、水系エマルション粘着剤に導電性有機高分子化合物を添加することにより、上記問題を解決することができることを見出し、本発明を完成させた。
 すなわち、本発明は、下記
(1)導電性有機高分子化合物及び水系エマルション粘着剤を含む導電性粘着剤組成物、
(2)前記導電性有機高分子化合物が、ポリアニリン類、ポリピロール類及びポリチオフェン類ならびにそれらの誘導体から選ばれる少なくとも1種である上記(1)に記載の導電性粘着剤組成物、
(3)前記導電性有機高分子化合物が、ポリチオフェン類の誘導体である上記(1)に記載の導電性粘着剤組成物、
(4)前記水系エマルション粘着剤がアクリル系エマルション粘着剤である上記(1)~(3)のいずれかに記載の導電性粘着剤組成物、
(5)陽極層と、導電性粘着剤組成物から形成された導電層と、光電変換層と、陰極層をこの順に配置してなる電子デバイスにおいて、前記導電性粘着剤組成物が、上記(1)~(4)のいずれかに記載の導電性粘着剤組成物であることを特徴とする電子デバイス、
(6)上記(5)に記載の電子デバイスの製造方法であって、陽極層上に前記導電性粘着剤組成物を用いて導電層を形成して陽極積層体を形成する工程、陰極層上に前記光電変換層を形成して陰極積層体を形成する工程、および前記陰極積層体の光電変換層表面と前記陽極積層体の導電層表面とを貼り合わせる工程を含むことを特徴とする電子デバイスの製造方法を提供する。
In order to solve the above problems, the present inventors have intensively studied and found that the above problems can be solved by adding a conductive organic polymer compound to the aqueous emulsion adhesive. Was completed.
That is, the present invention provides the following (1) a conductive adhesive composition comprising a conductive organic polymer compound and an aqueous emulsion adhesive,
(2) The conductive adhesive composition according to (1), wherein the conductive organic polymer compound is at least one selected from polyanilines, polypyrroles, polythiophenes, and derivatives thereof,
(3) The conductive adhesive composition according to (1), wherein the conductive organic polymer compound is a derivative of polythiophene,
(4) The conductive pressure-sensitive adhesive composition according to any one of (1) to (3), wherein the water-based emulsion pressure-sensitive adhesive is an acrylic emulsion pressure-sensitive adhesive.
(5) In an electronic device comprising an anode layer, a conductive layer formed from a conductive pressure-sensitive adhesive composition, a photoelectric conversion layer, and a cathode layer in this order, the conductive pressure-sensitive adhesive composition is the above ( 1) An electronic device characterized by being a conductive adhesive composition according to any one of (4),
(6) The method for producing an electronic device according to (5), wherein a step of forming an anode laminate by forming a conductive layer on the anode layer using the conductive adhesive composition, on the cathode layer Forming a cathode laminate by forming the photoelectric conversion layer on the substrate, and bonding the surface of the cathode conversion layer of the cathode laminate and the conductive layer of the anode laminate. A manufacturing method is provided.
 本発明の導電性粘着剤組成物は、水系エマルション粘着剤に導電性有機高分子化合物を添加することで、導電性粘着剤組成物から形成された導電層が優れた透明性を有し、かつ表面抵抗率が低いため、電子デバイスの導電層として使用可能である。また、その導電層自体が粘着性を有しているため、ラミネートプロセスによる電子デバイスの製造が可能である。
 本発明の電子デバイスの製造方法は、導電性粘着剤組成物から形成された導電層と光電変換層を貼り合わせるため、ラミネートプロセスにより容易に電子デバイスを製造することができる。また、この方法では、光電変換層を形成させた後に、この光電変換層上に陰極層として金属層を形成させる工程が存在しないため、金属層が不均一になったり、金属層を成膜する時のエネルギーによって光電変換層がダメージを受けることがなく、電子デバイスの性能が低下することがない。
The conductive pressure-sensitive adhesive composition of the present invention has excellent transparency by adding a conductive organic polymer compound to a water-based emulsion pressure-sensitive adhesive, and the conductive layer formed from the conductive pressure-sensitive adhesive composition has excellent transparency. Since the surface resistivity is low, it can be used as a conductive layer of an electronic device. In addition, since the conductive layer itself has adhesiveness, it is possible to manufacture an electronic device by a laminating process.
In the method for producing an electronic device of the present invention, since the conductive layer formed from the conductive adhesive composition and the photoelectric conversion layer are bonded together, the electronic device can be easily produced by a laminating process. Further, in this method, since there is no step of forming a metal layer as a cathode layer on the photoelectric conversion layer after forming the photoelectric conversion layer, the metal layer becomes uneven or a metal layer is formed. The photoelectric conversion layer is not damaged by the energy of time, and the performance of the electronic device is not deteriorated.
図1(a)は本発明の導電層を有する電子デバイスの一例の断面を示す模式図である。 図1(b)は本発明の電子デバイスの製造を示す模式図である。FIG. 1A is a schematic view showing a cross section of an example of an electronic device having a conductive layer of the present invention. FIG. 1B is a schematic view showing the production of the electronic device of the present invention. 実施例1で得られた電子デバイス1に関して測定した電流電圧曲線である。2 is a current-voltage curve measured for the electronic device 1 obtained in Example 1. FIG. 実施例2で得られた電子デバイス2に関して測定した電流電圧曲線である。6 is a current-voltage curve measured for the electronic device 2 obtained in Example 2. 実施例3で得られた電子デバイス3に関して測定した電流電圧曲線である。6 is a current-voltage curve measured for the electronic device 3 obtained in Example 3.
 以下に、本発明について、詳細に説明する。
<導電性有機高分子化合物>
 導電性有機高分子化合物としては、π電子共役により導電性を有する導電性有機高分子化合物であるポリアニリン類、ポリピロール類及びポリチオフェン類並びにそれらの誘導体から選ばれる少なくとも1種が用いられる。
 ポリアニリン類は、アニリンの2位または3位あるいはN位を炭素数1~18のアルキル基、アルコキシ基、アリール基、スルホン酸基等で置換した化合物の高分子量体であり、例えば、ポリ2-メチルアニリン、ポリ3-メチルアニリン、ポリ2-エチルアニリン、ポリ3-エチルアニリン、ポリ2-メトキシアニリン、ポリ3-メトキシアニリン、ポリ2-エトキシアニリン、ポリ3-エトキシアニリン、ポリN-メチルアニリン、ポリN-プロピルアニリン、ポリN-フェニル-1-ナフチルアニリン、ポリ8-アニリノ-1-ナフタレンスルホン酸、ポリ2-アミノベンゼンスルホン酸、ポリ7-アニリノ-4-ヒドロキシ-2-ナフタレンスルホン酸等が挙げられる。
 ポリアニリン類の誘導体としては、前記ポリアニリン類にドーパントをドープ又は混合したもの等が挙げられる。ドーパントとしては、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン;過塩素酸イオン;テトラフルオロ硼酸イオン;六フッ化ヒ酸イオン;硫酸イオン;硝酸イオン;チオシアン酸イオン;六フッ化ケイ酸イオン;燐酸イオン、フェニル燐酸イオン、六フッ化燐酸イオンなどの燐酸系イオン;トリフルオロ酢酸イオン;トシレートイオン、エチルベンゼンスルホン酸イオン、ドデシルベンゼンスルホン酸イオンなどのアルキルベンゼンスルホン酸イオン;メチルスルホン酸イオン、エチルスルホン酸イオンなどのアルキルスルホン酸イオン;または、ポリアクリル酸イオン、ポリビニルスルホン酸イオン、ポリスチレンスルホン酸イオン(PSS)、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)イオンなどの高分子イオン;挙げられ、これらは単独でもまたは2種以上組み合わせて用いてもよい。
 これらの中でも、高い導電性を得ることができ、かつ、水分子を保持するために有用な親水骨格を有し、水に容易に分散するという点から、ポリアクリル酸イオン、ポリビニルスルホン酸イオン、ポリスチレンスルホン酸イオン(PSS)、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)イオンなどの高分子イオンが好ましく、水溶性かつ強酸性のポリマーであるポリスチレンスルホン酸イオン(PSS)がより好ましい。
The present invention is described in detail below.
<Conductive organic polymer compound>
As the conductive organic polymer compound, at least one selected from polyanilines, polypyrroles, polythiophenes, and derivatives thereof, which are conductive organic polymer compounds having conductivity by π-electron conjugation, is used.
Polyanilines are high molecular weight compounds of compounds in which the 2-position, 3-position or N-position of aniline is substituted with an alkyl group having 1 to 18 carbon atoms, an alkoxy group, an aryl group, a sulfonic acid group or the like. Methyl aniline, poly 3-methyl aniline, poly 2-ethyl aniline, poly 3-ethyl aniline, poly 2-methoxy aniline, poly 3-methoxy aniline, poly 2-ethoxy aniline, poly 3-ethoxy aniline, poly N-methyl aniline Poly N-propyl aniline, poly N-phenyl-1-naphthyl aniline, poly 8-anilino-1-naphthalene sulfonic acid, poly 2-aminobenzene sulfonic acid, poly 7-anilino-4-hydroxy-2-naphthalene sulfonic acid Etc.
Examples of the polyaniline derivatives include those obtained by doping or mixing the above-mentioned polyanilines with a dopant. As dopants, halide ions such as chloride ion, bromide ion and iodide ion; perchlorate ion; tetrafluoroborate ion; hexafluoroarsenate ion; sulfate ion; nitrate ion; thiocyanate ion; hexafluoride Silicate ion; Phosphate ion such as phosphate ion, phenyl phosphate ion, hexafluorophosphate ion; trifluoroacetate ion; alkylbenzenesulfonate ion such as tosylate ion, ethylbenzenesulfonate ion, dodecylbenzenesulfonate ion; methylsulfone Alkyl sulfonate ions such as acid ions and ethyl sulfonate ions; or polyacrylate ions, polyvinyl sulfonate ions, polystyrene sulfonate ions (PSS), poly (2-acrylamido-2-methylpropane sulfonate) ions Polymeric ions such emissions; be mentioned, which may be used in combination singly or two or more.
Among these, polyacrylic acid ion, polyvinyl sulfonic acid ion, from the point that high conductivity can be obtained and it has a hydrophilic skeleton useful for retaining water molecules and is easily dispersed in water. Polymer ions such as polystyrene sulfonate ion (PSS) and poly (2-acrylamido-2-methylpropane sulfonate) ion are preferred, and polystyrene sulfonate ion (PSS) which is a water-soluble and strongly acidic polymer is more preferred.
 ポリピロール類とは、(ピロールの1位または3位、4位を炭素数1~18のアルキル基またはアルコキシ基等で置換した化合物の高分子量体であり、例えば、ポリ1-メチルピロール、ポリ3-メチルピロール、ポリ1-エチルピロール、ポリ3-エチルピロール、ポリ1-メトキシピロール、3-メトキシピロール、ポリ1-エトキシピロール、ポリ3-エトキシピロール等)が挙げられる。
 ポリピロール類の誘導体としては、前記ポリピロール類にドーパントをドープ又は混合したもの等が挙げられる。ドーパントとしては、前述のものが使用できる。
Polypyrroles are high molecular weight compounds of compounds in which 1-position, 3-position or 4-position of pyrrole is substituted with an alkyl group or alkoxy group having 1 to 18 carbon atoms, such as poly 1-methyl pyrrole, poly 3 -Methyl pyrrole, poly 1-ethyl pyrrole, poly 3-ethyl pyrrole, poly 1-methoxy pyrrole, 3-methoxy pyrrole, poly 1-ethoxy pyrrole, poly 3-ethoxy pyrrole, etc.).
Examples of the derivatives of polypyrroles include those obtained by doping or mixing the aforementioned polypyrroles with a dopant. As the dopant, those described above can be used.
 ポリチオフェン類は、チオフェンの3位または4位を炭素数1~18のアルキル基またはアルコキシ基等で置換した化合物の高分子量体であり、例えば、ポリ3-メチルチオフェン、ポリ3-エチルチオフェン、ポリ3-メトキシチオフェン、ポリ3-エトキシチオフェン、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)等の高分子体が挙げられる。
 ポリチオフェン類の誘導体としては、前記ポリチオフェン類にドーパントをドープ又は混合したもの等が挙げられる。ドーパントとしては、前述の〔0009〕で例示したものが使用できる。
 これらの中でも、高い導電性を得ることができ、かつ、水分子を保持するために有用な親水骨格を有し、水に容易に分散するという点から、ポリチオフェン類の誘導体としては、ポリ(3,4-エチレンオキサイドチオフェン)(PEDOT)とドーパントとして、ポリスチレンスルホン酸イオン(PSS)の混合物(以下、「PEDOT:PSS」と記載することがある)等が好ましい。
Polythiophenes are high molecular weight compounds of compounds in which the 3-position or 4-position of thiophene is substituted with an alkyl group or alkoxy group having 1 to 18 carbon atoms, such as poly-3-methylthiophene, poly-3-ethylthiophene, poly Examples thereof include polymers such as 3-methoxythiophene, poly-3-ethoxythiophene, and poly (3,4-ethylenedioxythiophene) (PEDOT).
Examples of the derivatives of polythiophenes include those obtained by doping or mixing the above polythiophenes with a dopant. As a dopant, what was illustrated by the above-mentioned [0009] can be used.
Among these, poly (thiophene) derivatives include poly (3) from the viewpoint that high conductivity can be obtained, a hydrophilic skeleton useful for retaining water molecules, and easy dispersion in water. , 4-ethylene oxide thiophene) (PEDOT) and a mixture of polystyrene sulfonate ions (PSS) (hereinafter, sometimes referred to as “PEDOT: PSS”) and the like are preferable.
<水系エマルション粘着剤>
 水系エマルション粘着剤としては、成膜性があり、粘着性を有するものであれば特に制限はなく、アクリル系エマルション粘着剤、酢酸ビニル系エマルション粘着剤およびエチレン-酢酸ビニル共重合体系エマルション粘着剤等が挙げられる。
 これらの中でも、粘着性、透明性に加え、耐候性、耐熱性、耐油性なども付与できるという観点からアクリル系エマルション粘着剤が好ましい。
<Water-based emulsion adhesive>
The water-based emulsion pressure-sensitive adhesive is not particularly limited as long as it has film-forming properties and has pressure-sensitive adhesive properties, such as acrylic emulsion pressure-sensitive adhesive, vinyl acetate-based emulsion pressure-sensitive adhesive, and ethylene-vinyl acetate copolymer-based emulsion pressure-sensitive adhesive. Is mentioned.
Among these, an acrylic emulsion pressure-sensitive adhesive is preferable from the viewpoint that weatherability, heat resistance, oil resistance and the like can be imparted in addition to tackiness and transparency.
 アクリル系エマルション粘着剤は、アクリル系共重合体を主成分として構成されるものであり、分散媒として水を使用し、通常は、各種乳化剤を用いて(メタ)アクリル酸アルキルエステル等の不飽和モノマー及び所望により官能基含有モノマーや他の単量体とを乳化重合して製造することができる。 Acrylic emulsion pressure-sensitive adhesive is composed mainly of an acrylic copolymer, uses water as a dispersion medium, and is usually unsaturated (meth) acrylic acid alkyl ester etc. using various emulsifiers. A monomer and, if desired, a functional group-containing monomer and other monomers can be produced by emulsion polymerization.
 前記(メタ)アクリル酸アルキルエステルとしては、アルキル基の炭素数が1~20の(メタ)アクリル酸エステルが好ましく、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ミリスチル、(メタ)アクリル酸パルミチル、(メタ)アクリル酸ステアリルなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The (meth) acrylic acid alkyl ester is preferably a (meth) acrylic acid ester having an alkyl group having 1 to 20 carbon atoms, specifically, methyl (meth) acrylate, ethyl (meth) acrylate, ( (Meth) propyl acrylate, (meth) butyl acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, Examples include decyl (meth) acrylate, dodecyl (meth) acrylate, myristyl (meth) acrylate, palmityl (meth) acrylate, stearyl (meth) acrylate, and the like. These may be used alone or in combination of two or more.
 前記官能基含有モノマーとしては、例えば(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチルなどの(メタ)アクリル酸ヒドロキシアルキルエステル;(メタ)アクリル酸アセトアセトキシメチル;アクリルアミド、メタクリルアミド、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、N-メチルメタクリルアミド、N,N-ジメチルメタクリルアミド、N-メチロ-ルアクリルアミド、N-メチロ-ルメタクリルアミド、ジアセトンアクリルアミドなどのアクリルアミド類;(メタ)アクリル酸モノ又はジメチルアミノエチル、(メタ)アクリル酸モノ又はジエチルアミノエチル、(メタ)アクリル酸モノ又はジメチルアミノプロピル、(メタ)アクリル酸モノ又はジエチルアミノプロピルなどの(メタ)アクリル酸モノ又はジアルキルアミノアルキル;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、シトラコン酸などのエチレン性不飽和カルボン酸などが挙げられる。これらの官能基含有モノマーは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 官能基含有モノマーは、単量体全量に対して、通常0.1~5.0質量%が好ましく、0.3~5.0質量%含むことが好ましく、0.5~3.0質量%含むことがさらに好ましい。この範囲であれば、導電性粘着剤組成物の安定性、ならびに導電性粘着剤組成物から形成された導電層と後述する光電変換層との密着性が良好である。
Examples of the functional group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, ( (Meth) acrylic acid hydroxyalkyl esters such as 3-hydroxybutyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; acetoacetoxymethyl (meth) acrylate; acrylamide, methacrylamide, N-methylacrylamide, N, Acrylamides such as N-dimethylacrylamide, N-methylmethacrylamide, N, N-dimethylmethacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, diacetoneacrylamide; (meth) acrylic acid mono or dimethyl Aminoethyl, (meth) a Mono- or dialkylaminoalkyl (meth) acrylates such as mono- or diethylaminoethyl crylate, mono- or dimethylaminopropyl (meth) acrylate, mono- or diethylaminopropyl (meth) acrylate; acrylic acid, methacrylic acid, crotonic acid, maleic Examples thereof include ethylenically unsaturated carboxylic acids such as acid, itaconic acid and citraconic acid. These functional group-containing monomers may be used alone or in combination of two or more.
The functional group-containing monomer is usually preferably 0.1 to 5.0% by mass, preferably 0.3 to 5.0% by mass, and preferably 0.5 to 3.0% by mass with respect to the total amount of monomers. It is further preferable to include it. Within this range, the stability of the conductive pressure-sensitive adhesive composition and the adhesion between the conductive layer formed from the conductive pressure-sensitive adhesive composition and the photoelectric conversion layer described later are good.
 その他の単量体としては、例えば酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類;エチレン、プロピレン、イソブチレンなどのオレフィン類;塩化ビニル、ビニリデンクロリドなどのハロゲン化オレフィン類;スチレン、α-メチルスチレンなどのスチレン系単量体;ブタジエン、イソプレン、クロロプレンなどのジエン系単量体;アクリロニトリル、メタクリロニトリルなどのニトリル系単量体などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。その他の単量体は、単量体全量に対して、通常0.1~5.0質量%が好ましく、0.3~5.0質量%含むことが好ましく、1.0~3.0質量%含むことがさらに好ましい。 Examples of other monomers include vinyl esters such as vinyl acetate and vinyl propionate; olefins such as ethylene, propylene, and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; styrene, α-methylstyrene, and the like. Styrene monomers; diene monomers such as butadiene, isoprene and chloroprene; nitrile monomers such as acrylonitrile and methacrylonitrile. These may be used alone or in combination of two or more. The other monomer is usually preferably 0.1 to 5.0% by mass, preferably 0.3 to 5.0% by mass, and preferably 1.0 to 3.0% by mass with respect to the total amount of monomers. % Is more preferable.
 乳化剤としては、乳化重合に通常使用されているものが使用でき、特に制限されず、例えば、ビニル基、プロペニル基、イソプロペニル基、ビニルエーテル基、アリルエーテル基などのラジカル重合性官能基を有するアニオン型、ノニオン型の反応性乳化剤、または非反応性乳化剤等の公知の乳化剤が用いられる。 As the emulsifier, those usually used for emulsion polymerization can be used, and are not particularly limited. For example, an anion having a radical polymerizable functional group such as vinyl group, propenyl group, isopropenyl group, vinyl ether group, allyl ether group, etc. Known emulsifiers such as type, nonionic type reactive emulsifier, or non-reactive emulsifier are used.
 非反応性乳化剤としては、例えば、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ドデシルベンゼンスルホン酸ナトリウム、ポリオキシエチレンラウリル硫酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルフェニルエーテル硫酸アンモニウム、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルスルホコハク酸ナトリウムなどのアニオン系乳化剤、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンブロックポリマーなどのノニオン系乳化剤などが挙げられる。 Examples of the non-reactive emulsifier include sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecylbenzenesulfonate, polyoxyethylene sodium lauryl sulfate, polyoxyethylene alkyl ether sodium sulfate, polyoxyethylene alkylphenyl ether ammonium sulfate, and polyoxyethylene alkylphenyl Anionic emulsifiers such as sodium ether sulfate and sodium polyoxyethylene alkyl sulfosuccinate, for example, nonionic systems such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, polyoxyethylene polyoxypropylene block polymer And emulsifiers.
 アニオン型反応性乳化剤としては、「アデカリアソープSE-20N」等の市販品が挙げられるが、反応性を有していれば良く、特にこれらに限定されない。
 ノニオン型反応性乳化剤としては、「アデカリアソープNE-10」等の市販品が挙げられるが、反応性を有していれば良く、特にこれらに限定されない。
Examples of the anionic reactive emulsifier include commercially available products such as “ADEKA rear soap SE-20N”, but are not particularly limited as long as they have reactivity.
Examples of the nonionic reactive emulsifier include commercially available products such as “ADEKA rear soap NE-10”. However, the nonionic reactive emulsifier is not particularly limited as long as it has reactivity.
 これら乳化剤の使用量は前記モノマーの混合物100質量部に対して有効成分(溶媒や各種添加剤を除いた成分)で0.1~8.0質量部が好ましく、0.5~5.0質量部がさらに好ましい。使用量がこの範囲であれば、乳化重合安定性、得られる水系エマルション粘着剤の保存安定性、機械安定性が良好である。 The amount of these emulsifiers used is preferably 0.1 to 8.0 parts by weight, preferably 0.5 to 5.0 parts by weight, based on 100 parts by weight of the monomer mixture as an active ingredient (a component excluding solvents and various additives). Part is more preferable. When the amount used is within this range, the emulsion polymerization stability, the storage stability of the resulting aqueous emulsion adhesive, and the mechanical stability are good.
 乳化重合の条件としては、特に限定されず、通常の乳化重合で適用される条件をそのまま適用することができる。一般的には、反応器内を不活性ガスで置換した後、還流下撹拌しながら昇温を開始し40~100℃程度の温度範囲で昇温開始後1~8時間程度重合を行う。
 水系エマルション粘着剤を乳化重合で調製する際、通常、重合開始剤が用いられる。重合開始剤としては、2,2´-アゾビス(2-メチルプロピオンアミジン)二塩酸塩等のアゾ系、過硫酸カリウム等の過硫酸塩、ベンゾイルパ―オキサイド等の過酸化物を使用することができる。
The conditions for emulsion polymerization are not particularly limited, and the conditions applied in normal emulsion polymerization can be applied as they are. In general, after replacing the inside of the reactor with an inert gas, the temperature is increased while stirring under reflux, and the polymerization is carried out in the temperature range of about 40 to 100 ° C. for about 1 to 8 hours.
When preparing an aqueous emulsion pressure-sensitive adhesive by emulsion polymerization, a polymerization initiator is usually used. As the polymerization initiator, azo compounds such as 2,2′-azobis (2-methylpropionamidine) dihydrochloride, persulfates such as potassium persulfate, and peroxides such as benzoyl peroxide can be used. .
 また、アクリル系エマルション粘着剤中のアクリル系共重合体の濃度は通常、30~70質量%が好ましい。 In addition, the concentration of the acrylic copolymer in the acrylic emulsion adhesive is usually preferably 30 to 70% by mass.
 さらに、アクリル系共重合体の重量平均分子量は、粘着性能などの点から、Mwで10万~300万であることが好ましく、さらに好ましくは40万~200万の範囲である。 Furthermore, the weight average molecular weight of the acrylic copolymer is preferably 100,000 to 3,000,000, more preferably 400,000 to 2,000,000 in terms of adhesive performance.
 水系エマルション粘着剤は、液性が強塩基性でないことが好ましい。水系エマルション粘着剤の液性が強塩基性であると、導電性有機高分子化合物を配合した場合に、導電性有機高分子化合物が析出する可能性がある。水系エマルション粘着剤の液性は、好ましくはpH13未満である。 It is preferable that the water-based emulsion pressure-sensitive adhesive is not strongly basic. When the liquid property of the water-based emulsion pressure-sensitive adhesive is strongly basic, the conductive organic polymer compound may be deposited when the conductive organic polymer compound is blended. The liquid property of the water-based emulsion pressure-sensitive adhesive is preferably less than pH 13.
 水系エマルション粘着剤のエマルション粒子の平均粒子径は、100~500nm程度、好ましくは100~300nmである。平均粒子径が上記範囲内であると乳化重合安定性、得られるエマルションの保存安定性、機械安定性のバランスに優れた粘着剤が得られる。
 平均粒子径がこの範囲であれば、安定なエマルション粒子が得られ、乳化剤の使用量が多くなるのを防止することができる。エマルション粒子の平均粒子径は重合時に添加する乳化剤の種類や濃度、重合開始剤濃度等でコントロールすることができる。
The average particle diameter of the emulsion particles of the water-based emulsion pressure-sensitive adhesive is about 100 to 500 nm, preferably 100 to 300 nm. When the average particle size is within the above range, an adhesive having an excellent balance of emulsion polymerization stability, storage stability of the resulting emulsion, and mechanical stability can be obtained.
If the average particle diameter is within this range, stable emulsion particles can be obtained, and the amount of emulsifier used can be prevented from increasing. The average particle size of the emulsion particles can be controlled by the type and concentration of the emulsifier added during polymerization, the concentration of the polymerization initiator, and the like.
 本発明において、水系エマルション粘着剤には、必要に応じて、本発明の効果を損なわない範囲内で、消泡剤、防腐剤、防錆剤、溶剤、粘着付与剤、安定剤、増粘剤、架橋剤、可塑剤、濡れ剤、無機粉末や金属粉末等の充填剤、顔料、着色剤、紫外線吸収剤等の公知の各種添加剤を添加することができる。 In the present invention, the water-based emulsion pressure-sensitive adhesive is, as necessary, an antifoaming agent, an antiseptic, a rust-proofing agent, a solvent, a tackifier, a stabilizer, and a thickener, as long as the effects of the present invention are not impaired. Various known additives such as a crosslinking agent, a plasticizer, a wetting agent, a filler such as an inorganic powder or a metal powder, a pigment, a colorant, and an ultraviolet absorber can be added.
<導電性粘着剤組成物>
 本発明の導電性粘着剤組成物は、前記導電性有機高分子化合物および水系エマルション粘着剤を含む組成物である。配合比は水系エマルション粘着剤を100質量部(固形分換算)に対して導電性有機高分子化合物は1~300質量部、好ましくは、10~250、より好ましくは15~150質量部である。
 導電性有機高分子化合物が1質量部未満の場合は、導電性が低くなるので好ましくない。逆に300質量部を超える場合は、導電性は向上するが、粘着性が低下するので好ましくない。
 本発明の導電性粘着剤組成物のガラス転移温度は、後述する電子デバイスの製造が容易に行なうという点から、-50~50℃の範囲であることが好ましい。
<Conductive adhesive composition>
The conductive adhesive composition of the present invention is a composition containing the conductive organic polymer compound and an aqueous emulsion adhesive. The blending ratio is 1 to 300 parts by weight, preferably 10 to 250 parts, more preferably 15 to 150 parts by weight for the conductive organic polymer compound with respect to 100 parts by weight (in terms of solid content) of the water-based emulsion adhesive.
When the amount of the conductive organic polymer compound is less than 1 part by mass, the conductivity is lowered, which is not preferable. Conversely, when it exceeds 300 mass parts, although electroconductivity improves, since adhesiveness falls, it is unpreferable.
The glass transition temperature of the conductive pressure-sensitive adhesive composition of the present invention is preferably in the range of −50 to 50 ° C. from the viewpoint of easy production of an electronic device described later.
<電子デバイス>
 本発明の電子デバイスは、導電性粘着剤組成物から形成された導電層を有することを特徴としている。
 前記導電層の厚さは5~500nmが好ましく、より好ましくは30~300nmである。5nm未満であると、粘着性が発現せず、500nmを超えると導電性が低下してしまう。
 導電層の表面抵抗率は、1~1.0×109Ω/□が好ましい。より好ましくは、1~1.0×104Ω/□である。表面抵抗率が1.0×109Ω/□以上であると、導電性が低くなり、電子デバイスとしての性能が悪くなる。表面抵抗率は、公知の方法で測定することができる。
 導電層の透明性は、陽極積層体の全光線透過率で評価することができる。本発明において、陽極積層体の全光線透過率は、便宜上、導電層の全光線透過率の値とする。
 導電層の全光線透過率は、70~100%であることが好ましい。全光線透過率がこの範囲であれば、電子デバイスとして透明性が十分である。全光線透過率は、公知の方法で測定することができる。
<Electronic device>
The electronic device of the present invention has a conductive layer formed from a conductive pressure-sensitive adhesive composition.
The thickness of the conductive layer is preferably 5 to 500 nm, more preferably 30 to 300 nm. If it is less than 5 nm, adhesiveness does not appear, and if it exceeds 500 nm, the conductivity is lowered.
The surface resistivity of the conductive layer is preferably 1 to 1.0 × 10 9 Ω / □. More preferably, it is 1 to 1.0 × 10 4 Ω / □. When the surface resistivity is 1.0 × 10 9 Ω / □ or more, the conductivity is lowered, and the performance as an electronic device is deteriorated. The surface resistivity can be measured by a known method.
The transparency of the conductive layer can be evaluated by the total light transmittance of the anode laminate. In the present invention, the total light transmittance of the anode laminate is a value of the total light transmittance of the conductive layer for convenience.
The total light transmittance of the conductive layer is preferably 70 to 100%. When the total light transmittance is within this range, transparency as an electronic device is sufficient. The total light transmittance can be measured by a known method.
 また、本発明の電子デバイスは、陽極層と、前記導電層と、光電変換層と陰極層をこの順に配置してなる。
 電子デバイスとしては、具体的には、有機トランジスタ、有機メモリー、有機EL等の有機デバイス;液晶ディスプレイ;電子ペーパー;薄膜トランジスタ;エレクトロクロミック;電気化学発光デバイス;タッチパネル;ディスプレイ;太陽電池;熱電変換デバイス;圧電変換デバイス;蓄電デバイス;等が挙げられる。
 以下、本発明の電子デバイスを構成する各層を図1(a)により順に説明する。
 図1(a)において、1は陽極層、4は導電層、3は光電変換層、2は陰極層である。
Moreover, the electronic device of this invention arrange | positions an anode layer, the said conductive layer, a photoelectric converting layer, and a cathode layer in this order.
Specifically as an electronic device, organic devices, such as an organic transistor, organic memory, and organic EL; Liquid crystal display; Electronic paper; Thin-film transistor; Electrochromic; Electrochemiluminescence device; Touch panel; Display; Solar cell; Piezoelectric conversion device; electricity storage device; and the like.
Hereafter, each layer which comprises the electronic device of this invention is demonstrated in order with FIG. 1 (a).
In FIG. 1A, 1 is an anode layer, 4 is a conductive layer, 3 is a photoelectric conversion layer, and 2 is a cathode layer.
〔陽極層〕
 陽極層1の材料としては、後述するp型の有機半導体や真性半導体層のHOMOレベルに対してエネルギー障壁が小さく、仕事関数が比較的大きいものが好ましい。
 また、陽極層1の材料としては、導電性金属酸化物を使用することができる。
 導電性金属酸化物としては、例えば、スズドープ酸化インジウム(ITO)、酸化イリジウム(IrO2)、酸化インジウム(In23)、酸化スズ(SnO2)、フッ素ドープ酸化スズ(FTO)、酸化インジウム-酸化亜鉛(IZO)、酸化亜鉛(ZnO)、ガリウムドープ酸化亜鉛(GZO)、アルミニウムドープ酸化亜鉛(AZO)、酸化モリブデン(MoO3)、酸化チタン(TiO2)等が挙げられる。これらの導電性金属酸化物は、スパッタリングにより好ましく製膜することができる。
 陽極層1の厚さは、透明性と導電性を両立できるという観点から10~300nmであることが好ましく、特に30~150nmであることが好ましい。
[Anode layer]
The material of the anode layer 1 is preferably a material having a small energy barrier and a relatively large work function with respect to the HOMO level of a p-type organic semiconductor or intrinsic semiconductor layer described later.
Moreover, as a material of the anode layer 1, a conductive metal oxide can be used.
Examples of the conductive metal oxide include tin-doped indium oxide (ITO), iridium oxide (IrO 2 ), indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), fluorine-doped tin oxide (FTO), and indium oxide. -Zinc oxide (IZO), zinc oxide (ZnO), gallium doped zinc oxide (GZO), aluminum doped zinc oxide (AZO), molybdenum oxide (MoO 3 ), titanium oxide (TiO 2 ) and the like. These conductive metal oxides can be preferably formed by sputtering.
The thickness of the anode layer 1 is preferably 10 to 300 nm, and particularly preferably 30 to 150 nm, from the viewpoint that both transparency and conductivity can be achieved.
〔光電変換層〕
 光電変換層3は、光電変換を行う層であり、原料の低コスト化、柔軟性、形成の容易性、吸光係数の高さ、軽量化、耐衝撃性等の観点から有機半導体から形成される層であることが好ましい。
 光電変換層3は、単層からなってもよいし、複数層からなってもよい。単層の場合には、光電変換層3は、通常、真性半導体層(i型半導体)から形成される。
 また、複数層の場合、(p型半導体層/n型半導体層)の積層、または、(p型半導体層/真性半導体層/n型半導体層)等である。
 光電変換層3の厚さは、単層または複数層の場合で異なるが光の効率的な吸収とキャリアの移動を阻害しないという観点から、一般的には、30nm~2μmであることが好ましく、特に40nm~300nmであることが好ましい。
[Photoelectric conversion layer]
The photoelectric conversion layer 3 is a layer that performs photoelectric conversion, and is formed from an organic semiconductor from the viewpoints of cost reduction, flexibility, ease of formation, high extinction coefficient, weight reduction, impact resistance, and the like of raw materials. A layer is preferred.
The photoelectric conversion layer 3 may be composed of a single layer or a plurality of layers. In the case of a single layer, the photoelectric conversion layer 3 is usually formed from an intrinsic semiconductor layer (i-type semiconductor).
In the case of a plurality of layers, a stack of (p-type semiconductor layer / n-type semiconductor layer) or (p-type semiconductor layer / intrinsic semiconductor layer / n-type semiconductor layer) is used.
The thickness of the photoelectric conversion layer 3 differs depending on whether it is a single layer or a plurality of layers, but it is generally preferably 30 nm to 2 μm from the viewpoint of not inhibiting efficient light absorption and carrier movement. In particular, the thickness is preferably 40 nm to 300 nm.
 以下、光電変換層3に用いられる有機半導体について説明する。
(1)真性半導体層
 真性半導体層とは、p型半導体材料及びn型半導体材料よりなるp-n接合界面を持つ有機層のことである。
 真性半導体層の材料としては、例えば、フラーレン、フラーレン誘導体、半導体性を有するカーボンナノチューブ(CNT)およびCNT化合物の少なくとも1種類からなる第1の材料と、ポリフェニレンビニレン(PPV)の誘導体またはポリチオフェン系高分子材料からなる第2の材料とを、得られる半導体が真性半導体となるように混合した混合物を使用することができる。
 フラーレン誘導体としては、例えば、[6,6]-フェニル-C61-酪酸メチルエステル(PCBM)等を用いることができ、また、フラーレンの二量体、またはアルカリ金属もしくはアルカリ土類金属等を導入したフラーレン化合物なども用いることができる。また、CNTとしては、フラーレンまたは金属内包フラーレンを内包したカーボンナノチューブ等を用いることができる。さらに、CNTの側壁や先端に、種々の分子を付加したCNT化合物等も用いることができる。
 ポリフェニレンビニレンの誘導体としては、ポリ[2-メトキシ,5-(2’-エチル-ヘキシロキシ)-p-フェニレン-ビニレン](MEH-PPV)等を用いることができ、ポリチオフェン系高分子材料としては、ポリ-3-ヘキシルチオフェン(P3HT)などのポリ(3-アルキルチオフェン),ジオクチルフルオレンエン-ビチオフェン共重合体(F8T2)、等を用いることができる。
 特に好ましい真性半導体としては、PCBMとP3HTとを質量比で1:0.3~1:4で混合した混合物が挙げられる。
Hereinafter, the organic semiconductor used for the photoelectric conversion layer 3 will be described.
(1) Intrinsic Semiconductor Layer An intrinsic semiconductor layer is an organic layer having a pn junction interface made of a p-type semiconductor material and an n-type semiconductor material.
Examples of the material of the intrinsic semiconductor layer include a first material composed of at least one of fullerene, fullerene derivatives, semiconducting carbon nanotubes (CNT) and CNT compounds, a polyphenylene vinylene (PPV) derivative, or a polythiophene-based material. It is possible to use a mixture in which the second material made of a molecular material is mixed so that the obtained semiconductor becomes an intrinsic semiconductor.
As the fullerene derivative, for example, [6,6] -phenyl-C61-butyric acid methyl ester (PCBM) can be used, and a fullerene dimer or an alkali metal or alkaline earth metal is introduced. A fullerene compound or the like can also be used. Further, as the CNT, carbon nanotubes or the like including fullerene or metal-encapsulated fullerene can be used. Furthermore, a CNT compound in which various molecules are added to the side wall or tip of the CNT can also be used.
As a derivative of polyphenylene vinylene, poly [2-methoxy, 5- (2′-ethyl-hexyloxy) -p-phenylene-vinylene] (MEH-PPV) or the like can be used. As a polythiophene polymer material, Poly (3-alkylthiophene) such as poly-3-hexylthiophene (P3HT), dioctylfluorene-bithiophene copolymer (F8T2), and the like can be used.
A particularly preferable intrinsic semiconductor is a mixture of PCBM and P3HT mixed at a mass ratio of 1: 0.3 to 1: 4.
(2)p型半導体層
 p型半導体層の材料としては、電子供与性材料であれば特に限定されず、例えば、ポリアルキルチオフェンおよびその誘導体、ポリフェニレンおよびその誘導体、ポリフェニレンビニレンおよびその誘導体、ポリシランおよびその誘導体、ポルフィリン誘導体、フタロシアニン誘導体、有機金属ポリマー等が挙げられる。これらの中でもポリアルキルチオフェンおよびその誘導体が好ましい。また、それら有機材料は、単独で用いてもよく、2種以上を組み合わせた混合物であってもよい。
(2) p-type semiconductor layer The material of the p-type semiconductor layer is not particularly limited as long as it is an electron-donating material. For example, polyalkylthiophene and derivatives thereof, polyphenylene and derivatives thereof, polyphenylene vinylene and derivatives thereof, polysilane and Examples thereof include porphyrin derivatives, phthalocyanine derivatives, and organometallic polymers. Among these, polyalkylthiophene and its derivatives are preferable. Moreover, these organic materials may be used independently and the mixture which combined 2 or more types may be sufficient.
(3)n型半導体層
 n型半導体層の材料としては、電子受容性材料であれば特に限定されず、例えば、1,4,5,8-ナフタレンテトラカルボキシリックジアンハイドライド(NTCDA)、3,4,9,10-ペリレンテトラカルボキシリックジアンハイドライド(PTCDA)、3,4,9,10-ペリレンテトラカルボキシリックビスベンズイミダゾール(PTCBI)、N,N'-ジオクチル-3,4,9,10-ナフチルテトラカルボキシジイミド(PTCDI-C8H)、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール(PBD)、2,5-ジ(1-ナフチル)-1,3,4-オキサジアゾール(BND)等のオキサゾール誘導体、3-(4-ビフェニリル)-4-フェニル-5-(4-t-ブチルフェニル)-1,2,4-トリアゾール(TAZ)等のトリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン誘導体、カーボンナノチューブ(CNT)、ポリ-p-フェニレンビニレン系重合体にシアノ基を導入した誘導体(CN-PPV)等が挙げられる。これらの中でも、安定でキャリア移動度の高いn型半導体材料であることから、特にフラーレン誘導体が好ましい。なお、これらの材料は、単独で又は2種以上を組み合わせて用いてもよい。
フラーレン誘導体としては、特に限定されず、例えば、[6,6]-フェニル-C61-酪酸メチルエステル(PCBM)等を用いることができる。[6,6]-フェニル-C61-酪酸メチルエステル(PCBM)等を用いることができ、また、フラーレンの二量体、またはアルカリ金属もしくはアルカリ土類金属等を導入したフラーレン化合物なども用いることができる。
(3) n-type semiconductor layer The material of the n-type semiconductor layer is not particularly limited as long as it is an electron-accepting material. For example, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA), 3, 4,9,10-perylenetetracarboxylic dianhydride (PTCDA), 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI), N, N′-dioctyl-3,4,9,10- Naphthyltetracarboxydiimide (PTCDI-C8H), 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (PBD), 2,5-di (1- Oxazole derivatives such as naphthyl) -1,3,4-oxadiazole (BND), 3- (4-biphenylyl) -4-phenyl-5 For triazole derivatives such as (4-t-butylphenyl) -1,2,4-triazole (TAZ), phenanthroline derivatives, phosphine oxide derivatives, fullerene derivatives, carbon nanotubes (CNT), poly-p-phenylene vinylene polymers Examples thereof include a derivative having a cyano group introduced (CN-PPV). Among these, fullerene derivatives are particularly preferable because they are n-type semiconductor materials that are stable and have high carrier mobility. In addition, you may use these materials individually or in combination of 2 or more types.
The fullerene derivative is not particularly limited, and for example, [6,6] -phenyl-C61-butyric acid methyl ester (PCBM) can be used. [6,6] -Phenyl-C61-butyric acid methyl ester (PCBM) or the like can be used, and a fullerene dimer or a fullerene compound into which an alkali metal or an alkaline earth metal is introduced may be used. it can.
〔陰極層〕
 陰極層2の材料としては、前記n型半導体や真性半導体層のLUMOレベルに対してエネルギー障壁が小さく、仕事関数が比較的小さいものが好ましい。例えば、白金、金、アルミニウム、イリジウム、クロム、酸化亜鉛等の金属、金属酸化物もしくは合金の他、カーボンナノチューブ、またはカーボンナノチューブと上記金属、金属酸化物もしくは合金との複合体が挙げられる。
 陰極層2の厚さは、20nm~1μmであることが好ましく、特に30~200nmであることが好ましい。
 本発明の電子デバイスは、前記陽極層1および陰極層2とも基材上に設けられていることが好ましい。
(Cathode layer)
As a material of the cathode layer 2, a material having a small energy barrier and a relatively small work function with respect to the LUMO level of the n-type semiconductor or the intrinsic semiconductor layer is preferable. For example, in addition to metals such as platinum, gold, aluminum, iridium, chromium, and zinc oxide, metal oxides or alloys, carbon nanotubes, or composites of carbon nanotubes and the above metals, metal oxides, or alloys can be given.
The thickness of the cathode layer 2 is preferably 20 nm to 1 μm, particularly preferably 30 to 200 nm.
In the electronic device of the present invention, both the anode layer 1 and the cathode layer 2 are preferably provided on a substrate.
〔基材〕
 基材としては、一般的には、ガラス(板)またはプラスチック(板またはフィルム)が使用される。
 プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、テトラアセチルセルロース、シンジオタクチックポリスチレン、ポリフェニレンスルフィド、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエステルスルホン、ポリエーテルイミド、環状ポリオレフィン等の樹脂からなるフィルムが挙げられ、中でも機械的強度、耐久性、透明性等に優れたものが好ましい。
 基材の厚さは、機械的強度、耐久性、透明性の点から一般的には3μm~5mmであり、好ましくは5μm~1mmであり、特に好ましくは10μm~300μmである。
〔Base material〕
As the substrate, glass (plate) or plastic (plate or film) is generally used.
Examples of the plastic film include films made of resins such as polyethylene terephthalate, polyethylene naphthalate, tetraacetylcellulose, syndiotactic polystyrene, polyphenylene sulfide, polycarbonate, polyarylate, polysulfone, polyestersulfone, polyetherimide, and cyclic polyolefin. Among them, those excellent in mechanical strength, durability, transparency and the like are preferable.
The thickness of the substrate is generally 3 μm to 5 mm, preferably 5 μm to 1 mm, particularly preferably 10 μm to 300 μm, from the viewpoint of mechanical strength, durability and transparency.
<電子デバイスの製造方法>
 本発明の電子デバイスの製造方法は、陽極層上に前記の導電性粘着剤組成物からなる導電層を形成して陽極積層体を形成する工程と、陰極層上に前記光電変換層を形成して陰極積層体を形成する工程と、および前記陰極積層体の光電変換層表面と前記陽極積層体の導電層表面とを貼り合わせる工程を含むことを特徴とする。
<Method for manufacturing electronic device>
The method for producing an electronic device of the present invention includes a step of forming an anode laminate by forming a conductive layer made of the conductive adhesive composition on the anode layer, and forming the photoelectric conversion layer on the cathode layer. A step of forming a cathode laminate, and a step of bonding the surface of the photoelectric conversion layer of the cathode laminate and the surface of the conductive layer of the anode laminate.
 以下、本発明の電子デバイスの製造方法を図1(b)により順に説明する。
 図1(b)において、1は陽極層、4は導電層、3は光電変換層、2は陰極層である。陽極層1と導電層4を一体化したものを陽極積層体と称する。陰極層2と光電変換層3を一体化したものを陰極積層体と称する。
 下向きの矢印は陽極積層体と陰極積層体を、貼り合わせて一体化して電子デバイスとすることを表わしている。
Hereinafter, the manufacturing method of the electronic device of this invention is demonstrated in order with FIG.1 (b).
In FIG. 1B, 1 is an anode layer, 4 is a conductive layer, 3 is a photoelectric conversion layer, and 2 is a cathode layer. A structure in which the anode layer 1 and the conductive layer 4 are integrated is referred to as an anode laminate. What integrated the cathode layer 2 and the photoelectric converting layer 3 is called a cathode laminated body.
The downward arrow indicates that the anode laminate and the cathode laminate are bonded and integrated to form an electronic device.
〔陽極積層体〕
 陽極積層体は、前記陽極層1の上に本発明の導電性粘着剤組成物からなる前記導電層4が形成されたものからなっている。
 一般的には、陽極層1は、基材上に設けられていることが好ましい。基材としては、上述したものが挙げられる。
 基材上に陽極層1を設ける方法としては、真空蒸着、スパッタリング、イオンプレーティング等のPVD(物理気相蒸着)、もしくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相蒸着)などのドライプロセス、またはディップコーティング、スピンコーティング、スプレーコーティング、バーコーティング、グラビアコーティング、ダイコーティング、ドクターブレード等の各種コーティングや電気化学的ディポジションなどのウェットプロセスが挙げられ、陽極層1の材料に応じて適宜選択される。
 陽極層1上に導電層4を形成させる形成方法は、ディップコーティング、スピンコーティング、スプレーコーティング、バーコーティング、グラビアコーティング、ダイコーティング、ドクターブレード等の各種コーティングや電気化学的ディポジションなどのウェットプロセスが挙げられ、適宜選択される。
[Anode laminate]
The anode laminate is formed by forming the conductive layer 4 made of the conductive adhesive composition of the present invention on the anode layer 1.
In general, the anode layer 1 is preferably provided on a substrate. Examples of the substrate include those described above.
As a method of providing the anode layer 1 on the substrate, PVD (physical vapor deposition) such as vacuum deposition, sputtering, ion plating, or CVD (chemical vapor deposition) such as thermal CVD, atomic layer deposition (ALD), etc. Or dry processes such as dip coating, spin coating, spray coating, bar coating, gravure coating, die coating, doctor blade and other wet processes such as electrochemical deposition, etc. It is selected as appropriate.
The formation method for forming the conductive layer 4 on the anode layer 1 includes various processes such as dip coating, spin coating, spray coating, bar coating, gravure coating, die coating, and doctor blade, and wet processes such as electrochemical deposition. Are selected as appropriate.
〔陰極積層体〕
 陰極積層体は、前記陰極層2の上に前記光電変換層3が形成されたものからなっている。
 一般的には、陰極層2は、基材上に設けられていることが好ましい。
 基材上に陰極層2を設ける方法としては、真空蒸着、スパッタリング、イオンプレーティング等のPVD(物理気相蒸着)、もしくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相蒸着)などのドライプロセス等が挙げられ、陰極層2の材料に応じて適宜選択される。
 陰極層2上に光電変換層3を形成させる形成方法は、真空蒸着、スパッタリング、イオンプレーティング等のPVD(物理気相蒸着)、もしくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相蒸着)などのドライプロセス、またはディップコーティング、スピンコーティング、スプレーコーティング、グラビアコーティング、バーコーティングドクターブレード等の各種コーティングや電気化学的ディポジションなどのウェットプロセスによりが挙げられ、光電変換層3の材料に応じて適宜選択される。
[Cathode laminate]
The cathode laminate is formed by forming the photoelectric conversion layer 3 on the cathode layer 2.
In general, the cathode layer 2 is preferably provided on a substrate.
As a method of providing the cathode layer 2 on the substrate, PVD (physical vapor deposition) such as vacuum deposition, sputtering, ion plating, or CVD (chemical vapor deposition) such as thermal CVD, atomic layer deposition (ALD), etc. A dry process or the like can be used, and is appropriately selected depending on the material of the cathode layer 2.
The formation method for forming the photoelectric conversion layer 3 on the cathode layer 2 is PVD (physical vapor deposition) such as vacuum deposition, sputtering, ion plating, or CVD (chemical vapor deposition) such as thermal CVD or atomic layer deposition (ALD). The material of the photoelectric conversion layer 3 includes a dry process such as phase deposition) or a wet process such as various coatings such as dip coating, spin coating, spray coating, gravure coating, and bar coating doctor blade, and electrochemical deposition. It is appropriately selected depending on.
 次いで、前記陰極積層体の光電変換層3の表面と前記陽極積層体の導電層4の表面を貼り合わせて一体化して電子デバイスを製造する。
 前記陽極積層体の導電層4は、優れた粘着性を有するため、前記光電変換層3の表面と貼り合わせることで、導電層4と光電変換層3とを良好に接合することができる。
 ここで、前記光電変換層3の表面と前記導電層4の表面とを貼り合わせる際には、常温で貼り合わせてもよく、前記導電性粘着剤組成物が軟化する温度以上に加熱しながら貼り合わせてもよい。
 光電変換層3と導電層4とが良好に接合し、電子デバイスとして機能するための良好な整流特性が得られるという点から、加熱しながら貼り合わせを行うことが好ましい。
 ここで、前記導電性粘着剤組成物が軟化する温度は、導電性粘着剤組成物のガラス転移温度(Tg)以上の温度である。製造しやすいという点から、具体的には80~150℃程度である。
 前記陰極積層体の光電変換層3の表面と前記陽極積層体の導電層4の表面を貼り合わせる方法としては、公知のラミネート方法を用いることができる。本発明の電子デバイスの製造方法は、本発明の導電性粘着剤組成物からなる導電層4の表面と光電変換層3の表面を貼り合わせるため、ラミネートプロセスにより容易に電子デバイスを製造することができる。
 また、この方法では、光電変換層3を形成させた後に、光電変換層3上に陰極層2を形成させる工程が存在せず、陰極層2が不均一になったり、陰極層2の成膜時のエネルギーによって光電変換層3がダメージを受けることがないため、電子デバイスの性能が低下することがない。
Next, the surface of the photoelectric conversion layer 3 of the cathode laminate and the surface of the conductive layer 4 of the anode laminate are bonded together to manufacture an electronic device.
Since the conductive layer 4 of the anode laminate has excellent adhesiveness, the conductive layer 4 and the photoelectric conversion layer 3 can be favorably bonded together by bonding to the surface of the photoelectric conversion layer 3.
Here, when the surface of the photoelectric conversion layer 3 and the surface of the conductive layer 4 are bonded together, they may be bonded at room temperature, and are bonded while being heated to a temperature higher than the temperature at which the conductive adhesive composition is softened. You may combine them.
The photoelectric conversion layer 3 and the conductive layer 4 are preferably bonded to each other while being heated from the viewpoint that the photoelectric conversion layer 3 and the conductive layer 4 can be bonded well and good rectification characteristics for functioning as an electronic device can be obtained.
Here, the temperature at which the conductive pressure-sensitive adhesive composition is softened is a temperature equal to or higher than the glass transition temperature (Tg) of the conductive pressure-sensitive adhesive composition. Specifically, it is about 80 to 150 ° C. from the viewpoint of easy production.
As a method for bonding the surface of the photoelectric conversion layer 3 of the cathode laminate and the surface of the conductive layer 4 of the anode laminate, a known laminating method can be used. In the method for producing an electronic device of the present invention, since the surface of the conductive layer 4 made of the conductive adhesive composition of the present invention and the surface of the photoelectric conversion layer 3 are bonded together, the electronic device can be easily produced by a laminating process. it can.
Further, in this method, there is no step of forming the cathode layer 2 on the photoelectric conversion layer 3 after the photoelectric conversion layer 3 is formed, and the cathode layer 2 becomes non-uniform or the cathode layer 2 is formed. Since the photoelectric conversion layer 3 is not damaged by the energy of time, the performance of the electronic device is not deteriorated.
 以下、実施例及び比較例により、本発明をさらに詳しく説明するが、本発明はこれらにより何ら限定されるものではない。また、以下の実施例及び比較例において、部あるいは%とあるのはすべて質量部あるいは質量%を意味するものである。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Moreover, in the following Examples and Comparative Examples, “part” or “%” means all parts by mass or mass%.
<実施例1>
[導電性粘着剤組成物の調製]
 水系エマルション粘着剤として、アクリル系エマルション粘着剤〔アクリル酸2-エチルヘキシル/アクリル酸/メタクリル酸=100/0.25/0.35、固形分55質量%、pH9.0、重量平均分子量50万〕1.0質量部に、導電性有機高分子化合物として、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)とポリスチレンスルホン酸イオン(PSS)の混合物(以下、PEDOT:PSSと記載する)水分散液〔日本アグフア・マテリアル社製、製品名:HBS-5、固形分1.1質量%〕10質量部を加えて、室温で撹拌することで均一化し、導電性粘着剤組成物1とした。
 上記アクリル系エマルション粘着剤は、公知の方法により乳化重合により得た。
<Example 1>
[Preparation of conductive adhesive composition]
As an aqueous emulsion adhesive, acrylic emulsion adhesive [2-ethylhexyl acrylate / acrylic acid / methacrylic acid = 100 / 0.25 / 0.35, solid content 55 mass%, pH 9.0, weight average molecular weight 500,000] In 1.0 part by mass, as a conductive organic polymer compound, a mixture of poly (3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonate ion (PSS) (hereinafter referred to as PEDOT: PSS) water 10 parts by weight of a dispersion (manufactured by Japan Agfa Material Co., Ltd., product name: HBS-5, solid content: 1.1% by mass) was added and stirred at room temperature to make uniform, thereby preparing a conductive adhesive composition 1. .
The acrylic emulsion pressure-sensitive adhesive was obtained by emulsion polymerization by a known method.
[陽極積層体の作製]
 スズドープ酸化インジウム(ITO)が、厚さ150nmになるように、ガラス板上にスパッタリングして陽極層が形成されたITOガラス〔テクノプリント社製、表面抵抗率14Ω/□〕を準備した。。
 次いで、ITOガラスの表面を中性洗剤中に浸漬して超音波洗浄を行い、2-プロパノール中で煮沸洗浄をし、さらにUV-オゾンクリーナー(フィルジェン製、製品名「UV253E」)によって清浄した。次に、ITOガラスの陽極層上に、導電性粘着剤組成物1を滴下し、スピンコート(回転数1500rpm、時間60秒)を行い、次いで、100℃で10分間乾燥を行うことで導電性粘着剤組成物からなる導電層を形成させた。導電層の膜厚は、フィルメトリクス社製、製品名「F20」で測定した。導電層の膜厚は160nmであった。
 以下、実施例、比較例の膜厚は、上記の装置を用いて測定した値である。
[Production of anode laminate]
ITO glass [manufactured by Technoprint Co., Ltd., surface resistivity 14Ω / □] was prepared by sputtering on a glass plate so that tin-doped indium oxide (ITO) had a thickness of 150 nm. .
Next, the surface of the ITO glass was immersed in a neutral detergent for ultrasonic cleaning, boiled in 2-propanol, and further cleaned with a UV-ozone cleaner (manufactured by Filgen, product name “UV253E”). . Next, the conductive pressure-sensitive adhesive composition 1 is dropped on the anode layer of ITO glass, spin-coated (rotation speed: 1500 rpm, time: 60 seconds), and then dried at 100 ° C. for 10 minutes to conduct electricity. A conductive layer made of an adhesive composition was formed. The film thickness of the conductive layer was measured by the product name “F20” manufactured by Filmetrics. The film thickness of the conductive layer was 160 nm.
Hereinafter, the film thickness of an Example and a comparative example is the value measured using said apparatus.
[陰極積層体の作製]
 基材であるポリエチレンテレフタレートフィルム〔PETフィルム、東洋紡績社製、製品名「コスモシャインA4300」〕上に、1×10-3Pa以下の減圧下、アルミニウム〔高純度化学研究所(株)製〕を蒸着法により成膜し、厚さ100nmの陰極層を形成させた。次いで、陰極層が形成されたPETフィルムを大気に暴露させることなく窒素雰囲気を有するグローブボックスに持ち込んだ。
 次に、グローブボックス中で、脱水クロロホルムにポリ-3-ヘキシルチオフェン(P3HT)〔アルドリッチ製、レジオレギュラータイプ〕が1.0質量%になるように、[60]PCBM(6,6-フェニル-C61-酪酸メチルエステル)が0.75質量%になるように溶解した液(光電変換層形成用溶液)を調製した。次いで、この液を孔径0.45μmのフィルターで濾過し、上記PETフィルムの陰極層(アルミニウム層)上に滴下し、2500rpmで60秒間のスピンコートを行い、室温で30分放置後、100℃で10分間熱処理を行い、厚さ120nmの光電変換層を形成させた。
[電子デバイスの作製]
 得られた陽極積層体の導電層表面と、陰極積層体の光電変換層表面とをロールラミネーター〔ロイヤルソブリン社製、製品名:RSL-328S〕を用いて、ローラーの温度を120℃に設定し、加熱しながら圧着して貼り合わせることで電子デバイス1を得た。
[Preparation of cathode laminate]
On a polyethylene terephthalate film (PET film, manufactured by Toyobo Co., Ltd., product name “Cosmo Shine A4300”) as a base material, aluminum (manufactured by High-Purity Chemical Laboratory Co., Ltd.) under a reduced pressure of 1 × 10 −3 Pa or less. Was deposited by a vapor deposition method to form a cathode layer having a thickness of 100 nm. Next, the PET film on which the cathode layer was formed was brought into a glove box having a nitrogen atmosphere without being exposed to the atmosphere.
Next, in a glove box, [60] PCBM (6,6-phenyl-) was added so that poly-3-hexylthiophene (P3HT) (manufactured by Aldrich, regioregular type) was 1.0% by mass in dehydrated chloroform. A solution (photoelectric conversion layer forming solution) in which C61-butyric acid methyl ester) was dissolved to 0.75% by mass was prepared. Next, this liquid was filtered through a filter having a pore diameter of 0.45 μm, dropped onto the cathode layer (aluminum layer) of the PET film, spin-coated at 2500 rpm for 60 seconds, allowed to stand at room temperature for 30 minutes, and then at 100 ° C. A heat treatment was performed for 10 minutes to form a photoelectric conversion layer having a thickness of 120 nm.
[Production of electronic devices]
Using the roll laminator [Royal Sovereign, product name: RSL-328S], the temperature of the roller was set to 120 ° C. with the surface of the conductive layer of the obtained anode laminate and the surface of the photoelectric conversion layer of the cathode laminate. The electronic device 1 was obtained by pressure bonding while heating.
<実施例2>
 水系エマルション粘着剤を0.5質量部に、PEDOT:PSS水分散液を10質量部に変更した以外は実施例1と同様の手順で導電性粘着剤組成物2を調製し、電子デバイス2を得た(導電層の膜厚は140nmであった)。
<Example 2>
A conductive pressure-sensitive adhesive composition 2 was prepared in the same procedure as in Example 1 except that the water-based emulsion pressure-sensitive adhesive was changed to 0.5 parts by mass and the PEDOT: PSS aqueous dispersion was changed to 10 parts by mass. Obtained (the thickness of the conductive layer was 140 nm).
<実施例3>
 水系エマルション粘着剤を0.25質量部に、PEDOT:PSS水分散液を10質量部に変更した以外は実施例1と同様の手順で導電性粘着剤組成物3を調製し、電子デバイス3を得た(導電層の膜厚は165nmであった)。
<Example 3>
A conductive pressure-sensitive adhesive composition 3 was prepared in the same procedure as in Example 1 except that the water-based emulsion pressure-sensitive adhesive was changed to 0.25 parts by mass and the PEDOT: PSS aqueous dispersion was changed to 10 parts by mass. Obtained (the thickness of the conductive layer was 165 nm).
<実施例4>
 水系エマルション粘着剤を0.1質量部に、PEDOT:PSS水分散液を10質量部に変更した以外は実施例1と同様の手順で導電性粘着剤組成物4を調製し、電子デバイス4を得た(導電層の膜厚は145nmであった)。
<Example 4>
A conductive pressure-sensitive adhesive composition 4 was prepared in the same procedure as in Example 1 except that the water-based emulsion pressure-sensitive adhesive was changed to 0.1 parts by mass and the PEDOT: PSS aqueous dispersion was changed to 10 parts by mass. Obtained (the thickness of the conductive layer was 145 nm).
<実施例5>
 水系エマルション粘着剤1.0質量部に、導電性有機高分子化合物として、PEDOT:PSS水分散液に代えて、ポリアニリン水分散液〔日産化学工業社製、製品名:D1033W、固形分2.5質量%〕4質量部を加えた以外は実施例1と同様の手順で導電性粘着剤組成物5を調製し、電子デバイス5を得た(導電層の膜厚は170nmであった)。
<Example 5>
Instead of PEDOT: PSS aqueous dispersion, 1.0 part by mass of an aqueous emulsion adhesive, instead of PEDOT: PSS aqueous dispersion, polyaniline aqueous dispersion [manufactured by Nissan Chemical Industries, product name: D1033W, solid content 2.5 [Mass%] A conductive pressure-sensitive adhesive composition 5 was prepared in the same procedure as in Example 1 except that 4 parts by mass were added, to obtain an electronic device 5 (the thickness of the conductive layer was 170 nm).
<実施例6>
 水系エマルション粘着剤を1.0質量部に、導電性有機高分子化合物として、PEDOT:PSS水分散液に代えて、ポリピロール水分散液〔シグマアルドリッチ製、製品名:482552、固形分5質量%〕2質量部を加えた以外は実施例1と同様の手順で導電性粘着剤組成物6を調製し、電子デバイス6を得た(導電層の膜厚は190nmであった)。
<Example 6>
An aqueous emulsion adhesive is added to 1.0 part by mass, and as a conductive organic polymer compound, instead of PEDOT: PSS aqueous dispersion, a polypyrrole aqueous dispersion (manufactured by Sigma-Aldrich, product name: 482552, solid content 5 mass%) A conductive pressure-sensitive adhesive composition 6 was prepared in the same procedure as in Example 1 except that 2 parts by mass were added, and an electronic device 6 was obtained (the film thickness of the conductive layer was 190 nm).
<比較例1>
 実施例1の導電性粘着剤組成物1において、水系エマルション粘着剤を加えず、導電性有機高分子としてPEDOT:PSS10質量部のみを比較用組成物1とし、実施例1と同様の手順で比較用電子デバイス1を得た(比較用組成物1からなる層の膜厚は40nmであった)。
<Comparative Example 1>
In the conductive pressure-sensitive adhesive composition 1 of Example 1, a water-based emulsion pressure-sensitive adhesive was not added, and only 10 parts by mass of PEDOT: PSS as a conductive organic polymer was used as a comparative composition 1 and compared in the same procedure as in Example 1. An electronic device 1 was obtained (the film thickness of the layer made of the composition 1 for comparison was 40 nm).
<比較例2>
 実施例1の導電性粘着剤組成物1において、導電性有機高分子としてPEDOT:PSSを加えず、水系エマルション粘着剤のみを比較用組成物2とし、実施例1と同様の手順で比較用電子デバイス2を得た(比較用組成物2からなる層の膜厚は100nmであった)。
 実施例1~6で得られた導電性粘着剤組成物1~6、比較例1、2で得られた比較用組成物の配合組成と、実施例1~6で得られた電子デバイス1~6および比較例1、2で得られた比較用電子デバイス1、2の特性を測定して表1に示した。
<Comparative Example 2>
In the conductive pressure-sensitive adhesive composition 1 of Example 1, PEDOT: PSS was not added as the conductive organic polymer, and only the water-based emulsion pressure-sensitive adhesive was used as the comparative composition 2, and the comparative electrons were prepared in the same procedure as in Example 1. Device 2 was obtained (the film thickness of the layer made of Comparative Composition 2 was 100 nm).
Compositions of conductive adhesive compositions 1 to 6 obtained in Examples 1 to 6, comparative compositions obtained in Comparative Examples 1 and 2, and electronic devices 1 to 6 obtained in Examples 1 to 6 The characteristics of the comparative electronic devices 1 and 2 obtained in Example 6 and Comparative Examples 1 and 2 were measured and shown in Table 1.
 表1に記載の特性は下記のようにして測定した。
(1)成膜性
 前記導電性粘着剤組成物1~6、比較用組成物1、2をスピンコート(回転数1500rpm、時間60秒)を行い、均一な層が得られたか否を評価した。
 良好:均一な層が得られた。
(2)光透過率
 光透過率測定装置〔日本電色工業社製、製品名「NDH-5000」〕を用いて、JISK7361-1の方法によって、実施例及び比較例の陽極積層体の全光透過率を測定した。
(3)表面抵抗率
 実施例1~6および比較例1、2で得られた各陽極積層体について、表面抵抗率測定装置〔三菱化学社製、ロレスタGP MCP-T600〕により、四端子法で実施例の導電層の表面抵抗率を測定した。比較例においては、比較用組成物1,2からなる層の表面抵抗率を測定した。
(4)接合形成の確認
 マルチメータ〔アドバンテスト社製、製品名「R6243」〕を用いて、得られた電子デバイス1~6、比較用電子デバイス1、2の陰極層と陽極層に接続し、電流電圧曲線を測定し、下記の基準で評価した。
良好※1:接合が良好できれいな整流性が見られた。
良好※2:接合が可能で整流性が見られた。
不良※1:接合は可能であったが、整流性が見られなかった。
不良※2:接合不良により整流性が見られなかった。
 電流電圧曲線の一例として、実施例1~3で得られた電子デバイス1~3の電流電圧曲線を図2~4に示す。
 表1から、実施例の導電層は、透明性、導電性、成膜性に優れていることが分かる。また、実施例で得られた電子デバイスは、良好な整流特性が得られたことが分かった。
 すなわち、実施例の導電層が優れた粘着性を有しているため、ラミネートプロセスによって粘着性のある導電層を光電変換層に貼り合わせることで、導電層と光電変換層との接合が得られ、電子デバイスとして機能していることが確認された。
 一方、比較例1の比較用組成物1からなる層は、透明性、導電性、成膜性に優れているものの、粘着性がないため、光電変換層の接合性が悪く、整流性のある電子デバイスが得られなかった。また、比較例2の比較用組成物2からなる層は、光電変換層との接合性は可能であったが、表面抵抗率が高く、電子デバイスとして使用した場合、良好な整流特性が得られなかった。
The characteristics described in Table 1 were measured as follows.
(1) Film-formability The conductive adhesive compositions 1 to 6 and the comparative compositions 1 and 2 were spin-coated (rotation speed 1500 rpm, time 60 seconds) to evaluate whether a uniform layer was obtained. .
Good: A uniform layer was obtained.
(2) Light transmittance All light of the anode laminates of Examples and Comparative Examples was measured by the method of JIS K 7361-1 using a light transmittance measuring device (manufactured by Nippon Denshoku Industries Co., Ltd., product name “NDH-5000”). The transmittance was measured.
(3) Surface resistivity The anode laminates obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were measured by a four-terminal method using a surface resistivity measuring device [Mitsubishi Chemical Corporation, Loresta GP MCP-T600]. The surface resistivity of the conductive layer of the example was measured. In the comparative example, the surface resistivity of the layer composed of the comparative compositions 1 and 2 was measured.
(4) Confirmation of junction formation Using a multimeter [manufactured by Advantest, product name “R6243”], connect to the cathode layers and anode layers of the obtained electronic devices 1 to 6 and comparative electronic devices 1 and 2, Current-voltage curves were measured and evaluated according to the following criteria.
Good * 1 : Good bonding and clean rectification was observed.
Good * 2 : Bonding was possible and rectification was observed.
Defect * 1 : Joining was possible, but no rectification was observed.
Defect * 2 : Rectification was not observed due to poor bonding.
As an example of the current-voltage curve, the current-voltage curves of the electronic devices 1 to 3 obtained in Examples 1 to 3 are shown in FIGS.
From Table 1, it can be seen that the conductive layers of the examples are excellent in transparency, conductivity, and film formability. Moreover, it turned out that the favorable rectification | straightening characteristic was acquired for the electronic device obtained by the Example.
That is, since the conductive layer of the example has excellent adhesiveness, bonding of the conductive layer and the photoelectric conversion layer can be obtained by bonding the adhesive conductive layer to the photoelectric conversion layer by a laminating process. , Confirmed to function as an electronic device.
On the other hand, the layer composed of the comparative composition 1 of Comparative Example 1 is excellent in transparency, conductivity, and film formability, but has no adhesiveness, so that the bonding property of the photoelectric conversion layer is poor and rectifying. An electronic device could not be obtained. Moreover, although the layer which consists of the composition 2 for a comparison of the comparative example 2 was able to join with a photoelectric converting layer, when it was used as an electronic device with a high surface resistivity, a favorable rectification characteristic was acquired. There wasn't.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の導電性粘着剤組成物は、優れた粘着性を有し、かつ表面抵抗率が低いため、有機トランジスタ、有機メモリー、有機EL等の有機デバイス;液晶ディスプレイ;電子ペーパー;薄膜トランジスタ;エレクトロクロミック;電気化学発光デバイス;タッチパネル;ディスプレイ;太陽電池;熱電変換デバイス;圧電変換デバイス;蓄電デバイス;等の電子デバイスの導電層として使用可能である。さらに、ラミネートプロセスによる電子デバイスの分野で有用である。 Since the conductive adhesive composition of the present invention has excellent adhesiveness and low surface resistivity, organic devices such as organic transistors, organic memories, and organic ELs; liquid crystal displays; electronic paper; thin film transistors; electrochromic An electrochemiluminescence device; a touch panel; a display; a solar cell; a thermoelectric conversion device; a piezoelectric conversion device; an electricity storage device; Furthermore, it is useful in the field of electronic devices by a laminating process.
1:陽極層
2:陰極層
3:光電変換層
4:導電層
1: Anode layer 2: Cathode layer 3: Photoelectric conversion layer 4: Conductive layer

Claims (6)

  1.  導電性有機高分子化合物及び水系エマルション粘着剤を含む導電性粘着剤組成物。 A conductive adhesive composition comprising a conductive organic polymer compound and an aqueous emulsion adhesive.
  2.  前記導電性有機高分子化合物が、ポリアニリン類、ポリピロール類及びポリチオフェン類ならびにそれらの誘導体から選ばれる少なくとも1種である請求項1に記載の導電性粘着剤組成物。 The conductive adhesive composition according to claim 1, wherein the conductive organic polymer compound is at least one selected from polyanilines, polypyrroles, polythiophenes, and derivatives thereof.
  3.  前記導電性有機高分子化合物が、ポリチオフェン類の誘導体である請求項1に記載の導電性粘着剤組成物。 The conductive adhesive composition according to claim 1, wherein the conductive organic polymer compound is a derivative of polythiophenes.
  4.  前記水系エマルション粘着剤が、アクリル系エマルション粘着剤である請求項1~3のいずれかに記載の導電性粘着剤組成物。 The conductive adhesive composition according to any one of claims 1 to 3, wherein the aqueous emulsion adhesive is an acrylic emulsion adhesive.
  5.  陽極層と、導電性粘着剤組成物から形成された導電層と、光電変換層と、陰極層をこの順に配置してなる電子デバイスにおいて、前記導電性粘着剤組成物が、請求項1~4のいずれかに記載の導電性粘着剤組成物であることを特徴とする電子デバイス。 5. An electronic device comprising an anode layer, a conductive layer formed from a conductive pressure-sensitive adhesive composition, a photoelectric conversion layer, and a cathode layer in this order, wherein the conductive pressure-sensitive adhesive composition comprises: An electronic device comprising the conductive adhesive composition according to any one of the above.
  6.  請求項5に記載の電子デバイスの製造方法であって、陽極層上に前記導電性粘着剤組成物を用いて導電層を形成して陽極積層体を形成する工程、陰極層上に前記光電変換層を形成して陰極積層体を形成する工程、および前記陰極積層体の光電変換層表面と前記陽極積層体の導電層表面とを貼り合わせる工程を含むことを特徴とする電子デバイスの製造方法。 6. The method of manufacturing an electronic device according to claim 5, wherein a conductive layer is formed on the anode layer using the conductive pressure-sensitive adhesive composition to form an anode laminate, and the photoelectric conversion is performed on the cathode layer. A method for manufacturing an electronic device, comprising: forming a cathode laminate by forming a layer; and bonding the surface of the photoelectric conversion layer of the cathode laminate and the surface of the conductive layer of the anode laminate.
PCT/JP2011/073143 2010-10-22 2011-10-06 Conductive adhesive composition, electronic device, and production method for electronic device WO2012053373A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012539671A JPWO2012053373A1 (en) 2010-10-22 2011-10-06 Conductive adhesive composition, electronic device and method for producing electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010237741 2010-10-22
JP2010-237741 2010-10-22

Publications (1)

Publication Number Publication Date
WO2012053373A1 true WO2012053373A1 (en) 2012-04-26

Family

ID=45975091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073143 WO2012053373A1 (en) 2010-10-22 2011-10-06 Conductive adhesive composition, electronic device, and production method for electronic device

Country Status (3)

Country Link
JP (1) JPWO2012053373A1 (en)
TW (1) TW201229191A (en)
WO (1) WO2012053373A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124336A (en) * 2010-12-08 2012-06-28 Dainippon Printing Co Ltd Manufacturing method of organic thin-film solar cell
US9353298B2 (en) 2012-10-09 2016-05-31 Lg Chem, Ltd. Acrylic emulsion pressure sensitive adhesive composition including nanometer scale latex particles with monomodal particle size distribution and method of preparing the same
WO2017142074A1 (en) * 2016-02-19 2017-08-24 積水化学工業株式会社 Solid junction-type photoelectric transducer and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227966A (en) * 1983-06-08 1984-12-21 Hitachi Chem Co Ltd Production of electrically conductive pressure-sensitive adhesive
JPH02115290A (en) * 1988-10-24 1990-04-27 Denki Kagaku Kogyo Kk Conductive pressure-sensitive adhesive
JPH03227386A (en) * 1990-01-31 1991-10-08 Sekisui Chem Co Ltd Aqueous emulsion-type conductive tackifier
JP2007051173A (en) * 2005-08-15 2007-03-01 Shin Etsu Polymer Co Ltd Antistatic tackifier, antistatic tackifier layer and protecting material
JP2007204689A (en) * 2006-02-03 2007-08-16 Seiko Pmc Corp Water-based electroconductive resin emulsion
JP2008106243A (en) * 2006-09-29 2008-05-08 Diatex Co Ltd Method for producing easy-to-peel adhesive tape
JP2009500832A (en) * 2005-06-30 2009-01-08 ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア Conductive polymer adhesive, device produced using conductive polymer adhesive, and manufacturing method
WO2009070504A2 (en) * 2007-11-26 2009-06-04 3M Innovative Properties Company Adhesive sheet and method for manufacturing same
JP2010163586A (en) * 2008-03-04 2010-07-29 Lintec Corp Adhesive composition and adhesive sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227966A (en) * 1983-06-08 1984-12-21 Hitachi Chem Co Ltd Production of electrically conductive pressure-sensitive adhesive
JPH02115290A (en) * 1988-10-24 1990-04-27 Denki Kagaku Kogyo Kk Conductive pressure-sensitive adhesive
JPH03227386A (en) * 1990-01-31 1991-10-08 Sekisui Chem Co Ltd Aqueous emulsion-type conductive tackifier
JP2009500832A (en) * 2005-06-30 2009-01-08 ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア Conductive polymer adhesive, device produced using conductive polymer adhesive, and manufacturing method
JP2007051173A (en) * 2005-08-15 2007-03-01 Shin Etsu Polymer Co Ltd Antistatic tackifier, antistatic tackifier layer and protecting material
JP2007204689A (en) * 2006-02-03 2007-08-16 Seiko Pmc Corp Water-based electroconductive resin emulsion
JP2008106243A (en) * 2006-09-29 2008-05-08 Diatex Co Ltd Method for producing easy-to-peel adhesive tape
WO2009070504A2 (en) * 2007-11-26 2009-06-04 3M Innovative Properties Company Adhesive sheet and method for manufacturing same
JP2010163586A (en) * 2008-03-04 2010-07-29 Lintec Corp Adhesive composition and adhesive sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124336A (en) * 2010-12-08 2012-06-28 Dainippon Printing Co Ltd Manufacturing method of organic thin-film solar cell
US9353298B2 (en) 2012-10-09 2016-05-31 Lg Chem, Ltd. Acrylic emulsion pressure sensitive adhesive composition including nanometer scale latex particles with monomodal particle size distribution and method of preparing the same
WO2017142074A1 (en) * 2016-02-19 2017-08-24 積水化学工業株式会社 Solid junction-type photoelectric transducer and method for producing same

Also Published As

Publication number Publication date
TW201229191A (en) 2012-07-16
JPWO2012053373A1 (en) 2014-02-24

Similar Documents

Publication Publication Date Title
JP5760003B2 (en) Transparent conductive film, electronic device, and method for manufacturing electronic device
JP5690833B2 (en) Electronic device and method for manufacturing electronic device
EP2606530B1 (en) Polymer compositions, polymer films, polymer gels, polymer foams, and electronic devices containing such films, gels, and foams
US20090014693A1 (en) Selenium Containing Electrically Conductive Polymers and Method of Making Electrically Conductive Polymers
US20090140219A1 (en) Selenium Containing Electrically Conductive Polymers and Method of Making Electrically Conductive Polymers
KR20120052193A (en) Composition for solid electrolyte and solar cell using same
WO2012053373A1 (en) Conductive adhesive composition, electronic device, and production method for electronic device
JP6050632B2 (en) Conductive composition and electrical device
WO2012078517A1 (en) Inks for solar cell inverted structures
JP2011225789A (en) Electroconductive coating composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834213

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012539671

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834213

Country of ref document: EP

Kind code of ref document: A1