WO2012053065A1 - Energy display device, energy display method, energy display program and recoding medium - Google Patents

Energy display device, energy display method, energy display program and recoding medium Download PDF

Info

Publication number
WO2012053065A1
WO2012053065A1 PCT/JP2010/068408 JP2010068408W WO2012053065A1 WO 2012053065 A1 WO2012053065 A1 WO 2012053065A1 JP 2010068408 W JP2010068408 W JP 2010068408W WO 2012053065 A1 WO2012053065 A1 WO 2012053065A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
factor
display
consumed
produced
Prior art date
Application number
PCT/JP2010/068408
Other languages
French (fr)
Japanese (ja)
Inventor
安士 光男
馨一郎 藤井
福田 達也
進 大沢
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2010/068408 priority Critical patent/WO2012053065A1/en
Priority to JP2011538197A priority patent/JP4885335B1/en
Priority to PCT/JP2011/058148 priority patent/WO2012053238A1/en
Priority to JP2011268416A priority patent/JP5231622B2/en
Publication of WO2012053065A1 publication Critical patent/WO2012053065A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0231Circuits relating to the driving or the functioning of the vehicle
    • B60R16/0236Circuits relating to the driving or the functioning of the vehicle for economical driving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3469Fuel consumption; Energy use; Emission aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3697Output of additional, non-guidance related information, e.g. low fuel level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/16Acceleration longitudinal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/463Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to an energy display device, an energy display method, an energy display program, and a recording medium that display energy consumption of a moving object.
  • the use of the present invention is not limited to the energy display device, the energy display method, the energy display program, and the recording medium described above.
  • FIG. 15 is a diagram showing display contents of a conventional energy display device.
  • a fuel consumption display unit 11 an energy breakdown display unit 12, and a stored energy display unit 13 are displayed on the display unit 10.
  • the kinetic energy compatible fuel consumption 112 and the energy compatible fuel consumption 113 are added to the apparent fuel consumption 111 and displayed as a bar graph.
  • the energy breakdown display unit 12 displays a breakdown of the absorbed energy 121 by the brake and the regenerative energy 122 by the motor as a bar graph.
  • the accumulated energy display unit 13 displays the total accumulated amount 131 of kinetic energy and potential energy, each bar graph of the accumulated electric energy 132, and an arrow indicating the state of each energy (for example, see Patent Document 1 below). .)
  • FIG. 16 is a diagram showing display contents of another conventional energy display device. Fuel consumption 20 is divided into four factors: fuel amount 21 used to drive the engine itself, fuel amount 22 used to run against road surface rolling resistance and gradient resistance, and air resistance. The fuel amount 23 used for traveling and the fuel amount 24 used for accelerating the vehicle are calculated, and these are stacked and displayed in the vertical direction (see, for example, Patent Document 2 below).
  • the energy display is divided into a fuel consumption display unit 11, an energy breakdown display unit 12, and a stored energy display unit 13.
  • the potential energy is converted as travel energy.
  • the fuel consumption display unit 11, the energy breakdown display unit 12, and the stored energy display unit 13, and easily and intuitively the fuel consumption state (energy breakdown and fuel consumption configuration). ) could not understand.
  • the fuel amount used for traveling against the rolling resistance and gradient resistance of the road surface is displayed as the same fuel amount 22, and the breakdown cannot be known.
  • an energy display device configured to calculate energy consumption consumed by the operation of the moving object for each factor, and for each calculated factor.
  • Display means for displaying information related to energy consumption, and determination means for determining whether the energy is produced or consumed for each of the energy by each factor, and the display means includes the determination means When it is determined that all the energy for each factor is consumed, the energy consumption is accumulated and displayed for each factor starting from a predetermined position, and the energy for each factor is produced by the determination means. If it is determined that there is energy, the energy that is produced in the direction opposite to the accumulated direction from the predetermined position. As the starting point the position which has a transition by Guy amount by accumulating another of the energy consumption by factors and displaying.
  • the energy display device is a calculation means for calculating energy consumption consumed by the operation of the moving body for each factor, and a display means for displaying information relating to the energy consumption for each calculated factor. Determining means for determining whether the energy is produced or consumed for each energy by factor, and the display means has consumed all the energy by factor by the determining means If it is determined that the energy consumption amount is accumulated and displayed from a predetermined position as a starting point, the consumption is consumed when it is determined by the determination means that there is energy produced by the factor. The energy consumption is accumulated and displayed for each energy factor starting from the predetermined position. Both the the accumulated direction as a start point of the predetermined position on the energy being produced and displaying the amount of energy that is the production in the opposite direction.
  • An energy display method is an energy display method for an energy display device that displays energy consumed by operation of a mobile object, and calculates an energy consumption consumed by operation of the mobile object for each factor.
  • a calculation step a display step for displaying information on energy consumption for each calculated factor, and a determination step for determining whether the energy is produced or consumed for each energy by the factor.
  • the display step when it is determined by the determination step that all the energy for each factor is consumed, the energy consumption is accumulated and displayed for each factor starting from a predetermined position. If it is determined that there is energy produced by the factor-specific energy, The direction that the accumulated from the home position and displaying the cumulative other the energy consumption by factors as the starting point the position which has a transition by the amount of energy that is the production in the opposite direction.
  • An energy display method is an energy display method for an energy display device that displays energy consumed by operation of a mobile object, and calculates an energy consumption amount consumed by operation of the mobile object for each factor.
  • a calculation step a display step for displaying information on energy consumption for each calculated factor, and a determination step for determining whether the energy is produced or consumed for each energy by the factor.
  • the display step when it is determined by the determination step that all the energy for each factor is consumed, the energy consumption is accumulated and displayed for each factor starting from a predetermined position.
  • consumption is accumulated and displayed for each energy starting from the predetermined position as a starting point, and the production is performed in a direction opposite to the accumulated direction starting from the predetermined position for the energy being produced.
  • the amount of energy that is being displayed is displayed.
  • the energy display program according to the invention described in claim 13 causes the computer to execute the energy display method according to claim 11 or 12.
  • a recording medium according to the invention described in claim 14 is characterized in that the energy display program according to claim 13 is recorded in a computer-readable state.
  • FIG. 1 is a block diagram illustrating a functional configuration of the energy display device according to the embodiment.
  • FIG. 2 is a flowchart showing a procedure of energy display processing by the energy display device.
  • FIG. 3 is a block diagram illustrating a hardware configuration of the navigation apparatus.
  • FIG. 4 is a flowchart illustrating a procedure of energy display processing according to the first embodiment.
  • FIG. 5 is a diagram illustrating an outline of energy display according to the first embodiment.
  • FIG. 6 is a diagram illustrating details of energy display according to the first embodiment.
  • FIG. 7 is a diagram illustrating another energy display example of the first embodiment.
  • FIG. 8 is a diagram illustrating another energy display example of the first embodiment.
  • FIG. 9 is a diagram illustrating another energy display example of the first embodiment.
  • FIG. 1 is a block diagram illustrating a functional configuration of the energy display device according to the embodiment.
  • FIG. 2 is a flowchart showing a procedure of energy display processing by the energy display device.
  • FIG. 10 is a diagram illustrating another energy display example of the first embodiment.
  • FIG. 11 is a flowchart illustrating a procedure of energy display processing according to the second embodiment.
  • FIG. 12 is a diagram illustrating an outline of energy display of the second embodiment.
  • FIG. 13 is a diagram illustrating another energy display example of the second embodiment.
  • FIG. 14 is a diagram illustrating details of energy display according to the second embodiment.
  • FIG. 15 is a diagram showing display contents of a conventional energy display device.
  • FIG. 16 is a diagram showing display contents of another conventional energy display device.
  • FIG. 1 is a block diagram illustrating a functional configuration of the energy display device according to the embodiment.
  • the energy display device 100 according to the embodiment divides the energy of the vehicle according to factors and displays it in a form that is easy for the user to understand.
  • the energy display device 100 includes an acquisition unit 101, a calculation unit 102, a determination unit 103, a determination unit 104, a display control unit 105, and a display unit 110.
  • the energy is, for example, energy based on electricity in the case of EV cars, HV cars, PHV cars, etc. (hereinafter simply referred to as “EV cars”).
  • the energy is energy based on, for example, gasoline, light oil, gas, or the like in the case of a gasoline vehicle, a diesel vehicle, or the like (hereinafter simply referred to as “gasoline vehicle”).
  • the acquisition unit 101 acquires information related to energy calculation of the moving object. This information is data such as information related to the speed of the moving body. Based on the information acquired by the acquisition unit 101, the calculation unit 102 calculates the energy consumption consumed by the operation of the moving object for each factor. Specifically, the energy consumption is calculated for each factor by substituting the information acquired by the acquisition unit 101 as a variable into a predetermined energy consumption estimation formula.
  • the determination unit 103 determines the information acquired by the acquisition unit 101 and outputs information necessary for determination of energy production or consumption. Specifically, it is determined whether the moving body is currently climbing up or down, and whether the moving body is currently accelerating or decelerating, and the determination result is output to the determination unit 104.
  • the determination unit 104 determines, based on the outputs of the calculation unit 102 and the determination unit 103, for each energy for each factor whether all the energy is consumed or partly produced. In this determination, the determination unit 103 uses the determination result of whether the moving body is up / down or whether the moving body is accelerating / decelerating. In addition, when the moving body travels in a predetermined section, the determination unit 104 can determine whether accumulated energy necessary for traveling in the predetermined section is produced or consumed.
  • the display control unit 105 generates display data related to the display of energy by factor.
  • the display data differs depending on whether the determination unit 104 determines that all the energy for each factor is consumed and the case where it is determined that there is produced energy among the energy for each factor. It is set as display data in a display form.
  • the display control unit 105 starts from a predetermined position (reference position) on the screen on the display data and has a predetermined direction.
  • a display data is generated by accumulating the energy consumption according to the factors.
  • the determination unit 104 determines that there is energy produced among the energy for each factor, accumulation is performed along a predetermined direction from a predetermined position (reference position) on coordinates on the display data. Display data in which other energy consumptions are accumulated for each factor is generated starting from the position where the amount of energy produced in the direction opposite to the direction shifted is the starting point.
  • a position shifted from the predetermined position (reference position) on the coordinates of other display data by the amount of energy produced in the direction opposite to the direction accumulated in the predetermined direction is used as the starting point. It is also possible to generate display data in which the energy consumption amount is accumulated in the predetermined direction for each factor.
  • the predetermined direction of the display data is displayed so that, for example, a bar graph, a pie chart, etc. extend vertically or horizontally from the reference position.
  • a pie chart it suffices if it is possible to clearly show that the reference positions extend in opposite (plus and minus) directions.
  • auxiliary display data may be displayed so that the reference position can be easily recognized.
  • the energy consumption amount according to a some factor is divided
  • the display unit 110 displays the display data generated by the display control unit 105. Thereby, the information regarding energy consumption is displayed on the display part 110 according to the classified factor. At this time, the display unit 110 may display the map data together. The display unit 110 can also display, on the map data, a route, an area, and the like that can be reached by the travelable distance calculated by the calculation unit 102.
  • the information on the speed of the moving object acquired by the acquiring unit 101 is, for example, the speed and acceleration of the moving object.
  • the consumption energy estimation formula used in the calculation unit 102 is a formula for estimating the energy consumption amount of the mobile object.
  • the energy consumption estimation formula is a polynomial composed of first information, second information, third information, and fourth information having different factors for increasing or decreasing the energy consumption. Details of the energy consumption estimation formula will be described later.
  • 1st information is the information regarding the energy consumed when the moving body stops in the state where the drive source moved.
  • the engine is idled at a low speed to such an extent that no load is applied to the engine of the moving body.
  • the stop time of the moving body in a state where the drive source is movable is an idling time.
  • the first information is, for example, the amount of energy consumed when the vehicle is stopped with the engine running or when stopped by a signal (hereinafter referred to as “energy consumption”). . That is, the first information is an energy consumption amount consumed due to a factor not related to the traveling of the moving body. More specifically, the first information is an energy consumption amount by an air conditioner or an audio provided in the moving body. The first information may be substantially zero in the case of an EV vehicle.
  • the second information is information related to energy consumed and recovered during acceleration / deceleration of the moving body.
  • the time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes with time.
  • the time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes within a predetermined time.
  • the predetermined time is a time interval at regular intervals, for example, per unit time.
  • the second information is a ratio (hereinafter referred to as “recovery rate”) between the amount of energy consumed when the moving body is accelerated and the amount of energy collected when the moving body is decelerated. Good.
  • the recovered energy is energy that is recovered by converting kinetic energy generated during acceleration of the moving body into electrical energy during deceleration. A detailed description of the recovery rate will be described later.
  • the recovered energy is energy that can be saved without consuming more energy than necessary in the case of a gasoline vehicle.
  • a driving method for improving fuel consumption a method of reducing the time required to step on the accelerator is known. That is, in a gasoline vehicle, fuel consumption can be suppressed by maintaining the traveling of the moving body by the kinetic energy (inertial force) generated when the moving body is accelerated. Further, by using the engine brake when the moving body is decelerated, it is possible to suppress fuel consumption caused by stepping on the brake. In other words, in the case of a gasoline vehicle, the consumed fuel is reduced (fuel cut) to save the fuel, but here it is assumed that the energy is recovered as in the case of an EV vehicle.
  • the third information is information related to energy consumed by the resistance generated when the mobile object is traveling.
  • the traveling time of the moving body is a traveling state in which the speed of the moving body is constant within a predetermined time.
  • the resistance generated when the mobile body travels is a factor that changes the travel state of the mobile body when the mobile body travels. Specifically, the resistance generated when the mobile body travels is resistance generated in the mobile body due to weather conditions, road conditions, vehicle conditions, and the like.
  • the resistance generated in the moving body due to the weather condition is, for example, air resistance due to weather changes such as rain and wind.
  • the resistance generated in the moving body due to the road condition is road resistance due to road gradient, pavement state of the road surface, and the like.
  • the resistance generated in the moving body depending on the vehicle condition is a load resistance applied to the moving body due to tire air pressure, number of passengers, loaded weight, and the like.
  • the third information is energy consumption when the moving body is driven at a constant speed in a state where it receives air resistance, road surface resistance, and load resistance. More specifically, the third information is, for example, energy consumption consumed when the moving body travels at a constant speed, such as air resistance generated in the moving body due to a headwind or road resistance received from a road that is not paved. Amount.
  • the fourth information is information related to energy consumed and recovered by a change in altitude where the moving object is located.
  • the change in altitude at which the moving body is located is a state in which the altitude at which the moving body is located changes over time.
  • the change in altitude at which the moving body is located is a traveling state in which the altitude changes when the moving body travels on a sloped road within a predetermined time.
  • the acquisition unit 101 is managed, for example, by an electronic control unit (ECU) via an in-vehicle communication network (hereinafter simply referred to as “CAN”) that operates according to a communication protocol such as CAN (Controller Area Network).
  • ECU electronice control unit
  • CAN Controller Area Network
  • the speed and acceleration of the moving body that is being used may be acquired and used as variables relating to the first information, the second information, the third information, and the fourth information.
  • the acquisition unit 101 may acquire information on the remaining energy amount of the moving object and the actual energy consumption amount of the moving object, and use them as variables of the energy consumption estimation formula.
  • the remaining energy amount is the amount of energy remaining in the fuel tank or battery of the mobile body. That is, in the case of an EV vehicle, the recovered energy amount is also included in the remaining energy amount.
  • the acquisition unit 101 acquires, for example, the remaining energy amount and the actual energy consumption managed by the ECU via an in-vehicle communication network that operates according to a communication protocol such as CAN.
  • the acquisition unit 101 acquires information about a road and uses it as a variable of a consumption energy estimation formula.
  • the acquisition unit 101 may acquire information about a road from map information stored in a storage unit (not shown), an inclination sensor, or the like A road gradient or the like may be acquired.
  • the information on the road is, for example, road information that causes a change in the amount of energy consumed or recovered by the traveling of the moving body.
  • the information on the road is, for example, a running resistance generated in the moving body due to the road type, road gradient, road surface condition, and the like.
  • the running resistance can be calculated by the following equation (1), for example.
  • running resistance is generated in a moving body during acceleration or running.
  • the calculation unit 102 calculates the energy consumption based on the consumption energy estimation formula including the first information, the second information, the third information, and the fourth information. Specifically, the calculation unit 102 estimates the energy consumption amount of the moving body based on the information regarding the speed of the moving body acquired by the acquiring unit 101.
  • the calculation unit 102 estimates the energy consumption per unit time based on the consumption energy estimation formula shown in the following formula (2) or formula (3), or both formulas.
  • the energy consumption amount of the moving body per unit time during acceleration and traveling is the product of travel resistance, travel distance, net motor efficiency, and transmission efficiency, and is expressed by the following equation (2).
  • the energy consumption estimation formula shown in the formula (2) is a theoretical formula that estimates the energy consumption per unit time during acceleration and traveling.
  • is the net thermal efficiency and ⁇ is the total transmission efficiency. If the sum of the acceleration ⁇ of the moving object and the acceleration g of the gravity from the road gradient ⁇ is the combined acceleration
  • the energy consumption estimation equation shown in equation (3) is a theoretical equation that estimates the energy consumption per unit time during deceleration.
  • the first term on the right side is the energy consumption (first information) during idling.
  • the second term on the right side is the energy consumption (fourth information) due to the gradient component and the energy consumption (third information) due to the rolling resistance component.
  • the third term on the right side is energy consumption (third information) due to the air resistance component.
  • the fourth term on the right side of the equation (2) is the energy consumption (second information) by the acceleration component.
  • the fourth term on the right side of the equation (3) is the energy consumption (second information) by the deceleration component.
  • the information indicated by the other variables is the same as the above equation (1).
  • the motor efficiency and the drive efficiency are considered to be constant.
  • the motor efficiency and the driving efficiency vary due to the influence of the motor speed and torque. Therefore, the following equations (4) and (5) show empirical equations for estimating the energy consumption per unit time.
  • is positive is expressed by the following formula (4). That is, the energy consumption estimation formula shown in the formula (4) is an empirical formula for estimating the energy consumption per unit time during acceleration and traveling.
  • is negative is expressed by the following formula (5). That is, the energy consumption estimation formula shown in the formula (5) is an empirical formula that estimates the energy consumption per unit time during deceleration.
  • the coefficients a 1 and a 2 are constants that are set according to the status of the moving object.
  • the coefficients k 1 , k 2 , and k 3 are variables based on energy consumption during acceleration.
  • the information indicated by the first term on the right side to the fourth term on the right side is the same as in the above equations (2) and (3).
  • the above formula (2) which is a theoretical formula
  • the formula (4) which is an empirical formula
  • the first term on the right side of the equations (2) and (4) is a component that does not depend on the speed, and is both first information.
  • the second term on the right side of equation (4) is the energy consumption for the gradient resistance and acceleration resistance. That is, the second term on the right side of the equation (4) is the second information representing the increase in kinetic energy due to the speed increase and the fourth information representing the increase in potential energy due to the altitude change. This corresponds to the acceleration component of the term and the gradient component of the second term on the right side of equation (2).
  • the third term on the right side of equation (4) is third information, and corresponds to the rolling resistance component of the second term on the right side of equation (2) and the air resistance component of the third term on the right side of equation (2).
  • the calculation unit 102 inputs the travel speed V and the travel acceleration ⁇ per unit time using the consumption energy estimation formula shown in the above formula (4) or formula (5), or both formulas, thereby running speed.
  • the energy consumption at the moment when the travel acceleration is acquired may be estimated.
  • the speed and acceleration per unit time in the entire travel section stroke to be traveled are acquired every 1 second, for example, and 1 second If you try to estimate the amount of energy consumed every time, the amount of calculation may become enormous.
  • the calculation unit 102 may estimate the energy consumption amount in this section using the average value of the traveling speed and the average value of the traveling acceleration in a certain section.
  • the energy consumption amount in the section can be obtained by using a consumption energy estimation formula defined based on the above formula (4) or formula (5).
  • the calculation unit 102 averages the energy consumption per unit time consumed when the moving body is accelerated and the energy consumption per unit time collected when the moving body is decelerated as the second information. Use the estimation formula.
  • the calculation unit 102 estimates the energy consumption using the empirical expression of the energy consumption in the section shown in the following equation (6) or (7), or both equations. Good.
  • the consumption energy estimation formula shown in the following equation (6) is a consumption energy estimation formula in the section when the altitude difference ⁇ h of the section in which the mobile body travels is positive.
  • the case where the altitude difference ⁇ h is positive is a case where the moving body is traveling uphill.
  • the consumption energy estimation formula shown in the following equation (7) is a consumption energy estimation formula in the section when the altitude difference ⁇ h of the section in which the mobile body travels is negative.
  • the case where the altitude difference ⁇ h is negative is a case where the moving body is traveling downhill.
  • the first term on the right side is the energy consumption (first information) during idling.
  • the second term on the right side is the energy consumption (second information) by the acceleration resistance.
  • the third term on the right side is energy consumption consumed as potential energy (fourth information).
  • the fourth term on the right side is energy consumption (third information) due to air resistance and rolling resistance (hereinafter collectively referred to as “running resistance”) received per unit area.
  • the calculation unit 102 may acquire the recovery rate ⁇ provided by the manufacturer, or may calculate the recovery rate ⁇ based on the information regarding the speed acquired by the acquisition unit 101.
  • the recovery rate ⁇ is about 0.7 to 0.9 for EV vehicles, about 0.6 to 0.8 for HV vehicles, and about 0.2 to 0.3 for gasoline vehicles.
  • the recovery rate of the gasoline vehicle is a ratio between an energy consumption amount when the moving body is accelerated and an energy amount that is fuel-cut when decelerating.
  • the calculation unit 102 calculates the energy consumption amount per unit time when traveling in the travel section based on any one or more of the energy consumption estimation expressions shown in the expressions (2) to (5). In addition to the estimation, the energy consumption when traveling in the travel section is estimated by integrating the travel time.
  • the calculation unit 102 estimates the energy consumption per unit time based on the consumption energy estimation formula using the information about the actual speed or the information about the travel speed, and the travel acquired by the acquisition unit 101 By integrating over time, energy consumption in the travel segment is estimated. Since the energy consumption amount in the travel section is estimated using the travel time when the mobile body actually traveled in the past in the travel section, the energy consumption amount closer to the actual energy consumption amount can be estimated.
  • FIG. 2 is a flowchart showing a procedure of energy display processing by the energy display device.
  • the energy display device 100 acquires information related to energy calculation of the moving object by the acquisition unit 101 (step S201).
  • the energy display device 100 uses the energy consumption estimation formula including the first information, the second information, the third information, and the fourth information to cause the calculation unit 102 to calculate the energy consumption by factor. Calculate (step S202).
  • step S203 it is determined by the determination unit 104 of the energy display device 100 whether all the energy is consumed or partly produced. This determination is made based on the energy consumption value calculated by the calculation unit 102. The determination result of the determination unit 103 may be added to this determination. In this case, the determination unit 104 obtains a determination result from the determination unit 103 as to whether the moving body is ascending / descending and the moving body is accelerating / decelerating, and all energy is consumed or partly produced. Determine if there is something.
  • step S203: Yes the display control unit 105 determines that the energy produced among the energy for each factor is Display data of a different display form is generated when it is determined that there is (step S203: No).
  • step S203 when it is determined that all the energy for each factor is consumed (step S203: Yes), the display control unit 105 generates display data in which the energy for each factor is accumulated in the display mode at the time of consumption. (Step S204). On the other hand, when it is determined that there is energy produced among the energy for each factor (step S203: No), the display control unit 105 accumulates the energy for each factor in the display form during partial production. Display data is generated (step S205).
  • the display unit 110 of the energy display device 100 displays the display data generated by the display control unit 105 (step S206), and ends the processing according to this flowchart.
  • the above processing is continuously performed at predetermined time intervals.
  • the display screen on the display unit 110 in the case where all the energy for each factor is consumed due to the change in the traveling state of the moving body and the case where there is the energy produced among the energy for each factor
  • the display form is changed around the reference position. Further, if the energy amount of each factor varies with the change of the driving situation, the display length of each factor itself is changed accordingly.
  • the starting point of potential energy is the origin
  • this origin is the reference position on the display screen
  • the energy for each factor is the potential energy (fourth information), idling consumption (first information), The travel resistance (third information) and acceleration loss (second information) are stacked and displayed in this order.
  • the end point (minus coordinate) of the potential energy is used as the origin, and the accumulated value is displayed from the reference position in the order of idle consumption, running resistance, and acceleration loss.
  • a position shifted from the predetermined position (reference position) on the coordinates of other display data by the amount of energy produced in the direction opposite to the direction accumulated in the predetermined direction is used as the starting point. Display data obtained by accumulating the energy consumption amount in the predetermined direction is displayed for each factor.
  • the energy display device 100 calculates the energy consumption amount of the moving object for each factor, and the energy for each factor is consumed and the energy for each factor is produced.
  • the display form of the display screen is changed around the reference position. Accordingly, appropriate display can be performed when all the energy for each factor is consumed and when there is energy produced among the energy for each factor. That is, even when there is energy to be produced in part, it is possible to perform a display that can easily grasp how much the actual consumption is.
  • Example 1 of the present invention will be described below. In the first embodiment, an example in which the present invention is applied will be described using the navigation device 300 mounted on a vehicle as the energy display device 100.
  • FIG. 3 is a block diagram illustrating a hardware configuration of the navigation apparatus.
  • the navigation apparatus 300 includes a CPU 301, ROM 302, RAM 303, magnetic disk drive 304, magnetic disk 305, optical disk drive 306, optical disk 307, audio I / F (interface) 308, microphone 309, speaker 310, input device 311, A video I / F 312, a display 313, a camera 314, a communication I / F 315, a GPS unit 316, and various sensors 317 are provided.
  • Each component 301 to 317 is connected by a bus 320.
  • the CPU 301 governs overall control of navigation device 300.
  • the ROM 302 records programs such as a boot program, a travel distance estimation program, a data update program, and a map data display program.
  • the RAM 303 is used as a work area for the CPU 301. That is, the CPU 301 controls the entire navigation device 300 by executing various programs recorded in the ROM 302 while using the RAM 303 as a work area.
  • the magnetic disk drive 304 controls the reading / writing of the data with respect to the magnetic disk 305 according to control of CPU301.
  • the magnetic disk 305 records data written under the control of the magnetic disk drive 304.
  • an HD hard disk
  • FD flexible disk
  • the optical disk drive 306 controls reading / writing of data with respect to the optical disk 307 according to the control of the CPU 301.
  • the optical disk 307 is a detachable recording medium from which data is read according to the control of the optical disk drive 306.
  • a writable recording medium can be used as the optical disc 307.
  • an MO, a memory card, or the like can be used as a removable recording medium.
  • Examples of information recorded on the magnetic disk 305 and the optical disk 307 include map data, vehicle information, road information, travel history, and the like.
  • Map data is used to display information related to the distance that can be traveled in a car navigation system.
  • Background data that represents features (features) such as buildings, rivers, and the ground surface, and roads that represent road shapes with links and nodes. Includes shape data.
  • the vehicle information, the road information, and the travel history are data relating to roads used as variables in the energy consumption estimation formulas shown in the formulas (2) to (7).
  • the voice I / F 308 is connected to a microphone 309 for voice input and a speaker 310 for voice output.
  • the sound received by the microphone 309 is A / D converted in the sound I / F 308.
  • the microphone 309 is installed in a dashboard portion of a vehicle, and the number thereof may be one or more. From the speaker 310, a sound obtained by D / A converting a predetermined sound signal in the sound I / F 308 is output.
  • the input device 311 includes a remote controller, a keyboard, a touch panel, and the like provided with a plurality of keys for inputting characters, numerical values, various instructions, and the like.
  • the input device 311 may be realized by any one form of a remote control, a keyboard, and a touch panel, but may be realized by a plurality of forms.
  • the video I / F 312 is connected to the display 313. Specifically, the video I / F 312 is output from, for example, a graphic controller that controls the entire display 313, a buffer memory such as a VRAM (Video RAM) that temporarily records image information that can be displayed immediately, and a graphic controller. And a control IC for controlling the display 313 based on the image data to be processed.
  • a graphic controller that controls the entire display 313, a buffer memory such as a VRAM (Video RAM) that temporarily records image information that can be displayed immediately, and a graphic controller.
  • VRAM Video RAM
  • the display 313 displays icons, cursors, menus, windows, or various data such as characters and images.
  • a TFT liquid crystal display, an organic EL display, or the like can be used as the display 313, for example.
  • the camera 314 captures images inside or outside the vehicle.
  • the image may be either a still image or a moving image.
  • the outside of the vehicle is photographed by the camera 314, and the photographed image is analyzed by the CPU 301, or a recording medium such as the magnetic disk 305 or the optical disk 307 via the image I / F 312. Or output to
  • the communication I / F 315 is connected to a network via wireless and functions as an interface between the navigation device 300 and the CPU 301.
  • the communication network functioning as a network includes a public line network, a mobile phone network, DSRC (Dedicated Short Range Communication), LAN, WAN, and the like.
  • the communication I / F 315 is, for example, a public line connection module, an ETC (non-stop automatic fee payment system) unit, an FM tuner, a VICS (Vehicle Information and Communication System) / beacon receiver, or the like.
  • the GPS unit 316 receives radio waves from GPS satellites and outputs information indicating the current position of the vehicle.
  • the output information of the GPS unit 316 is used when the CPU 301 calculates the current position of the vehicle together with output values of various sensors 317 described later.
  • the information indicating the current position is information for specifying one point on the map data, such as latitude / longitude and altitude.
  • Various sensors 317 output information for determining the position and behavior of the vehicle, such as a vehicle speed sensor, an acceleration sensor, an angular velocity sensor, and a tilt sensor.
  • the output values of the various sensors 317 are used by the CPU 301 to calculate the current position of the vehicle and the amount of change in speed and direction.
  • the acquisition unit 101, the calculation unit 102, the determination unit 103, the determination unit 104, and the display control unit 105 of the energy display device 100 illustrated in FIG. 1 are included in the ROM 302, the RAM 303, the magnetic disk 305, the optical disk 307, and the like in the navigation device 300 described above.
  • the CPU 301 executes a predetermined program and controls each part in the navigation device 300 to realize its function.
  • the navigation device 300 estimates the energy consumption during travel of a vehicle on which the vehicle's own device is mounted. Specifically, the navigation device 300 uses, for example, one or more of the consumption energy estimation formulas shown in the following formulas (2) to (7) based on the speed, acceleration, and vehicle gradient. To estimate the energy consumption of the vehicle.
  • the energy consumption estimation formula shown in the above equation (2) is a theoretical formula for estimating the energy consumption per unit time during acceleration and traveling.
  • the consumption energy estimation formula shown in the above equation (3) is a theoretical formula for estimating the consumption energy per unit time during deceleration.
  • the first term on the right side is the energy consumption (first information) during idling.
  • the second term on the right side is the energy consumption (fourth information) due to the gradient component and the energy consumption (third information) due to the rolling resistance component.
  • the third term on the right side is energy consumption (third information) due to the air resistance component.
  • the fourth term on the right side of the equation (2) is the energy consumption (second information) by the acceleration component.
  • the fourth term on the right side of the equation (3) is the energy consumption (second information) by the deceleration component.
  • the energy consumption estimation formula shown in the above equation (4) is an empirical formula for estimating the energy consumption per unit time during acceleration and traveling.
  • the energy consumption estimation formula shown in the above equation (5) is an empirical formula for estimating the energy consumption per unit time during deceleration.
  • the coefficients a 1 and a 2 are constants that are set according to the vehicle situation.
  • the coefficients k 1 , k 2 , and k 3 are variables based on energy consumption during acceleration. Further, the speed V and the acceleration A, and other variables and information indicated by the portion corresponding to the first term on the right side to the fourth term on the right side are the same as the above equations (2) and (3).
  • the navigation device 300 uses the average speed and average acceleration of the vehicle in a certain range of sections, and uses the average energy consumption formula shown in the following formula (6) or (7) to determine whether the vehicle travels. Energy consumption may be estimated.
  • the energy consumption estimation formula shown in the above equation (6) is a theoretical formula for estimating the energy consumption in the section when the altitude difference ⁇ h of the section in which the mobile body travels is positive.
  • the consumption energy estimation formula shown in the above equation (7) is a theoretical formula for estimating the energy consumption amount in the section when the altitude difference ⁇ h of the section in which the mobile body travels is negative.
  • the first term on the right side is the energy consumption (first information) at the time of idling.
  • the second term on the right side is the energy consumption (second information) by the acceleration resistance.
  • the third term on the right side is energy consumption consumed as potential energy (fourth information).
  • the fourth term on the right side is energy consumption (third information) due to air resistance and rolling resistance (running resistance) received per unit area.
  • the navigation apparatus 300 uses the multiple energy analysis method or the regression analysis method to calculate the first information every second using the energy consumption estimation equation shown in the above equation (4) or (5), or both equations.
  • P idle , efficiency ⁇ , moving body weight M, and the like may be calculated to correct the variables of the energy consumption estimation equation shown in the above equations (2) to (7).
  • the navigation device 300 calculates the running resistance by the following equation (1), for example.
  • traveling resistance is generated in a moving body during acceleration or traveling due to road type, road gradient, road surface condition, and the like.
  • the energy consumption during acceleration is the sum of the energy consumption Ps due to running resistance and the energy consumption Pa due to acceleration resistance, as shown in the following equation (10).
  • the energy consumption amounts Ps and Pa are theoretically calculated data.
  • the running resistance generated in the vehicle is equal between acceleration and deceleration. Further, a part of the kinetic energy generated by the acceleration resistance is converted into electric power during deceleration and stored as an amount of energy to be recovered. In other words, when the vehicle decelerates, energy is consumed by the running resistance, but the kinetic energy generated by the acceleration resistance is recovered, so the actual amount of energy consumed is the amount of energy recovered from the amount of energy by the running resistance. Subtracted value.
  • the actual energy consumption Pt is the sum of the above equations (10) and (11) as shown in the following equation (12).
  • the recovery rate ⁇ can be calculated using the following equation (13). it can.
  • the vehicle's speed, energy consumption (output), and the amount of energy due to running resistance other than adjustment are measured every predetermined time.
  • the speed, output, and running resistance all increase.
  • both the output and the traveling resistance are constant values.
  • the output decreases and reaches a negative region, and the running resistance decreases in the positive region.
  • the output recovers energy when decelerating.
  • only the energy consumption occurs in the running resistance other than acceleration.
  • the energy consumption E13 during acceleration is the sum of the energy consumption E11 due to acceleration resistance and the energy consumption E12 due to travel resistance other than acceleration / deceleration as shown in the following equation (14).
  • the energy consumption due to running resistance other than acceleration / deceleration is the energy consumption consumed to maintain running.
  • the energy consumption amount E23 during traveling at a constant speed (cruising) is an energy consumption amount E22 due to traveling resistance other than acceleration / deceleration as shown in the following equation (15).
  • the energy consumption amount E33 during deceleration is the sum of the energy amount E31 recovered during deceleration and the energy consumption amount E32 due to running resistance other than acceleration / deceleration.
  • the recovery rate ⁇ which is the ratio between the energy consumption E11 due to acceleration resistance and the energy amount E31 recovered during deceleration, can be calculated using the following equation (17).
  • the above equation (17) corresponds to the following equation (9).
  • the formula for calculating the recovery rate shown in the following equation (9) is derived as follows.
  • the energy consumption P acc of the acceleration component is calculated from the total energy consumption (left side) in the predetermined section: It is obtained by subtracting the energy consumption during idling (first term on the right side) and the energy consumption due to running resistance (fourth term on the right side), and is expressed by the following equation (8).
  • the recovery rate ⁇ is about 0.7 to 0.9 for EV vehicles, about 0.6 to 0.8 for HV vehicles, and about 0.2 to 0.3 for gasoline vehicles.
  • the recovery rate of the gasoline vehicle is a ratio between an energy consumption amount when the moving body is accelerated and an energy amount that is fuel-cut when decelerating.
  • FIG. 4 is a flowchart illustrating a procedure of energy display processing according to the first embodiment.
  • the flowchart in FIG. 4 is described as the operation of each unit of the navigation device 300 being performed.
  • the navigation apparatus 300 collects data necessary for calculating energy consumption (step S401).
  • the navigation apparatus 300 calculates energy consumption according to a factor using the consumption energy estimation formula which consists of 1st information, 2nd information, 3rd information, and 4th information (step S402). .
  • the navigation device 300 determines whether or not the current moving body is an uphill (step S403). For example, when the altitude difference ⁇ h in the above formulas (6) and (7) is positive, it is determined that the mobile body is traveling uphill, and when the altitude difference ⁇ h is negative, the mobile body travels downhill. It is determined that And when a mobile body is an uphill (step S403: Yes), it determines that all the energy is consumed. Then, the reference position is set as a display start point for potential energy (step S404). On the other hand, when the moving body is a downhill (step S403: No), it is determined that a part of the energy is produced. Then, the position of minus coordinates corresponding to the potential energy is set as the reference position (step S405).
  • step S406 idling, running resistance, and acceleration loss are accumulated and displayed from the reference position (step S406).
  • the potential energy is displayed only in the case of uphill.
  • Each of the above processes is repeatedly executed every 1 msec, for example, and the display is constantly updated.
  • FIG. 5 is a diagram showing an outline of energy display according to the first embodiment.
  • generated in the display control part 105 of FIG. 1 is shown.
  • FIG. 5 is an example in which the amount of energy consumed or produced during travel of the EV vehicle is displayed for each factor, and it is assumed that no energy is consumed due to idling.
  • the end point (minus coordinate) of potential energy is used as a reference position and displayed in the plus direction in the order of travel resistance (travel resistance, acceleration loss). That is, the reference position is displayed by shifting from the position of the origin (0) to the minus coordinate by the position energy P1 (position L).
  • the reference position is a position that is a starting point for accumulating the energy consumption of each factor.
  • FIG. 6 is a diagram showing details of energy display according to the first embodiment. It is the example which displayed the display screen shown in FIG. 5 according to each item of the state of a moving body and energy consumption.
  • the determination unit 104 determines an item of energy consumption to be displayed according to the state of the moving object, and outputs it to the display control unit 105.
  • the reference position is shifted from the position of the origin (0) to the negative coordinate by the position energy p1 (position L).
  • position L position energy
  • (e) In the case of acceleration on a downhill, starting from the negative coordinate reference position (L), the idling amount p3, the running resistance amount p2, and the acceleration loss amount p4 are stacked in the plus direction and displayed. To do.
  • (f) when decelerating on a downhill, starting from the negative coordinate reference position (L), the idling amount p3 and the running resistance amount p2 are stacked and displayed in this order. As described above, in the positive area on the display screen, the energy for the actual consumption is displayed regardless of the state of the moving object (a) to (f).
  • the potential energy component can be either a plus or minus component in terms of energy consumption, depending on the state of the moving body.
  • the reference position for stacking when energy consumption is stacked and displayed for each factor can be shifted by the position energy depending on the state of the moving body.
  • FIG. 7 is a diagram showing another energy display example of the first embodiment.
  • the bar graph is displayed in the horizontal direction, and each factor of energy consumption is displayed.
  • the factors may be stacked and displayed in the upward direction.
  • an auxiliary display section 701 that makes the origin position easy to understand is displayed on the side of the bar graph.
  • the auxiliary display unit 701 includes a mountain 702 and a river 703, and displays a mountain of the mountain 702 in accordance with the origin position. Thereby, it becomes possible to easily grasp that the height direction of the mountain 702 is the actual energy consumption.
  • the reference position is displayed by shifting in the direction of the position L downstream of the river 703.
  • a bar graph may be displayed along the slope of the mountain 702 or the flow of the river 703.
  • the processing of FIG. 4 is executed in real time (for example, every 1 msec) and displayed on the display unit 110.
  • the calculation unit 102 calculates an average value of each factor of energy consumption per predetermined unit time (for example, 10 sec or 1 min), and displays the energy display shown in the above display example for each predetermined unit time. It is good also as a structure to perform. Thereby, the transition of energy consumption can be displayed every predetermined unit time, and even if there is an energy fluctuation within this predetermined time unit, it can be absorbed and displayed. In particular, even when the energy consumption greatly fluctuates in a short time, the display can be prevented from fluctuating greatly, and the display can be easily viewed.
  • FIG. 8 is a diagram showing another energy display example of the first embodiment.
  • the kinetic energy when the moving body is traveling on a flat ground is positive when the moving body is accelerated, and is negative when the moving body is decelerated. For this reason, (a) kinetic energy (acceleration loss) p4 and running resistance p2 are consumed as energy consumption during acceleration. Then, with the coordinate origin (0) as the reference position, the kinetic energy (acceleration loss) p4 and the running resistance p2 are stacked and displayed in the positive direction. Also, (b) when traveling on a flat ground, only the traveling resistance p2 is displayed from the position of the origin.
  • (c) at the time of deceleration only the amount of kinetic energy recovered by deceleration is decremented from the origin (0), and the running resistance component p2 is displayed in the plus direction starting from the shifted reference position L.
  • the shift of the reference position L described above is not limited to ascending / descending of the moving body, but can also be displayed by shifting the acceleration / deceleration of the moving body.
  • FIG. 9 is a diagram showing another energy display example of the first embodiment. The situation when decelerating uphill and accelerating downhill is shown.
  • the energy for obtaining the starting point of the reference position L can be selected according to the up / down state of the moving body and the acceleration / deceleration state.
  • FIG. 10 is a diagram showing another energy display example of the first embodiment.
  • a linear bar graph extending in the horizontal direction or the vertical direction is used.
  • a pie chart may be used.
  • an area for shifting the reference position by the amount of minus energy consumption may be secured.
  • the potential energy (or kinetic energy) items are displayed because the energy is consumed or produced when the moving body is in the up / down state and the acceleration / deceleration state.
  • the display state of the moving body may be different in the up and down states (similarly, different display colors in the acceleration / deceleration). By seeing this display color, it is possible to easily grasp whether the state of the moving body is up / down or acceleration / deceleration.
  • the shift is made to the minus position by the amount of plus energy consumption, and each factor of the energy consumption is accumulated and displayed with the shifted position as the reference position.
  • Example 2 Next, a second embodiment of the present invention will be described.
  • the second embodiment is the same as the first embodiment except that the display contents are changed, and the navigation device 300 in FIG. 3 performs the same process.
  • the reference position remains the origin, and the origin is not shifted as in the first embodiment.
  • FIG. 11 is a flowchart showing the procedure of energy display processing according to the second embodiment.
  • the navigation apparatus 300 collects data necessary for calculating energy consumption (step S1101).
  • the navigation apparatus 300 calculates energy consumption according to a factor using the consumption energy estimation formula which consists of 1st information, 2nd information, 3rd information, and 4th information (step S1102). .
  • the navigation apparatus 300 determines whether or not the current moving body is an uphill (step S1103). For example, when the altitude difference ⁇ h in the above formulas (6) and (7) is positive, it is determined that the mobile body is traveling uphill, and when the altitude difference ⁇ h is negative, the mobile body travels downhill. It is determined that However, the detection value of the tilt sensor may be used. And when a mobile body is an uphill (step S1103: Yes), it determines that all the energy is consumed. Then, the potential energy is displayed in the plus direction from the origin. Then, the running resistance is displayed in the plus direction from the end point of the potential energy (step S1104).
  • step S1103 when the mobile body is a downhill (step S1103: No), it is determined that a part of the energy is produced. Then, the position energy is displayed in the minus direction from the origin. Further, the running resistance is displayed in the plus direction from the origin (step S1105).
  • FIG. 12 is a diagram showing an outline of the energy display of the second embodiment.
  • generated in the display control part 105 of FIG. 1 is shown.
  • A In the case of an uphill, the starting point of potential energy is the origin (0), and this origin is the reference position. From this origin, the position energy P1 and the traveling resistance (idling consumption, traveling resistance, acceleration loss) P2 are stacked in the order of plus and displayed.
  • B In the case of flat ground traveling, only the traveling resistance P2 is displayed from the reference position.
  • C Even in the case of a downhill, the running resistance (idling consumption, running resistance, acceleration loss) P2 is displayed in the plus direction with the origin (0) as the reference position. On the other hand, due to the downhill, the recovered amount of potential energy P1 is displayed in the minus direction with the origin (0) as the reference position.
  • FIG. 13 is a diagram showing another energy display example of the second embodiment.
  • the kinetic energy when the moving body is traveling on a flat ground is positive when the moving body is accelerated, and is negative when the moving body is decelerated.
  • the detection value of the acceleration sensor may be used.
  • (a) kinetic energy (acceleration loss) p4 and running resistance p2 are consumed as energy consumption during acceleration.
  • the coordinate origin (0) as the reference position the kinetic energy (acceleration loss) p4 and the running resistance p2 are stacked and displayed in the positive direction.
  • (b) when traveling on a flat ground only the traveling resistance p2 is displayed from the position of the origin.
  • the kinetic energy recovered by the deceleration is displayed from the origin (0) toward the minus direction. Further, the running resistance portion p2 is displayed from the origin (0) toward the plus direction.
  • the origin (0) is always displayed as the reference position without shifting the position of the origin. Thereby, it can be easily grasped that the plus side from the origin position is the consumed energy and the minus side from the origin position is the recovered energy.
  • FIG. 14 is a diagram showing details of energy display according to the second embodiment. It is the example which displayed the display screen shown in FIG. 12 according to each item of the state of a moving body and energy consumption.
  • the determination unit 104 determines an item of energy consumption to be displayed according to the state of the moving object, and outputs it to the display control unit 105.
  • the position energy part p1 produced (recovered) is displayed in the minus direction from the origin (0).
  • the potential energy p1 is displayed in the minus direction from the origin.
  • the idling component p3, the running resistance component p2, and the acceleration loss component p4 are stacked and displayed in this order.
  • the potential energy p1 is displayed in the minus direction from the origin.
  • the idling component p3 and the running resistance component p2 are stacked and displayed in this order.
  • the energy for the actual consumption is displayed regardless of the state of the moving object (a) to (f).
  • the potential energy component can be either a positive or negative component in terms of energy consumption, depending on the state of the moving body. For this reason, in Example 2, energy consumption is accumulated and displayed from the origin to the plus side, while production (recovery) from the origin to the minus side is displayed. To display the energy. As a result, it is possible to easily grasp how much energy is actually consumed when the moving body is on a downhill by displaying on the plus side on the display screen. In addition, it is possible to intuitively and easily grasp the fuel consumption structure (energy breakdown and fuel consumption composition) simply by looking at one display (bar graph).
  • an auxiliary display unit 701 (see FIG. 7) is provided, so that the origin position can be easily grasped.
  • the calculation unit 102 executes the process of FIG. 11 in real time (for example, every 1 msec).
  • the calculation unit 102 calculates the average value of each factor of energy consumption per predetermined unit time (for example, 10 sec or 1 min). It is good also as a structure which calculates and displays the energy shown by said display example for every this predetermined unit time. Thereby, the transition of energy consumption can be displayed every predetermined unit time, and even if there is an energy fluctuation within this predetermined time unit, it can be absorbed and displayed. In particular, even when the energy consumption greatly fluctuates in a short time, the display can be prevented from fluctuating greatly, and the display can be easily viewed.
  • the energy display may be a curved graph display as shown in FIG.
  • the item of potential energy or kinetic energy
  • energy is consumed or produced when the state of the moving body is up / down and acceleration / deceleration, so the displayed potential energy (or kinetic energy).
  • the moving body may have different display colors for the up and down states (similarly, different display colors for acceleration / deceleration). By seeing this display color, it is possible to easily grasp whether the state of the moving body is up / down or acceleration / deceleration.
  • the amount of plus energy consumption is displayed in the minus direction from the origin, and each factor of energy consumption is accumulated and displayed on the plus side from the origin.
  • the energy amount actually consumed is displayed in the area on the plus side from the coordinate position of the origin (0).
  • the energy display method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer.
  • the program may be a transmission medium that can be distributed via a network such as the Internet.

Abstract

An energy display device (100) calculates the energy consumption of a mobile body and displays the energy consumption on a display unit (110). A calculation unit (102) calculates, by factor, the amount of energy consumed by the operation of the mobile body. A determination unit (104) determines whether energy is being produced or consumed for the energy of each factor. A display control unit (105) totals and displays, by factor, the amount of energy consumed as the starting point for a predetermined position when the determination unit (104) determines that all of the energy for each factor is being consumed. When the determination unit (104) determines that there is energy being produced among the energy for each factor, the display control unit (105) totals and displays, by factor, the other amount of energy consumed as a starting point of a position that has been shifted from the predetermined starting position only by the amount of energy produced in the opposite direction to the direction in which the amount of energy consumed was totaled.

Description

エネルギー表示装置、エネルギー表示方法、エネルギー表示プログラムおよび記録媒体Energy display device, energy display method, energy display program, and recording medium
 この発明は、移動体の消費エネルギーを表示するエネルギー表示装置、エネルギー表示方法、エネルギー表示プログラムおよび記録媒体に関する。ただし、この発明の利用は、上述したエネルギー表示装置、エネルギー表示方法、エネルギー表示プログラムおよび記録媒体には限られない。 The present invention relates to an energy display device, an energy display method, an energy display program, and a recording medium that display energy consumption of a moving object. However, the use of the present invention is not limited to the energy display device, the energy display method, the energy display program, and the recording medium described above.
 従来、移動体の稼働により消費するエネルギー消費量を表示する表示装置が提案されている。図15は、従来のエネルギー表示装置の表示内容を示す図である。この表示装置は、表示手段10に、燃費表示部11と、エネルギー内訳表示部12と、蓄積エネルギー表示部13が表示される。燃費表示部11には、外見燃費111に、運動エネルギー対応燃費112およびエネルギー対応燃費113が積み上げられて棒グラフにより表示される。エネルギー内訳表示部12には、ブレーキによる吸収エネルギー121と、モータによる回生エネルギー122の内訳が棒グラフにより表示される。蓄積エネルギー表示部13には、運動エネルギー、位置エネルギーの合計蓄積量131と、電気エネルギー蓄積量132の各棒グラフと、それぞれのエネルギーの状態を示す矢印で表示される(たとえば、下記特許文献1参照。)。 Conventionally, a display device that displays the amount of energy consumed by the operation of a moving body has been proposed. FIG. 15 is a diagram showing display contents of a conventional energy display device. In this display device, a fuel consumption display unit 11, an energy breakdown display unit 12, and a stored energy display unit 13 are displayed on the display unit 10. In the fuel consumption display unit 11, the kinetic energy compatible fuel consumption 112 and the energy compatible fuel consumption 113 are added to the apparent fuel consumption 111 and displayed as a bar graph. The energy breakdown display unit 12 displays a breakdown of the absorbed energy 121 by the brake and the regenerative energy 122 by the motor as a bar graph. The accumulated energy display unit 13 displays the total accumulated amount 131 of kinetic energy and potential energy, each bar graph of the accumulated electric energy 132, and an arrow indicating the state of each energy (for example, see Patent Document 1 below). .)
 図16は、従来の他のエネルギー表示装置の表示内容を示す図である。燃料消費量20は4つの要因に分け、エンジン自体の駆動に使った燃料量21と、路面の転がり抵抗や勾配抵抗に抗して走行するために使った燃料量22と、空気抵抗に抗して走行するために使った燃料量23と、車両を加速するために使った燃料量24とを算出し、これらを上下方向に積み上げて表示させている(たとえば、下記特許文献2参照。)。 FIG. 16 is a diagram showing display contents of another conventional energy display device. Fuel consumption 20 is divided into four factors: fuel amount 21 used to drive the engine itself, fuel amount 22 used to run against road surface rolling resistance and gradient resistance, and air resistance. The fuel amount 23 used for traveling and the fuel amount 24 used for accelerating the vehicle are calculated, and these are stacked and displayed in the vertical direction (see, for example, Patent Document 2 below).
特開2002-274219号公報JP 2002-274219 A 特開2009-31046号公報JP 2009-31046 A
 しかしながら、引用文献1の技術では、エネルギーの表示が、燃費表示部11と、エネルギー内訳表示部12と、蓄積エネルギー表示部13に分かれている。そして、下り坂走行時には、位置エネルギーが走行エネルギーとして変換される。このことを理解するためには、燃費表示部11と、エネルギー内訳表示部12と、蓄積エネルギー表示部13の3つを見なければならず、直感的に簡単に燃費状態(エネルギー内訳と燃費構成)を理解することができなかった。また、引用文献2の技術では、路面の転がり抵抗や勾配抵抗に抗して走行するために使った燃料量を同じ燃料量22として表示しており、内訳を知ることができない。 However, in the technique of the cited document 1, the energy display is divided into a fuel consumption display unit 11, an energy breakdown display unit 12, and a stored energy display unit 13. When traveling downhill, the potential energy is converted as travel energy. In order to understand this, it is necessary to look at the fuel consumption display unit 11, the energy breakdown display unit 12, and the stored energy display unit 13, and easily and intuitively the fuel consumption state (energy breakdown and fuel consumption configuration). ) Could not understand. Further, in the technique of the cited document 2, the fuel amount used for traveling against the rolling resistance and gradient resistance of the road surface is displayed as the same fuel amount 22, and the breakdown cannot be known.
 上述した課題を解決し、目的を達成するため、請求項1の発明にかかるエネルギー表示装置は、移動体の稼働により消費するエネルギー消費量を要因別に算出する算出手段と、前記算出された要因別にエネルギー消費量に関する情報を表示する表示手段と、前記要因別のエネルギー各々について、前記エネルギーが生産されているか消費されているかを判定する判定手段と、を備え、前記表示手段は、前記判定手段により前記要因別のエネルギーが全て消費されていると判定された場合、所定の位置を始点として前記エネルギー消費量を要因別に累積して表示し、前記判定手段により要因別のエネルギーのうち生産されているエネルギーがあると判定された場合、前記所定の位置から前記累積した方向とは逆方向に前記生産されているエネルギー量だけ推移させた位置を始点として他の前記エネルギー消費量を要因別に累積して表示することを特徴とする。 In order to solve the above-described problems and achieve the object, an energy display device according to the invention of claim 1 is configured to calculate energy consumption consumed by the operation of the moving object for each factor, and for each calculated factor. Display means for displaying information related to energy consumption, and determination means for determining whether the energy is produced or consumed for each of the energy by each factor, and the display means includes the determination means When it is determined that all the energy for each factor is consumed, the energy consumption is accumulated and displayed for each factor starting from a predetermined position, and the energy for each factor is produced by the determination means. If it is determined that there is energy, the energy that is produced in the direction opposite to the accumulated direction from the predetermined position. As the starting point the position which has a transition by Guy amount by accumulating another of the energy consumption by factors and displaying.
 また、請求項6の発明にかかるエネルギー表示装置は、移動体の稼働により消費するエネルギー消費量を要因別に算出する算出手段と、前記算出された要因別にエネルギー消費量に関する情報を表示する表示手段と、前記要因別のエネルギー各々について、前記エネルギーが生産されているか消費されているかを判定する判定手段と、を備え、前記表示手段は、前記判定手段により前記要因別のエネルギーが全て消費されていると判定された場合、所定の位置を始点として前記エネルギー消費量を要因別に累積して表示し、前記判定手段により要因別のエネルギーのうち生産されているエネルギーがあると判定された場合、消費されているエネルギーについて前記所定の位置を始点として前記エネルギー消費量を要因別に累積して表示するとともに、生産されているエネルギーについて前記所定の位置を始点として前記累積した方向とは逆方向に前記生産されているエネルギー量を表示することを特徴とする。 The energy display device according to the invention of claim 6 is a calculation means for calculating energy consumption consumed by the operation of the moving body for each factor, and a display means for displaying information relating to the energy consumption for each calculated factor. Determining means for determining whether the energy is produced or consumed for each energy by factor, and the display means has consumed all the energy by factor by the determining means If it is determined that the energy consumption amount is accumulated and displayed from a predetermined position as a starting point, the consumption is consumed when it is determined by the determination means that there is energy produced by the factor. The energy consumption is accumulated and displayed for each energy factor starting from the predetermined position. Both the the accumulated direction as a start point of the predetermined position on the energy being produced and displaying the amount of energy that is the production in the opposite direction.
 また、請求項11の発明にかかるエネルギー表示方法は、移動体の稼働により消費するエネルギーを表示するエネルギー表示装置のエネルギー表示方法において、前記移動体の稼働により消費するエネルギー消費量を要因別に算出する算出工程と、前記算出された要因別にエネルギー消費量に関する情報を表示する表示工程と、前記要因別のエネルギー各々について、前記エネルギーが生産されているか消費されているかを判定する判定工程と、を含み、前記表示工程は、前記判定工程により前記要因別のエネルギーが全て消費されていると判定された場合、所定の位置を始点として前記エネルギー消費量を要因別に累積して表示し、前記判定工程により要因別のエネルギーのうち生産されているエネルギーがあると判定された場合、前記所定の位置から前記累積した方向とは逆方向に前記生産されているエネルギー量だけ推移させた位置を始点として他の前記エネルギー消費量を要因別に累積して表示することを特徴とする。 An energy display method according to an eleventh aspect of the invention is an energy display method for an energy display device that displays energy consumed by operation of a mobile object, and calculates an energy consumption consumed by operation of the mobile object for each factor. A calculation step, a display step for displaying information on energy consumption for each calculated factor, and a determination step for determining whether the energy is produced or consumed for each energy by the factor. In the display step, when it is determined by the determination step that all the energy for each factor is consumed, the energy consumption is accumulated and displayed for each factor starting from a predetermined position. If it is determined that there is energy produced by the factor-specific energy, The direction that the accumulated from the home position and displaying the cumulative other the energy consumption by factors as the starting point the position which has a transition by the amount of energy that is the production in the opposite direction.
 また、請求項12の発明にかかるエネルギー表示方法は、移動体の稼働により消費するエネルギーを表示するエネルギー表示装置のエネルギー表示方法において、前記移動体の稼働により消費するエネルギー消費量を要因別に算出する算出工程と、前記算出された要因別にエネルギー消費量に関する情報を表示する表示工程と、前記要因別のエネルギー各々について、前記エネルギーが生産されているか消費されているかを判定する判定工程と、を含み、前記表示工程は、前記判定工程により前記要因別のエネルギーが全て消費されていると判定された場合、所定の位置を始点として前記エネルギー消費量を要因別に累積して表示し、前記判定工程により要因別のエネルギーのうち生産されているエネルギーがあると判定された場合、消費されているエネルギーについて前記所定の位置を始点として前記エネルギー消費量を要因別に累積して表示するとともに、生産されているエネルギーについて前記所定の位置を始点として前記累積した方向とは逆方向に前記生産されているエネルギー量を表示することを特徴とする。 An energy display method according to claim 12 is an energy display method for an energy display device that displays energy consumed by operation of a mobile object, and calculates an energy consumption amount consumed by operation of the mobile object for each factor. A calculation step, a display step for displaying information on energy consumption for each calculated factor, and a determination step for determining whether the energy is produced or consumed for each energy by the factor. In the display step, when it is determined by the determination step that all the energy for each factor is consumed, the energy consumption is accumulated and displayed for each factor starting from a predetermined position. If it is determined that there is energy produced among the energy by factor, consumption The energy consumption is accumulated and displayed for each energy starting from the predetermined position as a starting point, and the production is performed in a direction opposite to the accumulated direction starting from the predetermined position for the energy being produced. The amount of energy that is being displayed is displayed.
 また、請求項13に記載の発明にかかるエネルギー表示プログラムは、請求項11または12に記載のエネルギー表示方法をコンピュータに実行させることを特徴とする。 The energy display program according to the invention described in claim 13 causes the computer to execute the energy display method according to claim 11 or 12.
 また、請求項14に記載の発明にかかる記録媒体は、請求項13に記載のエネルギー表示プログラムをコンピュータに読み取り可能な状態で記録したことを特徴とする。 A recording medium according to the invention described in claim 14 is characterized in that the energy display program according to claim 13 is recorded in a computer-readable state.
図1は、実施の形態にかかるエネルギー表示装置の機能的構成を示すブロック図である。FIG. 1 is a block diagram illustrating a functional configuration of the energy display device according to the embodiment. 図2は、エネルギー表示装置によるエネルギー表示処理の手順を示すフローチャートである。FIG. 2 is a flowchart showing a procedure of energy display processing by the energy display device. 図3は、ナビゲーション装置のハードウェア構成を示すブロック図である。FIG. 3 is a block diagram illustrating a hardware configuration of the navigation apparatus. 図4は、実施例1によるエネルギー表示処理の手順を示すフローチャートである。FIG. 4 is a flowchart illustrating a procedure of energy display processing according to the first embodiment. 図5は、実施例1によるエネルギー表示の概要を示す図である。FIG. 5 is a diagram illustrating an outline of energy display according to the first embodiment. 図6は、実施例1によるエネルギー表示の詳細を示す図である。FIG. 6 is a diagram illustrating details of energy display according to the first embodiment. 図7は、実施例1の他のエネルギー表示例を示す図である。FIG. 7 is a diagram illustrating another energy display example of the first embodiment. 図8は、実施例1の他のエネルギー表示例を示す図である。FIG. 8 is a diagram illustrating another energy display example of the first embodiment. 図9は、実施例1の他のエネルギー表示例を示す図である。FIG. 9 is a diagram illustrating another energy display example of the first embodiment. 図10は、実施例1の他のエネルギー表示例を示す図である。FIG. 10 is a diagram illustrating another energy display example of the first embodiment. 図11は、実施例2によるエネルギー表示処理の手順を示すフローチャートである。FIG. 11 is a flowchart illustrating a procedure of energy display processing according to the second embodiment. 図12は、実施例2のエネルギー表示の概要を示す図である。FIG. 12 is a diagram illustrating an outline of energy display of the second embodiment. 図13は、実施例2の他のエネルギー表示例を示す図である。FIG. 13 is a diagram illustrating another energy display example of the second embodiment. 図14は、実施例2によるエネルギー表示の詳細を示す図である。FIG. 14 is a diagram illustrating details of energy display according to the second embodiment. 図15は、従来のエネルギー表示装置の表示内容を示す図である。FIG. 15 is a diagram showing display contents of a conventional energy display device. 図16は、従来の他のエネルギー表示装置の表示内容を示す図である。FIG. 16 is a diagram showing display contents of another conventional energy display device.
 以下に添付図面を参照して、この発明にかかるエネルギー表示装置、エネルギー表示方法、エネルギー表示プログラムおよび記録媒体の好適な実施の形態を詳細に説明する。 DETAILED DESCRIPTION Exemplary embodiments of an energy display device, an energy display method, an energy display program, and a recording medium according to the present invention will be described below in detail with reference to the accompanying drawings.
(実施の形態)
(エネルギー表示装置の構成)
 図1は、実施の形態にかかるエネルギー表示装置の機能的構成を示すブロック図である。実施の形態にかかるエネルギー表示装置100は、車両のエネルギーを要因別に分け、ユーザに判りやすい形として表示する。このエネルギー表示装置100は、取得部101、算出部102、判断部103、判定部104、表示制御部105、表示部110によって構成される。
(Embodiment)
(Configuration of energy display device)
FIG. 1 is a block diagram illustrating a functional configuration of the energy display device according to the embodiment. The energy display device 100 according to the embodiment divides the energy of the vehicle according to factors and displays it in a form that is easy for the user to understand. The energy display device 100 includes an acquisition unit 101, a calculation unit 102, a determination unit 103, a determination unit 104, a display control unit 105, and a display unit 110.
 ここで、エネルギーとは、たとえば、EV車,HV車,PHV車など(以下、単に「EV車」という)の場合、たとえば、電気などに基づくエネルギーである。また、エネルギーとは、たとえば、ガソリン車,ディーゼル車など(以下、単に「ガソリン車」という)の場合、たとえば、ガソリンや軽油、ガスなどに基づくエネルギーである。 Here, the energy is, for example, energy based on electricity in the case of EV cars, HV cars, PHV cars, etc. (hereinafter simply referred to as “EV cars”). The energy is energy based on, for example, gasoline, light oil, gas, or the like in the case of a gasoline vehicle, a diesel vehicle, or the like (hereinafter simply referred to as “gasoline vehicle”).
 取得部101は、移動体のエネルギー算出にかかる情報を取得する。この情報としては、移動体の速度に関する情報等のデータである。算出部102は、取得部101により取得された情報に基づいて、移動体の稼働により消費するエネルギー消費量を要因別に算出する。具体的には、所定の消費エネルギー推定式に、取得部101で取得した情報を変数として代入してエネルギー消費量を要因別に算出する。判断部103は、取得部101により取得された情報を判断し、エネルギーの生産あるいは消費の判定に必要な情報を出力する。具体的には、移動体が現在傾斜を上昇しているか下降しているか、および移動体が現在加速しているか減速しているかを判断し、この判断結果を判定部104に出力する。 The acquisition unit 101 acquires information related to energy calculation of the moving object. This information is data such as information related to the speed of the moving body. Based on the information acquired by the acquisition unit 101, the calculation unit 102 calculates the energy consumption consumed by the operation of the moving object for each factor. Specifically, the energy consumption is calculated for each factor by substituting the information acquired by the acquisition unit 101 as a variable into a predetermined energy consumption estimation formula. The determination unit 103 determines the information acquired by the acquisition unit 101 and outputs information necessary for determination of energy production or consumption. Specifically, it is determined whether the moving body is currently climbing up or down, and whether the moving body is currently accelerating or decelerating, and the determination result is output to the determination unit 104.
 判定部104は、算出部102および判断部103の出力に基づき、要因別のエネルギー各々について、エネルギーが全て消費されているか一部生産されているものがあるかを判定する。この判定には、判断部103により移動体が上昇/下降であるか、および移動体が加速/減速であるかの判断結果を用いる。また、この判定部104は、移動体が所定の区間を走行した際に、この所定の区間の走行に際して必要なエネルギーの累積が生産されているか消費されたかを判定できる。 The determination unit 104 determines, based on the outputs of the calculation unit 102 and the determination unit 103, for each energy for each factor whether all the energy is consumed or partly produced. In this determination, the determination unit 103 uses the determination result of whether the moving body is up / down or whether the moving body is accelerating / decelerating. In addition, when the moving body travels in a predetermined section, the determination unit 104 can determine whether accumulated energy necessary for traveling in the predetermined section is produced or consumed.
 表示制御部105は、要因別のエネルギーの表示に関する表示データを生成する。この表示データは、判定部104の判定により、要因別のエネルギーが全て消費されていると判定された場合と、要因別のエネルギーのうち生産されているエネルギーがあると判定された場合とで異なる表示形態の表示データとする。 The display control unit 105 generates display data related to the display of energy by factor. The display data differs depending on whether the determination unit 104 determines that all the energy for each factor is consumed and the case where it is determined that there is produced energy among the energy for each factor. It is set as display data in a display form.
 表示制御部105は、判定部104により、要因別のエネルギーが全て消費されていると判定された場合には、表示データ上の画面上の所定の位置(基準位置)を始点とし、所定の方向に沿ってエネルギー消費量を要因別に累積した表示データを生成する。 When the determination unit 104 determines that all the energy for each factor is consumed, the display control unit 105 starts from a predetermined position (reference position) on the screen on the display data and has a predetermined direction. A display data is generated by accumulating the energy consumption according to the factors.
 一方、判定部104により、要因別のエネルギーのうち生産されているエネルギーがあると判定された場合には、表示データ上の座標上の所定の位置(基準位置)から所定の方向に沿って累積した方向とは逆方向に生産されているエネルギー量だけ推移させた位置を始点として、他のエネルギー消費量を要因別に累積した表示データを生成する。 On the other hand, when the determination unit 104 determines that there is energy produced among the energy for each factor, accumulation is performed along a predetermined direction from a predetermined position (reference position) on coordinates on the display data. Display data in which other energy consumptions are accumulated for each factor is generated starting from the position where the amount of energy produced in the direction opposite to the direction shifted is the starting point.
 他の表示形態としては、他の表示データの座標上の所定の位置(基準位置)から所定の方向に累積した方向とは逆方向に生産されているエネルギー量だけ推移させた位置を始点として他のエネルギー消費量を要因別に上記の所定の方向に累積した表示データを生成することもできる。 As another display mode, a position shifted from the predetermined position (reference position) on the coordinates of other display data by the amount of energy produced in the direction opposite to the direction accumulated in the predetermined direction is used as the starting point. It is also possible to generate display data in which the energy consumption amount is accumulated in the predetermined direction for each factor.
 上記の表示データの所定の方向とは、たとえば、基準位置から上下、あるいは左右の方向にバーグラフ、円グラフなどが延びる如く表示される。円グラフの場合には、基準位置に対してそれぞれ逆(プラス、マイナス)の方向に延びることが明示できればよい。このほか、基準位置を容易に視認できるように補助の表示データを表示させてもよい。そして、複数の要因別のエネルギー消費量は、表示が延びる一方向に沿って各要因別に区切られ、この要因が延びる方向に一列に整列させる。さらに、視認を容易化するために各要因別に異なる表示色としたり、濃淡をつけてもよい。 The predetermined direction of the display data is displayed so that, for example, a bar graph, a pie chart, etc. extend vertically or horizontally from the reference position. In the case of a pie chart, it suffices if it is possible to clearly show that the reference positions extend in opposite (plus and minus) directions. In addition, auxiliary display data may be displayed so that the reference position can be easily recognized. And the energy consumption amount according to a some factor is divided | segmented according to each factor along one direction where a display is extended, and is arranged in a line in the direction where this factor extends. Further, in order to facilitate visual recognition, different display colors may be used for each factor, or shades may be added.
 表示部110は、表示制御部105によって生成された表示データを表示する。これにより、表示部110上には、分類された要因別にエネルギー消費量に関する情報が表示される。この際、表示部110は、地図データとともに表示してもよい。また、表示部110は、算出部102によって算出された走行可能距離で到達することができる経路、エリアなどを地図データに表示することもできる。 The display unit 110 displays the display data generated by the display control unit 105. Thereby, the information regarding energy consumption is displayed on the display part 110 according to the classified factor. At this time, the display unit 110 may display the map data together. The display unit 110 can also display, on the map data, a route, an area, and the like that can be reached by the travelable distance calculated by the calculation unit 102.
 なお、取得部101で取得する移動体の速度に関する情報とは、たとえば、移動体の速度、加速度である。また、算出部102で用いる消費エネルギー推定式とは、移動体のエネルギー消費量を推定する式である。具体的には、消費エネルギー推定式は、エネルギー消費量を増減させる要因の異なる第一情報、第二情報および第三情報、第四情報からなる多項式である。消費エネルギー推定式の詳細については、後述する。 Note that the information on the speed of the moving object acquired by the acquiring unit 101 is, for example, the speed and acceleration of the moving object. Moreover, the consumption energy estimation formula used in the calculation unit 102 is a formula for estimating the energy consumption amount of the mobile object. Specifically, the energy consumption estimation formula is a polynomial composed of first information, second information, third information, and fourth information having different factors for increasing or decreasing the energy consumption. Details of the energy consumption estimation formula will be described later.
 第一情報は、駆動源が可動した状態における移動体の停止時に消費されるエネルギーに関する情報である。駆動源が可動した状態における移動体の停止時とは、移動体のエンジンに負荷がかからない程度に、エンジンを低速で空回りさせた状態である。具体的には、駆動源が可動した状態における移動体の停止時とは、アイドリング時である。 1st information is the information regarding the energy consumed when the moving body stops in the state where the drive source moved. When the moving body is stopped when the drive source is movable, the engine is idled at a low speed to such an extent that no load is applied to the engine of the moving body. Specifically, the stop time of the moving body in a state where the drive source is movable is an idling time.
 具体的には、第一情報は、たとえば、エンジンをかけたまま停車しているときや、信号などで停止しているときに消費されるエネルギー量(以下、「エネルギー消費量」という)である。つまり、第一情報は、移動体の走行に関係しない要因で消費されるエネルギー消費量である。より具体的には、第一情報は、移動体に備えられたエアコンやオーディオなどによるエネルギー消費量である。第一情報は、EV車の場合、ほぼゼロとしてもよい。 Specifically, the first information is, for example, the amount of energy consumed when the vehicle is stopped with the engine running or when stopped by a signal (hereinafter referred to as “energy consumption”). . That is, the first information is an energy consumption amount consumed due to a factor not related to the traveling of the moving body. More specifically, the first information is an energy consumption amount by an air conditioner or an audio provided in the moving body. The first information may be substantially zero in the case of an EV vehicle.
 第二情報は、移動体の加減速時に消費および回収されるエネルギーに関する情報である。移動体の加減速時とは、移動体の速度が時間的に変化している走行状態である。具体的には、移動体の加減速時とは、所定の時間内において、移動体の速度が変化する走行状態である。所定の時間とは、一定間隔の時間の区切りであり、たとえば、単位時間あたりなどである。 The second information is information related to energy consumed and recovered during acceleration / deceleration of the moving body. The time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes with time. Specifically, the time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes within a predetermined time. The predetermined time is a time interval at regular intervals, for example, per unit time.
 また、第二情報は、EV車の場合、移動体の加速時に消費されるエネルギー量と、移動体の減速時に回収されるエネルギー量との割合(以下、「回収率」という)であってもよい。回収されるエネルギーとは、EV車の場合、移動体の加速時に生じた運動エネルギーが減速時に電気エネルギーに変換されて回収されるエネルギーである。回収率についての詳細な説明は、後述する。 Further, in the case of an EV vehicle, the second information is a ratio (hereinafter referred to as “recovery rate”) between the amount of energy consumed when the moving body is accelerated and the amount of energy collected when the moving body is decelerated. Good. In the case of an EV vehicle, the recovered energy is energy that is recovered by converting kinetic energy generated during acceleration of the moving body into electrical energy during deceleration. A detailed description of the recovery rate will be described later.
 また、回収エネルギーとは、ガソリン車の場合、必要以上にエネルギーを消費しないで節約することができるエネルギーである。詳細には、ガソリン車の場合、燃費を向上する運転方法として、アクセルを踏む時間を少なくする方法が知られている。つまり、ガソリン車では、移動体の加速時に生じる運動エネルギー(慣性力)によって移動体の走行を維持することで、燃料の消費を抑えることができる。また、移動体の減速時にエンジンブレーキを利用することで、ブレーキを踏むことによる燃料の消費を抑えることができる。つまり、ガソリン車の場合、消費される燃料を低減(燃料カット)して燃料を節約することであるが、ここではEV車と同様に回収されるエネルギーとする。 Also, the recovered energy is energy that can be saved without consuming more energy than necessary in the case of a gasoline vehicle. Specifically, in the case of a gasoline vehicle, as a driving method for improving fuel consumption, a method of reducing the time required to step on the accelerator is known. That is, in a gasoline vehicle, fuel consumption can be suppressed by maintaining the traveling of the moving body by the kinetic energy (inertial force) generated when the moving body is accelerated. Further, by using the engine brake when the moving body is decelerated, it is possible to suppress fuel consumption caused by stepping on the brake. In other words, in the case of a gasoline vehicle, the consumed fuel is reduced (fuel cut) to save the fuel, but here it is assumed that the energy is recovered as in the case of an EV vehicle.
 第三情報は、移動体の走行時に生じる抵抗により消費されるエネルギーに関する情報である。移動体の走行時とは、所定の時間内において、移動体の速度が一定である走行状態である。移動体の走行時に生じる抵抗とは、移動体の走行時に移動体の走行状態を変化させる要因である。具体的には、移動体の走行時に生じる抵抗とは、気象状況、道路状況、車両状況などにより移動体に生じる抵抗である。 The third information is information related to energy consumed by the resistance generated when the mobile object is traveling. The traveling time of the moving body is a traveling state in which the speed of the moving body is constant within a predetermined time. The resistance generated when the mobile body travels is a factor that changes the travel state of the mobile body when the mobile body travels. Specifically, the resistance generated when the mobile body travels is resistance generated in the mobile body due to weather conditions, road conditions, vehicle conditions, and the like.
 気象状況により移動体に生じる抵抗とは、たとえば、雨,風などの気象変化による空気抵抗である。道路状況により移動体に生じる抵抗とは、道路勾配,路面の舗装状態などによる路面抵抗である。車両状況により移動体に生じる抵抗とは、タイヤの空気圧、乗車人数、積載重量などにより移動体にかかる負荷抵抗である。 The resistance generated in the moving body due to the weather condition is, for example, air resistance due to weather changes such as rain and wind. The resistance generated in the moving body due to the road condition is road resistance due to road gradient, pavement state of the road surface, and the like. The resistance generated in the moving body depending on the vehicle condition is a load resistance applied to the moving body due to tire air pressure, number of passengers, loaded weight, and the like.
 具体的には、第三情報は、空気抵抗や路面抵抗、負荷抵抗を受けた状態で、移動体を一定速度で走行させたときのエネルギー消費量である。より具体的には、第三情報は、たとえば、向かい風により移動体に生じる空気抵抗や、舗装されていない道路から受ける路面抵抗などを、移動体が一定速度で走行するときに消費されるエネルギー消費量である。 Specifically, the third information is energy consumption when the moving body is driven at a constant speed in a state where it receives air resistance, road surface resistance, and load resistance. More specifically, the third information is, for example, energy consumption consumed when the moving body travels at a constant speed, such as air resistance generated in the moving body due to a headwind or road resistance received from a road that is not paved. Amount.
 第四情報は、移動体が位置する高度の変化により消費および回収されるエネルギーに関する情報である。移動体が位置する高度の変化とは、移動体の位置する高度が時間的に変化している状態である。具体的には、移動体が位置する高度の変化とは、所定の時間内において、移動体が勾配のある道路を走行することにより高度が変化する走行状態である。 The fourth information is information related to energy consumed and recovered by a change in altitude where the moving object is located. The change in altitude at which the moving body is located is a state in which the altitude at which the moving body is located changes over time. Specifically, the change in altitude at which the moving body is located is a traveling state in which the altitude changes when the moving body travels on a sloped road within a predetermined time.
 また、第四情報は、道路の傾斜が不明な場合、または計算を簡略化する場合、移動体が位置する高度の変化はないものとして、後述するエネルギー推定式における道路勾配θ=0としてエネルギー消費量を推定することもできる。 The fourth information is that when the road slope is unknown or when the calculation is simplified, it is assumed that there is no change in the altitude at which the moving body is located, and the energy consumption is calculated with the road gradient θ = 0 in the energy estimation formula described later. The amount can also be estimated.
 取得部101は、たとえば、CAN(Controller Area Network)などの通信プロトコルによって動作する車内通信ネットワーク(以下、単に「CAN」という)を介して、たとえば、エレクトロニックコントロールユニット(ECU:Electronic Control Unit)によって管理されている移動体の速度、加速度を取得し、第一情報、第二情報、第三情報および第四情報に関する変数として用いてもよい。 The acquisition unit 101 is managed, for example, by an electronic control unit (ECU) via an in-vehicle communication network (hereinafter simply referred to as “CAN”) that operates according to a communication protocol such as CAN (Controller Area Network). The speed and acceleration of the moving body that is being used may be acquired and used as variables relating to the first information, the second information, the third information, and the fourth information.
 また、取得部101は、移動体の残存エネルギー量に関する情報や移動体の実エネルギー消費量を取得し、消費エネルギー推定式の変数として用いてもよい。ここで、残存エネルギー量とは、移動体の燃料タンクまたはバッテリーに残っているエネルギー量である。つまり、EV車の場合には、回収されたエネルギー量も残存エネルギー量に含まれる。具体的には、取得部101は、たとえば、CANなど通信プロトコルによって動作する車内通信ネットワークを介して、たとえば、ECUによって管理されている残存エネルギー量や実エネルギー消費量を取得する。 Also, the acquisition unit 101 may acquire information on the remaining energy amount of the moving object and the actual energy consumption amount of the moving object, and use them as variables of the energy consumption estimation formula. Here, the remaining energy amount is the amount of energy remaining in the fuel tank or battery of the mobile body. That is, in the case of an EV vehicle, the recovered energy amount is also included in the remaining energy amount. Specifically, the acquisition unit 101 acquires, for example, the remaining energy amount and the actual energy consumption managed by the ECU via an in-vehicle communication network that operates according to a communication protocol such as CAN.
 また、取得部101は、道路に関する情報を取得し、消費エネルギー推定式の変数として用いるが、不図示の記憶部に記憶された地図情報から道路に関する情報を取得してもよいし、傾斜センサなどから道路勾配などを取得してもよい。 In addition, the acquisition unit 101 acquires information about a road and uses it as a variable of a consumption energy estimation formula. However, the acquisition unit 101 may acquire information about a road from map information stored in a storage unit (not shown), an inclination sensor, or the like A road gradient or the like may be acquired.
 ここで、道路に関する情報とは、たとえば、移動体の走行により消費または回収させるエネルギー量に変化を生じさせる道路情報である。具体的には、道路に関する情報とは、たとえば、道路種別や、道路勾配、路面状況などにより移動体に生じる走行抵抗である。走行抵抗は、たとえば、次の(1)式により算出することができる。一般的に、走行抵抗は、加速時や走行時に移動体に生じる。 Here, the information on the road is, for example, road information that causes a change in the amount of energy consumed or recovered by the traveling of the moving body. Specifically, the information on the road is, for example, a running resistance generated in the moving body due to the road type, road gradient, road surface condition, and the like. The running resistance can be calculated by the following equation (1), for example. Generally, running resistance is generated in a moving body during acceleration or running.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 算出部102は、第一情報と、第二情報と、第三情報と、第四情報と、からなる消費エネルギー推定式に基づいて、エネルギー消費量を算出する。具体的には、算出部102は、取得部101によって取得された移動体の速度に関する情報に基づいて、前記移動体のエネルギー消費量を推定する。 The calculation unit 102 calculates the energy consumption based on the consumption energy estimation formula including the first information, the second information, the third information, and the fourth information. Specifically, the calculation unit 102 estimates the energy consumption amount of the moving body based on the information regarding the speed of the moving body acquired by the acquiring unit 101.
 より詳細には、算出部102は、次の(2)式または(3)式に示す消費エネルギー推定式、もしくはその両方の式に基づいて、単位時間あたりのエネルギー消費量を推定する。加速時および走行時における単位時間あたりの移動体のエネルギー消費量は、走行抵抗と走行距離と正味モータ効率と伝達効率との積であり、次の(2)式で表される。(2)式に示す消費エネルギー推定式は、加速時および走行時における単位時間あたりのエネルギー消費量を推定する理論式である。 More specifically, the calculation unit 102 estimates the energy consumption per unit time based on the consumption energy estimation formula shown in the following formula (2) or formula (3), or both formulas. The energy consumption amount of the moving body per unit time during acceleration and traveling is the product of travel resistance, travel distance, net motor efficiency, and transmission efficiency, and is expressed by the following equation (2). The energy consumption estimation formula shown in the formula (2) is a theoretical formula that estimates the energy consumption per unit time during acceleration and traveling.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、εは正味熱効率,ηは総伝達効率である。移動体の加速度αと道路勾配θから重力の加速度gとの合計を合成加速度|α|とすると、合成加速度|α|が負の場合の消費エネルギー推定式は、走行抵抗と走行距離と正味モータ効率と伝達効率の積であり、次の(3)式で表される。合成加速度|α|が負の場合とは、移動体の減速時である。(3)式に示す消費エネルギー推定式は、減速時における単位時間あたりのエネルギー消費量を推定する理論式である。 Where ε is the net thermal efficiency and η is the total transmission efficiency. If the sum of the acceleration α of the moving object and the acceleration g of the gravity from the road gradient θ is the combined acceleration | α |, the consumption energy estimation formula when the combined acceleration | α | is negative is the running resistance, the running distance, and the net motor. It is the product of efficiency and transmission efficiency, and is expressed by the following equation (3). The case where the combined acceleration | α | is negative is when the moving body is decelerating. The energy consumption estimation equation shown in equation (3) is a theoretical equation that estimates the energy consumption per unit time during deceleration.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記(2)式および(3)式において、右辺第1項は、アイドリング時のエネルギー消費量(第一情報)である。右辺第2項は、勾配成分によるエネルギー消費量(第四情報)および転がり抵抗成分によるエネルギー消費量(第三情報)である。右辺第3項は、空気抵抗成分によるエネルギー消費量(第三情報)である。また、(2)式の右辺第4項は、加速成分によるエネルギー消費量(第二情報)である。(3)式の右辺第4項は、減速成分によるエネルギー消費量(第二情報)である。その他の変数が示す情報は、上記(1)式と同様である。 In the above formulas (2) and (3), the first term on the right side is the energy consumption (first information) during idling. The second term on the right side is the energy consumption (fourth information) due to the gradient component and the energy consumption (third information) due to the rolling resistance component. The third term on the right side is energy consumption (third information) due to the air resistance component. Further, the fourth term on the right side of the equation (2) is the energy consumption (second information) by the acceleration component. The fourth term on the right side of the equation (3) is the energy consumption (second information) by the deceleration component. The information indicated by the other variables is the same as the above equation (1).
 また、上記(2)式および(3)式では、モータ効率と駆動効率は一定と見なしている。しかし、実際には、モータ効率および駆動効率はモータ回転数やトルクの影響により変動する。そこで、次の(4)式および(5)式に単位時間あたりの消費エネルギーを推定する実証式を示す。合成加速度|α+g・sinθ|が正の場合のエネルギー消費量を推定する実証式は、次の(4)式で表される。つまり、(4)式に示す消費エネルギー推定式は、加速時および走行時における単位時間あたりのエネルギー消費量を推定する実証式である。 In the above formulas (2) and (3), the motor efficiency and the drive efficiency are considered to be constant. However, in practice, the motor efficiency and the driving efficiency vary due to the influence of the motor speed and torque. Therefore, the following equations (4) and (5) show empirical equations for estimating the energy consumption per unit time. An empirical formula for estimating the energy consumption when the combined acceleration | α + g · sin θ | is positive is expressed by the following formula (4). That is, the energy consumption estimation formula shown in the formula (4) is an empirical formula for estimating the energy consumption per unit time during acceleration and traveling.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、合成加速度|α+g・sinθ|が負の場合のエネルギー消費量を推定する実証式は、次の(5)式で表される。つまり、(5)式に示す消費エネルギー推定式は、減速時における単位時間あたりのエネルギー消費量を推定する実証式である。 Also, the empirical formula for estimating the energy consumption when the composite acceleration | α + g · sin θ | is negative is expressed by the following formula (5). That is, the energy consumption estimation formula shown in the formula (5) is an empirical formula that estimates the energy consumption per unit time during deceleration.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記(4)式および(5)式において、係数a1,a2は、移動体の状況などに応じて設定される常数である。係数k1,k2,k3は、加速時におけるエネルギー消費量に基づく変数である。また、右辺第1項~右辺第4項が示す情報は、上記(2)式および(3)式と同様である。 In the above equations (4) and (5), the coefficients a 1 and a 2 are constants that are set according to the status of the moving object. The coefficients k 1 , k 2 , and k 3 are variables based on energy consumption during acceleration. The information indicated by the first term on the right side to the fourth term on the right side is the same as in the above equations (2) and (3).
 理論式である上記(2)式と、実証式である上記(4)式は類似した構造となっている。(2)式および(4)式の右辺第1項はともに速度に依存しない成分であり、ともに第一情報である。(4)式の右辺第2項は、勾配抵抗と加速抵抗分のエネルギー消費量である。つまり、(4)式の右辺第2項は、速度増加による運動エネルギーの増分を表す第二情報と、高度変化による位置エネルギーの増分を表す第四情報であり、(2)式の右辺第4項の加速成分と、(2)式の右辺第2項の勾配成分とに対応する。(4)式の右辺第3項は第三情報であり、(2)式の右辺第2項の転がり抵抗成分と、(2)式の右辺第3項の空気抵抗成分に対応する。 The above formula (2), which is a theoretical formula, and the formula (4), which is an empirical formula, have similar structures. The first term on the right side of the equations (2) and (4) is a component that does not depend on the speed, and is both first information. The second term on the right side of equation (4) is the energy consumption for the gradient resistance and acceleration resistance. That is, the second term on the right side of the equation (4) is the second information representing the increase in kinetic energy due to the speed increase and the fourth information representing the increase in potential energy due to the altitude change. This corresponds to the acceleration component of the term and the gradient component of the second term on the right side of equation (2). The third term on the right side of equation (4) is third information, and corresponds to the rolling resistance component of the second term on the right side of equation (2) and the air resistance component of the third term on the right side of equation (2).
 理論式である上記(3)式と、実証式である上記(5)式においても、上述した(2)式と(4)式の関係と同様に類似した構造となっている。(5)式の右辺第2項のβは、位置エネルギーと運動エネルギーの回収分(以下、「回収率」とする)である。 The above formula (3), which is a theoretical formula, and the formula (5), which is an empirical formula, have similar structures in the same manner as the relationship between the formulas (2) and (4) described above. Β in the second term on the right side of the equation (5) is the amount of potential energy and kinetic energy recovered (hereinafter referred to as “recovery rate”).
 算出部102は、上記(4)式または(5)式に示す消費エネルギー推定式、もしくはその両方の式を用いて、単位時間ごとの走行速度Vと走行加速度αを入力することにより、走行速度および走行加速度が取得された瞬間の消費エネルギーを推定してもよい。しかし、上記(4)式または(5)式を用いて走行可能範囲を推定する場合、これから走行する全旅行区間行程における単位時間ごとの速度と加速度をたとえば1秒ごとに取得し、かつ1秒ごとにエネルギー消費量を推定しようとすると,計算量が膨大になってしまう恐れがある。 The calculation unit 102 inputs the travel speed V and the travel acceleration α per unit time using the consumption energy estimation formula shown in the above formula (4) or formula (5), or both formulas, thereby running speed. Alternatively, the energy consumption at the moment when the travel acceleration is acquired may be estimated. However, when the travelable range is estimated using the above formula (4) or (5), the speed and acceleration per unit time in the entire travel section stroke to be traveled are acquired every 1 second, for example, and 1 second If you try to estimate the amount of energy consumed every time, the amount of calculation may become enormous.
 そこで、算出部102は、ある程度まとまった区間における走行速度の平均値、および走行加速度の平均値を用いて、この区間におけるエネルギー消費量を推定してもよい。区間におけるエネルギー消費量は、上記(4)式または(5)式に基づいて定義される消費エネルギー推定式を用いて得ることができる。具体的には、算出部102は、第二情報として、移動体の加速時に消費する単位時間あたりのエネルギー消費量と、移動体の減速時に回収される単位時間あたりのエネルギー消費量とを平均する推定式を用いる。 Therefore, the calculation unit 102 may estimate the energy consumption amount in this section using the average value of the traveling speed and the average value of the traveling acceleration in a certain section. The energy consumption amount in the section can be obtained by using a consumption energy estimation formula defined based on the above formula (4) or formula (5). Specifically, the calculation unit 102 averages the energy consumption per unit time consumed when the moving body is accelerated and the energy consumption per unit time collected when the moving body is decelerated as the second information. Use the estimation formula.
 より具体的には、算出部102は、次の(6)式または(7)式に示す区間におけるエネルギー消費量の実証式、もしくはその両方の式を用いて、エネルギー消費量を推定してもよい。 More specifically, the calculation unit 102 estimates the energy consumption using the empirical expression of the energy consumption in the section shown in the following equation (6) or (7), or both equations. Good.
 次の(6)式に示す消費エネルギー推定式は、移動体が走行する区間の高度差Δhが正の場合の、区間における消費エネルギー推定式である。高度差Δhが正の場合とは、移動体が上り坂を走行している場合である。 The consumption energy estimation formula shown in the following equation (6) is a consumption energy estimation formula in the section when the altitude difference Δh of the section in which the mobile body travels is positive. The case where the altitude difference Δh is positive is a case where the moving body is traveling uphill.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 一方、次の(7)式に示す消費エネルギー推定式は、移動体が走行する区間の高度差Δhが負の場合の、区間における消費エネルギー推定式である。高度差Δhが負の場合とは、移動体が下り坂を走行している場合である。 On the other hand, the consumption energy estimation formula shown in the following equation (7) is a consumption energy estimation formula in the section when the altitude difference Δh of the section in which the mobile body travels is negative. The case where the altitude difference Δh is negative is a case where the moving body is traveling downhill.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 上記(6)式および(7)式において、右辺第1項は、アイドリング時のエネルギー消費量(第一情報)である。右辺第2項は、加速抵抗によるエネルギー消費量(第二情報)である。右辺第3項は、位置エネルギーとして消費されるエネルギー消費量である(第四情報)。右辺第4項は、単位面積あたりに受ける空気抵抗および転がり抵抗(以下、これらをまとめて「走行抵抗」と称する)によるエネルギー消費量(第三情報)である。 In the above formulas (6) and (7), the first term on the right side is the energy consumption (first information) during idling. The second term on the right side is the energy consumption (second information) by the acceleration resistance. The third term on the right side is energy consumption consumed as potential energy (fourth information). The fourth term on the right side is energy consumption (third information) due to air resistance and rolling resistance (hereinafter collectively referred to as “running resistance”) received per unit area.
 また、算出部102は、たとえば、メーカーによって提供された回収率βを取得してもよいし、取得部101によって取得された速度に関する情報に基づいて回収率βを算出してもよい。 Further, for example, the calculation unit 102 may acquire the recovery rate β provided by the manufacturer, or may calculate the recovery rate β based on the information regarding the speed acquired by the acquisition unit 101.
 次に、回収率βの算出方法について説明する。上記(6)式において、右辺第2項を旅行区間における加速成分のエネルギー消費量Paccとすると、加速成分のエネルギー消費量Paccは、旅行区間における全エネルギー消費量(左辺)から、アイドリング時のエネルギー消費量(右辺第1項)と走行抵抗によるエネルギー消費量(右辺第4項)を減じたものであり、次の(8)式で表される。 Next, a method for calculating the recovery rate β will be described. In the above equation (6), if the second term on the right side is the energy consumption P acc of the acceleration component in the travel section, the energy consumption P acc of the acceleration component is calculated from the total energy consumption (left side) in the travel section when idling. Energy consumption (first term on the right side) and energy consumption due to running resistance (fourth term on the right side) are subtracted and expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 なお、上記(8)式では、移動体は道路勾配θの影響を受けていないこととしている(θ=0)。この場合、上記(6)式の右辺第3項をゼロとする。そして、上記(8)式を上記(6)式に代入することで、次の(9)式に示す回収率βの算出式を得ることができる。 In the above equation (8), it is assumed that the moving body is not affected by the road gradient θ (θ = 0). In this case, the third term on the right side of the equation (6) is set to zero. Then, by substituting the above equation (8) into the above equation (6), the calculation formula for the recovery rate β shown in the following equation (9) can be obtained.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 回収率βは、EV車では0.7~0.9程度であり、HV車では0.6~0.8程度であり、ガソリン車では0.2~0.3程度である。なお、ガソリン車の回収率とは、移動体の加速時におけるエネルギー消費量と、減速時に燃料カットされるエネルギー量との割合である。 The recovery rate β is about 0.7 to 0.9 for EV vehicles, about 0.6 to 0.8 for HV vehicles, and about 0.2 to 0.3 for gasoline vehicles. The recovery rate of the gasoline vehicle is a ratio between an energy consumption amount when the moving body is accelerated and an energy amount that is fuel-cut when decelerating.
 また、算出部102は、上記(2)式~(5)式に示す消費エネルギー推定式のいずれか一つ以上の式に基づいて、旅行区間を走行する際の単位時間あたりのエネルギー消費量を推定するとともに、これを旅行時間だけ積算して旅行区間を走行する際のエネルギー消費量を推定する。 Further, the calculation unit 102 calculates the energy consumption amount per unit time when traveling in the travel section based on any one or more of the energy consumption estimation expressions shown in the expressions (2) to (5). In addition to the estimation, the energy consumption when traveling in the travel section is estimated by integrating the travel time.
 具体的には、算出部102は、実際の速度に関する情報または旅行速度に関する情報を用いて、消費エネルギー推定式に基づいて単位時間あたりのエネルギー消費量を推定し、取得部101によって取得された旅行時間で積分することにより、旅行区間におけるエネルギー消費量を推定する。旅行区間を移動体が過去に実際に走行した際の旅行時間を用いて旅行区間におけるエネルギー消費量を推定するため、より実エネルギー消費量に近いエネルギー消費量を推定することができる。 Specifically, the calculation unit 102 estimates the energy consumption per unit time based on the consumption energy estimation formula using the information about the actual speed or the information about the travel speed, and the travel acquired by the acquisition unit 101 By integrating over time, energy consumption in the travel segment is estimated. Since the energy consumption amount in the travel section is estimated using the travel time when the mobile body actually traveled in the past in the travel section, the energy consumption amount closer to the actual energy consumption amount can be estimated.
(エネルギー表示処理について)
 次に、エネルギー表示装置100によるエネルギー表示処理について説明する。図2は、エネルギー表示装置によるエネルギー表示処理の手順を示すフローチャートである。図2のフローチャートにおいて、エネルギー表示装置100は、取得部101によって、移動体のエネルギー算出にかかる情報を取得する(ステップS201)。次に、エネルギー表示装置100は、算出部102によって、第一情報と、第二情報と、第三情報と、第四情報と、からなる消費エネルギー推定式を用いて、エネルギー消費量を要因別に算出する(ステップS202)。
(About energy display processing)
Next, energy display processing by the energy display device 100 will be described. FIG. 2 is a flowchart showing a procedure of energy display processing by the energy display device. In the flowchart of FIG. 2, the energy display device 100 acquires information related to energy calculation of the moving object by the acquisition unit 101 (step S201). Next, the energy display device 100 uses the energy consumption estimation formula including the first information, the second information, the third information, and the fourth information to cause the calculation unit 102 to calculate the energy consumption by factor. Calculate (step S202).
 次に、エネルギー表示装置100の判定部104によって、エネルギーが全て消費されているか一部生産されているものがあるかを判定する(ステップS203)。この判定には、算出部102によって算出された、エネルギー消費量の値に基づき判定する。この判定には、判断部103の判断結果を加えてもよい。この場合、判定部104は、移動体が上昇/下降であるか、および移動体が加速/減速であるかの判断結果を判断部103から得て、エネルギーが全て消費されているか一部生産されているものがあるかを判定する。 Next, it is determined by the determination unit 104 of the energy display device 100 whether all the energy is consumed or partly produced (step S203). This determination is made based on the energy consumption value calculated by the calculation unit 102. The determination result of the determination unit 103 may be added to this determination. In this case, the determination unit 104 obtains a determination result from the determination unit 103 as to whether the moving body is ascending / descending and the moving body is accelerating / decelerating, and all energy is consumed or partly produced. Determine if there is something.
 そして、表示制御部105は、判定部104の判定により、要因別のエネルギーが全て消費されていると判定された場合(ステップS203:Yes)と、要因別のエネルギーのうち生産されているエネルギーがあると判定された場合(ステップS203:No)とで異なる表示形態の表示データを生成する。 When the determination by the determination unit 104 determines that all the energy for each factor is consumed (step S203: Yes), the display control unit 105 determines that the energy produced among the energy for each factor is Display data of a different display form is generated when it is determined that there is (step S203: No).
 たとえば、要因別のエネルギーが全て消費されていると判定された場合(ステップS203:Yes)には、表示制御部105は、消費時の表示形態で要因別のエネルギーを累積した表示データを生成する(ステップS204)。一方、要因別のエネルギーのうち生産されているエネルギーがあると判定された場合(ステップS203:No)には、表示制御部105は、一部生産時の表示形態で要因別のエネルギーを累積した表示データを生成する(ステップS205)。 For example, when it is determined that all the energy for each factor is consumed (step S203: Yes), the display control unit 105 generates display data in which the energy for each factor is accumulated in the display mode at the time of consumption. (Step S204). On the other hand, when it is determined that there is energy produced among the energy for each factor (step S203: No), the display control unit 105 accumulates the energy for each factor in the display form during partial production. Display data is generated (step S205).
 次に、エネルギー表示装置100の表示部110は、表示制御部105により生成された表示データを表示し(ステップS206)、本フローチャートによる処理を終了する。上記の処理は、所定の時間間隔で継続的に処理される。 Next, the display unit 110 of the energy display device 100 displays the display data generated by the display control unit 105 (step S206), and ends the processing according to this flowchart. The above processing is continuously performed at predetermined time intervals.
 そして、移動体の走行状況の変化により、要因別のエネルギーが全て消費されている場合と、要因別のエネルギーのうち生産されているエネルギーがある場合とにおいて、表示部110上の表示画面は、基準位置を中心として表示形態が変更される。また、走行状況の変化に伴って各要因のエネルギー量が異なると、対応して各要因そのものの表示の長さも変更されることになる。 The display screen on the display unit 110 in the case where all the energy for each factor is consumed due to the change in the traveling state of the moving body and the case where there is the energy produced among the energy for each factor The display form is changed around the reference position. Further, if the energy amount of each factor varies with the change of the driving situation, the display length of each factor itself is changed accordingly.
 たとえば、上り坂の場合、位置エネルギーの始点を原点として、この原点を表示画面上の基準位置とし、各要因別のエネルギーを位置エネルギー分(第四情報)、アイドリング消費分(第一情報)、走行抵抗分(第三情報)、加速損失分(第二情報)の順で積み上げて表示する。一方、下り坂の場合、位置エネルギーの終点(マイナスの座標)を原点として基準位置からアイドリング消費分、走行抵抗分、加速損失分の順で積み上げて表示する。他の表示形態としては、他の表示データの座標上の所定の位置(基準位置)から所定の方向に累積した方向とは逆方向に生産されているエネルギー量だけ推移させた位置を始点として他のエネルギー消費量を要因別に上記の所定の方向に累積した表示データを表示する。 For example, in the case of an uphill, the starting point of potential energy is the origin, this origin is the reference position on the display screen, the energy for each factor is the potential energy (fourth information), idling consumption (first information), The travel resistance (third information) and acceleration loss (second information) are stacked and displayed in this order. On the other hand, in the case of a downhill, the end point (minus coordinate) of the potential energy is used as the origin, and the accumulated value is displayed from the reference position in the order of idle consumption, running resistance, and acceleration loss. As another display mode, a position shifted from the predetermined position (reference position) on the coordinates of other display data by the amount of energy produced in the direction opposite to the direction accumulated in the predetermined direction is used as the starting point. Display data obtained by accumulating the energy consumption amount in the predetermined direction is displayed for each factor.
 以上説明したように、実施の形態にかかるエネルギー表示装置100は、移動体のエネルギー消費量を要因別に算出し、要因別のエネルギーが全て消費されている場合と、要因別のエネルギーのうち生産されているエネルギーがある場合とにおいて、表示画面は、基準位置を中心として表示形態が変更される。これにより、要因別のエネルギーが全て消費されている場合と、要因別のエネルギーのうち生産されているエネルギーがある場合とで適切な表示をおこなうことができる。すなわち、一部生産するエネルギーがある場合でも、実際の消費分がどの程度なのか容易に把握できる表示をおこなうことができる。 As described above, the energy display device 100 according to the embodiment calculates the energy consumption amount of the moving object for each factor, and the energy for each factor is consumed and the energy for each factor is produced. In the case where there is energy that is present, the display form of the display screen is changed around the reference position. Accordingly, appropriate display can be performed when all the energy for each factor is consumed and when there is energy produced among the energy for each factor. That is, even when there is energy to be produced in part, it is possible to perform a display that can easily grasp how much the actual consumption is.
(実施例1)
 以下に、本発明の実施例1について説明する。本実施例1では、車両に搭載されるナビゲーション装置300をエネルギー表示装置100として、本発明を適用した場合の一例について説明する。
Example 1
Example 1 of the present invention will be described below. In the first embodiment, an example in which the present invention is applied will be described using the navigation device 300 mounted on a vehicle as the energy display device 100.
(ナビゲーション装置300のハードウェア構成)
 次に、ナビゲーション装置300のハードウェア構成について説明する。図3は、ナビゲーション装置のハードウェア構成を示すブロック図である。図3において、ナビゲーション装置300は、CPU301、ROM302、RAM303、磁気ディスクドライブ304、磁気ディスク305、光ディスクドライブ306、光ディスク307、音声I/F(インターフェース)308、マイク309、スピーカ310、入力デバイス311、映像I/F312、ディスプレイ313、カメラ314、通信I/F315、GPSユニット316、各種センサ317を備えている。各構成部301~317は、バス320によってそれぞれ接続されている。
(Hardware configuration of navigation device 300)
Next, the hardware configuration of the navigation device 300 will be described. FIG. 3 is a block diagram illustrating a hardware configuration of the navigation apparatus. In FIG. 3, the navigation apparatus 300 includes a CPU 301, ROM 302, RAM 303, magnetic disk drive 304, magnetic disk 305, optical disk drive 306, optical disk 307, audio I / F (interface) 308, microphone 309, speaker 310, input device 311, A video I / F 312, a display 313, a camera 314, a communication I / F 315, a GPS unit 316, and various sensors 317 are provided. Each component 301 to 317 is connected by a bus 320.
 CPU301は、ナビゲーション装置300の全体の制御を司る。ROM302は、ブートプログラム、走行距離推定プログラム、データ更新プログラム、地図データ表示プログラムなどのプログラムを記録している。RAM303は、CPU301のワークエリアとして使用される。すなわち、CPU301は、RAM303をワークエリアとして使用しながら、ROM302に記録された各種プログラムを実行することによって、ナビゲーション装置300の全体の制御を司る。 CPU 301 governs overall control of navigation device 300. The ROM 302 records programs such as a boot program, a travel distance estimation program, a data update program, and a map data display program. The RAM 303 is used as a work area for the CPU 301. That is, the CPU 301 controls the entire navigation device 300 by executing various programs recorded in the ROM 302 while using the RAM 303 as a work area.
 磁気ディスクドライブ304は、CPU301の制御にしたがって磁気ディスク305に対するデータの読み取り/書き込みを制御する。磁気ディスク305は、磁気ディスクドライブ304の制御で書き込まれたデータを記録する。磁気ディスク305としては、たとえば、HD(ハードディスク)やFD(フレキシブルディスク)を用いることができる。 The magnetic disk drive 304 controls the reading / writing of the data with respect to the magnetic disk 305 according to control of CPU301. The magnetic disk 305 records data written under the control of the magnetic disk drive 304. As the magnetic disk 305, for example, an HD (hard disk) or an FD (flexible disk) can be used.
 また、光ディスクドライブ306は、CPU301の制御にしたがって光ディスク307に対するデータの読み取り/書き込みを制御する。光ディスク307は、光ディスクドライブ306の制御にしたがってデータが読み出される着脱自在な記録媒体である。光ディスク307は、書き込み可能な記録媒体を利用することもできる。着脱可能な記録媒体として、光ディスク307のほか、MO、メモリカードなどを用いることができる。 The optical disk drive 306 controls reading / writing of data with respect to the optical disk 307 according to the control of the CPU 301. The optical disk 307 is a detachable recording medium from which data is read according to the control of the optical disk drive 306. As the optical disc 307, a writable recording medium can be used. In addition to the optical disk 307, an MO, a memory card, or the like can be used as a removable recording medium.
 磁気ディスク305および光ディスク307に記録される情報の一例としては、地図データ、車両情報、道路情報、走行履歴などが挙げられる。地図データは、カーナビゲーションシステムにおいて走行可能距離に関する情報を表示する際に用いられ、建物、河川、地表面などの地物(フィーチャ)を表す背景データ、道路の形状をリンクやノードなどで表す道路形状データなどを含んでいる。ここで、車両情報、道路情報および走行履歴とは、上記(2)式~(7)式に示す消費エネルギー推定式に変数として用いる道路に関するデータである。 Examples of information recorded on the magnetic disk 305 and the optical disk 307 include map data, vehicle information, road information, travel history, and the like. Map data is used to display information related to the distance that can be traveled in a car navigation system. Background data that represents features (features) such as buildings, rivers, and the ground surface, and roads that represent road shapes with links and nodes. Includes shape data. Here, the vehicle information, the road information, and the travel history are data relating to roads used as variables in the energy consumption estimation formulas shown in the formulas (2) to (7).
 音声I/F308は、音声入力用のマイク309および音声出力用のスピーカ310に接続される。マイク309に受音された音声は、音声I/F308内でA/D変換される。マイク309は、たとえば、車両のダッシュボード部などに設置され、その数は単数でも複数でもよい。スピーカ310からは、所定の音声信号を音声I/F308内でD/A変換した音声が出力される。 The voice I / F 308 is connected to a microphone 309 for voice input and a speaker 310 for voice output. The sound received by the microphone 309 is A / D converted in the sound I / F 308. For example, the microphone 309 is installed in a dashboard portion of a vehicle, and the number thereof may be one or more. From the speaker 310, a sound obtained by D / A converting a predetermined sound signal in the sound I / F 308 is output.
 入力デバイス311は、文字、数値、各種指示などの入力のための複数のキーを備えたリモコン、キーボード、タッチパネルなどが挙げられる。入力デバイス311は、リモコン、キーボード、タッチパネルのうちいずれか一つの形態によって実現されてもよいが、複数の形態によって実現することも可能である。 The input device 311 includes a remote controller, a keyboard, a touch panel, and the like provided with a plurality of keys for inputting characters, numerical values, various instructions, and the like. The input device 311 may be realized by any one form of a remote control, a keyboard, and a touch panel, but may be realized by a plurality of forms.
 映像I/F312は、ディスプレイ313に接続される。映像I/F312は、具体的には、たとえば、ディスプレイ313全体を制御するグラフィックコントローラと、即時表示可能な画像情報を一時的に記録するVRAM(Video RAM)などのバッファメモリと、グラフィックコントローラから出力される画像データに基づいてディスプレイ313を制御する制御ICなどによって構成される。 The video I / F 312 is connected to the display 313. Specifically, the video I / F 312 is output from, for example, a graphic controller that controls the entire display 313, a buffer memory such as a VRAM (Video RAM) that temporarily records image information that can be displayed immediately, and a graphic controller. And a control IC for controlling the display 313 based on the image data to be processed.
 ディスプレイ313には、アイコン、カーソル、メニュー、ウインドウ、あるいは文字や画像などの各種データが表示される。ディスプレイ313としては、たとえば、TFT液晶ディスプレイ、有機ELディスプレイなどを用いることができる。 The display 313 displays icons, cursors, menus, windows, or various data such as characters and images. As the display 313, for example, a TFT liquid crystal display, an organic EL display, or the like can be used.
 カメラ314は、車両内部あるいは外部の映像を撮影する。映像は静止画あるいは動画のどちらでもよく、たとえば、カメラ314によって車両外部を撮影し、撮影した画像をCPU301において画像解析したり、映像I/F312を介して磁気ディスク305や光ディスク307などの記録媒体に出力したりする。 The camera 314 captures images inside or outside the vehicle. The image may be either a still image or a moving image. For example, the outside of the vehicle is photographed by the camera 314, and the photographed image is analyzed by the CPU 301, or a recording medium such as the magnetic disk 305 or the optical disk 307 via the image I / F 312. Or output to
 通信I/F315は、無線を介してネットワークに接続され、ナビゲーション装置300およびCPU301のインターフェースとして機能する。ネットワークとして機能する通信網には、公衆回線網や携帯電話網、DSRC(Dedicated Short Range Communication)、LAN、WANなどがある。通信I/F315は、たとえば、公衆回線用接続モジュールやETC(ノンストップ自動料金支払いシステム)ユニット、FMチューナー、VICS(Vehicle Information and Communication System)/ビーコンレシーバなどである。 The communication I / F 315 is connected to a network via wireless and functions as an interface between the navigation device 300 and the CPU 301. The communication network functioning as a network includes a public line network, a mobile phone network, DSRC (Dedicated Short Range Communication), LAN, WAN, and the like. The communication I / F 315 is, for example, a public line connection module, an ETC (non-stop automatic fee payment system) unit, an FM tuner, a VICS (Vehicle Information and Communication System) / beacon receiver, or the like.
 GPSユニット316は、GPS衛星からの電波を受信し、車両の現在位置を示す情報を出力する。GPSユニット316の出力情報は、後述する各種センサ317の出力値とともに、CPU301による車両の現在位置の算出に際して利用される。現在位置を示す情報は、たとえば、緯度・経度、高度などの、地図データ上の1点を特定する情報である。 The GPS unit 316 receives radio waves from GPS satellites and outputs information indicating the current position of the vehicle. The output information of the GPS unit 316 is used when the CPU 301 calculates the current position of the vehicle together with output values of various sensors 317 described later. The information indicating the current position is information for specifying one point on the map data, such as latitude / longitude and altitude.
 各種センサ317は、車速センサ、加速度センサ、角速度センサ、傾斜センサなどの、車両の位置や挙動を判断するための情報を出力する。各種センサ317の出力値は、CPU301による車両の現在位置の算出や、速度や方位の変化量の算出に用いられる。 Various sensors 317 output information for determining the position and behavior of the vehicle, such as a vehicle speed sensor, an acceleration sensor, an angular velocity sensor, and a tilt sensor. The output values of the various sensors 317 are used by the CPU 301 to calculate the current position of the vehicle and the amount of change in speed and direction.
 図1に示したエネルギー表示装置100の取得部101、算出部102、判断部103、判定部104、表示制御部105は、上述したナビゲーション装置300におけるROM302、RAM303、磁気ディスク305、光ディスク307などに記録されたプログラムやデータを用いて、CPU301が所定のプログラムを実行し、ナビゲーション装置300における各部を制御することによってその機能を実現する。 The acquisition unit 101, the calculation unit 102, the determination unit 103, the determination unit 104, and the display control unit 105 of the energy display device 100 illustrated in FIG. 1 are included in the ROM 302, the RAM 303, the magnetic disk 305, the optical disk 307, and the like in the navigation device 300 described above. Using the recorded program and data, the CPU 301 executes a predetermined program and controls each part in the navigation device 300 to realize its function.
(ナビゲーション装置300による消費エネルギー推定の概要)
 本実施例のナビゲーション装置300は、車両の自装置が搭載された車両の走行中におけるエネルギー消費量を推定する。具体的には、ナビゲーション装置300は、たとえば、速度、加速度、車両の勾配に基づいて、次の(2)式~(7)式に示す消費エネルギー推定式のいずれか一つ以上の式を用いて、車両のエネルギー消費量を推定する。
(Outline of energy consumption estimation by the navigation device 300)
The navigation device 300 according to the present embodiment estimates the energy consumption during travel of a vehicle on which the vehicle's own device is mounted. Specifically, the navigation device 300 uses, for example, one or more of the consumption energy estimation formulas shown in the following formulas (2) to (7) based on the speed, acceleration, and vehicle gradient. To estimate the energy consumption of the vehicle.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 上記(2)式に示す消費エネルギー推定式は、加速時および走行時における単位時間あたりの消費エネルギーを推定する理論式である。上記(3)式に示す消費エネルギー推定式は、減速時における単位時間あたりの消費エネルギーを推定する理論式である。 The energy consumption estimation formula shown in the above equation (2) is a theoretical formula for estimating the energy consumption per unit time during acceleration and traveling. The consumption energy estimation formula shown in the above equation (3) is a theoretical formula for estimating the consumption energy per unit time during deceleration.
 また、上記(2)式および(3)式において、右辺第1項は、アイドリング時のエネルギー消費量(第一情報)である。右辺第2項は、勾配成分によるエネルギー消費量(第四情報)および転がり抵抗成分によるエネルギー消費量(第三情報)である。右辺第3項は、空気抵抗成分によるエネルギー消費量(第三情報)である。また、(2)式の右辺第4項は、加速成分によるエネルギー消費量(第二情報)である。(3)式の右辺第4項は、減速成分によるエネルギー消費量(第二情報)である。 Also, in the above formulas (2) and (3), the first term on the right side is the energy consumption (first information) during idling. The second term on the right side is the energy consumption (fourth information) due to the gradient component and the energy consumption (third information) due to the rolling resistance component. The third term on the right side is energy consumption (third information) due to the air resistance component. Further, the fourth term on the right side of the equation (2) is the energy consumption (second information) by the acceleration component. The fourth term on the right side of the equation (3) is the energy consumption (second information) by the deceleration component.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 上記(4)式に示す消費エネルギー推定式は、加速時および走行時における単位時間あたりのエネルギー消費量を推定する実証式である。上記(5)式に示す消費エネルギー推定式は、減速時における単位時間あたりのエネルギー消費量を推定する実証式である。 The energy consumption estimation formula shown in the above equation (4) is an empirical formula for estimating the energy consumption per unit time during acceleration and traveling. The energy consumption estimation formula shown in the above equation (5) is an empirical formula for estimating the energy consumption per unit time during deceleration.
 また、上記(4)式および(5)式において、係数a1,a2は、車両状況などに応じて設定される常数である。係数k1,k2,k3は、加速時におけるエネルギー消費量に基づく変数である。また、速度V、加速度Aとしており、その他の変数および右辺第1項~右辺第4項にあたる部分が示す情報は、上記(2)式および(3)式と同様である。 In the above equations (4) and (5), the coefficients a 1 and a 2 are constants that are set according to the vehicle situation. The coefficients k 1 , k 2 , and k 3 are variables based on energy consumption during acceleration. Further, the speed V and the acceleration A, and other variables and information indicated by the portion corresponding to the first term on the right side to the fourth term on the right side are the same as the above equations (2) and (3).
 また、ナビゲーション装置300は、ある程度まとまった区間における車両の平均速度および平均加速度を用いて、次の(6)式または(7)式に示す消費エネルギー推定式に基づいて、車両の走行する区間におけるエネルギー消費量を推定してもよい。 In addition, the navigation device 300 uses the average speed and average acceleration of the vehicle in a certain range of sections, and uses the average energy consumption formula shown in the following formula (6) or (7) to determine whether the vehicle travels. Energy consumption may be estimated.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 上記(6)式に示す消費エネルギー推定式は、移動体が走行する区間の高度差Δhが正の場合の、区間におけるエネルギー消費量を推定する理論式である。上記(7)式に示す消費エネルギー推定式は、移動体が走行する区間の高度差Δhが負の場合の、区間におけるエネルギー消費量を推定する理論式である。 The energy consumption estimation formula shown in the above equation (6) is a theoretical formula for estimating the energy consumption in the section when the altitude difference Δh of the section in which the mobile body travels is positive. The consumption energy estimation formula shown in the above equation (7) is a theoretical formula for estimating the energy consumption amount in the section when the altitude difference Δh of the section in which the mobile body travels is negative.
 また、上記(6)式および(7)式において、右辺第1項は、アイドリング時のエネルギー消費量(第一情報)である。右辺第2項は、加速抵抗によるエネルギー消費量(第二情報)である。右辺第3項は、位置エネルギーとして消費されるエネルギー消費量である(第四情報)。右辺第4項は、単位面積あたりに受ける空気抵抗および転がり抵抗(走行抵抗)によるエネルギー消費量(第三情報)である。 In the above formulas (6) and (7), the first term on the right side is the energy consumption (first information) at the time of idling. The second term on the right side is the energy consumption (second information) by the acceleration resistance. The third term on the right side is energy consumption consumed as potential energy (fourth information). The fourth term on the right side is energy consumption (third information) due to air resistance and rolling resistance (running resistance) received per unit area.
 また、ナビゲーション装置300は、上記(4)式または(5)式に示す消費エネルギー推定式、もしくはその両方の式を用いて、重回帰分析法や回帰分析法により、1秒ごとに第一情報Pidle、効率εη、移動体の重量M、などを算出し、上記(2)式~(7)式に示す消費エネルギー推定式の変数を補正してもよい。 In addition, the navigation apparatus 300 uses the multiple energy analysis method or the regression analysis method to calculate the first information every second using the energy consumption estimation equation shown in the above equation (4) or (5), or both equations. P idle , efficiency εη, moving body weight M, and the like may be calculated to correct the variables of the energy consumption estimation equation shown in the above equations (2) to (7).
(走行抵抗について)
 つづいて、車両に生じる走行抵抗について説明する。ナビゲーション装置300は、たとえば、次の(1)式により走行抵抗を算出する。一般的に、走行抵抗は、道路種別や、道路勾配、路面状況などにより、加速時や走行時に移動体に生じる。
(About running resistance)
Next, the running resistance generated in the vehicle will be described. The navigation device 300 calculates the running resistance by the following equation (1), for example. Generally, traveling resistance is generated in a moving body during acceleration or traveling due to road type, road gradient, road surface condition, and the like.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
(回収率βの定義)
 つづいて、EV車の回収率の概念について説明する。車両が走行するにあたり、出発地点から加速した後、一定の速度で走行し、その後減速して停止すると仮定した場合を例に、次の(10)式~(13)式を用いて、回収率βを定義する。また、車両が実際に走行した際に計測されるエネルギー消費量(実エネルギー消費量)Ptとする。なお、旅行区間における道路勾配θ=0とする。
(Definition of recovery rate β)
Next, the concept of the EV vehicle collection rate will be described. Using the following formulas (10) to (13) as an example, assume that the vehicle travels at a constant speed after accelerating from the starting point, and then decelerates and stops. Define β. Moreover, it is set as the energy consumption (actual energy consumption) Pt measured when the vehicle actually travels. It is assumed that road gradient θ = 0 in the travel section.
 加速時のエネルギー消費量は、次の(10)式に示すように、走行抵抗によるエネルギー消費量Psと、加速抵抗によるエネルギー消費量Paとの和である。ここで、エネルギー消費量Ps、Paは、理論的に算出されたデータである。 The energy consumption during acceleration is the sum of the energy consumption Ps due to running resistance and the energy consumption Pa due to acceleration resistance, as shown in the following equation (10). Here, the energy consumption amounts Ps and Pa are theoretically calculated data.
 Pt=Ps+Pa ・・・(10) Pt = Ps + Pa (10)
 ここで、さらに、次のように仮定する。車両に生じる走行抵抗は、加速から減速に至る間に等しい。また、加速抵抗により生じる運動エネルギーは減速時に一部が電力に変換されて、回収されるエネルギー量として蓄えられる。つまり、車両の減速時、走行抵抗によりエネルギーが消費されるが、加速抵抗により生じる運動エネルギーが回収されるため、実際に消費されるエネルギー量は、走行抵抗によるエネルギー量から回収されるエネルギー量を引いた値となる。 Here, further assume the following. The running resistance generated in the vehicle is equal between acceleration and deceleration. Further, a part of the kinetic energy generated by the acceleration resistance is converted into electric power during deceleration and stored as an amount of energy to be recovered. In other words, when the vehicle decelerates, energy is consumed by the running resistance, but the kinetic energy generated by the acceleration resistance is recovered, so the actual amount of energy consumed is the amount of energy recovered from the amount of energy by the running resistance. Subtracted value.
 このため、加速抵抗による運動エネルギー量の、減速時に回収される割合(回収率)βとすると、減速時のエネルギー消費量は、次の(11)式に示すように、走行抵抗によるエネルギー消費量Psと回収されるエネルギー量β・Paの差となる。 For this reason, if the ratio (recovery rate) β of the kinetic energy due to acceleration resistance is recovered during deceleration, the energy consumption during deceleration is the energy consumption due to running resistance as shown in the following equation (11). This is the difference between Ps and the recovered energy amount β · Pa.
 Pt=Ps-β・Pa ・・・(11) Pt = Ps-β · Pa (11)
 実エネルギー消費量Ptは、次の(12)式に示すように、上記(10)式および(11)式の総和となる。 The actual energy consumption Pt is the sum of the above equations (10) and (11) as shown in the following equation (12).
 Pt=Ps+(1-β)・Pa ・・・(12) Pt = Ps + (1-β) · Pa (12)
 ここで、実エネルギー消費量Pt、走行抵抗によるエネルギー消費量Ps、加速抵抗によるエネルギー消費量Paは既知の値であるため、回収率βは、次の(13)式を用いて算出することができる。 Here, since the actual energy consumption Pt, the energy consumption Ps due to running resistance, and the energy consumption Pa due to acceleration resistance are known values, the recovery rate β can be calculated using the following equation (13). it can.
 β=1-(Pt-Ps)/(Pa) ・・・(13) Β = 1− (Pt−Ps) / (Pa) (13)
 つづいて、車両の実際の走行に基づいて、回収率βを算出する方法について説明する。まず、車両の、速度、エネルギー消費量(出力)、加減以外の走行抵抗によるエネルギー量を所定の時間ごとに測定した結果、車両が加速しているとき速度、出力、走行抵抗ともに上昇している。そして、車両が一定の速度で走行しているとき、出力、走行抵抗ともに一定の値となる。また、車両が減速しているとき、出力は減少して負の領域に至り、走行抵抗は正の領域を減少する。 Next, a method for calculating the recovery rate β based on actual traveling of the vehicle will be described. First, the vehicle's speed, energy consumption (output), and the amount of energy due to running resistance other than adjustment are measured every predetermined time. As a result, when the vehicle is accelerating, the speed, output, and running resistance all increase. . When the vehicle is traveling at a constant speed, both the output and the traveling resistance are constant values. Further, when the vehicle is decelerating, the output decreases and reaches a negative region, and the running resistance decreases in the positive region.
 つまり、出力は、減速時に、エネルギーが回収される。一方、加速以外の走行抵抗では、エネルギー消費量のみが発生する。 That is, the output recovers energy when decelerating. On the other hand, only the energy consumption occurs in the running resistance other than acceleration.
 加速時のエネルギー消費量E13は、次の(14)式に示すように、加速抵抗によるエネルギー消費量E11と、加減速以外の走行抵抗によるエネルギー消費量E12の和となる。加減速以外の走行抵抗によるエネルギー消費量とは、走行を維持するために消費されるエネルギー消費量である。 The energy consumption E13 during acceleration is the sum of the energy consumption E11 due to acceleration resistance and the energy consumption E12 due to travel resistance other than acceleration / deceleration as shown in the following equation (14). The energy consumption due to running resistance other than acceleration / deceleration is the energy consumption consumed to maintain running.
 E13=E11+E12 ・・・(14) E13 = E11 + E12 (14)
 また、一定速度(巡航)での走行時のエネルギー消費量E23は、次の(15)式に示すように、加減速以外の走行抵抗によるエネルギー消費量E22となる。 Further, the energy consumption amount E23 during traveling at a constant speed (cruising) is an energy consumption amount E22 due to traveling resistance other than acceleration / deceleration as shown in the following equation (15).
 E23=E22 ・・・(15) E23 = E22 (15)
 また、減速時のエネルギー消費量E33は、次の(16)式に示すように、減速時に回収されるエネルギー量E31と、加減速以外の走行抵抗によるエネルギー消費量E32の和となる。 Further, as shown in the following equation (16), the energy consumption amount E33 during deceleration is the sum of the energy amount E31 recovered during deceleration and the energy consumption amount E32 due to running resistance other than acceleration / deceleration.
 E33=E31+E32=E32-β×E11 ・・・(16) E33 = E31 + E32 = E32-β × E11 (16)
 つまり、加速抵抗によるエネルギー消費量E11と、減速時に回収されるエネルギー量E31との割合である回収率βは、次の(17)式を用いて算出することができる。 That is, the recovery rate β, which is the ratio between the energy consumption E11 due to acceleration resistance and the energy amount E31 recovered during deceleration, can be calculated using the following equation (17).
 β=E33/E11 ・・・(17) Β = E33 / E11 (17)
 つまり、上記(17)式は、次の(9)式に相当する。詳細には、次の(9)式に示す回収率の算出式は、次のように導き出される。上記(6)式において、右辺第2項を所定の区間における加速成分のエネルギー消費量Paccとすると、加速成分のエネルギー消費量Paccは、所定の区間における全エネルギー消費量(左辺)から、アイドリング時のエネルギー消費量(右辺第1項)と走行抵抗によるエネルギー消費量(右辺第4項)を減じたものであり、次の(8)式で表される。 That is, the above equation (17) corresponds to the following equation (9). Specifically, the formula for calculating the recovery rate shown in the following equation (9) is derived as follows. In the above equation (6), if the second term on the right side is the energy consumption P acc of the acceleration component in the predetermined section, the energy consumption P acc of the acceleration component is calculated from the total energy consumption (left side) in the predetermined section: It is obtained by subtracting the energy consumption during idling (first term on the right side) and the energy consumption due to running resistance (fourth term on the right side), and is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 上記(8)式では、車両は道路勾配θの影響を受けていないこととする(θ=0)。そして、上記(8)式を上記(6)式に代入することで、次の(9)式に示す回収率βの算出式を得ることができる。 In the above equation (8), it is assumed that the vehicle is not affected by the road gradient θ (θ = 0). Then, by substituting the above equation (8) into the above equation (6), the calculation formula for the recovery rate β shown in the following equation (9) can be obtained.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 回収率βは、EV車では0.7~0.9程度であり、HV車では0.6~0.8程度であり、ガソリン車では0.2~0.3程度である。なお、ガソリン車の回収率とは、移動体の加速時におけるエネルギー消費量と、減速時に燃料カットされるエネルギー量との割合である。 The recovery rate β is about 0.7 to 0.9 for EV vehicles, about 0.6 to 0.8 for HV vehicles, and about 0.2 to 0.3 for gasoline vehicles. The recovery rate of the gasoline vehicle is a ratio between an energy consumption amount when the moving body is accelerated and an energy amount that is fuel-cut when decelerating.
(エネルギー表示例)
 図4は、実施例1によるエネルギー表示処理の手順を示すフローチャートである。図4のフローチャートは、ナビゲーション装置300の各部が動作実行するものとして記載してある。まず、ナビゲーション装置300は、消費エネルギーの算出に必要なデータを収集する(ステップS401)。次に、ナビゲーション装置300は、第一情報と、第二情報と、第三情報と、第四情報と、からなる消費エネルギー推定式を用いて、エネルギー消費量を要因別に算出する(ステップS402)。
(Example of energy display)
FIG. 4 is a flowchart illustrating a procedure of energy display processing according to the first embodiment. The flowchart in FIG. 4 is described as the operation of each unit of the navigation device 300 being performed. First, the navigation apparatus 300 collects data necessary for calculating energy consumption (step S401). Next, the navigation apparatus 300 calculates energy consumption according to a factor using the consumption energy estimation formula which consists of 1st information, 2nd information, 3rd information, and 4th information (step S402). .
 次に、ナビゲーション装置300は、現在の移動体が上り坂であるか否かを判定する(ステップS403)。たとえば、上記(6)、(7)式における高度差Δhが正の場合、移動体が上り坂を走行していると判定し、高度差Δhが負の場合、移動体が下り坂を走行していると判定する。そして、移動体が上り坂である場合には(ステップS403:Yes)、エネルギーが全て消費されていると判断する。そして、基準位置を位置エネルギー分の表示の始点とする(ステップS404)。一方、移動体が下り坂である場合には(ステップS403:No)、エネルギーの一部が生産されていると判断する。そして、位置エネルギー分だけマイナス座標の位置を基準位置とする(ステップS405)。 Next, the navigation device 300 determines whether or not the current moving body is an uphill (step S403). For example, when the altitude difference Δh in the above formulas (6) and (7) is positive, it is determined that the mobile body is traveling uphill, and when the altitude difference Δh is negative, the mobile body travels downhill. It is determined that And when a mobile body is an uphill (step S403: Yes), it determines that all the energy is consumed. Then, the reference position is set as a display start point for potential energy (step S404). On the other hand, when the moving body is a downhill (step S403: No), it is determined that a part of the energy is produced. Then, the position of minus coordinates corresponding to the potential energy is set as the reference position (step S405).
 この後、基準位置からアイドリング分、走行抵抗分、加速損失分を積み上げて表示する(ステップS406)。位置エネルギー分は、上り坂の場合にのみ表示されることになる。上記の各処理は、たとえば、1msecごとに繰り返し実行され、常に表示が更新される。 After this, idling, running resistance, and acceleration loss are accumulated and displayed from the reference position (step S406). The potential energy is displayed only in the case of uphill. Each of the above processes is repeatedly executed every 1 msec, for example, and the display is constantly updated.
 図5は、実施例1によるエネルギー表示の概要を示す図である。図1の表示制御部105において生成する表示画面の例を示す。なお、図5では、EV車の走行中に消費または生産されるエネルギー量を要因別に表示する例であり、アイドリングによるエネルギーの消費はないものとする。図5において、(a)上り坂の場合には、位置エネルギーの始点を基準位置に合わせて、位置エネルギーP1と、走行抵抗(走行抵抗分、加速損失分)P2の順でプラス方向に積み上げて表示する。(b)平地走行の場合には、走行抵抗P2分だけを基準位置から表示する。(c)下り坂の場合には、位置エネルギーの終点(マイナスの座標)を基準位置として、走行抵抗(走行抵抗分、加速損失分)の順でプラス方向に積み上げて表示する。すなわち、基準位置は、位置エネルギー分P1だけマイナス座標に原点(0)の位置からシフトして表示される(位置L)。基準位置とは、各要因の消費エネルギーを積み重ねる始点となる位置である。 FIG. 5 is a diagram showing an outline of energy display according to the first embodiment. The example of the display screen produced | generated in the display control part 105 of FIG. 1 is shown. Note that FIG. 5 is an example in which the amount of energy consumed or produced during travel of the EV vehicle is displayed for each factor, and it is assumed that no energy is consumed due to idling. In FIG. 5, (a) in the case of an uphill, the starting point of potential energy is aligned with the reference position, and the potential energy P1 and traveling resistance (traveling resistance, acceleration loss) P2 are accumulated in the positive direction in this order. indicate. (B) In the case of flat ground traveling, only the traveling resistance P2 is displayed from the reference position. (C) In the case of a downhill, the end point (minus coordinate) of potential energy is used as a reference position and displayed in the plus direction in the order of travel resistance (travel resistance, acceleration loss). That is, the reference position is displayed by shifting from the position of the origin (0) to the minus coordinate by the position energy P1 (position L). The reference position is a position that is a starting point for accumulating the energy consumption of each factor.
 図6は、実施例1によるエネルギー表示の詳細を示す図である。図5に示した表示画面を移動体の状態、およびエネルギー消費の各項目別に表示した例である。判定部104は、移動体の状態に応じて表示する消費エネルギーの項目を判定し、表示制御部105に出力する。(a)平地で一定走行または減速の場合には、座標の原点(0)から実消費分のエネルギーであるアイドリング分p3、走行抵抗分p2をバーグラフで図中水平なプラス方向に積み重ねて表示する。(b)平地で加速の場合には、座標の原点からアイドリング分p3と、走行抵抗分p2と、加速損失分p4の順で積み上げて表示する。(c)上り坂で加速走行の場合には、座標の原点から位置エネルギー分p1と、アイドリング分p3と、走行抵抗分p2と、加速損失分p4の順で積み上げて表示する。(d)上り坂で一定走行または減速の場合には、座標の原点から位置エネルギー分p1と、アイドリング分p3と、走行抵抗分p2の順で積み上げて表示する。 FIG. 6 is a diagram showing details of energy display according to the first embodiment. It is the example which displayed the display screen shown in FIG. 5 according to each item of the state of a moving body and energy consumption. The determination unit 104 determines an item of energy consumption to be displayed according to the state of the moving object, and outputs it to the display control unit 105. (A) In the case of constant running or deceleration on flat ground, the idling part p3 and the running resistance part p2, which are the energy consumed from the coordinate origin (0), are stacked and displayed in the horizontal positive direction in the graph. To do. (B) In the case of acceleration on a flat ground, the values are accumulated and displayed in the order of the idling amount p3, the running resistance amount p2, and the acceleration loss amount p4 from the origin of the coordinates. (C) In the case of acceleration traveling on an uphill, the position energy component p1, the idling component p3, the traveling resistance component p2, and the acceleration loss component p4 are accumulated and displayed in this order from the coordinate origin. (D) In the case of constant traveling or deceleration on an uphill, the position energy component p1, the idling component p3, and the traveling resistance component p2 are accumulated and displayed in this order from the coordinate origin.
 一方、下り坂の場合には、上述したように、位置エネルギー分p1だけ基準位置がマイナス座標に原点(0)の位置からシフトさせる(位置L)。まず、(e)下り坂で加速の場合には、マイナス座標の基準位置(L)を始点として、アイドリング分p3と、走行抵抗分p2と、加速損失分p4の順でプラス方向に積み上げて表示する。また、(f)下り坂で減速の場合には、マイナス座標の基準位置(L)を始点として、アイドリング分p3と、走行抵抗分p2の順で積み上げて表示する。上記のように、表示画面上のプラスの領域は、移動体が(a)~(f)のいずれの状態においても、実消費分のエネルギー分が表示されることになる。 On the other hand, in the case of a downhill, as described above, the reference position is shifted from the position of the origin (0) to the negative coordinate by the position energy p1 (position L). First, (e) In the case of acceleration on a downhill, starting from the negative coordinate reference position (L), the idling amount p3, the running resistance amount p2, and the acceleration loss amount p4 are stacked in the plus direction and displayed. To do. In addition, (f) when decelerating on a downhill, starting from the negative coordinate reference position (L), the idling amount p3 and the running resistance amount p2 are stacked and displayed in this order. As described above, in the positive area on the display screen, the energy for the actual consumption is displayed regardless of the state of the moving object (a) to (f).
 上述したように、位置エネルギー分は、移動体の状態により、消費エネルギーで見てプラス、あるいはマイナスのいずれの成分にもなり得る。このため、実施例1では、消費エネルギーを要因別に積み上げて表示する際の積み上げの基準位置を移動体の状態により位置エネルギー分だけシフト可能にする。これにより、移動体が下り坂の場合における実消費のエネルギー全体がどの程度なのかを表示画面上のプラス側の表示で容易に把握できるようになる。また、一つの表示(バーグラフ)を見るだけで、直感的に簡単に燃費構造(エネルギー内訳と燃費構成)を把握できるようになる。 As described above, the potential energy component can be either a plus or minus component in terms of energy consumption, depending on the state of the moving body. For this reason, in Example 1, the reference position for stacking when energy consumption is stacked and displayed for each factor can be shifted by the position energy depending on the state of the moving body. As a result, it is possible to easily grasp how much energy is actually consumed when the moving body is on a downhill by displaying on the plus side on the display screen. In addition, it is possible to intuitively and easily grasp the fuel consumption structure (energy breakdown and fuel consumption composition) simply by looking at one display (bar graph).
 図7は、実施例1の他のエネルギー表示例を示す図である。上述の表示例では、バーグラフを水平方向として消費エネルギーの各要因を積み重ねる表示としたが、図7に示すように上の方向に各要因を積み重ねて表示してもよい。この場合、原点の位置を判りやすくするために、バーグラフの側部に原点位置を判りやすくする補助表示部701を表示させる。補助表示部701は、山702と、川703であり、山702の麓を原点位置に合わせて表示させる。これにより、山702の高さ方向が実消費エネルギーであることを容易に把握できるようになる。なお、基準位置は下り坂の場合には、川703の下流である位置Lの方向にシフトして表示される。さらには、図7の例に限らず、たとえばバーグラフを山702の傾斜や川703の流れに沿って表示させてもよい。 FIG. 7 is a diagram showing another energy display example of the first embodiment. In the above display example, the bar graph is displayed in the horizontal direction, and each factor of energy consumption is displayed. However, as shown in FIG. 7, the factors may be stacked and displayed in the upward direction. In this case, in order to make the position of the origin easy to understand, an auxiliary display section 701 that makes the origin position easy to understand is displayed on the side of the bar graph. The auxiliary display unit 701 includes a mountain 702 and a river 703, and displays a mountain of the mountain 702 in accordance with the origin position. Thereby, it becomes possible to easily grasp that the height direction of the mountain 702 is the actual energy consumption. In the case of a downhill, the reference position is displayed by shifting in the direction of the position L downstream of the river 703. Furthermore, not limited to the example of FIG. 7, for example, a bar graph may be displayed along the slope of the mountain 702 or the flow of the river 703.
 また、上記の実施例では、リアルタイムに(たとえば1msecごと)に図4の処理が実行され、表示部110に表示される構成とした。これに限らず、算出部102は、所定の単位時間(たとえば10secや1min)あたりの消費エネルギーの各要因の平均値を算出し、この所定単位時間ごとに上記の表示例で示したエネルギー表示をおこなう構成としてもよい。これにより、消費エネルギーの推移を所定の単位時間ごとに表示でき、この所定時間単位内におけるエネルギー変動があってもこれを吸収して表示できる。特に、短時間でエネルギー消費が大きく変動した場合でも表示が大きく変動することを防ぐことができ、表示を見やすくできる。 In the above embodiment, the processing of FIG. 4 is executed in real time (for example, every 1 msec) and displayed on the display unit 110. Not limited to this, the calculation unit 102 calculates an average value of each factor of energy consumption per predetermined unit time (for example, 10 sec or 1 min), and displays the energy display shown in the above display example for each predetermined unit time. It is good also as a structure to perform. Thereby, the transition of energy consumption can be displayed every predetermined unit time, and even if there is an energy fluctuation within this predetermined time unit, it can be absorbed and displayed. In particular, even when the energy consumption greatly fluctuates in a short time, the display can be prevented from fluctuating greatly, and the display can be easily viewed.
 図8は、実施例1の他のエネルギー表示例を示す図である。移動体が平地を走行中における運動エネルギーは、移動体の加速時にプラスとなり、減速時にはマイナスとなる。このため、(a)加速時の消費エネルギーは、運動エネルギー分(加速損失分)p4と走行抵抗分p2が消費される。そして、座標の原点(0)を基準位置として運動エネルギー分(加速損失分)p4と走行抵抗分p2をプラスの方向に積み上げて表示する。また、(b)平地で一定走行時には、原点の位置から走行抵抗分p2だけを表示させる。そして、(c)減速時には、減速によって回収した運動エネルギー分だけを原点(0)からマイナスし、このシフトした基準位置Lを始点として走行抵抗分p2をプラスの方向に表示させる。このように、上述した基準位置Lのシフトは、移動体の上り/下りに限らず、移動体の加速/減速によってもシフトして表示することができる。 FIG. 8 is a diagram showing another energy display example of the first embodiment. The kinetic energy when the moving body is traveling on a flat ground is positive when the moving body is accelerated, and is negative when the moving body is decelerated. For this reason, (a) kinetic energy (acceleration loss) p4 and running resistance p2 are consumed as energy consumption during acceleration. Then, with the coordinate origin (0) as the reference position, the kinetic energy (acceleration loss) p4 and the running resistance p2 are stacked and displayed in the positive direction. Also, (b) when traveling on a flat ground, only the traveling resistance p2 is displayed from the position of the origin. Then, (c) at the time of deceleration, only the amount of kinetic energy recovered by deceleration is decremented from the origin (0), and the running resistance component p2 is displayed in the plus direction starting from the shifted reference position L. As described above, the shift of the reference position L described above is not limited to ascending / descending of the moving body, but can also be displayed by shifting the acceleration / deceleration of the moving body.
 図9は、実施例1の他のエネルギー表示例を示す図である。上り坂で減速時と、下り坂で加速時の状態について示した。(a)上り坂で減速時には、回収した運動エネルギー分だけを原点(0)からマイナスし、このシフトした基準位置Lを始点として位置エネルギー分p1と、走行抵抗分p2を積み上げプラスの方向に表示させる。また、(b)下り坂で加速時には、位置エネルギー分p1のマイナス分だけを原点(0)からマイナスし、このシフトした基準位置Lを始点として運動エネルギー分p4と、走行抵抗分p2を積み上げプラスの方向に表示させる。このように、基準位置Lの始点を求めるためのエネルギーは、移動体の上り/下りと、加速/減速の状態に応じて選択することができる。 FIG. 9 is a diagram showing another energy display example of the first embodiment. The situation when decelerating uphill and accelerating downhill is shown. (A) When decelerating on an uphill, only the recovered kinetic energy is decremented from the origin (0), and the positional energy p1 and the running resistance p2 are accumulated and displayed in a positive direction starting from the shifted reference position L. Let Also, (b) when accelerating on a downhill, only the minus value of the potential energy component p1 is minus from the origin (0), and the kinetic energy component p4 and the running resistance component p2 are added up starting from the shifted reference position L. Display in the direction of. Thus, the energy for obtaining the starting point of the reference position L can be selected according to the up / down state of the moving body and the acceleration / deceleration state.
 図10は、実施例1の他のエネルギー表示例を示す図である。上述した表示例では、水平方向あるいは上下方向に伸びる直線状のバーグラフとしたが、図10に示すように、直線状ではなく、曲がったグラフ表示としてもよい。また、円グラフとしてもよいが、この場合、上述したように、マイナスの消費エネルギー分だけ基準位置をシフトさせるための領域を確保しておけばよい。 FIG. 10 is a diagram showing another energy display example of the first embodiment. In the display example described above, a linear bar graph extending in the horizontal direction or the vertical direction is used. However, as shown in FIG. A pie chart may be used. In this case, as described above, an area for shifting the reference position by the amount of minus energy consumption may be secured.
 また、上述した実施例1において、位置エネルギー(あるいは運動エネルギー)の項目については、移動体の状態が上り/下り、および加速/減速の状態でエネルギーが消費あるいは生産されるため、これら表示している位置エネルギー(あるいは運動エネルギー)の項目については、移動体の状態が上りと下りで異なる表示色(同様に加速/減速で異なる表示色)にしてもよい。この表示色を見て、移動体の状態が上り/下り、あるいは加速/減速であるかを容易に把握できるようになる。 In the first embodiment described above, the potential energy (or kinetic energy) items are displayed because the energy is consumed or produced when the moving body is in the up / down state and the acceleration / deceleration state. Regarding the item of potential energy (or kinetic energy), the display state of the moving body may be different in the up and down states (similarly, different display colors in the acceleration / deceleration). By seeing this display color, it is possible to easily grasp whether the state of the moving body is up / down or acceleration / deceleration.
 以上説明したように、実施例1によれば、プラスの消費エネルギー分だけマイナス位置にシフトさせ、シフトさせた位置を基準位置として消費エネルギーの各要因を積み上げて表示するようにした。これにより、移動体の現在の消費エネルギーを知りたい場合に、原点(0)の座標位置からプラス側の領域に、実際に消費しているエネルギー量が表示される。これにより、移動体の走行状態が変化しても、消費エネルギー全体の表示長さの変化を少なくすることができ、走行中のエネルギー消費量を容易に理解できるようになる。 As described above, according to the first embodiment, the shift is made to the minus position by the amount of plus energy consumption, and each factor of the energy consumption is accumulated and displayed with the shifted position as the reference position. Thereby, when it is desired to know the current energy consumption of the mobile body, the energy amount actually consumed is displayed in the area on the plus side from the coordinate position of the origin (0). Thereby, even if the traveling state of the mobile body changes, the change in the display length of the entire energy consumption can be reduced, and the energy consumption amount during traveling can be easily understood.
(実施例2)
 次に、本発明の実施例2について説明する。実施例2は、実施例1と表示内容を変更させただけであり、図3のナビゲーション装置300が処理をおこなう点は同じである。また、実施例2では、基準位置は原点のままであり、実施例1のような原点のシフトはおこなわない。
(Example 2)
Next, a second embodiment of the present invention will be described. The second embodiment is the same as the first embodiment except that the display contents are changed, and the navigation device 300 in FIG. 3 performs the same process. In the second embodiment, the reference position remains the origin, and the origin is not shifted as in the first embodiment.
 図11は、実施例2によるエネルギー表示処理の手順を示すフローチャートである。まず、ナビゲーション装置300は、消費エネルギーの算出に必要なデータを収集する(ステップS1101)。次に、ナビゲーション装置300は、第一情報と、第二情報と、第三情報と、第四情報と、からなる消費エネルギー推定式を用いて、エネルギー消費量を要因別に算出する(ステップS1102)。 FIG. 11 is a flowchart showing the procedure of energy display processing according to the second embodiment. First, the navigation apparatus 300 collects data necessary for calculating energy consumption (step S1101). Next, the navigation apparatus 300 calculates energy consumption according to a factor using the consumption energy estimation formula which consists of 1st information, 2nd information, 3rd information, and 4th information (step S1102). .
 次に、ナビゲーション装置300は、現在の移動体が上り坂であるか否かを判定する(ステップS1103)。たとえば、上記(6)、(7)式における高度差Δhが正の場合、移動体が上り坂を走行していると判定し、高度差Δhが負の場合、移動体が下り坂を走行していると判定する。これに限らず、傾斜センサの検出値を用いても良い。そして、移動体が上り坂である場合には(ステップS1103:Yes)、エネルギーが全て消費されていると判断する。そして、原点からプラス方向に位置エネルギーを表示する。そして、位置エネルギーの終点からプラス方向に走行抵抗分を表示する(ステップS1104)。一方、移動体が下り坂である場合には(ステップS1103:No)、エネルギーの一部が生産されていると判断する。そして、原点からマイナス方向に位置エネルギー分を表示する。また、原点からプラス方向に走行抵抗分を表示する(ステップS1105)。 Next, the navigation apparatus 300 determines whether or not the current moving body is an uphill (step S1103). For example, when the altitude difference Δh in the above formulas (6) and (7) is positive, it is determined that the mobile body is traveling uphill, and when the altitude difference Δh is negative, the mobile body travels downhill. It is determined that However, the detection value of the tilt sensor may be used. And when a mobile body is an uphill (step S1103: Yes), it determines that all the energy is consumed. Then, the potential energy is displayed in the plus direction from the origin. Then, the running resistance is displayed in the plus direction from the end point of the potential energy (step S1104). On the other hand, when the mobile body is a downhill (step S1103: No), it is determined that a part of the energy is produced. Then, the position energy is displayed in the minus direction from the origin. Further, the running resistance is displayed in the plus direction from the origin (step S1105).
 図12は、実施例2のエネルギー表示の概要を示す図である。図1の表示制御部105において生成する表示画面の例を示す。(a)上り坂の場合には、位置エネルギーの始点を原点(0)とし、この原点を基準位置とする。この原点から位置エネルギーP1と、走行抵抗(アイドリング消費分、走行抵抗分、加速損失分)P2の順でプラス方向に積み上げて表示する。(b)平地走行の場合には、走行抵抗P2分だけを基準位置から表示する。(c)下り坂の場合にも原点(0)を基準位置として、走行抵抗(アイドリング消費分、走行抵抗分、加速損失分)P2をプラス方向に表示する。一方、下り坂により、位置エネルギーP1の回収分は、原点(0)を基準位置として、マイナス方向に表示する。 FIG. 12 is a diagram showing an outline of the energy display of the second embodiment. The example of the display screen produced | generated in the display control part 105 of FIG. 1 is shown. (A) In the case of an uphill, the starting point of potential energy is the origin (0), and this origin is the reference position. From this origin, the position energy P1 and the traveling resistance (idling consumption, traveling resistance, acceleration loss) P2 are stacked in the order of plus and displayed. (B) In the case of flat ground traveling, only the traveling resistance P2 is displayed from the reference position. (C) Even in the case of a downhill, the running resistance (idling consumption, running resistance, acceleration loss) P2 is displayed in the plus direction with the origin (0) as the reference position. On the other hand, due to the downhill, the recovered amount of potential energy P1 is displayed in the minus direction with the origin (0) as the reference position.
 上記の表示によれば、特に、移動体が(c)下り坂の状態のとき、走行抵抗P2と、位置エネルギーのマイナス分を表示させることができるようになる。この点、従来ではこれらの差分である実消費エネルギー(図中lの部分)しか表示できず、消費エネルギーおよび生産エネルギーを知ることができなかったが、実施例1によればこれらをいずれも把握できるようになる。加えて、消費エネルギー分は、原点からプラスの領域だけを見ればよく、消費エネルギーを容易に把握できるようになる。加えて、マイナスの位置エネルギー分は原点からマイナスの座標側に表示させるため、原点からプラスの領域には消費エネルギーだけを表示できるため、プラス側の表示の領域における消費エネルギーの変動を従来に比して抑えることができ、視認性を向上できる。すなわち、従来では、全てのエネルギーが原点からプラス側に表示されていたため、合計のエネルギーの変化が激しくなる傾向があったのに比して、少なくとも生産エネルギーに関しては、マイナス側に表示させ、プラス側の消費のエネルギーの合計に影響を与えないから、消費エネルギー側の増減を従来に比して抑えることができ、視認性を向上できる。 According to the above display, particularly when the moving body is in the state of (c) downhill, it is possible to display the running resistance P2 and the minus amount of potential energy. In this regard, in the past, only the actual consumption energy (the portion indicated by l in the figure) that is the difference between them could be displayed, and it was impossible to know the consumption energy and the production energy. become able to. In addition, for the energy consumption, it is only necessary to look at the positive area from the origin, so that the energy consumption can be easily grasped. In addition, since the minus potential energy is displayed on the minus coordinate side from the origin, only the energy consumption can be displayed in the plus area from the origin. Therefore, the visibility can be improved. In other words, in the past, all energy was displayed on the plus side from the origin, so the total energy change tended to become more intense, and at least the production energy was displayed on the minus side. Since this does not affect the total energy consumption on the side, the increase / decrease on the energy consumption side can be suppressed as compared with the conventional case, and the visibility can be improved.
 図13は、実施例2の他のエネルギー表示例を示す図である。移動体が平地を走行中における運動エネルギーは、移動体の加速時にプラスとなり、減速時にはマイナスとなる。これに限らず、加速度センサの検出値を用いても良い。このため、(a)加速時の消費エネルギーは、運動エネルギー分(加速損失分)p4と走行抵抗分p2が消費される。そして、座標の原点(0)を基準位置として運動エネルギー分(加速損失分)p4と走行抵抗分p2をプラスの方向に積み上げて表示する。また、(b)平地で一定走行時には、原点の位置から走行抵抗分p2だけを表示させる。そして、(c)減速時には、減速によって回収した運動エネルギー分を原点(0)からマイナス方向に向かって表示させる。また、走行抵抗分p2については、原点(0)からプラス方向に向かって表示させる。このように、実施例2では、原点の位置をシフトさせず、常に原点(0)を基準位置として表示させる。これにより、原点位置からプラス側が消費エネルギーであり、原点位置からマイナス側が回収エネルギーであることを容易に把握することができる。 FIG. 13 is a diagram showing another energy display example of the second embodiment. The kinetic energy when the moving body is traveling on a flat ground is positive when the moving body is accelerated, and is negative when the moving body is decelerated. Not limited to this, the detection value of the acceleration sensor may be used. For this reason, (a) kinetic energy (acceleration loss) p4 and running resistance p2 are consumed as energy consumption during acceleration. Then, with the coordinate origin (0) as the reference position, the kinetic energy (acceleration loss) p4 and the running resistance p2 are stacked and displayed in the positive direction. Also, (b) when traveling on a flat ground, only the traveling resistance p2 is displayed from the position of the origin. Then, (c) at the time of deceleration, the kinetic energy recovered by the deceleration is displayed from the origin (0) toward the minus direction. Further, the running resistance portion p2 is displayed from the origin (0) toward the plus direction. As described above, in the second embodiment, the origin (0) is always displayed as the reference position without shifting the position of the origin. Thereby, it can be easily grasped that the plus side from the origin position is the consumed energy and the minus side from the origin position is the recovered energy.
 図14は、実施例2によるエネルギー表示の詳細を示す図である。図12に示した表示画面を移動体の状態、およびエネルギー消費の各項目別に表示した例である。判定部104は、移動体の状態に応じて表示する消費エネルギーの項目を判定し、表示制御部105に出力する。(a)平地で一定走行または減速の場合には、座標の原点(0)から実消費分のエネルギーであるアイドリング分p3、走行抵抗分p2をバーグラフで図中水平なプラス方向に積み重ねて表示する。(b)平地で加速の場合には、座標の原点からアイドリング分p3と、走行抵抗分p2と、加速損失分p4の順で積み上げて表示する。(c)上り坂で加速走行の場合には、座標の原点から位置エネルギー分p1と、アイドリング分p3と、走行抵抗分p2と、加速損失分p4の順で積み上げて表示する。(d)上り坂で一定走行または減速の場合には、座標の原点から位置エネルギー分p1と、アイドリング分p3と、走行抵抗分p2の順で積み上げて表示する。 FIG. 14 is a diagram showing details of energy display according to the second embodiment. It is the example which displayed the display screen shown in FIG. 12 according to each item of the state of a moving body and energy consumption. The determination unit 104 determines an item of energy consumption to be displayed according to the state of the moving object, and outputs it to the display control unit 105. (A) In the case of constant running or deceleration on flat ground, the idling part p3 and the running resistance part p2, which are the energy consumed from the coordinate origin (0), are stacked and displayed in the horizontal positive direction in the graph. To do. (B) In the case of acceleration on a flat ground, the values are accumulated and displayed in the order of the idling amount p3, the running resistance amount p2, and the acceleration loss amount p4 from the origin of the coordinates. (C) In the case of acceleration traveling on an uphill, the position energy component p1, the idling component p3, the traveling resistance component p2, and the acceleration loss component p4 are accumulated and displayed in this order from the coordinate origin. (D) In the case of constant traveling or deceleration on an uphill, the position energy component p1, the idling component p3, and the traveling resistance component p2 are accumulated and displayed in this order from the coordinate origin.
 一方、下り坂の場合には、上述したように、生産(回収)される位置エネルギー分p1を原点(0)からマイナス方向に表示させる。まず、(e)下り坂で加速の場合には、位置エネルギー分p1を原点からマイナス方向に表示させる。また、原点からプラスの方向には、アイドリング分p3と、走行抵抗分p2と、加速損失分p4の順で積み上げて表示する。また、(f)下り坂で減速の場合にも、同様に、位置エネルギー分p1を原点からマイナス方向に表示させる。この場合、アイドリング分p3と、走行抵抗分p2の順で積み上げて表示する。上記のように、表示画面上のプラスの領域は、移動体が(a)~(f)のいずれの状態においても、実消費分のエネルギー分が表示されることになる。 On the other hand, in the case of a downhill, as described above, the position energy part p1 produced (recovered) is displayed in the minus direction from the origin (0). First, (e) In the case of acceleration on a downhill, the potential energy p1 is displayed in the minus direction from the origin. Further, in the plus direction from the origin, the idling component p3, the running resistance component p2, and the acceleration loss component p4 are stacked and displayed in this order. Similarly, (f) when decelerating downhill, the potential energy p1 is displayed in the minus direction from the origin. In this case, the idling component p3 and the running resistance component p2 are stacked and displayed in this order. As described above, in the positive area on the display screen, the energy for the actual consumption is displayed regardless of the state of the moving object (a) to (f).
 上述したように、位置エネルギー分は、移動体の状態により、消費エネルギーで見てプラス、あるいはマイナスのいずれの成分にもなり得る。このため、実施例2では、原点からプラス側に消費エネルギーを要因別に積み上げて表示させる一方、原点からマイナス側に生産(回収)
したエネルギーを表示させる。これにより、移動体が下り坂の場合における実消費のエネルギー全体がどの程度なのかを表示画面上のプラス側の表示で容易に把握できるようになる。また、一つの表示(バーグラフ)を見るだけで、直感的に簡単に燃費構造(エネルギー内訳と燃費構成)を把握できるようになる。
As described above, the potential energy component can be either a positive or negative component in terms of energy consumption, depending on the state of the moving body. For this reason, in Example 2, energy consumption is accumulated and displayed from the origin to the plus side, while production (recovery) from the origin to the minus side is displayed.
To display the energy. As a result, it is possible to easily grasp how much energy is actually consumed when the moving body is on a downhill by displaying on the plus side on the display screen. In addition, it is possible to intuitively and easily grasp the fuel consumption structure (energy breakdown and fuel consumption composition) simply by looking at one display (bar graph).
 また、実施例2においても、実施例1同様に、補助表示部701(図7参照)を設けて、原点位置を容易に把握できる表示にできる。また、算出部102は、図11の処理をリアルタイム(たとえば1msecごと)に実行するが、この算出部102は、所定の単位時間(たとえば10secや1min)あたりの消費エネルギーの各要因の平均値を算出し、この所定単位時間ごとに上記の表示例で示したエネルギー表示をおこなう構成としてもよい。これにより、消費エネルギーの推移を所定の単位時間ごとに表示でき、この所定時間単位内におけるエネルギー変動があってもこれを吸収して表示できる。特に、短時間でエネルギー消費が大きく変動した場合でも表示が大きく変動することを防ぐことができ、表示を見やすくできる。 Also, in the second embodiment, similarly to the first embodiment, an auxiliary display unit 701 (see FIG. 7) is provided, so that the origin position can be easily grasped. Further, the calculation unit 102 executes the process of FIG. 11 in real time (for example, every 1 msec). The calculation unit 102 calculates the average value of each factor of energy consumption per predetermined unit time (for example, 10 sec or 1 min). It is good also as a structure which calculates and displays the energy shown by said display example for every this predetermined unit time. Thereby, the transition of energy consumption can be displayed every predetermined unit time, and even if there is an energy fluctuation within this predetermined time unit, it can be absorbed and displayed. In particular, even when the energy consumption greatly fluctuates in a short time, the display can be prevented from fluctuating greatly, and the display can be easily viewed.
 さらに、エネルギーの表示についても、図10に示すように、曲がったグラフ表示としてもよい。また、位置エネルギー(あるいは運動エネルギー)の項目については、移動体の状態が上り/下り、および加速/減速の状態でエネルギーが消費あるいは生産されるため、これら表示している位置エネルギー(あるいは運動エネルギー)の項目については、移動体の状態が上りと下りで異なる表示色(同様に加速/減速で異なる表示色)にしてもよい。この表示色を見て、移動体の状態が上り/下り、あるいは加速/減速であるかを容易に把握できるようになる。 Furthermore, the energy display may be a curved graph display as shown in FIG. In addition, regarding the item of potential energy (or kinetic energy), energy is consumed or produced when the state of the moving body is up / down and acceleration / deceleration, so the displayed potential energy (or kinetic energy). For the item), the moving body may have different display colors for the up and down states (similarly, different display colors for acceleration / deceleration). By seeing this display color, it is possible to easily grasp whether the state of the moving body is up / down or acceleration / deceleration.
 以上説明したように、実施例2によれば、プラスの消費エネルギー分だけ原点からマイナス方向に表示させ、原点からプラス側には消費エネルギーの各要因を積み上げて表示するようにした。これにより、移動体の現在の消費エネルギーを知りたい場合に、原点(0)の座標位置からプラス側の領域に、実際に消費しているエネルギー量が表示される。これにより、移動体の走行状態が変化しても、消費エネルギー全体の表示長さの変化を少なくすることができ、走行中のエネルギー消費量を容易に理解できるようになる。 As described above, according to the second embodiment, the amount of plus energy consumption is displayed in the minus direction from the origin, and each factor of energy consumption is accumulated and displayed on the plus side from the origin. Thereby, when it is desired to know the current energy consumption of the mobile body, the energy amount actually consumed is displayed in the area on the plus side from the coordinate position of the origin (0). Thereby, even if the traveling state of the mobile body changes, the change in the display length of the entire energy consumption can be reduced, and the energy consumption amount during traveling can be easily understood.
 なお、本実施の形態で説明したエネルギー表示方法は、あらかじめ用意されたプログラムをパーソナル・コンピュータやワークステーションなどのコンピュータで実行することにより実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、CD-ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。またこのプログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体であってもよい。 The energy display method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation. This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer. The program may be a transmission medium that can be distributed via a network such as the Internet.
 100 エネルギー表示装置
 101 取得部
 102 算出部
 103 判断部
 104 判定部
 105 表示制御部
 110 表示部
DESCRIPTION OF SYMBOLS 100 Energy display apparatus 101 Acquisition part 102 Calculation part 103 Judgment part 104 Judgment part 105 Display control part 110 Display part

Claims (14)

  1.  移動体の稼働により消費するエネルギー消費量を要因別に算出する算出手段と、
     前記算出された要因別にエネルギー消費量に関する情報を表示する表示手段と、
     前記要因別のエネルギー各々について、前記エネルギーが生産されているか消費されているかを判定する判定手段と、を備え、
     前記表示手段は、
     前記判定手段により前記要因別のエネルギーが全て消費されていると判定された場合、所定の位置を始点として前記エネルギー消費量を要因別に累積して表示し、
     前記判定手段により要因別のエネルギーのうち生産されているエネルギーがあると判定された場合、前記所定の位置から前記累積した方向とは逆方向に前記生産されているエネルギー量だけ推移させた位置を始点として他の前記エネルギー消費量を要因別に累積して表示することを特徴とするエネルギー表示装置。
    A calculating means for calculating energy consumption consumed by the operation of the moving body by factor;
    Display means for displaying information on energy consumption for each of the calculated factors;
    Determination means for determining whether the energy is produced or consumed for each energy by the factor,
    The display means includes
    When it is determined by the determining means that all the energy for each factor is consumed, the energy consumption is accumulated and displayed for each factor starting from a predetermined position,
    When it is determined by the determination means that there is produced energy among the energy for each factor, a position that is shifted from the predetermined position by the amount of the produced energy in a direction opposite to the accumulated direction. An energy display device characterized in that other energy consumptions are accumulated and displayed as a starting point for each factor.
  2.  前記表示手段は、前記要因別のエネルギーのうち、生産されうるエネルギーのエネルギー量を前記始点から表示することを特徴とする請求項1に記載のエネルギー表示装置。 The energy display device according to claim 1, wherein the display means displays an energy amount of energy that can be produced from the energy by factor from the start point.
  3.  前記移動体が傾斜を上昇しているか下降しているかを判断する判断手段を備え、
     前記判定手段は、前記判断手段の判断結果に応じて、前記要因別のエネルギーの一つである位置エネルギーが生産されているか消費されているかを判定することを特徴とする請求項1に記載のエネルギー表示装置。
    A judging means for judging whether the moving body is moving up or down the slope;
    The said determination means determines whether the potential energy which is one of the energy according to the said factor is produced or consumed according to the determination result of the said determination means. Energy display device.
  4.  前記移動体が加速しているか減速しているかを判断する判断手段を備え、
     前記判定手段は、前記判断手段の判断結果に応じて、前記要因別のエネルギーの一つである、加速に必要な運動エネルギーが消費されているか、減速によって前記運動エネルギーが生産されているかを判定することを特徴とする請求項1に記載のエネルギー表示装置。
    A determination means for determining whether the moving body is accelerating or decelerating;
    The determination means determines whether the kinetic energy necessary for acceleration, which is one of the energy for each factor, is consumed or the kinetic energy is produced by deceleration according to the determination result of the determination means. The energy display device according to claim 1.
  5.  前記判定手段は、前記移動体が所定の区間を走行した際に、当該所定の区間の走行に際して必要なエネルギーの累積が生産されているか消費されたかを判定することを特徴とする請求項1~4のいずれか一つに記載のエネルギー表示装置。 The determination means, when the mobile body travels in a predetermined section, determines whether accumulated energy necessary for traveling in the predetermined section is produced or consumed. 5. The energy display device according to any one of 4.
  6.  移動体の稼働により消費するエネルギー消費量を要因別に算出する算出手段と、
     前記算出された要因別にエネルギー消費量に関する情報を表示する表示手段と、
     前記要因別のエネルギー各々について、前記エネルギーが生産されているか消費されているかを判定する判定手段と、を備え、
     前記表示手段は、
     前記判定手段により前記要因別のエネルギーが全て消費されていると判定された場合、所定の位置を始点として前記エネルギー消費量を要因別に累積して表示し、
     前記判定手段により要因別のエネルギーのうち生産されているエネルギーがあると判定された場合、消費されているエネルギーについて前記所定の位置を始点として前記エネルギー消費量を要因別に累積して表示するとともに、生産されているエネルギーについて前記所定の位置を始点として前記累積した方向とは逆方向に前記生産されているエネルギー量を表示することを特徴とするエネルギー表示装置。
    A calculating means for calculating energy consumption consumed by the operation of the moving body by factor;
    Display means for displaying information on energy consumption for each of the calculated factors;
    Determination means for determining whether the energy is produced or consumed for each energy by the factor,
    The display means includes
    When it is determined by the determining means that all the energy for each factor is consumed, the energy consumption is accumulated and displayed for each factor starting from a predetermined position,
    When it is determined by the determination means that there is produced energy among the energy for each factor, the energy consumption is accumulated and displayed for each factor starting from the predetermined position for the consumed energy, and An energy display device, wherein the amount of energy produced is displayed in a direction opposite to the accumulated direction starting from the predetermined position with respect to produced energy.
  7.  前記表示手段は、前記要因別のエネルギーのうち、生産されうるエネルギーのエネルギー量を前記始点から表示することを特徴とする請求項6に記載のエネルギー表示装置。 The energy display device according to claim 6, wherein the display means displays an energy amount of energy that can be produced from the energy for each factor from the start point.
  8.  前記移動体が傾斜を上昇しているか下降しているかを判断する判断手段を備え、
     前記判定手段は、前記判断手段の判断結果に応じて、前記要因別のエネルギーの一つである位置エネルギーが生産されているか消費されているかを判定することを特徴とする請求項6に記載のエネルギー表示装置。
    A judging means for judging whether the moving body is moving up or down the slope;
    The said determination means determines whether the potential energy which is one of the said energy according to the factor is produced or consumed according to the determination result of the said determination means. Energy display device.
  9.  前記移動体が加速しているか減速しているかを判断する判断手段を備え、
     前記判定手段は、前記判断手段の判断結果に応じて、前記要因別のエネルギーの一つである、加速に必要な運動エネルギーが消費されているか、減速によって前記運動エネルギーが生産されているかを判定することを特徴とする請求項6に記載のエネルギー表示装置。
    A determination means for determining whether the moving body is accelerating or decelerating;
    The determination means determines whether the kinetic energy necessary for acceleration, which is one of the energy for each factor, is consumed or the kinetic energy is produced by deceleration according to the determination result of the determination means. The energy display device according to claim 6.
  10.  前記判定手段は、前記移動体が所定の区間を走行した際に、当該所定の区間の走行に際して必要なエネルギーの累積が生産されているか消費されたかを判定することを特徴とする請求項6~9のいずれか一つに記載のエネルギー表示装置。 The determination means, when the mobile body travels in a predetermined section, determines whether accumulated energy necessary for traveling in the predetermined section is produced or consumed. The energy display device according to any one of 9.
  11.  移動体の稼働により消費するエネルギーを表示するエネルギー表示装置のエネルギー表示方法において、
     前記移動体の稼働により消費するエネルギー消費量を要因別に算出する算出工程と、
     前記算出された要因別にエネルギー消費量に関する情報を表示する表示工程と、
     前記要因別のエネルギー各々について、前記エネルギーが生産されているか消費されているかを判定する判定工程と、を含み、
     前記表示工程は、
     前記判定工程により前記要因別のエネルギーが全て消費されていると判定された場合、所定の位置を始点として前記エネルギー消費量を要因別に累積して表示し、
     前記判定工程により要因別のエネルギーのうち生産されているエネルギーがあると判定された場合、前記所定の位置から前記累積した方向とは逆方向に前記生産されているエネルギー量だけ推移させた位置を始点として他の前記エネルギー消費量を要因別に累積して表示することを特徴とするエネルギー表示方法。
    In the energy display method of the energy display device that displays the energy consumed by the operation of the moving object,
    A calculation step of calculating, by factor, energy consumption consumed by operation of the mobile body;
    A display step of displaying information on energy consumption for each of the calculated factors;
    A determination step for determining whether the energy is produced or consumed for each energy by the factor, and
    The display step includes
    When it is determined that the energy for each factor is consumed by the determination step, the energy consumption is accumulated and displayed for each factor starting from a predetermined position,
    When it is determined by the determination step that there is produced energy among factors-specific energy, a position that is shifted from the predetermined position by the amount of produced energy in a direction opposite to the accumulated direction. An energy display method characterized by accumulating and displaying other energy consumptions by factor as a starting point.
  12.  移動体の稼働により消費するエネルギーを表示するエネルギー表示装置のエネルギー表示方法において、
     前記移動体の稼働により消費するエネルギー消費量を要因別に算出する算出工程と、
     前記算出された要因別にエネルギー消費量に関する情報を表示する表示工程と、
     前記要因別のエネルギー各々について、前記エネルギーが生産されているか消費されているかを判定する判定工程と、を含み、
     前記表示工程は、
     前記判定工程により前記要因別のエネルギーが全て消費されていると判定された場合、所定の位置を始点として前記エネルギー消費量を要因別に累積して表示し、
     前記判定工程により要因別のエネルギーのうち生産されているエネルギーがあると判定された場合、消費されているエネルギーについて前記所定の位置を始点として前記エネルギー消費量を要因別に累積して表示するとともに、生産されているエネルギーについて前記所定の位置を始点として前記累積した方向とは逆方向に前記生産されているエネルギー量を表示することを特徴とするエネルギー表示方法。
    In the energy display method of the energy display device that displays the energy consumed by the operation of the moving object,
    A calculation step of calculating, by factor, energy consumption consumed by operation of the mobile body;
    A display step of displaying information on energy consumption for each of the calculated factors;
    A determination step for determining whether the energy is produced or consumed for each energy by the factor, and
    The display step includes
    When it is determined that the energy for each factor is consumed by the determination step, the energy consumption is accumulated and displayed for each factor starting from a predetermined position,
    When it is determined by the determination step that there is produced energy among the energy for each factor, the energy consumption is accumulated and displayed for each factor starting from the predetermined position for the consumed energy, and An energy display method, wherein the amount of energy produced is displayed in a direction opposite to the accumulated direction starting from the predetermined position with respect to produced energy.
  13.  請求項11または12に記載のエネルギー表示方法をコンピュータに実行させることを特徴とするエネルギー表示プログラム。 An energy display program for causing a computer to execute the energy display method according to claim 11 or 12.
  14.  請求項13に記載のエネルギー表示プログラムを記録したことを特徴とするコンピュータに読み取り可能な記録媒体。 A computer-readable recording medium on which the energy display program according to claim 13 is recorded.
PCT/JP2010/068408 2010-10-19 2010-10-19 Energy display device, energy display method, energy display program and recoding medium WO2012053065A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2010/068408 WO2012053065A1 (en) 2010-10-19 2010-10-19 Energy display device, energy display method, energy display program and recoding medium
JP2011538197A JP4885335B1 (en) 2010-10-19 2011-03-30 Display control device, display device, display control method, display control program, and recording medium
PCT/JP2011/058148 WO2012053238A1 (en) 2010-10-19 2011-03-30 Display control device, display device, display control method, display control program and recoding medium
JP2011268416A JP5231622B2 (en) 2010-10-19 2011-12-07 Display control device, display device, display control method, display control program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/068408 WO2012053065A1 (en) 2010-10-19 2010-10-19 Energy display device, energy display method, energy display program and recoding medium

Publications (1)

Publication Number Publication Date
WO2012053065A1 true WO2012053065A1 (en) 2012-04-26

Family

ID=45974801

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/068408 WO2012053065A1 (en) 2010-10-19 2010-10-19 Energy display device, energy display method, energy display program and recoding medium
PCT/JP2011/058148 WO2012053238A1 (en) 2010-10-19 2011-03-30 Display control device, display device, display control method, display control program and recoding medium

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058148 WO2012053238A1 (en) 2010-10-19 2011-03-30 Display control device, display device, display control method, display control program and recoding medium

Country Status (1)

Country Link
WO (2) WO2012053065A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6159698B2 (en) * 2014-09-29 2017-07-05 日立建機株式会社 Transport vehicle operation management system
CN113844261A (en) * 2021-08-20 2021-12-28 合众新能源汽车有限公司 Electric automobile energy consumption display method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274219A (en) * 2001-03-21 2002-09-25 Mitsubishi Motors Corp Indicator of vehicle traveling state
JP2009031046A (en) * 2007-07-25 2009-02-12 Hitachi Ltd Fuel consumption estimation system of automobile, route searching system, and driving guiding system
JP2009035049A (en) * 2007-07-31 2009-02-19 Nissan Motor Co Ltd Display device of hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274219A (en) * 2001-03-21 2002-09-25 Mitsubishi Motors Corp Indicator of vehicle traveling state
JP2009031046A (en) * 2007-07-25 2009-02-12 Hitachi Ltd Fuel consumption estimation system of automobile, route searching system, and driving guiding system
JP2009035049A (en) * 2007-07-31 2009-02-19 Nissan Motor Co Ltd Display device of hybrid vehicle

Also Published As

Publication number Publication date
WO2012053238A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP4861534B1 (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium
US11214264B2 (en) System and method for measuring and reducing vehicle fuel waste
WO2010116492A1 (en) Fuel consumption prediction device, fuel consumption prediction method, fuel consumption prediction program, and recording medium
WO2013080312A1 (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program and recording medium
WO2014049878A1 (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium
JP4890659B1 (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium
WO2012056587A1 (en) Energy display device, energy display method, energy display program and recording medium
JP4932057B2 (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium
JP2012066705A (en) System and method for providing information
JP5231622B2 (en) Display control device, display device, display control method, display control program, and recording medium
JP4885335B1 (en) Display control device, display device, display control method, display control program, and recording medium
WO2012053065A1 (en) Energy display device, energy display method, energy display program and recoding medium
JP4959862B2 (en) Travel distance estimation apparatus, travel distance estimation method, travel distance estimation program, and recording medium
WO2014162526A1 (en) Energy consumption amount estimation device, energy consumption amount estimation method, energy consumption amount estimation program, and recording medium
JP4802816B2 (en) Vehicle information providing device
JP6122935B2 (en) Estimation apparatus, estimation method, estimation program, and recording medium
JP5450824B2 (en) Operation diagnosis apparatus, operation diagnosis method, operation diagnosis program, and recording medium
JPWO2013080312A1 (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium
AU2014277761B2 (en) System and method for measuring and reducing vehicle fuel waste
WO2014162610A1 (en) Energy consumption amount estimation device, energy consumption amount estimation method, energy consumption amount estimation program, and recording medium
JP2016166588A (en) Movable body information acquisition device, server device, movable body information acquisition method, movable body information acquisition program, and recording medium
JP5663098B2 (en) Mobile body information acquisition apparatus, mobile body information acquisition method, mobile body information acquisition program, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP