WO2014049878A1 - Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium - Google Patents

Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium Download PDF

Info

Publication number
WO2014049878A1
WO2014049878A1 PCT/JP2012/075259 JP2012075259W WO2014049878A1 WO 2014049878 A1 WO2014049878 A1 WO 2014049878A1 JP 2012075259 W JP2012075259 W JP 2012075259W WO 2014049878 A1 WO2014049878 A1 WO 2014049878A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy consumption
energy
consumption
estimation
information
Prior art date
Application number
PCT/JP2012/075259
Other languages
French (fr)
Japanese (ja)
Inventor
進 大沢
福田 達也
安士 光男
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/075259 priority Critical patent/WO2014049878A1/en
Publication of WO2014049878A1 publication Critical patent/WO2014049878A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3469Fuel consumption; Energy use; Emission aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/645Type of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/647Surface situation of road, e.g. type of paving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/68Traffic data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a consumption energy estimation device, a consumption energy estimation method, a consumption energy estimation program, and a recording medium that display energy consumption of a mobile object.
  • the use of the present invention is not limited to the above-described consumption energy estimation device, consumption energy estimation method, consumption energy estimation program, and recording medium.
  • the energy consumption is estimated assuming the traveling state of the moving body under a certain condition. Therefore, with respect to the actual energy consumption that changes depending on the road condition, the user's driving method, etc. could not cope, and the estimation accuracy of energy consumption could not be improved. For this reason, for example, it has become necessary for the user or the like to manually correct the deviation of the actual measurement result (actual consumption) from the estimation result.
  • a vehicle meter display or the like as a configuration for calculating energy consumption without using an energy estimation formula.
  • the average fuel consumption, average electricity cost, cruising range, etc. are calculated from the energy actually consumed by the vehicle using data such as CAN (Controller Area Network) and displayed. Not used.
  • calculation and estimation are performed using CAN data on the basis of the amount of energy consumed for a certain past time or a certain distance. Even in this configuration, it is impossible to cope with changes in road conditions and vehicle running conditions, and it is not possible to improve the estimation accuracy of energy consumption.
  • the energy consumption estimation apparatus calculates an estimated energy consumption that is energy consumed per unit time when the mobile body travels.
  • An acquisition unit that acquires an actual energy consumption amount consumed by the mobile unit per unit time calculated by a calculation unit mounted on the mobile unit, a calculation result by the calculation unit, and an acquisition by the acquisition unit
  • a section consumption energy estimation unit that estimates a section energy amount consumed when the mobile body travels in a predetermined section based on the result.
  • a consumption energy estimation method according to a consumption energy estimation method of a consumption energy estimation device for estimating consumption energy due to movement of a mobile body, wherein the mobile body consumes per unit time when traveling.
  • a calculation step of calculating an estimated energy consumption that is energy an acquisition step of acquiring an actual energy consumption consumed by the mobile unit per unit time, calculated by a calculation device mounted on the mobile unit,
  • the energy consumption estimation program according to the invention described in claim 7 causes the computer to execute the energy consumption estimation method according to claim 6.
  • the recording medium according to the invention described in claim 8 is characterized in that the energy consumption estimation program according to claim 7 is recorded in a computer-readable state.
  • FIG. 1 is a block diagram illustrating a functional configuration of the energy consumption estimation apparatus according to the embodiment.
  • FIG. 2 is a block diagram showing a functional configuration when the consumption energy estimation device is configured using a navigation device.
  • FIG. 3 is a flowchart showing the processing content of the correction coefficient calculation.
  • FIG. 4 is a flowchart showing the processing content of the route energy consumption estimation.
  • FIG. 5 is a block diagram illustrating a hardware configuration of the navigation apparatus.
  • FIG. 1 is a block diagram illustrating a functional configuration of the energy consumption estimation apparatus according to the embodiment.
  • the energy consumption estimation apparatus 100 according to the embodiment includes a calculation unit 101, an acquisition unit 102, and an estimation unit 103.
  • the calculation unit 101 calculates an estimated energy consumption that is energy consumed per unit time when the mobile body travels.
  • the calculation unit 101 calculates an estimated energy consumption using a predetermined estimation formula.
  • the calculation unit 101 acquires vehicle weight, body size, speed information, and gradient information as necessary, as coefficients of the estimation formula.
  • the acquisition unit 102 acquires the actual energy consumption consumed by the moving body per unit time, which is calculated by an arithmetic device (for example, ECU: Electronic Control Unit) mounted on the moving body.
  • the estimation unit 103 estimates the section energy amount consumed when the mobile body travels in a predetermined section based on the calculation result by the calculation unit 101 and the acquisition result by the acquisition unit 102.
  • the acquisition unit 102 also stores information for calculating the actual energy consumption consumed by the moving body per unit time (for example, the actual energy consumption consumed by the moving body in a time shorter than the unit time) in the moving body.
  • the actual energy consumption amount consumed by the mobile body per unit time may be calculated from the acquired arithmetic device and from the acquired information.
  • the consumed energy is, for example, energy based on electricity in the case of an EV vehicle, and is energy based on electricity or the like in the case of an HV vehicle, PHV vehicle, or the like, for example, energy based on gasoline, light oil, gas, or the like.
  • the energy is, for example, energy based on electricity in the case of a fuel cell vehicle and hydrogen or fossil fuel that becomes a hydrogen raw material.
  • EV cars, HV cars, PHV cars, and fuel cell cars are simply referred to as “EV cars”
  • gasoline cars, diesel cars (hereinafter simply referred to as “gasoline cars”), For example, energy based on gasoline, light oil, and gas.
  • the estimation unit 103 obtains the estimation result (estimated energy consumption per unit time) estimated by the calculation unit 101 and the acquisition result (actual energy consumption per unit time) based on actual travel by the acquisition unit 102. By comparing, it is possible to estimate a section energy amount consumed when the mobile body travels in a predetermined section. Thus, by comparing the estimated energy consumption per unit time with the actual energy consumption, the estimated energy consumption can be accurately estimated using the actual energy consumption.
  • the estimation unit 103 sets a correction coefficient that is calculated by comparing the estimated energy consumption per unit time with the actual energy consumption. And the estimation part 103 correct
  • the coefficient for example, each coefficient, such as acceleration and driving resistance calculated according to a vehicle weight, a vehicle dimension, etc.
  • FIG. 2 is a block diagram showing a functional configuration when the energy consumption estimation device is configured using a navigation device.
  • the navigation device 200 includes a CAN data processing unit 201, a unit time consumption energy estimation unit 202, a correction coefficient calculation unit 203, and a route consumption energy estimation unit 204.
  • the CAN data processing unit 201 is, for example, a vehicle of a vehicle managed by an electronic control unit (ECU) via an in-vehicle communication network “CAN” of the mobile body (vehicle) 210 on which the navigation device 200 is mounted. Data 211 is acquired. Then, the CAN data processing unit 201 calculates an actual energy consumption (a vehicle consumption energy amount and a steady consumption energy amount) based on speed information and power amount information included in the vehicle data 211. The amount of energy consumed by the vehicle is the total amount of energy consumed by the vehicle, and varies depending on the driving state and the like.
  • ECU electronice control unit
  • CAN in-vehicle communication network
  • the steady consumption energy amount is an energy amount that is constantly consumed without being directly related to the traveling of the vehicle, and varies depending on the use state of the electrical system, the air conditioning system, and the like of the vehicle.
  • the CAN data processing unit 201 outputs the vehicle consumption energy amount and the steady consumption energy amount to the correction coefficient calculation unit 203 as vehicle data.
  • the unit time consumption energy estimation unit 202 estimates the energy consumption per unit time using a predetermined estimation formula.
  • the estimated vehicle energy consumption and the estimated steady energy consumption are separately estimated.
  • the unit time consumption energy estimation unit 202 outputs the estimated vehicle consumption energy amount and the estimated steady consumption energy amount to the correction coefficient calculation unit 203 as estimation data.
  • the unit time consumption energy estimation unit 202 calculates each coefficient calculated from the vehicle weight, the body size, etc., for example, the amount of energy consumed per unit time on a regular basis (first information of the estimation formula). ), A coefficient relating to the acceleration component energy amount (second information), a coefficient relating to the weight of the vehicle, a coefficient relating to the air resistance component energy amount (third information), and a rolling resistance component energy amount (fourth information).
  • the energy consumption is estimated by dividing it into coefficients related to (information).
  • the unit time energy consumption estimation unit 202 estimates the amount of energy consumed per unit time by using the acquired speed information and, further, gradient information as necessary.
  • vehicle weight, body size, speed information, and gradient information data detected by a sensor included in the general-purpose navigation apparatus 200 is used.
  • the speed information is obtained by correcting the pulse input of the vehicle speed sensor with GPS data. Not only this but these data (for example, speed information etc.) may use information which vehicles 210 output by CAN etc.
  • the correction coefficient calculation unit 203 outputs vehicle data (vehicle energy consumption, steady energy consumption) output from the CAN data processing unit 201 and estimated data (estimated vehicle consumption) output from the unit time energy consumption estimation unit 202. Energy amount and estimated steady energy consumption amount) are accumulated for a certain time every unit time. Then, a comparison coefficient is calculated between the vehicle data and the estimated data to calculate a correction coefficient and output it to the route consumption energy estimating unit 204. The accumulated time may be changed as appropriate.
  • vehicle data vehicle consumption energy amount, steady consumption energy amount
  • estimation data each coefficient component of each coefficient component
  • the estimated vehicle energy consumption amount is accumulated for each coefficient component of the vehicle energy consumption amount and the steady energy consumption amount configured from the energy consumption amount. Then, only the energy required for traveling is extracted from the accumulated data of the vehicle data and the estimated data, and is used as the accumulated traveling energy consumption.
  • the accumulated “steady consumption energy amount” is subtracted from the accumulated “vehicle consumption energy amount” to obtain the “accumulated travel consumption energy amount”.
  • the coefficient component is added excluding the steady consumption energy, and the accumulated “estimated travel consumption energy” is obtained. Then, the “cumulative travel energy consumption amount” is divided by the “cumulative estimated travel energy consumption amount”. The value thus obtained is used as a correction coefficient.
  • this correction coefficient as a coefficient of energy consumption related to acceleration (second information) used in the energy consumption estimation formula, coefficient of energy consumption related to air resistance (third information), energy consumption related to rolling resistance component (fourth information) ) Multiplied by the coefficient to obtain each coefficient after correction.
  • Pr Unit time power consumption value acquired by CAN k1 (small k1): Unit time steady energy consumption calculated by calculation processing from Pr PT: Unit time estimated travel energy consumption
  • the corrected coefficient h is used by multiplying the second information (k2), the third information (k3), and the fourth information (k4) related to traveling in the energy consumption estimation formula described later.
  • the unit time energy consumption estimation unit 202 estimates the unit time energy consumption using the coefficients before correction. This prevents renormalization of the coefficient change to the accumulated value.
  • the corrected coefficients are output to the route energy consumption estimation unit 204 and used for power estimation, cruising range calculation, and cruising range display calculation for traveling to the destination.
  • the route consumption energy estimation unit 204 obtains the current position, obtains information used for the variables of the consumption energy estimation formula, performs a route search from the current position of the moving object to the destination, and calculates the energy consumed in the planned travel route. Estimate using the energy consumption estimation formula. At this time, energy consumption is estimated using each coefficient after correction by the correction coefficient calculated by the correction coefficient calculation unit 203.
  • the acquisition of the current position is obtained by, for example, calculating the current position of the device using GPS information received from a GPS satellite.
  • the variable is acquired by acquiring information on the speed of the moving body between nodes on which the moving body travels and using it as a variable of the energy consumption estimation formula.
  • the route consumption energy estimation unit 204 may include a storage unit, store a travel history of the moving body, and use it for energy consumption estimation.
  • the travel history of the mobile body includes speed, acceleration, travel time, actual energy consumption, vehicle information, and the like when the mobile body travels in the travel section in the past.
  • the vehicle information includes vehicle weight, vehicle rotating part weight, efficiency, air resistance, and the like.
  • the travel history of the moving body is stored for each travel section or each road type, for example. Then, a correction coefficient may be calculated for each recorded travel history.
  • FIG. 3 is a flowchart showing the processing content of the correction coefficient calculation.
  • the CAN data processing unit 201 acquires energy consumption information, vehicle speed information, and the like from the vehicle via the CAN (step S301).
  • the CAN data processing unit 201 calculates vehicle data (vehicle energy consumption, steady energy consumption) per unit time based on information acquired from the vehicle (step S302).
  • the unit time consumption energy estimation unit 202 calculates estimation data (estimated vehicle consumption energy amount, estimated steady consumption energy amount) based on the information acquired from the vehicle (step S303).
  • the correction coefficient calculation unit 203 accumulates the vehicle data and the estimated data, respectively, and calculates a correction coefficient corresponding to the difference between the two by comparison operation (step S304). Then, the correction coefficient calculation unit 203 outputs the correction coefficient to the route consumption energy estimation unit 204 (step S305).
  • FIG. 4 is a flowchart showing the processing content of the route energy consumption estimation. The processing performed by the route consumption energy estimation unit 204 is shown. The route consumption energy estimation unit 204 corrects the coefficient used in the energy consumption estimation formula, and estimates the amount of energy consumption of the travel route to the destination.
  • the route consumption energy estimation unit 204 acquires a correction coefficient from the correction coefficient calculation unit 203 (step S401).
  • a corrected coefficient is derived from the travel energy calculation coefficient (second to fourth information) calculated from the vehicle weight, dimensions, etc., and the correction coefficient (step S402).
  • the route search is started based on the destination setting by the operator (step S403).
  • a route search is performed using link information (data such as distance between links of nodes and link required time) to derive a plurality of route candidates to the destination (step S404).
  • the route link information distance of link, average speed, acceleration information, etc.
  • the corrected coefficient are input to the route consumption energy calculation formula to calculate the total travel energy amount of the route (step S405). This process is performed for each route candidate.
  • the total steady consumption energy amount in the route is calculated from the route required time and the unit time steady consumption energy amount calculated by the CAN data processing unit 201 (step S406). Then, the total steady energy consumption is added to the total travel energy to calculate the total energy consumption of the route. This is performed for each route, and the amount of route consumed energy for each route is set (step S407).
  • the route consumption energy estimation unit 204 displays and outputs the route consumption energy amount for each route on a display unit (not shown).
  • the coefficient used by the route consumption energy estimation unit 204 in the consumption energy estimation formula can be corrected in units of unit time. As a result, it is possible to always perform the energy consumption estimation corresponding to the latest driving situation, and to accurately estimate the amount of energy consumption up to the destination.
  • the unit time consumption energy estimation unit 202 and the route consumption energy estimation unit 204 described above each estimate the consumption energy in a predetermined “travel section”.
  • This travel section is a section in which the mobile body starts and travels, stops after it has traveled, and passes through until the next start.
  • the travel section is a section between a predetermined point on the road (hereinafter referred to as “node (road point)”) and another node (hereinafter referred to as “link (road section)”). It is. That is, the node is a point where the moving body stops and a point where the vehicle starts.
  • the link is one of the elements constituting the road network, and a unit between nodes is a unit.
  • the link information includes, for example, link length (distance) data and predicted data of travel speed and average acceleration at the travel date and time.
  • the node is, for example, an intersection where a traffic signal is installed.
  • the link is, for example, a section between one intersection and another intersection.
  • the travel section may be a section composed of one link or a section composed of a plurality of continuous links.
  • the moving body may repeat starting and stopping four times, and may finish traveling five nodes at one time. Specifically, if five nodes are intersections where traffic lights are installed, the moving body may stop at all the intersections, and the moving body may not stop at any of the intersections. Therefore, in detail, a travel segment is a single link consisting of two nodes where a mobile unit may start and stop, or a continuous group consisting of three or more nodes where a mobile unit may start and stop. Multiple links. Desirably, the travel segment is a link made up of two nodes that may stop. The reason is that all the links branched in all directions can be covered and calculated.
  • the information related to the speed of the moving object is, for example, the speed and acceleration of the moving object.
  • the energy consumption estimation formula is an equation for estimating the energy consumption amount of the moving body in the travel section. Specifically, the energy consumption estimation formula is a polynomial composed of first information, second information, and third information having different factors that increase or decrease the energy consumption. Further, when the road gradient is clear, fourth information is further added to the energy consumption estimation formula. Details of the energy consumption estimation formula will be described later.
  • the first information is information related to energy consumed by the equipment provided on the moving object.
  • the first information is, for example, the amount of energy that is consumed when the vehicle is stopped with the engine running or when it is stopped by a signal (hereinafter referred to as energy consumption). That is, the first information is an energy consumption amount consumed due to a factor not related to the traveling of the moving body. More specifically, the first information is an energy consumption amount by an air conditioner or an audio provided in the moving body.
  • the second information is information related to energy consumed and recovered during acceleration / deceleration of the moving body.
  • the time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes with time.
  • the time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes within a predetermined time.
  • the predetermined time is a time interval at regular intervals, for example, the unit time or a time interval within the unit time.
  • the second information is a ratio (hereinafter referred to as “recovery rate”) between the amount of energy consumed when the moving body is accelerated and the amount of energy collected when the moving body is decelerated. Good.
  • the recovered energy is energy that is recovered by converting kinetic energy generated during acceleration of the moving body into electrical energy during deceleration. A detailed description of the recovery rate will be described later.
  • the recovered energy is energy that can be saved without consuming more energy than necessary in the case of a gasoline vehicle.
  • a driving method for improving fuel consumption a method of reducing the time required to step on the accelerator is known. That is, in a gasoline vehicle, fuel consumption can be suppressed by maintaining the traveling of the moving body by the kinetic energy (inertial force) generated when the moving body is accelerated. Further, by using the engine brake when the moving body is decelerated, it is possible to suppress fuel consumption caused by stepping on the brake. In other words, in the case of a gasoline vehicle, the consumed fuel is reduced (fuel cut) to save the fuel, but here it is assumed that the energy is recovered as in the case of an EV vehicle.
  • the third information is information related to energy consumed by the resistance generated when the mobile object is traveling.
  • the traveling time of the moving body is a traveling state in which the speed of the moving body is constant, accelerated or decelerated within a predetermined time.
  • the resistance generated when the mobile body travels is a factor that changes the travel state of the mobile body when the mobile body travels. Specifically, the resistance generated when the mobile body travels is resistance generated in the mobile body due to weather conditions, road conditions, vehicle conditions, and the like.
  • the resistance generated in the moving body due to the weather condition is, for example, air resistance due to weather changes such as rain and wind.
  • the resistance generated in the moving body according to the road condition is road resistance due to road gradient, pavement state of road surface, water on the road surface, and the like.
  • the resistance generated in the moving body depending on the vehicle condition is a load resistance applied to the moving body due to tire air pressure, number of passengers, loaded weight, and the like.
  • the third information is energy consumption when the moving body is driven at a constant speed, acceleration or deceleration while receiving air resistance, road resistance, and load resistance. More specifically, the third information is consumed when the moving body travels at a constant speed, acceleration or deceleration, for example, air resistance generated in the moving body due to the head wind or road surface resistance received from a road that is not paved. Energy consumption.
  • the fourth information is information related to energy consumed and recovered by a change in altitude where the moving object is located.
  • the change in altitude at which the moving body is located is a state in which the altitude at which the moving body is located changes over time.
  • the change in altitude at which the moving body is located is a traveling state in which the altitude changes when the moving body travels on a sloped road within a predetermined time.
  • the fourth information is additional information that can be obtained when the road gradient in the predetermined section is clear, thereby improving the energy consumption estimation accuracy.
  • the energy estimation unit (unit time consumption energy estimation unit 202 and route consumption energy estimation unit 204), for example, the speed of a moving body managed by an electronic control unit (ECU) of a vehicle via CAN, You may acquire acceleration and use it as a variable regarding 1st information, 2nd information, and 3rd information.
  • ECU electronice control unit
  • the energy estimation unit acquires the travel time required for traveling in the travel section as a variable of the energy consumption estimation formula. For example, the time required when the mobile body traveled in the same travel section in the past is acquired as the travel time.
  • the energy estimation unit obtains information on the remaining energy amount of the moving object and the actual energy consumption amount of the moving object in the travel section, and uses it as a variable of the energy consumption estimation formula.
  • the remaining energy amount is the amount of energy remaining in the fuel tank or battery of the mobile body. That is, in the case of an EV vehicle, the recovered energy amount is also included in the remaining energy amount.
  • the remaining energy amount and the actual energy consumption amount managed by the ECU are acquired via CAN or the like.
  • the energy estimation unit satisfies one or both of the case where one travel section or another travel section adjacent to the one travel section is within a range to which the current position of the mobile body belongs or a specific type of travel section.
  • information on the speed of the moving body traveling in the travel section at that time is acquired as a variable related to the first information, the second information, and the third information.
  • the one travel section is a travel section where the mobile body is currently traveling.
  • Another travel section adjacent to one travel section is a travel section connected to a node that is the end point of the one travel section.
  • the node that is the end point of one travel section is a four-way road
  • the travel sections that are in three directions excluding the one travel section among the travel sections that branch in four directions from the node that is the end point of the one travel section Is another travel section.
  • the range to which the current position of the moving body belongs is a range including the current position of the moving body when the moving body is traveling.
  • the range to which the current position of the mobile body belongs may be a range having a predetermined area including a travel section in which the mobile body is traveling, such as 10 km 2 , or an administrative district such as a municipality. It may be a range divided by.
  • the specific type of travel section is a range divided by a specific type. The specific type is, for example, a road type.
  • the road type is a type of road that can be distinguished by differences in road conditions such as legal speed, road gradient, road width, and presence / absence of signals.
  • the road type includes a narrow street (hereinafter referred to as “narrow street”) passing through a general national road, a highway, a general road, an urban area, and the like.
  • the energy estimation unit acquires the actual speed and acceleration of the moving object traveling in one travel section as information on the speed in the one travel section.
  • the energy estimation unit is configured so that when one travel section and another travel section are within a range to which the current position of the mobile body belongs or a specific type of travel section, the actual mobile body traveling in one travel section Are acquired as information on the speed in another travel section.
  • the energy estimation unit when one travel section or another travel section is neither a range to which the current position of the mobile body belongs nor a specific type of travel section, of the travel history of the mobile body, Information on the speed of the moving body when traveling in a travel section in the past (hereinafter referred to as “information on travel speed”) is acquired.
  • the travel history of the mobile body includes speed, acceleration, travel time, actual energy consumption, vehicle information, etc. when the mobile body traveled in the travel section in the past.
  • the vehicle information includes vehicle weight, vehicle rotating part weight, efficiency, air resistance, and the like.
  • the travel history of the moving body can be stored in the storage unit for each travel section or each road type, for example.
  • the energy estimation unit may be the same travel section or the same predetermined in the past.
  • the speed and acceleration when traveling in the range are acquired as information on travel speed.
  • the predetermined range is, for example, a range that can be reached before the remaining energy amount runs out, a prefecture, a municipality, or the like.
  • the energy estimation unit may acquire information on the travel speed even when one travel section or another travel section is within a range to which the current position of the mobile body belongs or a specific type of travel section. In this case, the energy estimation unit may calculate, for example, an average value of these pieces of information based on both the information about the actual speed and the information about the past travel speed.
  • the energy estimation unit acquires information on roads in the travel section and uses them as variables in the energy consumption estimation formula. Specifically, the information regarding the road concerning the past travel history memorize
  • the information on the road is, for example, road information that causes a change in the amount of energy consumed or recovered by the traveling of the moving body.
  • the information on the road is, for example, a running resistance generated in the moving body due to the road type, road gradient, road surface condition, and the like.
  • the running resistance can be calculated by the following equation (1), for example.
  • running resistance is generated in a moving body during acceleration or running.
  • the energy estimation unit estimates an energy consumption amount when traveling in the travel section based on a consumption energy estimation formula including the first information, the second information, and the third information. Specifically, the energy consumption amount of the mobile body in a travel section is estimated based on the acquired information on the speed of the mobile body. In addition, when the road gradient is clear, the energy consumption amount when traveling in the travel section may be estimated based on the consumption energy estimation formula to which the fourth information is added.
  • the energy consumption per unit time is estimated based on the consumption energy estimation formula shown in the following formula (2) or (3), or both formulas.
  • the energy consumption amount of the moving body during acceleration and traveling is the product of travel resistance, travel distance, net motor efficiency, and transmission efficiency, and is expressed by the following equation (2).
  • the energy consumption estimation formula shown in formula (2) is a theoretical formula that estimates the energy consumption per unit time during acceleration and traveling.
  • is the net thermal efficiency and ⁇ is the total transmission efficiency. If the sum of the acceleration ⁇ of the moving object and the acceleration g of the gravity from the road gradient ⁇ is the combined acceleration
  • the energy consumption estimation formula shown in Formula (3) is a theoretical formula that estimates the energy consumption per unit time during deceleration.
  • the first term on the right side is the energy consumption (first information) consumed by the equipment provided in the moving body.
  • the second term on the right side is the energy consumption (fourth information) due to the gradient component and the energy consumption (third information) due to the rolling resistance component.
  • the third term on the right side is energy consumption (third information) due to the air resistance component.
  • the fourth term on the right side of the equation (2) is the energy consumption (second information) by the acceleration component.
  • the fourth term on the right side of the equation (3) is the energy consumption (second information) by the deceleration component.
  • the information indicated by the other variables is the same as the above equation (1).
  • the motor efficiency and the drive efficiency are considered to be constant.
  • the motor efficiency and the driving efficiency vary due to the influence of the motor speed and torque. Therefore, the following equations (4) and (5) show empirical equations for estimating energy consumption per unit time.
  • is positive is expressed by the following formula (4). That is, the energy consumption estimation formula shown in the formula (4) is an empirical formula for estimating the energy consumption per unit time during acceleration and traveling.
  • is negative is expressed by the following formula (5). That is, the energy consumption estimation formula shown in Formula (5) is an empirical formula for estimating the energy consumption per unit time during deceleration.
  • the coefficients a1 and a2 are constants set according to the status of the moving body.
  • the coefficients k1, k2, and k3 are variables based on energy consumption during acceleration.
  • the information indicated by the first term on the right side to the third term on the right side is the same as in the above equations (2) and (3).
  • the above formula (2) which is a theoretical formula
  • the formula (4) which is an empirical formula
  • the first term on the right side of the equations (2) and (4) is a component that does not depend on the speed, and is both first information.
  • the second term on the right side of equation (4) is the energy consumption for the gradient resistance and acceleration resistance. That is, the second term on the right side of the equation (4) is the second information representing the increase in kinetic energy due to the speed increase and the fourth information representing the increase in potential energy due to the altitude change. This corresponds to the acceleration component of the term and the gradient component of the second term on the right side of equation (2).
  • the third term on the right side of equation (4) is third information, and corresponds to the rolling resistance component of the second term on the right side of equation (2) and the air resistance component of the third term on the right side of equation (2).
  • the energy estimation unit inputs the travel speed V and the travel acceleration ⁇ per unit time using the consumption energy estimation formula shown in the above formula (4) or (5), or both formulas, so that the travel speed Alternatively, the energy consumption at the moment when the travel acceleration is acquired may be estimated.
  • the travelable range is estimated using the above formula (4) or (5), the speed and acceleration per unit time in the entire travel section process to be traveled are acquired every 1 second, for example, and 1 second If an attempt is made to estimate the energy consumption every time, the calculation amount may become enormous.
  • the energy estimation unit may estimate the energy consumption in this section by using the average value of the traveling speed and the average value of the traveling acceleration in a certain section.
  • the section gathered to some extent is a section where the mobile body travels, and may be a travel section, for example.
  • the energy consumption amount in the section can be obtained by using a consumption energy estimation formula defined based on the above formula (4) or formula (5).
  • the energy estimation unit averages the energy consumption per unit time consumed when the mobile body is accelerated and the energy consumption per unit time collected when the mobile body is decelerated. Use the estimation formula.
  • the energy estimation unit estimates the energy consumption using the empirical formula of the energy consumption in the section shown in the following equation (6) or (7), or both equations. Good.
  • the consumption energy estimation formula shown in the following equation (6) is a consumption energy estimation formula in the section when the altitude difference ⁇ h of the section in which the mobile body travels is positive.
  • the case where the altitude difference ⁇ h is positive is a case where the moving body is traveling uphill.
  • the consumption energy estimation formula shown in the following equation (7) is a consumption energy estimation formula in the section when the altitude difference ⁇ h of the section in which the mobile body travels is negative.
  • the case where the altitude difference ⁇ h is negative is a case where the moving body is traveling downhill.
  • the first term on the right side is the energy consumption (first information) consumed by the equipment provided in the moving body.
  • the second term on the right side is the energy consumption (second information) by the acceleration resistance.
  • the third term on the right side is energy consumption consumed as potential energy (fourth information).
  • the fourth term on the right side is energy consumption (third information) due to air resistance and rolling resistance (hereinafter collectively referred to as running resistance) received per unit area.
  • the energy estimation unit may acquire, for example, the recovery rate ⁇ provided by the manufacturer, or may calculate the recovery rate ⁇ based on information about the speed acquired from the vehicle.
  • the energy estimation unit calculates the energy consumption per unit time when traveling in the travel section based on one or more of the consumption energy estimation formulas shown in the above formulas (2) to (5).
  • the energy consumption when traveling in the travel section is estimated by integrating the travel time.
  • the energy estimation unit estimates the energy consumption per unit time based on the consumption energy estimation formula using the information about the actual speed or the information about the travel speed, and integrates it with the travel time, Estimate energy consumption in the travel segment.
  • the energy estimation unit uses the corrected coefficient h calculated by the correction coefficient calculation unit 203 as the second information (k2), the third information (k3), and the fourth information (k4) regarding travel in the consumption energy estimation formula. Is multiplied by each.
  • the route energy consumption estimation unit 204 estimates the energy consumption of the planned travel route using each coefficient after the correction coefficient calculated by the correction coefficient calculation unit 203. At this time, it becomes possible to perform highly accurate estimation adapted to the actual vehicle and the running state.
  • FIG. 5 is a block diagram illustrating a hardware configuration of the navigation apparatus.
  • a navigation device 200 includes a CPU 501, a ROM 502, a RAM 503, a magnetic disk drive 504, a magnetic disk 505, an optical disk drive 506, an optical disk 507, an audio I / F (interface) 508, a microphone 509, a speaker 510, an input device 511, A video I / F 512, a display 513, a camera 514, a communication I / F 515, a GPS unit 516, and various sensors 517 are provided.
  • the components 501 to 517 are connected by a bus 520, respectively.
  • the CPU 501 governs overall control of the navigation device 200.
  • the ROM 502 records programs such as a boot program, a travel distance estimation program, a data update program, and a map data display program.
  • the RAM 503 is used as a work area for the CPU 501. That is, the CPU 501 governs overall control of the navigation device 200 by executing various programs recorded in the ROM 502 while using the RAM 503 as a work area.
  • the magnetic disk drive 504 controls the reading / writing of the data with respect to the magnetic disk 505 according to control of CPU501.
  • the magnetic disk 505 records data written under the control of the magnetic disk drive 504.
  • an HD hard disk
  • FD flexible disk
  • the optical disk drive 506 controls reading / writing of data with respect to the optical disk 507 according to the control of the CPU 501.
  • the optical disk 507 is a detachable recording medium from which data is read according to the control of the optical disk drive 506.
  • a writable recording medium can be used as the optical disc 507.
  • an MO, a memory card, or the like can be used as a detachable recording medium.
  • Examples of information recorded on the magnetic disk 505 and the optical disk 507 include map data, vehicle information, road information, travel history, and the like.
  • Map data is used to display information related to the distance that can be traveled in a car navigation system.
  • Background data that represents features (features) such as buildings, rivers, and the ground surface, and roads that represent road shapes with links and nodes. Includes shape data.
  • the vehicle information, road information, and travel history are data relating to roads used as variables in the energy consumption estimation formulas shown in the above formulas (2) to (7).
  • the voice I / F 508 is connected to a microphone 509 for voice input and a speaker 510 for voice output.
  • the sound received by the microphone 509 is A / D converted in the sound I / F 508.
  • the microphone 509 is installed in a dashboard portion of a vehicle, and the number thereof may be one or more.
  • the speaker 510 outputs a sound obtained by D / A converting a predetermined sound signal such as route guidance in the sound I / F 508.
  • Examples of the input device 511 include a remote controller, a keyboard, and a touch panel that are provided with a plurality of keys for inputting characters, numerical values, various instructions, and the like.
  • the input device 511 may be realized by any one of a remote controller, a keyboard, and a touch panel, but may be realized by a plurality of forms.
  • the video I / F 512 is connected to the display 513.
  • the video I / F 512 is output from, for example, a graphic controller that controls the entire display 513, a buffer memory such as a VRAM (Video RAM) that temporarily records image information that can be displayed immediately, and a graphic controller.
  • a control IC for controlling the display 513 based on the image data to be processed.
  • the display 513 displays icons, cursors, menus, windows, or various data such as characters and images.
  • a TFT liquid crystal display, an organic EL display, or the like can be used as the display 513.
  • the camera 514 captures images inside or outside the vehicle.
  • the image may be either a still image or a moving image.
  • the outside of the vehicle is photographed by the camera 514 and the photographed image is analyzed by the CPU 501 or a recording medium such as the magnetic disk 505 or the optical disk 507 via the image I / F 512.
  • the communication I / F 515 is connected to a wireless / wired network and functions as an interface between the navigation device 200 and the CPU 501.
  • Communication networks that function as networks include public line networks, mobile phone networks, DSRC (Dedicated Short Range Communication), LANs, WANs, and CANs.
  • the communication I / F 515 includes, for example, a network module, a public line connection module, an ETC (non-stop automatic fee payment system) unit, an FM tuner, a VICS (Vehicle Information and Communication System) / beacon receiver, and the like.
  • the GPS unit 516 receives radio waves from GPS satellites and outputs information indicating the current position of the vehicle.
  • the output information of the GPS unit 516 is used together with the output values of the various sensors 517 when the CPU 501 calculates the current position of the vehicle.
  • the information indicating the current position is information for specifying one point on the map data, such as latitude / longitude and altitude.
  • Various sensors 517 output information for judging the position and behavior of the vehicle, such as a vehicle speed sensor, an acceleration sensor, an angular velocity sensor, and a tilt sensor.
  • the output values of the various sensors 517 are used by the CPU 501 to calculate the current position of the vehicle and to calculate the amount of change in speed and direction.
  • Each component of the navigation device 200 shown in FIG. 2 uses a program or data recorded in the ROM 502, RAM 503, magnetic disk 505, optical disk 507, etc. shown in FIG. The function is realized by controlling each part in the navigation device 200.
  • the energy consumption estimation described above the amount of energy consumed varies depending on the vehicle state, road conditions, how the user runs, etc. in actual vehicle travel.
  • the energy consumption estimation fuel consumption / electricity cost estimation
  • the energy consumption estimation is performed on the assumption of a running state under a certain condition. For this reason, it is not possible to automatically cope with the actual energy consumption (electricity consumption / fuel consumption) that changes depending on the vehicle state, road conditions, how the user runs, and the like.
  • the estimated energy consumption (fuel consumption / electricity estimation) is corrected and adjusted to a predetermined time to approach the actual consumption energy (fuel consumption / electricity estimation).
  • the navigation system is provided with a function for correcting and adjusting the estimated energy consumption (fuel consumption / electricity cost), and correction adjustment is possible when the user performs an input operation manually.
  • the estimated energy consumption fuel consumption / electricity cost
  • correction adjustment is possible when the user performs an input operation manually.
  • the present invention it is possible to estimate in real time and with higher accuracy corresponding to the vehicle situation, road situation, user's running method, and the like using the actual energy consumption.
  • the user does not need to perform correction and adjustment operations on the navigation system.
  • the estimation accuracy can be improved, the accuracy in the reroute search can be improved, and specifically, the accuracy of the energy consumption estimation in the route search or the like is improved. It is also possible to improve the accuracy of cruising range estimation and cruising range display.
  • the energy consumption from CAN may include energy consumption such as electrical equipment and air conditioning.
  • the energy consumption and speed information of CAN are used to estimate and calculate the amount of energy that is constantly consumed outside of traveling such as electrical equipment and air conditioning. The amount of energy consumed is being subtracted. Thereby, the energy amount consumed by driving
  • a constant value may be added as an initial value to each of the accumulated travel energy consumption and the cumulative estimated travel energy consumption.
  • a correction value is calculated by adding a constant amount of power kW for an EV vehicle, and a constant gasoline amount cc for a gasoline vehicle.
  • the tilt information from the tilt sensor is calculated as 0, the influence of the accuracy of the tilt sensor can be eliminated.
  • the estimation accuracy can be improved by performing the estimation calculation by incorporating the tilt information.
  • the calculation of the correction value based on the unit time data accumulation described above may be an accumulated value of a past fixed time and a past fixed distance, or a moving average of the past fixed time and a past fixed distance may be used. If the correction value is calculated using the accumulated value of the past fixed time and the past fixed distance, the influence of the past data is reduced, so that the correction value adapted to the current situation can be calculated. As a result, correction according to the current vehicle situation, running situation, and the like is possible, and estimation accuracy can be improved. On the other hand, if the correction value is calculated using the accumulation of all the past data, it becomes difficult to be affected by fluttering that the correction value fluctuates greatly every time the current situation changes.
  • the vehicle can be corrected by specifying certain conditions according to the driving conditions of the vehicle, such as only in urban areas and only on highways. For example, it is possible to correct the air resistance of the third information for each traveling condition. For example, if correction values according to road conditions and traveling conditions such as high-speed correction values and urban correction values are set, it is possible to improve estimation accuracy according to the situation.
  • the remaining energy amount information from the vehicle for example, the SOC (remaining battery capacity) in the EV vehicle, the remaining gasoline amount in the tank in the gasoline vehicle), and the energy consumption efficiency obtained from the route consumption energy amount estimation (for example, in the EV vehicle) It is possible to calculate the cruising range using the power consumption rate, or the fuel consumption rate for gasoline vehicles).
  • the remaining energy amount information and energy consumption efficiency a process for sequentially searching for nodes that are estimated to be reachable in each direction around the vehicle position is performed. It is possible to calculate the cruising distance centered on the vehicle position. At this time, if the correction coefficient is updated continuously (for example, every unit time), it is possible to calculate the cruising distance with higher accuracy according to the situation.
  • the navigation apparatus mounted on the vehicle is used for estimating the energy consumption.
  • the present invention is not limited to this, and the energy consumption estimation may be performed using a server or the like outside the vehicle.
  • a vehicle and a navigation apparatus transmit CAN information and speed information to a server via a network.
  • the server includes each component described in FIG. 2, calculates a correction coefficient, estimates the energy consumption, and transmits the estimated energy to the vehicle.
  • the processing load can be shared by the entire system, and the processing load of the navigation device can be reduced.
  • the server is configured to perform only correction coefficient calculation and transmit the correction coefficient to the navigation device in the configuration of FIG. 2, and the navigation device estimates the amount of energy consumption based on the correction coefficient.
  • the method for estimating energy consumption described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer.
  • the program may be a transmission medium that can be distributed via a network such as the Internet.

Abstract

An energy consumption estimation device (100) is provided with: a calculation unit (101) for calculating the estimated amount of energy consumption, which is the energy consumed per unit of time when a moving body travels; an acquisition unit (102) for acquiring the actual amount of energy consumption consumed by the moving body per unit of time as computed by a computation device mounted in the moving body; and an estimation unit (103) for estimating an interval energy amount consumed when the moving body travels through a predetermined interval, on the basis of the calculation results produced by the calculation unit (101) and the acquisition results of the acquisition unit (102).

Description

消費エネルギー推定装置、消費エネルギー推定方法、消費エネルギー推定プログラムおよび記録媒体Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium
 この発明は、移動体の消費エネルギーを表示する消費エネルギー推定装置、消費エネルギー推定方法、消費エネルギー推定プログラムおよび記録媒体に関する。ただし、この発明の利用は、上述した消費エネルギー推定装置、消費エネルギー推定方法、消費エネルギー推定プログラムおよび記録媒体には限られない。 The present invention relates to a consumption energy estimation device, a consumption energy estimation method, a consumption energy estimation program, and a recording medium that display energy consumption of a mobile object. However, the use of the present invention is not limited to the above-described consumption energy estimation device, consumption energy estimation method, consumption energy estimation program, and recording medium.
 従来、エネルギー推定式を用いて移動体の平均燃費や平均電費の算出、および移動体の航続距離推定を行う技術がある(たとえば、下記特許文献1参照。)。この推定には、車重や車両寸法等に応じて算出される加速や走行抵抗等の各係数を用いている。 Conventionally, there is a technique for calculating the average fuel consumption and average power consumption of a moving object and estimating the cruising distance of the moving object using an energy estimation formula (for example, see Patent Document 1 below). For this estimation, coefficients such as acceleration and running resistance calculated according to the vehicle weight, vehicle dimensions, and the like are used.
特許第4959862号Patent No. 4959862
 しかしながら、上記従来の技術では、一定の条件での移動体の走行状態を想定し、消費エネルギーを推定しているため、道路状況や使用者の走り方等により変化する実際の消費エネルギーに対しては対応できず、消費エネルギーの推定精度を向上できなかった。このため、たとえば、推定結果に対する実測結果(実際の消費)のずれをユーザー等が手動等で補正する必要が生じた。 However, in the above-described conventional technology, the energy consumption is estimated assuming the traveling state of the moving body under a certain condition. Therefore, with respect to the actual energy consumption that changes depending on the road condition, the user's driving method, etc. Could not cope, and the estimation accuracy of energy consumption could not be improved. For this reason, for example, it has become necessary for the user or the like to manually correct the deviation of the actual measurement result (actual consumption) from the estimation result.
 一方、エネルギー推定式を用いずに消費エネルギーを算出する構成として、車両のメータ表示等がある。この場合、CAN(Controller Area Network)等のデータを用いて車両の実際に消費しているエネルギーから平均燃費、平均電費や航続可能距離等を算出し、表示を行うもので、エネルギー推定式等を用いていない。この場合、CANデータを用いて過去一定時間や一定距離の消費エネルギー量を基準に算出や推定を行っている。この構成においても、道路状況や車両の走行状態の変化に対応できず、消費エネルギーの推定精度を向上できない。 On the other hand, there is a vehicle meter display or the like as a configuration for calculating energy consumption without using an energy estimation formula. In this case, the average fuel consumption, average electricity cost, cruising range, etc. are calculated from the energy actually consumed by the vehicle using data such as CAN (Controller Area Network) and displayed. Not used. In this case, calculation and estimation are performed using CAN data on the basis of the amount of energy consumed for a certain past time or a certain distance. Even in this configuration, it is impossible to cope with changes in road conditions and vehicle running conditions, and it is not possible to improve the estimation accuracy of energy consumption.
 上述した課題を解決し、目的を達成するため、請求項1の発明にかかる消費エネルギー推定装置は、移動体が走行する際に単位時間当たりに消費するエネルギーである推定エネルギー消費量を算出する算出部と、前記移動体に搭載された演算装置により演算された、単位時間当たりに前記移動体が消費する実エネルギー消費量を取得する取得部と、前記算出部による算出結果と前記取得部による取得結果に基づいて、前記移動体が所定の区間を走行する際に消費する区間エネルギー量を推定する区間消費エネルギー推定部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the energy consumption estimation apparatus according to the invention of claim 1 calculates an estimated energy consumption that is energy consumed per unit time when the mobile body travels. An acquisition unit that acquires an actual energy consumption amount consumed by the mobile unit per unit time calculated by a calculation unit mounted on the mobile unit, a calculation result by the calculation unit, and an acquisition by the acquisition unit A section consumption energy estimation unit that estimates a section energy amount consumed when the mobile body travels in a predetermined section based on the result.
 また、請求項6の発明にかかる消費エネルギー推定方法は、移動体の移動による消費エネルギーを推定する消費エネルギー推定装置の消費エネルギー推定方法において、前記移動体が走行する際に単位時間当たりに消費するエネルギーである推定エネルギー消費量を算出する算出工程と、前記移動体に搭載された演算装置により演算された、単位時間当たりに前記移動体が消費する実エネルギー消費量を取得する取得工程と、前記算出工程による算出結果と前記取得工程による取得結果に基づいて、前記移動体が所定の区間を走行する際に消費する区間エネルギー量を推定する区間消費エネルギー推定工程と、を含むことを特徴とする。 According to a sixth aspect of the present invention, there is provided a consumption energy estimation method according to a consumption energy estimation method of a consumption energy estimation device for estimating consumption energy due to movement of a mobile body, wherein the mobile body consumes per unit time when traveling. A calculation step of calculating an estimated energy consumption that is energy, an acquisition step of acquiring an actual energy consumption consumed by the mobile unit per unit time, calculated by a calculation device mounted on the mobile unit, A section consumption energy estimation step of estimating a section energy amount consumed when the mobile body travels in a predetermined section based on a calculation result of the calculation step and a result of acquisition by the acquisition step. .
 また、請求項7に記載の発明にかかる消費エネルギー推定プログラムは、請求項6に記載の消費エネルギー推定方法をコンピュータに実行させることを特徴とする。 Further, the energy consumption estimation program according to the invention described in claim 7 causes the computer to execute the energy consumption estimation method according to claim 6.
 また、請求項8に記載の発明にかかる記録媒体は、請求項7に記載の消費エネルギー推定プログラムをコンピュータに読み取り可能な状態で記録したことを特徴とする。 Further, the recording medium according to the invention described in claim 8 is characterized in that the energy consumption estimation program according to claim 7 is recorded in a computer-readable state.
図1は、実施の形態にかかる消費エネルギー推定装置の機能的構成を示すブロック図である。FIG. 1 is a block diagram illustrating a functional configuration of the energy consumption estimation apparatus according to the embodiment. 図2は、消費エネルギー推定装置をナビゲーション装置を用いて構成した場合の機能的構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration when the consumption energy estimation device is configured using a navigation device. 図3は、補正係数算出の処理内容を示すフローチャートである。FIG. 3 is a flowchart showing the processing content of the correction coefficient calculation. 図4は、ルート消費エネルギー量推定の処理内容を示すフローチャートである。FIG. 4 is a flowchart showing the processing content of the route energy consumption estimation. 図5は、ナビゲーション装置のハードウェア構成を示すブロック図である。FIG. 5 is a block diagram illustrating a hardware configuration of the navigation apparatus.
 以下に添付図面を参照して、この発明にかかる消費エネルギー推定装置、消費エネルギー推定方法、消費エネルギー推定プログラムおよび記録媒体の好適な実施の形態を詳細に説明する。 DETAILED DESCRIPTION Exemplary embodiments of a consumption energy estimation device, a consumption energy estimation method, a consumption energy estimation program, and a recording medium according to the present invention will be described below in detail with reference to the accompanying drawings.
(実施の形態)
 図1は、実施の形態にかかる消費エネルギー推定装置の機能的構成を示すブロック図である。実施の形態にかかる消費エネルギー推定装置100は、算出部101と、取得部102と、推定部103と、を備えている。
(Embodiment)
FIG. 1 is a block diagram illustrating a functional configuration of the energy consumption estimation apparatus according to the embodiment. The energy consumption estimation apparatus 100 according to the embodiment includes a calculation unit 101, an acquisition unit 102, and an estimation unit 103.
 算出部101は、移動体が走行する際に単位時間当たりに消費するエネルギーである推定エネルギー消費量を算出する。この算出部101は、所定の推定式を用いて推定エネルギー消費量を算出する。この算出部101は、推定式の係数として車両重量や車体寸法、速度情報、また、必要に応じて勾配情報を取得する。 The calculation unit 101 calculates an estimated energy consumption that is energy consumed per unit time when the mobile body travels. The calculation unit 101 calculates an estimated energy consumption using a predetermined estimation formula. The calculation unit 101 acquires vehicle weight, body size, speed information, and gradient information as necessary, as coefficients of the estimation formula.
 取得部102は、移動体に搭載された演算装置(たとえば、ECU:Electronic Control Unit)により演算された、単位時間当たりに移動体が消費する実エネルギー消費量を取得する。推定部103は、算出部101による算出結果と、取得部102による取得結果に基づいて、移動体が所定の区間を走行する際に消費する区間エネルギー量を推定する。また、取得部102は、単位時間当たりに移動体が消費する実エネルギー消費量を算出するための情報(例えば、単位時間よりも短い時間における移動体が消費する実エネルギー消費量)を移動体に搭載された演算装置から取得し、当該取得した情報から、単位時間当たりに移動体が消費する実エネルギー消費量を算出するようにしてもよい。 The acquisition unit 102 acquires the actual energy consumption consumed by the moving body per unit time, which is calculated by an arithmetic device (for example, ECU: Electronic Control Unit) mounted on the moving body. The estimation unit 103 estimates the section energy amount consumed when the mobile body travels in a predetermined section based on the calculation result by the calculation unit 101 and the acquisition result by the acquisition unit 102. The acquisition unit 102 also stores information for calculating the actual energy consumption consumed by the moving body per unit time (for example, the actual energy consumption consumed by the moving body in a time shorter than the unit time) in the moving body. The actual energy consumption amount consumed by the mobile body per unit time may be calculated from the acquired arithmetic device and from the acquired information.
 ここで、消費エネルギーとは、たとえば、EV車の場合、電気などに基づくエネルギーであり、HV車,PHV車などの場合は電気などに基づくエネルギーおよびたとえばガソリンや軽油、ガスなどに基づくエネルギーである。また、エネルギーとは、たとえば燃料電池車の場合、電気などに基づくエネルギーおよびたとえば水素や水素原料になる化石燃料などである。(以下、EV車,HV車,PHV車、燃料電池車は単に「EV車」という)また、エネルギーとは、たとえば、ガソリン車,ディーゼル車など(以下、単に「ガソリン車」という)の場合、たとえば、ガソリンや軽油、ガスなどに基づくエネルギーである。 Here, the consumed energy is, for example, energy based on electricity in the case of an EV vehicle, and is energy based on electricity or the like in the case of an HV vehicle, PHV vehicle, or the like, for example, energy based on gasoline, light oil, gas, or the like. . The energy is, for example, energy based on electricity in the case of a fuel cell vehicle and hydrogen or fossil fuel that becomes a hydrogen raw material. (Hereinafter, EV cars, HV cars, PHV cars, and fuel cell cars are simply referred to as “EV cars”) In addition, in the case of energy, for example, gasoline cars, diesel cars (hereinafter simply referred to as “gasoline cars”), For example, energy based on gasoline, light oil, and gas.
 そして、推定部103は、算出部101による推定した推定結果(単位時間当たりの推定エネルギー消費量)と、取得部102による実際の走行に基づく取得結果(単位時間当たりの実エネルギー消費量)とを比較することにより、移動体が所定の区間を走行する際に消費する区間エネルギー量を推定することができる。このように、単位時間当たりの推定エネルギー消費量と実エネルギー消費量とを比較することにより、実エネルギー消費量を用いて推定エネルギー消費量の推定を精度よくおこなうことができる。 Then, the estimation unit 103 obtains the estimation result (estimated energy consumption per unit time) estimated by the calculation unit 101 and the acquisition result (actual energy consumption per unit time) based on actual travel by the acquisition unit 102. By comparing, it is possible to estimate a section energy amount consumed when the mobile body travels in a predetermined section. Thus, by comparing the estimated energy consumption per unit time with the actual energy consumption, the estimated energy consumption can be accurately estimated using the actual energy consumption.
 より具体的には、推定部103は、単位時間当たりの推定エネルギー消費量と実エネルギー消費量との比較により演算し算出されたものを、補正係数とする。そして、推定部103は、この補正係数を用いて、算出部101の推定式に用いられる係数(たとえば、車重や車両寸法等に応じて算出される加速や走行抵抗等の各係数)を補正し、区間エネルギー量を推定する。この補正により、道路状況および移動体の走行状態に変化が生じても、単位時間単位で推定式を用いた消費エネルギー推定結果を補正することができる。これにより、道路状況や走行状態の変化に対応して消費エネルギーの推定精度を向上することができるようになる。 More specifically, the estimation unit 103 sets a correction coefficient that is calculated by comparing the estimated energy consumption per unit time with the actual energy consumption. And the estimation part 103 correct | amends the coefficient (For example, each coefficient, such as acceleration and driving resistance calculated according to a vehicle weight, a vehicle dimension, etc.) used for the estimation formula of the calculation part 101 using this correction coefficient. And the interval energy amount is estimated. By this correction, even if a change occurs in the road condition and the traveling state of the moving body, the energy consumption estimation result using the estimation formula can be corrected in unit time. Thereby, the estimation accuracy of energy consumption can be improved in response to changes in road conditions and driving conditions.
 以下に、本発明の実施例について説明する。本実施例では、車両に搭載されるナビゲーション装置を消費エネルギー推定装置100として、本発明を適用した場合の一例について説明する。 Hereinafter, examples of the present invention will be described. In the present embodiment, an example in which the present invention is applied will be described using a navigation device mounted on a vehicle as a consumption energy estimation device 100.
 図2は、消費エネルギー推定装置をナビゲーション装置を用いて構成した場合の機能的構成を示すブロック図である。ナビゲーション装置200は、CANデータ処理部201と、単位時間消費エネルギー推定部202と、補正係数算出部203と、ルート消費エネルギー推定部204と、によって構成される。 FIG. 2 is a block diagram showing a functional configuration when the energy consumption estimation device is configured using a navigation device. The navigation device 200 includes a CAN data processing unit 201, a unit time consumption energy estimation unit 202, a correction coefficient calculation unit 203, and a route consumption energy estimation unit 204.
 CANデータ処理部201は、ナビゲーション装置200を搭載した移動体(車両)210の車内通信ネットワーク「CAN」を介して、たとえば、エレクトロニックコントロールユニット(ECU:Electronic Control Unit)によって管理されている車両の車両データ211を取得する。そして、CANデータ処理部201は、車両データ211に含まれる速度情報や電力量情報に基づいて、実エネルギー消費量(車両消費エネルギー量と、定常消費エネルギー量)を算出する。車両消費エネルギー量は、車両が消費する総消費エネルギー量であり、走行状態等によって変化する。定常消費エネルギー量は、車両の走行に直接関連せずに定常消費されるエネルギー量であり、車両の電装系や空調系等の使用状態によって変化する。CANデータ処理部201は、車両データとして、車両消費エネルギー量と、定常消費エネルギー量を補正係数算出部203に出力する。 The CAN data processing unit 201 is, for example, a vehicle of a vehicle managed by an electronic control unit (ECU) via an in-vehicle communication network “CAN” of the mobile body (vehicle) 210 on which the navigation device 200 is mounted. Data 211 is acquired. Then, the CAN data processing unit 201 calculates an actual energy consumption (a vehicle consumption energy amount and a steady consumption energy amount) based on speed information and power amount information included in the vehicle data 211. The amount of energy consumed by the vehicle is the total amount of energy consumed by the vehicle, and varies depending on the driving state and the like. The steady consumption energy amount is an energy amount that is constantly consumed without being directly related to the traveling of the vehicle, and varies depending on the use state of the electrical system, the air conditioning system, and the like of the vehicle. The CAN data processing unit 201 outputs the vehicle consumption energy amount and the steady consumption energy amount to the correction coefficient calculation unit 203 as vehicle data.
 単位時間消費エネルギー推定部202は、単位時間当たりの消費エネルギーを所定の推定式を用いて推定する。推定車両消費エネルギー量と、推定定常消費エネルギー量と分けてそれぞれ推定する。単位時間消費エネルギー推定部202は、推定データとして、推定車両消費エネルギー量と、推定定常消費エネルギー量を補正係数算出部203に出力する。 The unit time consumption energy estimation unit 202 estimates the energy consumption per unit time using a predetermined estimation formula. The estimated vehicle energy consumption and the estimated steady energy consumption are separately estimated. The unit time consumption energy estimation unit 202 outputs the estimated vehicle consumption energy amount and the estimated steady consumption energy amount to the correction coefficient calculation unit 203 as estimation data.
 より具体的には、この単位時間消費エネルギー推定部202では、車両重量や車体寸法等から算出される各係数、たとえば、定常的に消費される単位時間当たりのエネルギー量(推定式の第一情報)に関する係数と、車両の重量に関連する係数である加速成分のエネルギー量(第二情報)に関する係数、空気抵抗成分のエネルギー量(第三情報)に関する係数、転がり抵抗成分のエネルギー量(第四情報)に関する係数とに分けて消費エネルギーを推定する。 More specifically, the unit time consumption energy estimation unit 202 calculates each coefficient calculated from the vehicle weight, the body size, etc., for example, the amount of energy consumed per unit time on a regular basis (first information of the estimation formula). ), A coefficient relating to the acceleration component energy amount (second information), a coefficient relating to the weight of the vehicle, a coefficient relating to the air resistance component energy amount (third information), and a rolling resistance component energy amount (fourth information). The energy consumption is estimated by dividing it into coefficients related to (information).
 この際、単位時間消費エネルギー推定部202は、取得した速度情報、さらには、必要に応じ勾配情報も使用し、単位時間毎の消費エネルギー量の推定を行う。これら車両重量や車体寸法、速度情報、勾配情報は、汎用のナビゲーション装置200が有するセンサが検出するデータを用いる。速度情報は、たとえば車速センサのパルスの入力をGPSデータにより補正して使用する。これに限らず、これらのデータ(たとえば速度情報等)は、車両210がCAN等により出力する情報を用いてもよい。 At this time, the unit time energy consumption estimation unit 202 estimates the amount of energy consumed per unit time by using the acquired speed information and, further, gradient information as necessary. For these vehicle weight, body size, speed information, and gradient information, data detected by a sensor included in the general-purpose navigation apparatus 200 is used. For example, the speed information is obtained by correcting the pulse input of the vehicle speed sensor with GPS data. Not only this but these data (for example, speed information etc.) may use information which vehicles 210 output by CAN etc.
 補正係数算出部203は、CANデータ処理部201から出力される、車両データ(車両消費エネルギー量、定常消費エネルギー量)と、単位時間消費エネルギー推定部202から出力される、推定データ(推定車両消費エネルギー量、推定定常消費エネルギー量)とをそれぞれ単位時間分ごとに一定時間、累積する。そして、これら車両データと推定データとを比較演算することにより、補正係数を算出し、ルート消費エネルギー推定部204に出力する。なお、累積する時間は適宜変化させるようにしても良い。 The correction coefficient calculation unit 203 outputs vehicle data (vehicle energy consumption, steady energy consumption) output from the CAN data processing unit 201 and estimated data (estimated vehicle consumption) output from the unit time energy consumption estimation unit 202. Energy amount and estimated steady energy consumption amount) are accumulated for a certain time every unit time. Then, a comparison coefficient is calculated between the vehicle data and the estimated data to calculate a correction coefficient and output it to the route consumption energy estimating unit 204. The accumulated time may be changed as appropriate.
 この補正係数算出部203では、CANデータ処理部201から出力される車両データ(車両消費エネルギー量、定常消費エネルギー量)、および単位時間消費エネルギー推定部202から出力される推定データ(各係数成分の消費エネルギー量から構成される車両消費エネルギー量、定常消費エネルギー量)の係数成分毎に推定車両消費エネルギー量をそれぞれ累積する。そして、車両データおよび推定データの各累積データからそれぞれ走行に要したエネルギー分だけを抽出し、累積走行消費エネルギー量とする。 In the correction coefficient calculation unit 203, vehicle data (vehicle consumption energy amount, steady consumption energy amount) output from the CAN data processing unit 201, and estimation data (each coefficient component of each coefficient component) output from the unit time consumption energy estimation unit 202 are output. The estimated vehicle energy consumption amount is accumulated for each coefficient component of the vehicle energy consumption amount and the steady energy consumption amount configured from the energy consumption amount. Then, only the energy required for traveling is extracted from the accumulated data of the vehicle data and the estimated data, and is used as the accumulated traveling energy consumption.
 具体的には、車両データについては累積した「車両消費エネルギー量」から累積した「定常消費エネルギー量」分を差し引き、「累積走行消費エネルギー量」とする。推定消費量に対しては、定常消費エネルギー分を除いて係数成分を加算し、累積した「推定走行消費エネルギー量」とする。そして、「累積走行消費エネルギー量」を「累積推定走行消費エネルギー量」で割る。これで得られた値を補正係数とする。 Specifically, for the vehicle data, the accumulated “steady consumption energy amount” is subtracted from the accumulated “vehicle consumption energy amount” to obtain the “accumulated travel consumption energy amount”. For the estimated consumption, the coefficient component is added excluding the steady consumption energy, and the accumulated “estimated travel consumption energy” is obtained. Then, the “cumulative travel energy consumption amount” is divided by the “cumulative estimated travel energy consumption amount”. The value thus obtained is used as a correction coefficient.
 この補正係数を、消費エネルギー推定式で用いる加速に関する消費エネルギー量(第二情報)の係数、空気抵抗分に関する消費エネルギー量(第三情報)の係数、転がり抵抗成分に関する消費エネルギー量(第四情報)の係数に掛けて、補正後の各係数とする。 Use this correction coefficient as a coefficient of energy consumption related to acceleration (second information) used in the energy consumption estimation formula, coefficient of energy consumption related to air resistance (third information), energy consumption related to rolling resistance component (fourth information) ) Multiplied by the coefficient to obtain each coefficient after correction.
 具体的には、補正係数hは、
 h=累積走行消費エネルギー量/累積推定走行消費エネルギー量
  =[ΣPr-Σk1(スモールk1)]/ΣPT
 により算出する。
 Pr:CANにより取得した単位時間消費電力値
 k1(スモールk1):Prから演算処理により算出した単位時間定常消費エネルギー量
 PT:単位時間推定走行消費エネルギー量
Specifically, the correction coefficient h is
h = cumulative driving energy consumption / cumulative estimated driving energy consumption = [ΣPr−Σk1 (small k1)] / ΣPT
Calculated by
Pr: Unit time power consumption value acquired by CAN k1 (small k1): Unit time steady energy consumption calculated by calculation processing from Pr PT: Unit time estimated travel energy consumption
 そして補正後の係数hは、後述する消費エネルギー推定式における走行に関する第二情報(k2)、第三情報(k3)、第四情報(k4)にそれぞれ乗算して用いる。第二情報(k2×h)、第三情報(k3×h)、第四情報(k4×h)となる。 The corrected coefficient h is used by multiplying the second information (k2), the third information (k3), and the fourth information (k4) related to traveling in the energy consumption estimation formula described later. The second information (k2 × h), the third information (k3 × h), and the fourth information (k4 × h).
 なお、単位時間消費エネルギー推定部202では補正前の各係数を用いて単位時間の消費エネルギー推定を行う。これにより累積値への係数の変化の繰り込みを防ぐ。また、補正後の各係数は、ルート消費エネルギー推定部204に出力し、目的地までの走行にかかる電力推定や航続可能距離算出、航続可能範囲表示計算に用いる。 The unit time energy consumption estimation unit 202 estimates the unit time energy consumption using the coefficients before correction. This prevents renormalization of the coefficient change to the accumulated value. The corrected coefficients are output to the route energy consumption estimation unit 204 and used for power estimation, cruising range calculation, and cruising range display calculation for traveling to the destination.
 ルート消費エネルギー推定部204は、現在位置の取得、消費エネルギー推定式の変数に用いる情報の取得を行い、移動体の現在位置から目的地までの経路探索を行い、この走行予定ルートにおける消費エネルギーを消費エネルギー推定式を用いて推定する。この際、補正係数算出部203により算出された補正係数により補正後の各係数を用いて消費エネルギーを推定する。 The route consumption energy estimation unit 204 obtains the current position, obtains information used for the variables of the consumption energy estimation formula, performs a route search from the current position of the moving object to the destination, and calculates the energy consumed in the planned travel route. Estimate using the energy consumption estimation formula. At this time, energy consumption is estimated using each coefficient after correction by the correction coefficient calculated by the correction coefficient calculation unit 203.
 現在位置の取得は、たとえば、GPS衛星から受信したGPS情報などを用いて、自装置の現在位置を算出することによって位置情報を取得する。変数の取得は、移動体が走行するノード間等における移動体の速度に関する情報を取得し、消費エネルギー推定式の変数として用いる。 The acquisition of the current position is obtained by, for example, calculating the current position of the device using GPS information received from a GPS satellite. The variable is acquired by acquiring information on the speed of the moving body between nodes on which the moving body travels and using it as a variable of the energy consumption estimation formula.
 また、ルート消費エネルギー推定部204は記憶部を備え、移動体の走行履歴を記憶しておき、消費エネルギー推定に用いてもよい。移動体の走行履歴とは、移動体が過去に旅行区間を走行したときの速度、加速度、旅行時間、実エネルギー消費量、車両情報などである。車両情報とは、車両重量、車両回転部の重量、効率、空気抵抗などである。移動体の走行履歴は、たとえば、旅行区間毎や、道路種別毎に記憶しておく。そして、記録した走行履歴ごとに補正係数の算出を行っても良い。 Further, the route consumption energy estimation unit 204 may include a storage unit, store a travel history of the moving body, and use it for energy consumption estimation. The travel history of the mobile body includes speed, acceleration, travel time, actual energy consumption, vehicle information, and the like when the mobile body travels in the travel section in the past. The vehicle information includes vehicle weight, vehicle rotating part weight, efficiency, air resistance, and the like. The travel history of the moving body is stored for each travel section or each road type, for example. Then, a correction coefficient may be calculated for each recorded travel history.
(補正係数の算出処理)
 図3は、補正係数算出の処理内容を示すフローチャートである。はじめに、CANデータ処理部201が車両からCANを介して消費エネルギー情報と、車速情報等を取得する(ステップS301)。次に、CANデータ処理部201では、車両から取得した情報に基づき、単位時間当たりの車両データ(車両消費エネルギー量、定常消費エネルギー量)を算出する(ステップS302)。また、単位時間消費エネルギー推定部202では、車両から取得した情報に基づき、推定データ(推定車両消費エネルギー量、推定定常消費エネルギー量)を算出する(ステップS303)。
(Correction coefficient calculation process)
FIG. 3 is a flowchart showing the processing content of the correction coefficient calculation. First, the CAN data processing unit 201 acquires energy consumption information, vehicle speed information, and the like from the vehicle via the CAN (step S301). Next, the CAN data processing unit 201 calculates vehicle data (vehicle energy consumption, steady energy consumption) per unit time based on information acquired from the vehicle (step S302). The unit time consumption energy estimation unit 202 calculates estimation data (estimated vehicle consumption energy amount, estimated steady consumption energy amount) based on the information acquired from the vehicle (step S303).
 この後、補正係数算出部203では、車両データと推定データをそれぞれ累積し、比較演算により、両者の相違に相当する補正係数を算出する(ステップS304)。そして、補正係数算出部203は、補正係数をルート消費エネルギー推定部204に出力する(ステップS305)。 Thereafter, the correction coefficient calculation unit 203 accumulates the vehicle data and the estimated data, respectively, and calculates a correction coefficient corresponding to the difference between the two by comparison operation (step S304). Then, the correction coefficient calculation unit 203 outputs the correction coefficient to the route consumption energy estimation unit 204 (step S305).
(ルート消費エネルギー量推定処理)
 図4は、ルート消費エネルギー量推定の処理内容を示すフローチャートである。ルート消費エネルギー推定部204が行う処理について示してある。ルート消費エネルギー推定部204では、消費エネルギーの推定式に用いる係数を補正して、目的地までの走行ルートの消費エネルギー量を推定する。
(Route consumption energy estimation processing)
FIG. 4 is a flowchart showing the processing content of the route energy consumption estimation. The processing performed by the route consumption energy estimation unit 204 is shown. The route consumption energy estimation unit 204 corrects the coefficient used in the energy consumption estimation formula, and estimates the amount of energy consumption of the travel route to the destination.
 はじめに、ルート消費エネルギー推定部204は、補正係数算出部203から補正係数を取得する(ステップS401)。次に、車両重量、寸法等により算出された走行エネルギー算出用係数(第二~第四情報)と、補正係数から、補正後係数を導出する(ステップS402)。 First, the route consumption energy estimation unit 204 acquires a correction coefficient from the correction coefficient calculation unit 203 (step S401). Next, a corrected coefficient is derived from the travel energy calculation coefficient (second to fourth information) calculated from the vehicle weight, dimensions, etc., and the correction coefficient (step S402).
 そして、操作者による目的地設定に基づき、ルート探索を開始する(ステップS403)。この際、リンク情報(ノードのリンク間距離、リンク所要時間等のデータ)を用いて経路探索を行い、目的地までの複数のルート候補を導出する(ステップS404)。 Then, the route search is started based on the destination setting by the operator (step S403). At this time, a route search is performed using link information (data such as distance between links of nodes and link required time) to derive a plurality of route candidates to the destination (step S404).
 この後、ルートのリンク情報(構成リンクの距離、平均速度、加速度情報等)と補正後係数をルート消費エネルギー算出式に入力し、ルートの総走行エネルギー量を算出する(ステップS405)。なお、この処理を各ルート候補に対して行う。 Thereafter, the route link information (distance of link, average speed, acceleration information, etc.) and the corrected coefficient are input to the route consumption energy calculation formula to calculate the total travel energy amount of the route (step S405). This process is performed for each route candidate.
 この後、各ルート候補に対して、ルート所要時間とCANデータ処理部201で算出した単位時間定常消費エネルギー量から、ルートでの総定常消費エネルギー量を算出する(ステップS406)。そして、総走行エネルギー量に総定常エネルギー消費量を加え、ルートの総エネルギー消費量を算出する。これを各ルートに対して行い、ルート毎のルート消費エネルギー量とする(ステップS407)。ルート消費エネルギー推定部204は、ルート毎のルート消費エネルギー量を図示しない表示部に表示出力する。 Thereafter, for each route candidate, the total steady consumption energy amount in the route is calculated from the route required time and the unit time steady consumption energy amount calculated by the CAN data processing unit 201 (step S406). Then, the total steady energy consumption is added to the total travel energy to calculate the total energy consumption of the route. This is performed for each route, and the amount of route consumed energy for each route is set (step S407). The route consumption energy estimation unit 204 displays and outputs the route consumption energy amount for each route on a display unit (not shown).
 上記処理によれば、単位時間毎に補正係数が算出されるため、ルート消費エネルギー推定部204が消費エネルギー推定式に用いる係数を単位時間単位で補正することができる。これにより、常に最新の走行状況に対応した消費エネルギー推定を行うことができ、目的地までの消費エネルギー量を正確に推定できるようになる。 According to the above processing, since the correction coefficient is calculated for each unit time, the coefficient used by the route consumption energy estimation unit 204 in the consumption energy estimation formula can be corrected in units of unit time. As a result, it is possible to always perform the energy consumption estimation corresponding to the latest driving situation, and to accurately estimate the amount of energy consumption up to the destination.
(消費エネルギー推定処理の詳細)
 次に、消費エネルギー推定式を用いた消費エネルギー推定処理の詳細について説明する。上述した、ノード間等の所定の区間を「旅行区間」として説明する。上述した単位時間消費エネルギー推定部202、およびルート消費エネルギー推定部204は、いずれも所定の「旅行区間」における消費エネルギーを推定する。
(Details of energy consumption estimation process)
Next, details of the energy consumption estimation process using the energy consumption estimation formula will be described. The above-described predetermined section such as between nodes will be described as a “travel section”. The unit time consumption energy estimation unit 202 and the route consumption energy estimation unit 204 described above each estimate the consumption energy in a predetermined “travel section”.
 この旅行区間とは、移動体が一旦発進して走行した後に停止して、次に発進するまでに通過する区間である。具体的には、旅行区間とは、道路の所定の地点(以下、「ノード(道路点)」とする)と他のノードとの間の区間(以下、「リンク(道路区間)」とする)である。つまり、ノードとは、移動体が停止する地点であり、発進する地点である。 This travel section is a section in which the mobile body starts and travels, stops after it has traveled, and passes through until the next start. Specifically, the travel section is a section between a predetermined point on the road (hereinafter referred to as “node (road point)”) and another node (hereinafter referred to as “link (road section)”). It is. That is, the node is a point where the moving body stops and a point where the vehicle starts.
 リンクは、道路ネットワークを構成する要素の一つであり、ノードとノードの間を一つの単位とする。リンク情報には、たとえば、リンク長(距離)データと、走行日時における旅行速度や平均加速度の予想データなどが含まれる。たとえば、市街地走行では信号機等で移動体が停止する場合が多い。この場合、ノードとは、たとえば、信号機の設置された交差点である。リンクとは、たとえば、一の交差点と他の交差点との間の区間である。 The link is one of the elements constituting the road network, and a unit between nodes is a unit. The link information includes, for example, link length (distance) data and predicted data of travel speed and average acceleration at the travel date and time. For example, when traveling in an urban area, a moving body is often stopped by a traffic light or the like. In this case, the node is, for example, an intersection where a traffic signal is installed. The link is, for example, a section between one intersection and another intersection.
 旅行区間は、一つのリンクからなる区間であってもよいし、複数の連続するリンクからなる区間であってもよい。たとえば、5つのノード(4つのリンク)からなる連続した区間において、移動体は、発進と停止を4回繰り返す可能性もあり、5つのノードを1回で走行し終える可能性もある。具体的には、5つのノードを信号機の設置された交差点とした場合、全ての交差点で移動体が停止する可能性があり、いずれの交差点でも移動体が停止しない可能性もある。そのため、詳細には、旅行区間は、移動体が発進および停止する可能性のある2つのノードからなる一つのリンク、または移動体が発進および停止する可能性のある3つ以上のノードからなる連続した複数のリンクである。望ましくは、旅行区間は、停止する可能性のある2つのノードからなる一つのリンクであるのがよい。その理由は、あらゆる方向に分岐するリンクを全て網羅して計算することができるからである。 The travel section may be a section composed of one link or a section composed of a plurality of continuous links. For example, in a continuous section composed of five nodes (four links), the moving body may repeat starting and stopping four times, and may finish traveling five nodes at one time. Specifically, if five nodes are intersections where traffic lights are installed, the moving body may stop at all the intersections, and the moving body may not stop at any of the intersections. Therefore, in detail, a travel segment is a single link consisting of two nodes where a mobile unit may start and stop, or a continuous group consisting of three or more nodes where a mobile unit may start and stop. Multiple links. Desirably, the travel segment is a link made up of two nodes that may stop. The reason is that all the links branched in all directions can be covered and calculated.
 移動体の速度に関する情報とは、たとえば、移動体の速度、加速度である。消費エネルギー推定式とは、旅行区間における移動体のエネルギー消費量を推定する式である。具体的には、消費エネルギー推定式は、エネルギー消費量を増減させる要因の異なる第一情報、第二情報および第三情報からなる多項式である。また、道路勾配が明らかな場合、消費エネルギー推定式には、さらに第四情報が加えられる。消費エネルギー推定式の詳細については、後述する。 The information related to the speed of the moving object is, for example, the speed and acceleration of the moving object. The energy consumption estimation formula is an equation for estimating the energy consumption amount of the moving body in the travel section. Specifically, the energy consumption estimation formula is a polynomial composed of first information, second information, and third information having different factors that increase or decrease the energy consumption. Further, when the road gradient is clear, fourth information is further added to the energy consumption estimation formula. Details of the energy consumption estimation formula will be described later.
 第一情報は、移動体に備えられた装備品により消費されるエネルギーに関する情報である。具体的には、第一情報は、たとえば、エンジンをかけたまま停車しているときや、信号などで停止しているときに消費されるエネルギー量(以下、エネルギー消費量という)である。つまり、第一情報は、移動体の走行に関係しない要因で消費されるエネルギー消費量である。より具体的には、第一情報は、移動体に備えられたエアコンやオーディオなどによるエネルギー消費量である。 The first information is information related to energy consumed by the equipment provided on the moving object. Specifically, the first information is, for example, the amount of energy that is consumed when the vehicle is stopped with the engine running or when it is stopped by a signal (hereinafter referred to as energy consumption). That is, the first information is an energy consumption amount consumed due to a factor not related to the traveling of the moving body. More specifically, the first information is an energy consumption amount by an air conditioner or an audio provided in the moving body.
 第二情報は、移動体の加減速時に消費および回収されるエネルギーに関する情報である。移動体の加減速時とは、移動体の速度が時間的に変化している走行状態である。具体的には、移動体の加減速時とは、所定の時間内において、移動体の速度が変化する走行状態である。所定の時間とは、一定間隔の時間の区切りであり、たとえば、上記単位時間や単位時間以内の区切りである。 The second information is information related to energy consumed and recovered during acceleration / deceleration of the moving body. The time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes with time. Specifically, the time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes within a predetermined time. The predetermined time is a time interval at regular intervals, for example, the unit time or a time interval within the unit time.
 また、第二情報は、EV車の場合、移動体の加速時に消費されるエネルギー量と、移動体の減速時に回収されるエネルギー量との割合(以下、「回収率」という)であってもよい。回収されるエネルギーとは、EV車の場合、移動体の加速時に生じた運動エネルギーが減速時に電気エネルギーに変換されて回収されるエネルギーである。回収率についての詳細な説明は、後述する。 Further, in the case of an EV vehicle, the second information is a ratio (hereinafter referred to as “recovery rate”) between the amount of energy consumed when the moving body is accelerated and the amount of energy collected when the moving body is decelerated. Good. In the case of an EV vehicle, the recovered energy is energy that is recovered by converting kinetic energy generated during acceleration of the moving body into electrical energy during deceleration. A detailed description of the recovery rate will be described later.
 また、回収エネルギーとは、ガソリン車の場合、必要以上にエネルギーを消費しないで節約することができるエネルギーである。詳細には、ガソリン車の場合、燃費を向上する運転方法として、アクセルを踏む時間を少なくする方法が知られている。つまり、ガソリン車では、移動体の加速時に生じる運動エネルギー(慣性力)によって移動体の走行を維持することで、燃料の消費を抑えることができる。また、移動体の減速時にエンジンブレーキを利用することで、ブレーキを踏むことによる燃料の消費を抑えることができる。つまり、ガソリン車の場合、消費される燃料を低減(燃料カット)して燃料を節約することであるが、ここではEV車と同様に回収されるエネルギーとする。 Also, the recovered energy is energy that can be saved without consuming more energy than necessary in the case of a gasoline vehicle. Specifically, in the case of a gasoline vehicle, as a driving method for improving fuel consumption, a method of reducing the time required to step on the accelerator is known. That is, in a gasoline vehicle, fuel consumption can be suppressed by maintaining the traveling of the moving body by the kinetic energy (inertial force) generated when the moving body is accelerated. Further, by using the engine brake when the moving body is decelerated, it is possible to suppress fuel consumption caused by stepping on the brake. In other words, in the case of a gasoline vehicle, the consumed fuel is reduced (fuel cut) to save the fuel, but here it is assumed that the energy is recovered as in the case of an EV vehicle.
 第三情報は、移動体の走行時に生じる抵抗により消費されるエネルギーに関する情報である。移動体の走行時とは、所定の時間内において、移動体の速度が一定、加速もしくは減速している走行状態である。移動体の走行時に生じる抵抗とは、移動体の走行時に移動体の走行状態を変化させる要因である。具体的には、移動体の走行時に生じる抵抗とは、気象状況、道路状況、車両状況などにより移動体に生じる抵抗である。 The third information is information related to energy consumed by the resistance generated when the mobile object is traveling. The traveling time of the moving body is a traveling state in which the speed of the moving body is constant, accelerated or decelerated within a predetermined time. The resistance generated when the mobile body travels is a factor that changes the travel state of the mobile body when the mobile body travels. Specifically, the resistance generated when the mobile body travels is resistance generated in the mobile body due to weather conditions, road conditions, vehicle conditions, and the like.
 気象状況により移動体に生じる抵抗とは、たとえば、雨、風などの気象変化による空気抵抗である。道路状況により移動体に生じる抵抗とは、道路勾配、路面の舗装状態、路面上の水などによる路面抵抗である。車両状況により移動体に生じる抵抗とは、タイヤの空気圧、乗車人数、積載重量などにより移動体にかかる負荷抵抗である。 The resistance generated in the moving body due to the weather condition is, for example, air resistance due to weather changes such as rain and wind. The resistance generated in the moving body according to the road condition is road resistance due to road gradient, pavement state of road surface, water on the road surface, and the like. The resistance generated in the moving body depending on the vehicle condition is a load resistance applied to the moving body due to tire air pressure, number of passengers, loaded weight, and the like.
 具体的には、第三情報は、空気抵抗や路面抵抗、負荷抵抗を受けた状態で、移動体を一定速度、加速もしくは減速で走行させたときのエネルギー消費量である。より具体的には、第三情報は、たとえば、向かい風により移動体に生じる空気抵抗や、舗装されていない道路から受ける路面抵抗などを、移動体が一定速度、加速もしくは減速で走行するときに消費されるエネルギー消費量である。 Specifically, the third information is energy consumption when the moving body is driven at a constant speed, acceleration or deceleration while receiving air resistance, road resistance, and load resistance. More specifically, the third information is consumed when the moving body travels at a constant speed, acceleration or deceleration, for example, air resistance generated in the moving body due to the head wind or road surface resistance received from a road that is not paved. Energy consumption.
 第四情報は、移動体が位置する高度の変化により消費および回収されるエネルギーに関する情報である。移動体が位置する高度の変化とは、移動体の位置する高度が時間的に変化している状態である。具体的には、移動体が位置する高度の変化とは、所定の時間内において、移動体が勾配のある道路を走行することにより高度が変化する走行状態である。 The fourth information is information related to energy consumed and recovered by a change in altitude where the moving object is located. The change in altitude at which the moving body is located is a state in which the altitude at which the moving body is located changes over time. Specifically, the change in altitude at which the moving body is located is a traveling state in which the altitude changes when the moving body travels on a sloped road within a predetermined time.
 また、第四情報は、所定の区間内における道路勾配が明らかな場合に求めることができる付加的な情報であり、これによりエネルギー消費量の推定精度を向上することができる。なお、道路の傾斜が不明な場合、または計算を簡略化する場合、移動体が位置する高度の変化はないものとして、後述するエネルギー推定式における道路勾配θ=0としてエネルギー消費量を推定することができる。以下、特段の説明がある場合および消費エネルギー推定式を説明する場合を除き、旅行区間における勾配の変化はないもの、すなわち、後述する消費エネルギー推定式におけるθ=0(第四情報は考慮しない)という前提で説明する。 Further, the fourth information is additional information that can be obtained when the road gradient in the predetermined section is clear, thereby improving the energy consumption estimation accuracy. In addition, when the slope of the road is unknown, or when simplifying the calculation, it is assumed that there is no change in the altitude at which the moving body is located, and the energy consumption is estimated with the road gradient θ = 0 in the energy estimation formula described later. Can do. In the following, except when there is a special explanation and when explaining the consumption energy estimation formula, there is no change in the gradient in the travel section, that is, θ = 0 in the consumption energy estimation formula described later (fourth information is not considered) This is explained on the assumption.
 エネルギー推定部(単位時間消費エネルギー推定部202およびルート消費エネルギー推定部204)は、CANを介して、たとえば、車両のエレクトロニックコントロールユニット(ECU:Electronic Control Unit)によって管理されている移動体の速度、加速度を取得し、第一情報、第二情報および第三情報に関する変数として用いてもよい。 The energy estimation unit (unit time consumption energy estimation unit 202 and route consumption energy estimation unit 204), for example, the speed of a moving body managed by an electronic control unit (ECU) of a vehicle via CAN, You may acquire acceleration and use it as a variable regarding 1st information, 2nd information, and 3rd information.
 また、エネルギー推定部は、旅行区間の走行に要する旅行時間を、消費エネルギー推定式の変数として取得する。たとえば、移動体が過去に同じ旅行区間を走行したときの所要時間を、旅行時間として取得する。 In addition, the energy estimation unit acquires the travel time required for traveling in the travel section as a variable of the energy consumption estimation formula. For example, the time required when the mobile body traveled in the same travel section in the past is acquired as the travel time.
 また、エネルギー推定部は、移動体の残存エネルギー量に関する情報や、旅行区間における移動体の実エネルギー消費量を取得し、消費エネルギー推定式の変数として用いる。ここで、残存エネルギー量とは、移動体の燃料タンクまたはバッテリーに残っているエネルギー量である。つまり、EV車の場合には、回収されたエネルギー量も残存エネルギー量に含まれる。具体的には、CANなどを介して、たとえば、ECUによって管理されている残存エネルギー量や実エネルギー消費量を取得する。 Also, the energy estimation unit obtains information on the remaining energy amount of the moving object and the actual energy consumption amount of the moving object in the travel section, and uses it as a variable of the energy consumption estimation formula. Here, the remaining energy amount is the amount of energy remaining in the fuel tank or battery of the mobile body. That is, in the case of an EV vehicle, the recovered energy amount is also included in the remaining energy amount. Specifically, for example, the remaining energy amount and the actual energy consumption amount managed by the ECU are acquired via CAN or the like.
 また、エネルギー推定部は、一の旅行区間または一の旅行区間に隣接する他の旅行区間が、移動体の現在位置の属する範囲内または特定の種別の旅行区間である場合、もしくはその両方を満たす場合、旅行区間を走行する移動体のその時点での速度に関する情報を、第一情報、第二情報および第三情報に関する変数として取得する。 In addition, the energy estimation unit satisfies one or both of the case where one travel section or another travel section adjacent to the one travel section is within a range to which the current position of the mobile body belongs or a specific type of travel section. In this case, information on the speed of the moving body traveling in the travel section at that time is acquired as a variable related to the first information, the second information, and the third information.
 一の旅行区間とは、移動体の現在走行中の旅行区間である。一の旅行区間に隣接する他の旅行区間とは、一の旅行区間の終点となるノードにつながる旅行区間である。たとえば、一の旅行区間の終点となるノードが4差路である場合、一の旅行区間の終点となるノードから4方向に分岐する旅行区間のうち、一の旅行区間を除く3方向の旅行区間が他の旅行区間となる。 The one travel section is a travel section where the mobile body is currently traveling. Another travel section adjacent to one travel section is a travel section connected to a node that is the end point of the one travel section. For example, when the node that is the end point of one travel section is a four-way road, the travel sections that are in three directions excluding the one travel section among the travel sections that branch in four directions from the node that is the end point of the one travel section Is another travel section.
 移動体の現在位置の属する範囲とは、移動体が走行中である場合の、移動体の現在位置を含む範囲である。具体的には、移動体の現在位置の属する範囲とは、たとえば、10km2など、移動体の走行中の旅行区間を含む所定の面積を有する範囲であってもよいし、市町村など、行政区画で分割された範囲であってもよい。また、特定の種別の旅行区間とは、特定の種別で区分けされた範囲である。特定の種別とは、たとえば、道路種別などである。 The range to which the current position of the moving body belongs is a range including the current position of the moving body when the moving body is traveling. Specifically, the range to which the current position of the mobile body belongs may be a range having a predetermined area including a travel section in which the mobile body is traveling, such as 10 km 2 , or an administrative district such as a municipality. It may be a range divided by. The specific type of travel section is a range divided by a specific type. The specific type is, for example, a road type.
 ここで、道路種別とは、法定速度や、道路の勾配、道路幅、信号の有無などの道路状態の違いにより区別することのできる道路の種類である。具体的には、道路種別とは、一般国道、高速道路、一般道路、市街地などを通る細い街路(以下、「細街路」という)などである。 Here, the road type is a type of road that can be distinguished by differences in road conditions such as legal speed, road gradient, road width, and presence / absence of signals. Specifically, the road type includes a narrow street (hereinafter referred to as “narrow street”) passing through a general national road, a highway, a general road, an urban area, and the like.
 つまり、エネルギー推定部は、一の旅行区間を走行中の移動体の実際の速度、加速度を、一の旅行区間における速度に関する情報として取得する。さらにエネルギー推定部は、一の旅行区間および他の旅行区間が、移動体の現在位置の属する範囲内または特定の種別の旅行区間である場合に、一の旅行区間を走行中の移動体の実際の速度、加速度を、他の旅行区間における速度に関する情報として取得する。 That is, the energy estimation unit acquires the actual speed and acceleration of the moving object traveling in one travel section as information on the speed in the one travel section. In addition, the energy estimation unit is configured so that when one travel section and another travel section are within a range to which the current position of the mobile body belongs or a specific type of travel section, the actual mobile body traveling in one travel section Are acquired as information on the speed in another travel section.
 また、エネルギー推定部は、一の旅行区間または他の旅行区間が、移動体の現在位置の属する範囲内および特定の種別の旅行区間のどちらの範囲でもない場合、移動体の走行履歴のうち、過去に旅行区間を走行した際の移動体の速度に関する情報(以下、「旅行速度に関する情報」という)を取得する。 In addition, the energy estimation unit, when one travel section or another travel section is neither a range to which the current position of the mobile body belongs nor a specific type of travel section, of the travel history of the mobile body, Information on the speed of the moving body when traveling in a travel section in the past (hereinafter referred to as “information on travel speed”) is acquired.
 ここで、移動体の走行履歴とは、移動体が過去に旅行区間を走行したときの速度、加速度、旅行時間、実エネルギー消費量、車両情報などである。車両情報とは、車両重量、車両回転部の重量、効率、空気抵抗などである。移動体の走行履歴は、たとえば、旅行区間毎や、道路種別毎に記憶部に記憶しておくことができる。 Here, the travel history of the mobile body includes speed, acceleration, travel time, actual energy consumption, vehicle information, etc. when the mobile body traveled in the travel section in the past. The vehicle information includes vehicle weight, vehicle rotating part weight, efficiency, air resistance, and the like. The travel history of the moving body can be stored in the storage unit for each travel section or each road type, for example.
 具体的には、エネルギー推定部は、移動体が出発前である(一の旅行区間にいない)場合や他の旅行区間に到達していない場合に、移動体が過去に同じ旅行区間または同じ所定の範囲を走行したときの速度、加速度を、旅行速度に関する情報として取得する。所定の範囲とは、たとえば、残存エネルギー量が無くなるまでに到達可能な範囲や、都道府県、市町村などである。 Specifically, when the mobile body is before departure (not in one travel section) or has not arrived at another travel section, the energy estimation unit may be the same travel section or the same predetermined in the past. The speed and acceleration when traveling in the range are acquired as information on travel speed. The predetermined range is, for example, a range that can be reached before the remaining energy amount runs out, a prefecture, a municipality, or the like.
 また、エネルギー推定部は、一の旅行区間または他の旅行区間が、移動体の現在位置の属する範囲内または特定の種別の旅行区間である場合でも、旅行速度に関する情報を取得してもよい。この場合、エネルギー推定部は、実際の速度に関する情報と、過去の旅行速度に関する情報との両方に基づいて、たとえば、これらの情報の平均値を算出してもよい。 Also, the energy estimation unit may acquire information on the travel speed even when one travel section or another travel section is within a range to which the current position of the mobile body belongs or a specific type of travel section. In this case, the energy estimation unit may calculate, for example, an average value of these pieces of information based on both the information about the actual speed and the information about the past travel speed.
 エネルギー推定部は、旅行区間における道路に関する情報を取得し、消費エネルギー推定式の変数として用いる。具体的には、記憶部に記憶された過去の走行履歴にかかる道路に関する情報を取得する。また、エネルギー推定部は、記憶部に記憶された地図情報から道路に関する情報を取得してもよいし、傾斜センサなどから道路勾配などを取得してもよい。 The energy estimation unit acquires information on roads in the travel section and uses them as variables in the energy consumption estimation formula. Specifically, the information regarding the road concerning the past travel history memorize | stored in the memory | storage part is acquired. Further, the energy estimation unit may acquire information on the road from the map information stored in the storage unit, or may acquire a road gradient or the like from an inclination sensor or the like.
 ここで、道路に関する情報とは、たとえば、移動体の走行により消費または回収させるエネルギー量に変化を生じさせる道路情報である。具体的には、道路に関する情報とは、たとえば、道路種別や、道路勾配、路面状況などにより移動体に生じる走行抵抗である。走行抵抗は、たとえば、次の(1)式により算出することができる。一般的に、走行抵抗は、加速時や走行時に移動体に生じる。 Here, the information on the road is, for example, road information that causes a change in the amount of energy consumed or recovered by the traveling of the moving body. Specifically, the information on the road is, for example, a running resistance generated in the moving body due to the road type, road gradient, road surface condition, and the like. The running resistance can be calculated by the following equation (1), for example. Generally, running resistance is generated in a moving body during acceleration or running.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 エネルギー推定部は、第一情報と、第二情報と、第三情報と、からなる消費エネルギー推定式に基づいて、旅行区間を走行する際のエネルギー消費量を推定する。具体的には、取得した移動体の速度に関する情報に基づいて、旅行区間における前記移動体のエネルギー消費量を推定する。なお、道路勾配が明らかな場合、さらに第四情報を加えた消費エネルギー推定式に基づいて、旅行区間を走行する際のエネルギー消費量を推定してもよい。 The energy estimation unit estimates an energy consumption amount when traveling in the travel section based on a consumption energy estimation formula including the first information, the second information, and the third information. Specifically, the energy consumption amount of the mobile body in a travel section is estimated based on the acquired information on the speed of the mobile body. In addition, when the road gradient is clear, the energy consumption amount when traveling in the travel section may be estimated based on the consumption energy estimation formula to which the fourth information is added.
 より詳細には、次の(2)式または(3)式に示す消費エネルギー推定式、もしくはその両方の式に基づいて、単位時間当たりのエネルギー消費量を推定する。加速時および走行時における移動体のエネルギー消費量は、走行抵抗と走行距離と正味モータ効率と伝達効率との積であり、次の(2)式で表される。(2)式に示す消費エネルギー推定式は、加速時および走行時における単位時間当たりのエネルギー消費量を推定する理論式である。 More specifically, the energy consumption per unit time is estimated based on the consumption energy estimation formula shown in the following formula (2) or (3), or both formulas. The energy consumption amount of the moving body during acceleration and traveling is the product of travel resistance, travel distance, net motor efficiency, and transmission efficiency, and is expressed by the following equation (2). The energy consumption estimation formula shown in formula (2) is a theoretical formula that estimates the energy consumption per unit time during acceleration and traveling.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、εは正味熱効率,ηは総伝達効率である。移動体の加速度αと道路勾配θから重力の加速度gとの合計を合成加速度|α|とすると、合成加速度|α|が負の場合の消費エネルギー推定式は、走行抵抗と走行距離と正味モータ効率と伝達効率の積であり、次の(3)式で表される。合成加速度|α|が負の場合とは、移動体の減速時である。(3)式に示す消費エネルギー推定式は、減速時における単位時間当たりのエネルギー消費量を推定する理論式である。 Where ε is the net thermal efficiency and η is the total transmission efficiency. If the sum of the acceleration α of the moving object and the acceleration g of the gravity from the road gradient θ is the combined acceleration | α |, the consumption energy estimation formula when the combined acceleration | α | is negative is the running resistance, the running distance, and the net motor. It is the product of efficiency and transmission efficiency, and is expressed by the following equation (3). The case where the combined acceleration | α | is negative is when the moving body is decelerating. The energy consumption estimation formula shown in Formula (3) is a theoretical formula that estimates the energy consumption per unit time during deceleration.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記(2)式および(3)式において、右辺第1項は、移動体に備えられた装備品により消費されるエネルギー消費量(第一情報)である。右辺第2項は、勾配成分によるエネルギー消費量(第四情報)および転がり抵抗成分によるエネルギー消費量(第三情報)である。右辺第3項は、空気抵抗成分によるエネルギー消費量(第三情報)である。また、(2)式の右辺第4項は、加速成分によるエネルギー消費量(第二情報)である。(3)式の右辺第4項は、減速成分によるエネルギー消費量(第二情報)である。その他の変数が示す情報は、上記(1)式と同様である。 In the above formulas (2) and (3), the first term on the right side is the energy consumption (first information) consumed by the equipment provided in the moving body. The second term on the right side is the energy consumption (fourth information) due to the gradient component and the energy consumption (third information) due to the rolling resistance component. The third term on the right side is energy consumption (third information) due to the air resistance component. Further, the fourth term on the right side of the equation (2) is the energy consumption (second information) by the acceleration component. The fourth term on the right side of the equation (3) is the energy consumption (second information) by the deceleration component. The information indicated by the other variables is the same as the above equation (1).
 また、上記(2)式および(3)式では、モータ効率と駆動効率は一定と見なしている。しかし、実際には、モータ効率および駆動効率はモータ回転数やトルクの影響により変動する。そこで、次の(4)式および(5)式に単位時間当たりの消費エネルギーを推定する実証式を示す。合成加速度|α+g・sinθ|が正の場合のエネルギー消費量を推定する実証式は、次の(4)式で表される。つまり、(4)式に示す消費エネルギー推定式は、加速時および走行時における単位時間当たりのエネルギー消費量を推定する実証式である。 In the above formulas (2) and (3), the motor efficiency and the drive efficiency are considered to be constant. However, in practice, the motor efficiency and the driving efficiency vary due to the influence of the motor speed and torque. Therefore, the following equations (4) and (5) show empirical equations for estimating energy consumption per unit time. An empirical formula for estimating the energy consumption when the combined acceleration | α + g · sin θ | is positive is expressed by the following formula (4). That is, the energy consumption estimation formula shown in the formula (4) is an empirical formula for estimating the energy consumption per unit time during acceleration and traveling.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、合成加速度|α+g・sinθ|が負の場合のエネルギー消費量を推定する実証式は、次の(5)式で表される。つまり、(5)式に示す消費エネルギー推定式は、減速時における単位時間当たりのエネルギー消費量を推定する実証式である。 Also, the empirical formula for estimating the energy consumption when the composite acceleration | α + g · sin θ | is negative is expressed by the following formula (5). That is, the energy consumption estimation formula shown in Formula (5) is an empirical formula for estimating the energy consumption per unit time during deceleration.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記(4)式および(5)式において、係数a1,a2は、移動体の状況などに応じて設定される常数である。係数k1,k2,k3は、加速時におけるエネルギー消費量に基づく変数である。また、右辺第1項~右辺第3項が示す情報は、上記(2)式および(3)式と同様である。 In the above formulas (4) and (5), the coefficients a1 and a2 are constants set according to the status of the moving body. The coefficients k1, k2, and k3 are variables based on energy consumption during acceleration. The information indicated by the first term on the right side to the third term on the right side is the same as in the above equations (2) and (3).
 理論式である上記(2)式と、実証式である上記(4)式は類似した構造となっている。(2)式および(4)式の右辺第1項はともに速度に依存しない成分であり、ともに第一情報である。(4)式の右辺第2項は、勾配抵抗と加速抵抗分のエネルギー消費量である。つまり、(4)式の右辺第2項は、速度増加による運動エネルギーの増分を表す第二情報と、高度変化による位置エネルギーの増分を表す第四情報であり、(2)式の右辺第4項の加速成分と、(2)式の右辺第2項の勾配成分とに対応する。(4)式の右辺第3項は第三情報であり、(2)式の右辺第2項の転がり抵抗成分と、(2)式の右辺第3項の空気抵抗成分に対応する。 The above formula (2), which is a theoretical formula, and the formula (4), which is an empirical formula, have similar structures. The first term on the right side of the equations (2) and (4) is a component that does not depend on the speed, and is both first information. The second term on the right side of equation (4) is the energy consumption for the gradient resistance and acceleration resistance. That is, the second term on the right side of the equation (4) is the second information representing the increase in kinetic energy due to the speed increase and the fourth information representing the increase in potential energy due to the altitude change. This corresponds to the acceleration component of the term and the gradient component of the second term on the right side of equation (2). The third term on the right side of equation (4) is third information, and corresponds to the rolling resistance component of the second term on the right side of equation (2) and the air resistance component of the third term on the right side of equation (2).
 理論式である上記(3)式と、実証式である上記(5)式においても、上述した(2)式と(4)式の関係と同様に類似した構造となっている。(5)式の右辺第2項のβは、位置エネルギーと運動エネルギーの回収分(以下、「回収率」とする)である。 The above formula (3), which is a theoretical formula, and the formula (5), which is an empirical formula, have similar structures in the same manner as the relationship between the formulas (2) and (4) described above. Β in the second term on the right side of the equation (5) is the amount of potential energy and kinetic energy recovered (hereinafter referred to as “recovery rate”).
 エネルギー推定部は、上記(4)式または(5)式に示す消費エネルギー推定式、もしくはその両方の式を用いて、単位時間毎の走行速度Vと走行加速度αを入力することにより、走行速度および走行加速度が取得された瞬間の消費エネルギーを推定してもよい。しかし、上記(4)式または(5)式を用いて走行可能範囲を推定する場合、これから走行する全旅行区間行程における単位時間毎の速度と加速度をたとえば1秒毎に取得し、かつ1秒毎にエネルギー消費量を推定しようとすると、計算量が膨大になってしまう恐れがある。 The energy estimation unit inputs the travel speed V and the travel acceleration α per unit time using the consumption energy estimation formula shown in the above formula (4) or (5), or both formulas, so that the travel speed Alternatively, the energy consumption at the moment when the travel acceleration is acquired may be estimated. However, when the travelable range is estimated using the above formula (4) or (5), the speed and acceleration per unit time in the entire travel section process to be traveled are acquired every 1 second, for example, and 1 second If an attempt is made to estimate the energy consumption every time, the calculation amount may become enormous.
 そこで、エネルギー推定部は、ある程度まとまった区間における走行速度の平均値、および走行加速度の平均値を用いて、この区間におけるエネルギー消費量を推定してもよい。ここで、ある程度まとまった区間とは、移動体が走行する区間であり、たとえば、旅行区間であってもよい。区間におけるエネルギー消費量は、上記(4)式または(5)式に基づいて定義される消費エネルギー推定式を用いて得ることができる。具体的には、エネルギー推定部は、第二情報として、移動体の加速時に消費する単位時間当たりのエネルギー消費量と、移動体の減速時に回収される単位時間当たりのエネルギー消費量とを平均する推定式を用いる。 Therefore, the energy estimation unit may estimate the energy consumption in this section by using the average value of the traveling speed and the average value of the traveling acceleration in a certain section. Here, the section gathered to some extent is a section where the mobile body travels, and may be a travel section, for example. The energy consumption amount in the section can be obtained by using a consumption energy estimation formula defined based on the above formula (4) or formula (5). Specifically, as the second information, the energy estimation unit averages the energy consumption per unit time consumed when the mobile body is accelerated and the energy consumption per unit time collected when the mobile body is decelerated. Use the estimation formula.
 より具体的には、エネルギー推定部は、次の(6)式または(7)式に示す区間におけるエネルギー消費量の実証式、もしくはその両方の式を用いて、エネルギー消費量を推定してもよい。 More specifically, the energy estimation unit estimates the energy consumption using the empirical formula of the energy consumption in the section shown in the following equation (6) or (7), or both equations. Good.
 次の(6)式に示す消費エネルギー推定式は、移動体が走行する区間の高度差Δhが正の場合の、区間における消費エネルギー推定式である。高度差Δhが正の場合とは、移動体が上り坂を走行している場合である。 The consumption energy estimation formula shown in the following equation (6) is a consumption energy estimation formula in the section when the altitude difference Δh of the section in which the mobile body travels is positive. The case where the altitude difference Δh is positive is a case where the moving body is traveling uphill.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 一方、次の(7)式に示す消費エネルギー推定式は、移動体が走行する区間の高度差Δhが負の場合の、区間における消費エネルギー推定式である。高度差Δhが負の場合とは、移動体が下り坂を走行している場合である。 On the other hand, the consumption energy estimation formula shown in the following equation (7) is a consumption energy estimation formula in the section when the altitude difference Δh of the section in which the mobile body travels is negative. The case where the altitude difference Δh is negative is a case where the moving body is traveling downhill.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 上記(6)式および(7)式において、右辺第1項は、移動体に備えられた装備品により消費されるエネルギー消費量(第一情報)である。右辺第2項は、加速抵抗によるエネルギー消費量(第二情報)である。右辺第3項は、位置エネルギーとして消費されるエネルギー消費量である(第四情報)。右辺第4項は、単位面積当たりに受ける空気抵抗および転がり抵抗(以下、これらをまとめて走行抵抗と称する)によるエネルギー消費量(第三情報)である。 In the above formulas (6) and (7), the first term on the right side is the energy consumption (first information) consumed by the equipment provided in the moving body. The second term on the right side is the energy consumption (second information) by the acceleration resistance. The third term on the right side is energy consumption consumed as potential energy (fourth information). The fourth term on the right side is energy consumption (third information) due to air resistance and rolling resistance (hereinafter collectively referred to as running resistance) received per unit area.
 また、エネルギー推定部は、たとえば、メーカーによって提供された回収率βを取得してもよいし、車両から取得した速度に関する情報に基づいて回収率βを算出してもよい。 Further, the energy estimation unit may acquire, for example, the recovery rate β provided by the manufacturer, or may calculate the recovery rate β based on information about the speed acquired from the vehicle.
 そして、エネルギー推定部は、上記(2)式~(5)式に示す消費エネルギー推定式のいずれか一つ以上の式に基づいて、旅行区間を走行する際の単位時間当たりのエネルギー消費量を推定するとともに、これを旅行時間だけ積算して旅行区間を走行する際のエネルギー消費量を推定する。 Then, the energy estimation unit calculates the energy consumption per unit time when traveling in the travel section based on one or more of the consumption energy estimation formulas shown in the above formulas (2) to (5). In addition to the estimation, the energy consumption when traveling in the travel section is estimated by integrating the travel time.
 具体的には、エネルギー推定部は、実際の速度に関する情報または旅行速度に関する情報を用いて、消費エネルギー推定式に基づいて単位時間当たりのエネルギー消費量を推定し、旅行時間で積分することにより、旅行区間におけるエネルギー消費量を推定する。 Specifically, the energy estimation unit estimates the energy consumption per unit time based on the consumption energy estimation formula using the information about the actual speed or the information about the travel speed, and integrates it with the travel time, Estimate energy consumption in the travel segment.
 そして、エネルギー推定部は、補正係数算出部203により算出された補正後の係数hを、消費エネルギー推定式における走行に関する第二情報(k2)、第三情報(k3)、第四情報(k4)にそれぞれ乗算する。第二情報(k2×h)、第三情報(k3×h)、第四情報(k4×h)となる。 Then, the energy estimation unit uses the corrected coefficient h calculated by the correction coefficient calculation unit 203 as the second information (k2), the third information (k3), and the fourth information (k4) regarding travel in the consumption energy estimation formula. Is multiplied by each. The second information (k2 × h), the third information (k3 × h), and the fourth information (k4 × h).
 これにより、ルート消費エネルギー推定部204は、補正係数算出部203により算出された補正係数により補正後の各係数を用いて走行予定ルートの消費エネルギーを推定する。この際、より実際の車両と走行状態に適応した精度の高い推定ができるようになる。 Thereby, the route energy consumption estimation unit 204 estimates the energy consumption of the planned travel route using each coefficient after the correction coefficient calculated by the correction coefficient calculation unit 203. At this time, it becomes possible to perform highly accurate estimation adapted to the actual vehicle and the running state.
(ナビゲーション装置のハードウェア構成)
 次に、ナビゲーション装置のハードウェア構成について説明する。図5は、ナビゲーション装置のハードウェア構成を示すブロック図である。図5において、ナビゲーション装置200は、CPU501、ROM502、RAM503、磁気ディスクドライブ504、磁気ディスク505、光ディスクドライブ506、光ディスク507、音声I/F(インターフェース)508、マイク509、スピーカ510、入力デバイス511、映像I/F512、ディスプレイ513、カメラ514、通信I/F515、GPSユニット516、各種センサ517を備えている。各構成部501~517は、バス520によってそれぞれ接続されている。
(Hardware configuration of navigation device)
Next, the hardware configuration of the navigation device will be described. FIG. 5 is a block diagram illustrating a hardware configuration of the navigation apparatus. In FIG. 5, a navigation device 200 includes a CPU 501, a ROM 502, a RAM 503, a magnetic disk drive 504, a magnetic disk 505, an optical disk drive 506, an optical disk 507, an audio I / F (interface) 508, a microphone 509, a speaker 510, an input device 511, A video I / F 512, a display 513, a camera 514, a communication I / F 515, a GPS unit 516, and various sensors 517 are provided. The components 501 to 517 are connected by a bus 520, respectively.
 CPU501は、ナビゲーション装置200の全体の制御を司る。ROM502は、ブートプログラム、走行距離推定プログラム、データ更新プログラム、地図データ表示プログラムなどのプログラムを記録している。RAM503は、CPU501のワークエリアとして使用される。すなわち、CPU501は、RAM503をワークエリアとして使用しながら、ROM502に記録された各種プログラムを実行することによって、ナビゲーション装置200の全体の制御を司る。 The CPU 501 governs overall control of the navigation device 200. The ROM 502 records programs such as a boot program, a travel distance estimation program, a data update program, and a map data display program. The RAM 503 is used as a work area for the CPU 501. That is, the CPU 501 governs overall control of the navigation device 200 by executing various programs recorded in the ROM 502 while using the RAM 503 as a work area.
 磁気ディスクドライブ504は、CPU501の制御にしたがって磁気ディスク505に対するデータの読み取り/書き込みを制御する。磁気ディスク505は、磁気ディスクドライブ504の制御で書き込まれたデータを記録する。磁気ディスク505としては、たとえば、HD(ハードディスク)やFD(フレキシブルディスク)を用いることができる。 The magnetic disk drive 504 controls the reading / writing of the data with respect to the magnetic disk 505 according to control of CPU501. The magnetic disk 505 records data written under the control of the magnetic disk drive 504. As the magnetic disk 505, for example, an HD (hard disk) or an FD (flexible disk) can be used.
 また、光ディスクドライブ506は、CPU501の制御にしたがって光ディスク507に対するデータの読み取り/書き込みを制御する。光ディスク507は、光ディスクドライブ506の制御にしたがってデータが読み出される着脱自在な記録媒体である。光ディスク507は、書き込み可能な記録媒体を利用することもできる。着脱可能な記録媒体として、光ディスク507のほか、MO、メモリカードなどを用いることができる。 Also, the optical disk drive 506 controls reading / writing of data with respect to the optical disk 507 according to the control of the CPU 501. The optical disk 507 is a detachable recording medium from which data is read according to the control of the optical disk drive 506. As the optical disc 507, a writable recording medium can be used. In addition to the optical disk 507, an MO, a memory card, or the like can be used as a detachable recording medium.
 磁気ディスク505および光ディスク507に記録される情報の一例としては、地図データ、車両情報、道路情報、走行履歴などが挙げられる。地図データは、カーナビゲーションシステムにおいて走行可能距離に関する情報を表示する際に用いられ、建物、河川、地表面などの地物(フィーチャ)を表す背景データ、道路の形状をリンクやノードなどで表す道路形状データなどを含んでいる。ここで、車両情報、道路情報および走行履歴とは、上記(2)式~(7)式に示す消費エネルギー推定式に変数として用いる道路に関するデータである。 Examples of information recorded on the magnetic disk 505 and the optical disk 507 include map data, vehicle information, road information, travel history, and the like. Map data is used to display information related to the distance that can be traveled in a car navigation system. Background data that represents features (features) such as buildings, rivers, and the ground surface, and roads that represent road shapes with links and nodes. Includes shape data. Here, the vehicle information, road information, and travel history are data relating to roads used as variables in the energy consumption estimation formulas shown in the above formulas (2) to (7).
 音声I/F508は、音声入力用のマイク509および音声出力用のスピーカ510に接続される。マイク509に受音された音声は、音声I/F508内でA/D変換される。マイク509は、たとえば、車両のダッシュボード部などに設置され、その数は単数でも複数でもよい。スピーカ510からは、ルート案内などの所定の音声信号を音声I/F508内でD/A変換した音声が出力される。 The voice I / F 508 is connected to a microphone 509 for voice input and a speaker 510 for voice output. The sound received by the microphone 509 is A / D converted in the sound I / F 508. For example, the microphone 509 is installed in a dashboard portion of a vehicle, and the number thereof may be one or more. The speaker 510 outputs a sound obtained by D / A converting a predetermined sound signal such as route guidance in the sound I / F 508.
 入力デバイス511は、文字、数値、各種指示などの入力のための複数のキーを備えたリモコン、キーボード、タッチパネルなどが挙げられる。入力デバイス511は、リモコン、キーボード、タッチパネルのうちいずれか一つの形態によって実現されてもよいが、複数の形態によって実現することも可能である。 Examples of the input device 511 include a remote controller, a keyboard, and a touch panel that are provided with a plurality of keys for inputting characters, numerical values, various instructions, and the like. The input device 511 may be realized by any one of a remote controller, a keyboard, and a touch panel, but may be realized by a plurality of forms.
 映像I/F512は、ディスプレイ513に接続される。映像I/F512は、具体的には、たとえば、ディスプレイ513全体を制御するグラフィックコントローラと、即時表示可能な画像情報を一時的に記録するVRAM(Video RAM)などのバッファメモリと、グラフィックコントローラから出力される画像データに基づいてディスプレイ513を制御する制御ICなどによって構成される。 The video I / F 512 is connected to the display 513. Specifically, the video I / F 512 is output from, for example, a graphic controller that controls the entire display 513, a buffer memory such as a VRAM (Video RAM) that temporarily records image information that can be displayed immediately, and a graphic controller. And a control IC for controlling the display 513 based on the image data to be processed.
 ディスプレイ513には、アイコン、カーソル、メニュー、ウインドウ、あるいは文字や画像などの各種データが表示される。ディスプレイ513としては、たとえば、TFT液晶ディスプレイ、有機ELディスプレイなどを用いることができる。 The display 513 displays icons, cursors, menus, windows, or various data such as characters and images. As the display 513, for example, a TFT liquid crystal display, an organic EL display, or the like can be used.
 カメラ514は、車両内部あるいは外部の映像を撮影する。映像は静止画あるいは動画のどちらでもよく、たとえば、カメラ514によって車両外部を撮影し、撮影した画像をCPU501において画像解析したり、映像I/F512を介して磁気ディスク505や光ディスク507などの記録媒体に出力したりする。 The camera 514 captures images inside or outside the vehicle. The image may be either a still image or a moving image. For example, the outside of the vehicle is photographed by the camera 514 and the photographed image is analyzed by the CPU 501 or a recording medium such as the magnetic disk 505 or the optical disk 507 via the image I / F 512. Or output to
 通信I/F515は、無線・有線のネットワークに接続され、ナビゲーション装置200およびCPU501のインターフェースとして機能する。ネットワークとして機能する通信網には、公衆回線網や携帯電話網、DSRC(Dedicated Short Range Communication)、LAN、WAN、CANなどがある。通信I/F515は、たとえば、ネットワークモジュールや公衆回線用接続モジュールやETC(ノンストップ自動料金支払いシステム)ユニット、FMチューナー、VICS(Vehicle Information and Communication System:登録商標)/ビーコンレシーバなどである。 The communication I / F 515 is connected to a wireless / wired network and functions as an interface between the navigation device 200 and the CPU 501. Communication networks that function as networks include public line networks, mobile phone networks, DSRC (Dedicated Short Range Communication), LANs, WANs, and CANs. The communication I / F 515 includes, for example, a network module, a public line connection module, an ETC (non-stop automatic fee payment system) unit, an FM tuner, a VICS (Vehicle Information and Communication System) / beacon receiver, and the like.
 GPSユニット516は、GPS衛星からの電波を受信し、車両の現在位置を示す情報を出力する。GPSユニット516の出力情報は、各種センサ517の出力値とともに、CPU501による車両の現在位置の算出に際して利用される。現在位置を示す情報は、たとえば、緯度・経度、高度などの、地図データ上の1点を特定する情報である。 The GPS unit 516 receives radio waves from GPS satellites and outputs information indicating the current position of the vehicle. The output information of the GPS unit 516 is used together with the output values of the various sensors 517 when the CPU 501 calculates the current position of the vehicle. The information indicating the current position is information for specifying one point on the map data, such as latitude / longitude and altitude.
 各種センサ517は、車速センサ、加速度センサ、角速度センサ、傾斜センサなどの、車両の位置や挙動を判断するための情報を出力する。各種センサ517の出力値は、CPU501による車両の現在位置の算出や、速度や方位の変化量の算出に用いられる。 Various sensors 517 output information for judging the position and behavior of the vehicle, such as a vehicle speed sensor, an acceleration sensor, an angular velocity sensor, and a tilt sensor. The output values of the various sensors 517 are used by the CPU 501 to calculate the current position of the vehicle and to calculate the amount of change in speed and direction.
 図2に示したナビゲーション装置200の各構成部は、図5に示したROM502、RAM503、磁気ディスク505、光ディスク507などに記録されたプログラムやデータを用いて、CPU501が所定のプログラムを実行し、ナビゲーション装置200における各部を制御することによってその機能を実現する。 Each component of the navigation device 200 shown in FIG. 2 uses a program or data recorded in the ROM 502, RAM 503, magnetic disk 505, optical disk 507, etc. shown in FIG. The function is realized by controlling each part in the navigation device 200.
 以上説明した消費エネルギー推定において、実際の車両走行では、車両状態や道路状況、使用者の走り方等によって消費エネルギー量が変化する。現状(従来)の消費エネルギー推定(燃費/電費推定)では一定の条件での走行状態を想定し、消費エネルギー推定(燃費/電費推定)を行っている。このため、車両状態や道路状況、使用者の走り方等により変化する実際の消費エネルギー量(電費/燃費)に対しては自動では対応できない。このため、従来は、消費エネルギー推定量(燃費/電費推定)を所定時期に補正調整し、実際の消費エネルギー量(燃費/電費推定)に近づけている。具体的には、ナビゲーションシステムに消費エネルギー推定量(燃費/電費)を補正、調整する機能を設け、使用者が手動操作で入力操作することにより補正調整を可能としている。しかし、使用者が実際のエネルギー消費量をリアルタイムで正確に知ることは難しく、従来はエネルギー消費量推定の精度の向上が難しい。また、使用者が状況に応じ自分で補正調整する手間がかかっている。 In the energy consumption estimation described above, the amount of energy consumed varies depending on the vehicle state, road conditions, how the user runs, etc. in actual vehicle travel. In the current (conventional) energy consumption estimation (fuel consumption / electricity cost estimation), the energy consumption estimation (fuel consumption / electricity cost estimation) is performed on the assumption of a running state under a certain condition. For this reason, it is not possible to automatically cope with the actual energy consumption (electricity consumption / fuel consumption) that changes depending on the vehicle state, road conditions, how the user runs, and the like. For this reason, conventionally, the estimated energy consumption (fuel consumption / electricity estimation) is corrected and adjusted to a predetermined time to approach the actual consumption energy (fuel consumption / electricity estimation). Specifically, the navigation system is provided with a function for correcting and adjusting the estimated energy consumption (fuel consumption / electricity cost), and correction adjustment is possible when the user performs an input operation manually. However, it is difficult for the user to accurately know the actual energy consumption in real time, and conventionally it is difficult to improve the accuracy of energy consumption estimation. In addition, it takes time and effort for the user to make correction adjustments according to the situation.
 これに対し、本願発明によれば、実際のエネルギー消費量を用いて車両状況や道路状況、使用者の走り方等に対応した、リアルタイムかつより精度の高い推定が可能となる。また、使用者はナビゲーションシステム上で自分で補正、調整の操作を行う必要が無くなる。また、推定精度を向上できるため、リルート探索での精度の向上が図れ、具体的にはルート探索時等での消費エネルギー量推定の精度が向上する。また、航続可能距離推定や航続可能範囲表示の精度の向上も図れる。また、使用者が自分で補正量を設定する必要が無くなり煩わしい操作を不要として、車両状況や道路状況、使用者の走り方等に対応した補正を自動的に行える。 On the other hand, according to the present invention, it is possible to estimate in real time and with higher accuracy corresponding to the vehicle situation, road situation, user's running method, and the like using the actual energy consumption. In addition, the user does not need to perform correction and adjustment operations on the navigation system. In addition, since the estimation accuracy can be improved, the accuracy in the reroute search can be improved, and specifically, the accuracy of the energy consumption estimation in the route search or the like is improved. It is also possible to improve the accuracy of cruising range estimation and cruising range display. In addition, it is not necessary for the user to set the correction amount by himself, so that troublesome operations are unnecessary, and correction corresponding to the vehicle conditions, road conditions, how the user runs, etc. can be automatically performed.
 また、車両で消費されるエネルギー量は全て走行に使用されるのではなく、電装品や空調等でもエネルギーは消費される。係数の補正値算出では、CANから得る実際の消費エネルギー量、推定した消費エネルギー量、ともに走行に使用されるエネルギー量のみを抽出し補正値を算出する必要がある。このため、消費エネルギー推定の累積値は、係数毎に別個に累積を行うこととする。これにより、走行に関する推定消費エネルギー累積値だけを算出することが可能となる。また、CANからのエネルギー消費量は、電装品や空調等のエネルギー消費量が含まれている場合がある。これに対応するために、CANのエネルギー消費量と速度情報を用いて、電装品や空調等の走行以外で定常的に消費されるエネルギー量を推定算出し、CANの消費エネルギー量から定常的に消費するエネルギー量を引いている。これにより、走行で消費されるエネルギー量を得ることができる。 Also, not all of the energy consumed by the vehicle is used for traveling, but energy is also consumed by electrical equipment and air conditioning. In calculating the correction value of the coefficient, it is necessary to extract the actual energy consumption amount obtained from the CAN, the estimated energy consumption amount, and only the energy amount used for traveling to calculate the correction value. For this reason, the cumulative value of energy consumption estimation is accumulated separately for each coefficient. As a result, it is possible to calculate only the estimated energy consumption cumulative value related to traveling. Moreover, the energy consumption from CAN may include energy consumption such as electrical equipment and air conditioning. In order to cope with this, the energy consumption and speed information of CAN are used to estimate and calculate the amount of energy that is constantly consumed outside of traveling such as electrical equipment and air conditioning. The amount of energy consumed is being subtracted. Thereby, the energy amount consumed by driving | running | working can be obtained.
 また、補正値算出の処理の開始初期では、累積データ量が少ないため、補正値の変化が大きく変化し易い。これを防ぐために、累積走行消費エネルギー量と、累積推定走行消費エネルギー量それぞれに初期値として一定値を加算してもよい。たとえば、EV車であれば一定な電力量kW,ガソリン車であれば一定なガソリン量ccを加算して補正値算出する。また、車両重量や車両寸法の入力値が変化したときは、車両が変わったと認識して以前の係数および補正値は使えないと判断し、過去の累積値をリセットすればよい。センサ学習のリセットが行われた場合は、ナビゲーション装置の設置状態等が変化したと考え、過去の累積値をリセットする機能を備えればよい。 Also, at the beginning of the correction value calculation process, the amount of accumulated data is small, so the change in the correction value is likely to change greatly. In order to prevent this, a constant value may be added as an initial value to each of the accumulated travel energy consumption and the cumulative estimated travel energy consumption. For example, a correction value is calculated by adding a constant amount of power kW for an EV vehicle, and a constant gasoline amount cc for a gasoline vehicle. Further, when the input values of the vehicle weight and the vehicle dimensions change, it is recognized that the vehicle has changed, and it is determined that the previous coefficient and correction value cannot be used, and the past cumulative value may be reset. When the sensor learning is reset, it is considered that the installation state or the like of the navigation device has changed, and a function for resetting past accumulated values may be provided.
 また、傾斜センサからの傾斜情報を0として計算を行うと、傾斜センサの精度の影響を排除できるようになる。傾斜センサの精度が高い場合は、傾斜情報を取り込んで推定計算を行うと推定精度の向上が可能となる。 Also, if the tilt information from the tilt sensor is calculated as 0, the influence of the accuracy of the tilt sensor can be eliminated. When the accuracy of the tilt sensor is high, the estimation accuracy can be improved by performing the estimation calculation by incorporating the tilt information.
 さらに、上述した単位時間のデータ累積による補正値の算出は、過去一定時間、過去一定距離の累積値としてもよいし、これら過去一定時間、過去一定距離の移動平均を用いてもよい。過去一定時間、過去一定距離の累積値を用いて補正値を算出すれば、過去データの影響が小さくなるため、現在の状況により適応した補正値の算出が可能となる。これにより、現在の車両状況や走行状況等に応じた補正が可能となり、推定精度の向上が可能となる。一方、過去全てのデータの累積を用いて補正値を算出することとすれば、現在の状況の変化毎に補正値が大きく変動するというようなばたつきの影響を受けにくくできるようになる。 Further, the calculation of the correction value based on the unit time data accumulation described above may be an accumulated value of a past fixed time and a past fixed distance, or a moving average of the past fixed time and a past fixed distance may be used. If the correction value is calculated using the accumulated value of the past fixed time and the past fixed distance, the influence of the past data is reduced, so that the correction value adapted to the current situation can be calculated. As a result, correction according to the current vehicle situation, running situation, and the like is possible, and estimation accuracy can be improved. On the other hand, if the correction value is calculated using the accumulation of all the past data, it becomes difficult to be affected by fluttering that the correction value fluctuates greatly every time the current situation changes.
 また、市街地のみ、高速道路のみ等、車両の走行条件別に、ある条件を指定して補正することもできる。たとえば、第三情報の空気抵抗に対し、走行条件別の補正を行うこともできる。たとえば、高速用補正値、市街地用補正値等の道路状況や走行状況に応じた補正値を設定すれば、状況に応じた推定精度の向上が可能となる。 Also, it can be corrected by specifying certain conditions according to the driving conditions of the vehicle, such as only in urban areas and only on highways. For example, it is possible to correct the air resistance of the third information for each traveling condition. For example, if correction values according to road conditions and traveling conditions such as high-speed correction values and urban correction values are set, it is possible to improve estimation accuracy according to the situation.
 さらには、車両から電装品、空調等の個別の消費エネルギー情報をリアルタイムで得られる場合には、これらの情報を利用して実際の走行消費エネルギーを算出してもよい。これらにより、消費エネルギーの推定精度をより向上できるようになる。 Furthermore, when individual energy consumption information such as electrical components and air conditioning can be obtained from the vehicle in real time, the actual driving energy consumption may be calculated using these information. Thus, the estimation accuracy of energy consumption can be further improved.
 また、車両から残存エネルギー量情報(例えばEV車におけるSOC(残存電池容量)、ガソリン車におけるタンク内の残存ガソリン量になる)と、ルート消費エネルギー量推定から得られるエネルギー消費効率(例えばEV車における電力消費率、ガソリン車なら燃料消費率)に相当する)を用い、航続可能距離の算出を行う事ができる。また、上記残存エネルギー量情報とエネルギー消費効率を用いて、自車位置を中心とした全周の各方向に対して、自車が到達可能と推定されるノードを順次探索する処理を行うことで、自車位置を中心とした航続可能距離の算出を行う事ができる。この時、連続的に(例えば単位時間毎に)上述した補正係数の更新を行うようにすれば、状況に応じたより精度の高い航続可能距離の算出が可能となる。 Also, the remaining energy amount information from the vehicle (for example, the SOC (remaining battery capacity) in the EV vehicle, the remaining gasoline amount in the tank in the gasoline vehicle), and the energy consumption efficiency obtained from the route consumption energy amount estimation (for example, in the EV vehicle) It is possible to calculate the cruising range using the power consumption rate, or the fuel consumption rate for gasoline vehicles). In addition, by using the remaining energy amount information and energy consumption efficiency, a process for sequentially searching for nodes that are estimated to be reachable in each direction around the vehicle position is performed. It is possible to calculate the cruising distance centered on the vehicle position. At this time, if the correction coefficient is updated continuously (for example, every unit time), it is possible to calculate the cruising distance with higher accuracy according to the situation.
 また、上記構成では、消費エネルギー推定を車両に搭載されたナビゲーション装置を用いたが、これに限らず、車両外部のサーバ等を用いて消費エネルギー推定を行ってもよい。車両およびナビゲーション装置は、CANの情報と速度情報をネットワークを介してサーバに送信する。サーバは、図2に記載した各構成部を備えて、補正係数を算出した後、消費エネルギー量を推定し、車両に送信する。これにより、車両側では、サーバが算出した消費エネルギー推定量を表示出力するだけでよく、システム全体で処理負担を分担でき、ナビゲーション装置の処理負担を軽減できるようになる。 In the above configuration, the navigation apparatus mounted on the vehicle is used for estimating the energy consumption. However, the present invention is not limited to this, and the energy consumption estimation may be performed using a server or the like outside the vehicle. A vehicle and a navigation apparatus transmit CAN information and speed information to a server via a network. The server includes each component described in FIG. 2, calculates a correction coefficient, estimates the energy consumption, and transmits the estimated energy to the vehicle. Thereby, on the vehicle side, it is only necessary to display and output the estimated energy consumption calculated by the server, the processing load can be shared by the entire system, and the processing load of the navigation device can be reduced.
 他の構成例としては、サーバは、図2の構成のうち、補正係数算出だけを行い、ナビゲーション装置に補正係数を送信し、ナビゲーション装置が補正係数に基づき、消費エネルギー量を推定するように構成することもできる。 As another configuration example, the server is configured to perform only correction coefficient calculation and transmit the correction coefficient to the navigation device in the configuration of FIG. 2, and the navigation device estimates the amount of energy consumption based on the correction coefficient. You can also
 なお、本実施の形態で説明した消費エネルギー推定の方法は、あらかじめ用意されたプログラムをパーソナル・コンピュータやワークステーションなどのコンピュータで実行することにより実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、CD-ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。またこのプログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体であってもよい。 The method for estimating energy consumption described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation. This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer. The program may be a transmission medium that can be distributed via a network such as the Internet.
 100 消費エネルギー推定装置
 101 算出部
 102 取得部
 200 ナビゲーション装置
 201 CANデータ処理部
 202 単位時間消費エネルギー推定部
 203 補正係数算出部
 204 ルート消費エネルギー推定部
 211 車両データ
DESCRIPTION OF SYMBOLS 100 Energy consumption estimation apparatus 101 Calculation part 102 Acquisition part 200 Navigation apparatus 201 CAN data processing part 202 Unit time energy consumption estimation part 203 Correction coefficient calculation part 204 Route consumption energy estimation part 211 Vehicle data

Claims (8)

  1.  移動体が走行する際に単位時間当たりに消費するエネルギーである推定エネルギー消費量を算出する算出部と、
     前記移動体に搭載された演算装置により演算された、単位時間当たりに前記移動体が消費する実エネルギー消費量を取得する取得部と、
     前記算出部による算出結果と前記取得部による取得結果に基づいて、前記移動体が所定の区間を走行する際に消費する区間エネルギー量を推定する区間消費エネルギー推定部と、
     を備えることを特徴とする消費エネルギー推定装置。
    A calculation unit that calculates an estimated energy consumption that is energy consumed per unit time when the mobile object travels;
    An acquisition unit that acquires an actual energy consumption amount consumed by the moving body per unit time calculated by an arithmetic device mounted on the moving body;
    Based on the calculation result by the calculation unit and the acquisition result by the acquisition unit, a section energy consumption estimation unit that estimates a section energy amount consumed when the mobile body travels in a predetermined section;
    A device for estimating energy consumption.
  2.  前記算出部は、所定の推定式を用いて前記推定エネルギー消費量を算出し、
     前記区間消費エネルギー推定部は、前記算出部による算出結果と前記取得部による取得結果とを比較して、前記推定式に用いられる係数を補正して、前記区間エネルギー量を推定する、
     ことを特徴とする請求項1に記載の消費エネルギー推定装置。
    The calculation unit calculates the estimated energy consumption using a predetermined estimation formula,
    The section consumption energy estimation unit compares the calculation result by the calculation unit and the acquisition result by the acquisition unit, corrects a coefficient used in the estimation formula, and estimates the section energy amount.
    The energy consumption estimation apparatus according to claim 1.
  3.  前記算出部は、
     前記推定エネルギー消費量を、前記移動体の走行時に消費される推定車両消費エネルギー量と、前記移動体に備えられた装備品により消費される推定定常消費エネルギー量とに分け、
     前記実エネルギー消費量を、前記移動体の走行時に消費される車両消費エネルギー量と、前記移動体に備えられた装備品により消費される定常消費エネルギー量とに分けてそれぞれ算出することを特徴とする請求項1または2に記載の消費エネルギー推定装置。
    The calculation unit includes:
    The estimated energy consumption amount is divided into an estimated vehicle energy consumption amount consumed when the mobile body travels and an estimated steady energy consumption amount consumed by the equipment provided in the mobile body,
    The actual energy consumption amount is calculated by dividing the actual energy consumption amount into a vehicle consumption energy amount consumed when the moving body travels and a steady consumption energy amount consumed by equipment included in the moving body, respectively. The energy consumption estimation apparatus according to claim 1 or 2.
  4.  前記区間消費エネルギー推定部は、前記推定エネルギー消費量と、前記実エネルギー消費量の算出のための入力情報をそれぞれ前記単位時間分累積して、当該単位時間又は一定の時間毎に算出することを特徴とする請求項1~3のいずれか一つに記載の消費エネルギー推定装置。 The section consumption energy estimation unit accumulates the estimated energy consumption and input information for calculating the actual energy consumption for each unit time, and calculates each unit time or every fixed time. The apparatus for estimating energy consumption according to any one of claims 1 to 3, characterized in that:
  5.  前記各構成部は、前記移動体に搭載されるナビゲーション装置を用いて構成され、
     前記取得部は、実エネルギー消費量の算出用の入力情報を前記移動体の前記演算装置から取得し、
     前記算出部は、前記推定エネルギー消費量を前記ナビゲーション装置が有するセンサの検出出力を用いて算出することを特徴とする請求項1~3のいずれか一つに記載の消費エネルギー推定装置。
    Each component is configured using a navigation device mounted on the moving body,
    The acquisition unit acquires input information for calculation of actual energy consumption from the arithmetic device of the mobile body,
    The consumption energy estimation apparatus according to any one of claims 1 to 3, wherein the calculation unit calculates the estimated energy consumption using a detection output of a sensor included in the navigation apparatus.
  6.  移動体の移動による消費エネルギーを推定する消費エネルギー推定装置の消費エネルギー推定方法において、
     前記移動体が走行する際に単位時間当たりに消費するエネルギーである推定エネルギー消費量を算出する算出工程と、
     前記移動体に搭載された演算装置により演算された、単位時間当たりに前記移動体が消費する実エネルギー消費量を取得する取得工程と、
     前記算出工程による算出結果と前記取得工程による取得結果に基づいて、前記移動体が所定の区間を走行する際に消費する区間エネルギー量を推定する区間消費エネルギー推定工程と、
     を含むことを特徴とする消費エネルギー推定方法。
    In the energy consumption estimation method of the energy consumption estimation device for estimating energy consumption due to movement of a moving object,
    A calculation step of calculating an estimated energy consumption that is energy consumed per unit time when the mobile body travels;
    An acquisition step of acquiring an actual energy consumption consumed by the moving body per unit time calculated by an arithmetic device mounted on the moving body;
    Based on the calculation result by the calculation step and the acquisition result by the acquisition step, a section consumption energy estimation step for estimating a section energy amount consumed when the mobile body travels in a predetermined section;
    A method for estimating energy consumption.
  7.  請求項6に記載の消費エネルギー推定方法をコンピュータに実行させることを特徴とする消費エネルギー推定プログラム。 A computer program for causing the computer to execute the method for estimating energy consumption according to claim 6.
  8.  請求項7に記載の消費エネルギー推定プログラムを記録したことを特徴とするコンピュータに読み取り可能な記録媒体。 A computer-readable recording medium on which the energy consumption estimation program according to claim 7 is recorded.
PCT/JP2012/075259 2012-09-28 2012-09-28 Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium WO2014049878A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/075259 WO2014049878A1 (en) 2012-09-28 2012-09-28 Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/075259 WO2014049878A1 (en) 2012-09-28 2012-09-28 Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium

Publications (1)

Publication Number Publication Date
WO2014049878A1 true WO2014049878A1 (en) 2014-04-03

Family

ID=50387336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075259 WO2014049878A1 (en) 2012-09-28 2012-09-28 Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium

Country Status (1)

Country Link
WO (1) WO2014049878A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111301172A (en) * 2020-02-12 2020-06-19 浙江吉利汽车研究院有限公司 Estimation method, device, equipment and storage medium of driving range
CN112590620A (en) * 2020-12-25 2021-04-02 吉林大学 Pure electric vehicle energy consumption estimation method oriented to random stroke model
WO2022201859A1 (en) 2021-03-26 2022-09-29 パナソニックIpマネジメント株式会社 Information processing device, insurance fee determination method, and system
CN115808922A (en) * 2022-01-07 2023-03-17 宁德时代新能源科技股份有限公司 Commercial electric vehicle energy consumption prediction method and device and computer equipment
JP7422719B2 (en) 2021-09-30 2024-01-26 Kddi株式会社 Estimation device, program, and method for estimating power consumption of a mobile object when traveling on a road
JP7450168B2 (en) 2020-07-31 2024-03-15 パナソニックIpマネジメント株式会社 Electricity cost estimation device, electricity consumption estimation method, and electricity consumption estimation program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115065A (en) * 2008-11-07 2010-05-20 Aisin Aw Co Ltd Traveling energy learning arrangement, its method, and program
WO2010116492A1 (en) * 2009-04-07 2010-10-14 パイオニア株式会社 Fuel consumption prediction device, fuel consumption prediction method, fuel consumption prediction program, and recording medium
JP2011053066A (en) * 2009-09-01 2011-03-17 Sumitomo Electric System Solutions Co Ltd Route search method, route search apparatus, and computer program
WO2012114499A1 (en) * 2011-02-24 2012-08-30 パイオニア株式会社 Search device, search system, search method and terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115065A (en) * 2008-11-07 2010-05-20 Aisin Aw Co Ltd Traveling energy learning arrangement, its method, and program
WO2010116492A1 (en) * 2009-04-07 2010-10-14 パイオニア株式会社 Fuel consumption prediction device, fuel consumption prediction method, fuel consumption prediction program, and recording medium
JP2011053066A (en) * 2009-09-01 2011-03-17 Sumitomo Electric System Solutions Co Ltd Route search method, route search apparatus, and computer program
WO2012114499A1 (en) * 2011-02-24 2012-08-30 パイオニア株式会社 Search device, search system, search method and terminal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111301172A (en) * 2020-02-12 2020-06-19 浙江吉利汽车研究院有限公司 Estimation method, device, equipment and storage medium of driving range
CN111301172B (en) * 2020-02-12 2022-05-10 浙江吉利汽车研究院有限公司 Estimation method, device, equipment and storage medium of driving range
JP7450168B2 (en) 2020-07-31 2024-03-15 パナソニックIpマネジメント株式会社 Electricity cost estimation device, electricity consumption estimation method, and electricity consumption estimation program
CN112590620A (en) * 2020-12-25 2021-04-02 吉林大学 Pure electric vehicle energy consumption estimation method oriented to random stroke model
WO2022201859A1 (en) 2021-03-26 2022-09-29 パナソニックIpマネジメント株式会社 Information processing device, insurance fee determination method, and system
JP7422719B2 (en) 2021-09-30 2024-01-26 Kddi株式会社 Estimation device, program, and method for estimating power consumption of a mobile object when traveling on a road
CN115808922A (en) * 2022-01-07 2023-03-17 宁德时代新能源科技股份有限公司 Commercial electric vehicle energy consumption prediction method and device and computer equipment
CN115808922B (en) * 2022-01-07 2023-10-27 宁德时代新能源科技股份有限公司 Commercial electric vehicle energy consumption prediction method and device and computer equipment

Similar Documents

Publication Publication Date Title
JP4861534B1 (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium
US10832498B1 (en) Vehicle telemetry device for inferring driver identity and building a vehicle history
WO2013080312A1 (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program and recording medium
US20070112475A1 (en) Power management systems and devices
WO2014049878A1 (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium
JP5674915B2 (en) SEARCH DEVICE, SEARCH SYSTEM, SEARCH METHOD, AND TERMINAL
US20190283595A1 (en) Vehicle Power Management System
US11254211B2 (en) Electric vehicle power management system
CN105102930A (en) Device for predicting amount of energy consumption and method for predicting amount of energy consumption
US20190283601A1 (en) Vehicle Power Management System
US20190283603A1 (en) Vehicle Power Management System
US20190283606A1 (en) Vehicle Power Management System
JP4890659B1 (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium
JP4932057B2 (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium
WO2012101821A1 (en) Calculation apparatus, calculation method, calculation program, and recording medium
US20190283599A1 (en) Vehicle Power Management System
CN109923566B (en) Method for determining a speed profile of a motor vehicle
JP2012066705A (en) System and method for providing information
WO2014162526A1 (en) Energy consumption amount estimation device, energy consumption amount estimation method, energy consumption amount estimation program, and recording medium
JP5722686B2 (en) Driving support apparatus and vehicle having the apparatus
US20190283597A1 (en) Vehicle Power Management System
JP4959862B2 (en) Travel distance estimation apparatus, travel distance estimation method, travel distance estimation program, and recording medium
JP6122935B2 (en) Estimation apparatus, estimation method, estimation program, and recording medium
WO2012056587A1 (en) Energy display device, energy display method, energy display program and recording medium
JP5231622B2 (en) Display control device, display device, display control method, display control program, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP