WO2012053058A1 - Cement clinker manufacturing method - Google Patents

Cement clinker manufacturing method Download PDF

Info

Publication number
WO2012053058A1
WO2012053058A1 PCT/JP2010/068376 JP2010068376W WO2012053058A1 WO 2012053058 A1 WO2012053058 A1 WO 2012053058A1 JP 2010068376 W JP2010068376 W JP 2010068376W WO 2012053058 A1 WO2012053058 A1 WO 2012053058A1
Authority
WO
WIPO (PCT)
Prior art keywords
slaked lime
cement clinker
exhaust gas
raw material
cement
Prior art date
Application number
PCT/JP2010/068376
Other languages
French (fr)
Japanese (ja)
Inventor
朝明 西岡
亮悦 吉野
松尾 靖史
一平 中島
智己 斉藤
大森 博昭
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to CN201080068686.8A priority Critical patent/CN103068765B/en
Priority to JP2012539498A priority patent/JP5738882B2/en
Priority to PCT/JP2010/068376 priority patent/WO2012053058A1/en
Publication of WO2012053058A1 publication Critical patent/WO2012053058A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • C04B7/42Active ingredients added before, or during, the burning process
    • C04B7/421Inorganic materials
    • C04B7/424Oxides, Hydroxides

Definitions

  • the present invention relates to a method for manufacturing a cement clinker, and more particularly to a method for manufacturing a cement clinker in a cement clinker manufacturing facility such as a cement kiln facility with SP (suspension preheater) or a cement kiln facility with NSP (new suspension preheater).
  • a cement kiln facility with SP suspension preheater
  • NSP new suspension preheater
  • incinerators that treat municipal waste and other general waste and industrial waste associated with business activities tend to generate dioxins, which are harmful substances, from exhaust gas.
  • Dioxins are repeatedly decomposed and re-synthesized at 150 to 500 ° C.
  • Dioxin suppression measures have been shown to sufficiently burn at a high temperature of 800 ° C or higher, not to make the incinerator into a reducing atmosphere, and to increase the exhaust gas cooling rate at 500 ° C or lower. ing.
  • the kiln exhaust gas is decarbonated by a counter current from the bottom of the kiln kiln at about 1,000 ° C., decarboxylated by countercurrent, reaches about 400 ° C. in the upper stage of the cyclone, and water is supplied by a boiler. Because it is rapidly cooled by generating evaporation and heated steam, it is cooled to about 250 ° C at the boiler outlet, so the cooling rate from about 400 ° C to about 250 ° C is high. Compared with the incinerator to process, generation
  • CO 2 emitted from raw fuel consumption and power consumption in a cement plant is formed from CO 2 from thermal decomposition of limestone in raw materials, combustion of coal in fuel, power consumption due to energy. Since CO 2 is a global warming gas, it is an important technique to reduce energy from consumption of these raw fuels and power consumption.
  • a cement clinker manufacturing facility in a cement plant performs exhaust heat power generation by exchanging heat between a preheater 110 having a plurality of cyclones 103a, 103b, 103c, and 103d and a kiln exhaust gas from the preheater 110, as shown in FIG.
  • the main part is a boiler 106 for waste heat power generation and a kiln 101 for firing the blended raw material into a cement clinker.
  • the mixed raw material charged into the upper cyclone 103a forms counterflow with the exhaust gas from the kiln 101 by the preheater 110 at the upper stage of about 400 ° C., is heat-exchanged and decarboxylated, and enters the kiln 101 at about 1,000 ° C. Introduced and fired into cement clinker.
  • the kiln exhaust gas is about 1,000 ° C. in the kiln kiln bottom 112, and while passing through the cyclones 103a to 103d, the mixed raw material is cooled while decarbonating by countercurrent, and about 400 in the uppermost cyclone 103a.
  • the organic chlorine compounds of dioxins are repeatedly decomposed and re-synthesized in the exhaust gas, and are contained in the kiln exhaust gas. ing.
  • Patent Document 1 In Japanese Patent Application Laid-Open No. 2004-244308 (Patent Document 1), (A) exhaust gas from a cement manufacturing apparatus is treated using a dust collecting means to collect dust containing an organic chlorine compound, while the dust collecting means And a step of discharging the exhaust gas after the treatment by (B), and (B) introducing at least a part of the collected dust into a place of 800 ° C. or higher in the cement manufacturing apparatus. A method for treating exhaust gas from a manufacturing apparatus is described.
  • Patent Document 2 discloses a method for reducing an organochlorine compound in a cement manufacturing apparatus, in the middle of supplying exhaust gas from the upper part of a preheater to a raw material pulverization process section. A method is described in which a single exhaust gas branch pipe is used for separation, and this is put into the lower stage of the preheater that becomes 800 ° C. or higher during normal operation of the cement production facility. Thus, it is said that if organic chlorine compounds such as dioxins and PCBs contained in the exhaust gas are thermally decomposed, the amount of organic chlorine compounds discharged from the cement production facility can be reduced as compared with the prior art.
  • Patent Document 3 discloses (A) a step of flowing exhaust gas generated in the cement manufacturing process into the preheater, and (B) heating provided in the preheater. And a step of enlarging a region of 800 ° C. or higher in the preheater by means. A method for treating an exhaust gas of a cement manufacturing apparatus is described.
  • Patent Document 4 As a method for producing cement, exhaust gas discharged from the upper part of a suspension preheater of a cement firing facility is used for drying cement raw material in the raw material grinding step. In the cement manufacturing process, after the exhaust gas discharged is separated into purified exhaust gas and dust collection dust with a dust collector, the purified exhaust gas is released into the atmosphere and the dust collection dust is sent to the upper part of the suspension preheater as part of the cement raw material.
  • step (A) A part of the dust collection dust is discharged from the circulation path of the cement clinker manufacturing process, and (B) the dust collection dust discharged by the process (A) is introduced into the heating device,
  • step (C) in step (C), in step (B), in step (C), in step (C) Rapidly cooled collected dust is returned to the circulation path of the cement clinker manufacturing process, describes the preparation method of the cement, characterized in that a step of entering fed again suspension preheater upper as a cement raw material.
  • Patent Document 5 describes (A) a process of generating exhaust gas containing hydrogen chloride in a cement manufacturing process using a cement raw material containing chlorine, and (B) process (A). At least one calcium compound selected from CaO and Ca (OH) 2 is introduced into the exhaust gas containing hydrogen chloride generated in the above at a point upstream of the exhaust gas of the dryer or pulverizer, and the calcium compound and the exhaust gas And a process for producing calcium chloride, which is a neutralized product of hydrogen chloride therein, and a method for treating exhaust gas from a cement production apparatus. In this method, the amount of hydrogen chloride in the exhaust gas is reduced by neutralizing hydrogen chloride into calcium chloride, which is a solid component.
  • the input amount of CaO or Ca (OH) 2 per equivalent of hydrogen chloride in the exhaust gas should be 1.0 to 10 equivalents.
  • Patent Documents 1 to 4 all require significant and expensive process changes, and the effect of reducing dioxin organochlorine compounds is uncertain. According to the method described in Patent Document 5, such a large-scale process change is not required, and the calcium compound reduces the amount of hydrogen chloride in the exhaust gas, thereby generating residual organic pollutants such as dioxins. Although it is said to be suppressed, the reduction effect of dioxin organochlorine compounds is not clear, and there is still room for improvement.
  • an object of the present invention is to provide a method for producing a cement clinker capable of effectively suppressing the concentration of dioxins (DXN S ) in exhaust gas without significantly changing the process. .
  • the present inventor has added dioxin in exhaust gas from a cement clinker manufacturing facility when slaked lime having a predetermined terminal sedimentation rate is added to a cyclone through which exhaust gas in a predetermined temperature range passes.
  • concentration of the class (DXN S ) was significantly reduced.
  • the present invention provides a cement clinker manufacturing method in a cement clinker manufacturing facility including a pre-heater having a plurality of cyclones and a rotary kiln, wherein slaked lime having a terminal sedimentation rate of 0.5 to 10 cm / sec is discharged from exhaust gas.
  • This is a method including a step of putting in a cyclone having an exhaust gas temperature of 350 to 500 ° C. at the outlet.
  • the slaked lime is added so that the amount of slaked lime is 20 to 200 kg per 1 ton of cement clinker.
  • the slaked lime is charged into the uppermost cyclone.
  • the slaked lime is supplied to a raw material crushing and drying machine after being mixed with a cement preparation raw material or in parallel with the preparation raw material. It is fed into the uppermost cyclone through the supply line.
  • the ratio of the terminal sedimentation rate of the slaked lime to the terminal sedimentation rate of the cement clinker preparation raw material is 0.5 to 1.5.
  • the slaked lime is slaked lime that is by-produced when acetylene is generated from calcium carbide.
  • the concentration of dioxins (DXN S ) in exhaust gas can be effectively suppressed without significant process changes.
  • concentration of the dioxins in the waste gas of a cement clinker manufacturing facility can be suppressed to 20 ng / m ⁇ 3 > N or less, for example.
  • FIG. 1 is a system diagram of a cement clinker manufacturing facility according to an embodiment of the present invention.
  • the cement clinker manufacturing facility is a cement kiln facility with an NSP (New Suspension Preheater), and as shown in FIG. 1, a rotary kiln 101, a preheater 110, a waste heat power generation boiler 106, a kiln IDF 105, a raw material pulverization It comprises a dryer 107, a stabilizer 108, and an electric dust collector 109.
  • NSP New Suspension Preheater
  • the pre-heater 110 connects four cyclones (first-stage cyclone 103a, second-stage cyclone 103b, third-stage cyclone 103c, fourth-stage cyclone 103d), calcining furnace 102, and these arranged in the vertical direction.
  • the cement clinker blending raw material generally contains limestone, clay, silica stone, and iron base, and in addition, wastes such as main ash generated from incineration of municipal waste and foundry sand may be appropriately added.
  • the raw material for cement clinker preparation is pulverized, mixed, and dried by the raw material pulverization dryer 107.
  • the cement clinker blended raw material is fed into the preheater 110 from the first-stage cyclone 103a through the blended raw material supply line 104, the high temperature discharged from the rotary kiln 101 in order along the solid line in FIG.
  • the mixed raw material is preheated while exchanging heat with the exhaust gas.
  • the calcining furnace 102 the preheated cement clinker preparation material is calcined.
  • the number of cyclones can be increased or decreased as appropriate.
  • the cement clinker blended raw material charged into the rotary kiln 101 at about 1000 ° C. gradually moves toward the outlet through the rotary kiln 101 and the temperature rises to about 1400-1500 ° C.
  • the blended raw material is fired during this time to produce a cement clinker.
  • exhaust gas of about 1000 ° C. is discharged from the kiln kiln bottom 112.
  • Dioxins (DXN S ) are contained in the exhaust gas.
  • the exhaust gas proceeds in order along the dotted line in FIG. 1 through the rising duct 111, the calcining furnace 102, and the cyclones 103 a to 103 d extending right above the kiln kiln bottom 112, and then toward the kiln IDF fan 105. During this time, the exhaust gas is cooled by heat exchange.
  • the exhaust gas outlet of the lowermost fourth-stage cyclone 103d is 820 to 870 ° C.
  • the exhaust gas outlet of the third-stage cyclone 103c is 730 to 790 ° C. It becomes 590 to 650 ° C. at the exhaust gas outlet of the first stage cyclone 103b and 350 to 500 ° C.
  • the exhaust gas outlet of the uppermost first cyclone 103a is further cooled by the latent heat of evaporation when water is evaporated by the exhaust heat power boiler 106, It is cooled to about 340 ° C. at the outlet of the boiler 106. Further, the air is sucked into the kiln IDF 105, the amount of heat for drying is consumed by the raw material crushing and drying machine 107, the temperature is adjusted and humidified by the stabilizer 108, the dust is collected by the electric dust collector 109, and then exhausted from the chimney.
  • slaked lime having a terminal sedimentation rate of 0.5 to 10 cm / sec is used in a cyclone having an exhaust gas temperature of 350 to 500 ° C. at the exhaust gas outlet.
  • the inlet temperature of the first-stage cyclone 103a is about 590 to 650 ° C., and the outlet temperature is 350 to 500 ° C. Therefore, the exhaust gas passing through the first stage cyclone 103a is in a temperature range where dioxins are easily re-synthesized.
  • slaked lime undergoes a dehydration reaction (endothermic reaction) by the following formula: Ca (OH) 2 ⁇ CaO + H 2 O at a temperature of 400 to 500 ° C., and the generated water loses its latent heat by evaporation, thus lowering the temperature. Therefore, when slaked lime is added to the first-stage cyclone 103a in which the exhaust gas outlet temperature is in the above range, the slaked lime is dehydrated in the cyclone so that a rapid cooling effect is generated and the resynthesis of dioxins can be suppressed. .
  • the exhaust gas temperature at the exhaust gas outlet of the cyclone into which the slaked lime is charged is preferably for the reason of ensuring the durability of the iron of the plant constituting the cyclone and the boilers after the cyclone, the kiln IDF, the stabilizer, the raw material crushing dryer, the electric dust collector, It is 440 degrees C or less.
  • the cyclone at the lower stage of the kiln or preheater is protected by a refractory, but the material constituting the plant after the first stage cyclone is often iron, and the yield point of iron is 440 ° C. .
  • the lower limit of the exhaust gas temperature consideration is given to the point of suppressing the generation of dioxins and the point of performing high-pressure steam recovery in the boiler. That is, as described above, it is better to increase the cooling rate at 400 to 250 ° C. in order to suppress the generation of dioxins. If exhaust gas is sent into the boiler at a very low temperature, the generation of dioxins due to rapid cooling in the boiler is suppressed. The effect may not be obtained sufficiently. Further, it is known that the high-pressure steam recovery of the boiler can generate the power generation energy in the turbine as the temperature rises. Furthermore, as described above, the dehydration reaction of slaked lime is likely to proceed at 400 to 500 ° C. Accordingly, since it is not appropriate to set the exhaust gas outlet temperature of the cyclone to a temperature that is excessively lower than 400 ° C., the temperature is preferably 370 ° C. or higher, and more preferably 390 ° C. or higher.
  • the slaked lime needs to have a terminal sedimentation rate of 0.5 cm / sec or more, and preferably 1 cm / sec or more. More preferably, it is 2 cm / sec or more, and still more preferably 4 cm / sec or more.
  • the terminal sedimentation rate of slaked lime is preferably 10 cm / sec or less, and more preferably 7 cm / sec or less.
  • the slaked lime charging point is not particularly limited as long as it can be charged into the cyclone.
  • a dedicated supply line can be provided, and the slaked lime charging point is charged into the mixed raw material supply line 104 between the raw material crushing dryer 107 and the first-stage cyclone 103a.
  • the raw material crushing and drying machine 107 can be charged.
  • the raw material analyzer that controls the mixing of raw materials to control the composition of the clinker performs the combined batch analysis of the mixed raw materials and controls the raw material feeder according to the result. Forms the lime component of the clinker. Therefore, it is included in the blended raw material value, analyzed, and the supply amount as the lime raw material is controlled so that the fluctuation of the clinker composition is controlled less. It is preferable to be fed into the raw material crusher / dryer 107 after being mixed with the raw material or in parallel with the prepared raw material.
  • the amount of slaked lime input will be described. As the amount of slaked lime having the predetermined terminal sedimentation rate decreases, the effect of reducing dioxins decreases.On the other hand, when the amount of slaked lime input increases too much, a large pressure loss occurs in the preheater. Driving may be difficult. Therefore, it is preferable to add the slaked lime to the blended raw material of the cement clinker so that the slaked lime is 20 to 200 kg (20 to 200 kg / tcl) per 1 ton of the cement clinker. More preferably, the slaked lime is added to the cement clinker preparation material so as to be 100 kg / tcl).
  • slaked lime having a terminal sedimentation rate of 0.5 to 10 cm / sec it is convenient to use by-product slaked lime generated in the process of producing acetylene gas by the carbide method, which is also useful for effective utilization of resources.
  • a chemical reaction in which acetylene is generated from calcium carbide can be represented by the following formula: CaC 2 + 2H 2 O ⁇ C 2 H 2 + Ca (OH) 2 .
  • the terminal sedimentation rate of slaked lime can be adjusted by methods such as sieving, granulation and pulverization.
  • the slaked lime does not form a sufficient swirl flow in the cyclone, and short pass and settle.
  • the ratio of the terminal sedimentation rate of the added slaked lime to the terminal sedimentation rate of the cement clinker preparation raw material is preferably 0.5 to 1.5, and more preferably 0.7 to 1.3.
  • the cement clinker blended raw material after passing through the raw material crushing and drying machine 107 is generally 0.2 to 15 cm / sec, typically 0.5 to 13 cm / sec, more typically 1 to 10 cm / sec. Having a terminal sedimentation rate of
  • Example 1 Production of by-product slaked lime> Water was added to calcium carbide having a particle size of 4.0 mm or less to generate acetylene gas, and slaked lime with a terminal sedimentation rate of 0.5 to 15 cm / sec was by-produced. The water content of by-product slaked lime was 7 to 10% by mass, and the terminal sedimentation rate was 5 cm / sec. Table 1 shows the quality of the calcium carbide and the specifications of the acetylene generator, and Table 2 shows the amount of components of the obtained byproduct slaked lime. The particle size of calcium carbide was measured using a JISZ8801 metallic steel sieve.
  • the terminal sedimentation rate was measured by the Andreazen pipette sedimentation method specified in JIS Z8821.
  • the component amount was measured according to JIS R5202.
  • the moisture content was measured with an infrared moisture meter (Model “FD-800” manufactured by Kett Science Laboratory).
  • Example 2 Effect of terminal sedimentation rate of by-product slaked lime on dioxin concentration in exhaust gas> A cement blending raw material having the component composition shown in Table 3 and having a terminal sedimentation rate of 4 cm / sec was prepared.
  • slaked lime with various terminal sedimentation rates produced by appropriately pulverizing the byproduct slaked lime with a terminal sedimentation rate of 5 cm / sec produced in Example 1 and commercially available slaked lime “Hishikar” (Ryoko Lime Industry) were prepared (Table). 4).
  • Slaked lime “Hishikar” (Ryoko Lime Industry) used in the comparative example is used as a dioxin-suppressing adsorbent for general incinerators.
  • the terminal sedimentation rate was measured by the Andreazen pipette sedimentation method specified in JIS Z8821.
  • each of the slaked lime was supplied to the raw material crushing and drying machine 107 in parallel with the cement blending raw material, so that each unit of 50 kg / tcl was charged into the uppermost cyclone 103a.
  • the inner diameter of each cyclone was 3 m.
  • the concentration of DXN S is measured in accordance with “JIS K 0311 Analysis of Dioxins in Exhaust Gas”, and the concentration of organochlorine compounds in dioxins (PCDDs, PCDFs and DL-PCB) per 1 m 3 N of kiln exhaust gas (ng) / M 3 N).
  • the first stage cyclone 103a exit slaked lime collection efficiency is the sizing method that matches the dust in the gas at the exhaust gas outlet of the first stage cyclone 103a to the sizing characteristics shown in JIS Z 8814 "Low volume air sampler", and JIS Amount of slaked lime collected by K 0901 “Shape, size and performance test method of filter medium for collecting dust sample in gas” and added to first stage cyclone 103a after quantifying slaked lime in dust by X-ray diffraction It was calculated by dividing by.
  • the average value of the pressure difference at each stage of the cyclone was obtained by calculating the cyclone outlet pressure-the cyclone inlet pressure for each of the cyclones 103a to 103d, and taking the average value as a measured value.
  • the IDF power unit is calculated based on the amount of heavy oil required to produce 1 ton of clinker. Expressed as the difference to 1.
  • By-product slaked lime (No. 1) has a terminal sedimentation rate of 5 cm / sec and is close to the terminal sedimentation rate of 4 cm / sec of the blended raw material, so that the average pressure difference at each stage of the cyclone is as small as -1.0 kPa, and the kiln
  • the IDF outlet pressure was as low as -7 kPa and was within the normal operating range.
  • the slaked lime “Hishikar” produced by pulverization method No. 4 has a terminal sedimentation rate of 0.1 cm / sec, which is significantly smaller than the terminal sedimentation rate of 4 cm / sec of the prepared raw material. For this reason, the average pressure difference value of each stage of the cyclone was as large as -1.25 kPa. Also, kiln IDF outlet pressure is as large as -8KPa, outside the normal operating range, the first stage collection efficiency of input slaked lime in the cyclone outlet as small as 5%, DXN S concentration in EP outlet 70 ng / m 3 N was high.
  • the cause of the terminal sedimentation rate of slaked lime affecting the concentration of dioxins in the exhaust gas will be discussed below. From the exhaust gas inlet temperature and outlet temperature of the first stage cyclone, it can be understood that the temperature of 400 to 500 ° C. at which the dehydration reaction from slaked lime Ca (OH) 2 to quick lime CaO occurs is performed inside the first stage cyclone. . At this time, no. In No. 1, since the terminal sedimentation rate of the slaked lime was appropriate, the slaked lime particles swirled sufficiently in the first-stage cyclone, and sufficient heat exchange retention time was ensured in the cyclone, so that a high cooling effect was obtained. In addition, it is thought that the dioxin suppression effect was high.
  • Example 3 Effect of input amount of by-product slaked lime on dioxin concentration in exhaust gas> The effect on the dioxin concentration in the exhaust gas when the input amount of the by-product slaked lime having a terminal sedimentation rate of 5 cm / sec obtained in Example 1 was changed was examined. Similarly to Example 2, in the cement clinker manufacturing facility having the configuration shown in FIG. 1, by-product slaked lime was charged into the upper cyclone 103a from the raw material crushing dryer 107 in various basic units, and the cement clinker manufacturing facility was operated.
  • Concentration measurement of DXN S is carried out in compliance with the "analysis of dioxins JIS K 0311 in the exhaust gas" was evaluated as the concentration of organochlorine compounds dioxins per kiln exhaust 1m 3 N (ng / m 3 N).
  • HCl in the exhaust gas was determined by “JIS K 0107 Method for analyzing hydrogen chloride in exhaust gas”.
  • Byproduct hydrated lime DXN amount added by increasing the 0,2,5,10,20,50,200,300kg / tcl S is reduced, in particular, if the byproduct slaked lime is 20 kg / tcl more intensity It can be seen that the concentration of dioxins organochlorine compounds in the exhaust gas is reduced to 20 ng / m 3 N or less.
  • the by-product slaked lime is a basic unit of 200 kg / tcl
  • the basic unit of by-product slaked lime was excessive, the outlet temperature of the first-stage cyclone tended to increase. Since the yield point of the iron material constituting the first-stage cyclone is in the region of about 440 ° C., the basic unit of by-product slaked lime is appropriately 200 kg / tcl or less.
  • Patent Document 5 CaO or Ca (OH) 2 is introduced into exhaust gas containing hydrogen chloride, the amount of hydrogen chloride in the exhaust gas is reduced, and the neutralized product is chloride. It is said that calcium is produced and as a result, the production of persistent organic pollutants such as dioxins is suppressed.
  • the amount of slaked lime added increases, the amount of hydrogen chloride in the exhaust gas is not reduced, and the amount of hydrogen chloride in the exhaust gas does not depend on the amount of slaked lime added.
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2007-90261
  • Rotary kiln 102
  • Calciner 103a First stage cyclone 103b Second stage cyclone 103c
  • Third stage cyclone 103d
  • Fourth stage cyclone 104
  • Compound raw material supply line 105 Kiln IDF 106
  • Boiler for waste heat power generation 107
  • Raw material crushing and drying machine 108
  • Stabilizer 109
  • Electric dust collector 110
  • Preheater 111

Abstract

The present invention provides a cement clinker manufacturing method capable of effectively suppressing the concentration of dioxins in the exhaust gas without significantly changing the process. The cement clinker manufacturing method comprises a step of producing a modified cement clinker raw material mixture by adding slaked lime having a terminal settling velocity from 0.5 to 10 cm/sec to a cement clinker raw material mixture, and a step of introducing the modified cement clinker raw material mixture to the pre-heater of a cement clinker production facility equipped with a pre-heater and a kiln.

Description

セメントクリンカーの製造方法Method for producing cement clinker
 本発明は、セメントクリンカーの製造方法に関し、とりわけ、SP(サスペンションプレヒーター)付セメントキルン設備やNSP(ニューサスペンションプレヒーター)付セメントキルン設備などのセメントクリンカー製造設備におけるセメントクリンカーの製造方法に関する。 The present invention relates to a method for manufacturing a cement clinker, and more particularly to a method for manufacturing a cement clinker in a cement clinker manufacturing facility such as a cement kiln facility with SP (suspension preheater) or a cement kiln facility with NSP (new suspension preheater).
 一般に、都市ゴミ等の一般廃棄物や事業活動に伴う産業廃棄物を処理する焼却炉等では排気ガスから有害物質であるダイオキシン類が発生しやすい。ダイオキシン類は、150~500℃で分解、再合成を繰り返す。ダイオキシン類の抑制対策としては、800℃以上の高温で、十分燃焼させ、焼却炉を還元雰囲気としない事、及び、500℃以下での排気ガスの冷却速度を大きくする事、等が示されてきている。 Generally, incinerators that treat municipal waste and other general waste and industrial waste associated with business activities tend to generate dioxins, which are harmful substances, from exhaust gas. Dioxins are repeatedly decomposed and re-synthesized at 150 to 500 ° C. Dioxin suppression measures have been shown to sufficiently burn at a high temperature of 800 ° C or higher, not to make the incinerator into a reducing atmosphere, and to increase the exhaust gas cooling rate at 500 ° C or lower. ing.
 800℃以上の高温で、十分燃焼させ、焼却炉を還元雰囲気としない事としては、「中小企業総合事業団化学物質安全対策用マニュアル平成13年1月」や「廃掃法施行規則の一部を改正する省令、平成9年12月1日施行、厚生省令第65号」等において、構造規準として、燃焼ガスの温度が800℃以上の状態で、2秒以上滞留できる燃焼室を設置することや、燃焼ガスの温度をおおむね200℃以下に冷却出来る冷却設備を設置すること、維持管理基準として、燃焼室への燃焼ガス温度を800℃以上に保つことや、集じん器に流入する燃焼ガスの温度を、おおむね200℃以下に冷却することが示されている。 To avoid burning the incinerator sufficiently at a high temperature of 800 ° C or higher and not using a reducing atmosphere, the "Small and Medium Enterprises Corporation Manual for Chemical Safety Measures" Under the revised ministerial ordinance, enforced on December 1, 1997, Ministry of Health and Welfare Ordinance No. 65, etc., as a structural standard, it is necessary to install a combustion chamber that can stay for more than 2 seconds when the temperature of the combustion gas is 800 ° C or higher. Install a cooling facility that can cool the temperature of the combustion gas to approximately 200 ° C or lower, maintain the temperature of the combustion gas to the combustion chamber at 800 ° C or higher as a maintenance standard, and set the combustion gas flowing into the dust collector. It has been shown that the temperature is generally cooled below 200 ° C.
 一方、500℃以下での排気ガスの冷却速度を大きくする事例としてはセメントプラントでの事例が挙げられる。図1に示す通り、セメントプラントでは、キルン排ガスは、約1,000℃のキルン窯尻からサイクロンで調合原料を、向流により、脱炭酸させ、サイクロン上段で約400℃となり、ボイラーで水を蒸発、加熱蒸気を発生させる事により急冷され、ボイラー出口で約250℃迄、冷却される為、約400℃から約250℃への冷却速度が大きい為、一般の都市ゴミ等の産業廃棄物を処理する焼却炉と比較して、ダイオキシン類の発生が抑制される。 On the other hand, as an example of increasing the exhaust gas cooling rate at 500 ° C. or lower, a case of a cement plant can be cited. As shown in FIG. 1, in a cement plant, the kiln exhaust gas is decarbonated by a counter current from the bottom of the kiln kiln at about 1,000 ° C., decarboxylated by countercurrent, reaches about 400 ° C. in the upper stage of the cyclone, and water is supplied by a boiler. Because it is rapidly cooled by generating evaporation and heated steam, it is cooled to about 250 ° C at the boiler outlet, so the cooling rate from about 400 ° C to about 250 ° C is high. Compared with the incinerator to process, generation | occurrence | production of dioxins is suppressed.
 しかし、近年の循環型社会形成法の普及によりセメントプラントでの産業廃棄物使用量が増加しており、排熱発電ボイラーを有するSP、及びNSP付セメントキルン設備を用いても、塩素等を有する産業廃棄物のセメントプラントでの原単位の増加により、キルン排ガスからのダイオキシン類の発生量は増加している。 However, the amount of industrial waste used in cement plants has increased due to the recent popularization of the recycling-oriented society formation method, and even with SPs with exhaust heat power boilers and cement kiln facilities with NSP, they have chlorine and the like. The amount of dioxins generated from kiln exhaust gas is increasing due to an increase in the basic unit of industrial waste cement plants.
 又、セメントプラントで、原燃料消費及び動力消費により排出されるCO2は、原料中石灰石の熱分解、燃料中石炭等の燃焼、エネルギー起源による動力消費からのCO2から形成される。CO2は、地球温暖化ガスである為、これらの原燃料消費及び動力消費によるエネルギーを低減する事は、重要な技術である。 Further, CO 2 emitted from raw fuel consumption and power consumption in a cement plant is formed from CO 2 from thermal decomposition of limestone in raw materials, combustion of coal in fuel, power consumption due to energy. Since CO 2 is a global warming gas, it is an important technique to reduce energy from consumption of these raw fuels and power consumption.
 以下、実例を用いて従来の過去の技術を更に明確に説明する。
 一般に、セメントプラントにおけるセメントクリンカー製造設備は、図1に示す通り、複数のサイクロン103a、103b、103c、103dを有するプレヒーター110、プレヒーター110からのキルン排ガスを熱交換して排熱発電を行う為の排熱発電用ボイラー106及び調合原料をセメントクリンカーに焼成する為のキルン101を主要部として構成される。上段のサイクロン103aに投入された調合原料は、上段約400℃のプレヒーター110でキルン101からの排ガスと向流を形成し、熱交換、脱炭酸され、約1,000℃で、キルン101へ導入され、セメントクリンカーに焼成される。キルン排ガスはキルン窯尻112で約1,000℃であり、サイクロン103a~dを通過する間に、調合原料を、向流により、脱炭酸させながら、冷却され、最上段のサイクロン103aで約400℃となり、排熱発電ボイラー106で水を蒸発、加熱蒸気を発生させる事により冷却され、ボイラー106出口で約340℃迄、冷却され、キルンIDF(Induced Draft Fan)105に吸引され、原料粉砕乾燥機107で乾燥用熱量を消費され、スタビライザー108で調温加湿され、電気集塵機109で集塵された後、煙突から排気される。
Hereinafter, the past technology will be described more clearly using actual examples.
Generally, a cement clinker manufacturing facility in a cement plant performs exhaust heat power generation by exchanging heat between a preheater 110 having a plurality of cyclones 103a, 103b, 103c, and 103d and a kiln exhaust gas from the preheater 110, as shown in FIG. The main part is a boiler 106 for waste heat power generation and a kiln 101 for firing the blended raw material into a cement clinker. The mixed raw material charged into the upper cyclone 103a forms counterflow with the exhaust gas from the kiln 101 by the preheater 110 at the upper stage of about 400 ° C., is heat-exchanged and decarboxylated, and enters the kiln 101 at about 1,000 ° C. Introduced and fired into cement clinker. The kiln exhaust gas is about 1,000 ° C. in the kiln kiln bottom 112, and while passing through the cyclones 103a to 103d, the mixed raw material is cooled while decarbonating by countercurrent, and about 400 in the uppermost cyclone 103a. It is cooled by evaporating water with the exhaust heat power generation boiler 106 and generating heated steam, cooled to about 340 ° C. at the outlet of the boiler 106, sucked into a kiln IDF (Induced Draft Fan) 105, and crushed and dried for raw materials The amount of heat for drying is consumed by the machine 107, the temperature is adjusted and humidified by the stabilizer 108, collected by the electric dust collector 109, and then exhausted from the chimney.
 一方、セメントクリンカー製造設備では、キルン窯尻部112、ライジングダクト部111及びプレヒーター110では、ダイオキシン類の有機塩素化合物が、排ガス中で、分解、再合成を繰り返して、キルン排ガス中に含まれている。 On the other hand, in the cement clinker manufacturing facility, in the kiln kiln bottom portion 112, the rising duct portion 111, and the preheater 110, the organic chlorine compounds of dioxins are repeatedly decomposed and re-synthesized in the exhaust gas, and are contained in the kiln exhaust gas. ing.
 これらのセメントクリンカー製造設備からのダイオキシン類の有機塩素化合物の低減方法としては、排ガスを工業的に循環する等、プロセスを大規模に変更する方法がある。 As a method for reducing organochlorine compounds of dioxins from these cement clinker production facilities, there is a method of changing the process on a large scale, such as industrially circulating exhaust gas.
 特開2004-244308号公報(特許文献1)には、(A)セメント製造装置の排ガスを、集塵手段を用いて処理し、有機塩素化合物を含むダストを捕集する一方、前記集塵手段による処理後の排ガスを排出する工程と、(B)前記捕集されたダストの少なくとも一部を、前記セメント製造装置内の800℃以上の場所に投入する工程とを含むことを特徴とするセメント製造装置の排ガスの処理方法が記載されている。 In Japanese Patent Application Laid-Open No. 2004-244308 (Patent Document 1), (A) exhaust gas from a cement manufacturing apparatus is treated using a dust collecting means to collect dust containing an organic chlorine compound, while the dust collecting means And a step of discharging the exhaust gas after the treatment by (B), and (B) introducing at least a part of the collected dust into a place of 800 ° C. or higher in the cement manufacturing apparatus. A method for treating exhaust gas from a manufacturing apparatus is described.
 特開2007-70173号公報(特許文献2)にはセメント製造装置内の有機塩素化合物低減方法として、プレヒーターの上部からの排ガスを原料粉砕工程部に供給する途中、その排ガスの一部を第一の排ガス分岐管により分取し、これをセメント製造設備の通常運転時に800℃以上となるプレヒーターの下段部に投入する方法が記載されている。こうして、排ガスに含まれるダイオキシン類、PCBなどの有機塩素化合物を熱分解すれば、セメント製造設備から排出される有機塩素化合物の排出量を、従来に比べて低減出来るとされている。 Japanese Patent Application Laid-Open No. 2007-70173 (Patent Document 2) discloses a method for reducing an organochlorine compound in a cement manufacturing apparatus, in the middle of supplying exhaust gas from the upper part of a preheater to a raw material pulverization process section. A method is described in which a single exhaust gas branch pipe is used for separation, and this is put into the lower stage of the preheater that becomes 800 ° C. or higher during normal operation of the cement production facility. Thus, it is said that if organic chlorine compounds such as dioxins and PCBs contained in the exhaust gas are thermally decomposed, the amount of organic chlorine compounds discharged from the cement production facility can be reduced as compared with the prior art.
 更に、特開2007-91547号公報(特許文献3)には、(A)セメントの製造過程において発生した排ガスを前記プレヒーター内に流入させる工程と、(B)前記プレヒーターに設けられた加熱手段により、前記プレヒーター内の800℃以上の領域を拡大する工程とを含むことを特徴とするセメント製造装置の排ガス処理方法が記載されている。 Furthermore, Japanese Patent Application Laid-Open No. 2007-91547 (Patent Document 3) discloses (A) a step of flowing exhaust gas generated in the cement manufacturing process into the preheater, and (B) heating provided in the preheater. And a step of enlarging a region of 800 ° C. or higher in the preheater by means. A method for treating an exhaust gas of a cement manufacturing apparatus is described.
 特開2009-184902号公報(特許文献4)にはセメント製造方法として、セメント焼成設備のサスペンジョンプレヒーター上部から排出される排ガスを、原料粉砕工程でセメント原料の乾燥に使用し、原料粉砕工程から排出される排ガスを集塵機で浄化排ガスと集塵ダストとに分離した後、浄化排ガスを大気中に放出し、集塵ダストをセメント原料の一部としてサスペンジョンプレヒーター上部に送入するセメント製造工程において、(A)集塵ダストの一部を、セメントクリンカー製造工程の循環経路から排出する工程と、(B)工程(A)により排出した集塵ダストを、加熱装置内に導入し、還元雰囲気中で加熱処理する工程と、(C)工程(B)により加熱処理した集塵ダストを急速冷却する工程と、(D)工程(C)により急速冷却した集塵ダストを、セメントクリンカー製造工程の循環経路に戻し、サスペンジョンプレヒーター上段からセメント原料として再度送入する工程とを含む事を特徴とするセメントの製造方法が記載されている。 In JP 2009-184902 A (Patent Document 4), as a method for producing cement, exhaust gas discharged from the upper part of a suspension preheater of a cement firing facility is used for drying cement raw material in the raw material grinding step. In the cement manufacturing process, after the exhaust gas discharged is separated into purified exhaust gas and dust collection dust with a dust collector, the purified exhaust gas is released into the atmosphere and the dust collection dust is sent to the upper part of the suspension preheater as part of the cement raw material. (A) A part of the dust collection dust is discharged from the circulation path of the cement clinker manufacturing process, and (B) the dust collection dust discharged by the process (A) is introduced into the heating device, In step (C), in step (C), in step (B), in step (C), in step (C) Rapidly cooled collected dust is returned to the circulation path of the cement clinker manufacturing process, describes the preparation method of the cement, characterized in that a step of entering fed again suspension preheater upper as a cement raw material.
 更に、これらのセメントプラントからのダイオキシン類の有機塩素化合物の低減方法としては、添加物を加えて化学反応を生じさせる方法がある。 Furthermore, as a method for reducing dioxin organochlorine compounds from these cement plants, there is a method in which an additive is added to cause a chemical reaction.
 特開2007-90261号公報(特許文献5)には、(A)塩素分を含むセメント原料を用いたセメント製造過程において、塩化水素を含む排ガスが発生する工程と、(B)工程(A)において発生した塩化水素を含む排ガスに対し、乾燥機又は粉砕機の排ガス上流側の地点において、CaOとCa(OH)2から選択された少なくとも1つのカルシウム化合物を投入し、該カルシウム化合物と前記排ガス中の塩化水素との中和生成物である塩化カルシウムを生成させる工程とを含む事を特徴とするセメント製造装置の排ガス処理方法が記載されている。当該方法では、塩化水素が中和されて、固体分である塩化カルシウムになる事によって、排ガス中の塩化水素の量が低減し、その結果、カルシウム化合物投入口の排ガス下流側の領域において、ダイオキシン類等の残留性有機汚染物質の生成が抑制される。排ガス中の塩化水素1当量当たりのCaO又はCa(OH)2の投入量を1.0~10当量とするのが良いことも記載されている。 Japanese Patent Application Laid-Open No. 2007-90261 (Patent Document 5) describes (A) a process of generating exhaust gas containing hydrogen chloride in a cement manufacturing process using a cement raw material containing chlorine, and (B) process (A). At least one calcium compound selected from CaO and Ca (OH) 2 is introduced into the exhaust gas containing hydrogen chloride generated in the above at a point upstream of the exhaust gas of the dryer or pulverizer, and the calcium compound and the exhaust gas And a process for producing calcium chloride, which is a neutralized product of hydrogen chloride therein, and a method for treating exhaust gas from a cement production apparatus. In this method, the amount of hydrogen chloride in the exhaust gas is reduced by neutralizing hydrogen chloride into calcium chloride, which is a solid component. As a result, in the region downstream of the exhaust gas from the calcium compound inlet, dioxin Generation of persistent organic pollutants such as It is also described that the input amount of CaO or Ca (OH) 2 per equivalent of hydrogen chloride in the exhaust gas should be 1.0 to 10 equivalents.
特開2004-244308号公報JP 2004-244308 A 特開2007-70173号公報JP 2007-70173 A 特開2007-91547号公報JP 2007-91547 A 特開2009-184902号公報JP 2009-184902 A 特開2007-90261号公報JP 2007-90261 A
 特許文献1~4の方法では、いずれも大幅で高価なプロセスの変更を必要とし、且つそのダイオキシン類の有機塩素化合物の低減効果も定かでない。特許文献5に記載の方法によれば、このような大規模なプロセス変更を必要せず、カルシウム化合物は排ガス中の塩化水素の量を低減し、ダイオキシン類等の残留性有機汚染物質の生成が抑制されるとしているが、ダイオキシン類の有機塩素化合物の低減効果は定かでなく、未だ改善の余地が残されている。 The methods of Patent Documents 1 to 4 all require significant and expensive process changes, and the effect of reducing dioxin organochlorine compounds is uncertain. According to the method described in Patent Document 5, such a large-scale process change is not required, and the calcium compound reduces the amount of hydrogen chloride in the exhaust gas, thereby generating residual organic pollutants such as dioxins. Although it is said to be suppressed, the reduction effect of dioxin organochlorine compounds is not clear, and there is still room for improvement.
 そこで、本発明は大幅なプロセスの変更をせずに、排ガス中のダイオキシン類(DXNS)の濃度を効果的に抑制することのできるセメントクリンカーの製造方法を提供することを課題の一つとする。 Accordingly, an object of the present invention is to provide a method for producing a cement clinker capable of effectively suppressing the concentration of dioxins (DXN S ) in exhaust gas without significantly changing the process. .
 本発明者は上記課題を解決するために鋭意研究したところ、所定の温度領域の排ガスが通過するサイクロン内に、所定の終末沈降速度を有する消石灰を添加すると、セメントクリンカー製造設備の排ガス中のダイオキシン類(DXNS)の濃度が有意に減少することを見出した。 As a result of diligent research to solve the above problems, the present inventor has added dioxin in exhaust gas from a cement clinker manufacturing facility when slaked lime having a predetermined terminal sedimentation rate is added to a cyclone through which exhaust gas in a predetermined temperature range passes. We found that the concentration of the class (DXN S ) was significantly reduced.
 従って、本発明は一側面において、複数のサイクロンを有するプレヒーター及びロータリーキルンを備えたセメントクリンカー製造設備におけるセメントクリンカー製造方法であって、終末沈降速度が0.5~10cm/secである消石灰を排ガス出口における排ガス温度が350~500℃のサイクロン内に投入する工程を含む方法である。 Accordingly, in one aspect, the present invention provides a cement clinker manufacturing method in a cement clinker manufacturing facility including a pre-heater having a plurality of cyclones and a rotary kiln, wherein slaked lime having a terminal sedimentation rate of 0.5 to 10 cm / sec is discharged from exhaust gas. This is a method including a step of putting in a cyclone having an exhaust gas temperature of 350 to 500 ° C. at the outlet.
 本発明に係るセメントクリンカー製造方法の一実施形態においては、セメントクリンカー1t当たり前記消石灰20~200kgとなる様に、前記消石灰が投入される。 In one embodiment of the method for producing cement clinker according to the present invention, the slaked lime is added so that the amount of slaked lime is 20 to 200 kg per 1 ton of cement clinker.
 本発明に係るセメントクリンカー製造方法の別の一実施形態においては、前記消石灰は最上段のサイクロンに投入される。 In another embodiment of the cement clinker manufacturing method according to the present invention, the slaked lime is charged into the uppermost cyclone.
 本発明に係るセメントクリンカー製造方法の更に別の一実施形態においては、前記消石灰はセメント調合原料と混合してから若しくは調合原料と並行して原料粉砕乾燥機に供給され、セメント調合原料と共に調合原料供給ラインを通って最上段のサイクロンに投入される。 In yet another embodiment of the method for producing a cement clinker according to the present invention, the slaked lime is supplied to a raw material crushing and drying machine after being mixed with a cement preparation raw material or in parallel with the preparation raw material. It is fed into the uppermost cyclone through the supply line.
 本発明に係るセメントクリンカー製造方法の更に別の一実施形態においては、セメントクリンカー調合原料の終末沈降速度に対する、前記消石灰の終末沈降速度の比が0.5~1.5である。 In yet another embodiment of the method for producing cement clinker according to the present invention, the ratio of the terminal sedimentation rate of the slaked lime to the terminal sedimentation rate of the cement clinker preparation raw material is 0.5 to 1.5.
 本発明に係るセメントクリンカー製造方法の更に別の一実施形態においては、前記消石灰はカルシウムカーバイドからアセチレンを発生する際に副生する消石灰である。 In yet another embodiment of the method for producing cement clinker according to the present invention, the slaked lime is slaked lime that is by-produced when acetylene is generated from calcium carbide.
 本発明によれば、セメントクリンカー製造設備において、大幅なプロセスの変更をせずに、排ガス中のダイオキシン類(DXNS)の濃度を効果的に抑制することが可能となる。本発明によれば、セメントクリンカー製造設備の排ガス中のダイオキシン類の濃度を、例えば20ng/m3N以下に抑制することができる。 According to the present invention, in a cement clinker manufacturing facility, the concentration of dioxins (DXN S ) in exhaust gas can be effectively suppressed without significant process changes. ADVANTAGE OF THE INVENTION According to this invention, the density | concentration of the dioxins in the waste gas of a cement clinker manufacturing facility can be suppressed to 20 ng / m < 3 > N or less, for example.
本発明の一実施形態に係るセメントクリンカー製造設備のシステム図である。1 is a system diagram of a cement clinker manufacturing facility according to an embodiment of the present invention.
 以下、図面を参照しながら本発明の実施形態について詳述する。本実施形態に係るセメントクリンカー製造設備はNSP(ニューサスペンションプレヒーター)付セメントキルン設備であり、図1に示すように、ロータリーキルン101、プレヒーター110、排熱発電用ボイラー106、キルンIDF105、原料粉砕乾燥機107、スタビラーザー108、及び、電気集塵機109で構成されている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The cement clinker manufacturing facility according to the present embodiment is a cement kiln facility with an NSP (New Suspension Preheater), and as shown in FIG. 1, a rotary kiln 101, a preheater 110, a waste heat power generation boiler 106, a kiln IDF 105, a raw material pulverization It comprises a dryer 107, a stabilizer 108, and an electric dust collector 109.
 プレヒーター110は縦方向に配列された4つのサイクロン(1段目サイクロン103a、2段目サイクロン103b、3段目サイクロン103c、4段目サイクロン103d)、仮焼炉102、及び、これらを連結するダクトを有する。セメントクリンカー調合原料は一般に石灰石、粘土、珪石、及び鉄原を含有しており、その他に都市ごみの焼却で発生する主灰や、鋳物砂等廃棄物を適宜添加してもよい。セメントクリンカー調合原料は原料粉砕乾燥機107で粉砕、混合、及び乾燥される。セメントクリンカー調合原料はその後、調合原料供給ライン104を通って最上段の1段目サイクロン103aからプレヒーター110に投入されると、図1中の実線に沿って順に、ロータリーキルン101から排出される高温の排ガスと熱交換を行いながら調合原料が予熱される。仮焼炉102では予熱されたセメントクリンカー調合原料を仮焼する。サイクロンの数は適宜増減することができる。仮焼炉102は焼成効果を高めるために設置されるが、必ずしも設置されていなくてもよい。 The pre-heater 110 connects four cyclones (first-stage cyclone 103a, second-stage cyclone 103b, third-stage cyclone 103c, fourth-stage cyclone 103d), calcining furnace 102, and these arranged in the vertical direction. Has a duct. The cement clinker blending raw material generally contains limestone, clay, silica stone, and iron base, and in addition, wastes such as main ash generated from incineration of municipal waste and foundry sand may be appropriately added. The raw material for cement clinker preparation is pulverized, mixed, and dried by the raw material pulverization dryer 107. Thereafter, when the cement clinker blended raw material is fed into the preheater 110 from the first-stage cyclone 103a through the blended raw material supply line 104, the high temperature discharged from the rotary kiln 101 in order along the solid line in FIG. The mixed raw material is preheated while exchanging heat with the exhaust gas. In the calcining furnace 102, the preheated cement clinker preparation material is calcined. The number of cyclones can be increased or decreased as appropriate. Although the calcining furnace 102 is installed to enhance the firing effect, it is not always necessary to install it.
 約1000℃でロータリーキルン101に投入されたセメントクリンカー調合原料は、ロータリーキルン101内を出口に向かって徐々に移動しながら温度が約1400~1500℃程度にまで上昇する。調合原料はこの間に焼成されて、セメントクリンカーが製造される。ロータリーキルン101からはキルン窯尻112で約1000℃の排ガスが排出される。排ガス中には、ダイオキシン類(DXNS)が含まれている。 The cement clinker blended raw material charged into the rotary kiln 101 at about 1000 ° C. gradually moves toward the outlet through the rotary kiln 101 and the temperature rises to about 1400-1500 ° C. The blended raw material is fired during this time to produce a cement clinker. From the rotary kiln 101, exhaust gas of about 1000 ° C. is discharged from the kiln kiln bottom 112. Dioxins (DXN S ) are contained in the exhaust gas.
 排ガスは、キルン窯尻112から直上に延びたライジングダクト111、仮焼炉102、及びサイクロン103a~103dを図1中の点線に沿って順に進んでいき、キルンIDFファン105へと向かう。排ガスはこの間に熱交換によって冷却され、典型的な実施形態においては、最下段の4段目サイクロン103dの排ガス出口で820~870℃、3段目サイクロン103cの排ガス出口で730~790℃、2段目サイクロン103bの排ガス出口で590~650℃、最上段の1段目サイクロン103aの排ガス出口で350~500℃となり、排熱発電ボイラー106で水を蒸発する際の蒸発潜熱により更に冷却され、ボイラー106の出口で約340℃迄冷却される。更に、キルンIDF105に吸引され、原料粉砕乾燥機107で乾燥用熱量を消費され、スタビライザー108で調温加湿され、電気集塵機109で集塵された後、煙突から排気される。 The exhaust gas proceeds in order along the dotted line in FIG. 1 through the rising duct 111, the calcining furnace 102, and the cyclones 103 a to 103 d extending right above the kiln kiln bottom 112, and then toward the kiln IDF fan 105. During this time, the exhaust gas is cooled by heat exchange. In a typical embodiment, the exhaust gas outlet of the lowermost fourth-stage cyclone 103d is 820 to 870 ° C., and the exhaust gas outlet of the third-stage cyclone 103c is 730 to 790 ° C. It becomes 590 to 650 ° C. at the exhaust gas outlet of the first stage cyclone 103b and 350 to 500 ° C. at the exhaust gas outlet of the uppermost first cyclone 103a, and is further cooled by the latent heat of evaporation when water is evaporated by the exhaust heat power boiler 106, It is cooled to about 340 ° C. at the outlet of the boiler 106. Further, the air is sucked into the kiln IDF 105, the amount of heat for drying is consumed by the raw material crushing and drying machine 107, the temperature is adjusted and humidified by the stabilizer 108, the dust is collected by the electric dust collector 109, and then exhausted from the chimney.
 本発明においては、排ガス中のダイオキシン類(DXNS)の濃度を低減するために、終末沈降速度が0.5~10cm/secである消石灰を排ガス出口における排ガス温度が350~500℃のサイクロン内に投入することを特徴の一つとする。 In the present invention, in order to reduce the concentration of dioxins (DXN S ) in the exhaust gas, slaked lime having a terminal sedimentation rate of 0.5 to 10 cm / sec is used in a cyclone having an exhaust gas temperature of 350 to 500 ° C. at the exhaust gas outlet. One of the features is that
 理論によって本発明が限定されることを意図しないが、このような特定の終末沈降速度を有する消石灰を添加することでダイオキシン類の濃度が低減される推定メカニズムについて説明する。図1を参照すると、1段目サイクロン103a入口温度は590~650℃程度であり、出口温度は350~500℃である。従って、1段目サイクロン103aを通過する排ガスはダイオキシン類が再合成しやすい温度領域にある。一方で、消石灰は400~500℃の温度で次式:Ca(OH)2→CaO+H2Oによって脱水反応(吸熱反応)を起こすと共に、生成した水は蒸発によって潜熱を奪うから温度を低下させる。従って、排ガスの出口温度が上記範囲にある1段目サイクロン103aに消石灰を投入すると、消石灰が当該サイクロン内で脱水反応することにより急冷効果が生まれ、ダイオキシン類の再合成を抑制できるものと考えられる。 Although it is not intended that the present invention be limited by theory, an estimation mechanism for reducing the concentration of dioxins by adding slaked lime having such a specific terminal sedimentation rate will be described. Referring to FIG. 1, the inlet temperature of the first-stage cyclone 103a is about 590 to 650 ° C., and the outlet temperature is 350 to 500 ° C. Therefore, the exhaust gas passing through the first stage cyclone 103a is in a temperature range where dioxins are easily re-synthesized. On the other hand, slaked lime undergoes a dehydration reaction (endothermic reaction) by the following formula: Ca (OH) 2 → CaO + H 2 O at a temperature of 400 to 500 ° C., and the generated water loses its latent heat by evaporation, thus lowering the temperature. Therefore, when slaked lime is added to the first-stage cyclone 103a in which the exhaust gas outlet temperature is in the above range, the slaked lime is dehydrated in the cyclone so that a rapid cooling effect is generated and the resynthesis of dioxins can be suppressed. .
 消石灰を投入するサイクロンの排ガス出口における排ガス温度は、サイクロン及びサイクロン以降のボイラー、キルンIDF、スタビライザー、原料粉砕乾燥機、電気集塵機等を構成するプラントの鉄の耐久性を確保する理由により、好ましくは440℃以下である。一般に、キルンやプレヒーター下段のサイクロンは耐火物で保護されているが、1段目サイクロン以降のプラントを構成する材料は鉄であることが多く、鉄の降伏点は440℃であるためである。一方、排ガス温度の下限については、ダイオキシン類の発生抑制を行う点と、ボイラー内で高圧蒸気回収を行う点が、考慮される。即ち、ダイオキシン類の発生抑制には、400~250℃における冷却速度を高めるとよい事は、前述の通りであり、あまり低い温度でボイラー内に排ガスを送るとボイラーにおける急冷によるダイオキシン類の発生抑制効果を十分に得られない可能性がある。また、ボイラーの高圧蒸気回収は高温になる程、タービンでの発電エネルギーが得られる事は、公知である。更には、前述したように、消石灰の脱水反応が進行しやすいのは400~500℃である。従って、サイクロンの排ガス出口温度を400℃に比べて過度に低い温度に設定することは適切ではないため、370℃以上とすることが好ましく、390℃以上とするのがより好ましい。 The exhaust gas temperature at the exhaust gas outlet of the cyclone into which the slaked lime is charged is preferably for the reason of ensuring the durability of the iron of the plant constituting the cyclone and the boilers after the cyclone, the kiln IDF, the stabilizer, the raw material crushing dryer, the electric dust collector, It is 440 degrees C or less. In general, the cyclone at the lower stage of the kiln or preheater is protected by a refractory, but the material constituting the plant after the first stage cyclone is often iron, and the yield point of iron is 440 ° C. . On the other hand, regarding the lower limit of the exhaust gas temperature, consideration is given to the point of suppressing the generation of dioxins and the point of performing high-pressure steam recovery in the boiler. That is, as described above, it is better to increase the cooling rate at 400 to 250 ° C. in order to suppress the generation of dioxins. If exhaust gas is sent into the boiler at a very low temperature, the generation of dioxins due to rapid cooling in the boiler is suppressed. The effect may not be obtained sufficiently. Further, it is known that the high-pressure steam recovery of the boiler can generate the power generation energy in the turbine as the temperature rises. Furthermore, as described above, the dehydration reaction of slaked lime is likely to proceed at 400 to 500 ° C. Accordingly, since it is not appropriate to set the exhaust gas outlet temperature of the cyclone to a temperature that is excessively lower than 400 ° C., the temperature is preferably 370 ° C. or higher, and more preferably 390 ° C. or higher.
 但し、サイクロン内で消石灰の保持時間が十分に確保ない場合には、消石灰は脱水反応が完了する前に当該サイクロンから流出してしまう。本発明者の検討結果によれば、サイクロン内で十分な保持時間を得るためには、消石灰は終末沈降速度が0.5cm/sec以上あることが必要であり、1cm/sec以上あることが好ましく、2cm/sec以上あることがより好ましく、4cm/sec以上あることが更により好ましい。一方で、消石灰の終末沈降速度が10cm/sec超えると、通常のプレヒーターではサイクロン内で旋回流れを十分形成せず、サイクロン内を落下することによりショートパスし、運転が困難となる可能性がある。そのため、消石灰の終末沈降速度は10cm/sec以下とすることが好ましく、7cm/sec以下がより好ましい。 However, if sufficient retention time of slaked lime is not secured in the cyclone, the slaked lime will flow out of the cyclone before the dehydration reaction is completed. According to the inventor's examination results, in order to obtain a sufficient holding time in the cyclone, the slaked lime needs to have a terminal sedimentation rate of 0.5 cm / sec or more, and preferably 1 cm / sec or more. More preferably, it is 2 cm / sec or more, and still more preferably 4 cm / sec or more. On the other hand, when the terminal settling velocity of slaked lime exceeds 10 cm / sec, a normal pre-heater does not form a sufficient swirling flow in the cyclone, and a short pass may occur due to falling in the cyclone, which may make operation difficult. is there. Therefore, the terminal sedimentation rate of slaked lime is preferably 10 cm / sec or less, and more preferably 7 cm / sec or less.
 消石灰の投入地点は、上記サイクロン内に投入できる限り特に制限はなく、例えば専用の供給ラインを設けることができ、原料粉砕乾燥機107と1段目サイクロン103aの間の調合原料供給ライン104に投入することができ、又は、調合原料と混合してから若しくは調合原料と並行して原料粉砕乾燥機107に投入することもできる。 The slaked lime charging point is not particularly limited as long as it can be charged into the cyclone. For example, a dedicated supply line can be provided, and the slaked lime charging point is charged into the mixed raw material supply line 104 between the raw material crushing dryer 107 and the first-stage cyclone 103a. Alternatively, after mixing with the mixed raw material or in parallel with the mixed raw material, the raw material crushing and drying machine 107 can be charged.
 クリンカーの組成を制御する為の原料調合制御を行う原料分析計は、調合原料を合算一括分析して、その結果により原料供給器を演算制御するところ、本発明で投入する消石灰は最終的にはクリンカーの石灰成分をなす。従って、調合原料値に含まれ、分析され、石灰原料としての供給量を制御された方が、クリンカーの組成の変動が少なく制御される為、消石灰は調合原料として原料一括に含まれ、調合原料と混合してから若しくは調合原料と並行して原料粉砕乾燥機107に投入されるのが好ましい。 The raw material analyzer that controls the mixing of raw materials to control the composition of the clinker performs the combined batch analysis of the mixed raw materials and controls the raw material feeder according to the result. Forms the lime component of the clinker. Therefore, it is included in the blended raw material value, analyzed, and the supply amount as the lime raw material is controlled so that the fluctuation of the clinker composition is controlled less. It is preferable to be fed into the raw material crusher / dryer 107 after being mixed with the raw material or in parallel with the prepared raw material.
 次に、消石灰の投入量について述べる。前記所定の終末沈降速度をもつ消石灰の投入量が少なくなるにつれて、ダイオキシン類の低減効果が小さくなる一方で、消石灰の投入量が多くなりすぎると、プレヒーターで大きな圧力損失を生じて、正常な運転が困難となる可能性がある。そこで、セメントクリンカー1t当たり前記消石灰20~200kg(20~200kg/tcl)となる様に、セメントクリンカーの調合原料中に前記消石灰を添加することが好ましく、セメントクリンカー1t当たり前記40~100kg(40~100kg/tcl)となる様に、セメントクリンカーの調合原料中に前記消石灰を添加することがより好ましい。 Next, the amount of slaked lime input will be described. As the amount of slaked lime having the predetermined terminal sedimentation rate decreases, the effect of reducing dioxins decreases.On the other hand, when the amount of slaked lime input increases too much, a large pressure loss occurs in the preheater. Driving may be difficult. Therefore, it is preferable to add the slaked lime to the blended raw material of the cement clinker so that the slaked lime is 20 to 200 kg (20 to 200 kg / tcl) per 1 ton of the cement clinker. More preferably, the slaked lime is added to the cement clinker preparation material so as to be 100 kg / tcl).
 終末沈降速度が0.5~10cm/secである消石灰としては、副産消石灰はカーバイド法によるアセチレンガスの製造工程で発生するものを利用することが便宜であり、資源の有効利用にも役立つ。カルシウムカーバイドからアセチレンが発生する化学反応は次式:CaC2+2H2O→C22+Ca(OH)2によって表すことができる。
 消石灰の終末沈降速度の調整は、篩い分け、造粒及び粉砕などの方法により行うことができる。
As slaked lime having a terminal sedimentation rate of 0.5 to 10 cm / sec, it is convenient to use by-product slaked lime generated in the process of producing acetylene gas by the carbide method, which is also useful for effective utilization of resources. A chemical reaction in which acetylene is generated from calcium carbide can be represented by the following formula: CaC 2 + 2H 2 O → C 2 H 2 + Ca (OH) 2 .
The terminal sedimentation rate of slaked lime can be adjusted by methods such as sieving, granulation and pulverization.
 また、セメントクリンカー調合原料の終末沈降速度に対して、投入される消石灰の終末沈降速度の比が大きすぎる場合には消石灰がサイクロン内で旋回流れを充分形成せず、ショートパスし、沈降する為、熱交換が充分行われなくなり、キルンの燃料効率が悪化して、クリンカー焼成量が低下する傾向にある一方で、当該比が小さすぎる場合にはサイクロン内の圧力差が大きくなる傾向があり、また、投入した消石灰の捕集効率も低下するために熱交換が充分行われず、キルンIDFのガス流量が低下し、キルンの燃料効率が悪化して、クリンカー焼成量が低下する傾向となりやすい。そこで、セメントクリンカー調合原料の終末沈降速度に対する、添加される消石灰の終末沈降速度の比が0.5~1.5であるのが好ましく、0.7~1.3であるのがより好ましい。原料粉砕乾燥機107を通過した後のセメントクリンカー調合原料は、一般的には0.2~15cm/sec、典型的には0.5~13cm/sec、より典型的には1~10cm/secの終末沈降速度を有する。 In addition, when the ratio of the terminal sedimentation rate of the slaked lime to be added is too large with respect to the terminal sedimentation rate of the cement clinker compounding raw material, the slaked lime does not form a sufficient swirl flow in the cyclone, and short pass and settle. In addition, heat exchange is not performed sufficiently, the fuel efficiency of the kiln deteriorates, and the clinker firing amount tends to decrease, whereas when the ratio is too small, the pressure difference in the cyclone tends to increase, Moreover, since the collection efficiency of the input slaked lime is also lowered, heat exchange is not sufficiently performed, the gas flow rate of the kiln IDF is lowered, the fuel efficiency of the kiln is deteriorated, and the clinker firing amount tends to be lowered. Therefore, the ratio of the terminal sedimentation rate of the added slaked lime to the terminal sedimentation rate of the cement clinker preparation raw material is preferably 0.5 to 1.5, and more preferably 0.7 to 1.3. The cement clinker blended raw material after passing through the raw material crushing and drying machine 107 is generally 0.2 to 15 cm / sec, typically 0.5 to 13 cm / sec, more typically 1 to 10 cm / sec. Having a terminal sedimentation rate of
 以下、実施例を用いて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described using examples, but the present invention is not limited to these examples.
<例1:副産消石灰の製造>
 粒度4.0mm以下のカルシウムカーバイドに、水を添加し、アセチレンガスを発生させ、終末沈降速度が0.5~15cm/secである消石灰を副生した。副産消石灰の水分量は7~10質量%であり、終末沈降速度は5cm/secであった。カルシウムカーバイドの品位及びアセチレン発生機の仕様を表1に、得られた副産消石灰の成分量を表2に示す。カルシウムカーバイドの粒度はJISZ8801金属性鋼篩を用いて測定した。終末沈降速度はJIS Z 8821に規定されるアンドレアゼンピペット沈降法により測定した。成分量はJIS R5202に準拠して測定した。水分量は赤外線水分計(ケット科学研究所製型式「FD-800」)にて測定した。
<Example 1: Production of by-product slaked lime>
Water was added to calcium carbide having a particle size of 4.0 mm or less to generate acetylene gas, and slaked lime with a terminal sedimentation rate of 0.5 to 15 cm / sec was by-produced. The water content of by-product slaked lime was 7 to 10% by mass, and the terminal sedimentation rate was 5 cm / sec. Table 1 shows the quality of the calcium carbide and the specifications of the acetylene generator, and Table 2 shows the amount of components of the obtained byproduct slaked lime. The particle size of calcium carbide was measured using a JISZ8801 metallic steel sieve. The terminal sedimentation rate was measured by the Andreazen pipette sedimentation method specified in JIS Z8821. The component amount was measured according to JIS R5202. The moisture content was measured with an infrared moisture meter (Model “FD-800” manufactured by Kett Science Laboratory).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<例2:副産消石灰の終末沈降速度が与える排ガス中のダイオキシン類濃度等への影響>
 表3に記載の成分組成を有し、終末沈降速度が4cm/secであるセメント調合原料を用意した。また、例1で製造した終末沈降速度5cm/secの副産消石灰を適宜粉砕して製造した種々の終末沈降速度の消石灰、及び市販の消石灰「ヒシカール」(菱光石灰工業)を用意した(表4参照)。比較例で用いた消石灰「ヒシカール」(菱光石灰工業)は、一般焼却炉のダイオキシン抑制吸着剤として使用されているものである。終末沈降速度はJIS Z 8821に規定されるアンドレアゼンピペット沈降法により測定した。
<Example 2: Effect of terminal sedimentation rate of by-product slaked lime on dioxin concentration in exhaust gas>
A cement blending raw material having the component composition shown in Table 3 and having a terminal sedimentation rate of 4 cm / sec was prepared. In addition, slaked lime with various terminal sedimentation rates produced by appropriately pulverizing the byproduct slaked lime with a terminal sedimentation rate of 5 cm / sec produced in Example 1 and commercially available slaked lime “Hishikar” (Ryoko Lime Industry) were prepared (Table). 4). Slaked lime “Hishikar” (Ryoko Lime Industry) used in the comparative example is used as a dioxin-suppressing adsorbent for general incinerators. The terminal sedimentation rate was measured by the Andreazen pipette sedimentation method specified in JIS Z8821.
 次に、上記セメント調合原料を使用して、図1に示す構成のセメントクリンカー製造設備を運転した。この際に、上記各消石灰を原料粉砕乾燥機107にセメント調合原料と並行して供給することにより、各々50kg/tclの原単位で最上段のサイクロン103aに投入した。各サイクロンの内径は3mとした。 Next, the cement clinker manufacturing facility having the configuration shown in FIG. At this time, each of the slaked lime was supplied to the raw material crushing and drying machine 107 in parallel with the cement blending raw material, so that each unit of 50 kg / tcl was charged into the uppermost cyclone 103a. The inner diameter of each cyclone was 3 m.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 この場合の電気集塵機(EP)の出口における排ガス中のダイオキシン類(DXNS)の濃度、キルンIDF出口圧力、1段目サイクロン103a出口消石灰捕集効率、サイクロン各段の圧力差平均値、1段目サイクロン103aの排ガス入口及び排ガス出口の排ガス温度、IDF出口ガス流量、IDF効率、及び動力原単位の差を表5に示す。 In this case, the concentration of dioxins (DXN S ) in the exhaust gas at the outlet of the electrostatic precipitator (EP), the kiln IDF outlet pressure, the first stage cyclone 103a outlet slaked lime collection efficiency, the pressure difference average value of each stage of the cyclone, one stage Table 5 shows the difference between the exhaust gas temperature at the exhaust gas inlet and the exhaust gas outlet of the first cyclone 103a, the IDF outlet gas flow rate, the IDF efficiency, and the power consumption rate.
 DXNSの濃度測定は、「JIS K 0311 排ガス中のダイオキシン類分析」に準拠して行い、キルン排ガス1m3N当たりのダイオキシン類(PCDDs、PCDFs及びDL-PCB)の有機塩素化合物の濃度(ng/m3N)の総和として評価した。 The concentration of DXN S is measured in accordance with “JIS K 0311 Analysis of Dioxins in Exhaust Gas”, and the concentration of organochlorine compounds in dioxins (PCDDs, PCDFs and DL-PCB) per 1 m 3 N of kiln exhaust gas (ng) / M 3 N).
 1段目サイクロン103a出口消石灰捕集効率は、1段目サイクロン103aの排ガス出口におけるガス中のダストをJIS Z 8814「ロウボリウムエアサンプラ」に示される分粒特性に適合する分粒方法、及びJIS K 0901「気体中のダスト試料捕集用ろ過材の形状、寸法並びに性能試験方法」により捕集し、ダスト中の消石灰をX線回折により定量し、1段目サイクロン103aに加えた消石灰の量で割って求めた。
 サイクロン各段の圧力差平均値は、サイクロン103a~dそれぞれについて、サイクロン出口圧力-サイクロン入口圧力を求め、その平均値を測定値とした。
 キルンIDFファン効率[%]は次式に従って求めた。
 キルンIDFファン効率[%]=風量[m3/min]/60[sec/min]×圧力[MPa]/軸動力[kW]×100
 IDF動力原単位は、1トンのクリンカーを製造するのに必要な重油量に換算して、No.1に対する差として表示した。
The first stage cyclone 103a exit slaked lime collection efficiency is the sizing method that matches the dust in the gas at the exhaust gas outlet of the first stage cyclone 103a to the sizing characteristics shown in JIS Z 8814 "Low volume air sampler", and JIS Amount of slaked lime collected by K 0901 “Shape, size and performance test method of filter medium for collecting dust sample in gas” and added to first stage cyclone 103a after quantifying slaked lime in dust by X-ray diffraction It was calculated by dividing by.
The average value of the pressure difference at each stage of the cyclone was obtained by calculating the cyclone outlet pressure-the cyclone inlet pressure for each of the cyclones 103a to 103d, and taking the average value as a measured value.
The kiln IDF fan efficiency [%] was determined according to the following formula.
Kiln IDF fan efficiency [%] = air volume [m 3 / min] / 60 [sec / min] × pressure [MPa] / shaft power [kW] × 100
The IDF power unit is calculated based on the amount of heavy oil required to produce 1 ton of clinker. Expressed as the difference to 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 副産消石灰(No.1)は終末沈降速度が5cm/secであり、調合原料の終末沈降速度4cm/secに近いことから、サイクロン各段の圧力差平均値は-1.0kPaと小さく、キルンIDF出口圧力は-7kPaと小さく、通常の運転範囲内であった。また、1段目サイクロン103a出口での投入消石灰の捕集効率は99%と良好で、EP出口でのDXNS濃度は14ng/m3Nと抑制されていた。副産消石灰をミルで粉砕した場合(No.2及び3)は、粉砕度合が進んで終末沈降速度が低下するに従ってセメントクリンカー製造設備の性能が低下したが、目標とするDXNS濃度である20ng/m3N以下は達成した。 By-product slaked lime (No. 1) has a terminal sedimentation rate of 5 cm / sec and is close to the terminal sedimentation rate of 4 cm / sec of the blended raw material, so that the average pressure difference at each stage of the cyclone is as small as -1.0 kPa, and the kiln The IDF outlet pressure was as low as -7 kPa and was within the normal operating range. Moreover, the collection efficiency of input slaked lime in the first stage cyclone 103a exit as good as 99%, DXN S concentration in EP outlet was suppressed with 14ng / m 3 N. If grinding a byproduct slaked lime in a mill (No.2 and 3), although the performance of the cement clinker production facility is lowered in accordance terminal settling velocity decreases progressed crushing degree is DXN S concentration to target 20ng / M 3 N or less was achieved.
 一方、No.4の粉砕法製造消石灰「ヒシカール」は終末沈降速度が0.1cm/secであり調合原料の終末沈降速度4cm/secに対して著しく小さい。この為、サイクロン各段の圧力差平均値は-1.25kPaと大きくなった。また、キルンIDF出口圧力は-8kPaと大きく、通常の運転範囲を外れ、1段目サイクロン出口での投入消石灰の捕集効率は5%と小さく、EP出口でのDXNS濃度は70ng/m3Nと高かった。 On the other hand, no. The slaked lime “Hishikar” produced by pulverization method No. 4 has a terminal sedimentation rate of 0.1 cm / sec, which is significantly smaller than the terminal sedimentation rate of 4 cm / sec of the prepared raw material. For this reason, the average pressure difference value of each stage of the cyclone was as large as -1.25 kPa. Also, kiln IDF outlet pressure is as large as -8KPa, outside the normal operating range, the first stage collection efficiency of input slaked lime in the cyclone outlet as small as 5%, DXN S concentration in EP outlet 70 ng / m 3 N was high.
 終末沈降速度5cm/secの副産消石灰を原単位50kg/tclで使用した場合、キルンIDF出口圧力=-7kPaでは、キルンIDF風量=6,000m3/minが得られている。これに対して、終末沈降速度0.1cm/secの微粉消石灰を原単位50kg/tclでセメントクリンカー製造設備にフィードした場合、セメントSP各段での圧力損失=約-1.25MPaであり、キルンIDF出口圧力=-8MPaと負圧が大きくなった為、キルンIDF風量=4,000m3/minと低下し、セメントクリンカー製造設備プレヒーターの熱交換効率、捕集効率が低下した。 When by-product slaked lime having a terminal sedimentation rate of 5 cm / sec is used at a basic unit of 50 kg / tcl, when the kiln IDF outlet pressure is −7 kPa, the kiln IDF air volume is 6,000 m 3 / min. On the other hand, when fine slaked lime with a terminal sedimentation rate of 0.1 cm / sec is fed to the cement clinker production facility at a basic unit of 50 kg / tcl, the pressure loss at each stage of the cement SP = about −1.25 MPa, Since the negative pressure increased as IDF outlet pressure = −8 MPa, the kiln IDF airflow decreased to 4,000 m 3 / min, and the heat exchange efficiency and the collection efficiency of the cement clinker production facility preheater decreased.
 消石灰の終末沈降速度が排ガス中のダイオキシン類濃度等へ影響する原因について以下、考察する。1段目サイクロンの排ガス入口温度及び出口温度から、消石灰Ca(OH)2から生石灰CaOへの脱水反応が生じる温度である400~500℃は1段目サイクロン内部で行われている事が理解出来る。
 この際、No.1では、投入した消石灰の終末沈降速度が適切であったため、消石灰粒子が1段目サイクロン内で充分旋回し、サイクロン内での十分な熱交換保持時間が確保されて高い冷却効果が得られたために、ダイオキシン類の抑制効果が高かったと考えられる。また、消石灰が高い捕集効率で回収されたために、キルンIDFに流入する消石灰の量が少なくなり、大きなIDF風量が得られ、IDF効率も高かったと考えられる。
 これに対して、消石灰の終末沈降速度を小さくしていくと、消石灰粒子の1段目サイクロン内における保持時間が短くなり、冷却効果が低減してダイオキシン類の抑制効果が徐々に低下したと考えられる。また、消石灰の捕集効率が低下し、圧力損失やIDF効率が徐々に低下していったと考えられる。No.4ではその低下度合いが甚だしく、ダイオキシン類の濃度を目安である20ng/m3N以下にすることはできなかったと考えられる。
The cause of the terminal sedimentation rate of slaked lime affecting the concentration of dioxins in the exhaust gas will be discussed below. From the exhaust gas inlet temperature and outlet temperature of the first stage cyclone, it can be understood that the temperature of 400 to 500 ° C. at which the dehydration reaction from slaked lime Ca (OH) 2 to quick lime CaO occurs is performed inside the first stage cyclone. .
At this time, no. In No. 1, since the terminal sedimentation rate of the slaked lime was appropriate, the slaked lime particles swirled sufficiently in the first-stage cyclone, and sufficient heat exchange retention time was ensured in the cyclone, so that a high cooling effect was obtained. In addition, it is thought that the dioxin suppression effect was high. Moreover, since slaked lime was collected with high collection efficiency, the amount of slaked lime flowing into the kiln IDF was reduced, a large IDF air volume was obtained, and the IDF efficiency was also considered high.
On the other hand, when the terminal sedimentation rate of slaked lime is reduced, the retention time of slaked lime particles in the first-stage cyclone is shortened, the cooling effect is reduced, and the dioxin suppression effect is gradually reduced. It is done. Moreover, it is thought that the collection efficiency of slaked lime fell and the pressure loss and IDF efficiency fell gradually. No. In No. 4, the degree of decrease was so great that the concentration of dioxins could not be reduced to 20 ng / m 3 N or less, which is a standard.
<例3:副産消石灰の投入量が与える排ガス中のダイオキシン類濃度等への影響>
 例1で得られた終末沈降速度5cm/secの副産消石灰の投入量を変化させた場合の、排ガス中のダイオキシン類濃度等への影響について調べた。例2と同様に、図1に示す構成のセメントクリンカー製造設備において、副産消石灰を種々の原単位で原料粉砕乾燥機107から上段のサイクロン103aに投入し、セメントクリンカー製造設備を運転した。
<Example 3: Effect of input amount of by-product slaked lime on dioxin concentration in exhaust gas>
The effect on the dioxin concentration in the exhaust gas when the input amount of the by-product slaked lime having a terminal sedimentation rate of 5 cm / sec obtained in Example 1 was changed was examined. Similarly to Example 2, in the cement clinker manufacturing facility having the configuration shown in FIG. 1, by-product slaked lime was charged into the upper cyclone 103a from the raw material crushing dryer 107 in various basic units, and the cement clinker manufacturing facility was operated.
 この場合の電気集塵機(EP)の出口における排ガス中のダイオキシン類の有機塩素化合物(DXNS)の濃度を測定した。また、DXNSと共に、DXNSの発生機構と一般的に関係があるとされている、排ガス中のHClも測定した。結果を表6に示す。 In this case, the concentration of organochlorine compound (DXN S ) of dioxins in the exhaust gas at the outlet of the electrostatic precipitator (EP) was measured. In addition to DXN S , HCl in exhaust gas, which is generally related to the mechanism of DXN S generation, was also measured. The results are shown in Table 6.
 DXNSの濃度測定は、「JIS K 0311 排ガス中のダイオキシン類分析」に準拠して行い、キルン排ガス1m3N当たりのダイオキシン類の有機塩素化合物の濃度(ng/m3N)として評価した。
 排ガス中のHClは、「JIS K 0107排ガス中の塩化水素分析方法」により求めた。
Concentration measurement of DXN S is carried out in compliance with the "analysis of dioxins JIS K 0311 in the exhaust gas" was evaluated as the concentration of organochlorine compounds dioxins per kiln exhaust 1m 3 N (ng / m 3 N).
HCl in the exhaust gas was determined by “JIS K 0107 Method for analyzing hydrogen chloride in exhaust gas”.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 副産消石灰添加量を0、2、5、10、20、50、200、300kg/tclと増加させる事でDXNSは低下するが、特に、副産消石灰が20kg/tcl以上の原単位の場合は、排ガス中のダイオキシン類の有機塩素化合物の濃度が20ng/m3N以下に低下することが分かる。副産消石灰が200kg/tclの原単位の場合は、1段サイクロン出口温度が上昇し、300kg/tclでは1段サイクロン出口温度が460℃となる。副産消石灰の原単位過多の場合は、1段サイクロンの出口温度が上昇傾向にあった。1段サイクロンを構成する鉄材料の降伏点は440℃程度の領域である為、副産消石灰の原単位は200kg/tcl以下が適切である。 Byproduct hydrated lime DXN amount added by increasing the 0,2,5,10,20,50,200,300kg / tcl S is reduced, in particular, if the byproduct slaked lime is 20 kg / tcl more intensity It can be seen that the concentration of dioxins organochlorine compounds in the exhaust gas is reduced to 20 ng / m 3 N or less. When the by-product slaked lime is a basic unit of 200 kg / tcl, the first-stage cyclone outlet temperature rises, and at 300 kg / tcl, the first-stage cyclone outlet temperature becomes 460 ° C. When the basic unit of by-product slaked lime was excessive, the outlet temperature of the first-stage cyclone tended to increase. Since the yield point of the iron material constituting the first-stage cyclone is in the region of about 440 ° C., the basic unit of by-product slaked lime is appropriately 200 kg / tcl or less.
 特開2007-90261号公報(特許文献5)では、塩化水素を含む排ガスに対しCaO又はCa(OH)2を投入し、排ガス中の塩化水素の量が低減し、中和生成物である塩化カルシウムを生成させその結果、ダイオキシン類等の残留性有機汚染物質の生成が抑制されるとしている。しかしながら、本発明の結果では、消石灰添加量が増しても排ガス中の塩化水素の量は低減されず、排ガス中の塩化水素の量の消石灰添加量依存性は無い。
 理論によって本発明が限定されることを意図しないが、これらの事から、本発明による排ガス中のダイオキシン類の有機塩素化合物の濃度の低減効果は、特開2007-90261号公報(特許文献5)に記述されている中和機構ではなく、むしろ、消石灰の脱水反応による1段目サイクロン103aにおける温度低下が影響しているものと考えられる。
In Japanese Patent Application Laid-Open Publication No. 2007-90261 (Patent Document 5), CaO or Ca (OH) 2 is introduced into exhaust gas containing hydrogen chloride, the amount of hydrogen chloride in the exhaust gas is reduced, and the neutralized product is chloride. It is said that calcium is produced and as a result, the production of persistent organic pollutants such as dioxins is suppressed. However, in the results of the present invention, even if the amount of slaked lime added increases, the amount of hydrogen chloride in the exhaust gas is not reduced, and the amount of hydrogen chloride in the exhaust gas does not depend on the amount of slaked lime added.
Although it is not intended that the present invention be limited by theory, the effect of reducing the concentration of organochlorine compounds of dioxins in exhaust gas according to the present invention is disclosed in Japanese Patent Application Laid-Open No. 2007-90261 (Patent Document 5). Rather than the neutralization mechanism described in 1), it is considered that the temperature drop in the first-stage cyclone 103a due to the dehydration reaction of slaked lime is affected.
101    ロータリーキルン
102    仮焼炉
103a   1段目サイクロン
103b   2段目サイクロン
103c   3段目サイクロン
103d   4段目サイクロン
104    調合原料供給ライン
105    キルンIDF
106    排熱発電用ボイラー
107    原料粉砕乾燥機
108    スタビライザー
109    電気集塵機
110    プレヒーター
111    ライジングダクト部
112    キルン窯尻部
101 Rotary kiln 102 Calciner 103a First stage cyclone 103b Second stage cyclone 103c Third stage cyclone 103d Fourth stage cyclone 104 Compound raw material supply line 105 Kiln IDF
106 Boiler for waste heat power generation 107 Raw material crushing and drying machine 108 Stabilizer 109 Electric dust collector 110 Preheater 111 Rising duct part 112 Kiln kiln bottom part

Claims (6)

  1.  複数のサイクロンを有するプレヒーター及びロータリーキルンを備えたセメントクリンカー製造設備におけるセメントクリンカー製造方法であって、終末沈降速度が0.5~10cm/secである消石灰を排ガス出口における排ガス温度が350~500℃のサイクロン内に投入する工程を含む方法。 A cement clinker manufacturing method in a cement clinker manufacturing facility equipped with a pre-heater having a plurality of cyclones and a rotary kiln, wherein the exhaust gas temperature at the exhaust gas outlet is 350 to 500 ° C. with slaked lime having a terminal sedimentation rate of 0.5 to 10 cm / sec. A method comprising the step of introducing into a cyclone.
  2.  セメントクリンカー1t当たり前記消石灰20~200kgとなる様に、前記消石灰が投入される請求項1に記載のセメントクリンカー製造方法。 The method for producing a cement clinker according to claim 1, wherein the slaked lime is added so that the slaked lime is 20 to 200 kg per 1 ton of cement clinker.
  3.  前記消石灰は最上段のサイクロンに投入される請求項1又は2に記載のセメントクリンカー製造方法。 The method for producing cement clinker according to claim 1 or 2, wherein the slaked lime is charged into the uppermost cyclone.
  4.  前記消石灰はセメント調合原料と混合してから若しくは調合原料と並行して原料粉砕乾燥機に供給され、セメント調合原料と共に調合原料供給ラインを通って最上段のサイクロンに投入される請求項1~3の何れか一項に記載のセメントクリンカー製造方法。 The slaked lime is supplied to a raw material crushing and drying machine after being mixed with a cement preparation raw material or in parallel with the preparation raw material, and is added to the uppermost cyclone through the preparation raw material supply line together with the cement preparation raw material. The cement clinker manufacturing method as described in any one of these.
  5.  セメントクリンカー調合原料の終末沈降速度に対する、前記消石灰の終末沈降速度の比が0.5~1.5である請求項1~4の何れか一項に記載のセメントクリンカー製造方法。 The method for producing a cement clinker according to any one of claims 1 to 4, wherein a ratio of the terminal sedimentation rate of the slaked lime to the terminal sedimentation rate of the cement clinker preparation raw material is 0.5 to 1.5.
  6.  前記消石灰はカルシウムカーバイドからアセチレンを発生する際に副生する消石灰である請求項1~5の何れか一項に記載のセメントクリンカー製造方法。 The method for producing a cement clinker according to any one of claims 1 to 5, wherein the slaked lime is slaked lime produced as a by-product when acetylene is generated from calcium carbide.
PCT/JP2010/068376 2010-10-19 2010-10-19 Cement clinker manufacturing method WO2012053058A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080068686.8A CN103068765B (en) 2010-10-19 2010-10-19 Cement clinker manufacturing method
JP2012539498A JP5738882B2 (en) 2010-10-19 2010-10-19 Method for producing cement clinker
PCT/JP2010/068376 WO2012053058A1 (en) 2010-10-19 2010-10-19 Cement clinker manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/068376 WO2012053058A1 (en) 2010-10-19 2010-10-19 Cement clinker manufacturing method

Publications (1)

Publication Number Publication Date
WO2012053058A1 true WO2012053058A1 (en) 2012-04-26

Family

ID=45974795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068376 WO2012053058A1 (en) 2010-10-19 2010-10-19 Cement clinker manufacturing method

Country Status (3)

Country Link
JP (1) JP5738882B2 (en)
CN (1) CN103068765B (en)
WO (1) WO2012053058A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111442651B (en) * 2020-04-03 2022-03-25 北京四方联新技术开发有限公司 Fly ash dioxin removing system and method based on cement kiln

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321957A (en) * 2001-04-25 2002-11-08 Denki Kagaku Kogyo Kk Rapid curing cement concrete and execution method of tunnel
JP2007062263A (en) * 2005-09-01 2007-03-15 Tekken Constr Co Ltd Controlling method of concrete setting time and constructing and reinforcing method of concrete structure by using controlling method of concrete setting time
JP2007090261A (en) * 2005-09-29 2007-04-12 Taiheiyo Cement Corp Method and system for treating exhaust gas in cement manufacturing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4230371B2 (en) * 2003-01-22 2009-02-25 太平洋セメント株式会社 Method for treating exhaust gas from cement production equipment
DK176268B1 (en) * 2006-05-10 2007-05-21 Smidth As F L Method and installation are for production of cement clinker
CN101475324A (en) * 2009-01-31 2009-07-08 合肥水泥研究设计院 Technological process for producing cement clinker by dry burning carbide slag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321957A (en) * 2001-04-25 2002-11-08 Denki Kagaku Kogyo Kk Rapid curing cement concrete and execution method of tunnel
JP2007062263A (en) * 2005-09-01 2007-03-15 Tekken Constr Co Ltd Controlling method of concrete setting time and constructing and reinforcing method of concrete structure by using controlling method of concrete setting time
JP2007090261A (en) * 2005-09-29 2007-04-12 Taiheiyo Cement Corp Method and system for treating exhaust gas in cement manufacturing device

Also Published As

Publication number Publication date
CN103068765B (en) 2014-12-10
JPWO2012053058A1 (en) 2014-02-24
JP5738882B2 (en) 2015-06-24
CN103068765A (en) 2013-04-24

Similar Documents

Publication Publication Date Title
CN111233356B (en) Method and system for preparing sulphoaluminate cement from all solid waste of aluminum ash pretreatment
JP4350765B2 (en) Carbon dioxide recovery method and recovery device for cement firing equipment
US20130125799A1 (en) Systems and methods for comminuting and recirculating coal combustion products
MXPA06008163A (en) Cement clinker production comprising partial removal of a flow of rotary kiln exhaust gas containing harmful substances.
CN107235647A (en) Oxygen/carbon dioxide combustion technology applied to cement clinker production technology
JP2012506990A5 (en)
JP4483946B2 (en) Cement manufacturing method
JP2007126328A (en) Apparatus and method for manufacturing cement
JP2011168445A (en) Method of calcining powdery calcium carbonate
CN103922624B (en) Be calcareous raw material with carbide slag and the sinter leaching system for the treatment of refuse incineration flue gas
JP2006035189A (en) Method for treating organic sludge utilizing cement production process
JP5738882B2 (en) Method for producing cement clinker
RU2552277C1 (en) Method to produce low temperature portland cement clinker
JP5092211B2 (en) Cement production equipment
JP2007090261A (en) Method and system for treating exhaust gas in cement manufacturing device
JP5091084B2 (en) Coal ash treatment method
JP5303716B2 (en) Modified ash, method for producing modified ash, and cement composition
JP6260404B2 (en) Exhaust gas treatment method and treatment apparatus
JP2022149127A (en) Manufacturing system of cement clinker and manufacturing method of cement clinker
CN106006643A (en) Method for preparing calcium carbide from yellow phosphorus tail gas and phosphogypsum
JP2007098343A (en) Exhaust gas treatment method and treating system of cement manufacturing apparatus
JPWO2019193938A1 (en) Apparatus and method for treating organic sludge
RU2547195C1 (en) Production of portland cement clinker (versions)
JP2023116231A (en) System and method for producing cement clinker
JP6287477B2 (en) Exhaust gas treatment method and treatment apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068686.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858614

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012539498

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858614

Country of ref document: EP

Kind code of ref document: A1