WO2012053056A1 - Method for producing batteries - Google Patents

Method for producing batteries Download PDF

Info

Publication number
WO2012053056A1
WO2012053056A1 PCT/JP2010/068361 JP2010068361W WO2012053056A1 WO 2012053056 A1 WO2012053056 A1 WO 2012053056A1 JP 2010068361 W JP2010068361 W JP 2010068361W WO 2012053056 A1 WO2012053056 A1 WO 2012053056A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
discharge
temperature
batteries
electric energy
Prior art date
Application number
PCT/JP2010/068361
Other languages
French (fr)
Japanese (ja)
Inventor
真一郎 橘内
和雄 生田
紀博 地久里
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/068361 priority Critical patent/WO2012053056A1/en
Publication of WO2012053056A1 publication Critical patent/WO2012053056A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery manufacturing method including an aging process for aging a battery and a discharging process for discharging the battery.
  • secondary batteries such as rechargeable lithium ion secondary batteries (hereinafter also simply referred to as batteries) have been used as power sources for driving vehicles such as hybrid cars and electric cars.
  • Patent Document 1 discloses an aging treatment method in which the battery is stored at a storage temperature of 40 ° C. or higher and 90 ° C. or lower. According to Patent Document 1, such an aging process is performed on an initial battery that has just been manufactured, whereby an increase in internal resistance of the battery over time can be suppressed.
  • aging treatment is performed using a thermostatic bath.
  • the thermostat is usually kept constant by adjusting the temperature in the thermostat using a temperature control device such as a heater that uses electric energy supplied from a commercial power source as a drive source. For this reason, while using the thermostat which performs an aging process, an electrical energy is consumed with a temperature control apparatus.
  • the state of charge (SOC) of the battery may be adjusted to a predetermined value. This is because the battery SOC is adjusted to an SOC that is unlikely to deteriorate, thereby suppressing the progress of deterioration of the battery during the period from manufacture to use.
  • the battery when adjusting the SOC to a predetermined value, the battery may be discharged in order to lower the SOC of the battery to a predetermined value using the power supply device.
  • the electric energy is often consumed as heat by flowing through a resistor or the like. That is, in the aging process, heat energy is obtained using electric energy, while in the adjustment of the SOC of the battery, the electric energy is discarded as heat energy.
  • the present invention has been made in view of such a problem, and provides a battery manufacturing method that efficiently uses energy in battery manufacturing.
  • One embodiment of the present invention includes an aging process in which a battery is accommodated in a temperature-controlled room that maintains a constant room temperature using a temperature control device that is driven by electric energy, and an aging process is performed on the battery.
  • At least a part of the electric energy taken out of the battery in the discharging process is used as at least a part of the electric energy for driving the temperature control device in the aging process for other batteries. For this reason, consumption of electric energy can be suppressed as a whole by using the electric energy derived from the battery in the temperature adjusting device, and the energy can be used efficiently.
  • the temperature adjusting device adjusts the room temperature of the temperature-controlled room.
  • the heater or the cooler (chiller), the temperature sensor, and the heater or cooler (chiller) based on the room temperature detected by the temperature sensor.
  • an apparatus having a control unit for controlling the driving of the apparatus In the aging process, at least a part of the electric energy extracted from the battery in the discharging process is used as at least a part of the electric energy for driving the temperature control device. For this reason, for example, even if a part of the electric energy extracted from the battery is used as a part of the electric energy for driving the temperature control device, a part of the extracted electric energy is used for all the electric energy for driving the temperature control device. Even if it is used, all of the extracted electric energy is used for a part of the electric energy for driving the temperature adjusting device, or all the extracted electric energy is used for all of the electric energy for driving the temperature adjusting device. good.
  • the discharging step is started for each battery group including the same number of batteries, and the discharging step for one battery group. It is preferable that the battery is manufactured by adjusting the timing so that the end of the discharge in step 1 coincides with the start of discharge in the discharge step of the other battery group.
  • the discharging process is started for each battery group including the same number of batteries, and at the end of discharging in the discharging process of one battery group, and the like.
  • the timing is adjusted so that the discharge start timings in the discharge process of the battery groups coincide. For this reason, in this discharge process, it is possible to always discharge a certain number of batteries. Therefore, the electric energy can be stably sent from the battery being discharged in the discharging process to the temperature adjusting device, and the adjustment of the supply destination of the electric energy consumed in the temperature-controlled room becomes easy.
  • the discharging step is preferably a battery manufacturing method in which the discharging of the battery is performed by constant power discharge.
  • the battery 1 is a lithium ion secondary battery that includes a belt-like positive electrode plate 20, a negative electrode plate 30, and a separator 40, and forms a wound power generation element 10 that is wound (see FIG. 1).
  • the battery 1 accommodates the electric power generation element 10 in the battery case 80, as shown in FIG.
  • the manufacturing method of the battery 1 proceeds in the order of a battery assembly process, an initial charging process, an aging process, a self-discharge inspection process, a discharging process, a charge adjustment process, and an internal resistance inspection process.
  • each process of the manufacturing method of the battery 1 is operated for 24 hours.
  • a paste (not shown) in which a binder, positive electrode active material particles, and a conductive material are dispersed and kneaded in a solvent is applied to both main surfaces of a strip-shaped aluminum foil, dried, and the dried paste is compressed.
  • a positive electrode plate 20 was produced.
  • a paste (not shown) in which a binder and negative electrode active material particles are dispersed and kneaded in a solvent is applied to both main surfaces of a strip-shaped copper foil, dried, and the dried paste is compressed to form a negative electrode plate 30 was produced.
  • the power generation element 10 is made by winding the positive electrode plate 20 and the negative electrode plate 30 produced as described above together with the two strip-shaped separators 40 and 40. After a current collecting member (not shown) is welded to the power generation element 10, the power generation element 10 is enclosed in a battery case 80 together with an electrolyte (not shown) to assemble the battery 1 (see FIG. 1). .
  • a plurality (25 in this embodiment) of batteries 1 and 1 are mounted and fixed on a jig (not shown). Thereby, each process can be performed simultaneously about 25 batteries 1 and 1.
  • an initial charging process is performed.
  • the initial charging process is started at intervals of a predetermined time (in this embodiment, 50 seconds) for a plurality (25) of batteries 1 and 1 mounted on one jig described above.
  • each battery 1 and 1 is charged.
  • a power supply device (not shown) is connected to each of the batteries 1 and 1, and constant current-constant voltage charging is performed, so that the charging state of the battery 1 is equivalent to SOC 100%. Thereafter, the positive terminal and the negative terminal of the power supply device are removed from each of the batteries 1 and 1.
  • an aging process is performed on the battery 1 that has undergone the initial charging process described above.
  • a constant temperature chamber 100 having a predetermined temperature T in this embodiment, 50 ° C.
  • the battery 1 is left in the constant temperature chamber 100 for a predetermined period (in this embodiment, 15 hours). It is a process.
  • the temperature-controlled room 100 used for this aging process has a temperature control device 110 capable of keeping the room temperature constant at a predetermined temperature T (50 ° C.) (see FIG. 3).
  • the temperature adjusting device 110 includes a first heater 111 and a second heater 112 that can generate heat, a fan 113 for blowing air warmed by the first heater 111 and the second heater 112, and a first heater.
  • a first switch 114 that is a switch 111, a second switch 115 that is a switch of the second heater 112, and a fan switch 116 that is a switch of the fan 113.
  • the temperature sensor 117 that measures the room temperature of the temperature-controlled room 100 and the room temperature are detected through the temperature sensor 117, and on / off of the first switch 114, the second switch 115, and the fan switch 116 is controlled.
  • a control unit 118 is included.
  • control unit 118 controls the driving of the first heater 111, the second heater 112, and the fan 113 based on the detected room temperature of the temperature-controlled room 100.
  • the temperature control apparatus 110 keeps the room temperature of the temperature-controlled room 100 constant at the predetermined temperature T (50 ° C.).
  • the second heater 112 and the fan 113 are driven using electrical energy supplied from a commercial power source.
  • the first heater 111 is connected to the battery 1 to be discharged in a discharge process to be described later, and generates heat with electric energy extracted from the battery 1. Therefore, the temperature control device 110 is necessary for maintaining the room temperature by turning on the first switch 114 when the electric energy is released from the battery 1 to be discharged in the discharge process described later. Most of the heat energy is covered by the heat generated by the first heater 111. At this time, if the room temperature of the temperature-controlled room 100 decreases from the predetermined temperature T, the control unit 118 temporarily turns on the second switch 115 to raise the temperature of the room to the second heater 112. It will be covered by the fever.
  • the control unit 118 turns on the second switch 115 to cause the second heater 112 to generate heat using electrical energy supplied from a commercial power source. If the number of batteries 1 to be discharged in the discharging process increases, the first heater 111 is caused to generate heat by the electric energy released from the battery 1 and the heat generation in the second heater 112 is suppressed accordingly. By doing in this way, consumption of the electrical energy supplied from a commercial power supply can be suppressed, making the temperature control apparatus 110 function.
  • the aging process is performed using the above-described temperature-controlled room 100. Similar to the initial charging process described above, the aging process is started at predetermined intervals (50 seconds) for a plurality (25) of batteries 1 and 1 mounted on one jig described above.
  • the battery 1 is inserted into the room of the temperature-controlled room 100 in which the room temperature is kept constant at a predetermined temperature T (50 ° C.) by the temperature control device 110 until the predetermined time (15 hours) elapses. Leave in 100.
  • the control unit 118 of the temperature control device 110 continuously drives the fan 113 and the first heater 111, and always detects the room temperature of the temperature-controlled room 100 using the temperature sensor 117 disposed in the room of the temperature-controlled room 100. Then, the second heater 112 is energized as necessary to keep the room temperature in the temperature-controlled room 100 constant at a predetermined temperature T (50 ° C.).
  • a self-discharge inspection process is performed on the battery 1 that has been subjected to the aging process. Similar to the initial charging process and the aging process described above, the self-discharge inspection process is started at predetermined intervals (50 seconds) for a plurality (25) of batteries 1 and 1 mounted on one jig described above. To do.
  • the battery 1 having a predetermined SOC is allowed to stand for a predetermined period (10 days) in an environment of a constant temperature (in this embodiment, 25 ° C.), and whether the battery 1 after being left is lower than the predetermined SOC Inspect whether.
  • the open circuit voltage BVO of the battery 1 after standing for a predetermined period is measured for each battery, and it is determined whether or not the open circuit voltage BVO after standing is smaller than a predetermined value.
  • the open circuit voltage BVO after stationary is more than predetermined value, it progresses to the charge adjustment process of the next process.
  • the battery 1 whose open circuit voltage BVO after standing is smaller than a predetermined value is excluded at the time of shipment.
  • This discharging step is a step of discharging the battery 1 with constant power over 40 minutes using the constant power discharging device 200 and the control device 210 described below.
  • This discharging step is performed by connecting a plurality (25 in this embodiment) of batteries 1 and 1 on the same jig in series. Thereby, 25 batteries 1 and 1 can be discharged simultaneously.
  • the battery 1 and the temperature control device 110 are passed through the plurality (50 in this embodiment) of constant power discharge devices 200, 200 shown in FIG. 3 and the plurality of constant power discharge devices 200, 200.
  • the control device 210 for controlling whether or not to energize each is used.
  • the constant power discharge device 200 includes a circuit unit 201 configured to discharge electric energy from the battery 1 by constant power discharge, and the battery 1 and the temperature control device 110 through the circuit unit 201. It has the switch part 202 which turns on / off electricity with the 1st switch 114 (refer FIG. 3).
  • control device 210 has a timepiece (not shown), and on the basis of this timepiece, the switch units 202 and 202 of the constant power discharge devices 200 and 200 are turned on / off, respectively.
  • the discharge process is started at intervals of a predetermined time TM (100 seconds in the present embodiment) for the plurality (50) of batteries 1 and 1 mounted on the two jigs described above.
  • one constant power discharge device 200 is connected to 25 batteries 1 and 1 for one jig. Therefore, in order to start the discharge process every predetermined time TM (100 seconds), the control device 210 includes the switch units 202 and 202 of the two constant power discharge devices 200 and 200 connected to the batteries 1 and 1, respectively. Turn on at the same time.
  • constant power discharge is performed on the batteries 1 and 1 for 40 minutes, so that the control device 210 switches the switch portions of the two constant power discharge devices 200 and 200 40 minutes after the switch portion 202 is turned on. Each of 202 and 202 is turned off.
  • the control device 210 ensures that the discharge end timing of the batteries 1 and 1 mounted on the two jigs coincides with the discharge start timing of the batteries 1 and 1 mounted on the two jigs. Adjust timing. Specifically, the control device 210 turns off the switch unit 202 of the constant power discharge device 200 connected to the batteries 1 and 1 whose discharge ends at a predetermined time TM (100 seconds), and discharges at that timing. The switch unit 202 of the constant power discharge device 200 connected to the batteries 1 and 1 to start the operation is turned on.
  • control device 210 starts constant power discharge for a plurality (50 pieces) of batteries 1 and 1 mounted on two jigs every predetermined time TM (100 seconds), The number of batteries 1 and 1 being increased increases by 50. Then, after a while (after 40 minutes have elapsed from the start of the discharge process), in the discharge process, a plurality (1200) of batteries 1, 1 mounted on 48 jigs are always discharged.
  • the temperature adjustment device 110 stably uses (consumes) the electric energy derived from the batteries 1 and 1.
  • This charge adjustment step is a step in which the battery 1 is charged and adjusted to a predetermined state of charge (SOC).
  • SOC state of charge
  • the charging adjustment process is started at predetermined intervals (50 seconds) for a plurality (25) of batteries 1 and 1 mounted on one jig described above.
  • a power supply (not shown) is connected to each of the batteries 1 and 1, respectively.
  • the power supply device of this embodiment has a plurality of electrode terminal portions in which a positive electrode terminal and a negative electrode terminal are paired, and each battery 1, 1 connected to each electrode terminal portion through the plurality of electrode terminal portions. Can be charged individually.
  • the batteries 1 and 1 are charged with a constant current-constant voltage for 60 minutes. That is, the battery 1 is charged with a constant current until the inter-terminal voltage BV of the battery 1 reaches a predetermined voltage. Thereafter, charging is continued while the inter-terminal voltage BV is maintained at a predetermined voltage. At this time, the charging current gradually decreases. Thus, the battery 1 is brought into a predetermined state of charge (SOC). Then, the power supply terminal part (a positive electrode terminal and a negative electrode terminal) of a power supply device is removed from the battery 1 on a jig
  • SOC state of charge
  • an internal resistance inspection process is performed on the battery 1 that has been subjected to the charge adjustment process.
  • the DC resistance of the battery 1 is measured for each of the batteries 1 and 1 using a power supply device, a voltmeter, and an ammeter (not shown), and the DC resistance of each of the batteries 1 and 1 is not more than a predetermined value.
  • This is a step of inspecting that there is.
  • the direct current resistance of each of the batteries 1 and 1 was measured using a known direct current resistance measurement method (DC-IR method).
  • the discharging process is started for each battery group (that is, for two jigs) composed of the same number (50) of batteries 1 and 1, respectively, every predetermined time TM (100 seconds), and Timing is adjusted so that the end of discharge in the discharge process of one battery group and the start timing of discharge in the discharge process of another battery group coincide. For this reason, in this discharge process, it is possible to always discharge a certain number (1,200) of the batteries 1 and 1. Therefore, the electric energy can be stably sent from the batteries 1 and 1 being discharged in the discharging process to the temperature adjustment device 110 (first heater 111), and the adjustment of the supply destination of the electric energy consumed in the temperature-controlled room 100 is easy. become.
  • the battery was discharged for 40 minutes in the discharging step, and the battery was charged for 60 minutes in the charging adjustment step.
  • discharging over a time other than 40 minutes or charging over a time other than 60 minutes may be performed.
  • the discharge time in the discharge process and the charge time in the charge adjustment process may be the same time.
  • the charge adjustment step is performed after the discharge step.
  • the discharge step may be performed or only the discharge step may be performed after the charge adjustment step.
  • each process was performed using the jig
  • two jigs are used as one set and the discharging process is performed simultaneously.
  • the discharging process may be performed using one jig or a combination of three or more jigs.
  • constant power discharge was performed in the discharge process, for example, constant current discharge may be used.

Abstract

The problem addressed is the provision of a method for producing batteries that uses energy efficiently when producing batteries. The method for producing batteries (1) includes: an aging step for housing a battery within a thermostatic chamber (100) for keeping the chamber temperature at a constant temperature using a temperature adjustment device (110) driven by electrical energy, and performing an aging process on the battery; and a discharge step for discharging the battery; wherein at least some of the electrical energy retrieved from the discharged battery in the discharge step is used as at least some of the electrical energy for driving the temperature adjustment device in the aging step for another battery.

Description

電池の製造方法Battery manufacturing method
 本発明は、電池をエージングするエージング工程と、電池を放電させる放電工程とを備える電池の製造方法に関する。 The present invention relates to a battery manufacturing method including an aging process for aging a battery and a discharging process for discharging the battery.
 近年、ハイブリッド自動車、電気自動車などの車両の駆動用電源として、充放電可能なリチウムイオン二次電池(以下、単に電池ともいう)などの二次電池が利用されている。 In recent years, secondary batteries such as rechargeable lithium ion secondary batteries (hereinafter also simply referred to as batteries) have been used as power sources for driving vehicles such as hybrid cars and electric cars.
 このような電池に関して、例えば、特許文献1には、電池を40℃以上90℃以下の保存温度で保存するエージング処理方法が開示されている。この特許文献1によれば、そのようなエージング処理を、製造して間もない初期の電池に行うことで、電池の内部抵抗の経時的な増加を抑制することができる。 Regarding such a battery, for example, Patent Document 1 discloses an aging treatment method in which the battery is stored at a storage temperature of 40 ° C. or higher and 90 ° C. or lower. According to Patent Document 1, such an aging process is performed on an initial battery that has just been manufactured, whereby an increase in internal resistance of the battery over time can be suppressed.
特開2000-340262号公報JP 2000-340262 A
 しかしながら、特許文献1では、恒温槽を用いてエージング処理を行っている。恒温槽は、通常、商用電源から供給される電気エネルギを駆動源とするヒータ等の温度調節装置を用いて、恒温槽内の槽内温度を調節して一定に保持している。このため、エージング処理を行う恒温槽を用いている間、温度調節装置で電気エネルギを消費する。 However, in Patent Document 1, aging treatment is performed using a thermostatic bath. The thermostat is usually kept constant by adjusting the temperature in the thermostat using a temperature control device such as a heater that uses electric energy supplied from a commercial power source as a drive source. For this reason, while using the thermostat which performs an aging process, an electrical energy is consumed with a temperature control apparatus.
 一方、例えば、電池製造の最終段階などにおいて、電池の充電状態(SOC)を所定の値に調整する場合がある。これは、電池のSOCを、劣化し難いSOCに調整することで、製造後から使用までの間における、電池の劣化の進行を抑制するためである。 On the other hand, for example, in the final stage of battery manufacture, the state of charge (SOC) of the battery may be adjusted to a predetermined value. This is because the battery SOC is adjusted to an SOC that is unlikely to deteriorate, thereby suppressing the progress of deterioration of the battery during the period from manufacture to use.
 このようにSOCを所定値に調整するにあたり、電源装置を用いて電池のSOCを所定の値まで下げるべく、電池を放電させることがある。この放電の際には、電気エネルギは、抵抗などに流して熱として消費してしまうことが多い。即ち、エージング処理では、電気エネルギを用いて熱エネルギを得ている一方、電池のSOCの調整では電気エネルギを熱エネルギとして捨てている。 In this way, when adjusting the SOC to a predetermined value, the battery may be discharged in order to lower the SOC of the battery to a predetermined value using the power supply device. In this discharge, the electric energy is often consumed as heat by flowing through a resistor or the like. That is, in the aging process, heat energy is obtained using electric energy, while in the adjustment of the SOC of the battery, the electric energy is discarded as heat energy.
 本発明は、かかる問題に鑑みてなされたものであって、電池の製造におけるエネルギの効率的利用を図った電池の製造方法を提供する。 The present invention has been made in view of such a problem, and provides a battery manufacturing method that efficiently uses energy in battery manufacturing.
 本発明の一態様は、電気エネルギで駆動する温度調節装置を用いて室内温度を一定に保持する恒温室の室内に電池を収容して、上記電池にエージング処理を施すエージング工程と、上記電池を放電させる放電工程と、を備える電池の製造方法であって、上記放電工程は、放電させた上記電池から取り出した電気エネルギの少なくとも一部を、他の電池についての上記エージング工程において、上記温度調節装置を駆動する電気エネルギの少なくとも一部に用いる電池の製造方法である。 One embodiment of the present invention includes an aging process in which a battery is accommodated in a temperature-controlled room that maintains a constant room temperature using a temperature control device that is driven by electric energy, and an aging process is performed on the battery. A discharge step for discharging the battery, wherein the discharge step includes adjusting the temperature in the aging step for at least a part of the electric energy extracted from the discharged battery. A battery manufacturing method used for at least a part of electric energy for driving the apparatus.
 上述の電池の製造方法では、放電工程で電池から取り出した電気エネルギの少なくとも一部を、他の電池についてのエージング工程において、温度調節装置を駆動する電気エネルギの少なくとも一部に用いる。このため、温度調節装置で、電池由来の電気エネルギを用いる分、全体として電気エネルギの消費を抑制することができ、エネルギの効率的利用を図ることができる。 In the battery manufacturing method described above, at least a part of the electric energy taken out of the battery in the discharging process is used as at least a part of the electric energy for driving the temperature control device in the aging process for other batteries. For this reason, consumption of electric energy can be suppressed as a whole by using the electric energy derived from the battery in the temperature adjusting device, and the energy can be used efficiently.
 なお、温度調節装置は、恒温室の室内温度を調整するものであり、例えば、ヒータあるいはクーラ(チラー)、温度センサ、及び、この温度センサで検知した室内温度に基づいてヒータあるいはクーラ(チラー)の駆動を制御する制御部を有する装置が挙げられる。また、エージング工程では、放電工程で電池から取り出した電気エネルギの少なくとも一部を、温度調節装置を駆動する電気エネルギの少なくとも一部に用いる。このため、例えば、電池から取り出した電気エネルギの一部を温度調節装置を駆動する電気エネルギの一部に用いても、取り出した電気エネルギの一部を温度調節装置を駆動する電気エネルギの全部に用いても、取り出した電気エネルギの全部を温度調節装置を駆動する電気エネルギの一部に用いても、或いは、取り出した電気エネルギの全部を温度調節装置を駆動する電気エネルギの全部に用いても良い。 The temperature adjusting device adjusts the room temperature of the temperature-controlled room. For example, the heater or the cooler (chiller), the temperature sensor, and the heater or cooler (chiller) based on the room temperature detected by the temperature sensor. And an apparatus having a control unit for controlling the driving of the apparatus. In the aging process, at least a part of the electric energy extracted from the battery in the discharging process is used as at least a part of the electric energy for driving the temperature control device. For this reason, for example, even if a part of the electric energy extracted from the battery is used as a part of the electric energy for driving the temperature control device, a part of the extracted electric energy is used for all the electric energy for driving the temperature control device. Even if it is used, all of the extracted electric energy is used for a part of the electric energy for driving the temperature adjusting device, or all the extracted electric energy is used for all of the electric energy for driving the temperature adjusting device. good.
 さらに、上述の電池の製造方法であって、前記放電工程は、各々同数の電池からなる電池グループについての上記放電工程が、所定時間間隔毎に開始され、かつ、一の電池グループの上記放電工程における放電の終了と、他の電池グループの上記放電工程における放電の開始のタイミングが一致するようにタイミング調整されてなる電池の製造方法とすると良い。 Furthermore, in the method for manufacturing a battery described above, the discharging step is started for each battery group including the same number of batteries, and the discharging step for one battery group. It is preferable that the battery is manufactured by adjusting the timing so that the end of the discharge in step 1 coincides with the start of discharge in the discharge step of the other battery group.
 上述の電池の製造方法では、放電工程は、各々同数の電池からなる電池グループについての放電工程が、所定時間間隔毎に開始され、かつ、一の電池グループの放電工程における放電の終了と、他の電池グループの放電工程における放電の開始のタイミングが一致するようにタイミング調整されている。このため、この放電工程では、常に一定の数の電池について放電させることができる。従って、放電工程で放電中の電池から温度調整装置へ電気エネルギを安定して送ることができ、恒温室で消費する電気エネルギの供給先の調整が容易になる。 In the above-described battery manufacturing method, the discharging process is started for each battery group including the same number of batteries, and at the end of discharging in the discharging process of one battery group, and the like. The timing is adjusted so that the discharge start timings in the discharge process of the battery groups coincide. For this reason, in this discharge process, it is possible to always discharge a certain number of batteries. Therefore, the electric energy can be stably sent from the battery being discharged in the discharging process to the temperature adjusting device, and the adjustment of the supply destination of the electric energy consumed in the temperature-controlled room becomes easy.
 さらに、上述の電池の製造方法であって、前記放電工程は、前記電池の前記放電を定電力放電により行う電池の製造方法とするのが好ましい。 Furthermore, in the battery manufacturing method described above, the discharging step is preferably a battery manufacturing method in which the discharging of the battery is performed by constant power discharge.
 上述の電池の製造方法では、放電工程において、電池の放電を定電力放電により行うので、放電工程内で放電している電池から、常に単位時間あたり一定の電力を得ることができる。従って、放電している電池から供給される電力の変動がなく、恒温室で消費する電気エネルギの供給先の調整がさらに容易になる。 In the battery manufacturing method described above, since the battery is discharged by constant power discharge in the discharging step, constant power per unit time can always be obtained from the battery discharged in the discharging step. Therefore, there is no fluctuation in the electric power supplied from the discharged battery, and it becomes easier to adjust the supply destination of the electric energy consumed in the temperature-controlled room.
実施形態にかかる電池の斜視図である。It is a perspective view of the battery concerning an embodiment. 実施形態にかかる電池の製造方法の各工程を示すフローチャートである。It is a flowchart which shows each process of the manufacturing method of the battery concerning embodiment. 実施形態にかかる電池の製造方法の工程を示す説明図である。It is explanatory drawing which shows the process of the manufacturing method of the battery concerning embodiment.
 (実施形態)
 次に、本発明の実施形態について、図面を参照しつつ説明する。まず、本実施形態にかかる電池1について、図1を参照しつつ説明する。この電池1は、いずれも帯状の正極板20、負極板30及びセパレータ40を備え、これらを捲回した捲回型の発電要素10をなすリチウムイオン二次電池である(図1参照)。なお、電池1は、図1に示すように、発電要素10を電池ケース80に収容してなる。
(Embodiment)
Next, embodiments of the present invention will be described with reference to the drawings. First, the battery 1 according to the present embodiment will be described with reference to FIG. The battery 1 is a lithium ion secondary battery that includes a belt-like positive electrode plate 20, a negative electrode plate 30, and a separator 40, and forms a wound power generation element 10 that is wound (see FIG. 1). In addition, the battery 1 accommodates the electric power generation element 10 in the battery case 80, as shown in FIG.
 続いて、電池1の製造方法について、図2,3を参照しつつ説明する。この電池1の製造方法は、図2に示すように、電池組立工程、初期充電工程、エージング工程、自己放電検査工程、放電工程、充電調整工程、内部抵抗検査工程の順で進む。なお、本実施形態では、電池1の製造方法の各工程を24時間稼働させる。 Subsequently, a method for manufacturing the battery 1 will be described with reference to FIGS. As shown in FIG. 2, the manufacturing method of the battery 1 proceeds in the order of a battery assembly process, an initial charging process, an aging process, a self-discharge inspection process, a discharging process, a charge adjustment process, and an internal resistance inspection process. In this embodiment, each process of the manufacturing method of the battery 1 is operated for 24 hours.
 まず、電池組立工程について説明する。溶媒中に、結着剤、正極活物質粒子及び導電材を分散、混練したペースト(図示しない)を、帯状のアルミ箔の両主面に塗布し乾燥させ、この乾燥させたペーストを圧縮して正極板20を作製した。一方、溶媒中に結着剤及び負極活物質粒子を分散、混練したペースト(図示しない)を、帯状の銅箔の両主面に塗布し乾燥させ、この乾燥させたペーストを圧縮して負極板30を作製した。 First, the battery assembly process will be described. A paste (not shown) in which a binder, positive electrode active material particles, and a conductive material are dispersed and kneaded in a solvent is applied to both main surfaces of a strip-shaped aluminum foil, dried, and the dried paste is compressed. A positive electrode plate 20 was produced. On the other hand, a paste (not shown) in which a binder and negative electrode active material particles are dispersed and kneaded in a solvent is applied to both main surfaces of a strip-shaped copper foil, dried, and the dried paste is compressed to form a negative electrode plate 30 was produced.
 上述のように作製した正極板20及び負極板30を、2枚の帯状のセパレータ40,40と共に捲回して発電要素10ができる。この発電要素10に、集電部材(図示しない)を溶接した後、この発電要素10を電池ケース80内に、電解液(図示しない)と共に封入して、電池1が組み立てられる(図1参照)。 The power generation element 10 is made by winding the positive electrode plate 20 and the negative electrode plate 30 produced as described above together with the two strip- shaped separators 40 and 40. After a current collecting member (not shown) is welded to the power generation element 10, the power generation element 10 is enclosed in a battery case 80 together with an electrolyte (not shown) to assemble the battery 1 (see FIG. 1). .
 次いで、複数(本実施形態では、25個)の電池1,1を、治具(図示しない)に搭載して固定する。これにより、25個の電池1,1について同時に各工程を行うことができる。 Next, a plurality (25 in this embodiment) of batteries 1 and 1 are mounted and fixed on a jig (not shown). Thereby, each process can be performed simultaneously about 25 batteries 1 and 1.
 次いで、初期充電工程を行う。なお、上述した治具1個に搭載した複数(25個)の電池1,1について、所定時間(本実施形態では、50秒)間隔毎に、その初期充電工程を開始する。また、各電池1,1毎に充電を行う。具体的には、図示しない電源装置を各電池1,1に接続し、定電流-定電圧充電を行い、電池1の充電状態をSOC100%相当にする。その後、各電池1,1から、電源装置の正極端子及び負極端子を取り外す。 Next, an initial charging process is performed. Note that the initial charging process is started at intervals of a predetermined time (in this embodiment, 50 seconds) for a plurality (25) of batteries 1 and 1 mounted on one jig described above. In addition, each battery 1 and 1 is charged. Specifically, a power supply device (not shown) is connected to each of the batteries 1 and 1, and constant current-constant voltage charging is performed, so that the charging state of the battery 1 is equivalent to SOC 100%. Thereafter, the positive terminal and the negative terminal of the power supply device are removed from each of the batteries 1 and 1.
 次いで、上述した初期充電工程を行った電池1について、エージング工程を行う。このエージング工程は、所定の温度T(本実施形態では、50℃)とした恒温室100を用いて、この恒温室100内に電池1を所定期間(本実施形態では、15時間)静置する工程である。このエージング工程を行うことにより、初期における電池の充電直後の反応性を抑制させ、安全性を高めることができる。 Next, an aging process is performed on the battery 1 that has undergone the initial charging process described above. In this aging process, a constant temperature chamber 100 having a predetermined temperature T (in this embodiment, 50 ° C.) is used, and the battery 1 is left in the constant temperature chamber 100 for a predetermined period (in this embodiment, 15 hours). It is a process. By performing this aging process, the reactivity immediately after charging the battery in the initial stage can be suppressed, and the safety can be improved.
 このエージング工程に用いる恒温室100は、室内温度を所定の温度T(50℃)に一定に保持することが可能な温度調節装置110を有する(図3参照)。この温度調節装置110は、それぞれ熱を発生させることができる第1ヒータ111、第2ヒータ112、これら第1ヒータ111及び第2ヒータ112で温めた空気を送風するためのファン113、第1ヒータ111のスイッチである第1スイッチ114、第2ヒータ112のスイッチである第2スイッチ115、及び、ファン113のスイッチであるファン用スイッチ116を含む。さらに、恒温室100の室内温度を測定する温度センサ117、及び、温度センサ117を通じて室内温度に検知すると共に、第1スイッチ114,第2スイッチ115,ファン用スイッチ116のオン/オフを各々制御する制御部118を含む。 The temperature-controlled room 100 used for this aging process has a temperature control device 110 capable of keeping the room temperature constant at a predetermined temperature T (50 ° C.) (see FIG. 3). The temperature adjusting device 110 includes a first heater 111 and a second heater 112 that can generate heat, a fan 113 for blowing air warmed by the first heater 111 and the second heater 112, and a first heater. A first switch 114 that is a switch 111, a second switch 115 that is a switch of the second heater 112, and a fan switch 116 that is a switch of the fan 113. Further, the temperature sensor 117 that measures the room temperature of the temperature-controlled room 100 and the room temperature are detected through the temperature sensor 117, and on / off of the first switch 114, the second switch 115, and the fan switch 116 is controlled. A control unit 118 is included.
 このうち、制御部118は、検知した恒温室100の室内温度に基づいて、第1ヒータ111、第2ヒータ112及びファン113の駆動を制御する。これにより、温度調節装置110は、恒温室100の室内温度を所定の温度T(50℃)に一定に保持する。 Among these, the control unit 118 controls the driving of the first heater 111, the second heater 112, and the fan 113 based on the detected room temperature of the temperature-controlled room 100. Thereby, the temperature control apparatus 110 keeps the room temperature of the temperature-controlled room 100 constant at the predetermined temperature T (50 ° C.).
 また、第2ヒータ112とファン113は、商用電源から供給される電気エネルギを用いて駆動される。一方、第1ヒータ111は、後述する放電工程で、放電させる電池1に接続しており、この電池1から取り出した電気エネルギで発熱する。従って、温度調節装置110は、後述する放電工程で、放電する電池1から電気エネルギが放出されている場合には、制御部118は第1スイッチ114をオンさせて、室内温度の保温にあたり、必要な熱エネルギの多くをこの第1ヒータ111の発熱でまかなう。なお、この際、恒温室100の室内温度が所定の温度Tから低下した場合には、制御部118は第2スイッチ115を一時的にオンさせて、室内温度の昇温を、第2ヒータ112の発熱でまかなう。 Also, the second heater 112 and the fan 113 are driven using electrical energy supplied from a commercial power source. On the other hand, the first heater 111 is connected to the battery 1 to be discharged in a discharge process to be described later, and generates heat with electric energy extracted from the battery 1. Therefore, the temperature control device 110 is necessary for maintaining the room temperature by turning on the first switch 114 when the electric energy is released from the battery 1 to be discharged in the discharge process described later. Most of the heat energy is covered by the heat generated by the first heater 111. At this time, if the room temperature of the temperature-controlled room 100 decreases from the predetermined temperature T, the control unit 118 temporarily turns on the second switch 115 to raise the temperature of the room to the second heater 112. It will be covered by the fever.
 一方、例えば、エージング工程を開始する前に、恒温室100を常温から所定の温度T(50℃)まで昇温する段階や、放電工程で放電させる電池1がまだない場合には、制御部118は第2スイッチ115をオンさせて、商用電源から供給される電気エネルギを用いて第2ヒータ112を発熱させる。なお、放電工程で放電させる電池1の数が増えてきたら、その電池1から放出する電気エネルギで第1ヒータ111を発熱させ、その分、第2ヒータ112での発熱を抑制する。このようにすることで、温度調整装置110を機能させつつ、商用電源から供給される電気エネルギの消費を抑えることができる。 On the other hand, for example, before starting the aging process, the temperature of the temperature-controlled room 100 is raised from room temperature to a predetermined temperature T (50 ° C.) or when there is no battery 1 to be discharged in the discharging process, the control unit 118. Turns on the second switch 115 to cause the second heater 112 to generate heat using electrical energy supplied from a commercial power source. If the number of batteries 1 to be discharged in the discharging process increases, the first heater 111 is caused to generate heat by the electric energy released from the battery 1 and the heat generation in the second heater 112 is suppressed accordingly. By doing in this way, consumption of the electrical energy supplied from a commercial power supply can be suppressed, making the temperature control apparatus 110 function.
 エージング工程は、上述した恒温室100を用いて行われる。なお、上述した初期充電工程と同様、前述した治具1個に搭載した複数(25個)の電池1,1について、所定時間(50秒)間隔毎に、そのエージング工程を開始する。 The aging process is performed using the above-described temperature-controlled room 100. Similar to the initial charging process described above, the aging process is started at predetermined intervals (50 seconds) for a plurality (25) of batteries 1 and 1 mounted on one jig described above.
 温度調節装置110により室内温度が所定の温度T(50℃)に一定に保持された恒温室100の室内に、電池1を投入し所定時間(15時間)が経過するまで、電池1を恒温室100内に静置する。なお、温度調節装置110の制御部118は、ファン113及び第1ヒータ111を駆動し続けると共に、恒温室100の室内に配置した温度センサ117を用いて、常時、恒温室100の室内温度を検知し、必要に応じて第2ヒータ112をも通電して、恒温室100内の室内温度を所定の温度T(50℃)に一定に保持している。 The battery 1 is inserted into the room of the temperature-controlled room 100 in which the room temperature is kept constant at a predetermined temperature T (50 ° C.) by the temperature control device 110 until the predetermined time (15 hours) elapses. Leave in 100. The control unit 118 of the temperature control device 110 continuously drives the fan 113 and the first heater 111, and always detects the room temperature of the temperature-controlled room 100 using the temperature sensor 117 disposed in the room of the temperature-controlled room 100. Then, the second heater 112 is energized as necessary to keep the room temperature in the temperature-controlled room 100 constant at a predetermined temperature T (50 ° C.).
 次いで、エージング工程を行った電池1について、自己放電検査工程を行う。なお、前述した初期充電工程,エージング工程と同様、前述した治具1個に搭載した複数(25個)の電池1,1について、所定時間(50秒)間隔毎に、自己放電検査工程を開始する。 Next, a self-discharge inspection process is performed on the battery 1 that has been subjected to the aging process. Similar to the initial charging process and the aging process described above, the self-discharge inspection process is started at predetermined intervals (50 seconds) for a plurality (25) of batteries 1 and 1 mounted on one jig described above. To do.
 所定のSOCになっている電池1を一定温度(本実施形態では、25℃)の環境下で所定期間(10日間)静置して、静置後の電池1が所定のSOCよりも低いかどうかを検査する。具体的には、所定期間静置後における、電池1の開放電圧BVOを各電池毎に測定し、この静置後の開放電圧BVOが、所定値よりも小さいか否かを判定する。なお、静置後の開放電圧BVOが所定値以上の場合には、次工程の充電調整工程に進む。逆に、静置後の開放電圧BVOが所定値よりも小さい電池1は出荷時に除外する。 Whether the battery 1 having a predetermined SOC is allowed to stand for a predetermined period (10 days) in an environment of a constant temperature (in this embodiment, 25 ° C.), and whether the battery 1 after being left is lower than the predetermined SOC Inspect whether. Specifically, the open circuit voltage BVO of the battery 1 after standing for a predetermined period is measured for each battery, and it is determined whether or not the open circuit voltage BVO after standing is smaller than a predetermined value. In addition, when the open circuit voltage BVO after stationary is more than predetermined value, it progresses to the charge adjustment process of the next process. On the contrary, the battery 1 whose open circuit voltage BVO after standing is smaller than a predetermined value is excluded at the time of shipment.
 次いで、電池1について、放電工程を行う。この放電工程は、次述する定電力放電装置200、及び、制御装置210を用いて、電池1を40分間にわたり定電力放電させる工程である。なお、この放電工程は、同一治具上の複数(本実施形態では、25個)の電池1,1を互いに直列接続させて行う。これにより、25個の電池1,1を同時に放電させることができる。 Next, the battery 1 is subjected to a discharging process. This discharging step is a step of discharging the battery 1 with constant power over 40 minutes using the constant power discharging device 200 and the control device 210 described below. This discharging step is performed by connecting a plurality (25 in this embodiment) of batteries 1 and 1 on the same jig in series. Thereby, 25 batteries 1 and 1 can be discharged simultaneously.
 この放電工程では、図3に示す複数(本実施形態では、50個)の定電力放電装置200,200、及び、これら複数の定電力放電装置200,200を通じて、電池1と温度調節装置110とを通電させるかどうかを各々制御する制御装置210を用いる。このうち、定電力放電装置200は、電池1から定電力放電で電気エネルギを放出させることができるように構成された回路部201、及び、この回路部201を通じて、電池1と温度調節装置110の第1スイッチ114との通電をオン/オフするスイッチ部202を有する(図3参照)。 In this discharge step, the battery 1 and the temperature control device 110 are passed through the plurality (50 in this embodiment) of constant power discharge devices 200, 200 shown in FIG. 3 and the plurality of constant power discharge devices 200, 200. The control device 210 for controlling whether or not to energize each is used. Among them, the constant power discharge device 200 includes a circuit unit 201 configured to discharge electric energy from the battery 1 by constant power discharge, and the battery 1 and the temperature control device 110 through the circuit unit 201. It has the switch part 202 which turns on / off electricity with the 1st switch 114 (refer FIG. 3).
 また、制御装置210は、図示しない時計を有しており、この時計に基づいて、各定電力放電装置200,200のスイッチ部202,202を各々オン/オフする。なお、前述した治具2個に搭載した複数(50個)の電池1,1について、所定時間TM(本実施形態では、100秒)間隔毎に、放電工程を開始する。具体的には、治具1個分の25個の電池1,1について定電力放電装置200を1個接続する。従って、制御装置210は、所定時間TM(100秒)毎に放電工程を開始させるために、各々電池1,1を接続した2つの定電力放電装置200,200の各スイッチ部202,202を、同時にオンさせる。 Further, the control device 210 has a timepiece (not shown), and on the basis of this timepiece, the switch units 202 and 202 of the constant power discharge devices 200 and 200 are turned on / off, respectively. It should be noted that the discharge process is started at intervals of a predetermined time TM (100 seconds in the present embodiment) for the plurality (50) of batteries 1 and 1 mounted on the two jigs described above. Specifically, one constant power discharge device 200 is connected to 25 batteries 1 and 1 for one jig. Therefore, in order to start the discharge process every predetermined time TM (100 seconds), the control device 210 includes the switch units 202 and 202 of the two constant power discharge devices 200 and 200 connected to the batteries 1 and 1, respectively. Turn on at the same time.
 また、放電工程では、40分間にわたって電池1,1に定電力放電を行うので、制御装置210は、スイッチ部202をオンしてから40分後に、2つの定電力放電装置200,200のスイッチ部202,202をそれぞれオフにする。 Further, in the discharging step, constant power discharge is performed on the batteries 1 and 1 for 40 minutes, so that the control device 210 switches the switch portions of the two constant power discharge devices 200 and 200 40 minutes after the switch portion 202 is turned on. Each of 202 and 202 is turned off.
 この際、制御装置210は、治具2個に搭載した電池1,1の放電の終了のタイミングと、治具2個に搭載した電池1,1の放電の開始のタイミングとが一致するようにタイミング調整を行う。具体的には、制御装置210は、所定時間TM(100秒)のタイミングで放電を終了させる電池1,1に接続する定電力放電装置200のスイッチ部202をオフにすると共に、そのタイミングで放電を開始させる電池1,1に接続する定電力放電装置200のスイッチ部202をオンにする。 At this time, the control device 210 ensures that the discharge end timing of the batteries 1 and 1 mounted on the two jigs coincides with the discharge start timing of the batteries 1 and 1 mounted on the two jigs. Adjust timing. Specifically, the control device 210 turns off the switch unit 202 of the constant power discharge device 200 connected to the batteries 1 and 1 whose discharge ends at a predetermined time TM (100 seconds), and discharges at that timing. The switch unit 202 of the constant power discharge device 200 connected to the batteries 1 and 1 to start the operation is turned on.
 以上のように、制御装置210が所定時間TM(100秒)間隔毎に、治具2個に搭載した複数(50個)の電池1,1について、定電力放電を開始していくと、放電させている電池1,1が50個ずつ増えていく。そして、しばらくすると(放電工程の開始から40分経過した後)、放電工程において、48個の治具に搭載した複数(1200個)の電池1,1が、常に放電していることになる。 As described above, when the control device 210 starts constant power discharge for a plurality (50 pieces) of batteries 1 and 1 mounted on two jigs every predetermined time TM (100 seconds), The number of batteries 1 and 1 being increased increases by 50. Then, after a while (after 40 minutes have elapsed from the start of the discharge process), in the discharge process, a plurality (1200) of batteries 1, 1 mounted on 48 jigs are always discharged.
 特に、本実施形態では、放電工程やエージング工程が24時間稼働であるので、放電工程の開始から40分経過した後、常に、放電工程では、一定数(1200個)の電池1,1が放電されて、エージング工程では、その電池1,1由来の電気エネルギを、温度調節装置110が安定的に用いる(消費する)。 In particular, in this embodiment, since the discharge process and the aging process are operated for 24 hours, after a lapse of 40 minutes from the start of the discharge process, a constant number (1,200) of batteries 1 and 1 are always discharged in the discharge process. In the aging process, the temperature adjustment device 110 stably uses (consumes) the electric energy derived from the batteries 1 and 1.
 次いで、放電工程を行った電池1について、充電調整工程を行う。この充電調整工程は、電池1について充電を行い、所定の充電状態(SOC)に調整する工程である。なお、前述した治具1個に搭載した複数(25個)の電池1,1について、所定時間(50秒)間隔毎に、その充電調整工程を開始する。 Next, a charge adjustment step is performed on the battery 1 that has been discharged. This charge adjustment step is a step in which the battery 1 is charged and adjusted to a predetermined state of charge (SOC). The charging adjustment process is started at predetermined intervals (50 seconds) for a plurality (25) of batteries 1 and 1 mounted on one jig described above.
 まず、図示しない電源装置を各電池1,1にそれぞれ接続する。なお、本実施形態の電源装置は、正極端子及び負極端子が対になった電極端子部を複数有しており、これら複数の電極端子部を通じて、電極端子部毎に接続した各電池1,1について、個々に独立して充電することができる。 First, a power supply (not shown) is connected to each of the batteries 1 and 1, respectively. In addition, the power supply device of this embodiment has a plurality of electrode terminal portions in which a positive electrode terminal and a negative electrode terminal are paired, and each battery 1, 1 connected to each electrode terminal portion through the plurality of electrode terminal portions. Can be charged individually.
 次いで、各電池1,1について、60分間にわたり定電流-定電圧充電を行う。即ち、電池1の端子間電圧BVが所定の電圧になるまで、定電流で充電する。その後、端子間電圧BVを所定の電圧に維持しつつ充電を続ける。この際、充電電流は徐々に小さくなる。かくして、電池1を所定の充電状態(SOC)にする。その後、治具上の電池1から、電源装置の電源端子部(正極端子及び負極端子)を取り外す。 Next, the batteries 1 and 1 are charged with a constant current-constant voltage for 60 minutes. That is, the battery 1 is charged with a constant current until the inter-terminal voltage BV of the battery 1 reaches a predetermined voltage. Thereafter, charging is continued while the inter-terminal voltage BV is maintained at a predetermined voltage. At this time, the charging current gradually decreases. Thus, the battery 1 is brought into a predetermined state of charge (SOC). Then, the power supply terminal part (a positive electrode terminal and a negative electrode terminal) of a power supply device is removed from the battery 1 on a jig | tool.
 次いで、充電調整工程を行った電池1について、内部抵抗検査工程を行う。この内部抵抗検査工程は、図示しない電源装置、電圧計及び電流計を用いて、電池1の直流抵抗を各電池1,1毎に測定し、各電池1,1の直流抵抗が所定の値以下にあることを検査する工程である。なお、各電池1,1の直流抵抗は、公知の直流抵抗測定法(DC-IR法)を用いて測定した。 Next, an internal resistance inspection process is performed on the battery 1 that has been subjected to the charge adjustment process. In this internal resistance inspection step, the DC resistance of the battery 1 is measured for each of the batteries 1 and 1 using a power supply device, a voltmeter, and an ammeter (not shown), and the DC resistance of each of the batteries 1 and 1 is not more than a predetermined value. This is a step of inspecting that there is. The direct current resistance of each of the batteries 1 and 1 was measured using a known direct current resistance measurement method (DC-IR method).
 この内部抵抗検査工程において電池1に問題がなかった場合、この電池1は出荷される。 If there is no problem with the battery 1 in this internal resistance inspection process, the battery 1 is shipped.
 以上より、本実施形態にかかる電池1の製造方法では、放電工程で電池1から取り出した電気エネルギの全てを、温度調節装置110(第1ヒータ111)を駆動する電気エネルギに用いる。このため、温度調節装置110で、電池1由来の電気エネルギを用いる分、全体として電気エネルギの消費を抑制することができ、エネルギの効率的利用を図ることができる。 As mentioned above, in the manufacturing method of the battery 1 according to the present embodiment, all of the electric energy extracted from the battery 1 in the discharging process is used for the electric energy for driving the temperature control device 110 (first heater 111). For this reason, consumption of electric energy can be suppressed as a whole by using the electric energy derived from the battery 1 in the temperature control device 110, and the energy can be used efficiently.
 また、放電工程は、各々同数(50個)の電池1,1からなる電池グループ(即ち、2治具分)についての放電工程が、所定時間TM(100秒)間隔毎に開始され、かつ、一の電池グループの放電工程における放電の終了と、他の電池グループの放電工程における放電の開始のタイミングが一致するようにタイミング調整されている。このため、この放電工程では、常に一定の数(1200個)の電池1,1について放電させることができる。従って、放電工程で放電中の電池1,1から温度調整装置110(第1ヒータ111)へ電気エネルギを安定して送ることができ、恒温室100で消費する電気エネルギの供給先の調整が容易になる。 In addition, the discharging process is started for each battery group (that is, for two jigs) composed of the same number (50) of batteries 1 and 1, respectively, every predetermined time TM (100 seconds), and Timing is adjusted so that the end of discharge in the discharge process of one battery group and the start timing of discharge in the discharge process of another battery group coincide. For this reason, in this discharge process, it is possible to always discharge a certain number (1,200) of the batteries 1 and 1. Therefore, the electric energy can be stably sent from the batteries 1 and 1 being discharged in the discharging process to the temperature adjustment device 110 (first heater 111), and the adjustment of the supply destination of the electric energy consumed in the temperature-controlled room 100 is easy. become.
 また、放電工程において、電池1の放電を定電力放電により行うので、放電工程内で放電している電池1,1から、常に単位時間あたり一定の電力を得ることができる。従って、放電している電池1,1から供給される電力の変動がなく、恒温室100で消費する電気エネルギの供給先の調整がさらに容易になる。 In addition, since the battery 1 is discharged by constant power discharge in the discharge process, constant power per unit time can always be obtained from the batteries 1 and 1 discharged in the discharge process. Therefore, there is no fluctuation in the electric power supplied from the discharged batteries 1 and 1, and the adjustment of the supply destination of the electric energy consumed in the temperature-controlled room 100 is further facilitated.
 以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。 As mentioned above, although this invention was demonstrated according to embodiment, it cannot be overemphasized that this invention is not limited to the said embodiment, It can change and apply suitably in the range which does not deviate from the summary.
 例えば、実施形態では、放電工程において、電池について40分間にわたり放電させ、充電調整工程において、電池に60分間にわたり充電した。しかし、例えば、40分間以外の時間にわたる放電や、60分間以外の時間にわたる充電を行っても良い。また、放電工程における放電の時間と、充電調整工程における充電の時間とを同じ時間にしても良い。 For example, in the embodiment, the battery was discharged for 40 minutes in the discharging step, and the battery was charged for 60 minutes in the charging adjustment step. However, for example, discharging over a time other than 40 minutes or charging over a time other than 60 minutes may be performed. Further, the discharge time in the discharge process and the charge time in the charge adjustment process may be the same time.
 また、実施形態の電池の製造方法では、放電工程の後に、充電調整工程を行ったが、例えば、充電調整工程の後に、放電工程を行ったり、放電工程のみを行っても良い。 In the battery manufacturing method of the embodiment, the charge adjustment step is performed after the discharge step. For example, the discharge step may be performed or only the discharge step may be performed after the charge adjustment step.
 また、25個の電池1,1を搭載する治具を用いて各工程を行ったが、例えば、電池単品や、25個以外の複数の電池1,1を搭載可能な治具を用いても良い。さらに、実施形態では、2治具を1組にして同時に放電工程を行ったが、1治具で行っても、3個以上の治具を組み合わせて同時に放電工程を行っても良い。また、放電工程において、定電力放電を行ったが、例えば、定電流放電としても良い。 Moreover, although each process was performed using the jig | tool which mounts the 25 batteries 1 and 1, for example, even if it uses the jig | tool which can mount several batteries 1 and 1 other than a battery single item, 25 pieces, etc. good. Furthermore, in the embodiment, two jigs are used as one set and the discharging process is performed simultaneously. However, the discharging process may be performed using one jig or a combination of three or more jigs. Moreover, although constant power discharge was performed in the discharge process, for example, constant current discharge may be used.
1 電池
100 恒温室
110 温度調節装置
TM 所定時間
1 battery 100 constant temperature room 110 temperature control device TM predetermined time

Claims (2)

  1.  電気エネルギで駆動する温度調節装置を用いて室内温度を一定に保持する恒温室の室内に電池を収容して、上記電池にエージング処理を施すエージング工程と、
     上記電池を放電させる放電工程と、を備える
    電池の製造方法であって、
     上記放電工程は、
      放電させた上記電池から取り出した電気エネルギの少なくとも一部を、他の電池についての上記エージング工程において、上記温度調節装置を駆動する電気エネルギの少なくとも一部に用いる
    電池の製造方法。
    An aging process in which a battery is accommodated in a temperature-controlled room that maintains a constant room temperature using a temperature control device driven by electric energy, and the battery is subjected to an aging treatment;
    A discharge process for discharging the battery, and a method for producing a battery comprising:
    The discharging step is
    A method for producing a battery, wherein at least a part of the electric energy taken out from the discharged battery is used as at least a part of the electric energy for driving the temperature control device in the aging process for another battery.
  2. 請求項1に記載の電池の製造方法であって、
     前記放電工程は、
      各々同数の電池からなる電池グループについての上記放電工程が、所定時間間隔毎に開始され、かつ、
      一の電池グループの上記放電工程における放電の終了と、他の電池グループの上記放電工程における放電の開始のタイミングが一致するようにタイミング調整されてなる
    電池の製造方法。
     
    A battery manufacturing method according to claim 1, comprising:
    The discharging step includes
    The discharge process for battery groups each comprising the same number of batteries is initiated at predetermined time intervals; and
    A battery manufacturing method in which timing is adjusted so that the end of discharge in the discharge step of one battery group coincides with the start timing of discharge in the discharge step of another battery group.
PCT/JP2010/068361 2010-10-19 2010-10-19 Method for producing batteries WO2012053056A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/068361 WO2012053056A1 (en) 2010-10-19 2010-10-19 Method for producing batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/068361 WO2012053056A1 (en) 2010-10-19 2010-10-19 Method for producing batteries

Publications (1)

Publication Number Publication Date
WO2012053056A1 true WO2012053056A1 (en) 2012-04-26

Family

ID=45974793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068361 WO2012053056A1 (en) 2010-10-19 2010-10-19 Method for producing batteries

Country Status (1)

Country Link
WO (1) WO2012053056A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110247A (en) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd Method of producing lithium secondary battery
JP2007250288A (en) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd Method for manufacturing non-aqueous electrolyte secondary battery
JP2008041526A (en) * 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd Manufacturing method and device of lithium secondary cell
JP2010080105A (en) * 2008-09-24 2010-04-08 Panasonic Corp Method of manufacturing nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110247A (en) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd Method of producing lithium secondary battery
JP2007250288A (en) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd Method for manufacturing non-aqueous electrolyte secondary battery
JP2008041526A (en) * 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd Manufacturing method and device of lithium secondary cell
JP2010080105A (en) * 2008-09-24 2010-04-08 Panasonic Corp Method of manufacturing nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US11415635B2 (en) Determining battery DC impedance
US8643342B2 (en) Fast charging with negative ramped current profile
US9263900B2 (en) Battery pack including a battery management system configured to control charging and discharging thereof
US8970182B2 (en) Fast charging of battery using adjustable voltage control
CN106797128B (en) System and method for rapidly charging a battery at low temperatures
US20130249488A1 (en) Battery pack charging system and method of controlling the same
KR101838507B1 (en) Sub battery recharging system for vehicle and method for controlling the same
US20110012562A1 (en) Low temperature charging of li-ion cells
KR101698766B1 (en) Battery pack, charging method of the battery pack, and vehicle including the battery pack
JP2015534458A (en) Portable electronic system including a charging device and method for charging a secondary battery
JP2015176821A (en) Method for charging lithium ion secondary battery
JP2014006251A (en) Battery pack, and soc algorithm applied to battery pack
JP2013201880A (en) Vehicle operation system and control method of the same
US20120299545A1 (en) Rechargeable battery power supply starter and cell balancing apparatus
JP2010198759A (en) Battery system and vehicle
JP2009033843A (en) Apparatus and method for charging
JP6532401B2 (en) Power storage system and control method of power storage system
JP6928061B2 (en) How to drive the battery and the battery
US20150295431A1 (en) Secondary battery system
CN103318045A (en) Vehicle and method of controlling the same
JP2011222409A (en) Lithium ion battery pack, power supply device using the same, and battery floodlight
JP2014171323A (en) Cell balance device
US20110199058A1 (en) Agm battery recovery and capacity tester
WO2012053056A1 (en) Method for producing batteries
JP2020017509A (en) Secondary battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP