WO2012051808A1 - 一种在时分双工系统中完成多用户多层波束成形的方法和装置 - Google Patents
一种在时分双工系统中完成多用户多层波束成形的方法和装置 Download PDFInfo
- Publication number
- WO2012051808A1 WO2012051808A1 PCT/CN2011/070499 CN2011070499W WO2012051808A1 WO 2012051808 A1 WO2012051808 A1 WO 2012051808A1 CN 2011070499 W CN2011070499 W CN 2011070499W WO 2012051808 A1 WO2012051808 A1 WO 2012051808A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- user
- beamforming
- data transmission
- layers
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0452—Multi-user MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
- H04B7/0486—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
Definitions
- the present invention relates to a multiple input and multiple output (MIMO) wireless mobile communication system, and more particularly to a method and apparatus for performing multi-user multilayer beam shaping in time division duplexing.
- MIMO multiple input and multiple output
- MIMO Multiple Input Multiple Output
- multiple data streams can be simultaneously transmitted through multiple layers by designing appropriate weight vector of the transmitting antenna and the receiving antenna, and data of multiple layers can be transmitted in parallel, and the layer is removed. Interference.
- the direction of the shaped beam can be designed by designing appropriate weight vectors of the transmitting antenna and the receiving antenna to distinguish multi-user signals and remove inter-user interference.
- the beamforming method distinguishes users by the location of the user, so that multiple users can reuse the same time and frequency resources. For small antenna spacing conditions, it is advantageous to control beam pointing, and is more suitable for applying beamforming techniques. At the same time, beamforming technology can also transmit the strongest directions in the same user's signal to take advantage of the strongest paths in the multipath channel environment.
- the beamforming technology works mainly by controlling the beam direction, and is more suitable for suburban scenes that are used in the air. Beamforming can achieve significant beam energy gains that can extend cell coverage. At the same time, the beamforming technology can also be used in complex urban environments.
- the beam direction algorithm can utilize the direction of several strongest paths, and the channel matrix decomposition algorithm can use several paths with the best channel capacity.
- Beamforming technology can obtain beam with characteristic direction by using antenna array structure, so obvious beam energy gain can be obtained, which can improve cell coverage and system capacity, reduce system interference and increase system capacity, improve link reliability, and increase peak rate. , beamforming technology can be effective To improve the performance of edge users, for LTE+ systems, existing single-stream beamforming technology can be extended to multi-stream beamforming technology, and multiple users use multiple data streams to improve the throughput of the entire system.
- the number of base station side antennas will be expanded to more than 8 and the number of terminal side antennas will be expanded to more than 4 for future beamforming.
- 3GPP 3rd Generation Partnership Project
- the technical problem to be solved by the present invention is to provide a method and apparatus for performing multi-user multi-layer beamforming in time division duplexing, which improves resource utilization of a spatial channel.
- the present invention provides a method for performing multi-user multi-layer beamforming in time division duplexing, comprising: determining a layer having data transmission capability of each user in a multiple input multiple output group, at each user
- the layer feature values corresponding to the layer having the data transmission capability are selected as the first W layer feature values in the order of the feature value reduction of each layer, and the layer corresponding to the W layer feature values is used as the beamforming use layer.
- the W layers use beamforming for data transmission, and W is a positive integer.
- the layer feature value refers to the feature value corresponding to the user's data transmission capability layer in the downlink channel matrix of the user.
- the above method may further include:
- the beamforming After determining the beamforming use layer, the beamforming uses the corresponding feature vector of the layer in the downlink channel matrix of the corresponding user as the transmission weight vector of the data stream of the layer.
- the step of determining a layer with data transmission capability of each user in the multiple input multiple output group includes: determining that the signal to noise ratio of the layer data received by the terminal is greater than a preset signal to noise ratio threshold, determining that the layer is capable of data transmission capability Floor.
- the value of W is less than or equal to the number of receiving antennas of all users in the multiple input multiple output group and The minimum of the number of base station transmit antennas.
- the present invention also provides an apparatus for performing multi-user multi-layer beamforming in time division duplexing, located in a base station, the apparatus being configured to: determine that each user in the multiple input multiple output group has The layer of the data transmission capability selects the first W layer feature values in the layer feature value of each layer of the feature value reduction value corresponding to the layer corresponding to each user having the data transmission capability, and corresponding the W layer feature values.
- the layer serves as a beamforming use layer, and the W layers use beamforming for data transmission, and W is a positive integer.
- the layer feature value refers to the feature value corresponding to the user's data transmission capability layer in the downlink channel matrix of the user.
- the apparatus is further configured to: after determining the beamforming use layer, use the beamforming feature layer as a transmission weight vector of the data stream of the layer in the corresponding user's downlink channel matrix.
- the device is configured to determine, by using the following manner, a layer with data transmission capability of each user in the multiple input multiple output group: determining that a signal to noise ratio of the layer data received by the terminal is greater than a preset signal to noise ratio threshold, determining the The layer is a layer with data transmission capability.
- the value of W is less than or equal to the minimum number of receiving antennas of all users in the multiple input multiple output group and the number of base station transmitting antennas.
- the solution of the present invention provides a multi-user beamforming strategy scheme using multiple layers at the same time, and comprehensively considers the comprehensive use of data of multiple layers of multiple users, for example, simultaneously using W layers to simultaneously transmit W data streams, which can improve system throughput.
- W layers to simultaneously transmit W data streams
- FIG. 1 is a flow chart of a method for completing multi-user multilayer beamforming in time division duplexing in an embodiment. Preferred embodiment of the invention
- a device for performing multi-user multi-layer beamforming in time division duplexing is located in a base station (e.g., an eNB) for determining a layer having data transmission capability for each user in a multiple input multiple output group, at each user
- the layer feature values corresponding to the layer having the data transmission capability are selected as the first W layer feature values in the order of the feature value reduction of each layer, and the layer corresponding to the W layer feature values is used as the beamforming use layer.
- the W layers use beamforming for data transmission, and W is a positive integer.
- the layer feature value refers to a corresponding feature value of the user's data transmission capability layer in the downlink channel matrix of the user.
- the value of W is less than or equal to the minimum number of receiving antennas of all users in the multiple input multiple output group and the number of base station transmitting antennas.
- the device After determining the beamforming use layer, the device shapes the corresponding feature vector in the downlink channel matrix of the corresponding user as the transmission weight vector of the data stream of the layer.
- the device determines the layer having data transmission capability among each user by using the following method: When it is judged that the signal to noise ratio of the layer data received by the terminal is greater than the preset signal to noise ratio threshold, the layer is determined to be a layer having data transmission capability.
- a method for completing multi-user multilayer beamforming in time division duplexing includes: Step 101: Determine a layer with data transmission capability of each user in the multiple input multiple output group.
- TDD Time Division Duplex
- the uplink and downlink transmissions are switched only by time variation, and the uplink channel and the downlink channel are generally considered to have reciprocity, that is, each user can pass.
- the uplink channel information directly obtains downlink channel information of each user, so that the base station side can obtain channel information of each user.
- the base station side can estimate the uplink channel matrix of the user according to the uplink row sounding reference signal (SRS pilot) of each user, and obtain the downlink channel matrix of each user by using the reciprocity of the TDD channel, for each user's downlink channel matrix.
- SRS pilot uplink row sounding reference signal
- N the number of lines
- M receiving antennas
- the corresponding feature value of the user's data transmission capability layer in the user's downlink channel matrix is the layer feature value.
- the first characteristic value 1 is the gain of the spatial channel layer 1; the second characteristic value 4 2 is the gain of the spatial channel layer 2; the fth characteristic value ⁇ is the gain of the spatial channel layer f.
- the signal-to-noise ratio of the data of layer 2 after reaching the receiving end is SNR ⁇ A ⁇ , and the signal-to-noise ratio of the data of layer f after reaching the receiving end is 5 ⁇ / ⁇ */1 # .
- the receiving end receives the correct block rate to reach a preset percentage ⁇ SNR threshold, which is the same for each user.
- the first column feature vector corresponding to 4 is the weight vector required for layer 1; the corresponding first column feature vector is the weight vector required for layer 2; corresponding to the first column feature The vector is the weight vector that layer f needs to use.
- the method for determining a layer with data transmission capability in each user includes: determining that the layer is a layer having data transmission capability when the signal to noise ratio of the layer data received by the terminal is greater than a preset signal to noise ratio threshold sw.
- a preset signal to noise ratio threshold sw For a certain user, the number of transmitting antennas on the base station side is N, and the number of receiving antennas of the user is M. It is judged that the signal to noise ratio of the layer data received by the terminal is greater than the number of layers of the preset signal to noise ratio threshold is k, and k features are obtained. Value and k feature vectors, and k ⁇ min ( M, N ).
- Step 102 Select, among the layer feature values corresponding to the layer with data transmission capability of each user, the first W layer feature values in the ranking of the feature values of each layer, and use the layer corresponding to the W layer feature values as a beam.
- the layer is formed using the layer, and the W layers are beamformed for data transmission, and W is a positive integer.
- This beamforming uses the corresponding feature vector of the layer in the corresponding user's downlink channel matrix as the transmission weight vector of the data stream of this layer.
- the value of W is less than or equal to the number of receiving antennas of all users in the multiple input multiple output group and the minimum of the number of base station transmitting antennas.
- the value of W is the best of the system when the number of receiving antennas of all users in the multiple input multiple output group and the minimum number of transmitting antennas of the base station are obtained.
- W layers are selected by the above method to improve channel capacity while preventing interference.
- Data for layer 1 to layer W when beamforming is used for data transmission of selected W layers Encoding and modulating, respectively loading the data of layer 1 to layer W with a dedicated Derivated Reference Signal (DRS) for each layer, and multiplying the data of layer 1 to layer W by corresponding transmission weights, thereby The data is mapped to a transmit antenna and spatially transmitted through the antenna. Complete the beamforming process.
- DRS Derivated Reference Signal
- the present invention simultaneously considers a multi-user beamforming strategy scheme of multiple layers, selects a preferred feature value and a corresponding layer for data transmission, and uses the feature vector corresponding to the preferred feature value as the transmission weight vector of the corresponding layer, which can be utilized to the utmost extent. Channel capacity.
- the solution of the present invention provides a multi-user beamforming strategy scheme using multiple layers at the same time, and comprehensively considers the comprehensive use of data of multiple layers of multiple users, for example, simultaneously using W layers to simultaneously transmit W data streams, which can improve system throughput.
- W layers to simultaneously transmit W data streams
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Description
一种在时分双工系统中完成多用户多层波束成形的方法和装置 技术领域
本发明涉及多输入多输出 (Multiple Input and Multiple Output , 简称 MIMO )无线移动通信系统, 尤其涉及一种在时分双工中完成多用户多层波 束成形的方法及装置。
背景技术
多输入多输出 ( MIMO)技术由于其有效提高信道容量的效果成为长期演 进系统(Long Term Evolution, 简称 LTE )和 LTE+系统中倍受关注的技术。
在单用户 MIMO模式中, 可以通过设计合适的发射天线和接收天线的权 值矢量来对多个数据流通过多个层同时进行传输, 并可以使多个层的数据之 间并行传输, 去除层间干扰。
在多用户 MIMO模式中, 可以通过设计合适的发射天线和接收天线的权 值矢量来设计赋形波束的方向, 区分多用户的信号, 去除用户间干扰。
波束成形的方法通过用户所在方位来区分用户, 从而可以实现多个用户 复用相同的时间、 频率资源。 对于小天线间距情况有利于控制波束指向, 更 加适合于应用波束成形 ( beamforming )技术。 同时波束成形技术也可以对同 一个用户的信号最强的几个方向进行传输, 以利用多径信道环境中最强的几 条径。
波束成形技术主要是通过控制波束方向来进行工作的, 比较适合用于空 旷的郊区场景。 波束成形可以获得明显的波束能量增益, 可以扩大小区的覆 盖。 同时波束成形技术也可以用于复杂的城区环境, 利用波束方向类的算法 可以利用信号最强的几个径的方向, 利用信道矩阵分解类的算法可以使用信 道容量最好的几条径。
波束成形技术利用天线阵列结构可以获得特征方向的波束, 因此可以获 得明显的波束能量增益, 这可以完善小区覆盖和系统容量, 减小系统干扰和 增加系统容量, 提高链路可靠性, 提高峰值速率, 波束成形技术可以有效的
改善边沿用户的性能,对于 LTE+系统来说,可以将现有的单流波束成形技术 扩展至多流波束成形技术, 多个用户使用多个数据流, 从而提高整个系统的 吞吐量。
对于即将开始制定的第三代合作伙伴计划( 3GPP )Release-10标准来说, 基站侧天线数目将会扩展至 8个以上,终端侧天线数目将会扩展至 4个以上, 对于未来的波束成形技术来说, 如何选择控制波束成形所使用的层并从而充 分并合理得利用空间信道资源成为重要的课题。
发明内容
本发明要解决的技术问题是提供一种在时分双工中完成多用户多层波束 成形的方法及装置, 提高空间信道的资源利用率。
为了解决上述技术问题, 本发明提供了一种在时分双工中完成多用户多 层波束成形的方法, 包括: 确定多输入多输出组内每个用户的具有数据传输 能力的层, 在各用户具有数据传输能力的层对应的层特征值中选择出取值位 于各层特征值降值排序中前 W个层特征值, 将此 W个层特征值对应的层作 为波束成形使用层, 对此 W个层使用波束成形进行数据传输, W为正整数。
上述方法还可以具有以下特点:
层特征值是指用户的具有数据传输能力的层在此用户的下行信道矩阵中 对应的特征值。
上述方法还可以包括:
确定所述波束成形使用层后, 将此波束成形使用层在相应用户的下行信 道矩阵中对应的特征向量作为此层的数据流的发射权值矢量。
上述方法还可以具有以下特点:
确定多输入多输出组内每个用户的具有数据传输能力的层的步骤包括: 判断终端接收到的层数据的信噪比大于预设信噪比门限时, 确定该层为具有 数据传输能力的层。
上述方法还可以具有以下特点:
W的值小于或等于所述多输入多输出组内所有用户的接收天线个数以及
基站发射天线个数中的最小值。
为了解决上述技术问题, 本发明还提供了一种在时分双工中完成多用户 多层波束成形的装置, 位于基站内, 所述装置设置为: 确定多输入多输出组 内每个用户的具有数据传输能力的层, 在各用户具有数据传输能力的层对应 的层特征值中选择出取值位于各层特征值降值排序中前 W个层特征值,将此 W个层特征值对应的层作为波束成形使用层,对此 W个层使用波束成形进行 数据传输, W为正整数。
上述装置还可以具有以下特点:
层特征值是指用户的具有数据传输能力的层在此用户的下行信道矩阵中 对应的特征值。
上述装置还可以具有以下特点:
所述装置还设置为: 确定所述波束成形使用层后, 将此波束成形使用层 在相应用户的下行信道矩阵中对应的特征向量作为此层的数据流的发射权值 矢量。
上述装置还可以具有以下特点:
所述装置是设置为使用下述方式确定多输入多输出组内每个用户的具有 数据传输能力的层: 判断终端接收到的层数据的信噪比大于预设信噪比门限 时, 确定该层为具有数据传输能力的层。
上述装置还可以具有以下特点:
W的值小于或等于所述多输入多输出组内所有用户的接收天线个数以及 基站发射天线个数中的最小值。
本发明方案给出了同时使用多个层的多用户波束成形策略方案, 统一考 虑多个用户多个层的数据综合使用, 例如同时使用 W个层同时发送 W个数 据流, 可以提高系统吞吐量, 最大限度得利用信道容量, 从而充分并合理得 利用空间信道的资源, 提高空间信道的资源利用率。
附图概述
图 1是实施例中在时分双工中完成多用户多层波束成形的方法流程图。 本发明的较佳实施方式
一种在时分双工中完成多用户多层波束成形的装置位于基站 (例如, eNB ) 内, 此装置用于确定多输入多输出组内每个用户的具有数据传输能力 的层, 在各用户具有数据传输能力的层对应的层特征值中选择出取值位于各 层特征值降值排序中前 W个层特征值, 将此 W个层特征值对应的层作为波 束成形使用层, 对此 W个层使用波束成形进行数据传输, W为正整数。
其中, 层特征值是指用户的具有数据传输能力的层在此用户的下行信道 矩阵中对应的特征值。 W的值小于或等于所述多输入多输出组内所有用户的 接收天线个数以及基站发射天线个数中的最小值。
此装置在确定所述波束成形使用层后, 将此波束成形使用层在相应用户 的下行信道矩阵中对应的特征向量作为此层的数据流的发射权值矢量。
此装置使用下述方法确定每个用户中具有数据传输能力的层: 判断终端 接收到的层数据的信噪比大于预设信噪比门限时, 确定该层为具有数据传输 能力的层。
如图 1所示, 在时分双工中完成多用户多层波束成形的方法, 包括: 步骤 101 , 确定多输入多输出组内每个用户的具有数据传输能力的层。 在 TDD (时分双工)系统中, 由于上行信道与下行信道所处的频段相同, 仅通过时间变化切换上行与下行传输, 通常认为上行信道与下行信道具有互 易性, 即可以通过每个用户的上行信道信息直接获得每个用户的下行信道信 息, 从而基站侧可以获得每个用户的信道信息。 基站侧可以根据每个用户的 上行行探测参考信号 ( SRS导频)估计用户的上行信道矩阵, 通过 TDD信道 的互易性得到每个用户的下行信道矩阵, 对于每个用户的下行信道矩阵进行 特征值分解, 得到 f个特征值和对应的 f个特征矢量, 其中 f是基站侧发射天
线数目 (N )和用户的接收天线数目 (M )中的最小值。 用户的具有数据传输 能力的层在此用户的下行信道矩阵中对应的特征值为层特征值。 第 1特征值 1„为空间信道层 1的增益; 第 2特征值 42为空间信道层 2的增益; 第 f特征 值 ^为空间信道层 f的增益。层 1的数据到达接收端后的信噪比为
层 2的数据到达接收端后的信噪比为 SNR^ A^ , 层 f的数据到达接收端后的 信噪比为 5Λ/^ */1#。 其中, 为接收端接收正确块率达到预设百分比 Ρ 的信噪比门限值, 此门限对于每个用户是相同的。 其中, 对应于 4的第一列 特征矢量即为层 1所需要使用的权值矢量; 对应于 的第一列特征矢量即为 层 2所需要使用的权值矢量; 对应于 的第一列特征矢量即为层 f所需要使 用的权值矢量。
确定每个用户中具有数据传输能力的层的方法包括: 判断终端接收到的 层数据的信噪比大于预设信噪比门限 sw 时,确定该层为具有数据传输能力 的层。 对于某一用户, 基站侧发射天线数目为 N, 用户的接收天线数目为 M, 判断终端接收到的层数据的信噪比大于预设信噪比门限 的层数为 k, 可 获得 k个特征值以及 k个特征矢量, 并且 k< min ( M, N ) 。
步骤 102 , 在各用户具有数据传输能力的层对应的层特征值中选择出取 值位于各层特征值降值排序中前 W个层特征值, 将此 W个层特征值对应的 层作为波束成形使用层,对此 W个层使用波束成形进行数据传输, W为正整 数。
将此波束成形使用层在相应用户的下行信道矩阵中对应的特征向量作为 此层的数据流的发射权值矢量。
W的值小于或等于多输入多输出组内所有用户的接收天线个数以及基站 发射天线个数中的最小值。 W的值为多输入多输出组内所有用户的接收天线 个数以及基站发射天线个数中的最小值时, 得到系统的性能较优。
对于单个用户而言, 可使用多个层同时进行数据传输, 但是当 MIMO组 中所有用户的传输数据的总层数大到一定程度时,就会导致用户之间的干扰, 使部分数据流难以正确解码。 通过上述方法选择出 W个层, 提高信道容量的 同时防止干扰。
对选出的 W个层使用波束成形进行数据传输时, 对层 1至层 W的数据
进行编码和调制, 对层 1 至层 W 的数据分别加载每个层各自的专用导频 ( Dedicated Reference Signal, 简称 DRS ) , 对层 1至层 W的数据分别乘以相 应的发射权值, 从而将数据映射至发射天线, 并通过天线进行空间信号发送。 完成波束成形过程。
本发明同时考虑多个层的多用户波束成形策略方案, 选择优选特征值以 及对应的层进行数据传输, 并将优选特征值对应的特征矢量作为相应层的发 射权值矢量, 可以最大限度得利用信道容量。
当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性
本发明方案给出了同时使用多个层的多用户波束成形策略方案, 统一考 虑多个用户多个层的数据综合使用, 例如同时使用 W个层同时发送 W个数 据流, 可以提高系统吞吐量, 最大限度得利用信道容量, 从而充分并合理得 利用空间信道的资源, 提高空间信道的资源利用率。
Claims
1、 一种在时分双工中完成多用户多层波束成形的方法, 其包括: , 确定多输入多输出组内每个用户的具有数据传输能力的层,
在各用户具有数据传输能力的层对应的层特征值中选择出取值位于各层 特征值降值排序中前 W个层特征值,
将此 W个层特征值对应的层作为波束成形使用层, 对此 W个层使用波 束成形进行数据传输, W为正整数。
2、 如权利要求 1所述的方法, 其中,
层特征值是指用户的具有数据传输能力的层在此用户的下行信道矩阵中 对应的特征值。
3、 如权利要求 1所述的方法, 其中,
确定所述波束成形使用层后, 所述方法还包括: 将此波束成形使用层在 相应用户的下行信道矩阵中对应的特征向量作为此层的数据流的发射权值矢 量。
4、 如权利要求 1所述的方法, 其中,
所述确定多输入多输出组内每个用户的具有数据传输能力的层的步骤包 括: 判断终端接收到的层数据的信噪比大于预设信噪比门限时, 确定该层为 具有数据传输能力的层。
5、 如权利要求 1所述的方法, 其中,
W的值小于或等于所述多输入多输出组内所有用户的接收天线个数以及 基站发射天线个数中的最小值。
6、 一种在时分双工中完成多用户多层波束成形的装置, 位于基站内, 所述装置设置为: 确定多输入多输出组内每个用户的具有数据传输能力 的层, 在各用户具有数据传输能力的层对应的层特征值中选择出取值位于各 层特征值降值排序中前 W个层特征值, 将此 W个层特征值对应的层作为波 束成形使用层, 对此 W个层使用波束成形进行数据传输, W为正整数。
7、 如权利要求 6所述的装置, 其中, 层特征值是指用户的具有数据传输能力的层在此用户的下行信道矩阵中 对应的特征值。
8、 如权利要求 6所述的装置, 其中,
所述装置还设置为: 确定所述波束成形使用层后, 将此波束成形使用层 在相应用户的下行信道矩阵中对应的特征向量作为此层的数据流的发射权值 矢量。
9、 如权利要求 6所述的装置, 其中,
所述装置是设置为使用下述方式确定多输入多输出组内每个用户的具有 数据传输能力的层: 判断终端接收到的层数据的信噪比大于预设信噪比门限 时, 确定该层为具有数据传输能力的层。
10、 如权利要求 6所述的装置, 其中,
W的值小于或等于所述多输入多输出组内所有用户的接收天线个数以及 基站发射天线个数中的最小值。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105181382A CN102457313A (zh) | 2010-10-22 | 2010-10-22 | 一种在时分双工中完成多用户多层波束成形的方法及装置 |
CN201010518138.2 | 2010-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012051808A1 true WO2012051808A1 (zh) | 2012-04-26 |
Family
ID=45974643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/070499 WO2012051808A1 (zh) | 2010-10-22 | 2011-01-21 | 一种在时分双工系统中完成多用户多层波束成形的方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102457313A (zh) |
WO (1) | WO2012051808A1 (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101753188A (zh) * | 2008-12-19 | 2010-06-23 | 大唐移动通信设备有限公司 | 多流波束赋形传输时信道的秩的估计方法、系统及装置 |
CN101834642A (zh) * | 2009-03-13 | 2010-09-15 | 夏普株式会社 | 多输入多输出传输方法、基站设备和通信系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19943688C2 (de) * | 1999-09-06 | 2001-09-13 | Hertz Inst Heinrich | Verfahren und Anordnung zur Strahlformung für den Downlink-Kanal in CDMA-basierten Mobilfunksystemen |
CN1167218C (zh) * | 2001-10-23 | 2004-09-15 | 北京邮电大学 | 无线通信系统中应用智能天线和联合检测的接收机结构及其方法 |
CN101729112A (zh) * | 2008-10-24 | 2010-06-09 | 中兴通讯股份有限公司 | 一种多输入多输出系统的多用户波束成形方法及装置 |
CN101800581A (zh) * | 2009-02-09 | 2010-08-11 | 中兴通讯股份有限公司 | 基于频分双工系统的多用户波束赋形方法与装置 |
CN101867398A (zh) * | 2009-04-20 | 2010-10-20 | 中兴通讯股份有限公司 | 一种适用于频分复用系统的单用户波束成形方法和装置 |
-
2010
- 2010-10-22 CN CN2010105181382A patent/CN102457313A/zh active Pending
-
2011
- 2011-01-21 WO PCT/CN2011/070499 patent/WO2012051808A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101753188A (zh) * | 2008-12-19 | 2010-06-23 | 大唐移动通信设备有限公司 | 多流波束赋形传输时信道的秩的估计方法、系统及装置 |
CN101834642A (zh) * | 2009-03-13 | 2010-09-15 | 夏普株式会社 | 多输入多输出传输方法、基站设备和通信系统 |
Non-Patent Citations (1)
Title |
---|
"CATT Enhanced Beamforming Technique for LTE-A", 3GPP TSG RAN WG1 MEETING #54, R1-082972, 18 August 2008 (2008-08-18) - 22 August 2008 (2008-08-22), JEJU, KOREA * |
Also Published As
Publication number | Publication date |
---|---|
CN102457313A (zh) | 2012-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10848212B2 (en) | Feedback based on codebook subset | |
JP4504293B2 (ja) | 複数アンテナを備えた無線通信装置および無線通信システム、無線通信方法 | |
JP5179647B2 (ja) | フィードバックオーバーヘッド減少のための信号伝送方法及びこのためのフィードバック情報伝送方法 | |
CN102624432B (zh) | 多层波束成形方法及实现多层波束成形的终端 | |
US8306089B2 (en) | Precoding technique for multiuser MIMO based on eigenmode selection and MMSE | |
US20110064008A1 (en) | Single-user beamforming method and apparatus suitable for frequency division duplex system | |
JP2019503094A (ja) | 無線通信方法及び無線通信装置 | |
WO2012100533A1 (zh) | 预编码处理方法、基站和通信系统 | |
JP2006319959A (ja) | 無線基地局装置、端末装置及び無線通信方法 | |
KR102306100B1 (ko) | Mumimo 간섭 채널 네트워크 환경에서의 간섭정렬 송수신 신호처리 장치 및 방법 | |
JP2012502539A (ja) | ビーム形成システムおよびビーム形成方法 | |
EP3921948A1 (en) | Method and apparatus for beamspace processing based on multiple beamspace bases | |
US20100323630A1 (en) | Reception apparatus, mobile equipment, communication system, and communication method | |
WO2012055131A1 (zh) | 一种频分双工系统下行多用户多径波束赋形方法及装置 | |
JP2003258770A (ja) | 送信装置 | |
WO2012058874A1 (zh) | 一种tdd系统的下行单用户多层波束成形方法和装置 | |
CN102624433B (zh) | 多径波束成形方法及实现多径波束成形的终端 | |
WO2012051808A1 (zh) | 一种在时分双工系统中完成多用户多层波束成形的方法和装置 | |
Gheorghe et al. | Massive MIMO technology for 5G adaptive networks | |
WO2012051849A1 (zh) | 一种进行多天线技术切换的方法和装置 | |
Janardhan et al. | Challenges And Energy Efficient Techniques For High Performance Wireless Communications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11833714 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11833714 Country of ref document: EP Kind code of ref document: A1 |