WO2012050341A2 - Fluidized bed reactor for preparing particulate polycrystalline silicon, and preparation method of polycrystalline silicon using same - Google Patents

Fluidized bed reactor for preparing particulate polycrystalline silicon, and preparation method of polycrystalline silicon using same Download PDF

Info

Publication number
WO2012050341A2
WO2012050341A2 PCT/KR2011/007522 KR2011007522W WO2012050341A2 WO 2012050341 A2 WO2012050341 A2 WO 2012050341A2 KR 2011007522 W KR2011007522 W KR 2011007522W WO 2012050341 A2 WO2012050341 A2 WO 2012050341A2
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
fluidized bed
silicon
bed reactor
supply pipe
Prior art date
Application number
PCT/KR2011/007522
Other languages
French (fr)
Korean (ko)
Other versions
WO2012050341A3 (en
Inventor
임천수
Original Assignee
(주)기술과가치
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)기술과가치 filed Critical (주)기술과가치
Publication of WO2012050341A2 publication Critical patent/WO2012050341A2/en
Publication of WO2012050341A3 publication Critical patent/WO2012050341A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/386Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only internally, i.e. the particles rotate within the vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/0015Plates; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/00902Nozzle-type feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00991Disengagement zone in fluidised-bed reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0218Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components of ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • B01J2219/0286Steel

Definitions

  • a chemical vapor deposition (CVD) method in which a silicon component is continuously deposited on a surface of a seed particle silicon by pyrolysis or hydrogen reduction of a reaction gas containing a silicon component is generally used.
  • CVD chemical vapor deposition
  • a bell jar type reactor has been mainly used for commercial mass production of polycrystalline silicon used in the semiconductor field, and the diameter of the polycrystalline silicon product manufactured using the reactor is about 50 to 300 mm. .
  • the vertical reactor in which electric resistance heating is the core, has a limit on the diameter of the rod that increases due to the precipitation of silicon, not only the product cannot be continuously produced, but also the power consumption for maintaining the surface of the silicon rod at a reaction temperature of about 1,000 ° C. or more is very large. It has a disadvantage. Due to this limitation, the process is forced to proceed to a batch process.
  • the silicon-containing gas decomposes itself at temperatures above about 300 to 400 ° C. (initial decomposition temperature) to cause homogeneous necleation reactions, as well as on the surface of the inner wall of the fluidized bed reactor where the reaction temperature is higher than the initial decomposition temperature. Silicon precipitates regardless of the type of material. Therefore, not only silicon precipitation occurs on the surface of the flowing silicon particles, but also a phenomenon in which silicon particles accumulate in a heating apparatus or the like inside the reactor.
  • Accumulation of the inner wall of the reactor of the silicon precipitates not only lowers the yield of the product, but also stops the continuous operation of the fluidized bed reactor due to generation of particles or chunks out of specification. Accumulation of silicon precipitates inside the reactor not only causes breakage or degradation of the reactor and operational safety problems, but also causes physical or thermal deformation and stress caused by the layer or mass of the precipitate, causing cracks or breakage in the reactor. This can increase the risk of an accident.
  • the productivity is lowered by stopping the continuous process and removing the accumulated part.
  • the fluidized bed reactor known to date has a disadvantage that the size distribution of the particles is wide because there is no method for selecting the product particles in a uniform size.
  • An object of the present invention to solve the above problems is to provide a fluidized bed reactor and a polycrystalline silicon manufacturing method using the same that can be prevented from accumulating in the heating device, etc. in the fluidized bed reactor.
  • Another object of the present invention is to provide a fluidized bed reactor and a method for producing polycrystalline silicon using the same, in which the particle size is uniformly produced when the polysilicon particles are manufactured through the fluidized bed reactor.
  • the present invention provides a fluidized bed reactor for producing particulate polycrystalline silicon in which a flow gas is injected from the lower part of the chamber and reaction occurs at the upper part of the chamber.
  • a tubular heating device located inside the chamber;
  • a flow gas first supply pipe formed under the chamber to supply the flow gas into the heating device;
  • a fluidized bed reactor for producing a particulate polysilicon characterized in that it comprises a venturi to increase the flow gas velocity inside the heating device.
  • the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that it further comprises a cone leading the silicon formed of particles in the chamber to the first supply pipe.
  • the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the chamber is formed in a cone shape to guide the silicon formed of particles to the first supply pipe.
  • the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that it comprises a reaction gas supply pipe for supplying a reaction gas containing a silicon component to the upper portion of the chamber at a position higher than the heating device.
  • the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that to form a second supply pipe in the lower chamber outside the heating device to supply a flow gas to the upper chamber.
  • the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that it further comprises a third supply pipe for supplying a flow gas to increase the speed of the material flowing through the venturi.
  • the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the silicon seed particles are supplied through a supply means, the silicon seed particles are supplied toward the fluidized bed from the bottom of the fluidized bed or from the top of the fluidized bed.
  • reaction gas of the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that at least one of hydrogen, argon and helium is included in the silicon component or the gas containing the silicon component.
  • the present invention is for producing a particulate polycrystalline silicon, characterized in that at least one selected from monosilane (SiH 4 ), dichlorosilane (SiH 2 Cl 2 ), trichlorosilane (SiHCl 3 ) and tetrachloride (SiCl 4 ) as the silicon component.
  • SiH 4 monosilane
  • SiH 2 Cl 2 dichlorosilane
  • SiHCl 3 trichlorosilane
  • SiCl 4 tetrachloride
  • the present invention also provides a fluidized bed reactor for producing particulate polysilicon, wherein the flow gas is selected from at least one of hydrogen, argon and helium.
  • the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the material of the chamber is any one of metal, alloy and ceramic. More specifically, the chamber provides a fluidized bed reactor for producing particulate polycrystalline silicon, characterized in that any one of stainless-steel, quartz, and carbon steel.
  • the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the inner wall of the chamber is coated with any one of silicon, silicon carbide (SiC), silicon nitride (Si 3 N 4 ) and Si 3 O 4 .
  • the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the heating device is installed perpendicular to the lower portion of the chamber, there is a space through which the silicon particles and gas can pass.
  • the present invention is the heating device is composed of a heating unit, a reflecting surface and an insulator, wherein the heating unit is located inside the tubular shape is formed so that heat can be transferred to the upper portion of the chamber through the inside of the heating apparatus
  • a fluidized bed reactor for producing silicon is provided.
  • the insulator is formed on the outside of the tubular shape, the material of the insulator is any one of a ceramic, a fabric made of silica fibers, silicon carbide (SiC) and silicon nitride (Si 3 N 4 ).
  • a fluidized bed reactor for producing particulate polycrystalline silicon.
  • the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the flow gas and the reaction gas introduced into the chamber is discharged through the discharge means.
  • the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the silicon seed particles discharged through the discharge means is sized by the flowing gas and re-introduced into the chamber.
  • the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the discharge means is located above the chamber.
  • the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the pressure in the chamber is 1 to 20bar.
  • the present invention also provides a hermetic chamber; A tubular heating device located inside the chamber; A flow gas first supply pipe formed under the chamber to supply the flow gas into the heating device; And in the fluidized bed reactor including a venturi for increasing the flow gas velocity inside the heater, the silicon grown by precipitation after the fluidized bed is formed in the upper part of the heater by injecting the reaction gas and the fluid gas separately, respectively, into the chamber. It provides a method for producing particulate polysilicon characterized in that the screening down and down through the first supply pipe.
  • the present invention provides a method for producing particulate polysilicon, characterized in that it further comprises a cone leading to the silicon formed of particles in the chamber to the first supply pipe.
  • the present invention provides a method for producing particulate polysilicon, characterized in that the chamber is formed in a cone shape to guide the silicon formed of particles to the first supply pipe.
  • the fluidized bed reactor for producing particulate polycrystalline silicon and the polycrystalline silicon manufacturing method using the same according to the present invention have an advantage that a phenomenon in which silicon particles accumulate in a heating apparatus is hardly generated.
  • the fluidized bed reactor for producing particulate polycrystalline silicon and the polycrystalline silicon manufacturing method using the same according to the present invention can be produced according to the particle size of the desired polycrystalline silicon by controlling the speed of the flow gas supplied from the first supply pipe, the second supply pipe and the third supply pipe. It has an effect.
  • the fluidized bed reactor for producing particulate polycrystalline silicon and the polycrystalline silicon manufacturing method using the same according to the present invention have a continuous process, and thus have an effect of long-term use and productivity.
  • the fluidized bed reactor for producing particulate polycrystalline silicon and the polycrystalline silicon manufacturing method using the same according to the present invention can greatly improve the polycrystalline silicon production capacity by operating the fluidized bed reactor at high pressure.
  • FIG. 1 and 2 show a cross-sectional view of a fluidized bed reactor for producing particulate polysilicon according to an embodiment of the present invention.
  • Figure 3 shows a perspective view of a heating apparatus according to an embodiment of the present invention.
  • the flow gas used in the present invention refers to a gas supplied so that a fluidized bed constituting a bed of silicon particles is formed at the top of the chamber.
  • the reaction gas used in the present invention refers to a gas containing a silicon component as a raw material gas used for producing polycrystalline silicon particles.
  • the process of producing polycrystalline silicon using the fluidized bed reactor according to the present invention the closed chamber to block the space from the outside; A tubular heating device located inside the chamber; A flow gas first supply pipe formed under the chamber to supply the flow gas into the heating device; And a venturi to increase the flow gas velocity inside the heater.
  • the fluidized bed reactor consisting of a cone for guiding silicon formed of particles
  • the lower part of the chamber injects a fluid gas and a reaction gas separately to form a fluidized bed in the upper part of the heating device, which is the chamber, to react.
  • the silicon precipitated by the reaction reaches a certain size, the weight of the silicon increases, and the silicon is lowered to the lower part of the chamber by gravity.
  • the lowered silicon is collected through the cone, and particles of a certain size are collected under the first supply pipe, and the remainder is passed through the venturi to the fluidized bed again.
  • the chamber may be formed in a cone shape without separately configuring the cone.
  • FIG. 1 and 2 show a cross-sectional view of a fluidized bed reactor for producing particulate polysilicon according to an embodiment of the present invention.
  • the chamber 110 is closed to block the space from the outside, and as shown in FIGS. 1 and 2, the upper chamber 110 preferably has a larger space than the lower space to facilitate the formation of the reaction fluidized bed 10.
  • the material of the chamber 110 may be a metal that can be water-cooled (water-cooling), alloys, ceramics, etc., more specifically, stainless-steel (stainless-steel) , Quartz, carbon steel, and the like can be used.
  • the inner wall of the chamber is a surface that may be exposed to silicon seed particles, etc., which is selected from the group consisting of silicon itself, silicon carbide (SiC), silicon nitride (Si 3 N 4 ), Si 3 O 4, and the like, or coating or lining Can be.
  • Figure 3 shows a perspective view of a heating apparatus according to an embodiment of the present invention.
  • the heating device 120 has a hollow tube shape and is installed vertically in the chamber 110.
  • the heating device 120 includes a heating part 121, a reflecting surface 122, and an insulator 123.
  • the heating unit 121 of the heating device 120 is preferably a halogen lamp or a graphite resistive heater.
  • the reflective surface 122 serves to reflect the heat generated from the heater to the inside of the tube shape.
  • the insulator 123 surrounds the heater 121 from the outside to prevent the heat of the heater 121 from dissipating toward the chamber 110 and to transmit heat only to the inside of the heater 120.
  • the heating unit 121 of the heating apparatus 120 may be connected to an AC or DC power supply to supply power. It is preferable that the material of the insulator 123 is not easily deformed at a high temperature. Non-limiting examples of the material of the insulator 123 include ceramics, fabrics made of silica fibers, silicon carbide (SiC), and silicon nitride (Si 3 N 4). ) May be made. Refrasil may be used as a specific example of the fabric made of silica fibers.
  • a predetermined space is formed between the cone 160 (the lower chamber of the chamber when no cone is formed (see FIG. 2)) and the heating apparatus 120, so that the silicon particles precipitated between the spaces are formed in the first supply pipe 130. To move to.
  • the cone 160 is formed to be inclined to descend to the first supply pipe 130 when the silicon particles precipitated through the fluidized bed reaction are lowered to the lower portion of the chamber 110 through the outside of the heating apparatus 120 under heavy load.
  • the inclination of the cone 160 is not particularly limited, and it is preferable to incline 30 to 60 degrees from the horizontal plane.
  • the first supply pipe 130 supplies a flow gas to move the heat inside the heating apparatus 120 to the fluidized bed 10 above the chamber 110, and at the same time, when the precipitated silicon particles descending through the cone 160 are light in weight, they move back to the fluidized bed 10. Play a role. That is, when the precipitated silicon particles reach the first supply pipe 130, they are affected by the flow gas supplied from the first supply pipe 130, and when the precipitated silicon particles have a predetermined size or more, they are collected through the first supply pipe 130. It serves as a passage for selecting and collecting the silicon particles so that it can be.
  • the flow gas it is preferable to use one or more selected from hydrogen, argon and helium.
  • the liquid may be accumulated in the heating unit 121 while being heated by the heating unit 121 of the heating apparatus 120 while moving back to the fluidized bed 10 by the flow gas supplied from the first supply pipe 130.
  • the supply rate of the fluidized bed and the silicon particles precipitated by the Venturi 150 move rapidly in the heating apparatus 120, so there is very little concern about accumulation in the heating unit 121.
  • the flow gas can also be supplied through the second supply pipe 180, the flow gas supplied through the second supply pipe 180 maintains the fluidized bed 10 so that the reaction in the fluidized bed 10 is sufficiently made, precipitated to a certain size due to the reaction Among the silicon particles, the small particles are prevented from descending the chamber 110 in the fluidized bed 10.
  • the fluidized bed reactor according to the present invention has the advantage of controlling the particle size of the desired polycrystalline silicon by controlling the speed of the flow gas supplied from the first supply pipe 130 and the second supply pipe 180.
  • the second supply pipe 180 may be formed in the lower portion of the chamber 110 outside the heating device 120 to supply the flow gas to the upper portion of the chamber 110.
  • the flow gas supplied through the second supply pipe 180 allows the fluidized bed 10 to be formed in the upper portion of the chamber 110 and prevents the precipitated silicon of a predetermined size or less from falling down and exists in the fluidized bed 10.
  • the second supply pipe 180 may be provided with one or several second supply pipe 180 in the lower portion of the chamber 110 outside the heating device 120 to supply the flow gas.
  • the third supply pipe 140 is located above the first supply pipe 130 and the inlet venturi 150 may further supply the flow gas.
  • the moving speed increases in the heating apparatus 120, so that the movement of the particles in the fluidized bed 10 is a fraction of the spout in the direction of the arrow shown in FIGS. 1 and 2. Will move. Therefore, most of the silicon particles precipitated in the fluidized bed 10 are lowered into the space between the heater 120 and the chamber 110 outer surface rather than descending through the tube inside the heater 120 when lowered.
  • venturi 150 is present inside the heating apparatus 120, and the moving speed of the flow gas supplied from the first supply pipe and the third supply pipe 140 by the venturi 150 may be further increased.
  • the venturi 150 may effectively raise the silicon particles when the silicon particles are not lowered to the first supply pipe 130 and are raised again by the supplied flow gas.
  • the Venturi 150 has a horizontal cut surface that is circular, and the diameter of the circular shape decreases toward the middle portion. That is, the diameter of the middle part is smaller than the diameter of the inlet of the Venturi 150.
  • the pressure of the middle part is lower than the inlet pressure of the Venturi 150 so that the silicon particles at the inlet side are effectively sucked into the middle part of the Venturi 150 and the chamber 110 Move to the top of the
  • the reaction gas supply pipe 170 is located at a position higher than the heating device 120 can supply the reaction gas containing the silicon component to the upper chamber 110.
  • the reaction gas may be used only as a silicon component, or may be used by adding one or more gas components among hydrogen, argon and helium.
  • the reaction gas may not only provide the silicon precipitation raw material, but also contribute to the flow of the silicon particles together with the flowing gas.
  • the proportion of the silicon component in the reaction gas is preferably 5 to 100 mol%.
  • the silicon component used as the reaction gas may be selected from one or more of monosilane (SiH 4 ), dichlorosilane (SiH 2 Cl 2 ), trichlorosilane (SiHCl 3 ), tetrachloride (SiCl 4 ), and the like.
  • Supply of the reaction gas may be supplied in the form of spraying through a nozzle (nozzle), etc., it is preferable to spray in the direction of the fluidized bed from the top of the chamber to maintain the fluidized bed 10 well.
  • the reaction gas may be supplied toward the fluidized bed at the top of the chamber and below the fluidized bed, or may be supplied downward toward the fluidized bed at the upper part of the chamber above the fluidized bed.
  • the reaction gas supply pipe 170 may supply one or several reaction gas supply pipes 170 at a position higher than the heating device 120 to supply the reaction gas.
  • the flowing gas and the unreacted gas passing through the fluidized bed 10 above the chamber 110 may be discharged through the discharge means 190 as waste gas, and the discharge means 190 constantly discharges the flow gas and the reaction gas to the chamber 110. It regulates the air pressure and allows the gas to be supplied continuously.
  • the unreacted silicon seed particles which may be discharged together with the unreacted silicon seed particles from the gas discharged through the discharge means 190 may be re-introduced through another passage of the discharge means 190 as shown in FIGS. 1 and 2. .
  • the gaseous materials used in the flow gas and the reaction gas may be supplied again after purification.
  • the unreacted silicon seed particles may be prevented from passing through the discharge means 190 to be treated.
  • silicon seed particles may be supplied from the upper portion of the chamber toward the fluidized bed (not shown).
  • the size of the seed particles is preferably 0.1 ⁇ 2.0mm, more preferably 0.3 ⁇ 1.2mm.
  • the silicon seed particles may be supplied to the fluidized bed by forming a separate supply means at the top of the chamber, or may be supplied to another passage that is re-introduced into the discharge means 190.
  • the silicon seed particles may be supplied toward the fluidized bed at the top of the chamber and below the fluidized bed, or may be supplied downward from the upper part of the chamber above the fluidized bed to the fluidized bed.
  • the outer surface of the chamber 110 uses cooling materials such as water, oil, gas, air, etc. for the purpose of protecting the reactor apparatus and workers, preventing thermal expansion, and other accidents. It is preferable to maintain the temperature below a certain temperature range. For this purpose, it is preferable to design and manufacture the circulation of the cooling fluid on the outer wall of the chamber 110. In addition, instead of the cooling, it is also possible to further install a heat insulating material on the outer surface of the chamber 110 to protect the worker and to prevent excessive heat loss.
  • cooling materials such as water, oil, gas, air, etc.
  • an observation unit may be included in the upper part of the chamber 110 to observe the reaction progress while the fluidized bed reactor is in operation, and may include a thermocouple such as a thermo-couple or pyrometer to measure temperature. can do.
  • the fluidized bed reactor according to the present invention does not limit the pressure in the chamber 110, so the pressure in the chamber 110 can be adjusted according to the intention of the operator, and the silicon precipitation reaction is possible at a high pressure, thereby greatly improving the production capacity.
  • the preferred pressure in the chamber 110 is preferably 1 to 20 bar, more preferably 3 to 6 bar, but is not limited thereto. Pressure relief valves can also be installed for emergencies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention relates to a fluidized bed reactor for preparing particulate polycrystalline silicon, and a preparation method of polycrystalline silicon using the same. More specifically, the present invention provides a fluidized bed reactor for preparing particulate polycrystalline silicon in which a flowing gas is injected at a lower portion of a chamber and reaction is carried out at an upper portion of the chamber, and a preparation method of polycrystalline silicon using the same, wherein the fluidized bed reactor for preparing particulate polycrystalline silicon comprises: a closed chamber; a tubular heating device placed inside the chamber; a first supply pipe for supplying the flowing gas into the heating device, formed at the lower portion of the chamber; and a venturi for increasing the velocity of the flowing gas inside the heating device.

Description

입자형 다결정실리콘 제조용 유동층 반응기 및 이를 이용한 다결정 실리콘 제조방법Fluidized bed reactor for producing particulate polycrystalline silicon and polycrystalline silicon manufacturing method using the same
본 발명은 다결정실리콘(polycrystalline silicon) 제조용 유동층 반응기 및 이를 이용한 다결정 실리콘 제조방법에 관한 것으로서, 보다 상세하게는 유동층 반응기를 이용하여 입자형태의 다결정실리콘을 대량으로 생산하는데 있어 가열장치에 실리콘이 석출되어 누적되는 것을 효율적으로 방지하여 반응기를 연속적으로 운전할 뿐만 아니라 입자크기를 선별하고 고순도의 실리콘 입자를 생산할 수 있는 입자형 다결정실리콘 제조용 유동층 반응기 및 이를 이용한 다결정 실리콘 제조방법에 관한 것이다.The present invention relates to a fluidized bed reactor for producing polycrystalline silicon and a method for producing polycrystalline silicon using the same, and more particularly, in the production of a large amount of polycrystalline silicon in the form of particles using a fluidized bed reactor, silicon is deposited in a heating apparatus. The present invention relates to a fluidized bed reactor for producing polycrystalline silicon and a method for producing polycrystalline silicon using the same, which efficiently prevents accumulation and not only continuously operate the reactor but also select particle sizes and produce high purity silicon particles.
다결정실리콘을 제조하기 위하여 실리콘 성분을 함유하는 반응가스의 열분해 또는 수소환원 반응으로 종입자 실리콘 표면에 실리콘 성분을 계속적으로 석출시키는 화학기상증착(Chemical Vapor Deposition: CVD) 방식이 일반적으로 사용된다. 그러나 이 공법은 batch process로서 생산 시간이 길다.In order to prepare polycrystalline silicon, a chemical vapor deposition (CVD) method in which a silicon component is continuously deposited on a surface of a seed particle silicon by pyrolysis or hydrogen reduction of a reaction gas containing a silicon component is generally used. However, this process is a batch process with a long production time.
이와 같이 반도체 분야에 사용되는 다결정실리콘의 상업적 대량생산을 위하여, 주로 종형(bell jar type)의 반응기가 사용되어 오고 있으며, 이 반응기를 사용하여 제조된 다결정실리콘 제품의 직경은 약 50 ∼ 300 mm이다. 전기저항가열이 핵심인 상기 종형 반응기는 실리콘 석출로 증가하는 봉의 직경에 한계가 있으므로 제품을 연속적으로 생산할 수 없을 뿐만 아니라, 약 1,000 ℃ 이상의 반응온도로 실리콘 봉 표면을 유지시키기 위한 전력소모량이 아주 큰 단점을 가지고 있다. 이러한 한계로 인해 상기 공정은 batch 공정으로 진행할 수 밖에 없다.As such, a bell jar type reactor has been mainly used for commercial mass production of polycrystalline silicon used in the semiconductor field, and the diameter of the polycrystalline silicon product manufactured using the reactor is about 50 to 300 mm. . Since the vertical reactor, in which electric resistance heating is the core, has a limit on the diameter of the rod that increases due to the precipitation of silicon, not only the product cannot be continuously produced, but also the power consumption for maintaining the surface of the silicon rod at a reaction temperature of about 1,000 ° C. or more is very large. It has a disadvantage. Due to this limitation, the process is forced to proceed to a batch process.
따라서, 이러한 단점을 해결하기 위해, 최근에는 크기가 약 0.5 ∼ 3.0 mm정도인 입자(粒子)형태로 다결정실리콘을 연속적으로 생산할 수 있게 하는 유동층 반응기를 응용한 실리콘 석출공정이 개발되었다. 이 방법에 따르면, 반응기 하부에서 상부 방향으로 공급되는 유동가스에 의해 실리콘 입자들이 유동층(fluidized bed)을 형성하고, 고온으로 가열된 이들 실리콘 입자표면에 반응가스 중의 실리콘 성분이 결합함으로써 입자가 성장하게 되어 다결정실리콘 제품이 생산된다. 이때, 크기가 작은 실리콘 종입자(種粒子, seed crystal)는 실리콘 성분의 지속적인 석출로 커짐에 따라 유동성을 상실하여 유동층 하부로 점차 가라앉게 된다. 이렇게 성장된 제품 입자는 선별되어 제품 수집 쪽으로 배출되며, 미성장 입자는 연속적으로 유동층에 유입되어 계속 석출시킨다. 여기서 실리콘 종입자는 유동층 내부로 연속적 또는 주기적으로 충진할 수 있다.Therefore, in order to solve this disadvantage, recently, a silicon precipitation process using a fluidized bed reactor capable of continuously producing polycrystalline silicon in the form of particles having a size of about 0.5 to 3.0 mm has been developed. According to this method, the silicon particles form a fluidized bed by the flowing gas supplied from the lower part of the reactor to the upper direction, and the silicon component in the reaction gas is bonded to the surface of these silicon particles heated to a high temperature so that the particles grow. To produce polycrystalline silicon products. At this time, the small size silicon seed particles (種 粒子, seed crystal) is lost to the fluidity as it increases due to the continuous precipitation of the silicon component gradually sinks to the bottom of the fluidized bed. The product particles thus grown are sorted and discharged toward the product collection, while ungrown particles are continuously introduced into the fluidized bed and continue to precipitate. The silicon seed particles can here be continuously or periodically filled into the fluidized bed.
이와 같이 유동층 반응기를 이용하여 제조된 다결정실리콘은 반도체웨이퍼의 기본소재인 실리콘 단결정의 제조에 주로 사용된다. 또한, 유동층 반응기는 석출반응이 일어날 수 있는 실리콘 입자들의 표면적이 아주 커서, 같은 반응조건에서의 반응수율이 높을 뿐만 아니라 반응이 지속적으로 유지될 수 있는 장점이 있다.Polycrystalline silicon prepared using a fluidized bed reactor as described above is mainly used for the production of silicon single crystal, which is a basic material of semiconductor wafers. In addition, the fluidized bed reactor has a very large surface area of the silicon particles that can be precipitated, the reaction yield is high under the same reaction conditions, there is an advantage that the reaction can be maintained continuously.
그렇지만 실리콘 함유 가스는 약 300∼400℃의 온도 (초기분해온도) 이상에서 스스로 분해하여 동질성 입자(homogeneous necleation) 형성 반응을 일으킬 뿐만 아니라 반응온도가 초기분해 온도보다 높은 유동층 반응기 내부벽의 표면에는 그 표면의 재질 종류에 관계없이 실리콘이 석출된다. 따라서, 유동중인 실리콘 입자들 표면에서 실리콘 석출이 일어날 뿐만 아니라, 반응기 내부에 가열장치 등에 실리콘 입자가 석출물이 누적되는 현상이 발생한다.However, the silicon-containing gas decomposes itself at temperatures above about 300 to 400 ° C. (initial decomposition temperature) to cause homogeneous necleation reactions, as well as on the surface of the inner wall of the fluidized bed reactor where the reaction temperature is higher than the initial decomposition temperature. Silicon precipitates regardless of the type of material. Therefore, not only silicon precipitation occurs on the surface of the flowing silicon particles, but also a phenomenon in which silicon particles accumulate in a heating apparatus or the like inside the reactor.
이와 같은 실리콘 석출물의 반응기 내벽 누적은 제품의 수율을 저하 시킬뿐만 아니라, 규격 외의 입자 또는 덩어리(chunk)의 발생으로 유동층 반응기의 연속 운전을 정지하여야 한다. 반응기 내부에서 발생하는 실리콘 석출물의 누적은 반응기의 파손이나 성능 저하 및 운전상의 안전 문제를 초래할 뿐만 아니라, 그 석출물 층 또는 덩어리에 의한 물리적 또는 열적 변형과 응력을 유발하여 반응기 내부의 균열이나 파손을 일으킬 수 있어 사고의 위험성이 매우 높아지게 된다.Accumulation of the inner wall of the reactor of the silicon precipitates not only lowers the yield of the product, but also stops the continuous operation of the fluidized bed reactor due to generation of particles or chunks out of specification. Accumulation of silicon precipitates inside the reactor not only causes breakage or degradation of the reactor and operational safety problems, but also causes physical or thermal deformation and stress caused by the layer or mass of the precipitate, causing cracks or breakage in the reactor. This can increase the risk of an accident.
대한민국 등록특허 제0411180호 "다결정실리콘의 제조방법과 장치"에서는 유동층 반응기를 이용하여 입자형태의 다결정실리콘을 대량으로 생산하는데 있어 염화수소를 포함하는 에칭(etching)가스를 공급하는 노즐을 장착함으로써 반응가스 공급수단의 표면에 실리콘이 석출되어 누적되는 것을 효율적으로 방지하여 반응기를 연속적으로 운전할 수 있게 하는 다결정실리콘의 제조방법과 그 장치가 개시되어 있으나, 상기 특허는 석출된 실리콘입자들은 가열수단을 직접 접하면서 아래로 하강하게 되어 가열수단에 실리콘 입자가 누적되는 문제점이 발생한다. 염화 수소를 이용하는 에칭(etching)하는 공정은 제품인 다결정체 실리콘을 부식하여 수율을 희생하게 된다. Republic of Korea Patent No. 0411180 "Method and apparatus for producing polycrystalline silicon" in the production of a large amount of polycrystalline silicon in the form of a particle using a fluidized bed reactor by mounting a nozzle for supplying an etching gas containing hydrogen chloride There is disclosed a method and apparatus for producing polycrystalline silicon which effectively prevents the deposition and accumulation of silicon on the surface of the supply means and allows the reactor to be operated continuously. However, the patent discloses that the precipitated silicon particles directly contact the heating means. While falling down, there is a problem that silicon particles accumulate in the heating means. The etching process using hydrogen chloride may corrode polycrystalline silicon as a product to sacrifice yield.
또한, 미국 등록특허 제7029632호에서는 가열장치가 내부 반응관의 외측에 위치하고 동시에 반응관에 직접 접촉하지 않고 가열대역 주위에 배치되는 방사열원으로 상기 방사원은 방사열에 의하여 실리콘 입자를 가열대역 내에서 반응온도 이상에서의 가열을 방사열에 의해 행하는 것을 특징으로 한다. 그러나, 상기 특허는 가열장치에 의해 가열된 실리콘 입자는 반응을 하면서 가열장치와 접해 있는 내부 반응관에 실리콘이 누적되는 문제점이 발생한다.In addition, US Pat. No. 7029632 discloses a radiant heat source in which a heating device is located outside the inner reaction tube and at the same time disposed around the heating zone without directly contacting the reaction tube. The radiation source reacts the silicon particles in the heating zone by radiant heat. It is characterized by heating above the temperature by radiant heat. However, the patent has a problem that the silicon particles heated by the heating device reacts and the silicon accumulates in the inner reaction tube in contact with the heating device.
상기의 실리콘 입자의 누적이 생기는 경우 연속 공정을 중단하고 누적된 부분을 제거해야함으로 생산성이 낮아진다. 또한 지금까지 알려진 유동층 반응기로는 제품 입자를 균일한 크기로 선별할 수 있는 방법이 없어 입자의 크기 분포가 넓어지는 단점이 있다.In the case where the accumulation of the silicon particles occurs, the productivity is lowered by stopping the continuous process and removing the accumulated part. In addition, the fluidized bed reactor known to date has a disadvantage that the size distribution of the particles is wide because there is no method for selecting the product particles in a uniform size.
따라서, 다결정실리콘 입자의 제조시 반응기 내부에 실리콘이 누적되는 것을 최소화하여 연속 작업을 할 수 있으면서 동시에 균일한 분포를 가진 입자를 생산할 수 있는 반응기의 개발이 소망되었다.Therefore, it has been desired to develop a reactor capable of producing continuous particles while at the same time producing particles having a uniform distribution while minimizing the accumulation of silicon inside the reactor during the production of polysilicon particles.
상기 문제점을 해결하기 위해 본 발명의 목적은 유동층 반응기에서 가열장치 등에 누적되는 것을 방지할 수 있는 유동층 반응기 및 이를 이용한 다결정 실리콘 제조방법을 제공하는 데 있다.An object of the present invention to solve the above problems is to provide a fluidized bed reactor and a polycrystalline silicon manufacturing method using the same that can be prevented from accumulating in the heating device, etc. in the fluidized bed reactor.
본 발명의 다른 목적은 유동층 반응기를 통한 다결정실리콘 입자를 제조할 경우 입자크기를 균일하게 제조할 수 있는 유동층 반응기 및 이를 이용한 다결정 실리콘 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a fluidized bed reactor and a method for producing polycrystalline silicon using the same, in which the particle size is uniformly produced when the polysilicon particles are manufactured through the fluidized bed reactor.
상기 목적을 달성하기 위해 본 발명은 챔버 하부에서 유동가스를 주입하여 챔버 상부에서 반응이 일어나는 입자형 다결정실리콘 제조용 유동층 반응기에 있어서, 밀폐형의 챔버; 상기 챔버 내부에 위치한 관 형태의 가열장치; 상기 가열장치 내부로 유동가스가 공급될 수 있도록 챔버 하부에 형성된 유동가스 제1공급관; 및 상기 가열장치 내부에 유동가스 속도를 증가시키는 벤츄리를 포함하는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In order to achieve the above object, the present invention provides a fluidized bed reactor for producing particulate polycrystalline silicon in which a flow gas is injected from the lower part of the chamber and reaction occurs at the upper part of the chamber. A tubular heating device located inside the chamber; A flow gas first supply pipe formed under the chamber to supply the flow gas into the heating device; And it provides a fluidized bed reactor for producing a particulate polysilicon characterized in that it comprises a venturi to increase the flow gas velocity inside the heating device.
또한 본 발명은 상기 챔버 내에서 입자로 형성된 실리콘을 상기 제1공급관으로 인도하는 콘을 더 포함하는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In another aspect, the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that it further comprises a cone leading the silicon formed of particles in the chamber to the first supply pipe.
또한 본 발명은 상기 챔버 하부가 입자로 형성된 실리콘을 상기 제1공급관으로 인도할 수 있도록 콘형상으로 이루어진 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In another aspect, the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the chamber is formed in a cone shape to guide the silicon formed of particles to the first supply pipe.
또한 본 발명은 상기 가열장치보다 높은 위치에서 챔버 상부로 실리콘 성분을 포함한 반응가스를 공급하는 반응가스 공급관이 포함되는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In another aspect, the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that it comprises a reaction gas supply pipe for supplying a reaction gas containing a silicon component to the upper portion of the chamber at a position higher than the heating device.
또한 본 발명은 가열장치 외부의 챔버 하부에서 제2공급관을 형성하여 유동가스를 챔버 상부로 공급하는 것을 특징으로 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In another aspect, the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that to form a second supply pipe in the lower chamber outside the heating device to supply a flow gas to the upper chamber.
또한 본 발명은 상기 벤츄리를 통해 유동되는 물질의 속도를 높이기 위해 유동가스를 공급하는 제3공급관이 더 포함되는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In another aspect, the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that it further comprises a third supply pipe for supplying a flow gas to increase the speed of the material flowing through the venturi.
또한 본 발명은 실리콘 종입자가 공급수단을 통해 공급하되, 상기 실리콘 종입자는 유동층의 아래쪽 또는 유동층의 위쪽에서 유동층을 향해 공급되는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In another aspect, the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the silicon seed particles are supplied through a supply means, the silicon seed particles are supplied toward the fluidized bed from the bottom of the fluidized bed or from the top of the fluidized bed.
또한 본 발명의 상기 반응가스는 실리콘 성분이 포함되거나 또는 실리콘 성분이 포함되는 가스에 수소, 아르곤 및 헬륨 중 1이상이 포함되는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In addition, the reaction gas of the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that at least one of hydrogen, argon and helium is included in the silicon component or the gas containing the silicon component.
또한 본 발명은 상기 실리콘 성분으로 모노실란(SiH4), 이염화실란(SiH2Cl2), 삼염화실란(SiHCl3) 및 사염화실란(SiCl4) 중에서 1 이상 선택된 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In addition, the present invention is for producing a particulate polycrystalline silicon, characterized in that at least one selected from monosilane (SiH 4 ), dichlorosilane (SiH 2 Cl 2 ), trichlorosilane (SiHCl 3 ) and tetrachloride (SiCl 4 ) as the silicon component. Provide a fluidized bed reactor.
또한 본 발명은 상기 유동가스가 수소, 아르곤 및 헬륨 중에서 1 이상 선택되는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.The present invention also provides a fluidized bed reactor for producing particulate polysilicon, wherein the flow gas is selected from at least one of hydrogen, argon and helium.
또한 본 발명은 상기 챔버의 재질이 금속, 합금 및 세라믹 중 어느 하나인 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다. 보다 상세하게는 상기 챔버의 재질이 스테인레스-스틸(stainless-steel), 석영 및 탄소강철 중 어느 하나인 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In another aspect, the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the material of the chamber is any one of metal, alloy and ceramic. More specifically, the chamber provides a fluidized bed reactor for producing particulate polycrystalline silicon, characterized in that any one of stainless-steel, quartz, and carbon steel.
또한 본 발명은 상기 챔버의 내벽이 실리콘, 탄화실리콘(SiC), 질화실리콘(Si3N4) 및 Si3O4 중 어느 하나로 코팅된 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In another aspect, the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the inner wall of the chamber is coated with any one of silicon, silicon carbide (SiC), silicon nitride (Si 3 N 4 ) and Si 3 O 4 .
또한 본 발명은 상기 가열장치가 상기 챔버의 하부에 수직으로 설치되되, 가열장치 하부에는 실리콘 입자 및 가스가 통과할 수 있는 공간이 존재하는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In another aspect, the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the heating device is installed perpendicular to the lower portion of the chamber, there is a space through which the silicon particles and gas can pass.
또한 본 발명은 상기 가열장치가 가열부, 반사면 및 인슐레이터로 이루어지되, 상기 가열부는 관 형상 내부에 위치하여 열이 가열장치 내부를 통해 챔버 상부로 전달될 수 있도록 형성된 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In another aspect, the present invention is the heating device is composed of a heating unit, a reflecting surface and an insulator, wherein the heating unit is located inside the tubular shape is formed so that heat can be transferred to the upper portion of the chamber through the inside of the heating apparatus Provided is a fluidized bed reactor for producing silicon.
또한 본 발명은 상기 인슐레이터가 관 형상 외부에 형성되며, 상기 인슐레이터의 재질은 세라믹, 실리카 섬유로된 패브릭(fabric), 탄화실리콘(SiC) 및 질화실리콘(Si3N4) 중 어느 하나인 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In another aspect, the insulator is formed on the outside of the tubular shape, the material of the insulator is any one of a ceramic, a fabric made of silica fibers, silicon carbide (SiC) and silicon nitride (Si 3 N 4 ). Provided is a fluidized bed reactor for producing particulate polycrystalline silicon.
또한 본 발명은 챔버 내로 유입된 유동가스 및 반응가스가 배출수단을 통해 배출되는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In another aspect, the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the flow gas and the reaction gas introduced into the chamber is discharged through the discharge means.
또한 본 발명은 상기 배출수단을 통해 배출된 실리콘 종입자는 유동가스로 크기가 선별되어 챔버내로 재투입되는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In another aspect, the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the silicon seed particles discharged through the discharge means is sized by the flowing gas and re-introduced into the chamber.
또한 본 발명은 상기 배출수단은 상기 챔버 상부에 위치한 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In another aspect, the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the discharge means is located above the chamber.
또한 본 발명은 상기 챔버 내의 압력이 1 내지 20bar인 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기를 제공한다.In another aspect, the present invention provides a fluidized bed reactor for producing particulate polysilicon, characterized in that the pressure in the chamber is 1 to 20bar.
또한 본 발명은 밀폐형의 챔버; 상기 챔버 내부에 위치한 관 형태의 가열장치; 상기 가열장치 내부로 유동가스가 공급될 수 있도록 챔버 하부에 형성된 유동가스 제1공급관; 및 상기 가열장치 내부에 유동가스 속도를 증가시키는 벤츄리를 포함하는 유동층 반응기에서, 반응가스와 유동가스를 각각 별도로 주입하여 상기 챔버 상부인 상기 가열장치 상부에서 유동층이 형성된 뒤에 석출로 성장된 실리콘은 챔버 하부로 내려와 제1공급관을 통해 선별/배출되는 것을 특징으로 하는 입자형 다결정실리콘 제조방법을 제공한다.The present invention also provides a hermetic chamber; A tubular heating device located inside the chamber; A flow gas first supply pipe formed under the chamber to supply the flow gas into the heating device; And in the fluidized bed reactor including a venturi for increasing the flow gas velocity inside the heater, the silicon grown by precipitation after the fluidized bed is formed in the upper part of the heater by injecting the reaction gas and the fluid gas separately, respectively, into the chamber. It provides a method for producing particulate polysilicon characterized in that the screening down and down through the first supply pipe.
또한 본 발명은 상기 챔버 내에서 입자로 형성된 실리콘을 상기 제1공급관으로 인도하는 콘을 더 포함하는 것을 특징으로 하는 입자형 다결정실리콘 제조방법을 제공한다.In another aspect, the present invention provides a method for producing particulate polysilicon, characterized in that it further comprises a cone leading to the silicon formed of particles in the chamber to the first supply pipe.
또한 본 발명은 상기 챔버 하부가 입자로 형성된 실리콘을 상기 제1공급관으로 인도할 수 있도록 콘형상으로 이루어진 것을 특징으로 하는 입자형 다결정실리콘 제조방법을 제공한다.In another aspect, the present invention provides a method for producing particulate polysilicon, characterized in that the chamber is formed in a cone shape to guide the silicon formed of particles to the first supply pipe.
본 발명에 따른 입자형 다결정실리콘 제조용 유동층 반응기 및 이를 이용한 다결정 실리콘 제조방법은 가열장치에 실리콘 입자가 누적되는 현상이 거의 발생하지 않는 장점이 있다.The fluidized bed reactor for producing particulate polycrystalline silicon and the polycrystalline silicon manufacturing method using the same according to the present invention have an advantage that a phenomenon in which silicon particles accumulate in a heating apparatus is hardly generated.
또한 본 발명에 따른 입자형 다결정실리콘 제조용 유동층 반응기 및 이를 이용한 다결정 실리콘 제조방법은 제1공급관, 제2공급관 및 제3공급관에서 공급하는 유동가스의 속도를 제어함으로써 원하는 다결정실리콘의 입자크기대로 생산할 수 있는 효과가 있다.In addition, the fluidized bed reactor for producing particulate polycrystalline silicon and the polycrystalline silicon manufacturing method using the same according to the present invention can be produced according to the particle size of the desired polycrystalline silicon by controlling the speed of the flow gas supplied from the first supply pipe, the second supply pipe and the third supply pipe. It has an effect.
또한 본 발명에 따른 입자형 다결정실리콘 제조용 유동층 반응기 및 이를 이용한 다결정 실리콘 제조방법은 연속 공정이 가능하여 장기간 사용 및 생산성이 향상되는 효과가 있다.In addition, the fluidized bed reactor for producing particulate polycrystalline silicon and the polycrystalline silicon manufacturing method using the same according to the present invention have a continuous process, and thus have an effect of long-term use and productivity.
또한 본 발명에 따른 입자형 다결정실리콘 제조용 유동층 반응기 및 이를 이용한 다결정 실리콘 제조방법은 높은 압력에서도 유동층 반응기의 운전이 가능하여 다결정실리콘 생산능력을 크게 향상시킬 수 있다.In addition, the fluidized bed reactor for producing particulate polycrystalline silicon and the polycrystalline silicon manufacturing method using the same according to the present invention can greatly improve the polycrystalline silicon production capacity by operating the fluidized bed reactor at high pressure.
도 1 및 도 2는 본 발명의 일실시예에 따른 입자형 다결정실리콘 제조용 유동층 반응기의 단면도를 나타낸 것이다.1 and 2 show a cross-sectional view of a fluidized bed reactor for producing particulate polysilicon according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 가열장치의 사시도를 나타낸 것이다.Figure 3 shows a perspective view of a heating apparatus according to an embodiment of the present invention.
이하 본 발명에 첨부된 도면을 참조하여 본 발명의 바람직한 일실시예를 상세히 설명하기로 한다. 우선, 도면들중, 동일한 구성요소 또는 부품들은 가능한 한 동일한 참조부호를 나타내고 있음에 유의하여야 한다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First of all, it should be noted that in the drawings, the same components or parts denote the same reference numerals as much as possible. In describing the present invention, detailed descriptions of related well-known functions or configurations are omitted in order not to obscure the subject matter of the present invention.
본 명세서에서 사용되는 정도의 용어 약, 실질적으로 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.As used herein, the terms "about", "substantially", and the like, are used at, or in close proximity to, numerical values as are indicative of preparation and material tolerances inherent in the meanings mentioned, and are intended to be accurate or to facilitate understanding of the invention. Absolute figures are used to prevent unfair use by unscrupulous infringers.
본 발명에서 사용된 유동가스라 함은 실리콘입자의 층(bed)을 이루는 유동층이 챔버의 상부에 형성되도록 공급되는 가스를 말한다.The flow gas used in the present invention refers to a gas supplied so that a fluidized bed constituting a bed of silicon particles is formed at the top of the chamber.
본 발명에서 사용된 반응가스라 함은 다결정실리콘 입자의 제조에 사용되는 원료가스로서 실리콘 성분을 포함하는 가스를 말한다.The reaction gas used in the present invention refers to a gas containing a silicon component as a raw material gas used for producing polycrystalline silicon particles.
본 발명에 따른 유동층 반응기를 이용하여 다결정실리콘을 제조하는 과정은, 외부와의 공간을 차단시키는 밀폐형의 챔버; 상기 챔버 내부에 위치한 관 형태의 가열장치; 상기 가열장치 내부로 유동가스가 공급될 수 있도록 챔버 하부에 형성된 유동가스 제1공급관; 및 상기 가열장치 내부에 유동가스 속도를 증가시키는 벤츄리로 구성된다. 상기 챔버 하부는 입자로 형성된 실리콘을 인도할 수 있도록 하는 콘으로 이루어진 유동층 반응기에서, 유동가스와 반응가스를 각각 별도로 주입하여 상기 챔버 상부인 상기 가열장치 상부에서 유동층을 형성하여 반응하도록 한다. 상기 반응으로 인해 석출된 실리콘은 일정한 크기가 되면 실리콘의 중량이 커져 중력에 의해 챔버하부로 하강하게 된다. 하강한 실리콘은 콘을 통해 수집되는 데 일정한 크기로 커진 입자는 제1공급관 밑으로 수집되고 나머지는 벤츄리를 통과하여 유동층으로 다시 이동하게 된다.The process of producing polycrystalline silicon using the fluidized bed reactor according to the present invention, the closed chamber to block the space from the outside; A tubular heating device located inside the chamber; A flow gas first supply pipe formed under the chamber to supply the flow gas into the heating device; And a venturi to increase the flow gas velocity inside the heater. In the fluidized bed reactor consisting of a cone for guiding silicon formed of particles, the lower part of the chamber injects a fluid gas and a reaction gas separately to form a fluidized bed in the upper part of the heating device, which is the chamber, to react. When the silicon precipitated by the reaction reaches a certain size, the weight of the silicon increases, and the silicon is lowered to the lower part of the chamber by gravity. The lowered silicon is collected through the cone, and particles of a certain size are collected under the first supply pipe, and the remainder is passed through the venturi to the fluidized bed again.
선택적으로 상기 콘을 따로 구성하지 않고 챔버 하부를 콘형상으로 형성할 수도 있다.Alternatively, the chamber may be formed in a cone shape without separately configuring the cone.
이하, 도면을 참조하여 본 발명에 대해 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail with reference to drawings.
도 1 및 도 2는 본 발명의 일실시예에 따른 입자형 다결정실리콘 제조용 유동층 반응기의 단면도를 나타낸 것이다.1 and 2 show a cross-sectional view of a fluidized bed reactor for producing particulate polysilicon according to an embodiment of the present invention.
본 발명에 일실예에 따른 유동층 반응기는 챔버 110, 가열장치 120, 벤츄리 150, 콘 160, 제1공급관 130, 제2공급관 180, 제3공급관 140, 반응가스 공급관 170, 배출수단 190으로 구성되어 있다.Fluidized bed reactor according to an embodiment of the present invention is composed of a chamber 110, heating device 120, Venturi 150, cone 160, the first supply pipe 130, the second supply pipe 180, the third supply pipe 140, the reaction gas supply pipe 170, the discharge means 190. .
상기 챔버 110은 밀폐되어 외부와의 공간을 차단하며, 도 1 및 도 2에서 보는 바와 같이 챔버 110 상부 공간은 반응 유동층 10의 형성을 용이하게 하기 위해서 하부 공간보다 넓은 공간을 갖는 것이 바람직하다. 상기 챔버 110의 재질의 비제한적인 예로는 물을 이용하여 냉각(water-cooling)할 수 있는 재질로서 금속, 합금 및 세라믹 등을 사용할 수 있는 데, 보다 상세하게는 스테인레스-스틸(stainless-steel), 석영 및 탄소강철 등을 사용할 수 있다. 또한, 상기 챔버 내벽은 실리콘 종입자 등에 노출될 수 있는 표면으로 실리콘 자체, 탄화실리콘(SiC), 질화실리콘(Si3N4) 및 Si3O4 등으로 이루어진 군에서 어느 하나로 선택하여 코팅 또는 라이닝 될 수 있다. The chamber 110 is closed to block the space from the outside, and as shown in FIGS. 1 and 2, the upper chamber 110 preferably has a larger space than the lower space to facilitate the formation of the reaction fluidized bed 10. Non-limiting examples of the material of the chamber 110 may be a metal that can be water-cooled (water-cooling), alloys, ceramics, etc., more specifically, stainless-steel (stainless-steel) , Quartz, carbon steel, and the like can be used. In addition, the inner wall of the chamber is a surface that may be exposed to silicon seed particles, etc., which is selected from the group consisting of silicon itself, silicon carbide (SiC), silicon nitride (Si 3 N 4 ), Si 3 O 4, and the like, or coating or lining Can be.
도 3은 본 발명의 일실시예에 따른 가열장치의 사시도를 나타낸 것이다.Figure 3 shows a perspective view of a heating apparatus according to an embodiment of the present invention.
상기 가열장치 120는 내부가 빈 관 형태로 되어 있으며 챔버 110내에서 수직으로 설치하는 데, 가열부 121, 반사면 122, 인슐레이터 123 으로 구성된다. 상기 가열장치 120의 가열부 121는 할로겐 램프 또는 흑연 저항성(resistive) 히터인 것이 바람직하다. 상기 반사면 122는 히터에서 발생한 열을 관 형태의 내부로 반사되도록 하는 역할을 한다.The heating device 120 has a hollow tube shape and is installed vertically in the chamber 110. The heating device 120 includes a heating part 121, a reflecting surface 122, and an insulator 123. The heating unit 121 of the heating device 120 is preferably a halogen lamp or a graphite resistive heater. The reflective surface 122 serves to reflect the heat generated from the heater to the inside of the tube shape.
또한 상기 인슐레이터 123은 상기 가열부 121를 외부에서 감싸는 데, 상기 가열부 121의 열이 챔버 110쪽으로 발산되는 것을 방지하고 오직 가열장치 120의 내부로만 열이 전달되도록 한다. 또한, 가열장치 120의 가열부 121는 AC 또는 DC 전원에 연결하여 전원을 공급할 수 있다. 상기 인슐레이터 123의 재질은 고온에서 쉽게 변형되지 않는 것이 바람직한데, 상기 인슐레이터 123 재질의 비제한적인 예로는 세라믹, 실리카 섬유로된 패브릭(fabric), 탄화실리콘(SiC) 및 질화실리콘(Si3N4) 등으로 이루어 질 수 있다. 상기 실리카 섬유로된 패브릭(fabric)의 구체적인 예로는 레프라실(Refrasil)을 사용할 수 있다.In addition, the insulator 123 surrounds the heater 121 from the outside to prevent the heat of the heater 121 from dissipating toward the chamber 110 and to transmit heat only to the inside of the heater 120. In addition, the heating unit 121 of the heating apparatus 120 may be connected to an AC or DC power supply to supply power. It is preferable that the material of the insulator 123 is not easily deformed at a high temperature. Non-limiting examples of the material of the insulator 123 include ceramics, fabrics made of silica fibers, silicon carbide (SiC), and silicon nitride (Si 3 N 4). ) May be made. Refrasil may be used as a specific example of the fabric made of silica fibers.
상기 가열장치에 있어서, 주의할 것은 콘 160(콘의 형성이 없는 경우(도 2참조) 챔버 하부)과 가열장치 120 사이에 일정한 공간을 형성하여, 상기 공간사이로 석출된 실리콘 입자가 제1공급관 130으로 이동할 수 있도록 한다.In the heating apparatus, it should be noted that a predetermined space is formed between the cone 160 (the lower chamber of the chamber when no cone is formed (see FIG. 2)) and the heating apparatus 120, so that the silicon particles precipitated between the spaces are formed in the first supply pipe 130. To move to.
상기 콘 160은 유동층 반응을 통해 석출된 실리콘 입자가 무거운 하중으로 가열장치 120 외부를 통해 챔버 110 하부로 내려갔을 때 제1공급관 130으로 내려갈 수 있도록 경사지게 형성된다. 상기 콘 160의 경사는 특별히 제한되는 것은 아니며, 수평면으로부터 30 내지 60° 경사지도록 하는 것이 바람직하다.The cone 160 is formed to be inclined to descend to the first supply pipe 130 when the silicon particles precipitated through the fluidized bed reaction are lowered to the lower portion of the chamber 110 through the outside of the heating apparatus 120 under heavy load. The inclination of the cone 160 is not particularly limited, and it is preferable to incline 30 to 60 degrees from the horizontal plane.
상기 제1공급관 130은 유동가스를 공급하여 가열장치 120 내부의 열을 챔버 110상부의 유동층 10으로 이동시키는 역할과 동시에 콘 160을 통해 내려온 석출된 실리콘 입자가 중량이 가벼울 경우 다시 유동층 10으로 이동시키는 역할을 한다. 즉, 상기 석출된 실리콘 입자가 제1공급관 130에 도달했을 때, 상기 제1공급관 130에서 공급되는 유동가스의 영향을 받게 되며, 석출된 실리콘 입자가 일정크기 이상이 되면 제1공급관 130을 통해 수집될 수 있도록 실리콘 입자를 선별하여 수집하는 통로 역할을 한다.The first supply pipe 130 supplies a flow gas to move the heat inside the heating apparatus 120 to the fluidized bed 10 above the chamber 110, and at the same time, when the precipitated silicon particles descending through the cone 160 are light in weight, they move back to the fluidized bed 10. Play a role. That is, when the precipitated silicon particles reach the first supply pipe 130, they are affected by the flow gas supplied from the first supply pipe 130, and when the precipitated silicon particles have a predetermined size or more, they are collected through the first supply pipe 130. It serves as a passage for selecting and collecting the silicon particles so that it can be.
상기 유동가스로는 수소, 아르곤 및 헬륨 중에서 1 이상 선택하여 사용하는 것이 바람직하다.As the flow gas, it is preferable to use one or more selected from hydrogen, argon and helium.
상기 콘 160을 통해 내려온 석출된 실리콘 입자 크기가 작은 경우 제1공급관 130에서 공급하는 유동가스에 의해 다시 유동층 10으로 이동하면서 가열장치 120의 가열부 121에 의해 가열되면서 가열부 121에 누적될 염려가 있으나, 유동층의 공급속도 및 벤츄리 150에 의해 석출된 실리콘 입자는 가열장치 120 내에서 빠르게 이동하므로 가열부 121에 누적될 염려는 매우 희박하다.When the size of the precipitated silicon particles that are dropped through the cone 160 is small, the liquid may be accumulated in the heating unit 121 while being heated by the heating unit 121 of the heating apparatus 120 while moving back to the fluidized bed 10 by the flow gas supplied from the first supply pipe 130. However, the supply rate of the fluidized bed and the silicon particles precipitated by the Venturi 150 move rapidly in the heating apparatus 120, so there is very little concern about accumulation in the heating unit 121.
또한, 제2공급관 180을 통해서도 유동가스가 공급될 수 있는 데, 상기 제2공급관 180을 통해 공급되는 유동가스는 유동층 10에서 반응이 충분히 이루어질수 있도록 유동층 10을 유지하며, 반응으로 인해 일정크기로 석출된 실리콘 입자 중 크기가 작은 입자는 유동층 10에서 챔버 110 하부로 하강하지 못하도록 하는 역할을 한다.In addition, the flow gas can also be supplied through the second supply pipe 180, the flow gas supplied through the second supply pipe 180 maintains the fluidized bed 10 so that the reaction in the fluidized bed 10 is sufficiently made, precipitated to a certain size due to the reaction Among the silicon particles, the small particles are prevented from descending the chamber 110 in the fluidized bed 10.
따라서, 본 발명에 따른 유동층 반응기는 제1공급관 130 및 제2공급관 180에서 공급하는 유동가스의 속도를 제어함으로써 원하는 다결정실리콘의 입자크기를 조절할 수 있는 장점이 있다.Therefore, the fluidized bed reactor according to the present invention has the advantage of controlling the particle size of the desired polycrystalline silicon by controlling the speed of the flow gas supplied from the first supply pipe 130 and the second supply pipe 180.
또한, 가열장치 120 외부의 챔버 110 하부에서는 제2공급관 180을 형성하여 유동가스를 챔버 110 상부로 공급할 수 있다. 상기 제2공급관 180을 통해 공급되는 유동가스는 챔버 110 상부에 유동층 10이 형성될 수 있도록 하며, 일정 크기 이하의 석출된 실리콘이 하강하는 것을 제지하고 유동층 10에 존재할 수 있도록 한다. In addition, the second supply pipe 180 may be formed in the lower portion of the chamber 110 outside the heating device 120 to supply the flow gas to the upper portion of the chamber 110. The flow gas supplied through the second supply pipe 180 allows the fluidized bed 10 to be formed in the upper portion of the chamber 110 and prevents the precipitated silicon of a predetermined size or less from falling down and exists in the fluidized bed 10.
상기 제2공급관 180은 가열장치 120 외부의 챔버 110 하부에서 하나 또는 수개의 제2공급관 180이 형성되어 유동가스를 공급할 수 있다.The second supply pipe 180 may be provided with one or several second supply pipe 180 in the lower portion of the chamber 110 outside the heating device 120 to supply the flow gas.
또한, 제3공급관 140은 상기 제1공급관 130의 상부 및 벤츄리 150 입구쪽으로 위치하여 유동가스를 더 공급할 수 있다. 상기 제3공급관 140을 이용하여 유동가스가 더 공급됨으로써 가열장치 120 내부에 이동속도가 커져 유동층 10에서의 입자들의 움직임은 도 1 및 도 2에서 보이는 화살표 방향의 분수(spout)형으로 실리콘 입자가 움직이게 된다. 따라서, 유동층 10에서 석출된 실리콘 입자의 대부분은 하강시에 가열장치 120의 내부에 있는 관을 통해 하강하기 보다는 가열장치 120 외부 및 챔버 110 외부면 사이의 공간으로 하강하게 된다.In addition, the third supply pipe 140 is located above the first supply pipe 130 and the inlet venturi 150 may further supply the flow gas. As the flow gas is further supplied by using the third supply pipe 140, the moving speed increases in the heating apparatus 120, so that the movement of the particles in the fluidized bed 10 is a fraction of the spout in the direction of the arrow shown in FIGS. 1 and 2. Will move. Therefore, most of the silicon particles precipitated in the fluidized bed 10 are lowered into the space between the heater 120 and the chamber 110 outer surface rather than descending through the tube inside the heater 120 when lowered.
또한, 상기 가열장치 120 내부에는 벤츄리 150가 존재하는 데, 상기 벤츄리 150에 의해 제1공급관 및 제3공급관 140에서 공급되는 유동가스의 이동속도를 더욱 빨라지도록 할 수 있다. 챔버 110 내부로 내려온 실리콘 입자가 원하는 크기 이하인 경우 제1공급관 130으로 내려오지 못하고 공급되는 유동가스에 의해 다시 올라갈 경우 상기 벤츄리 150은 실리콘 입자를 효과적으로 올라가도록 할 수 있다.In addition, the venturi 150 is present inside the heating apparatus 120, and the moving speed of the flow gas supplied from the first supply pipe and the third supply pipe 140 by the venturi 150 may be further increased. When the silicon particles lowered into the chamber 110 are smaller than the desired size, the venturi 150 may effectively raise the silicon particles when the silicon particles are not lowered to the first supply pipe 130 and are raised again by the supplied flow gas.
상기 벤츄리 150은 수평절단면이 원형으로 되어 있는 데, 중간부위로 갈수록 원형의 지름이 작아지는 특징이 있다. 즉, 벤츄리 150의 입구의 지름보다 중간부위의 지름이 작아, 유동가스가 흐르는 경우 중간부위의 압력이 벤츄리 150 입구쪽 압력보다 낮아 입구쪽에 있던 실리콘 입자들이 효과적으로 벤츄리 150의 중간부위로 흡입되어 챔버 110의 상부로 이동시킨다.The Venturi 150 has a horizontal cut surface that is circular, and the diameter of the circular shape decreases toward the middle portion. That is, the diameter of the middle part is smaller than the diameter of the inlet of the Venturi 150. When the flow gas flows, the pressure of the middle part is lower than the inlet pressure of the Venturi 150 so that the silicon particles at the inlet side are effectively sucked into the middle part of the Venturi 150 and the chamber 110 Move to the top of the
한편, 상기 가열장치 120 보다 높은 위치에서 반응가스 공급관 170이 위치하여 챔버 110 상부로 실리콘 성분을 포함한 반응가스를 공급할 수 있다. 상기 반응가스는 실리콘 성분으로만 사용할 수도 있고, 수소, 아르곤 및 헬륨 중에서 1이상의 가스 성분을 추가하여 사용할 수도 있다. 또한, 상기 반응가스는 실리콘 석출 원료를 제공할 뿐만 아니라, 유동가스와 함께 실리콘입자의 유동에도 기여할 수 있다. 상기 반응가스에서 실리콘 성분이 포함되는 비율은 5~100mol%인 것이 바람직하다. 본 발명에서 반응가스로 사용되는 실리콘 성분은 모노실란(SiH4), 이염화실란(SiH2Cl2), 삼염화실란(SiHCl3) 및 사염화실란(SiCl4) 등에서 1 이상 선택하여 사용할 수 있다.On the other hand, the reaction gas supply pipe 170 is located at a position higher than the heating device 120 can supply the reaction gas containing the silicon component to the upper chamber 110. The reaction gas may be used only as a silicon component, or may be used by adding one or more gas components among hydrogen, argon and helium. In addition, the reaction gas may not only provide the silicon precipitation raw material, but also contribute to the flow of the silicon particles together with the flowing gas. The proportion of the silicon component in the reaction gas is preferably 5 to 100 mol%. In the present invention, the silicon component used as the reaction gas may be selected from one or more of monosilane (SiH 4 ), dichlorosilane (SiH 2 Cl 2 ), trichlorosilane (SiHCl 3 ), tetrachloride (SiCl 4 ), and the like.
상기 반응가스의 공급은 노즐(nozzle) 등을 통해 분무하는 형태로 공급될 수 있으며, 챔버 상부에서 유동층이 있는 방향으로 분무하여 유동층 10이 잘 유지될 수 있도록 하는 것이 바람직하다. 상기 반응가스는 챔버 상부 및 유동층의 아래쪽에서 유동층을 향해 공급할 수도 있고, 유동층의 위쪽인 챔버 윗부분에서 유동층을 향해 아래쪽으로 공급할 수도 있다. 상기 반응가스 공급관 170은 가열장치 120 보다 높은 위치에서 하나 또는 수개의 반응가스 공급관 170을 형성하여 반응가스를 공급할 수 있다.Supply of the reaction gas may be supplied in the form of spraying through a nozzle (nozzle), etc., it is preferable to spray in the direction of the fluidized bed from the top of the chamber to maintain the fluidized bed 10 well. The reaction gas may be supplied toward the fluidized bed at the top of the chamber and below the fluidized bed, or may be supplied downward toward the fluidized bed at the upper part of the chamber above the fluidized bed. The reaction gas supply pipe 170 may supply one or several reaction gas supply pipes 170 at a position higher than the heating device 120 to supply the reaction gas.
한편, 챔버 110 상부의 유동층 10을 통과한 유동가스 및 미반응한 가스는 폐가스로서 배출수단 190을 통해 배출될 수 있는 데, 상기 배출수단 190은 상기 유동가스 및 반응가스를 일정하게 배출시켜 챔버 110내 기압을 조절하고 계속적으로 가스를 공급할 수 있게 한다. 상기 배출수단 190을 통해 배출되는 가스 중에서 미반응 실리콘 종입자도 함께 배출될 수 있는 상기 미반응 실리콘 종입자는 도 1 및 도 2에서 보는 바와 같이 배출수단 190의 다른 통로를 통해 재유입 될 수 있다. 상기 유동가스 및 반응가스에 사용된 기체물질들은 정제 후에 다시 공급될 수 있다. 또한, 배출수단 190에 미반응 실리콘 종입자는 통과하지 못하도록 하여 처리할 수도 있다.On the other hand, the flowing gas and the unreacted gas passing through the fluidized bed 10 above the chamber 110 may be discharged through the discharge means 190 as waste gas, and the discharge means 190 constantly discharges the flow gas and the reaction gas to the chamber 110. It regulates the air pressure and allows the gas to be supplied continuously. The unreacted silicon seed particles which may be discharged together with the unreacted silicon seed particles from the gas discharged through the discharge means 190 may be re-introduced through another passage of the discharge means 190 as shown in FIGS. 1 and 2. . The gaseous materials used in the flow gas and the reaction gas may be supplied again after purification. In addition, the unreacted silicon seed particles may be prevented from passing through the discharge means 190 to be treated.
한편, 유동층에 종입자(Seed)를 공급하기 위해 챔버 상부에서 유동층을 향해 실리콘 종입자를 공급할 수 있다(미도시). 상기 종입자의 크기는 0.1~2.0mm 인 것이 바람직하며, 0.3~1.2mm 인 것이 더 바람직하다.Meanwhile, in order to supply seed to the fluidized bed, silicon seed particles may be supplied from the upper portion of the chamber toward the fluidized bed (not shown). The size of the seed particles is preferably 0.1 ~ 2.0mm, more preferably 0.3 ~ 1.2mm.
상기 실리콘 종입자는 챔버 상부에서 별도 공급수단을 형성하여 유동층에 공급할 수도 있고, 배출수단 190의 재유입되는 다른 통로로 공급될 수도 있다. 별도의 공급수단을 형성하여 공급하는 경우에는 상기 실리콘 종입자는 챔버 상부 및 유동층의 아래쪽에서 유동층을 향해 공급할 수도 있고, 유동층의 위쪽인 챔버 윗부분에서 유동층을 향해 아래쪽으로 공급할 수도 있다. The silicon seed particles may be supplied to the fluidized bed by forming a separate supply means at the top of the chamber, or may be supplied to another passage that is re-introduced into the discharge means 190. In the case of forming and supplying a separate supply means, the silicon seed particles may be supplied toward the fluidized bed at the top of the chamber and below the fluidized bed, or may be supplied downward from the upper part of the chamber above the fluidized bed to the fluidized bed.
또한, 상기 유동층 반응기가 작동하는 동안 챔버 110가 뜨거워지므로, 반응기 장치 및 작업자 보호, 열팽창 방지, 기타 사고 방지 등의 목적으로 상기 챔버 110 외부면은 물, 오일, 가스, 공기 등과 같은 냉각 물질을 이용하여 일정 온도범위 이하로 유지되는 것이 바람직하다. 이를 위하여 상기 챔버 110 외벽에 냉각유체의 순환이 가능하도록 설계되어 제작하는 것이 바람직하다. 또한, 상기 냉각 대신, 작업자 보호 및 과다한 열손실 방지를 위하여 상기 챔버 110 외부 표면에 단열재를 추가로 설치하는 것도 가능하다.In addition, since the chamber 110 is heated while the fluidized bed reactor is operating, the outer surface of the chamber 110 uses cooling materials such as water, oil, gas, air, etc. for the purpose of protecting the reactor apparatus and workers, preventing thermal expansion, and other accidents. It is preferable to maintain the temperature below a certain temperature range. For this purpose, it is preferable to design and manufacture the circulation of the cooling fluid on the outer wall of the chamber 110. In addition, instead of the cooling, it is also possible to further install a heat insulating material on the outer surface of the chamber 110 to protect the worker and to prevent excessive heat loss.
또한, 상기 유동층 반응기가 작동하는 동안 반응경과를 관찰하기 위하여 챔버 110 상부에 관찰부(미도시)를 포함할 수 있으며, 온도를 측정할 수 있는 열전대(thermo-couple), pyrometer 등의 열측정기를 포함할 수 있다.In addition, an observation unit (not shown) may be included in the upper part of the chamber 110 to observe the reaction progress while the fluidized bed reactor is in operation, and may include a thermocouple such as a thermo-couple or pyrometer to measure temperature. can do.
또한 본 발명에 따른 유동층 반응기는 챔버 110내에서 압력이 제한을 받지 않으므로 않아 작업자의 의도에 따라 챔버 110내의 압력을 조절할 수 있으며, 높은 압력에서도 실리콘 석출 반응이 가능하여 생산능력을 크게 향상시킬 수 있다. 상기 챔버 110내의 바람직한 압력은 1 내지 20bar인 것이 바람직하며, 3 내지 6bar인 것이 더 바람직하나, 이에 제한되는 것은 아니다. 또한 응급시를 위하여 압력 경감 밸브(pressure relief valve)를 설치할 수 있다.In addition, the fluidized bed reactor according to the present invention does not limit the pressure in the chamber 110, so the pressure in the chamber 110 can be adjusted according to the intention of the operator, and the silicon precipitation reaction is possible at a high pressure, thereby greatly improving the production capacity. . The preferred pressure in the chamber 110 is preferably 1 to 20 bar, more preferably 3 to 6 bar, but is not limited thereto. Pressure relief valves can also be installed for emergencies.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

Claims (22)

  1. 챔버 하부에서 유동가스를 주입하고 챔버 상부로 반응가스를 주입하여, 챔버 상부에서 반응이 일어나는 입자형 다결정실리콘 제조용 유동층 반응기에 있어서,In the fluidized bed reactor for producing particulate polysilicon in which a flow gas is injected from the lower part of the chamber and a reaction gas is injected into the upper part of the chamber, whereby a reaction occurs in the upper part of the chamber.
    밀폐형의 챔버;Hermetic chamber;
    상기 챔버 내부에 위치한 관 형태의 가열장치;A tubular heating device located inside the chamber;
    상기 가열장치 내부로 유동가스가 공급될 수 있도록 챔버 하부에 형성된 유동가스 제1공급관; 및 A flow gas first supply pipe formed under the chamber to supply the flow gas into the heating device; And
    상기 가열장치 내부에 유동가스 속도를 증가시키는 벤츄리를 포함하는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.Fluidized bed reactor for producing a particulate polysilicon, characterized in that it comprises a venturi to increase the flow gas velocity inside the heater.
  2. 제1항에 있어서,The method of claim 1,
    상기 챔버 내에서 입자로 형성된 실리콘을 상기 제1공급관으로 인도하는 콘을 더 포함하는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.The fluidized bed reactor for producing particulate polysilicon, characterized in that it further comprises a cone leading the silicon formed of particles in the chamber to the first supply pipe.
  3. 제1항에 있어서,The method of claim 1,
    상기 챔버 하부는 입자로 형성된 실리콘을 상기 제1공급관으로 인도할 수 있도록 콘형상으로 이루어진 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.The lower portion of the chamber is a fluidized bed reactor for producing a particulate polysilicon, characterized in that formed in a cone shape to guide the silicon formed of particles to the first supply pipe.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 가열장치보다 높은 위치에서 챔버 상부로 실리콘 성분을 포함한 반응가스를 공급하는 반응가스 공급관이 포함되는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.A fluidized bed reactor for producing particulate polysilicon, characterized in that it comprises a reaction gas supply pipe for supplying a reaction gas containing a silicon component to the upper portion of the chamber at a position higher than the heating device.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    가열장치 외부의 챔버 하부에서는 제2공급관을 형성하여 유동가스를 챔버 상부로 공급하는 것을 특징으로 입자형 다결정실리콘 제조용 유동층 반응기.A fluidized bed reactor for producing particulate polysilicon, characterized in that to form a second supply pipe in the lower portion of the chamber outside the heating device to supply the flow gas to the upper chamber.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 벤츄리를 통해 유동되는 물질의 속도를 높이기 위해 유동가스를 공급하는 제3공급관이 더 포함되는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.Fluidized bed reactor for producing particulate polysilicon, characterized in that it further comprises a third supply pipe for supplying a flow gas to increase the speed of the material flowing through the venturi.
  7. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    실리콘 종입자는 공급수단을 통해 공급하되, 상기 실리콘 종입자는 유동층의 아래쪽 또는 유동층의 위쪽에서 유동층을 향해 공급되는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.Silicon seed particles are supplied through a supply means, wherein the silicon seed particles are supplied toward the fluidized bed from the bottom of the fluidized bed or from the top of the fluidized bed.
  8. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 반응가스는 실리콘 성분이 포함되거나 또는 실리콘 성분이 포함되는 가스에 수소, 아르곤 및 헬륨 중 1이상이 포함되는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.The reaction gas is a fluidized bed reactor for producing particulate polycrystalline silicon, characterized in that the silicon component or one or more of hydrogen, argon and helium is included in the gas containing the silicon component.
  9. 제8항에 있어서,The method of claim 8,
    상기 실리콘 성분으로는 모노실란(SiH4), 이염화실란(SiH2Cl2), 삼염화실란(SiHCl3) 및 사염화실란(SiCl4) 중에서 1 이상 선택된 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.The silicon component is a fluidized bed reactor for producing particulate polycrystalline silicon, characterized in that at least one selected from monosilane (SiH 4 ), silane dichloride (SiH 2 Cl 2 ), trichlorosilane (SiHCl 3 ) and tetrachloride (SiCl 4 ).
  10. 제6항에 있어서,The method of claim 6,
    상기 유동가스는 수소, 아르곤 및 헬륨 중에서 1 이상 선택되는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.The flow gas is a fluidized bed reactor for producing particulate polysilicon, characterized in that at least one selected from hydrogen, argon and helium.
  11. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 챔버의 재질은 스테인레스-스틸(stainless-steel), 석영 및 탄소강철 중 어느 하나인 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.The material of the chamber is a fluidized bed reactor for producing particulate polycrystalline silicon, characterized in that any one of stainless steel, quartz and carbon steel.
  12. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 챔버의 내벽은 실리콘, 탄화실리콘(SiC), 질화실리콘(Si3N4) 및 Si3O4 중 어느 하나로 코팅 또는 라이닝된 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.The inner wall of the chamber is a fluidized bed reactor for producing particulate polysilicon, characterized in that the coating or lined with any one of silicon, silicon carbide (SiC), silicon nitride (Si 3 N 4 ) and Si 3 O 4 .
  13. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 가열장치는 상기 챔버의 하부에 수직으로 설치되되, 가열장치 하부에는 실리콘 입자 및 가스가 통과할 수 있는 공간이 존재하는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.The heating device is installed vertically in the lower portion of the chamber, the fluidized bed reactor for producing a particulate polysilicon, characterized in that the lower space there is a space for the silicon particles and gas to pass through.
  14. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 가열장치는 가열부, 반사면 및 인슐레이터로 이루어지되, 상기 가열부는 관 형상 내부에 위치하여 열이 가열장치 내부를 통해 챔버 상부로 전달될 수 있도록 형성된 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.The heating device comprises a heating part, a reflecting surface and an insulator, wherein the heating part is located inside the tubular shape so that heat can be transferred to the upper part of the chamber through the inside of the heating device. .
  15. 제14항에 있어서,The method of claim 14,
    상기 인슐레이터는 관 형상 외부에 형성되며, 상기 인슐레이터의 재질은 세라믹, 실리카 섬유로된 패브릭(fabric), 탄화실리콘(SiC) 및 질화실리콘(Si3N4) 중 어느 하나인 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.The insulator is formed outside the tubular shape, and the material of the insulator is any one of ceramic, fabric made of silica fibers, silicon carbide (SiC) and silicon nitride (Si 3 N 4 ). Fluidized bed reactor for producing polycrystalline silicon.
  16. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    챔버 내로 유입된 유동가스 및 반응가스는 배출수단을 통해 배출되는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.Fluidized bed reactor for producing particulate polysilicon, characterized in that the flowing gas and the reaction gas introduced into the chamber is discharged through the discharge means.
  17. 제16항에 있어서,The method of claim 16,
    상기 배출수단을 통해 배출된 실리콘 종입자는 유동가스로 크기가 선별되어 챔버내로 재투입되는 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.The silicon seed particles discharged through the discharge means is selected by the flow gas size is re-introduced into the chamber, characterized in that the fluidized bed reactor for producing a particulate polysilicon.
  18. 제16항에 있어서,The method of claim 16,
    상기 배출수단은 상기 챔버 상부에 위치한 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.The discharge means is a fluidized bed reactor for producing particulate polysilicon, characterized in that located above the chamber.
  19. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 챔버 내의 압력은 1 내지 20bar인 것을 특징으로 하는 입자형 다결정실리콘 제조용 유동층 반응기.Fluidized bed reactor for producing particulate polysilicon, characterized in that the pressure in the chamber is 1 to 20bar.
  20. 밀폐형의 챔버; 상기 챔버 내부에 위치한 관 형태의 가열장치; 상기 가열장치 내부로 유동가스가 공급될 수 있도록 챔버 하부에 형성된 유동가스 제1공급관; 및 상기 가열장치 내부에 유동가스 속도를 증가시키는 벤츄리를 포함하는 유동층 반응기에서,Hermetic chamber; A tubular heating device located inside the chamber; A flow gas first supply pipe formed under the chamber to supply the flow gas into the heating device; And in the fluidized bed reactor comprising a venturi to increase the flow gas velocity inside the heater,
    반응가스와 유동가스를 각각 별도로 주입하여 상기 챔버 상부인 상기 가열장치 상부에서 유동층이 형성된 뒤에 석출로 성장된 실리콘은 챔버 하부로 내려와 제1공급관을 통해 선별/배출되는 것을 특징으로 하는 입자형 다결정실리콘 제조방법.Particle polycrystalline silicon, characterized in that the reaction gas and the flow gas is injected separately and the silicon grown by precipitation after the fluidized layer is formed in the upper portion of the heating device, the chamber is lowered to the lower portion of the chamber to be sorted / discharged through the first supply pipe. Manufacturing method.
  21. 제20항에 있어서,The method of claim 20,
    상기 챔버 내에서 입자로 형성된 실리콘을 상기 제1공급관으로 인도하는 콘을 더 포함하는 것을 특징으로 하는 입자형 다결정실리콘 제조방법.And a cone for guiding silicon formed of particles in the chamber to the first supply pipe.
  22. 제20항에 있어서,The method of claim 20,
    상기 챔버 하부는 입자로 형성된 실리콘을 상기 제1공급관으로 인도할 수 있도록 콘형상으로 이루어진 것을 특징으로 하는 입자형 다결정실리콘 제조방법.And the chamber lower portion is formed in a cone shape to guide silicon formed of particles to the first supply pipe.
PCT/KR2011/007522 2010-10-12 2011-10-11 Fluidized bed reactor for preparing particulate polycrystalline silicon, and preparation method of polycrystalline silicon using same WO2012050341A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100099457A KR101057101B1 (en) 2010-10-12 2010-10-12 Fluidized bed reactor for producing granular polycrystalline silicon and method of producing the same
KR10-2010-0099457 2010-10-12

Publications (2)

Publication Number Publication Date
WO2012050341A2 true WO2012050341A2 (en) 2012-04-19
WO2012050341A3 WO2012050341A3 (en) 2012-06-21

Family

ID=44933350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007522 WO2012050341A2 (en) 2010-10-12 2011-10-11 Fluidized bed reactor for preparing particulate polycrystalline silicon, and preparation method of polycrystalline silicon using same

Country Status (2)

Country Link
KR (1) KR101057101B1 (en)
WO (1) WO2012050341A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172067A (en) * 2013-04-08 2013-06-26 无锡中彩科技有限公司 Cold wall fluidized bed and application thereof
WO2017092970A1 (en) * 2015-12-02 2017-06-08 Wacker Chemie Ag Fluidized bed reactor and method for producing polycrystalline silicon granulate
CN110770167A (en) * 2017-08-23 2020-02-07 瓦克化学股份公司 Fluidized bed reactor for producing granular polycrystalline silicon

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008889A1 (en) * 2013-07-16 2015-01-22 웅진에너지 주식회사 Device and method for manufacturing polysilicon
KR101615307B1 (en) * 2013-07-16 2016-04-25 웅진에너지 주식회사 Polysilicon production apparatus
US9238211B1 (en) * 2014-08-15 2016-01-19 Rec Silicon Inc Segmented silicon carbide liner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165908A (en) * 1988-03-31 1992-11-24 Advanced Silicon Materials, Inc. Annular heated fluidized bed reactor
US7029632B1 (en) * 1999-10-06 2006-04-18 Wacker-Chemie Gmbh Radiation-heated fluidized-bed reactor
KR20070080306A (en) * 2006-02-07 2007-08-10 한국화학연구원 High-pressure fluidized bed reactor for preparing granular polycrystalline silicon
KR20080098322A (en) * 2007-05-04 2008-11-07 와커 헤미 아게 Process for the continuous production of polycrystalline high-purity silicon granules

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165908A (en) * 1988-03-31 1992-11-24 Advanced Silicon Materials, Inc. Annular heated fluidized bed reactor
US7029632B1 (en) * 1999-10-06 2006-04-18 Wacker-Chemie Gmbh Radiation-heated fluidized-bed reactor
KR20070080306A (en) * 2006-02-07 2007-08-10 한국화학연구원 High-pressure fluidized bed reactor for preparing granular polycrystalline silicon
KR20080098322A (en) * 2007-05-04 2008-11-07 와커 헤미 아게 Process for the continuous production of polycrystalline high-purity silicon granules

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172067A (en) * 2013-04-08 2013-06-26 无锡中彩科技有限公司 Cold wall fluidized bed and application thereof
WO2017092970A1 (en) * 2015-12-02 2017-06-08 Wacker Chemie Ag Fluidized bed reactor and method for producing polycrystalline silicon granulate
CN110770167A (en) * 2017-08-23 2020-02-07 瓦克化学股份公司 Fluidized bed reactor for producing granular polycrystalline silicon
CN110770167B (en) * 2017-08-23 2023-01-24 瓦克化学股份公司 Fluidized bed reactor for producing granular polycrystalline silicon

Also Published As

Publication number Publication date
WO2012050341A3 (en) 2012-06-21
KR101057101B1 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
WO2012050341A2 (en) Fluidized bed reactor for preparing particulate polycrystalline silicon, and preparation method of polycrystalline silicon using same
KR100813131B1 (en) Method for sustainable preparation of polycrystalline silicon using fluidized bed reactor
KR101914535B1 (en) Fluidized bed reactor and method for producing polycrystalline silicon granules
KR101026815B1 (en) Process for the continuous production of polycrystalline high-purity silicon granules
KR100411180B1 (en) Method for preparing polycrystalline silicon
CA1163065A (en) Consolidation of high purity silicon powder
TW201509802A (en) Fluidized bed reactor and method thereof for preparing high-purity granular polycrystalline silicon
KR101345641B1 (en) Production process for high purity polycrystal silicon and production apparatus for the same
KR20110132338A (en) Fluidized bed reactor for production of high purity silicon
KR101329032B1 (en) Apparatus for manufacturing polycrystalline silicon and method for manufacturing polycrystalline silicon using the same
US4981102A (en) Chemical vapor deposition reactor and process
KR20140005212A (en) Production of polycrystalline silicon by the thermal decomposition of dichlorosilane in a fluidized bed reactor
US8875728B2 (en) Cooled gas distribution plate, thermal bridge breaking system, and related methods
CN104803386A (en) Fluidized bed riser reactor and method for preparing high-purity polycrystalline silicon particles
KR101356391B1 (en) Apparatus for manufacturing polycrystalline silicon
KR20140018460A (en) Apparatus for producing granular polycrystalline silicon
US4900531A (en) Converting a carbon preform object to a silicon carbide object
JP3958092B2 (en) Reactor for silicon production
KR20130039486A (en) Fluidized bed reactor for production of a granular polysilicon
WO2016052841A1 (en) Poly-silicon manufacturing apparatus and method using high-efficiency hybrid horizontal reactor
US10196273B2 (en) Device for manufacturing polysilicon using horizontal reactor and method for manufacturing same
JPH07226384A (en) Reactor for chemical vapor deposition of semiconductor grade silicon
US4871587A (en) Process for coating an object with silicon carbide
JPH01239014A (en) Production of polycrystalline silicon and unit therefor
KR20120069348A (en) Fluidized bed reactor for production of a granular polysilicon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832728

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 29-07-2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11832728

Country of ref document: EP

Kind code of ref document: A2