WO2012050316A1 - Back sheet of a solar cell module for photovoltaic power generation - Google Patents

Back sheet of a solar cell module for photovoltaic power generation Download PDF

Info

Publication number
WO2012050316A1
WO2012050316A1 PCT/KR2011/007211 KR2011007211W WO2012050316A1 WO 2012050316 A1 WO2012050316 A1 WO 2012050316A1 KR 2011007211 W KR2011007211 W KR 2011007211W WO 2012050316 A1 WO2012050316 A1 WO 2012050316A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
resin layer
cell module
back sheet
Prior art date
Application number
PCT/KR2011/007211
Other languages
French (fr)
Korean (ko)
Inventor
김민혁
Original Assignee
Kim Min-Hyuk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100125755A external-priority patent/KR20120038347A/en
Application filed by Kim Min-Hyuk filed Critical Kim Min-Hyuk
Priority to US13/879,257 priority Critical patent/US20130209776A1/en
Priority to CN2011800515943A priority patent/CN103180967A/en
Publication of WO2012050316A1 publication Critical patent/WO2012050316A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention consists of a first resin layer, an adhesive layer, a heat conductive layer of a metal material, a lower layer, and an adhesive layer, wherein the first resin layer increases the breakdown voltage and secures an insulation thickness to improve insulation performance, and further, a heat conductive coating layer as a lower layer.
  • thermal conductive layer can be prevented from being bent, and the production cost can be lowered to improve economic efficiency, and the productivity can be improved by 30% or more compared with the conventional solar cell module. It features.
  • a solar cell In general, a solar cell (PV; PHOTOVOLTAIC) is a cell that directly converts incident solar energy into electrical energy. Since the solar cell uses unlimited solar energy without pollution, it does not require fuel, and air pollution or waste generation occurs. It is environmentally friendly, and because it is a semiconductor device, it is a battery that has almost no mechanical vibration and noise.
  • the light concentrating solar cell is not substantially higher than the power generation efficiency of the solar cell to which the sunlight is directly incident, because the light concentrating solar cell is a value obtained by multiplying the power generation efficiency of the cell by the transmittance or reflectance. to be.
  • the power conversion efficiency level which is the ratio of the power generation output to the output of incident sunlight
  • one of them is provided with a Fresnel lens on the top of the cell to concentrate the incident sunlight 500 times or more, thereby increasing the power conversion efficiency.
  • a heat sink having a plurality of fins is attached to the case which protects the cell by an external force.
  • a solar cell module and a holder made of an aluminum alloy and holding the solar cell module may include a plurality of refrigerant passages introduced into the holder to cool the solar cell module.
  • the holder in which the coolant flow path is installed is made of aluminum or aluminum alloy having high thermal conductivity, it is thought that heat can be sufficiently dissipated from the solar cell module.
  • the ceramic coating layer is to heat-dissipate and thereby increase the power generation efficiency of the module by forming a thermally conductive ceramic coating layer by ceramic coating one or both sides of the heat radiation sheet by a conventional ceramic coating method.
  • the heat dissipation sheet is laminated by applying heat and pressure to the back side EVA.
  • the thin film-type heat dissipation sheet that is, the metal thin film or ceramic coating layer, and the back-sided EVA
  • the solar module is bent or bent due to the difference in thermal expansion coefficient and cooling rate. There is a problem of not having a performance test or reference performance.
  • the heat dissipation sheet of the prior art is made by coating a metal thin film and a ceramic coating layer on the metal thin film, it is difficult to ensure a sufficient insulation thickness, and because of this, the insulation performance is lowered, and thus the Hi-pot test for the breakdown voltage or the insulation performance test. Difficult to pass performance tests such as partial discharge test,
  • the present invention has been made to solve the above problems,
  • Consists of the first resin layer, the adhesive layer, the thermal conductive layer of the metal material, the lower layer and the adhesive layer, by the first resin layer to increase the breakdown voltage and to ensure the insulation thickness to improve the insulation performance
  • thermally conductive coating layer as a lower layer to increase the heat dissipation performance by high thermal conductivity, emissivity and reflectance to increase the amount of power generation of the solar cell module
  • the second resin layer is introduced into the lower layer to increase the breakdown voltage and to secure the insulation thickness, thereby improving the insulation performance and preventing the heat conductive layer from warping due to the difference in the coefficient of thermal expansion and the cooling rate of the adhesive layer and the heat conductive layer.
  • the present invention is not only excellent in insulation performance and heat dissipation performance using inorganic paints or inorganic-inorganic hybrid paints as a heat conductive coating layer, but also excellent in heat resistance and adhesive strength, and also enables thin film to constitute a compact product.
  • inorganic paints or inorganic-inorganic hybrid paints as a heat conductive coating layer
  • heat resistance and adhesive strength and also enables thin film to constitute a compact product.
  • the present invention is to introduce a protective layer excellent in weatherability and corrosion resistance to the lower portion of the thermal conductive coating layer to block ultraviolet rays, and also to improve the surface protection and moisture permeation performance to upgrade the quality of the product to another level. do.
  • the solar cell module backsheet of the present invention comprises a first resin layer attached to the EVA provided in the lower portion of the solar cell; A thermal conductive layer provided on the lower surface portion of the first resin layer; A lower layer provided on a lower surface of the heat conductive layer; And an adhesive layer provided between the first resin layer and the thermal conductive layer.
  • the first resin layer is characterized by increasing the breakdown voltage and ensuring the insulation thickness to improve the insulation performance.
  • the lower layer according to the invention is characterized in that the thermally conductive coating layer applied by inorganic paints or organic-inorganic composite hybrid paints.
  • the lower surface of the thermally conductive coating layer according to the present invention is characterized in that the protective layer for UV protection, surface protection, moisture permeation is further provided.
  • the lower layer according to the present invention is a second resin layer, and further comprises an adhesive layer provided between the heat conductive layer and the second resin layer,
  • the second resin layer increases the breakdown voltage and secures an insulation thickness to improve insulation performance
  • the first resin layer, or the second resin layer, or both, may prevent the heat conductive layer from bending due to a difference between a coefficient of thermal expansion and a cooling rate of the adhesive layer and the heat conductive layer.
  • a lower surface portion of the second resin layer according to the present invention is further provided with a thermally conductive coating layer applied by an inorganic paint or an organic-inorganic composite hybrid paint.
  • the lower surface portion of the thermal conductive coating layer according to the present invention is characterized in that the protective layer for UV protection, surface protection, moisture permeation is further provided.
  • the first resin layer according to the present invention is characterized in that the material consisting of any one of PET, PI, BOPP, OPP, PVF, PVDF, TPE, ETFE and aramid film.
  • the thermally conductive layer according to the present invention is characterized in that the metal material of any one of aluminum, copper, brass, steel sheet and stainless steel.
  • the adhesive layer according to the invention is characterized in that the adhesive transparent film of EVA, acrylic, urethane series.
  • the second resin layer according to the present invention is characterized by consisting of any one material of PET, PI, BOPP, OPP, PVF, PVDF, TPE, ETFE and aramid film.
  • the thickness of the back sheet consisting of the first resin layer, the heat conductive layer, the second resin layer and the adhesive layer according to the present invention is characterized in that it is formed within the range of 250 ⁇ 750 ⁇ m.
  • One or both surfaces of the second resin layer according to the present invention may further include a carbon black layer formed by coating a carbon black resin.
  • One or both surfaces of the second resin layer according to the present invention is further provided with a heat dissipating ceramic coating layer.
  • the solar cell backsheet of the solar module according to the present invention comprises a first resin layer, an adhesive layer, a heat conductive layer of a metal material, a lower layer, and an adhesive layer, and withstand voltage increase and insulation thickness by the first resin layer.
  • thermally conductive coating layer as a lower layer to increase the heat dissipation performance by high thermal conductivity, emissivity and reflectance to increase the amount of power generation of the solar cell module
  • the second resin layer is introduced into the lower layer to increase the breakdown voltage and to secure the insulation thickness, thereby improving the insulation performance and preventing the heat conductive layer from warping due to the difference in the coefficient of thermal expansion and the cooling rate of the adhesive layer and the heat conductive layer.
  • the present invention is not only excellent in insulation performance and heat dissipation performance using inorganic paints or inorganic-inorganic hybrid paints as a heat conductive coating layer, but also excellent in heat resistance and adhesive strength, and also enables a thin film so that the product can be compactly constructed. do.
  • the present invention introduces a protective layer excellent in weatherability and corrosion resistance to the lower surface of the thermal conductive coating layer to block ultraviolet rays, and also to improve the surface protection and moisture permeation prevention performance to upgrade the quality of the product to the next level.
  • FIG. 1 is a cross-sectional view showing a back sheet of the solar cell module for solar cells according to the present invention
  • Figure 2 is a cross-sectional view showing another modification of the back sheet of the solar cell module for solar cells according to the present invention
  • FIG. 3 is a cross-sectional view showing that the protective layer is introduced in the back sheet of the solar cell module for solar cells according to the present invention
  • Figure 4 is a cross-sectional view showing that the carbon black layer and the heat-radiating ceramic coating layer is introduced in the back sheet of the solar cell module for solar cells according to the present invention.
  • first resin layer 20 heat conductive layer
  • a first resin layer 10 attached to the EVA provided under the solar cell SC; A thermal conductive layer 20 provided on the lower surface portion of the first resin layer 10; A lower layer on a lower surface of the thermal conductive layer 20; And an adhesive layer 40 provided between the first resin layer 10 and the thermal conductive layer 20.
  • the first resin layer 10 is
  • a solar cell SC is attached to the upper surface portion, and a thermal conductive layer 20 is attached to the lower surface portion thereof to transfer heat generated from the solar cell SC to the thermal conductive layer 20 and to form an insulating layer. Done.
  • a solar cell SC is attached to an upper surface of the first resin layer 10, and a glass G is attached to an upper portion of the solar cell SC.
  • the solar cell SC and the glass G are bonded to the solar cell SC and the glass G using any one of acrylic, EVA and urethane adhesives.
  • the first resin layer 10 may be formed of PolyEthylene Terephthalate (PET), PolyImide (PI), Bi-axially Oriented PolyPropylene (BOPP), OPP, PolyVinyl Fluoride (PVF), and PVDF (PolyEthylene Terephthalate).
  • PET PolyEthylene Terephthalate
  • PI PolyImide
  • BOPP Bi-axially Oriented PolyPropylene
  • OPP OPP
  • PVDF PolyEthylene Terephthalate
  • the sheet or film is a thin film form made of a resin material made of a polymer material such as PolyVinylidene Fluoride (TPE), Thermo Plastic Elastomer (TPE), Ethylene Tetrafluoro Ethylene (ETFE), and aramid film.
  • TPE PolyVinylidene Fluoride
  • TPE Thermo Plastic Elastomer
  • ETFE Ethylene Te
  • the thin film sheet made of such a polymer material has an excellent withstand voltage, so that there is no fear of breakdown of the insulating part, thereby improving durability.
  • This characteristic has the advantage of extending the application to various fields that require higher withstand voltage in terms of quality standards.
  • the first resin layer 10 is excellent in heat resistance to prevent the phenomenon that the insulating layer is broken or destroyed
  • the thin film form also allows the compactness of the solar cell module itself.
  • the heat conductive layer 20 is
  • thermal conductive layer 20 it is preferable to use a material having thermal conductivity equivalent to or higher than that of aluminum, copper, brass, steel sheet, stainless steel or the like having excellent thermal conductivity,
  • these materials are excellent in stiffness and heat resistance of a certain level, which can prevent deformation of the material due to thermal stress, thereby increasing the reliability of the product.
  • the lower layer is
  • the heat conductive coating layer 50 is coated with an inorganic paint or an organic / inorganic hybrid hybrid paint, or a second resin layer 30 in the form of a sheet or a film.
  • the thermal conductive layer 20 is arranged on the bottom surface of the thermal conductive layer 20.
  • the thermally conductive coating layer 50 ensures insulation performance and heat dissipation performance of the solar cell module, and also has excellent heat resistance and adhesive strength, and also enables thinning of the solar cell module.
  • the thermal conductive coating layer 50 is applied to the lower surface of the thermal conductive layer 20 by introducing an inorganic paint or an organic-inorganic composite hybrid paint,
  • the thermally conductive coating layer 50 uses an inorganic coating made of metal oxide, CNT, silicon, etc., such as ceramic-based alumina, titanium oxide, and zirconia.
  • the inorganic paint has the advantage of excellent heat resistance, chemical stability, thermal conductivity and insulation.
  • Inorganic-inorganic hybrid hybrid paints are mixed with the inorganic paints, which are organic materials such as urethane, polyester, and organic chemical coating agents.
  • the thermally conductive coating layer 50 composed of the organic-inorganic composite hybrid paint not only has excellent insulation performance and heat dissipation performance, but also has excellent heat resistance and adhesive strength,
  • the thermally conductive coating layer may be selected from Al 2 O 3 , AlS, AlN, ZnO 2 , TiO 2 , SiO 2 , TEOS, MTMS, ZrO 3 and MOS 2 as an alternative form of an inorganic paint or an organic / inorganic hybrid hybrid paint. It is also possible to introduce a ceramic material including the above to ensure insulation performance and heat dissipation performance.
  • the second resin layer 30 is introduced into the lower layer according to the present invention, as shown in FIGS. 2 and 3 (b), the second resin layer 30 is arranged below the thermal conductive layer 20.
  • the insulation thickness of the solar cell module is maintained above a certain level to improve insulation performance and to increase the withstand voltage.
  • the second resin layer 30 is configured in the form of a sheet or film made of a polymer material such as PET, PI, BOPP, OPP, PVF, PVDF, TPE, ETFE and aramid film to achieve the above object.
  • a polymer material such as PET, PI, BOPP, OPP, PVF, PVDF, TPE, ETFE and aramid film
  • the thermally conductive coating layer 50 is further provided on the lower surface of the second resin layer 30,
  • thermally conductive coating layer 50 may be made of an inorganic paint or an organic / inorganic hybrid hybrid paint to obtain the same functions and effects as described above.
  • the adhesive layer 40 is
  • the first transparent resin layer 10 and the thermal conductive layer 20 and the thermal conductive layer 20 and the second resin layer 30 are bonded to each other by using an EVA, acrylic or urethane-based adhesive transparent film or an adhesive paint. It will play a role.
  • the adhesive layer 40 is arranged between the first resin layer 10 and the thermal conductive layer 20 to bond the first resin layer 10 and the thermal conductive layer 20, and further, the thermal conductive layer 20 The second resin layer 30 is bonded.
  • the adhesive layer 40 in order to bond the first resin layer 10, the heat conductive layer 20, and the second resin layer 30, which are each component constituting the solar cell module, by the adhesive layer 40, laminating by a constant thermal pressure. This is done.
  • the metal thin film is bent due to the difference in the cooling rate between the adhesive layer and the metal thin film during the cooling process.
  • the first resin layer 10 and the second resin layer 30 are introduced to each other by the difference in cooling rate between the adhesive layer 40 and the heat conductive layer 20. Prevent the bending deformation of the thermal conductive layer 20 to maintain the quality of the product,
  • the insulation thickness is sufficiently secured by the first resin layer 10 and the second resin layer 30, the insulation performance and the withstand voltage can be increased.
  • the second resin layer 30 is to secure the insulation thickness of the solar cell module
  • the backsheet composed of the first resin layer 10, the adhesive layer 40, the thermal conductive layer 20, the adhesive layer 40, and the second resin layer 30 is formed within the range of 250 to 750 ⁇ m.
  • the heat dissipation sheet is bent or deformed easily due to the difference in the coefficient of thermal expansion and the cooling rate of the EVA layer directly attached to the metal thin film.
  • the present invention it is preferable to prevent the deformation of the back sheet by forming the thickness of the back sheet within the above range, and to ensure the reliability of the product by improving the durability by ensuring sufficient insulation thickness.
  • the protective layer 60 is made of a material such as ceramic, fluorine resin,
  • the protective layer 60 is excellent in weather resistance and corrosion resistance, and excellent in blocking the ultraviolet rays, surface protection, it is possible to obtain the effect of improving the insulation performance of the solar cell module.
  • one or both surfaces of the second resin layer 30 according to the present invention are introduced with a carbon black layer 70 formed by coating with a carbon black resin to increase heat radiation performance. You can double the heat dissipation efficiency,
  • the carbon black layer 70 is excellent in heat radiation, that is, the thermal conductivity is to maximize the heat dissipation efficiency by releasing the conductive heat transferred to the second resin layer 30 through the thermal conductive layer 20 into the air more quickly.
  • the carbon black layer 70 is formed to be exposed to the lower surface of the second resin layer 30, that is, exposed to the outside, the carbon black layer 70 is advantageous in terms of thermal conductivity, thereby increasing heat dissipation efficiency.
  • the carbon black layer 70 is applied to the lower surface of the second resin layer 30 to be exposed to the outside so as to contribute to increase the heat dissipation efficiency rather than structural stability side to improve the heat dissipation performance It is desirable to.
  • the carbon black layer 70 is formed on both sides of the second resin layer 30 may have all the advantages that are formed on one surface it is possible to be formed on both sides.
  • one or both surfaces of the second resin layer 30 are further provided with a heat dissipating ceramic coating layer 80.
  • the heat dissipation ceramic coating layer 80 is at least one metal ceramic material selected from the group consisting of alumina, titanium oxide, zirconia,
  • An organosilane, an inorganic silane, a silane coupling agent, and CNT are composed of at least one selected from the group consisting of at least one nonmetal ceramic material.
  • the heat dissipation ceramic coating layer 80 efficiently discharges the conductive heat transferred by the heat conduction layer 20 to the outside, thereby increasing the heat dissipation efficiency and, thereby, increasing the generation amount of the solar cell module.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a back sheet of a solar cell module for photovoltaic power generation, and more particularly, to a back sheet of a solar cell module for photovoltaic power generation including a first resin layer attached to EVA below a solar cell; a heat conductive layer at the bottom portion of the first resin layer; a lower layer at the bottom portion of the heat conductive layer; and an adhesive layer between the first resin layer and the heat conductive layer. The lower layer may include a heat conductive coating layer formed of an inorganic coating or organic-inorganic composite hybrid coating, and a second resin layer. Accordingly, the present invention includes a first resin layer, an adhesive layer, a metallic heat conductive layer, a lower layer, and an adhesive layer, so that insulation properties are improved by increasing withstand voltage and obtaining insulation thicknesses by means of the first resin layer. Moreover, a heat conductive coating layer is introduced as the lower layer, so that heat radiation performance is increased by high thermal conductivity, emissivity, and reflexibility in order to increase an amount of power generated from a solar cell module. Furthermore, withstand voltage is increased by using a second resin layer as the lower layer, and insulation properties are improved by obtaining an insulation thickness. Because of differences between thermal expansion coefficients and cooling rates of the adhesive layer and the thermal conductive layer, the heat conductive layer is prevented from bending.

Description

태양광발전용 솔라셀 모듈의 백시트Solar Cell Back Module
본 발명은 제1 수지층, 접착층, 금속 소재의 열전도층, 하부층 및 접착층으로 이루어져, 제1 수지층에 의하여 내전압 증대와, 절연 두께를 확보하여 절연성능을 향상시키고, 아울러 하부층으로 열전도성 코팅층을 도입하여 높은 열전도율, 방사율 및 반사율에 의하여 방열성능을 높여 솔라셀 모듈의 발전량의 증대시키거나, 또는 하부층으로 제2 수지층을 도입하여 내전압 증대, 절연 두께를 확보하여 절연성능의 향상과, 접착층과 열전도층의 열팽창계수와 냉각속도의 차이에 의하여 열전도층이 휘는 것을 방지하고, 또한 생산 코스트를 낮추어 경제성을 높일 수 있을 뿐만 아니라, 생산성을 종래의 솔라셀 모듈에 비하여 30% 이상 향상시킬 수 있는 것을 특징으로 한다.The present invention consists of a first resin layer, an adhesive layer, a heat conductive layer of a metal material, a lower layer, and an adhesive layer, wherein the first resin layer increases the breakdown voltage and secures an insulation thickness to improve insulation performance, and further, a heat conductive coating layer as a lower layer. Increasing the heat dissipation performance by high thermal conductivity, emissivity and reflectance to increase the amount of power generation of the solar cell module, or by introducing a second resin layer as a lower layer to increase the breakdown voltage and to secure the insulation thickness to improve the insulation performance, Due to the difference in thermal expansion coefficient and cooling rate of the thermal conductive layer, the thermal conductive layer can be prevented from being bent, and the production cost can be lowered to improve economic efficiency, and the productivity can be improved by 30% or more compared with the conventional solar cell module. It features.
일반적으로 태양전지(PV;PHOTOVOLTAIC)는 입사되는 태양 광 에너지를 직접 전기에너지로 변환시키는 하나의 전지로서, 상기 태양전지는 무공해 무한정의 태양 광 에너지를 이용하므로 연료가 필요 없고, 대기오염이나 폐기물 발생이 없어 친환경적이며, 또한 반도체 소자이기 때문에 기계적인 진동과 소음이 거의 없는 장점이 있는 전지이다.In general, a solar cell (PV; PHOTOVOLTAIC) is a cell that directly converts incident solar energy into electrical energy. Since the solar cell uses unlimited solar energy without pollution, it does not require fuel, and air pollution or waste generation occurs. It is environmentally friendly, and because it is a semiconductor device, it is a battery that has almost no mechanical vibration and noise.
최근 들어 국내외적으로 에너지 문제가 심각해지면서 각광을 받게 되어 개발이 활발히 이루어지고 있는바, 종래에는 태양광을 반사나 굴절 없이 다중 셀에 직접 입사하는 태양전지와, 상기 다중 셀 앞에 반사체를 설치하여 태양광을 집광하는 집광형 태양전지가 있다.In recent years, the domestic and foreign energy problems are getting serious, and development is being actively conducted. In the past, solar cells directly incident to multiple cells without reflection or refraction of solar light, and reflectors are installed in front of the multiple cells There is a light collecting solar cell that condenses light.
그러나 상기 집광형 태양전지는 상기 태양광이 직접 입사하는 태양전지의 발전효율보다 실질적으로 높지 않게 되는데, 그 이유는 상기 집광형 태양전지는 셀의 발전출력 효율에 투과율이나 반사율을 곱한 값이 되기 때문이다.However, the light concentrating solar cell is not substantially higher than the power generation efficiency of the solar cell to which the sunlight is directly incident, because the light concentrating solar cell is a value obtained by multiplying the power generation efficiency of the cell by the transmittance or reflectance. to be.
즉 상기 셀의 경우 입사되는 태양광의 출력에 대한 발전출력의 비율인 전력변환 효율 수준이 약 15% 라고 할 때, 상기 집광형 태양전지의 발전효율은 투과율이나 반사율이 90% 라면, 15% X 90% = 13.5%가 되어 실질적으로 발전효율이 높지 않게 된다.That is, in the case of the cell, when the power conversion efficiency level, which is the ratio of the power generation output to the output of incident sunlight, is about 15%, the power generation efficiency of the light-converging solar cell is 15% X 90 when the transmittance or reflectance is 90%. % = 13.5%, the power generation efficiency is practically not high.
그래서 높은 전력변환 효율을 얻기 위하여 그 중의 하나로 셀의 상부에 프레즈넬 렌즈(Fresnel Lens)를 구비하여 입사되는 태양광을 500배 이상으로 셀에 집중함으로써, 전력 변환 효율을 증대하도록 하였다.Therefore, in order to obtain high power conversion efficiency, one of them is provided with a Fresnel lens on the top of the cell to concentrate the incident sunlight 500 times or more, thereby increasing the power conversion efficiency.
그러나 상기 500배의 태양광은 하나의 셀에 집중되게 되므로, 상기 셀의 온도를 급상승하게 되어, 오히려 전력 변환 효율을 저하하는 요인으로 작용하게 되는 문제점을 야기시키게 된다.However, since 500 times of sunlight is concentrated in one cell, the temperature of the cell is rapidly increased, which causes a problem of lowering power conversion efficiency.
따라서 급상승하는 셀의 온도를 낮추기 위하여 셀을 외력으로 보호하는 케이스에 다수의 핀을 갖는 방열판을 부착한 것이 있으나,Therefore, in order to lower the temperature of the rapidly rising cell, a heat sink having a plurality of fins is attached to the case which protects the cell by an external force.
이는 태양전지 전체의 열을 방열하는 것이기에 상기 셀의 온도를 낮추는 데에는 미흡한 점이 있었다.Since the heat dissipation of the heat of the entire solar cell was insufficient to lower the temperature of the cell.
또한 태양전지 모듈과, 알루미늄 합금으로 이루어지고 상기 태양전지 모듈을 유지하는 홀더로 구성되어 상기 홀더에는 태양전지 모듈을 냉각시키기 위한 복수의 냉매 유로가 도입된 것이 있다.In addition, a solar cell module and a holder made of an aluminum alloy and holding the solar cell module may include a plurality of refrigerant passages introduced into the holder to cool the solar cell module.
그러나 상기한 바와 같이 냉매 유로가 설치된 홀더는 열전도율이 높은 알루미늄이나 알루미늄 합금으로 이루어지므로 태양전지 모듈의 열을 충분히 방열할 수 있다고도 생각되지만,However, as described above, since the holder in which the coolant flow path is installed is made of aluminum or aluminum alloy having high thermal conductivity, it is thought that heat can be sufficiently dissipated from the solar cell module.
이것은 알루미늄 등으로 이루어지는 홀더나 냉각핀은 그 표면에 섬세한 요철이 존재하기 때문에 미시적으로 보면 태양전지 모듈과 방열 부재가 밀착되어 있지 않고,This is because holders and cooling fins made of aluminum, etc., have delicate irregularities on the surface thereof.
이 때문에 태양전지 모듈과 방열부재 사이에 열전도율이 낮은 공기층이 존재하게 된다.For this reason, an air layer having a low thermal conductivity exists between the solar cell module and the heat dissipation member.
따라서 방열부재에 열전도율이 높은 알루미늄, 구리 등을 이용했다고 해도 공기의 층이 존재함으로써 태양전지 모듈의 열을 충분히 방열하지 못하여 에너지 변환 효율을 저하시킨다는 문제가 있다.Therefore, even if aluminum, copper, or the like having high thermal conductivity is used as the heat radiating member, there is a problem in that the presence of the air layer does not sufficiently dissipate heat of the solar cell module, thereby lowering energy conversion efficiency.
그리고 종래의 방열시트 내지 백시트로 등록특허 제10-0962642호(2010.06.11. 공고) "세라믹 코팅 방열시트를 구비한 태양광발전용 모듈"은And the conventional heat dissipation sheet to back sheet No. 10-0962642 (announced on June 11, 2010) "Solar photovoltaic module with a ceramic coating heat dissipation sheet"
유리기판, 전면 쏠라 EVA, 쏠라 셀, 후면 쏠라 EVA 및 세라믹 코팅층이 형성된 방열시트의 순으로 적층된 구조로 상기 방열시트는 열전도율이 뛰어난 소재로서, 알루미늄, 동, 황동, 강판, 스테인리스 및 이와 같은 소재들과 동등 이상의 방사율 성능을 갖는 금속 박판 중에서 한 가지를 선택하여 사용하고,It is a laminated structure of glass substrate, front solar EVA, solar cell, rear solar EVA, and heat dissipation sheet with ceramic coating layer, and the heat dissipation sheet has excellent thermal conductivity.Aluminum, copper, brass, steel plate, stainless steel and the like Select one of the metal sheet having the emissivity performance equivalent to or higher than
또한 상기 세라믹 코팅층은 통상적인 세라믹 코팅법에 의해 방열시트의 한쪽 면 또는 양쪽 면을 세라믹 코팅하여 열전도성 세라믹 코팅층을 형성함으로써 방열과, 이를 통하여 모듈의 발전효율을 높이고자 한다.In addition, the ceramic coating layer is to heat-dissipate and thereby increase the power generation efficiency of the module by forming a thermally conductive ceramic coating layer by ceramic coating one or both sides of the heat radiation sheet by a conventional ceramic coating method.
그러나 상기 종래기술에서 방열시트는 후면 쏠라 EVA에 열과 압력을 가해 라미네이팅되는데,However, in the prior art, the heat dissipation sheet is laminated by applying heat and pressure to the back side EVA.
이때 열 압력을 가한 후, 냉각되는 과정에서 박막형태의 방열시트, 즉 금속박막이나 세라믹 코팅층과, 후면 쏠라 EVA는 열팽창계수와 냉각속도의 차이에 의하여 태양광모듈이 휘어지거나 또는 굽어지는 현상으로 다양한 성능 시험이나 기준 성능을 갖추지 못하는 문제가 있다.At this time, after the heat pressure is applied, the thin film-type heat dissipation sheet, that is, the metal thin film or ceramic coating layer, and the back-sided EVA, the solar module is bent or bent due to the difference in thermal expansion coefficient and cooling rate. There is a problem of not having a performance test or reference performance.
또한 상기 종래기술의 방열시트는 금속박막과, 금속박막에 세라믹 코팅층을 도포하여 이루어져, 충분한 절연 두께를 확보하는 것이 어렵고, 또한 이로 인하여 절연성능이 떨어져 내전압 내지 절연성능 실험을 위한 Hi-pot 테스트와, 부분 방전압 테스트와 같은 성능 시험을 통과하기 어려울 뿐만 아니라,In addition, the heat dissipation sheet of the prior art is made by coating a metal thin film and a ceramic coating layer on the metal thin film, it is difficult to ensure a sufficient insulation thickness, and because of this, the insulation performance is lowered, and thus the Hi-pot test for the breakdown voltage or the insulation performance test. Difficult to pass performance tests such as partial discharge test,
UL 인증과 같은 안전 규격을 만족시키지 못하는 문제로 실제 생산을 통한 제품으로서의 현실화가 어렵다는 문제가 있다.The problem of not satisfying safety standards such as UL certification, there is a problem that the actualization as a product through actual production is difficult.
본 발명은 상기한 바와 같은 문제점을 해결하기 위해 안출된 것으로,The present invention has been made to solve the above problems,
제1 수지층, 접착층, 금속 소재의 열전도층, 하부층 및 접착층으로 이루어져, 제1 수지층에 의하여 내전압 증대와, 절연 두께를 확보하여 절연성능을 향상시키고,Consists of the first resin layer, the adhesive layer, the thermal conductive layer of the metal material, the lower layer and the adhesive layer, by the first resin layer to increase the breakdown voltage and to ensure the insulation thickness to improve the insulation performance,
아울러 하부층으로 열전도성 코팅층을 도입하여 높은 열전도율, 방사율 및 반사율에 의하여 방열성능을 높여 솔라셀 모듈의 발전량의 증대시키거나,In addition, by introducing a thermally conductive coating layer as a lower layer to increase the heat dissipation performance by high thermal conductivity, emissivity and reflectance to increase the amount of power generation of the solar cell module,
또는 하부층으로 제2 수지층을 도입하여 내전압 증대, 절연 두께를 확보하여 절연성능의 향상과, 접착층과 열전도층의 열팽창계수와 냉각속도의 차이에 의하여 열전도층이 휘는 것을 방지하고,Alternatively, the second resin layer is introduced into the lower layer to increase the breakdown voltage and to secure the insulation thickness, thereby improving the insulation performance and preventing the heat conductive layer from warping due to the difference in the coefficient of thermal expansion and the cooling rate of the adhesive layer and the heat conductive layer.
또한 생산 코스트를 낮추어 경제성을 높일 수 있을 뿐만 아니라, 생산성을 종래의 솔라셀 모듈에 비하여 30% 이상 향상시킬 수 있는 것을 하나의 특징으로 한다.In addition, it is possible not only to increase the economics by lowering the production cost, but also to increase productivity by 30% or more as compared to the conventional solar cell module.
또한 본 발명은 열전도성 코팅층으로 무기도료 또는 유무기 하이브리드 도료를 사용하여 절연성능, 방열성능이 우수할 뿐만 아니라, 내열성과 접착강도가 우수하고, 또한 박막화가 가능하여 제품을 콤팩트하게 구성하는 것을 또 하나의 목적으로 한다.In addition, the present invention is not only excellent in insulation performance and heat dissipation performance using inorganic paints or inorganic-inorganic hybrid paints as a heat conductive coating layer, but also excellent in heat resistance and adhesive strength, and also enables thin film to constitute a compact product. One purpose.
아울러 본 발명은 열전도성 코팅층의 하면부에는 내후성과 내식성이 뛰어난 보호층을 도입하여 자외선을 차단하고, 또한 표면보호와 투습방지 성능을 향상시켜 제품의 품질을 한 단계 업그레이드시키는 것을 또 하나의 목적으로 한다.In addition, the present invention is to introduce a protective layer excellent in weatherability and corrosion resistance to the lower portion of the thermal conductive coating layer to block ultraviolet rays, and also to improve the surface protection and moisture permeation performance to upgrade the quality of the product to another level. do.
본 발명에 따른 태양광발전용 솔라셀 모듈의 백시트는 솔라셀의 하부에 구비된 EVA에 부착된 제1 수지층; 상기 제1 수지층의 하면부에 구비된 열전도층; 상기 열전도층의 하면부에 구비된 하부층; 및 상기 제1 수지층과 열전도층 사이에 구비되는 접착층;을 포함하여 이루어지고,The solar cell module backsheet of the present invention comprises a first resin layer attached to the EVA provided in the lower portion of the solar cell; A thermal conductive layer provided on the lower surface portion of the first resin layer; A lower layer provided on a lower surface of the heat conductive layer; And an adhesive layer provided between the first resin layer and the thermal conductive layer.
상기 제1 수지층은 내전압 증대와, 절연 두께를 확보하여 절연성능을 향상시키는 것을 특징으로 한다.The first resin layer is characterized by increasing the breakdown voltage and ensuring the insulation thickness to improve the insulation performance.
본 발명에 따른 상기 하부층은 무기도료 또는 유무기 복합 하이브리드 도료에 의하여 도포되는 열전도성 코팅층인 것을 특징으로 한다.The lower layer according to the invention is characterized in that the thermally conductive coating layer applied by inorganic paints or organic-inorganic composite hybrid paints.
본 발명에 따른 상기 열전도성 코팅층의 하면부에는 자외선 차단, 표면보호, 투습방지를 위한 보호층이 더 구비되어 있는 것을 특징으로 한다.The lower surface of the thermally conductive coating layer according to the present invention is characterized in that the protective layer for UV protection, surface protection, moisture permeation is further provided.
한편, 본 발명에 따른 상기 하부층은 제2 수지층이고, 상기 열전도층과 상기 제2 수지층 사이에 구비되는 접착층을 더 포함하며,On the other hand, the lower layer according to the present invention is a second resin layer, and further comprises an adhesive layer provided between the heat conductive layer and the second resin layer,
상기 제2 수지층은 내전압 증대와, 절연 두께를 확보하여 절연성능을 향상시키고,The second resin layer increases the breakdown voltage and secures an insulation thickness to improve insulation performance,
상기 제1 수지층과, 또는 상기 제2 수지층 또는 이를 모두는 상기 접착층과 상기 열전도층의 열팽창계수와 냉각속도의 차이에 의하여 상기 열전도층이 휘는 현상을 방지하는 것을 특징으로 한다.The first resin layer, or the second resin layer, or both, may prevent the heat conductive layer from bending due to a difference between a coefficient of thermal expansion and a cooling rate of the adhesive layer and the heat conductive layer.
본 발명에 따른 상기 제2 수지층의 하면부에는 무기도료 또는 유무기 복합 하이브리드 도료에 의하여 도포되는 열전도성 코팅층이 더 구비되어 있는 것을 특징으로 한다.A lower surface portion of the second resin layer according to the present invention is further provided with a thermally conductive coating layer applied by an inorganic paint or an organic-inorganic composite hybrid paint.
본 발명에 따른 사이 열전도성 코팅층의 하면부에는 자외선 차단, 표면보호, 투습방지를 위한 보호층이 더 구비되어 있는 것을 특징으로 한다.The lower surface portion of the thermal conductive coating layer according to the present invention is characterized in that the protective layer for UV protection, surface protection, moisture permeation is further provided.
본 발명에 따른 상기 제1 수지층은 PET, PI, BOPP, OPP, PVF, PVDF, TPE, ETFE 및 아라미드 필름 및 중 어느 하나의 소재로 이루어진 것을 특징으로 한다.The first resin layer according to the present invention is characterized in that the material consisting of any one of PET, PI, BOPP, OPP, PVF, PVDF, TPE, ETFE and aramid film.
본 발명에 따른 상기 열전도층은 알루미늄, 동, 황동, 강판 및 스테인리스 스틸 중 어느 하나의 금속 소재로 이루어진 것을 특징으로 한다.The thermally conductive layer according to the present invention is characterized in that the metal material of any one of aluminum, copper, brass, steel sheet and stainless steel.
본 발명에 따른 상기 접착층은 EVA, 아크릴, 우레탄 계열의 접착성 투명 필름인 것을 특징으로 한다.The adhesive layer according to the invention is characterized in that the adhesive transparent film of EVA, acrylic, urethane series.
본 발명에 따른 상기 제2 수지층은 PET, PI, BOPP, OPP, PVF, PVDF, TPE, ETFE 및 아라미드 필름 중 어느 하나의 소재로 이루어진 것을 특징으로 한다.The second resin layer according to the present invention is characterized by consisting of any one material of PET, PI, BOPP, OPP, PVF, PVDF, TPE, ETFE and aramid film.
본 발명에 따른 상기 제1 수지층, 열전도층, 제2 수지층 및 접착층으로 이루어진 백시트의 두께는 250 ~ 750㎛ 범위 내에서 형성되는 것을 특징으로 한다.The thickness of the back sheet consisting of the first resin layer, the heat conductive layer, the second resin layer and the adhesive layer according to the present invention is characterized in that it is formed within the range of 250 ~ 750㎛.
본 발명에 따른 상기 제2 수지층의 일면 또는 양면에는 카본블랙(carbon black) 수지가 도포되어 형성된 카본블랙층이 더 구비되어 있는 것을 특징으로 한다.One or both surfaces of the second resin layer according to the present invention may further include a carbon black layer formed by coating a carbon black resin.
본 발명에 따른 상기 제2 수지층의 일면 또는 양면에는 방열세라믹 코팅층이 더 구비되어 있는 것을 특징으로 한다.One or both surfaces of the second resin layer according to the present invention is further provided with a heat dissipating ceramic coating layer.
본 발명에 따른 태양광발전용 솔라셀 모듈의 백시트는 제1 수지층, 접착층, 금속 소재의 열전도층, 하부층 및 접착층으로 이루어져, 제1 수지층에 의하여 내전압 증대와, 절연 두께를 확보하여 절연성능을 향상시키고,The solar cell backsheet of the solar module according to the present invention comprises a first resin layer, an adhesive layer, a heat conductive layer of a metal material, a lower layer, and an adhesive layer, and withstand voltage increase and insulation thickness by the first resin layer. Improve performance,
아울러 하부층으로 열전도성 코팅층을 도입하여 높은 열전도율, 방사율 및 반사율에 의하여 방열성능을 높여 솔라셀 모듈의 발전량의 증대시키거나,In addition, by introducing a thermally conductive coating layer as a lower layer to increase the heat dissipation performance by high thermal conductivity, emissivity and reflectance to increase the amount of power generation of the solar cell module,
또는 하부층으로 제2 수지층을 도입하여 내전압 증대, 절연 두께를 확보하여 절연성능의 향상과, 접착층과 열전도층의 열팽창계수와 냉각속도의 차이에 의하여 열전도층이 휘는 것을 방지하고,Alternatively, the second resin layer is introduced into the lower layer to increase the breakdown voltage and to secure the insulation thickness, thereby improving the insulation performance and preventing the heat conductive layer from warping due to the difference in the coefficient of thermal expansion and the cooling rate of the adhesive layer and the heat conductive layer.
또한 생산 코스트를 낮추어 경제성을 높일 수 있을 뿐만 아니라, 생산성을 종래의 솔라셀 모듈에 비하여 30% 이상 향상시킬 수 있게 된다.In addition, it is possible not only to increase the economics by lowering the production cost, but also to improve productivity by more than 30% compared to the conventional solar cell module.
또한 본 발명은 열전도성 코팅층으로 무기도료 또는 유무기 하이브리드 도료를 사용하여 절연성능, 방열성능이 우수할 뿐만 아니라, 내열성과 접착강도가 우수하고, 또한 박막화가 가능하여 제품을 콤팩트하게 구성할 수 있게 된다.In addition, the present invention is not only excellent in insulation performance and heat dissipation performance using inorganic paints or inorganic-inorganic hybrid paints as a heat conductive coating layer, but also excellent in heat resistance and adhesive strength, and also enables a thin film so that the product can be compactly constructed. do.
아울러 본 발명은 열전도성 코팅층의 하면부에 내후성과 내식성이 뛰어난 보호층을 도입하여 자외선을 차단하고, 또한 표면보호와 투습방지 성능을 향상시켜 제품의 품질을 한 단계 업그레이드시킬 수 있게 된다.In addition, the present invention introduces a protective layer excellent in weatherability and corrosion resistance to the lower surface of the thermal conductive coating layer to block ultraviolet rays, and also to improve the surface protection and moisture permeation prevention performance to upgrade the quality of the product to the next level.
도 1은 본 발명에 따른 태양광발전용 솔라셀 모듈의 백시트를 나타내는 단면도,1 is a cross-sectional view showing a back sheet of the solar cell module for solar cells according to the present invention,
도 2는 본 발명에 따른 태양광발전용 솔라셀 모듈의 백시트의 또 다른 변형례를 나타내는 단면도,Figure 2 is a cross-sectional view showing another modification of the back sheet of the solar cell module for solar cells according to the present invention,
도 3은 본 발명에 따른 태양광발전용 솔라셀 모듈의 백시트에서 보호층이 도입된 것을 나타내는 단면도,3 is a cross-sectional view showing that the protective layer is introduced in the back sheet of the solar cell module for solar cells according to the present invention,
도 4은 본 발명에 따른 태양광발전용 솔라셀 모듈의 백시트에서 카본블랙층과 방열세라믹 코팅층이 도입된 것을 나타내는 단면도.Figure 4 is a cross-sectional view showing that the carbon black layer and the heat-radiating ceramic coating layer is introduced in the back sheet of the solar cell module for solar cells according to the present invention.
*도면의 주요 부분에 대한 부호 설명** Description of symbols on the main parts of the drawings *
SC : 솔라셀 G : 글라스SC: Cell G: Glass
10 : 제1 수지층 20 : 열전도층10: first resin layer 20: heat conductive layer
30 : 제2 수지층 40 : 접착층30: second resin layer 40: adhesive layer
50 : 열전도성 코팅층 60 : 보호층50: thermal conductive coating layer 60: protective layer
70 : 카본블랙층 80 : 방열세라믹 코팅층70 carbon black layer 80 heat dissipation ceramic coating layer
이하에서는 본 발명에 따른 태양광발전용 솔라셀 모듈의 백시트를 첨부된 도면을 참조하여 설명하기로 한다.Hereinafter, a back sheet of a solar cell module for solar cells according to the present invention will be described with reference to the accompanying drawings.
도 1 내지 도 4에 도시된 바와 같이 본 발명에 따른 태양광발전용 솔라셀 모듈의 백시트는As shown in Figures 1 to 4 the backsheet of the solar cell module for solar cells according to the invention
솔라셀(SC)의 하부에 구비된 EVA에 부착된 제1 수지층(10); 상기 제1 수지층(10)의 하면부에 구비된 열전도층(20); 상기 열전도층(20)의 하면부에 하부층; 및 상기 제1 수지층(10)과 열전도층(20) 사이에 구비되는 접착층(40);을 포함하여 이루어진다.A first resin layer 10 attached to the EVA provided under the solar cell SC; A thermal conductive layer 20 provided on the lower surface portion of the first resin layer 10; A lower layer on a lower surface of the thermal conductive layer 20; And an adhesive layer 40 provided between the first resin layer 10 and the thermal conductive layer 20.
도 1 내지 도 4에 도시된 바와 같이 본 발명에 따른 태양광발전용 솔라셀 모듈의 백시트에서, 상기 제1 수지층(10)은1 to 4, in the back sheet of the solar cell module for solar cells according to the present invention, the first resin layer 10 is
그 상면부에는 솔라셀(SC)이 부착되고, 그 하면부에는 열전도층(20)이 부착되어 솔라셀(SC)에서 발생하는 열을 열전도층(20)으로 전달함과 동시에, 절연층을 형성하게 된다.A solar cell SC is attached to the upper surface portion, and a thermal conductive layer 20 is attached to the lower surface portion thereof to transfer heat generated from the solar cell SC to the thermal conductive layer 20 and to form an insulating layer. Done.
우선 상기 제1 수지층(10) 상면부에는 솔라셀(SC)이 부착되고, 상기 솔라셀(SC) 상부에는 글라스(G)가 부착되는데,First, a solar cell SC is attached to an upper surface of the first resin layer 10, and a glass G is attached to an upper portion of the solar cell SC.
상기 솔라셀(SC)과 상기 글라스(G)는 아크릴, EVA, 우레탄 계열의 접착제 중 어느 하나를 사용하여 각각 솔라셀(SC)과 글라스(G)를 접착시키게 된다.The solar cell SC and the glass G are bonded to the solar cell SC and the glass G using any one of acrylic, EVA and urethane adhesives.
상기 제1 수지층(10)은 상기한 바와 같이 절연성능 및 방열성능을 갖는 PET(PolyEthylene Terephthalate), PI(PolyImide), BOPP(Bi-axially Oriented PolyPropylene), OPP, PVF(PolyVinyl Fluoride), PVDF(PolyVinylidene Fluoride), TPE(Thermo Plastic Elastomer), ETFE(Ethylene Tetrafluoro Ethylene) 및 아라미드 필름 등과 같은 고분자물질로 이루어진 수지재로 구성된 박막형태의 시트 또는 필름인 것이 바람직하다.As described above, the first resin layer 10 may be formed of PolyEthylene Terephthalate (PET), PolyImide (PI), Bi-axially Oriented PolyPropylene (BOPP), OPP, PolyVinyl Fluoride (PVF), and PVDF (PolyEthylene Terephthalate). It is preferable that the sheet or film is a thin film form made of a resin material made of a polymer material such as PolyVinylidene Fluoride (TPE), Thermo Plastic Elastomer (TPE), Ethylene Tetrafluoro Ethylene (ETFE), and aramid film.
무엇보다도 이러한 고분자물질로 이루어진 박막형 시트는 내전압(withstanding voltage)이 우수하여 절연부분이 파괴될 염려가 없어 내구성을 향상시킬 수 있다는 장점이 있고,Above all, the thin film sheet made of such a polymer material has an excellent withstand voltage, so that there is no fear of breakdown of the insulating part, thereby improving durability.
이러한 특성은 품질규격 면에서 더 높은 내전압성이 요구되는 다양한 분야로 활용 폭을 넓힐 수 있는 이점을 갖게 된다.This characteristic has the advantage of extending the application to various fields that require higher withstand voltage in terms of quality standards.
또한 상기 제1 수지층(10)은 내열성이 우수하여 절연층이 깨지거나 또는 파괴되는 현상을 방지할 수 있을 뿐만 아니라,In addition, the first resin layer 10 is excellent in heat resistance to prevent the phenomenon that the insulating layer is broken or destroyed,
박막 형태를 이룬다는 점에서 솔라셀 모듈 자체의 두께를 콤팩트하게 구성할 수 있다는 이점을 또한 얻을 수 있게 된다.The thin film form also allows the compactness of the solar cell module itself.
도 1 내지 도 4에 도시된 바와 같이 본 발명에 따른 태양광발전용 솔라셀 모듈의 백시트에서, 상기 열전도층(20)은1 to 4, in the back sheet of the solar cell module for solar cells according to the present invention, the heat conductive layer 20 is
상기 제1 수지층(10)의 하면부에 연결되어 솔라셀(SC)에서 발생하는 열을 전도시키는 역할과, 솔라셀 모듈의 박막화를 가능하게 한다.It is connected to the lower surface of the first resin layer 10 to conduct heat generated from the solar cell (SC), and enables the thin film of the solar cell module.
본 발명에 따른 열전도층(20)은 열전도성이 우수한 알루미늄, 동, 황동, 강판, 스테인리스나 이와 같은 소재들과 동등 이상의 열전도율을 갖는 소재를 사용하는 것이 바람직하고,As the thermal conductive layer 20 according to the present invention, it is preferable to use a material having thermal conductivity equivalent to or higher than that of aluminum, copper, brass, steel sheet, stainless steel or the like having excellent thermal conductivity,
또한 이러한 재질들은 일정 이상의 강성과 내열성이 우수하여 열응력에 의한 소재의 변형을 방지할 수 있어 제품의 신뢰를 높을 수 있게 된다.In addition, these materials are excellent in stiffness and heat resistance of a certain level, which can prevent deformation of the material due to thermal stress, thereby increasing the reliability of the product.
도 1 내지 도 4에 도시된 바와 같이 본 발명에 따른 태양광발전용 솔라셀 모듈의 백시트에서, 상기 하부층은1 to 4, in the back sheet of the solar cell module for solar cells according to the present invention, the lower layer is
무기도료 또는 유무기 복합 하이브리드 도료에 의하여 도포된 열전도성 코팅층(50)이거나, 또는 시트나, 필름 형태의 제2 수지층(30)으로 이루어진다.The heat conductive coating layer 50 is coated with an inorganic paint or an organic / inorganic hybrid hybrid paint, or a second resin layer 30 in the form of a sheet or a film.
우선 상기 하부층으로 열전도성 코팅층(50)이 도입된 경우에는 도 1 및 도 3의 (a)에 도시된 바와 같이 상기 열전도층(20)의 하면부에 배열되는데,First, when the thermally conductive coating layer 50 is introduced into the lower layer, as shown in FIGS. 1 and 3 (a), the thermal conductive layer 20 is arranged on the bottom surface of the thermal conductive layer 20.
상기 열전도성 코팅층(50)은 솔라셀 모듈의 절연성능 및 방열성능을 보장하고, 또한 내열성과 접착강도를 우수하게 하며, 또한 솔라셀 모듈의 박막화를 가능하게 한다.The thermally conductive coating layer 50 ensures insulation performance and heat dissipation performance of the solar cell module, and also has excellent heat resistance and adhesive strength, and also enables thinning of the solar cell module.
상기 열전도성 코팅층(50)은 무기도료 또는 유무기 복합 하이브리드 도료를 도입하여 상기 열전도층(20)의 하면부에 도포되는데,The thermal conductive coating layer 50 is applied to the lower surface of the thermal conductive layer 20 by introducing an inorganic paint or an organic-inorganic composite hybrid paint,
이는 상기 열전도성 코팅층으로 유기고분자 물질을 사용하는 경우 유기고분자 물질의 낮은 표면에너지와 낮은 분자력으로 인하여 기계적 강도와 접착력이 약해지는 문제를 해결하기 위함이다.This is to solve the problem of weak mechanical strength and adhesion due to low surface energy and low molecular force of the organic polymer material when the organic polymer material is used as the thermally conductive coating layer.
우선 상기 열전도성 코팅층(50)은 세라믹계열의 알루미나, 산화티탄, 지르코니아와 같이 금속산화물, CNT, 규소 등으로 구성된 무기도료를 사용하게 되며,First, the thermally conductive coating layer 50 uses an inorganic coating made of metal oxide, CNT, silicon, etc., such as ceramic-based alumina, titanium oxide, and zirconia.
이때 무기도료는 내열성, 화학적 안정성, 열전도성 및 절연성 등이 우수하다는 장점을 갖게 된다.At this time, the inorganic paint has the advantage of excellent heat resistance, chemical stability, thermal conductivity and insulation.
다만 무기도료를 사용하는 경우에는 취성이 강하여 박막화가 어렵고, 저온 소성이 되지 않는 단점을 갖기 때문에In the case of using inorganic paints, however, they are brittle and have a disadvantage in that thinning is difficult and low-temperature firing is not possible.
상기 무기도료에 유기질 재료인 우레탄 또는 포리에스터, 아크릴 등의 유기화학 코팅제를 혼합한 유무기 복합 하이브리드 도료를 대안적으로 도입하게 된다.Inorganic-inorganic hybrid hybrid paints are mixed with the inorganic paints, which are organic materials such as urethane, polyester, and organic chemical coating agents.
따라서 유무기 복합 하이브리드 도료로 구성된 열전도성 코팅층(50)은 절연성능과 방열성능이 우수할 뿐만 아니라, 내열성과 접착강도가 우수하고,Therefore, the thermally conductive coating layer 50 composed of the organic-inorganic composite hybrid paint not only has excellent insulation performance and heat dissipation performance, but also has excellent heat resistance and adhesive strength,
더 나아가 박막화가 가능하여 제품의 신뢰성을 보장과, 제품의 품질을 향상시킬 수 있는 장점을 얻을 수 있게 된다.Furthermore, it is possible to thin the film to ensure the reliability of the product, it is possible to obtain the advantages of improving the quality of the product.
한편 상기 열전도성 코팅층은 무기도료나 유무기 복합 하이브리드 도료의 대안적인 형태로 Al2O3, AlS, AlN, ZnO2, TiO2, SiO2, TEOS, MTMS, ZrO3 및 MOS2 중에서 선택된 1 종 이상을 포함하는 세라믹 소재를 도입하여 절연성능과 방열성능을 확보하는 것도 가능하다.Meanwhile, the thermally conductive coating layer may be selected from Al 2 O 3 , AlS, AlN, ZnO 2 , TiO 2 , SiO 2 , TEOS, MTMS, ZrO 3 and MOS 2 as an alternative form of an inorganic paint or an organic / inorganic hybrid hybrid paint. It is also possible to introduce a ceramic material including the above to ensure insulation performance and heat dissipation performance.
다음으로 본 발명에 따른 하부층으로 제2 수지층(30)이 도입된 경우에는 도 2 및 도 3의 (b)도시된 바와 같이 상기 열전도층(20) 하부에 배열되어Next, when the second resin layer 30 is introduced into the lower layer according to the present invention, as shown in FIGS. 2 and 3 (b), the second resin layer 30 is arranged below the thermal conductive layer 20.
솔라셀 모듈의 절연 두께가 일정 이상 유지시켜 절연성능을 향상시키고, 내전압을 상승시키는 역할을 하게 된다.The insulation thickness of the solar cell module is maintained above a certain level to improve insulation performance and to increase the withstand voltage.
상기 제2 수지층(30)은 PET, PI, BOPP, OPP, PVF, PVDF, TPE, ETFE 및 아라미드 필름 등과 같은 고분자물질로 이루어진 시트나 필름 형태의 구성되어 상기한 바와 같은 목적을 달성하게 된다.The second resin layer 30 is configured in the form of a sheet or film made of a polymer material such as PET, PI, BOPP, OPP, PVF, PVDF, TPE, ETFE and aramid film to achieve the above object.
또한 도 2 및 도 3의 (b)에 도시된 바와 같이 상기 제2 수지층(30)의 하면부에는 상기 열전도성 코팅층(50)이 더 구비되고,In addition, as shown in (b) of FIG. 2 and FIG. 3 (b), the thermally conductive coating layer 50 is further provided on the lower surface of the second resin layer 30,
또한 상기 열전도성 코팅층(50)은 무기도료 또는 유무기 복합 하이브리드 도료로 이루어져 상기한 바와 같은 기능과 작용효과를 동일하게 얻을 수 있다.In addition, the thermally conductive coating layer 50 may be made of an inorganic paint or an organic / inorganic hybrid hybrid paint to obtain the same functions and effects as described above.
도 1 내지 도 4에 도시된 바와 같이 본 발명에 따른 태양광발전용 솔라셀 모듈의 백시트에서, 상기 접착층(40)은1 to 4, in the back sheet of the solar cell module for solar cells according to the invention, the adhesive layer 40 is
EVA, 아크릴, 우렌탄 계열의 접착성 투명 필름이나, 접착 도료를 상기 제1 수지층(10)과 열전도층(20)과, 상기 열전도층(20)과 제2 수지층(30)을 접착시키는 역할을 하게 된다.The first transparent resin layer 10 and the thermal conductive layer 20 and the thermal conductive layer 20 and the second resin layer 30 are bonded to each other by using an EVA, acrylic or urethane-based adhesive transparent film or an adhesive paint. It will play a role.
아울러 상기 접착층(40)은 상기 제1 수지층(10)과 열전도층(20) 사이에 배열되어 제1 수지층(10)과 열전도층(20)을 접착시키고, 또한 상기 열전도층(20)과 제2 수지층(30)을 접착시키게 된다.In addition, the adhesive layer 40 is arranged between the first resin layer 10 and the thermal conductive layer 20 to bond the first resin layer 10 and the thermal conductive layer 20, and further, the thermal conductive layer 20 The second resin layer 30 is bonded.
이때 솔라셀 모듈을 구성하는 각 구성요소인 제1 수지층(10), 열전도층(20) 및 제2 수지층(30)을 상기 접착층(40)에 의하여 접착시키기 위해서는 일정한 열 압력에 의한 라미네이팅 작업이 수행된다.In this case, in order to bond the first resin layer 10, the heat conductive layer 20, and the second resin layer 30, which are each component constituting the solar cell module, by the adhesive layer 40, laminating by a constant thermal pressure. This is done.
이 경우 상기 배경기술에서 언급한 바와 같이 박막의 금속소재인 열전도층의 상부나, 또는 상부 및 하부에 접착제, 보다 정확하게는 필름 형태의 접착제에 의하여 라미네이팅을 하는 경우In this case, as mentioned in the background art, when laminating by an adhesive, more specifically, a film-type adhesive, on top of the thermal conductive layer, or on top and bottom, of a thin metal material.
접착층과 금속소재의 열팽창계수와 냉각속도의 차이에 의하여 라미네이팅 후, 냉각되는 과정에서 접착층과 금속 박막과의 냉각속도 차이로 인하여 금속 박막이 휘는 현상이 발생하게 된다.After lamination due to the difference between the coefficient of thermal expansion and the cooling rate of the adhesive layer and the metal material, the metal thin film is bent due to the difference in the cooling rate between the adhesive layer and the metal thin film during the cooling process.
따라서 본 발명에서는 상기한 바와 같은 문제를 해결하기 위해 상기 제1 수지층(10)과 제2 수지층(30)을 도입하여 상기 접착층(40)과 열전도층(20) 간의 냉각속도의 차에 의하여 열전도층(20)의 휨 변형을 방지하여 제품의 품질이 유지되도록 하고,Therefore, in the present invention, in order to solve the above problems, the first resin layer 10 and the second resin layer 30 are introduced to each other by the difference in cooling rate between the adhesive layer 40 and the heat conductive layer 20. Prevent the bending deformation of the thermal conductive layer 20 to maintain the quality of the product,
또한 제1 수지층(10)과 상기 제2 수지층(30)에 의하여 절연 두께가 충분히 확보됨으로써 절연성능이나 내전압을 증대시킬 수 있게 된다.In addition, since the insulation thickness is sufficiently secured by the first resin layer 10 and the second resin layer 30, the insulation performance and the withstand voltage can be increased.
아울러 상기 제2 수지층(30)은 솔라셀 모듈의 절연 두께를 확보하게 되는데,In addition, the second resin layer 30 is to secure the insulation thickness of the solar cell module,
상기 제1 수지층(10), 접착층(40), 열전도층(20), 접착층(40) 및 제2 수지층(30)으로 이루어진 백시트는 250 ~ 750㎛ 범위 내에서 형성된다.The backsheet composed of the first resin layer 10, the adhesive layer 40, the thermal conductive layer 20, the adhesive layer 40, and the second resin layer 30 is formed within the range of 250 to 750 μm.
이는 상기 배경기술에서 언급한 경우와 같이 솔라셀, EVA 및 금속박막으로 이루어진 방열시트의 두께는 대략 150 ~ 250㎛ 범위 내에서 형성되고,It is formed in the range of about 150 ~ 250㎛ thickness of the heat dissipation sheet made of the solar cell, EVA and metal thin film as mentioned in the background art,
이 경우 금속박막과 바로 부착되는 EVA층의 상이한 열팽창계수 및 냉각속도 차이로 방열시트는 휘어지거나 또는 변형이 쉽게 일어나게 되며,In this case, the heat dissipation sheet is bent or deformed easily due to the difference in the coefficient of thermal expansion and the cooling rate of the EVA layer directly attached to the metal thin film.
또한 UL 인증 시 Hi-pot Test, TUV Partial Discharge Test 규격 등을 통과하니 못하는 제품화가 불가능하게 된다.In addition, UL certification is impossible to commercialize products that do not pass the Hi-pot Test, TUV Partial Discharge Test standards.
따라서 본 발명에서는 백시트의 두께를 상기 범위 내에서 형성함으로써 백시트의 변형을 방지하고, 충분한 절연 두께를 확보함으로써 내구성을 향상시켜 제품의 신뢰성을 보장할 수 있도록 하는 것이 바람직하다.Therefore, in the present invention, it is preferable to prevent the deformation of the back sheet by forming the thickness of the back sheet within the above range, and to ensure the reliability of the product by improving the durability by ensuring sufficient insulation thickness.
아울러 도 3의 (a) 및 (b) 도시된 바와 같이 본 발명에 따른 상기 열전도성 코팅층(50)의 하면부에 보호층(60)이 더 구비되는데,In addition, as shown in Figure 3 (a) and (b) is further provided with a protective layer 60 on the lower surface of the thermal conductive coating layer 50 according to the present invention,
상기 보호층(60)은 세라믹, 불소수지 등과 같은 소재를 사용하게 되고,The protective layer 60 is made of a material such as ceramic, fluorine resin,
이때 상기 보호층(60)은 내후성과 내식성이 뛰어나 자외선을 차단하는 효과가 우수할 뿐만 아니라, 표면보호, 솔라셀 모듈의 절연성능을 향상시킬 수 효과를 얻을 수 있게 된다.At this time, the protective layer 60 is excellent in weather resistance and corrosion resistance, and excellent in blocking the ultraviolet rays, surface protection, it is possible to obtain the effect of improving the insulation performance of the solar cell module.
그리고 도 4의 (a)에 도시된 바와 같이 본 발명에 따른 상기 제2 수지층(30)의 일면 또는 양면에는 카본블랙 수지에 의하여 도포되어 형성된 카본블랙층(70)이 도입되어 열복사 성능을 높여 방열효율을 배가시킬 수 있게 되는데,As shown in FIG. 4A, one or both surfaces of the second resin layer 30 according to the present invention are introduced with a carbon black layer 70 formed by coating with a carbon black resin to increase heat radiation performance. You can double the heat dissipation efficiency,
이러한 상기 카본블랙층(70)은 열복사 즉, 열전단율이 우수하여 상기 열전도층(20)을 통하여 제2 수지층(30)으로 전달되는 전도열을 보다 신속하게 공기 중으로 방출시켜 방열효율을 극대화시키는 역할을 하게 된다.The carbon black layer 70 is excellent in heat radiation, that is, the thermal conductivity is to maximize the heat dissipation efficiency by releasing the conductive heat transferred to the second resin layer 30 through the thermal conductive layer 20 into the air more quickly. Will be
다만 상기 카본블랙층(70)이 상기 제2 수지층(30)의 일면에 형성되는 경우However, when the carbon black layer 70 is formed on one surface of the second resin layer 30
우선 상기 카본블랙층(70)이 상기 제2 수지층(30)의 상면부에 형성되는 경우에는 구조상의 안정성 측면에서 유리하고,First, when the carbon black layer 70 is formed on the upper surface of the second resin layer 30 is advantageous in terms of structural stability,
상기 카본블랙층(70)이 상기 제2 수지층(30)의 하면부, 즉 외부로 노출되도록 도포되어 형성된 경우에는 열전도율 측면에 유리하여 방열효율을 보다 높일 수 있게 된다.When the carbon black layer 70 is formed to be exposed to the lower surface of the second resin layer 30, that is, exposed to the outside, the carbon black layer 70 is advantageous in terms of thermal conductivity, thereby increasing heat dissipation efficiency.
따라서 상기 카본블랙층(70)은 구조적인 안정성 측면보다는 방열효율을 높이는데 기여할 수 있도록 상기 제2 수지층(30)의 하면부에 도포하여 외부로 노출될 수 있도록 함으로써 방열성능을 향상시킬 수 있도록 하는 것이 바람직하다.Therefore, the carbon black layer 70 is applied to the lower surface of the second resin layer 30 to be exposed to the outside so as to contribute to increase the heat dissipation efficiency rather than structural stability side to improve the heat dissipation performance It is desirable to.
한편 상기 카본블랙층(70)이 상기 제2 수지층(30) 양면에 형성되는 경우에는 일면에 형성되는 경우 갖는 모든 장점들을 가질 수 있어 양면에 형성되도록 하는 것도 가능하다.On the other hand, when the carbon black layer 70 is formed on both sides of the second resin layer 30 may have all the advantages that are formed on one surface it is possible to be formed on both sides.
더 나아가 도 4의 (b)에 도시된 바와 같이 상기 제2 수지층(30)의 일면 또는 양면에는 방열세라믹 코팅층(80)이 더 구비되는데,Furthermore, as shown in FIG. 4B, one or both surfaces of the second resin layer 30 are further provided with a heat dissipating ceramic coating layer 80.
상기 방열세라믹 코팅층(80)은 알루미나, 산화티탄, 지르코니아로 이루어진 군으로 선택된 1종 이상의 금속 세라믹소재와,The heat dissipation ceramic coating layer 80 is at least one metal ceramic material selected from the group consisting of alumina, titanium oxide, zirconia,
유기실란, 무기실란, 실란커플링제 및 CNT로 이루어진 군으로부터 선택된 1종 이상의 비금속 세라믹소재 중에서 선택된 1종 이상으로 구성된다.An organosilane, an inorganic silane, a silane coupling agent, and CNT are composed of at least one selected from the group consisting of at least one nonmetal ceramic material.
따라서 상기 방열세라믹 코팅층(80)은 열전도층(20)에 의하여 전달되는 전도열을 효율적으로 외부로 방출하여 줌으로써 방열효율과, 이로 인하여 솔라셀 모듈의 발전량을 높일 수 있게 된다.Accordingly, the heat dissipation ceramic coating layer 80 efficiently discharges the conductive heat transferred by the heat conduction layer 20 to the outside, thereby increasing the heat dissipation efficiency and, thereby, increasing the generation amount of the solar cell module.
이상에서 첨부된 도면을 참조하여 본 발명인 태양광발전용 솔라셀 모듈의 백시트를 설명함에 있어 특정 형상 및 방향을 위주로 설명하였으나, 본 발명은 당업자에 의하여 다양한 변형 및 변경이 가능하고, 이러한 변형 및 변경은 본 발명의 권리범위에 포함되는 것으로 해석되어야 한다.In describing the back sheet of the solar cell module for solar cells according to the present invention with reference to the accompanying drawings, the present invention has been described based on a specific shape and direction, but various modifications and changes can be made by those skilled in the art. Modifications should be construed as being included in the scope of the present invention.

Claims (13)

  1. 솔라셀의 하부에 구비된 EVA에 부착된 제1 수지층;A first resin layer attached to the EVA provided under the solar cell;
    상기 제1 수지층의 하면부에 구비된 열전도층;A thermal conductive layer provided on the lower surface portion of the first resin layer;
    상기 열전도층의 하면부에 구비된 하부층; 및A lower layer provided on a lower surface of the heat conductive layer; And
    상기 제1 수지층과 열전도층 사이에 구비되는 접착층;을 포함하여 이루어지고,It comprises a; adhesive layer provided between the first resin layer and the thermal conductive layer,
    상기 제1 수지층은 내전압 증대와, 절연 두께를 확보하여 절연성능을 향상시키는 것을 특징으로 하는 태양광발전용 솔라셀 모듈의 백시트.The first resin layer is a solar cell module backsheet for solar cells, characterized in that to increase the breakdown voltage and to ensure the insulation thickness to improve the insulation performance.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 하부층은 무기도료 또는 유무기 복합 하이브리드 도료에 의하여 도포되는 열전도성 코팅층인 것을 특징으로 하는 태양광발전용 솔라셀 모듈의 백시트.The lower layer is a back sheet of the solar cell module for solar cells, characterized in that the thermal conductive coating layer applied by the inorganic paint or organic-inorganic composite hybrid paint.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 열전도성 코팅층의 하면부에는 자외선 차단, 표면보호, 투습방지를 위한 보호층이 더 구비되어 있는 것을 특징으로 하는 태양광발전용 솔라셀 모듈의 백시트.The back sheet of the solar cell module for solar cells, characterized in that the lower surface portion of the thermal conductive coating layer is further provided with a protective layer for UV protection, surface protection, moisture permeation prevention.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 하부층은 제2 수지층이고,The lower layer is a second resin layer,
    상기 열전도층과 상기 제2 수지층 사이에 구비되는 접착층을 더 포함하고,Further comprising an adhesive layer provided between the heat conductive layer and the second resin layer,
    상기 제2 수지층은 내전압 증대와, 절연 두께를 확보하여 절연성능을 향상시키며,The second resin layer increases the breakdown voltage and secures an insulation thickness, thereby improving insulation performance.
    상기 제1 수지층과, 또는 상기 제2 수지층 또는 이를 모두는 상기 접착층과 상기 열전도층의 열팽창계수와 냉각속도의 차이에 의하여 상기 열전도층이 휘는 현상을 방지하는 것을 특징으로 하는 태양광발전용 솔라셀 모듈의 백시트.The first resin layer, or the second resin layer, or both of them prevents the heat conductive layer from bending due to a difference in thermal expansion coefficient and cooling rate of the adhesive layer and the thermal conductive layer. Backsheet of the solar cell module.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제2 수지층의 하면부에는 무기도료 또는 유무기 복합 하이브리드 도료에 의하여 도포되는 열전도성 코팅층이 더 구비되어 있는 것을 특징으로 하는 태양광발전용 솔라셀 모듈의 백시트.The back sheet of the solar cell module for solar cells, characterized in that the lower surface of the second resin layer is further provided with a thermally conductive coating layer applied by an inorganic paint or an organic-inorganic hybrid hybrid paint.
  6. 제 5 항에 있어서,The method of claim 5,
    사이 열전도성 코팅층의 하면부에는 자외선 차단, 표면보호, 투습방지를 위한 보호층이 더 구비되어 있는 것을 특징으로 하는 태양광발전용 솔라셀 모듈의 백시트.The back sheet of the solar cell module for solar cells, characterized in that the lower portion of the thermal conductive coating layer is further provided with a protective layer for UV protection, surface protection, moisture permeation prevention.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 6,
    상기 제1 수지층은 PET, PI, BOPP, OPP, PVF, PVDF, TPE, ETFE 및 아라미드 필름 및 중 어느 하나의 소재로 이루어진 것을 특징으로 하는 태양광발전용 솔라셀 모듈의 백시트.The first resin layer is a solar cell module back sheet for solar cells, characterized in that made of any one of PET, PI, BOPP, OPP, PVF, PVDF, TPE, ETFE and aramid film.
  8. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 6,
    상기 열전도층은 알루미늄, 동, 황동, 강판 및 스테인리스 스틸 중 어느 하나의 금속 소재로 이루어진 것을 특징으로 하는 태양광발전용 솔라셀 모듈의 백시트.The thermally conductive layer is a solar cell back sheet of the solar module, characterized in that made of any one metal material of aluminum, copper, brass, steel sheet and stainless steel.
  9. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 6,
    상기 접착층은 EVA, 아크릴, 우레탄 계열의 접착성 투명 필름인 것을 특징으로 하는 태양광발전용 솔라셀 모듈의 백시트.The adhesive layer is a back sheet of the solar cell module for solar cells, characterized in that the EVA, acrylic, urethane-based adhesive transparent film.
  10. 제 4 항 내지 제 6 항 중 어느 한 항에 있어서,The method according to any one of claims 4 to 6,
    상기 제2 수지층은 PET, PI, BOPP, OPP, PVF, PVDF, TPE, ETFE 및 아라미드 필름 중 어느 하나의 소재로 이루어진 것을 특징으로 하는 태양광발전용 솔라셀 모듈의 백시트.The second resin layer is a back sheet of the solar cell module for solar cells, characterized in that made of any one material of PET, PI, BOPP, OPP, PVF, PVDF, TPE, ETFE and aramid film.
  11. 제 4 항 내지 제 6 항 중 어느 한 항에 있어서,The method according to any one of claims 4 to 6,
    상기 제1 수지층, 열전도층, 제2 수지층 및 접착층으로 이루어진 백시트의 두께는 250 ~ 750㎛ 범위 내에서 형성되는 것을 특징으로 하는 태양광발전용 솔라셀 모듈의 백시트. The back sheet of the solar cell module for solar cells, characterized in that the thickness of the back sheet consisting of the first resin layer, the thermal conductive layer, the second resin layer and the adhesive layer is formed in the range of 250 ~ 750㎛.
  12. 제 4 항 내지 제 6 항 중 어느 한 항에 있어서,The method according to any one of claims 4 to 6,
    상기 제2 수지층의 일면 또는 양면에는 카본블랙(carbon black) 수지가 도포되어 형성된 카본블랙층이 더 구비되어 있는 것을 특징으로 하는 태양광발전용 솔라셀 모듈의 백시트.The back sheet of the solar cell module for solar cells, characterized in that the carbon black layer formed by coating a carbon black resin on one side or both sides of the second resin layer is further provided.
  13. 제 4 항 내지 제 6 항 중 어느 한 항에 있어서,The method according to any one of claims 4 to 6,
    상기 제2 수지층의 일면 또는 양면에는 방열세라믹 코팅층이 더 구비되어 있는 것을 특징으로 하는 태양광발전용 솔라셀 모듈의 백시트.The back sheet of the solar cell module for solar cells, characterized in that the heat radiation ceramic coating layer is further provided on one side or both sides of the second resin layer.
PCT/KR2011/007211 2010-10-13 2011-09-30 Back sheet of a solar cell module for photovoltaic power generation WO2012050316A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/879,257 US20130209776A1 (en) 2010-10-13 2011-09-30 Back sheet of a solar cell module for photovoltaic power generation
CN2011800515943A CN103180967A (en) 2010-10-13 2011-09-30 Back sheet of a solar cell module for photovoltaic power generation

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20100099992 2010-10-13
KR10-2010-0099992 2010-10-13
KR10-2010-0125755 2010-12-09
KR1020100125755A KR20120038347A (en) 2010-10-13 2010-12-09 Radiant heat structure of solar cell for photovoltaic power generation
KR10-2011-0043050 2011-05-06
KR1020110043050A KR101073029B1 (en) 2010-10-13 2011-05-06 Back sheet of solar cell module for photovoltaic power generation
KR1020110043049A KR101070871B1 (en) 2010-10-13 2011-05-06 Back sheet of solar cell module for photovoltaic power generation
KR10-2011-0043049 2011-05-06

Publications (1)

Publication Number Publication Date
WO2012050316A1 true WO2012050316A1 (en) 2012-04-19

Family

ID=45938479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007211 WO2012050316A1 (en) 2010-10-13 2011-09-30 Back sheet of a solar cell module for photovoltaic power generation

Country Status (1)

Country Link
WO (1) WO2012050316A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367507A (en) * 2013-03-22 2013-10-23 韩华新能源(启东)有限公司 Photovoltaic module
CN104371442A (en) * 2014-11-14 2015-02-25 无锡中洁能源技术有限公司 Carbon-containing solar cell backplate fluorine resin coating and preparation method thereof
JP2015513228A (en) * 2012-12-27 2015-04-30 ヒョク キム,ミン SOLAR POWER GENERATION BACK SHEET, METHOD FOR PRODUCING THE BACK SHEET, AND SOLAR POWER GENERATION MODULE HAVING THE BACK SHEET
EP3971994A4 (en) * 2020-07-22 2022-07-06 Jingao Solar Co., Ltd. Photovoltaic module, backsheet of photovoltaic module, and method for manufacturing photovoltaic module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331187A (en) * 2006-06-14 2007-12-27 Toppan Printing Co Ltd Backseat for solar cell and solar-cell module
KR20080053469A (en) * 2005-09-30 2008-06-13 도레이 가부시끼가이샤 Encapsulation film for photovoltaic module and photovoltaic module
JP2010199552A (en) * 2008-12-16 2010-09-09 Techno Polymer Co Ltd Solar cell backsheet and solar cell module provided with same
KR20100105505A (en) * 2009-03-19 2010-09-29 주식회사 엘지화학 Backsheet for solar cell comprising fluorine-based copolymer and preparation methode thereof
KR20100105930A (en) * 2009-03-23 2010-10-01 이정민 Back sheet for module, its manufacturing method and its manufacturing apparatus thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080053469A (en) * 2005-09-30 2008-06-13 도레이 가부시끼가이샤 Encapsulation film for photovoltaic module and photovoltaic module
JP2007331187A (en) * 2006-06-14 2007-12-27 Toppan Printing Co Ltd Backseat for solar cell and solar-cell module
JP2010199552A (en) * 2008-12-16 2010-09-09 Techno Polymer Co Ltd Solar cell backsheet and solar cell module provided with same
KR20100105505A (en) * 2009-03-19 2010-09-29 주식회사 엘지화학 Backsheet for solar cell comprising fluorine-based copolymer and preparation methode thereof
KR20100105930A (en) * 2009-03-23 2010-10-01 이정민 Back sheet for module, its manufacturing method and its manufacturing apparatus thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015513228A (en) * 2012-12-27 2015-04-30 ヒョク キム,ミン SOLAR POWER GENERATION BACK SHEET, METHOD FOR PRODUCING THE BACK SHEET, AND SOLAR POWER GENERATION MODULE HAVING THE BACK SHEET
CN103367507A (en) * 2013-03-22 2013-10-23 韩华新能源(启东)有限公司 Photovoltaic module
CN104371442A (en) * 2014-11-14 2015-02-25 无锡中洁能源技术有限公司 Carbon-containing solar cell backplate fluorine resin coating and preparation method thereof
EP3971994A4 (en) * 2020-07-22 2022-07-06 Jingao Solar Co., Ltd. Photovoltaic module, backsheet of photovoltaic module, and method for manufacturing photovoltaic module

Similar Documents

Publication Publication Date Title
KR101070871B1 (en) Back sheet of solar cell module for photovoltaic power generation
WO2010143816A2 (en) Photovoltaic module with ceramic coating heat radiating sheet
WO2012157975A2 (en) Back sheet for a solar cell module, and solar cell module comprising same
WO2012148176A2 (en) Back sheet for solar cell module and solar cell module including same
WO2010087684A2 (en) Solar cell back sheet and method for preparing same
US20090000662A1 (en) Photovoltaic receiver for solar concentrator applications
WO2023101292A1 (en) Bipv-applicable high-power shingled photovoltaic module and manufacturing method therefor
CN102812556B (en) Solar energy module structure
WO2009110757A2 (en) Photovoltaic assembly
WO2012050316A1 (en) Back sheet of a solar cell module for photovoltaic power generation
WO2011062380A2 (en) Solar photovoltaic device
WO2012133973A1 (en) Solar cell module and method for manufacturing same
WO2021040211A2 (en) Solar cell module having excellent visibility
CN103000728B (en) Solar cell backboard assembly and solar module
WO2013125877A1 (en) Backsheet for solar cell module and solar cell module comprising same
JP2012519967A (en) Lightweight solar cell module
WO2011002213A2 (en) Photovoltaic power-generating apparatus
US20170104446A1 (en) Solar battery module
WO2012161405A1 (en) Solar power generation module having improved insulation characteristics
WO2012096548A2 (en) Solar cell module
WO2013125874A1 (en) Backsheet for solar cell module and solar cell module comprising same
WO2020204527A1 (en) Solar cell panel and manufacturing method therefor
WO2022260244A1 (en) Solar cell module and manufacturing method therefor
WO2010140753A1 (en) Photovoltaic module comprising a heat-dissipating sheet having a coating layer
WO2014104506A1 (en) Pocket type photovoltaic power generation back sheet, method for manufacturing said back sheet, and photovoltaic power generation module including said back sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832703

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13879257

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/08/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11832703

Country of ref document: EP

Kind code of ref document: A1